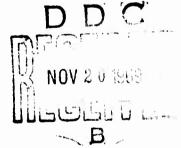
UNCLASSIFIED AD NUMBER AD861517 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JUL 1969. Other requests shall be referred to Army Aviation Materiel Laboratories, Fort Eustis, VA 23604. This document contains export-controlled technical data. **AUTHORITY** USAAMRDL ltr dtd 23 Jun 1971

AD

USAAVLABS TECHNICAL REPORT 69-38

CWCD-1000/1010 SONIC ANALYZER WITH CH-47A/B HELICOPTER CAPABILITY


R. G. Locklin G. W. Stetson, III

July 1969

U. S. ARMY AVIATION MATERIEL LABORATORIES

FORT EUSTIS, VIRGINIA

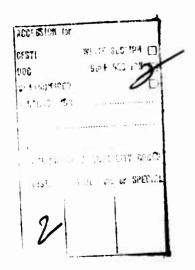
CONTRACT DAAJ02-67-C-0006
CURTISS-WRIGHT CORPORATION
AEROSPACE EQUIPMENT DIVISION
CALDWELL, NEW JERSEY

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va 22151

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of US Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.

172

DISCLAIMERS


The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

DEPARTMENT OF THE ARMY HEADQUARTERS US ARMY AVIATION MATE REL LABORATORIES FORT EUSTIS, VIRGINIA 2:804

The effort reported herein represents a part of an overall program to derive techniques that may be used in the development of diagnostic and inspection equipment for Army aircraft maintenance.

This report presents the results of the investigation of the use of acoustical energy measurement and analysis to determine the mechanical condition of the propulsion system of the CH-47 model helicopter. The results of the program indicate that a sonic analyzer can be developed into a useful tool in the maintenance of Army aircraft.

Task 1F162203A43405 Contract DAAJ02-67-C-0006 USAAVLABS Technical Report 69-38

July 1969

CWCD-1000/1010 SONIC ANALYZER WITH CH-47A/B HELICOPTER CAPABILITY

Final Report C-3055

by

R. G. Locklin G. W. Stetson, III

Prepared by

Curtiss-Wright Corporation Aerospace Equipment Division Caldwell, New Jersey

for

U.S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of US Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.

SUMMARY

The purpose of the work encompassed in this report was (1) to fabricate an automated diagnostic sonic analyzer, (2) to design and fabricate a CH-47A/B helicopter plug-in module with both T55 engine and CH-47A/B helicopter power train components capability, and (3) to design and fabricate an auxiliary microphone switch box.

The methods employed in achieving this work consisted of (1) analyzing mechanical data to determine the frequencies of the rotating components, (2) performing a microphone survey and locking frequency investigation, (3) analyzing the acoustical data to develop spectral familiarity and to establish initial analyzer programming and system compatibility, and (4) conducting a field application program utilizing the automated sonic analyzer to correlate analyzer indications with the mechanical condition of the rotating components and to establish analyzer limits.

As a result of the work accomplished under this program, a Curtiss-Wright model CWCD-1000 Sonic Analyzer with a CWCD-1010 automation unit, developed under Naval Air Systems Command Contract NOw 66-0704f, was fabricated and delivered to the Army together with a CWCD-1020 microphone auxiliary switch box. The CH-47A/B acoustic plug-in module, delivered with the analyzer, was designed and fabricated under this program to incorporate the T55 engine (models T55-L-5 and T55-L-7) and CH-47A/B helicopter power train components (forward and aft rotor transmissions and combining transmission) capability. The component limits for the aft rotor transmission were established during the three-month field application program conducted at Henchy Army Air Field, Fort Rucker, Alabama. An additional four-month study was conducted in the Curtiss-Wright laboratory to evaluate the complete CH-47A/B helicopter dynamic system utilizing the tape recordings made during the three-month field application program. As a result of this study, tentative component limits have been established. However, a considerable amount of additional data will be required to confirm these limits.

The utilization of the CWCD-1000/1010 Sonic Analyzer and the CWCD-1020 switch box by ground maintenance personnel at military installations will reduce the aircraft downtime by eliminating unnecessary troubleshooting as now being practiced under conventional inspection methods. As the confidence level in the CWCD-1000/1010 analyzer is increased, the time between periodic inspections may also be increased.

TABLE OF CONTENTS

						Page
SUMMARY	•	•	•	•	•	iii
LIST OF ILLUSTRATIONS	•	•	•	•	•	vii
LIST OF TABLES	•	•		•		ix
LIST OF SYMBOLS AND ABBREVIATIONS	•	•	•	•		xiii
INTRODUCTION		•	•	•	•	1
DISCUSSION			•			3
Data Acquisition and Analysis	•		•	•	•	3
Mechanical Data and Analysis	•	•			•	3
Acoustic Data and Analysis		•	•	•	•	3
Microphone Location Survey	•	•	•	•	•	3
RPM Tracking Test			•			5
Spectral Familiarization				•		6
CH-47A/B Helicopter Component						
Rejection Limits	•	•	•	•	•	8
Uniformity of Data	•	•	•	•	•	11
Selection of Aircraft Components for Analysis		•			•	11
Microphone Normalization	Ð			•		12
Plug-In Module Design	•					13
Description of CWCD-1000 Sonic Analyzer, CWCD-1010						
Automation Unit, and CWCD-1020 Microphone Auxiliary Switch Box						14
CWCD-1000 Sonic Analyzer						14
CWCD-1010 Automation Unit						14
CWCD-1020 Microphone Auxiliary Switch Box						14
Instruction Manuals						1.4

TABLE OF CONTENTS - Continued

	Page
Field Application Program	15
Laboratory Analysis of Recorded Field Evaluation Data	16
CONCLUSIONS	18
APPENDIXES	
I. Sample Calculations	151
II. Explanation of Tables	154
DISTRIBUTION	155

LIST OF ILLUSTRATIONS

Figure		Page
1	Gear and Bearing Arrangement - Engine Accessory and Drives T55-L-5,-7	19
2	Gear and Bearing Arrangement - Engine 90° Transmissions and CH-47A/B Helicopter Combining Transmission	20
3	Gear and Bearing Arrangement - CH-47A/B Forward Rotor Transmission	21
4	Gear and Bearing Arrangement - CH-47A/B Helicopter Aft Rotor Transmission	22
5	Gear and Bearing Arrangement - Accessory Drive Gearbox - CH-47A/B Helicopter Aft Rotor Transmission Assembly	23
6	Location of Microphone No. 1, No. 1 Engine, CH-47A/B Helicopter	24
7	Location of Microphone No. 2, No. 2 Engine, CH-47A/B Helicopter	25
8	Location of Microphones Nos. 3 and 4, Aft Rotor Transmission, CH-47A/B Helicopter	26
9	Location of Microphones Nos. 3, 4, and 5, Aft Rotor Transmission, CH-47A/B Helicopter	27
10	Location of Microphone No. 6, Combining Transmission, CH-47A/B Helicopter	28
11	Location of Microphones Nos. 7 and 8, Forward Rotor Transmission, CH-47A/B Helicopter	29
12	Amplitude vs. Frequency Spectrogram of No. 1 Engine, Main Accessory Drive Gear Train (Microphone No. 1) Showing the N1 Locking Signal - CH-47B Helicopter No. 66-19139, Flight Idle Power Setting, Recording No. CH2-13	30
13	Amplitude vs. Frequency Spectrogram of Aft Rotor Transmission, 1st Stage Planetary Gear Train (Microphone No. 3) Showing the N2 Locking Signal - CH-47A Helicopter No. 63-7911, Flight Idle Power	
	Setting, Recording No. CH2-10	31

LIST OF ILLUSTRATIONS - Continued

Figure		Page
14	Amplitude vs. Frequency Spectrogram of Aft Rotor Transmission, 2nd Stage Planetary Gear Train (Microphone No. 3) Showing Sidebands - CH-47A Helicopter, Flight Idle Power Setting, Recording No. CH1-12	32
15	Amplitude vs. Frequency Spectrogram of Aft Rotor Transmission, 2nd Stage Planetary Gear Train (Microphone No. 4) Showing Sidebands - CH-47A Helicopter, Flight Idle Power Setting, Recording No. CH1-12	33
16	Amplitude vs. Frequency Spectrogram of Combining Transmission (Microphone No. 6) Showing Sidebands - CH-47A Helicopter, Flight Idle Power Setting, Recording No. CH1-12	34
17	Amplitude vs. Frequency Spectrogram of Combining Transmission (Microphone No. 6) Showing Sidebands - CH-47A Helicopter, Flight Idle Power Setting, Recording No. CH1-12	35
18	Amplitude vs. Frequency Spectrogram of No. 1 Engine (Microphone No. 1) Showing a Typical Engine Spectrum - CH-47A Helicopter No. 61-2408, Flight Idle Power Setting, Recording No. CH2-15	36
19	Limits - Sideband Frequencies - Input/Output Shaft CH-47A/B Helicopter Combining Transmission	37
20	Limits - Fundamental Gear Frequency CH-47A/B Combining Transmission	39
21	Block Diagram - Phase Locked Filter	40
22	CWCD-1000 Sonic Analyzer Instrumentation, Power Supply, and CWCD-1010 Automation Unit	41
23	Microphone Switching Arrangement - CWCD-1020 Switch Box	42
24	CWCD-1020 Microphone Auxiliary Switch Box	43

LIST OF TABLES

Table		Page
I	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Engines, Gas Producer Section, Compressor Blade Passage (N ₁ - Related)	44
11	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Engines, Gas Producer Turbine Section, Blade Passage (N ₁ - Related)	46
III	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Engines, Power Turbine Section, Blade Passage (N ₂ - Related)	47
IV	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Engines, Main Rotor Shaft Bearings, Compressor (N ₁ - Related)	48
V	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Ergines, Main Rotor Shaft Bearings, Power Turbine (N2 - Related)	49
VI	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Engines, Accessory Drive Section Gear Trains (N ₁ - Related)	50
VII	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Engines, Accessory Drive Section Bearings (N ₁ - Related)	52
VIII	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Engines, Accessory Transmission Bearings (N ₁ - Related)	54
IX	Frequencies and Acoustic Lock Ratios, Hodels T55-L-5,-7 Engines, Accessory Drive and Transmission, Gear Trains (N ₂ - Related)	57
x	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Engines, Accessory Drive Section Bearings (N ₂ - Related)	59
XI	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Engines, Accessory Transmission Section Bearings (N ₂ - Related)	61
XII	Frequencies and Acoustic Lock Ratios, Models T55-L-5,-7 Engines, Accessories (N ₁ - Related)	65

LIST OF TABLES - Continued

Table		Page
XIII	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Engine Transmissions (No. 1 and No. 2) Gear Trains (N_2 - Related)	66
XIV	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Engine Transmissions (No. 1 and No. 2) Bearings (N ₂ - Related)	67
хv	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Combining Transmission Gear	:
	Trains (N ₂ - Related)	70
XVI	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Engine Combining Transmission Bearings (N ₂ - Related)	73
XVII	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Combining Transmission Accessories (N ₂ - Related)	77
XVIII	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Aft Synchronizing Shaft Bearings (N ₂ - Related)	78
XIX	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Forward Synchronizing Shaft Bearings (N ₂ - Related)	79
XX	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Aft Rotor Transmission Gear Trains (N ₂ - Related)	80
XXI	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Aft Rotor Transmission Bearings (N ₂ - Related)	85
XXII	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Aft Rotor Transmission, Accessory Drive and Transmission, Gear Trains (N ₂ - Related)	90

LIST OF TABLES - Continued

Table		Page
XXIII	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Aft Rotor Transmission, Accessory Drive and Transmission, Bearings (N ₂ - Related)	93
XXIV	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Aft Rotary Wing Drive Shaft Bearings (N ₂ - Related)	100
XXV	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Forward Rotor Transmission Gear Trains (N ₂ - Related)	101
XXVI	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Forward Rotor Transmission Bearings (N ₂ - Related)	106
XXVII	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Forward Rotor Transmission Accessory Drive Gear Trains (N ₂ - Related)	111
KXVIII	Frequencies and Acoustic Lock Ratios, Models CH-47A/B Helicopters, Forward Rotor Transmission Accessory Drive Bearings (N ₂ - Related)	112
XXIX	Indexed Summary of Sonic Frequencies - CH-47A/B Helicopters	113
XXX	Fundamental Rotational Shaft Speeds - CH-47A/B Helicopters	116
XXXI	Summary - CH-47A Compound Planetary Speeds	120
XXXII	Model CH-47A/B Helicopters Recorded During Microphone Survey at U.S. Army Aviation Center, Fort Rucker, Alabama	121
XXIII	Acoustic Log Sheets - CH-47A/B Helicopter, Sonic Analyzer Program No. 2011	122
XXXIV	Acoustic Log Sheets - CH-47A/B Helicopter, Sonic Analyzer Program No. 2021	124

LIST OF TABLES - Continued

Table		Page
XXXX	Acoustic Log Sheets - CH-47A/B Helicopter, Sonic Analyzer Program No. 2031	126
XXXVI	Acoustic Log Sheets - CH-47A/B Helicopter, Sonic Analyzer Program No. 2041	127
XXXVII	Acoustic Log Sheets - CH-47A/B Helicopter, Sonic Analyzer Program No. 2051	130
XXXVIII	Acoustic Log Sheets - CH-47A/B Helicopter, Sonic Analyzer Program No. 2061	135
XXXIX	Acoustic Log Sheets - CH-47A/B Helicopter, Sonic Analyzer Program No. 2071	137
XL	Acoustic Log Sheets - CH-47A/B Helicopter, Sonic Analyzer Program No. 2081	141
XLI	Model CH-47A/B Helicopter Recorded During the Field Evaluation Program at U.S. Army Aviation Center, Fort Rucker, Alabama	145
XLII	Corrections to Acoustic Log Sheets, CH-47A Helicopter, Sonic Analyzer Program No. 2011	147
XLIII	Corrections to Acoustic Log Sheets, CH-47A Helicopter, Sonic Analyzer Program No. 2021	147
XLIV	Corrections to Acoustic Log Sheets, CH-47A Helicopter, Sonic Analyzer Program No. 2031	148
XLV	Corrections to Acoustic Log Sheets, CH-47A Helicopter, Sonic Analyzer Program No. 2041	148
XLVI	Corrections to Acoustic Log Sheets, CH-47A Helicopter, Sonic Analyzer Program No. 2051	149
XLVII	Corrections to Acoustic Log Sheets, CH-47A Helicopter, Sonic Analyzer Program No. 2061	149
XLVIII	Corrections to Acoustic Log Sheets, CH-47A Helicopter, Sonic Analyzer Program No. 2071	150
XLIX	Corrections to Acoustic Log Sheets, CH-47A Helicopter, Sonic Analyzer Program No. 2081	150

LIST OF SYMBOLS AND ABBREVIATIONS

ACC Accessory

BEV **Bevel**

Brg Bearing

^C_{1, 2, 3....n} Compressor rotor - subscript denotes compressor

stage number

Centrifugal compressor rotor CC

CARR Carrier

CHAN Channel

CHK Check

COMPR Compressor

COND Condition

CO01 Cooling

d₁ Bearing inner race diameter, inches

Bearing outer race diameter, inches d_2

db Decibel

Bearing rolling element diameter, inches d_B

Dia Diameter

Diff Differential

Dr Drive

Bearing frequency caused by irregularity on inner f₁

raceway, Hz

Bearing frequency caused by irregularity on outer f₂

raceway, Hz

Bearing frequency caused by spin of rolling element,

Bearing frequency caused by rough spot on rolling

element, Hz

3f _B '	Third harmonic of f _B ', Hz
f _{BEV}	Rotational frequency of bevel drive gear shaft, Hz
2f _{BEV}	Second harmonic of f _{BEV} , Hz
fI	Fundamental rotational frequency of 1st stage planetary gear train, Hz
f _{II}	Fundamental rotational frequency of 2nd stage planetary gear train, Hz
f _P _I	Rotational frequency of 1st stage planetary gear shaft, Hz
f _P II	Rotational frequency of 2nd stage planetary gear shaft, Hz
$\mathbf{f}_{\mathbf{R}}$	Fundamental rotational frequency of engine, gear shaft or bearing shaft, Hz
2f _R	Second harmonic of f _R , Hz
f _{Ro}	Rotational frequency of output gear shaft, Hz
f _R	Rotational frequency of input gear shaft, Hz
fs _I	Rotational frequency of 1st stage sun gear shaft, Hz
fs' _I	Rotational frequency of 1st stage sun gear shaft relative to carrier, Hz
fs _{II}	Rotational frequency of 2nd stage sun gear shaft, Hz
fs'II	Rotational frequency of 2nd stage sun gear shaft relative to carrier, Hz
f _T	Bearing frequency due to rotation of train of rolling elements, Hz
Fund	Fundamental
Fund I	Fundamental rotational frequency of 1st stage planetary gear train, Hz
Fund	Fundamental rotational frequency of 2nd stage planetary gear train, Hz
Fwd	Forward

GR

Gear

HYDR

Hydraulic

Hz

Hertz, frequency equivalent to 1 cycle per second

L.O.

Lube 011 Pump

m

Number of bearing rolling elements

MIKE

Microphone

MRC

Marlin-Rockwell Company

Mv

Millivolt

 N_1

Gas producer rotor speed, rpm

N₂

Power turbine rotor speed, rpm

N.D.

New Departure

No.

Number

NORM

Normalize

OUT

Output

PWR

Power

Ref

Reference

REL

Relative

rpm

Revolutions per minute

rps

Revolutions per second

S/B

Sideband

SKF

SKF Industries, Inc.

^T1, 2, 3

Turbine rotor - subscript denotes turbine stage

number

THR

Thrust

TR

Train

XMSN

Transmission

BLANK PAGE

INTRODUCTION

The purpose of the work included in this report was to fabricate and evaluate a CWCD-1000/1010 Sonic Analyzer and a CWCD-1020 switch box with the capability of analyzing the CH-47A/B helicopter dynamic components system, including the T55-L-5,-7 engine.

To accomplish this program, it was necessary (1) to perform a mechanical analysis of all rotating components of the CH-47A/B helicopter, for the calculation of the expected acoustic frequencies; (2) to compile an acoustic handbook listing these acoustic frequencies; (3) to conduct an acoustic survey of a number of CH-47A/B helicopters to determine the optimum microphone locations and to establish the best locking frequency; (4) to perform a laboratory analysis of all acoustic recordings for identification of engine components; (5) to design and fabricate an acoustic plug-in module with CH-47A/B helicopter complete dynamic component system capability to be utilized with the CWCD-1000/1010 Sonic Analyzer; (6) to fabricate a CWCD-1000 Sonic Analyzer with a CWCD-1010 automation unit (designed under Navy contract NOw 66-0704f); (7) to design and fabricate a microphone auxiliary switch box; (8) to perform a field evaluation of the CWCD-1000/1010 Sonic Analyzer and CWCD-1020 switch box; and (9) to perform a laboratory analysis of the data recorded in the field to establish tentative component limits for the complete CH-47A/B helicopter dynamic component system.

The objectives of this report are (1) to present the results of the work performed in the application of the CWCD-1000/1010 Sonic Analyzer and the CWCD-1020 switch box to the complete CH-47A/B helicopter dynamic component system, (2) to present the results of the design and development of the CH-47A/B helicopter acoustic plug-in module and the CWCD-1020 microphone auxiliary switch box, and (3) to describe the CWCD-1000 Sonic Analyzer and the CWCD-1010 automation unit, including the design concepts.

The Curtiss-Wright Corporation has been engaged in the research and development of a new technique for diagnosing engine malfunctions since early 1960. A new concept for analyzing jet engines and power transmission systems, designated the Diagnostic Sonic Analysis Technique, has been developed together with the design and fabrication of 4 analyzer models under previous Government contracts (USN Bu Weps Contracts NOw 60-074c, NOw 62-0721c, NOw 65-0094f, and NOw 66-0704f). In addition to these Navy contracts, company-funded research and development programs between Government contracts led to the development of the frequency ratio generator, intermediate frequency amplifier, and plug-in module circuitry. Under the U.S. Army, USAAVLABS Contract DA 44-177-AMC-249(T), a gear study was made of power transmission systems; and under USAAVLABS Contract DA 44-177-AMC-446(T), a CWEA-4 Sonic Analyzer with UH-1 helicopter capability was delivered to the Army. Other completed U.S. Navy contracts include the following:

Contract No.

Description

NOw 66-0631d

J65 Engine Compressor Surge Control Program

N62269-67-C-0159

J52 Engine Analyzer

N62269-68-C-0040

CH-46 Helicopter Dynamic System

Current projects include the following Government contracts as well as analyzer evaluations for both Eastern and National Airlines:

U.S. Navy Contracts

Description

N62269-68-C-0420

Field evaluation of 10 CWEA-3 Sonic Analyzers

U.S. Army Contracts

DAAJ01-68-C-1824 (31)

CWEA-4 Sonic Analyzer -T53 Engine Field

Evaluation

The effective date of the contract discussed in this report was 22 June 1967.

DISCUSSION

DATA ACQUISITION AND ANALYSIS

Mechanical Data and Analysis

The mechanical data for the various rotating components of the model CH-47A/B helicopter were obtained from the Department of the Army; from the blueprint files at the U.S. Army Aviation Material Laboratories, Fort Eustis, Virginia; and from various bearing manufacturers. The type of data required for a mathematical analysis of the rotating components included the following:

- 1. Operating speeds of engines and helicopter transmissions.
- 2. Gear train configurations and number of teeth on gears.
- 3. Accessories, their location, and, their internal assemblies.
- 4. Bearing types, dimensions, and number of rolling elements.
- 5. Helicopter engine installations and transmission locations.

Utilizing the mechanical data as obtained above, the predicted frequencies of the various rotating components of the CH-47A/B helicopter transmissions and the T55-L-5,-7 engines were calculated as shown in Appendix I. These predicted frequencies are tabulated in Tables I through XXXIV, and an explanation of the tables is given in Appendix II.

The gear and bearing arrangement for the T55 engines and the CH-47 helicopter transmissions is shown in Figures 1 through 5.

Acoustic Data and Analysis

Microphone Location Survey

Microphone surveys of models CH-47A and CH-47B helicopters were conducted (1) to determine the minimum number of microphones required for complete signal coverage of the CH-47A/B helicopter dynamic system, and (2) to determine the component signals to be utilized for rpm tracking.

Ten helicopters were surveyed utilizing a magnetic tape recorder and 4 condenser-type microphones to record the data. A portable narrow-band panoramic frequency analyzer was used for analysis of the recorded data. A list of the helicopters surveyed is shown in Table XXXV. During the surveys, the microphones were located at various positions adjacent to the engines, the 90-degree gearbox, the forward and aft rotor transmissions, and the combining transmission. Signals

¹ Technical Manual No. 55-1520-209-20P, dated March 1967.

were compared at both ground idle and flight idle power conditions, and orientation of the microphones was changed according to concentration of rotating components within each power train. Based on the analysis of these data, the optimum locations of the microphones in the CH-47A/B helicopter were determined to be as follows:

Microphone No.	Figure No.	Microphone Location
1	6	No. 1 engine - opposite accessory gearbox (aimed through lower aft corner of cowling grille).
2	7	No. 2 engine - opposite accessory gearbox (aimed through lower aft corner of cowling grille).
3	8 and 9	Aft rotor transmissions - 1st stage planetary (opposite bevel input-synchronizing shaft).
4	8 and 9	Aft rotor transmission - 2nd stage planetary (opposite 2nd stage ring gear).
5	9	Aft rotor transmission - accessory transmission (opposite gearbox mounting flange).
6	10	Combining transmission - (op- posite aft synchronizing shaft).
7	11	Forward rotor transmission - lst stage planetary (opposite bevel input-synchronizing shaft).
8	11	Forward rotor transmission - 2nd stage planetary (opposite 2nd stage ring gear).

Although these 8 microphone positions represented a compromise to simplify installation of the microphones in limited access areas, examination of the gear train signals using wave-form analyzer equipment indicated 90 percent coverage of the major rotating components. In many cases there was some overlapping of prominent signals between adjacent microphones.

As a result of this survey, a requirement for an 8-position microphone switching unit was indicated to facilitate rapid connection

to the 3-channel CWCD-1000/1010 Sonic Analyzer. A further requirement indicated the need for special mounting hardware and bracketry to attach microphone holders to the airframe in each location.

In comparing the sound spectra at various engine speeds, it was found that signal quality was improved by mechanical loading at higher rpm. The flight idle condition was selected for analysis of the CH-47A/ helicopter as defined below:

Helicopter Component	Speed (RPM)	Tachometer Setting
Engine N ₁ gas producer rotor	14040	75%
Engine N ₂ power turbine rotor	15166	230 rpm (rotary-wing)

For valid comparison of data, these speeds were closely maintained during the second survey series, and microphone positions were duplicated.

Further data analysis indicated that the following component signals are suitable for acoustic locking based on consistent signal characteristics at the established microphone 1 cations.

Spool Lock	Component	Microphone No.	Prequency @ Flight Idle
^N 1	No. 1 or No. 2 engine accessory transmission main spur train	1 or 2	2047 Hz
N ₂	Forward or aft rotor transmission input spiral bevel train	3 or 7	3415 Hz

Utilizing a variable phase-lock filter, laboratory studies verified the selection of these signals as advantageous for speed variations from 70 to 75% N_1 and 220 to 230 rpm N_2 .

RPM Tracking Tests

A single plug-in phase-lock module design was proposed, based on the speed settings selected above, and utilizing the following tracking frequencies:

RPM Dependent Components	Locking Frequency	Multiplier	Tracking Prequency
N ₁	2047 Hz	x 4	8188 Hz
N ₂	3415 Hz	x3	10245 Hz

Operation of both the CH-47A and CH-47B aircraft at flight idle indicated that N_1 speeds of both engines could be simultaneously set within 73 to 75% at a main rotor speed of 230 rpm, depending upon atmospheric conditions. Speed drift during a 5-minute duration recording (one switch mode-three microphones) was found to be generally less than 1/2%, so that tracking range requirements did not exceed +3%.

Module capture range within $\pm 2\%$ was considered to be desirable because of tachometer inaccuracies and speed droop between Nos. 1 and 2 engines at a given power setting. Phase-lock tests using recorded data from a total of 12 survey recordings were satisfactory in all cases where microphones 1, 2, and 3 were positioned as above. In most cases, microphones 4, 7, and 8 also proved to be satisfactory for N_2 lock.

Spectral Familiarization

A spectral analysis was made of the microphone survey recordings (see Table XXV) to confirm the presence of the 2 signals proposed for the N_1 and N_2 locking frequencies and also to determine the identity and characteristics of the various component signals. The results of this analysis confirmed that the engine and transmission components selected for acoustic locking during the microphone survey are valid. The major rotating components of the engine, the 90-degree gearbox, the forward and aft rotor transmissions, and the combining transmission were also identified.

N, Locking Signal

A spectrogram, obtained from helicopter serial number 66-19139, of the No. 1 engine accessory drive section using microphone No. 1 is shown in Figure 12. This spectrogram shows the relatively strong signal (2047 Hz @ the flight idle power setting) exhibited by the N_1 main accessory drive gear train as compared with the background noise level and is typical of spectrograms obtained from other helicopters. The consistently strong signal-to-noise ratio exhibited by this component together with the absence of any other discrete signals in the near vicinity confirms the selection of this component as an excellent N_1 locking signal.

N, Locking Signal

A spectrogram, obtained from helicopter serial number 63-7911, of the aft rotor transmission using microphone No. 3 is shown in Figure 13. This spectrogram shows the relatively strong signal (3415 Hz @ the flight idle power setting) exhibited by the aft rotor transmission input bevel gear train and confirms the selection of this component as the N₂ locking frequency. This spectrogram is typical of those produced for the forward rotor transmission utilizing microphone No. 7 and of spectrograms obtained from other helicopters for both the forward and aft rotor transmissions.

Transmissions - General

In order to compare frequencies and to evaluate component signals for each microphone location, a frequency analysis was undertaken for each major transmission area. Using the narrow-band panoramic spectrum analyzer equipment, amplitude versus frequency charts were

obtained to verify the presence of known signals and to provide base data for later evaluation of gain limits using a laboratory CWCD-1000 analyzer.

An overall comparison of predominant gear train signals showed a wide amplitude variation in the CH-47A/B spectrum. In the case of transmission spectrograms, a variation in background noise was noted betw:en different aircraft with consistent signal/noise amplitudes for identical signals. In addition, signal changes caused by the effects of mechanical loading affected amplitude levels, which are standardized for N₁ speeds at 75%, or nominal torque at 225 rotor rpm, on both engines.

Main Rotor Transmissions and Combining Transmission

In the case of the main power transmissions, strong fundamental and harmonic signals were noted at tooth contact frequencies, accompanied by families of sidebands at predictable modulation frequencies. Examples of this sideband generation are shown in Figures 14, 15, 16, and 17, all taken from data run at the nominal power setting of 75% N_1 and 230 N_2 rotor rpm.

Main Rotor Transmissions - Planetary Gear Trains

In the case of the forward and aft rotor transmission planetary gear trains, the sun planet and shaft frequencies modulated both fundamental discrete signals. Comparison of data at various engine torques indicated that the percentage of modulation remained constant for a given degree of mechanical loading or torque at uniform rpm. The degree of modulation increased in linear proportion to torque, showing that repeatable sideband limits could be set for constant power levels. The mechanism by which sideband amplitudes differed between transmissions could therefore be related to component malfunction or degradation, resulting in abnormal internal loading.

Combining Transmission

In addition to the main power bevel gear train, a stable pattern of sideband generation was noted at odd and even orders of input and output shaft speeds. Although overlapping in frequency, and in some cases nonexistent, it was found that consistent amplitudes were present when torques matched between Nos. 1 and 2 engines. At 75% N_1 speeds, even-order sidebands appeared at consistently higher levels for the input shaft, and odd-order sidebands were more pronounced for output shaft modulation, thus limiting the number of signals believed to be of diagnostic value. Noise levels were found to be unusually high in this vicinity of the spectrum.

No. 1 and No. 2 Engine Transmissions

Main spiral bevel train fundamental signals were apparent for both gearboxes, but harmonics or sidebands did not appear. A typical spectrogram of the No. 1 engine spectrum is shown in Figure 18.

CH-47A/B Helicopter Component Rejection Limits

The analyzer component gain settings, which determine the component condition level as read on the condition meter, are established in two phases of the overall program. The initial limits are derived from the analyses of recorded data which are obtained during the early phases or component familiarization portion of the program. These values may also be referred to as the preliminary field testing limits. In those cases where the program provides for field evaluation or testing of the analyzer, these initial limits are further refined and/or revised to establish component condition levels under actual field conditions. The preliminary work and result of tests accomplished under previous phases of programs have shown that the engine is treated as a collection of bearings, gear trains, accessories, compressors and turbine stages. However, in the case of helicopter transmissions, this reasoning and the methods of analyses become slightly exaggerated and difficult to apply. The collection of parts may be existent in comparable mechanical arrangement, but various orders of signal generation and their related amplitudes tend to be inherently dependent upon input/output forces and allowable factors such as tolerances, alignment, and mass. Although experimental transmission gains have been formulated for those signals which appear to be indicators of component integrity, there still exist unpredictable signal consistencies due to the sympathetic relationship of parts, which is not yet fully understood. Continued experiments coupled with the disassembly inspection of suspect components identified by out-of-limit readings will result in clarification of analyses methods and will establish criteria which may be applied for monitoring the mechanical integrity of components as integrated into a transmission assembly.

The program to establish CH-47A/B helicopter engine and transmission component gain limits was divided into three phases:

1. Preliminary condition limits

These limits were established utilizing the CH-47A/B helicopter data recorded at Fort Rucker, Alabama, during the initial surveys conducted in August and December 1967. In the analyses of these data, components were selected which had previously been identified in spectrogram analysis, and which appeared to be stable and of consistent amplitude.

2. Interim condition limits

These limits resulted from refinement of preliminary limits using data obtained from the CH-47A/B helicopter field evaluation program at Fort Rucker, Alabama, during May, June, and July 1968 and incorporated program changes derived from the analyses of recorded data using the delivered CWCD-1000 analyzer.

3. Final condition limits

These limits were established as a result of an additional four-month study of the recorded data obtained during the three-month field evaluation program.

The analyses of these data consisted of establishing a gain setting required to produce a half-scale deflection of the condition level meter for the rotating components associated with the $\rm N_1$ and $\rm N_2$ sections of the engine as well as with the forward and aft rotor transmissions and the combining transmission. These gain values are subsequently revised to correspond to low meter read-out for low or normal component signals and high meter read-out for those same component signals found to have greater amplitudes.

In aiming at interim and final gain limit values, different methods were used for each type of transmission. Simple gear trains (such as engine nosebox bevel trains) produced a single fundamental tone corresponding to the tooth contact frequency with little or no harmonic content. More complex gear trains (such as planetary rotor transmissions) generated a complicated pattern of discrete signals which consisted of families of sidebands related to tooth contact signals by interacting internal shaft and gear speeds.

In the preparation of program logs, three types of gain limits were defined:

- 1. Comparison of signal amplitudes, or measurement of signal levels relative to normalization noise level.
- Sideband or harmonic ratio, or ratio between sideband or harmonic amplitude relative to ambient noise, and carrier signal level relative to ambient or normalization noise.
- 3. Difference between sideband or harmonic and carrier signal level, measured by signal amplitudes relative to normalization noise.

The frequencies found to be significant for each mechanical component and which also showed consistent levels for the data examined are summarized in the program logs presented below.

- 1. Program No. 2011 Aft Rotor Transmission
 - a. Amplitude limits input spiral bevel, 1st and 2nd stage planetary gear trains (refer to items 4-10, 21-27, and 40-42, Table XXXIII).
 - b. Sideband differences (ratio of sideband to carrier amplitude) input spiral bevel, 1st and 2nd stage planetary gear trains (refer to items 11-20, 28-38, and 43-50, Table XXXIII).

- 2. Program No. 2021 Forward Rotor Transmission
 - a. Amplitude limits input spiral bevel, 1st and 2nd stage planetary gear trains (refer to items 4-10, 21-27, and 40-42, Table XXXIV).
 - b. Sideband differences (ratio of sideband to carrier amplitude) input spiral bevel, 1st and 2nd stage planetary gear trains (refer to items 11-20, 28-38, and 43-50, Table XXXIV).
- 3. Program No. 2031 Combining Transmission
 - a. Amplitude limits spiral bevel power and lube oil pump drive gear trains (refer to items 4-7, Table XXXV).
 - Sideband differences (ratio of sideband to carrier amplitude) spiral bevel power gear train (refer to items 8-22, Table XXXV).
- 4. Program No. 2041 No. 1 and No. 2 Engine Transmissions
 - a. Amplitude limits main spiral bevel gear train (refer to items 4, 5, 44, and 45, Table XXXVI).
 - b. Amplitude limits all power train bearings (refer to items 6-35 and 46-75, Table XXXVI).
- 5. Program No. 2051 Aft and Forward Rotor Transmissions

Amplitude limits - all power train bearings (refer to items 4-57 and 59-112, Table XXXVII).

6. Program No. 2061 - Combining Transmission

Amplitude limits - major power train bearings (refer to items 5-46, Table XXXVIII).

- 7. Program No. 2071 No. 1 and No. 2 Engine Components
 - a. Sideband ratios primary compressor and turbine rotor stages (refer to items 7-14, 28-35, 57-64, and 78-85, Table XXXIX).
 - b. Amplitude limits all main bearings and major accessory drive gear trains (refer to items 66-76 and 87-95, Table XXXIX Note: omit items 16-26 and 37-45 which are not at the optimum microphone location).
- 8. Program No. 2081 Aft Rotor Transmission Accessory Transmission Components
 - a. Amplitude limits all gear trains (refer to items 4-10, Table XL).

b. Amplitude limits - major gear trains and bearings (refer to items 11-70, Table XL).

Punched automation tapes were prepared for each of these logs, and the scope of each is such that an average of 9 minutes is required to scan automatically. Further experience with operation and teardown of malfunction transmissions is needed to shorten present data requirements.

Uniformity of Data

Combining Transmission

During initial surveys, 7 runs were taken at different engine power settings (230 rotor rpm) to correlate loading effect with sideband development. The analyzer readings were later taken against both input and output shaft modulation frequencies up to the 8th order. The results of 4 runs are shown in Figure 19, which gives an irregular pattern of amplitudes generally increasing with engine torque, and tending to diminish in strength at higher orders. Unmatched engine outputs tend to produce wide variations between successive orders of shaft speeds, while a smooth bell curve asymptotic to the average noise level was produced for constant even loading. Sideband limits were derived from this curve, and since the fundamental gear mesh signal repeated in amplitude within \pm 2 db, readings are normalized to this signal instead of to the noise amplitude.

Figure 20 presents a series of runs utilized to establish the gain limits for the combining transmission fundamental (including the 2nd harmonic) gear frequency.

Aft and Forward Rotor Transmission

In the same manner as for the combining transmission, preliminary limits were set on the three-tooth contact signals (fundamental, 2nd and 3rd harmonics) for the forward and aft rotor transmissions. The average deviation of signal/normalized noise ratio was approximately \pm 4 db from a mean value, with a substantial difference between data taken at the same torque levels. When signal/fundamental differences were plotted for the same data, a deviation of only \pm 2 db was noted. The limits are therefore based on both systems, and more extensive data will be needed to ascertain which is more suitable for malfunction detection. Both are included in program logs for future use.

Selection of Aircraft Components for Analysis

Approximately nine hundred rotating components and fourteen hundred associated sonic frequencies were found to exist for the CH-47A/B helicopter power trains and engines. Early in the program it was possible to eliminate fifty percent of these signals as being insignificant or nonexistent, thus requiring preliminary limits on only seven hundred associated sonic frequencies.

As a result of component selection conferences with USAAVLABS personnel, and by the process of elimination, these sonic frequencies were reduced to 540 items. These items were subsequently organized into several analysis programs for punched tape programming to provide tapes of convenient lengths for ease of operation. The information contained on these tapes is summarized below.

Program No.	Description	No. of Components	Refer to Table No.
2011	Aft Rotor Transmission - gear trains	51	IIIXXX
2021	Forward Rotor Trans- mission - gear trains	51	XXXIV
2031	Combining Transmission - gear trains	23	XXXV
2041	No. 1 and No. 2 Engine Transmissions - gear trains and bearings	76	XXXVI
2051	Forward and Aft Rotor Transmissions - bearings	120	IIVXXX
2061	Combining Transmission - bearings	52	XXXVIII
2071	No. 1 and No. 2 Engine Components	96	XXXIX
2081	Aft Rotor Accessory Transmission - gear trains and bearings	71	XL

Microphone Normalization

All microphones are normalized prior to analyzer operation to standardize amplitude readings of all engine/transmission component signals. Normally, this is accomplished by selecting the lowest background noise level at a frequency in the overall system noise spectrum that does not contain any discrete signals. Analysis of the survey data showed that wide noise variation in the CH-47A/B spectrum required selection of a region in the median noise area so that measurement of high-amplitude signals did not exceed the analyzer dynamic range. In addition, two reference gain levels (30 db and 40 db) were chosen to permit analysis of two separate helicopter systems, namely, engines and transmissions.

A thorough analysis of survey data established the CH-47A/B normalization frequency as 5853 Hz for all microphones when using an N₂ locking signal. This requires the following gain settings according to the frequency region of interest.

Program No.	Mike No.	Ratio Set	Gain I - Gain II
2011	3, 4	0.4444	10 - 30
2021	7, 8	0.4444	10 - 30
2031	6	0.4444	10 - 20
2041	1, 2	0.4444	10 - 20
2051	3, 4, 7, 8	0.4444	10 - 30
2061	6	0.4444	10 - 20
2071	1, 2	0.4444	10 - 20
2081	3, 4	0.4444	10 - 20

Although there is a substantial variation in noise level between microphones at low frequencies (less than 2000 Hz), only small adjustments are required to maintain half-scale deflection of the analyzer condition meter at 5853 Hz.

PLUG-IN MODULE DESIGN

The operation of the phase locked loop is as described in the instruction manual. A block diagram for the phase locked filter is presented in Figure 21. The tracking capability of the loop is based on capturing the signal of a component on the aircraft and then using this signal to monitor the variation of the engine speed (within \pm 3% of idle) while remaining synchronous with the aircraft. The signals used to lock onto the CH-47A/B helicopter are 2047 and 3415 Hz for the N₁ and N₂ spools, respectively, as discussed previously. However, to meet the operating range requirements of the CWCD-1000 analyzer, these N₁ and N₂ locking frequencies were converted into analyzer tracking frequencies as follows:

Engine Spool	Locking Frequency	Multiplier	Tracking Frequency
N ₁	2047 Hz	x 4	8188 Hz
N ₂	3415 Hz	x3	10245 Hz

These tracking frequencies are then used as a reference to monitor all the rotating components on the helicopter.

Based on the above specifications, an acoustic plug-in module was designed and fabricated for the CWCD-1000 Sonic Analyzer to provide CH-47A/B helicopter capability.

Operation and Maintenance Manual, CWCD-1000/1010 Sonic Analyzer, August 1968.

DESCRIPTION OF CWCD-1000 SONIC ANALYZER, CWCD-1010 AUTOMATION UNIT, AND CWCD-1020 MICROPHONE AUXILIARY SWITCH BOX

CWCD-1000 Sonic Analyzer

A complete description and operation of the CWCD-1000 Sonic Analyzer is presented in the instruction manual delivered with the analyzer. A complete parts list is also included in this manual. The CWCD-1000 analyzer is basically the same as the CWEA-4 analyzer delivered to the Army under USAAVLABS Contract DA 44-177-AMC-446(T). However, many of the design changes for the CWEA-4 analyzer, recommended in USAAVLABS Technical Report 68-28, have been incorporated in the design of the CWCD-1000 analyzer. Some of the major improvements include: modification of the intermediate frequency amplifier circuitry to obtain better dynamic range, improved locking capability, improved operation at higher ambient temperatures, and increased battery capacity.

A photograph of the CWCD-1000 analyzer with the CWCD-1010 automation unit is shown in Figure 22.

CWCD-1010 Automation Unit

The theory of operation for the CWCD-1010 automation unit, including a typical punched tape program, is discussed in USAAVLABS Technical Report 68-28, dated May 1968.

CWCD-1020 Microphone Auxiliary Switch Box

Eight microphones are used for analysis of all CH-47A/B helicopter components. To facilitate rapid analysis and convenience in installation, connections to the three CWCD-1000 input channels are made through a CWCD-1020 microphone auxiliary switch box, as shown in Figure 23. This switching unit is housed in a portable carrying case, which also contains the CH-47A/B mounting hardware and bracketry. A photograph of the CWCD-1020 switch box is shown in Figure 24. Each microphone is connected through its extension cable to the corresponding input socket on the switching unit. Standard 3-foot analyzer input cables are used to connect the switching unit and the analyzer input channels.

Instruction Manuals

The following two instruction manuals were prepared for the operation and maintenance of the CWCD-1000/1010 Sonic Analyzer and the CWCD-1020 Switch Box:

- Operation and Maintenance Manual, model CWCD-1000 Sonic Analyzer with model CWCD-1010 Automation Unit and CH-47A Plug-In Module P/N 177611.
- 2. Acoustic Handbook, CH-47A/B Helicopter Engines and Power Train Mechanical Data and Fundamental Frequencies of Rotating Components.

The purpose of the Operation and Maintenance Manual is self-explanatory. The purpose of the Acoustic Handbook is to provide ready reference to mechanical information and frequency data essential for sonic analysis of the CH-47A/B helicopter complete dynamic system. This handbook includes the following information:

- Cutaway and exploded views of the T55-L-5,-7 engines and the CH-47A/B transmissions.
- 2. General arrangement configuration of the various helicopter sections.
- 3. Gear train schematics for the engines, combining transmission, forward rotor transmission, and aft rotor transmission.
- 4. Tabulations of the predicted frequencies of the rotating components, including the actual ratios required in the operation of the CWCD-1000/1010 analyzer.
- 5. Microphone locations for the engines installed in the CH-47A/B helicopter as well as for the various helicopter transmissions.

FIELD APPLICATION PROGRAM

The model CWCD-1000 Sonic Analyzer with the CWCD-1010 automation unit and the CWCD-1020 microphone auxiliary switch box were operated at the U.S. Army Aviation Center, Fort Rucker, Alabama, during the period from 3 May to 31 July 1968. The purpose of this program was (1) to evaluate the performance of the analyzer under operational conditions on the flight line in both the manual and automatic modes; (2) to further refine the component gain limits and acquire sufficient recorded data to properly establish gain levels for the engines, engine transmissions, and the helicopter power train transmissions; and (3) to familiarize USAAVLABS personnel with the microphone arrangement and analysis procedures.

In the course of this program, a series of 12 CH-47A/B helicopters were run at Fort Rucker, Alabama. Experience was gained in the use of all 8 microphones for analysis of each transmission, and particular attention was given to facilitating rapid microphone attachment and power supply/switching unit connection. Under normal conditions, setup time required 10 to 15 minutes, and a full complement of data could be recorded within a 20- to 25-minute run-up period, allowing about 50% of this time for a brief, live analysis of a particular component group using a single program tape. Approximately one hour is required for a complete helicopter analysis using punched tapes in the automatic or semisutomatic modes.

During this field evaluation, analyzer operation was satisfactory, and it was possible to maintain helicopter speed settings well within the analyzer tracking range of \pm 3%. Capture range of \pm 2-1/2% was found to be ample and within the tachometer accuracy tolerances. Since combining transmission gain limits are valid only at equal engine torques, the N₁ rpm mater readings can be compared for a validity check when matched engines are

installed. All power transmission limits are dependent upon holding engine torques between 220 and 230 indicated rotor rpm.

A summary of the aircraft analyzed during the field program, including aircraft, engine, and transmission identification, is presented in Table XLI.

LABORATORY ANALYSIS OF RECORDED FIELD EVALUATION DATA

During the three-month field evaluation program at Fort Rucker, Alabama, the analysis of the CH-47A/B helicopter was mainly concentrated on the aft rotor transmission, although preliminary gain limits were established for the complete helicopter dynamic system.

This program was extended an additional four months in order to perform a laboratory analysis of the recorded data taken during the three-month field evaluation program. During this four-month laboratory study, a complete analysis was made of the engines, engine transmissions, combining transmission, and the forward and aft rotor transmissions. As a result of this analysis, the preliminary limits established during the three-month field evaluation program were revised. These revisions have been included in the following program logs:

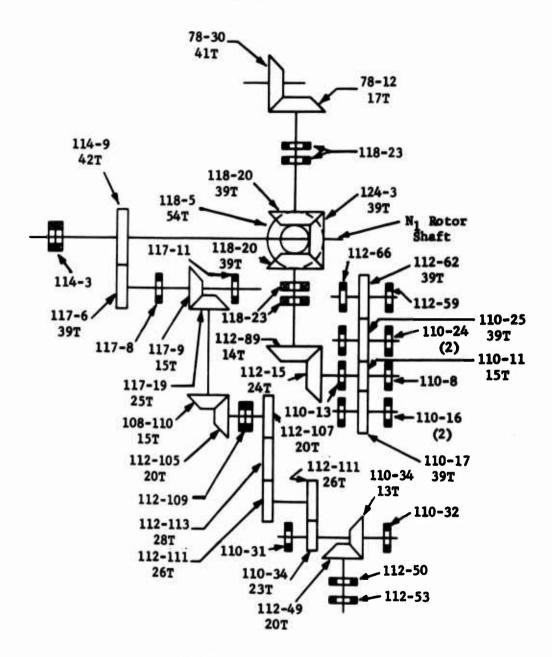
Program No.	Helicopter Component	Reference Table
2011	Aft Rotor Transmission	XXXIII
2021	Forward Rotor Transmission	XXXIV
2031	Combining Transmission	xxxv
2041	No. 1 and No. 2 Engine Transmission	XXXXVI
2051	Aft and Forward Rotor Transmissions	XXXVII
2061	Combining Transmission	XXXVIII
2071	No. 1 and No. 2 Engine Components	XXXIX
2081	Aft Rotor Transmission Accessory Transmission Components	XL

These program logs and the corresponding punched tapes were utilized with the CWCD-1000/1010 automated analyzer at Fort Eustis, Virginia, during the period from 13 November to 15 November 1968, for the purpose of final limits evaluation and instruction in field use.

As a result of the analysis of CH-47A helicopter No. 61-9109 at Fort Eustis during the above period, some minor changes in the program logs (Nos. 2011, 2021, 2031, 2041, 2051, 2061, 2071, and 2081) were indicated. These corrections are shown in Tables XLV through LII. These changes were incorporated in the punched tapes. New program numbers were assigned to these tapes as follows:

Experimental Tapes		Current Tapes		
Program No.	Table No.	Program No.	Table No.	
2011	XXXIII	2012	XLII	
2021	XXXIV	2022	XLIII	
2031	xxxv	2032	XLIV	
2041	XXXVI	2042	XLV	
2051	XXXVII	2052	XIVI	
2061	XXXVIII	2062	XLVII	
2071	XXXIX	2072	XLVIII	
2081	XL	2082	XLIX	

CONCLUSIONS


The Curtiss model CWCD-1000 Sonic Analyzer with the CWCD-1010 automation unit shows good potential as a successful indicator of power train component anomalies for the model CH-47A/B helicopters based on the satisfactory performance and operational characteristics exhibited during the field application program.

Final gain limits were established for the CH-47A/B helicopter complete dynamic system, which were consistent for all helicopters analyzed. However, a future program should be conducted to verify these gain limits by a teardown inspection of components with an indicated malfunction.

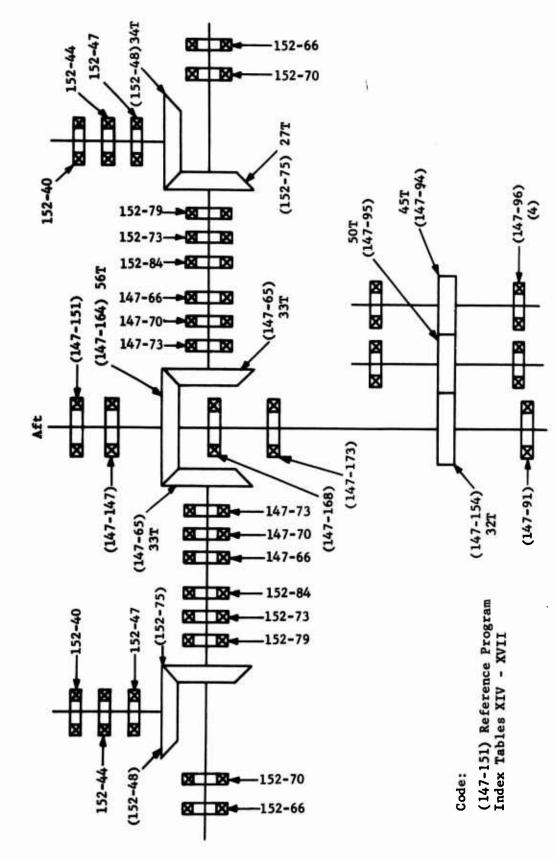
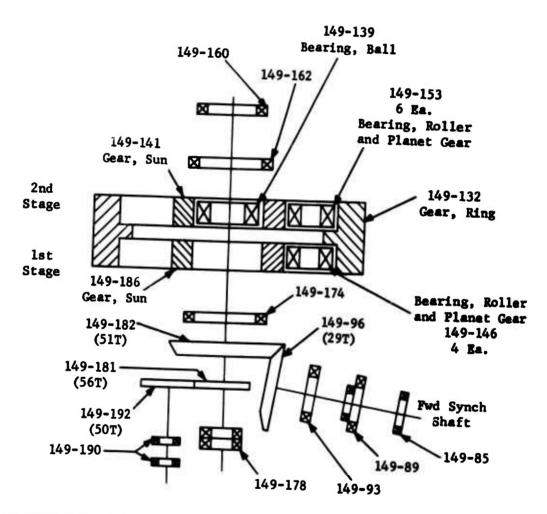
The incorporation of the CWCD-1020 microphone auxiliary switch box greatly enhanced the operation of the analyzer by reducing the time required for the 8 microphone connections and, consequently, the overall analysis time.

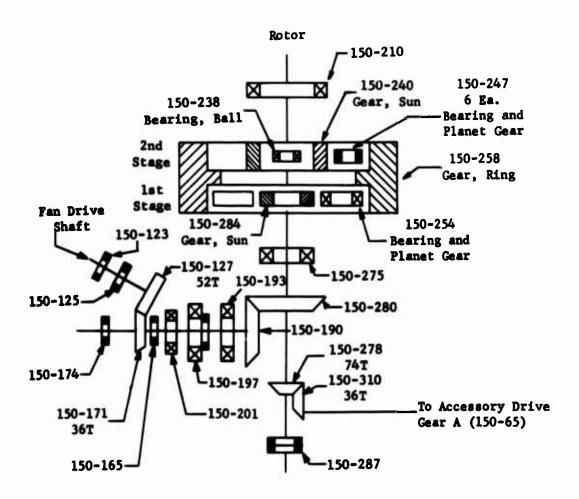
Due to the considerable amount of time required to scan the 540 items contained in the 8 program tapes, a more extensive investigation of a selected list of components which exhibit a history of chronic failure may be desirable in order to reduce the analysis time.

Starter Drive

Code: (118-20) Reference Program Index Tables VI - XI

Figure 1. Gear and Bearing Arrangement - Engine Accessory and Drives T55-L-5,-7.


Figure 2. Gear and Bearing Arrangement - Engine 90° Transmissions and CH-47A/B Helicopter Combining Transmission.

Rotor

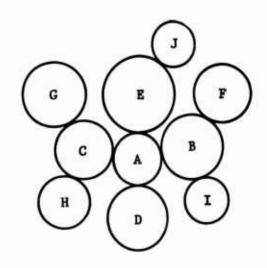

Code: (149-160) Ref ance Program Index Tables XXVII - XXX

Figure 3. Gear and Bearing Arrangement - CH-47A/B Forward Rotor Transmission.

Code: (150-210) Reference Program Index Tables XXI - XXIV

Figure 4. Gear and Bearing Arrangement - CH-47A/B Helicopter Aft Rotor Transmission.

View Looking Toward Accessories

	Program	
Item	Index	Description
A	150-65	Gear, Spur, Accessory Drive, Aft - 30 Teeth
	150-67	Bearing, Ball, Annular - 2 Each
В	150-75	Gear, Spur, Idler, Accessory Drive, Aft - 36 Teeth
	150-77	Bearing, Ball, Annular - 2 Each
С	150-75	Gear, Spur, Idler, Accessory Drive, Aft - 36 Teeth
	150-77	Bearing, Ball, Annular - 2 Each
D	150-68	Gear, Spur, Hydraulic Motor - 31 Teeth
	150-70	Bearing, Ball, Annular - 2 Each
E	150-60	Gear, Spur, Lubricating Oil Pump Drive - 53 Teeth
	150-61	Bearing, Ball, Annular - 2 Each
F	150-57	Gear, Spur, Hydraulic Pump No. 2 Drive - 62 Teeth
	150-58	Bearing, Ball, Annular - 2 Each
G	150-57	Gear, Spur, Hydraulic Pump No. 1 Drive - 62 Teeth
	150-53	Bearing, Ball, Annular - 2 Each
H	150-72	Gear, Spur, Pinion, Alternator No. 1 Drive - 29 Teeth
	150-73	Bearing, Ball, Annular - 2 Each
I	150-72	Gear, Spur, Pinion, Alternator No. 2 Drive - 29 Teeth
	150-73	Bearing, Ball, Annular - 2 Each
J	150-54	Gear, Spur, Axial Piston Pump Drive - 53 Teeth
	150-55	Bearing, Ball, Annular - 2 Each

Code: (150-65) Reference Program Index Tables XXIII and XXIV

Figure 5. Gear and Bearing Arrangement - Accessory Drive Gearbox - CH-47A/B Helicopter Aft Rotor Transmission Assembly.

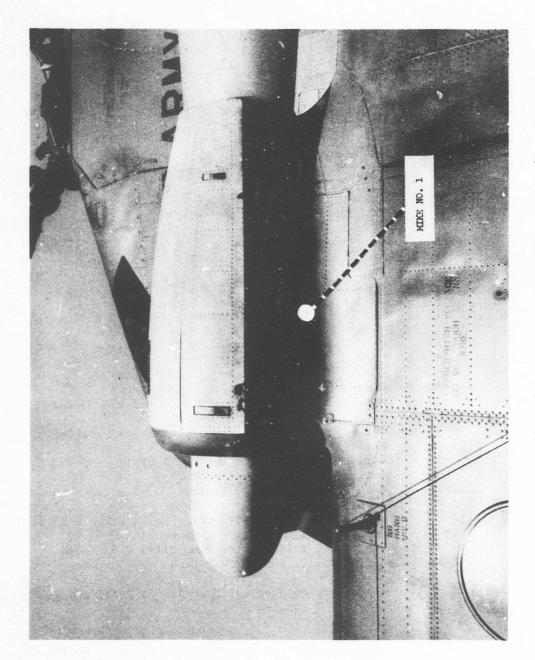


Figure 6. Location of Microphone No. 1, No. 1 Engine, CH-47A/B Helicopter.

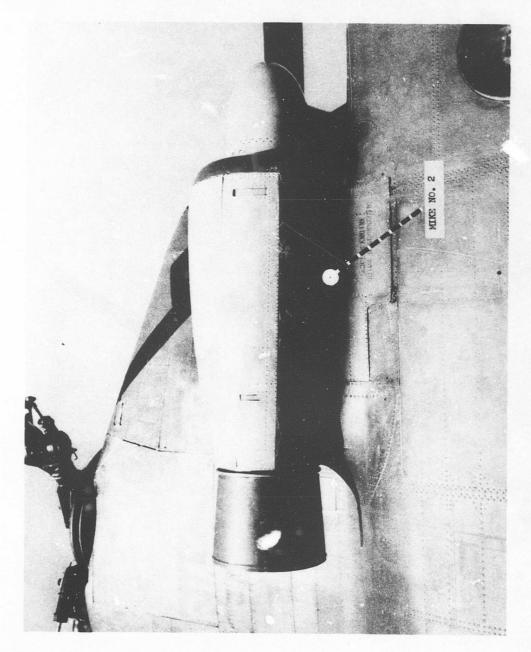


Figure 7. Location of Microphone No. 2, No. 2 Engine, CH-47A/B Helicopter.

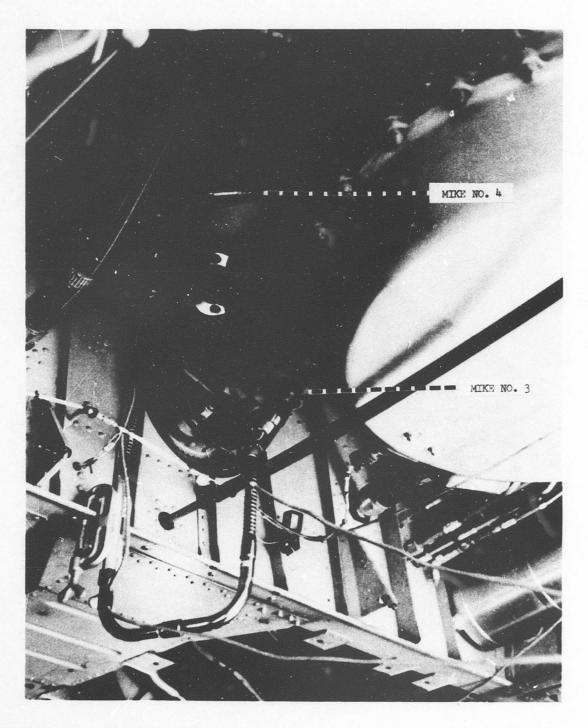


Figure 8. Location of Microphones Nos. 3 and 4, Aft Rotor Transmission, Ch-47A/B Helicopter.

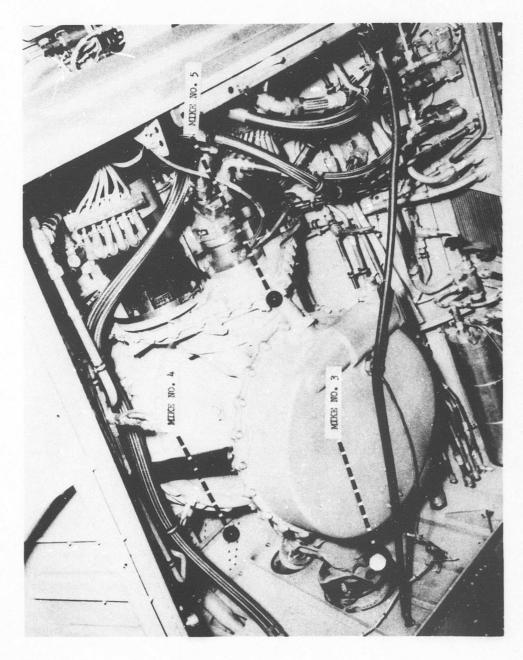


Figure 9. Location of Microphones Nos. 3, 4, and 5, Aft Rotor Transmission, CH-47A/B Helicopter.

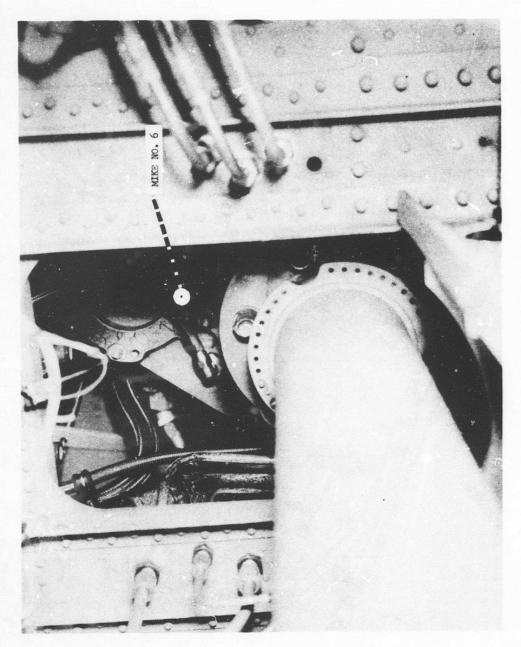


Figure 10. Location of Microphone No. 6, Combining Transmission, CH-47A/B Helicopter.

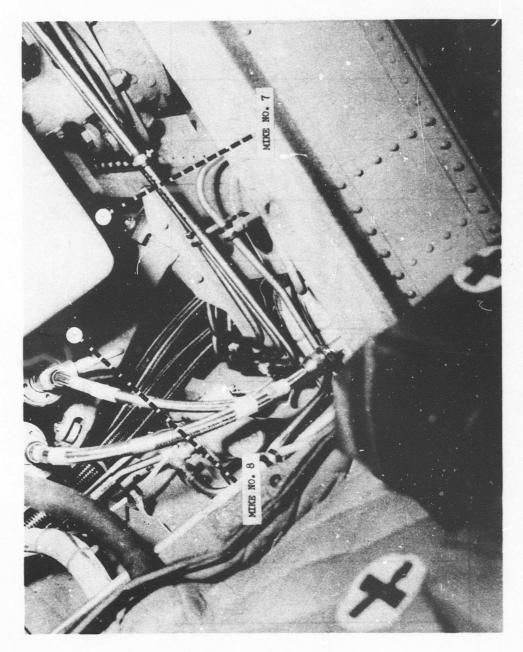
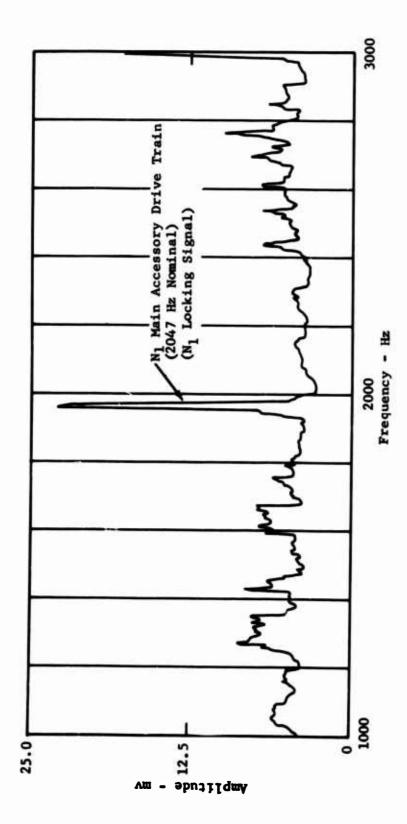



Figure 11. Location of Microphones Nos. 7 and 8, Forward Rotor Transmission, CH-47A/B Helicopter.

Amplitude vs. Frequency Spectrogram of No. 1 Engine, Main Accessory Drive Gear Train (Microphone No. 1) Showing the N₁ Locking Signal - CH-47B Helicopter No. 66-19139, Flight Idle Power Setting, Recording No. CH2-13. Figure 12.

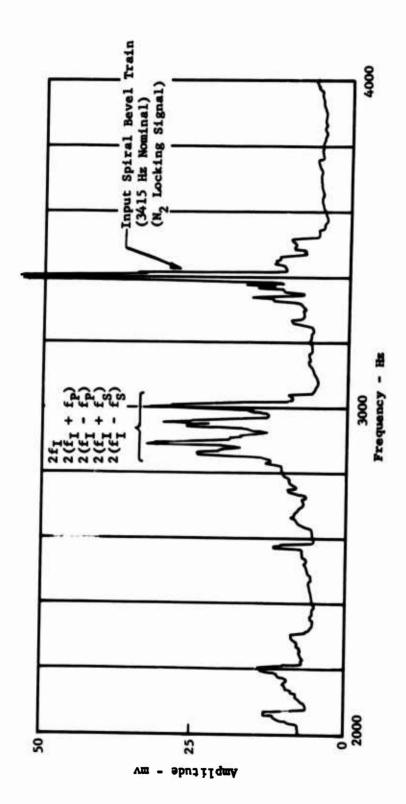


Figure 13. Amplitude vs. Frequency Spectrogram of Aft Rotor Transmission, 1st Stage Planetary Gear Train (Microphone No. 3) Showing the N₂ Locking Signal - CH-47A Helicopter No. 63-7911, Flight Idle Power Setting, Recording No. CH2-10.

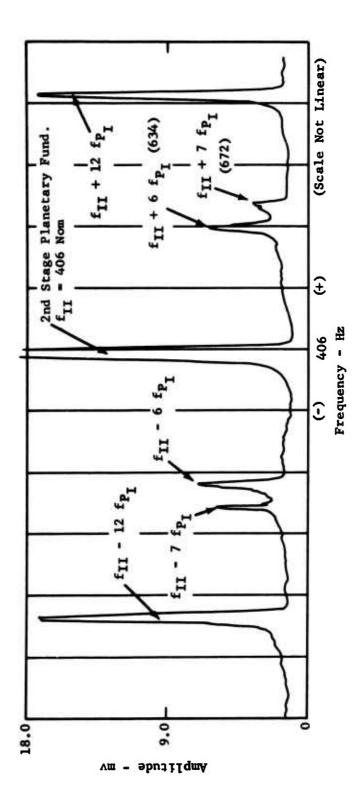


Figure 14. Amplitude vs. Frequency Spectrogram of Aft Rotor Transmission, 2nd Stage Planetary Gear Train (Microphone No. 3) Showing Sidebands - CH-47A Helicopter, Flight Idle Power Setting, Recording No. CH1-12.

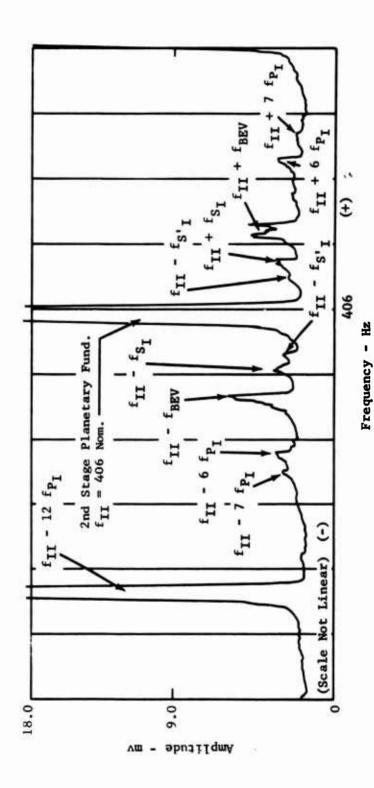
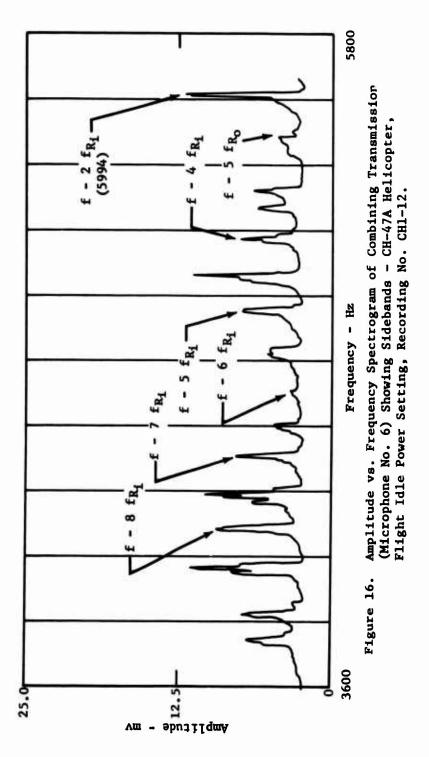



Figure 15. Amplitude vs. Frequency Spectrogram of Aft Rotor Transmission, 2nd Stage Planetary Gear Train (Microphone No. 4) Showing Sidebands - CH-47A Helicopter, Flight Idle Power Setting, Recording No. CH1-12.

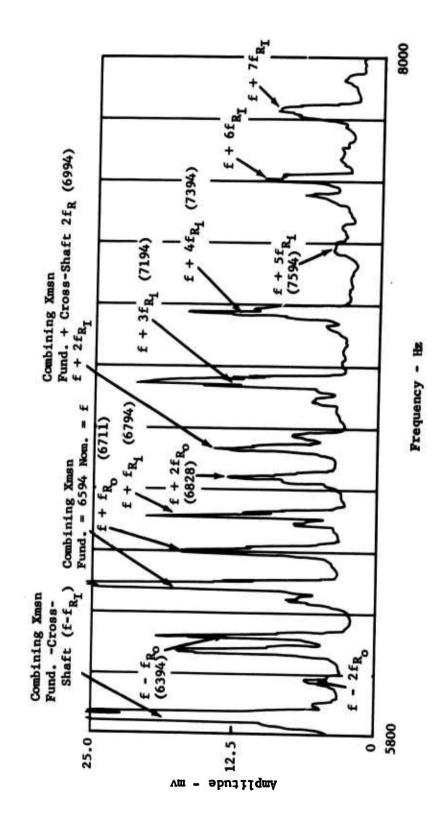
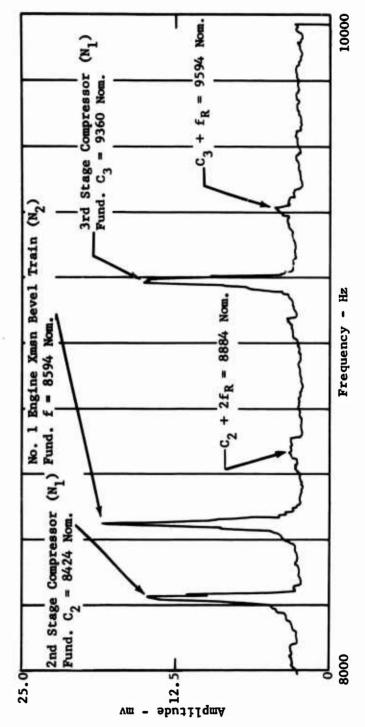



Figure 17. Amplitude vs. Frequency Spectrogram of Combining Transmission (Microphone No. 6) Showing Sidebands - CH-47A Helicopter, Flight Idle Power Setting, Recording No. CHI-12.

Amplitude vs. Frequency Spectrogram of No. 1 Engine (Microphone No. 1) Showing a Typical Engine Spectrum - CH-47A Helicopter No. 61-2408, Flight Idle Power Setting, Recording No. CH2-15. Figure 18.

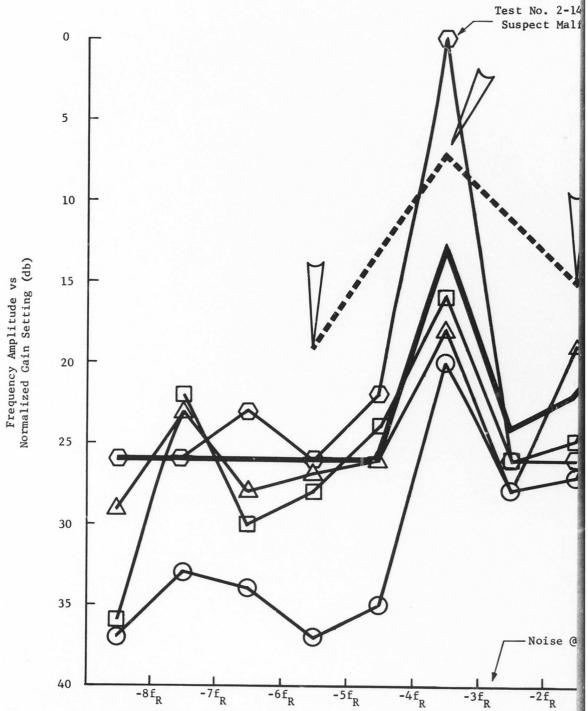
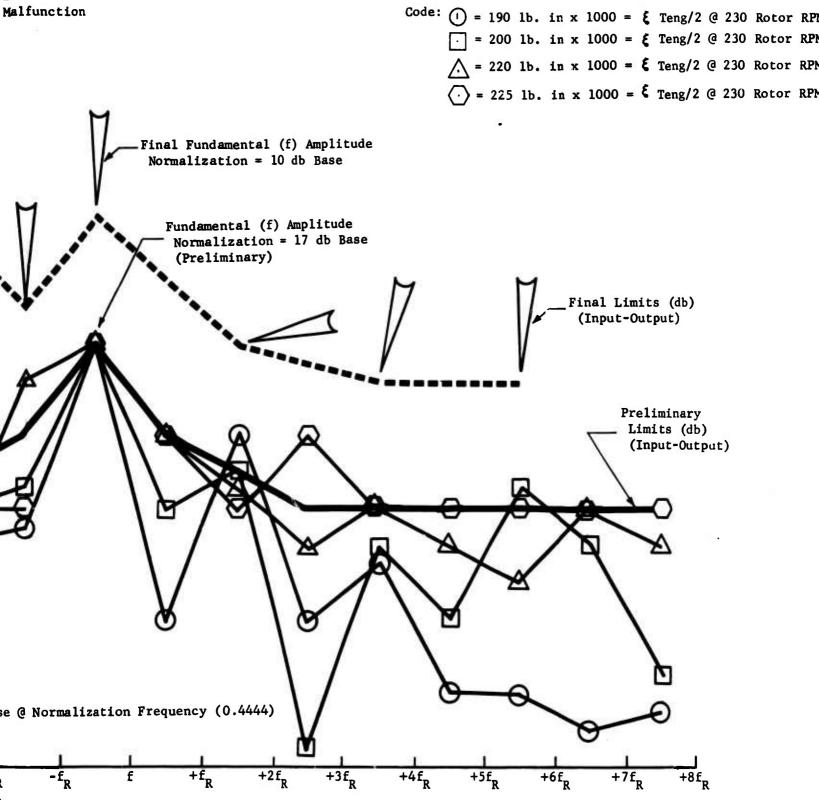
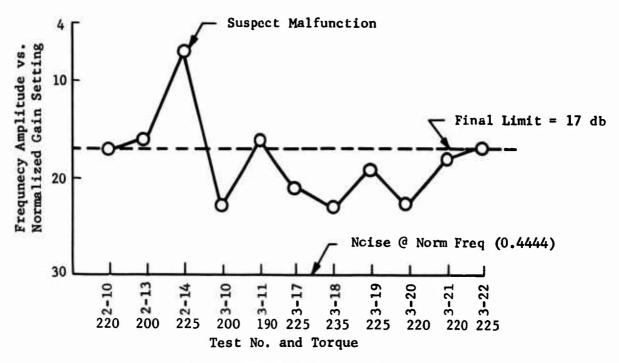
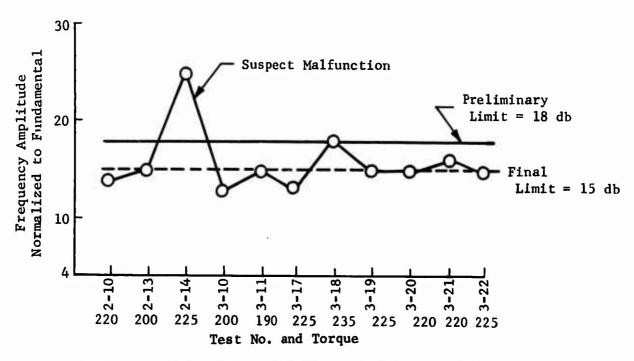
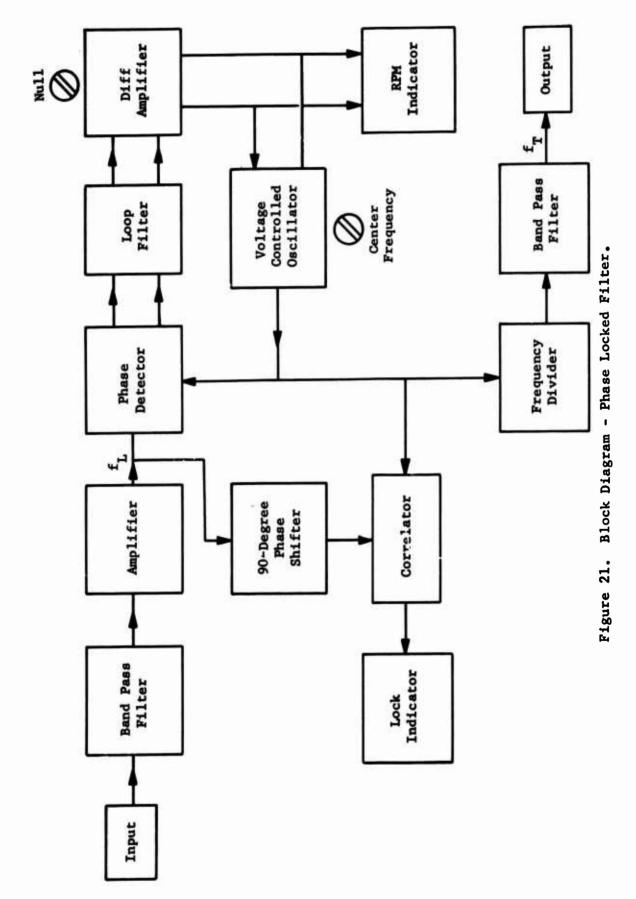





Figure 19. Limits - Sideband Frequencies - Input/Output Shaft CH-47A/B Helicopter Combining Transmission.



Fundamental Gear Frequency

Fundamental Gear Frequency x2 Ratio to Fundamental
Figure 20. Limits - Fundamental Gear Frequency CH-47A/B Combining
Transmission.

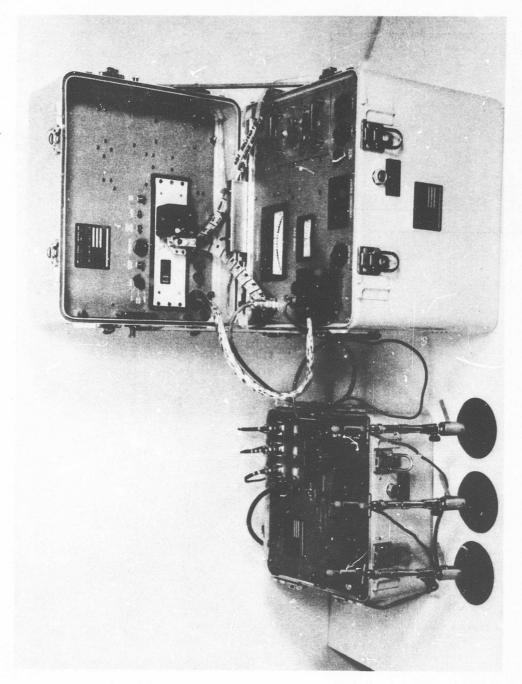
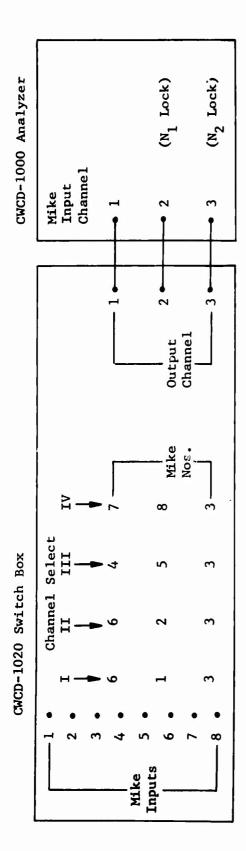



Figure 22. CWCD-1000 Sonic Analyzer Instrumentation, Power Supply, and CWCD-1010 Automation Unit.

Location	No. 1 Engine No. 2 Engine Aft Rotor Xmsn - 1st Stage Aft Rotor Xmsn - 2nd Stage Aft Rotor Xmsn - Accessory Gearbox Combining Xmsn Forward Rotor Xmsn - 1st Stage Forward Rotor Xmsn - 1st Stage
Mike No.	8 7 6 5 4 3 2 1

Figure 23. Microphone Switching Arrangement - CWCD-1020 Switch Box.

Figure 24. CWCD-1020 Microphone Auxiliary Switch Box.

	TABLE I.		ENCIES AND ACOU	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS T55-L-5, -7 ENGINES, GAS PRODUCER SECTION, COMPRESSOR BLADE PASSAGE (N ₁ -RELATED)	DELS T55-1 PASSAGE (N	L-5, -7	ENGINES,	
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)*	A:	Decimal Ratio	Octal Ratio
1-1 1-2 1-3 1-5	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	124-23-1 124-23-2 124-23-3 124-23-4 124-23-5	2-100-021-02	1ST STAGE COMPRESSOR (28 BLADES)	C ₁ C ₁ +f _R C ₁ +2f _R C ₁ -2f _R C ₁ -2f _R G ₁ -2f _R	6552 6786 7020 6318 6084	0.800195 0.828773 0.857352 0.771617 0.743038	0.6315 0.6503 0.6670 0.6130 0.5743
2-6 2-7 2-8 2-9 2-10	, , , , , , , , , , , , , , , , , , ,	124-28-1 124-28-2 124-28-3 124-28-4 124-28-5	2-100-022-02	2ND STAGE COMPRESSOR (36 BLADES)	C2+fR 86 C2+fR 86 C2+fR 86 C2-fR 87	8424 8658 8892 8190 7956	1.028822 1.057401 1.085979 1.000244 0.971665	1.0166 1.0353 1.0540 1.0001 0.7614
3-11 3-12 3-13	N. N	124-34-1 124-34-2 124-34-3	2-100-023-03	3RD STAGE COMPRESSOR (40 BLADES)	C3 C3+fR 99 C3-fR 9	9360 959 4 9126	1.143136 1.171714 1.114557	1. 1112 1. 1277 1. 0725
4-14 4-15 4-16	Z Z Z Z Z Z	124-40-1 124-40-2 124-40-3	2-100-024-03 2-100-025-02	4TH & 5TH STAGES COMPRESSOR (48 BLADES)	C ₄₋₅ 11232 C ₄₋₅ -fr 11466 C ₄₋₆ -fr 10998	11232 11466 10998	1.371763 1.400341 1.343185	1.2763 1.3150 1.2576
5-17 5-18 5-19	N. A. N. A.	124-52-1 124-52-2 124-52-3	2-100-026-02 2-100-027-02	6TH & 7TH STAGES COMPRESSOR (50 BLADES)	C ₆₋₇ 11700 C ₆₋₇ +fr 11934 C ₆₋₇ -fr 11466	11700 11934 11466	1,428920 1,457498 1,400341	1.3335 1.3522 1.3150

			TAT	TABLE i - Continued				
Item	Ref Figure	Program	Part Number	Component Description	Frequency (Hz)*	ıcy	Decimal Ratio	Octal Ratio
6-20 6-21 6-22	N. A. N. A.	124-63-1 124-63-2 124-63-3	2-100-180-13	CENTRIFUGAL STAGE (34 BLADES)	သ နာ ံ -ဘ နာံ- ဘ	7956 8190 7722	0.971665 1.000244 0.943087	0.7614 1.0001 0.7427
7-23 7-2 4 7-25	й й й А А А	124-23-6 124-23-7 124-23-8		1ST STAGE - 2ND HARMONIC	2C1 1 2C1+fR 1 2C1-fR 1	1310 4 13338 12870	1. 600390 1. 628969 1. 571812	1.4633 1.5020 1.4446
8-26 8-27 8-28	ĸĸĸ Ŗĸ	124-28-6 124-28-7 124-28-8		2ND STAGE - 2ND HARMONIC	2C2 2C2+fR 1 2O2-fR 1	16848 17082 16614	2.057645 2.086223 2.029066	1 1 1
9-29 9-30 9-31	Ä Ä Ä	124-23-9 124-23-10 124-23-11		ADDITIONS	C ₁ +C ₂ 14976 C ₂ +C ₃ 17784 C ₁ +C ₃ 15912	14976 17784 15912	1.829018 2.171958 1.943331	1.6504
* Base	ed on 75.0	Based on 75.0% N1 Speed; f _R =	R = 234.0 rps					

Item	Ref	Program Index	Part Number (Vendor)	Component Description	Frequency	Þ.	Decimal	Octa
122 12	N. A. N. A.	124-90-1 124-90-2 124-90-3	2-120-001-55 2-120-001-54	1ST STAGE TURBINE ROTOR (84 BLADES)	T1 T1+fR 11 T1-fR 11	19656 19890 19422	2.400586 2.429164 2.372007	' '

	1	POWER 1	URBINE SECTION	URBINE SECTION, BLADE PASSAGE (N2 - RELATED)	- KELATE	(n		
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)*	ncy	Decimal Ratio	Octal Ratio
1-1	Z.	128-34-1	2-140-001-34	2ND STAGE THRBINE	É	16642	300,569	31021
1-2	N. A.	128-34-2		ROTOR (66 BLADES)	T2.fR	16935	65300	1.5163
1-3	Z. Ą.	128-34-3			T2-fR	16429	6036	1.4650
4	N. A.	128-24-1	2-140-002-41	3RD STAGE TURBINE	T3	14155	1.381649	1.3033
2-2	Z.	128-24-2		ROTOR (56 BLADES)	T3.fR	14408	1.406344	1.3200
5-6	Z. A.	128-24-3			T3-fR	13902	1.356954	1.2666
# Ba	sed on 230,	* Based on 230.0 Rotor RPM	l; f _R = 252.8 rps					

	TABLE IV.	Ε.	NCIES AND ACOUS TOR SHAFT BEAR	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS T55-L-5, -7 ENGINES. MAIN ROTOR SHAFT BEARINGS, COMPRESSOR (N1 - RELATED)	ELS T55- - RELAT	L-5, -7 ED)	ENG INF.S,	
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)*	hcy	Decimal Ratio	Octal Ratio
	2	194-5-1		NO 9 MAIN BEABING	٤	777	B13860 0	2910 0
1-2	i d	124 - 5 - 2	(Fafnir	COMPRESSOR SHAFT	¥ F	5 %	0.011724	0.0060
1-3	Z	124-5-3	MM214VM	FORWARD	. <u>e</u>	639	0.078041	0.0200
7	Z. A.	124-5-4	5MSR E8784)		ſB.	1278	0.156092	0.1177
1-5	N. A.	124-5-5	(Ball Dia	- dB = 0.6875	3fB	3825	0.468368	0.3576
1-6	N. A.	124-5-6	No. Balls	E .	J	2067	0.252442	0.2012
1-7	N. A.	124-5-7	Raceway	- d1 = 3.188	<u>ئ</u>	1111	0.176355	0.1322
-				H	ľ			
			Shaft RPS	ı				
2-8	N. A.	124-78-1	2-300-004-02	NO. 3 MAIN BEARING	r L	T.	0.028573	0.0165
5-9	Z. Y.	124 - 78 - 2	(SKF 456535)	COMPRESSOR SHAFT,	Ŀ	105	0.012823	0.0065
2 - 10	N. Y.	124-78-3		AFT	Ę	1127	0.137640	0.1064
2-11	Y. Z	124-78-4	(Roller Dia	a - dB = 0.435	·B.	225	0.275280	0.2150
2-12	Z. A.	124-78-5	No. Rollers	rs - m = 1s	:His:	6763	0.825964	n. 6467
2-13	N. A.	124-78-6	Raceway	- d ₁ = 3.798	-	2324	0.253529	0.2213
2-14	N. A.	124-78-7		- d ₂ - 1.668	21	1551	0.230947	0.1662
			Shaft RPS	- fR = 234, 13)				
*) 52 ao poi	* Bosed on 75 OC N Spood						
		made In the						

	TABLE V.		SHAFT BEAR	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS [55-1,-3,-; FNGINES, MAIN ROTOR SHAFT BEARINGS, POWER TURBINE (N2 - RELATED)	ELS [55-1, (N2 - RELA	TED)	NGINES.	
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)*	CV	Decimal Ratio	Octal Ratio
<u> </u>								
1-1	N. N.	128-47-1	2-300-006-02	NO. 1 MAIN BEARING	Ę	253	0.02469;	0.0145
1-2	N. A.	128-47-2	(MRC R-109-	TURBINE SHAFT,	Ţ	110	0.010736	0.0054
1-3	N. A.	128-47-3	KE-302)	FORWARD	f _B	931	0.090873	0.0361
14	N. A.	128-47-4	(Roller Dia	a - dB = 0.3150	fB.	1462	0.151747	0.1350
1-5	N. A.	128-17-5	No. Rollers	ers - m = 18	3fB	5585	0.545143	0, 1271
1-6	Z	128-47-6	Raceway	$- d_1 = 2.0472$	ί	2578	0.251634	0.2007
1-7	N. A.	128-47-7		$- d_2 = 2.6772$	5	1972	0.192484	0, 1424
			Shaft RPS	1				
2-8	Z. A.	128-7-1	2-300-011-02	NO. 4 MAIN BEARING	R	233	0.024694	0.0145
2-9	N. A.	128-7-2	(Fafnir	TURBINE SHAFT, AFT	ŢJ	103	0.010053	0.0051
2-10		128-7-3	AAMM213-		£3	159	0.063543	0.0401
2-11		128-7-4	3-SMBR-DT		LB.	1302	0.127086	0.1011
2-12		128-7-5	(E-7103))		3fh.	3905	0.381161	0,3031
2-13		128-7-6	(Ball Dia	- dB = 0.6875	J	2094	0.204392	0, 1505
2-14		128-7-7	No. Balls	s - m = 14	21	1443	0.141044	0.1102
			Raceway	$- d_1 = 2.991$				
				$- d_2 = 4.366$				
			Shaft RPS	3 - fR = 252.766)				
_ _ * Ba	sed on 230	* Based on 230, 0 Rotor RPM						
1								

	TABLE VI.		NCIES AND ACOU ORY DRIVE SECT	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS T55-L-5, -7 ENGINES, ACCESSORY DRIVE SECTION GEAR TRAINS (N1-RELATED)	DELS TS SLATED)	5-L-5, -7	ENGINES,	
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	ency z)	Decimal Ratio	Octal Ratio
1-1	-	124-3-1	2-100-058-02	INNER BEVEL MAIN	Fund	9126	1,114557	1.0725
1-2		124-3-2 124-3-3		DRIVE	X X	18252 27378	3,343673	1 1
4	-	124-3-4		$(f_{\mathbf{R}} = 234 \text{ Hz})$	+fR	9360	1,143136	1,1112
1-5	1	124 - 3 - 5			+2fR	9594	1, 171714	1,1277
1-6	1	124-3-6			$^{-f}$ R	8892	1,085979	1,0540
1-7	-	124 - 3 - 7			-2fR	8658	1,057401	1.0353
1-8	1	118-5-1	2-070-005-02	$(f_{\mathbf{R}} = 169 \text{ Hz})$	$^{+}$ fR	9295	1,135197	1.1052
1-9	-	118-5-2			$+2f_{\mathbf{R}}$	9464	1.155837	1,1176
1-10	1	118 - 5 - 3			$^{-f}$ R	8957	1,093917	1,0601
1-11	-	118 - 5 - 4			-2fR	8488	1,073277	1.0454
1-12	1	118-20-1	2 - 070 - 024 - 01	$(f_{\mathbf{R}} = 234 \text{ Hz})$	$^{+}\mathrm{f_R}$	9360	1, 143136	1.1112
1-13	-	118-20-2			+2fR	9594	1, 171714	1.1277
1-14	1	118-20-3			-fR	8892	1,085979	1.0540
1-15	1	118-20-4			-2fR	8658	1,057401	1,0353
2-16	1	112-89-1	2-080-147-01	OUTER ACCESSORY	Fund	3276	0.400097	0.3147
2-17	1	112 - 89 - 2		DRIVE BEVEL	X2	6552	0.800195	0.6316
2-18	1	112 - 89 - 3			X3	9828	1,200293	1, 1464
2-19	1	112 - 89 - 4		$(f_{\mathbf{R}} = 234 \text{ Hz})$	$^+$ fR	3510	0,428676	0.3334
2-20	1	112 - 89 - 5			+2fR	3744	0.457254	0.3521
2-21	1	112 - 89 - 6			-fR	3042	0,371519	0.2762
2-22	1	112 - 89 - 7			-2fR	2808	0.342940	0.2575

			TA	TABLE VI - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	ency	Decimal Ratio	Octal Ratio
2-23	п,	110-15-1	2-080-013-03	$(\mathbf{f_R} = 137 \ \mathrm{Hz})$	$^{+}$ fR	3413	0.416829	0.3253
2-24		110-15-2 $110-15-3$			+2fR -fr	3550	0.433561	0.3360
2-26		110-15-4			-2fR	3002	0.366634	0.2736
3-27	1	110-11-1	2-080-016-02	ACCESSORY	Fund	2047	0.250000	0.2000
3-28	1	110 - 11 - 2		TRANSMISSION	X2	4094	0.500000	0.4000
3-29	1	110 - 11 - 3		MAIN TRAIN	X3	6141	0.750000	0.6000
3-30	1	110 - 11 - 4		$(f_{\mathbf{R}} = 137 \text{ Hz})$	$^{+}\mathrm{f_R}$	2184	0.266731	0.2105
3-31	1	110 - 11 - 5			$+2f_{\mathbf{R}}$	2321	0.283463	0.2211
3-32	-	110 - 11 - 6			$^{-f}$ R	1910	0.233268	0.1673
3-33	-	110 - 11 - 7			$-2f_{\mathbf{R}}$	1773	0.216536	0.1567
3-34	-	110 - 17 - 1	2-080-009-02	$(\mathbf{f}_{\mathbf{R}} = 53 \text{ Hz})$	$^{+}\mathrm{f_R}$	2100	0.256472	0.2033
3-35	-	110 - 17 - 2			$+2f_{\mathbf{R}}$	2153	0.262945	0.2065
50 6	-	110 - 17 - 3			$^{-f}$ R	1994	0.243527	0.1745
3-37	-	110 - 17 - 4			-2fR	1941	0.237054	0.1713
3-38	Т	110 - 25 - 1	2-080-019-04	$(\mathbf{f_R} = 53 \text{ Hz})$	$^{+}$ fR	2100	0.256472	0.2033
3-39	1	110 - 25 - 2			$+2f_{\mathbf{R}}$	2153	0.262945	0.2065
3-40	1	110 - 25 - 3			$^{-}$ fR	1994	0.243527	0.1745
3-41	1	110 - 25 - 4			$-2f_{\mathbf{R}}$	1941	0.237054	0.1713
3-42	-	112 - 62 - 1	2-080-021-06	$(\mathbf{f}_{\mathbf{R}} = 53 \text{ Hz})$	+fR	2100	0.256472	0.2033
3-43	1	112 - 62 - 2			$^{+2}\mathrm{fR}$	2153	0.262945	0.2065
3-44	1	112 - 62 - 3			$^{-f}$ R	1994	0.243527	0.1745
3-45	1	112 - 62 - 4			$-2f_{\mathbf{R}}$	1941	0.237054	0.1713

TABLE VII.	1 11 -	COUS	, MODE	LS T55-L- [ED) Frequency	.5-L-5, -'.	ENGINES, Decimal	Octal
	la (Ve	(Vendor) Component Description	tion	(HZ)	z)	Ratio	Ratio
118-23-1 2-30	2-30	2-300-031-01 RADIAL BEVEL SHAFT		fR	234	0.028578	0.0165
118-23-2 (Vendor	(Ven	dor	—	$^{\mathrm{f}}_{\mathrm{T}}$	100	0.012212	0.0062
	Unk			fB	810	0.093925	0.0625
118-23-4		(Ball Dia - $d_{\rm B} = 0.1875$		$f_{\mathbf{B}}$ '	1620	0.19785	0.1452
118-23-5		No. Balls - $m = 13$		$^{3}\mathrm{f_{B}}$	1860	0.593551	0.4577
118-23-6		Raceway - $d_1 = 1.1365$		ίı	1737	0.212139	0.1545
118-23-7		- d ₂ =		f 2	1306	0.159501	0.1215
		Shaft RPS - $f_{\mathbf{R}} = 234.13$)	<u> </u>				
118-6-1 2-300-	2-300-	2-300-005-02 ACCESSORY BEVEL		if.	169	0,020639	0.0125
118-6-2 (MRC	(MRC	SHAFT, INNER	T	LJ	7.0	0.008549	0.0043
118-6-3 R-105-KD-	R-105	-KD-	4	fВ	464	0.056668	0.0350
118-6-4 300)	300)		-	n.	929	0.113458	0.0721
)		(Roller Dia - $dB = 0.250$		$3f_{ m B}$ '	2786	0.340254	0.2562
118-6-6		No. Rollers - $m = 14$	4	\mathfrak{t}_1	1392	0.170004	0.1270
118-6-7 F	H	Raceway - $d_1 = 1,1673$ - $d_2 = 1,6673$		$c_{\mathbf{j}}$	975	0,119076	0.0750
		Shaft RPS - $f_{R} = 169.09$)	_				

			TA	TABLE VII - Continued			
tem	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency	Decimal	Octal
3-15 3-16 3-17 3-18	, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	118-10-1 118-10-2 118-10-3	2-300-023-02 (Fafnir P9105K- E-8211)	ACCESSORY BEVEL SHAFT, OUTER	fR 169 fT 70 fB 463	0,020639 0,008549 0,056546	0.0125 0.0043 0.0350
3-20 3-21		118-10-5 118-10-6 118-10-7	(Ball Dia No. Balls Raceway Shaft RPS	- dB = 0.250 - m = 10 - d1 = 1.1633 - d2 = 1.6633 - fR = 169.09)	fB' 926 3fB' 2778 f1 995 f2 696	0, 113092 0, 339276 0, 121519 0, 085002	0.0717 0.2556 0.0762 0.0534

III. FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS T55-L-5, -7 ENGINES, ACCESSORY TRANSMISSION BEARINGS (N ₁ - RELATED)	Octal Ratio	0.0105 0.0035 0.0304 0.0610 0.2231 0.0667	0.0105 0.0033 0.0241 0.0501 0.1704 0.0562
	Decimal Ratio	0.016731 0.006961 0.047874 0.095749 0.287371 0.107230	0.016731 0.006595 0.039203 0.078407 0.235344 0.090376
	ency z)	137 57 392 784 2353 878 624	137 54 321 642 1927 740 489
	Frequency (Hz)	ក្រ ក្រ វិង វិង វិង វិ	វា វា វា វែ វែ វែ
	Component Description	BEVEL DRIVE SHAFT, OUTER - dB = 0.28125 - m = 11 - d1 = 1.381 - d2 = 1.944 - fR = 136.58)	BEVEL DRIVE SHAFT, INNER - dB = 0.1875 - m = 9 - d1 = 0.732 - d2 = 1.108 - fR = 136.58)
	Part Number (Vendor)	2-300-024-02 (Fafnir PM9106K- MBR-E-8164) (Ball Dia No. Balls Raceway	2-300-009-02 (Fafnir 9102KE- 821D) (Ball Dia No. Balls Raceway Shaft RPS
	Program Index	110-13-1 110-13-2 110-13-3 110-13-4 110-13-5 110-13-6	110-8-1 110-8-2 110-8-3 110-8-5 110-8-5 110-8-6
TABLE VIII.	Ref Figure		
	Item	1-1 1-2 1-3 1-5 1-6	2-8 2-9 2-10 2-11 2-12 2-13 2-14

Ref Program Part Number Frequency Decimal Octail				TAB	TABLE VIII - Continued			
110-16-1 1-300-005-01 POWER CONTROL fR 53 0.006472 110-16-2 (MRC 1905- SHAFT FT 22 0.002686 110-16-3 S-304 110-16-4 (Ball Dia - dB = 0.21875 fB 308 0.037616 110-16-5 No. Balls - m = 11 3fB 924 0.112848 110-16-6 Raceway - d1 = 1.1002 f1 337 0.041157 110-16-7 Shaft RPS - fR = 52.53 fT 241 0.029433 110-24-2 (MRC 104- SHAFT FT 52.53 110-24-3 KS-301 110-24-4 (Ball Dia - dB = 0.2500 fB 737 0.096009 110-24-6 Raceway - d1 = 0.9705 f1 285 0.034807 110-24-7 Shaft RPS - fR = 52.53 f2 285 0.034807 110-24-6 Raceway - d1 = 0.9705 f2 188 0.022960 110-24-7 Shaft RPS - fR = 52.53 f2 188 0.022960 110-24-7 Shaft RPS - fR = 52.53 f2 188 0.022960 110-24-7 Shaft RPS - fR = 52.53 f2 188 0.022960 110-24-7 Shaft RPS - fR = 52.53 f2 188 0.022960 110-24-7 Raceway - d1 = 0.9705 f2 188 0.022960 110-24-7 Raceway - fR = 52.53 f3 (Raceway - Raceway	Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	Decimal Ratio	Octal Ratio
110-16-2	3-15	1	110-16-1	1-300-005-01	POWER CONTROL			0,0033
110-16-3 S-304 fB 110-16-4 (Ball Dia - dB = 0.21875 fB' 308 0.018616 110-16-5 (Ball Dia - dB = 0.21875 fB' 308 0.037616 110-16-6 Raceway - d1 = 1.1002 f1 337 0.041157 110-16-7 Shaft RPS - fR = 52.53 fT 2.41 0.029433 110-24-2 (MRC 104- SHAFT 110-24-3 KS-301 110-24-4 KS-301 110-24-6 Raceway - d1 = 0.9705 f1 2.85 0.006472 110-24-6 Raceway - d1 = 0.9705 f2 2.85 0.00609 110-24-6 Raceway - d1 = 0.9705 f2 188 0.022960 110-24-7 Shaft RPS - fR = 52.53 110-24-7 Shaft RPS - fR = 52.53 110-24-7 110-24-7 Raceway - d1 = 0.9705 f2 188 0.022960 110-24-7 Raceway - d2 = 1.4705 f2 188 0.022960 110-24-7 Raceway - fR = 52.53 123 0.022960 123 12	3-16	1	110-16-2	(MRC 1905-	SHAFT			0,0013
110-16-4 (Ball Dia - dg = 0.21875 fg' 308 0.037616 110-16-5	3-17	منو	110-16-3	S-304)				0.0115
110-16-5	3-18		110 - 16 - 4	(Ball Dia	фB			0.0232
110-16-6	3-19		110 - 16 - 5	No. Balls		ī		0.0716
110-16-7	3-20	-	110 - 16 - 6	Raceway				0.0251
Shaft RPS - fR = 52.53) 1 110-24-1 2-300-021-02 OIL PUMP DRIVE fR 53 0.006472 1 110-24-2 (MRC 104- SHAFT fF 10-24-3 KS-301) 1 110-24-4 (Ball Dia - dB = 0.2500 fB 246 0.030043 1 110-24-5 No. Balls - m = 9 3fB 737 0.090009 1 110-24-6 Raceway - d1 = 0.9705 f1 285 0.034807 1 110-24-7 Shaft RPS - fR = 52.53)	3-21	1	110-16-7		II			0.0171
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Shaft RPS	fr =			
1 110-24-2 (MRC 104- SHAFT from 10-24-3 KS-301) 1 110-24-4 (Ball Dia - dB = 0.2500 fg, 246 0.030043 1 110-24-5 No. Balls - m = 9 3fg, 737 0.09009 1 110-24-6 Raceway - d ₁ = 0.9705 f ₁ 285 0.034807 - d ₂ = 1.4705 f ₂ 188 0.022960 Shaft RPS - f _R = 52.53)	4-22	1	110-24-1		OIL PUMP DRIVE			0.0033
1 110-24-3 KS-301) 1 110-24-4 (Ball Dia - dB = 0.2500 fB' 246 0.030043 1 110-24-5 No. Balls - m = 9 3fB' 737 0.09009 1 110-24-6 Raceway - d ₁ = 0.9705 f ₁ 285 0.034807 1 110-24-7 - d ₂ = 1.4705 f ₂ 188 0.022960 Shaft RPS - f _R = 52.53)	4-23	1	110-24-2	•	SHAFT			0.0013
1 110-24-4 (Ball Dia - dB = 0.2500 fB' 246 0.030043 1 110-24-5 No. Balls - m = 9 3fB' 737 0.090009 1 110-24-6 Raceway - d ₁ = 0.9705 f ₁ 285 0.034807 1 110-24-7 - d ₂ = 1.4705 f ₂ 188 0.022960 Shaft RPS - f _R = 52.53)	4-24	-	110 - 24 - 3	KS-301)				0.0076
1 110-24-5 No. Balls - m = 9 3fB' 737 0.090009 1 110-24-6 Raceway - d ₁ = 0.9705 f ₁ 285 0.034807 1 110-24-7 - d ₂ = 1.4705 f ₂ 188 0.022960 Shaft RPS - f _R = 52.53)	4-25	_	110-24-4	(Ball Dia				0.0173
1 110-24-6 Raceway - d ₁ = 0.9705 f ₁ 285 0.034807 1 110-24-7 - d ₂ = 1.4705 f ₂ 188 0.022960 Shaft RPS - f _R = 52.53)	4-26	1	110-24-5	No. Balls	H			0.0561
1 110-24-7 - $d_2 = 1.4705$ f ₂ 188 0.022960 Shaft RPS - f _R = 52.53)	4-27	-	110-24-6	Raceway	11			0.0217
- f _R = 52.53)	4-28	-	110 - 24 - 7		11			0.0136
				Shaft RPS	ii			

			TAB	TABLE VIII - Continued			
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	Decimal Ratio	Octal Ratio
c u		110 00 1	100000				0
67-0	-	112-00-1	1-300-004-01	FUEL FILTER DRIVE	tR 53		0.0033
5-30	- -	112 - 66 - 2	(MRC 1903-	SHAFT, OUTER	fT 22		0.0013
5-31	1	112 - 66 - 3	S-301)		fB 151		0.0114
5-32	1	112-66-4	(Ball Dia	$- d_{\mathbf{B}} = 0.15625$	fB' 302		0.0227
5-33	1	112 - 66 - 5	No. Balls		3fB' 907		0.0706
5-34	_	112 - 66 - 6	Raceway	$- d_1 = 0.7690$			0.0251
5-35	1	112-66-7			$f_2 = 240$	0.029311	0.0170
			Shaft RPS	- fR = 52.53)	l		
6-36	1	112-59-1	1-300-005-01	FUEL FILTER DRIVE	fR 53	3 0.006472	0.0033
6-37	-	112 - 59 - 2	(MRC 1905-	SHAFT, INNER			0.0013
6-38	1	112 - 59 - 3	S-304)		f _B 154	0.018808	0.0115
6-39	ī	112 - 59 - 4	(Ball Dia	$-d_{\mathbf{B}} = 0.21875$	fB' 308		0.0232
6-40	_	112 - 59 - 5	No. Balls	-m = 11			0.0716
6-41	-	112-59-6	Raceway	$- d_1 = 1.1002$	f ₁ 337	0.041157	0.0251
6-42	-	112-59-7		$- d_2 = 1.5376$		0.029433	0.0171
			Shaft RPS	- fR = 52.53)			

	Ref	Drogram	Dark Number	Dart Number	2)	11000	Dooimal	i oto
Item	Figure	- 1	(Vendor)	Component Description	(Hz)	i)	Ratio	Ratio
1-1	1	114-9-1	2-020-054-11	TORQUEMETER	Fund	10620	1.036603	1.0226
1-2	-	114-9-2		ACTUATING DRIVE	X2	21240	2.073206	ı
1-3	1	114-9-3			X3	31860	3, 109809	
14	_	114-9-4		$(f_{\mathbf{R}} = 253 \text{ Hz})$	+fR	10873	1.061298	1.0373
1-5	1	114-9-5			+2fR	11126	1,085993	1,0540
1-6	1	114-9-6			-fR	10367	1.011908	1,0061
1-7	1	114-9-7			-2fR	10114	0.987213	0.7714
1-8		117-6-1	2-030-007-02	$(f_{\mathbf{R}} = 272 \text{ Hz})$	+fR	10892	1.063152	1.0403
1-9	1	117-6-2			+2fR	11164	1,089702	1.0557
1-10	1	117-6-3			-fR	10348	1,010053	1,0051
1-11	1	117-6-4			-2fR	10076	0.983504	0.7674
2-12	-	117-9-1	2-030-012-02	OVERSPEED DRIVE	Fund	4083	0.398535	0.3140
9-13		117-9-2		REVEL INNER	6.2	9910	0 797071	0 6901
2-14		117-9-3			X X	12249	1, 195607	1,1441
2-15	-	117-9-4		$(f_R = 272 Hz)$	+fr	4355	0.425085	0.3315
216	-	117-9-5			-fr	3811	0.371986	0.2764
2-17	-	117-19-1	2-030-014-02	$(f_{\mathbf{R}} = 163 \text{ Hz})$	+fR	4246	0.414446	0.3242
2-18	-	117-19-2			-fr	3920	0.382625	0.3037
				=1.,			:	

			TA	TABLE IX - Continued		 - -		• 1
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	cy.	Decimal Ratio	Octal Ratio
3-19	-	108-110-1		OVERSPEED CONTROL	Fund	2450	0.239141	0.1724
3-20	-	105-110-2		BEVEL, OUTER	X2	4900	0.478282	0.3647
3-21	-	108-110-3			X3	7350	0.717423	0.5573
3-22	-	108-110-4		$(f_{\mathbf{R}} = 163 \text{ Hz})$	+fR	2613	0.255051	0.2025
3-23	1	108-110-5			+2fR	2775	0.270961	0.2126
3-24	-	112 - 105 - 1	2-080-031-03	$(f_{\mathbf{R}} = 122 \text{ Hz})$	-fR	2328	0.227232	0.1643
3-25	-	112-105-2			-2fR	2206	0.215324	0.1562
4-26	. 	112-107-1	2-080-032-02	OVERSPEED CONTROL	Fund	2450	0.239141	0.1724
4-27	-	112-107-2		DRIVE IDLER TRAIN	X2	4900	0.478282	0.3647
4-28	-	112-107-3		AND CLUSTER	X3	7350	0.717423	0.5573
4-29	1	112-107-4		$(f_{\mathbf{R}} = 122. \text{ Hz})$	·fR	2613	0.255051	0.2025
4-30	-	112-107-5			-fr	2328	0.227232	0.1643
4-31	-	112-113-1	2-080-036-02	$(f_{\mathbf{R}} = 87 \text{ Hz})$	+fR	2537	0.247632	0.1766
4-32	-	112-113-2			-fR	2363	0.230649	0.1661
4-33	-	112-111-1	2-080-043-02	$(f_R = 94 \text{ Hz})$	f.	2444	0.238555	0.1721
4-34	-	112-111-2			-fR	2356	0.229965	0.1656
4-35	-	110-34-1	2-080-144-01		+fR	2557	0.249585	J. 1776
4-36	-	110-34-2		$(f_{\mathbf{R}} = 107 \text{ Hz})$	-f _R	2343	0.228696	0.1651
5-37	1	110-34-3	2-080-145-01	TACHOMETER DRIVE	Fund	1385	0.135187	0.1052
5-38	1	110-34-4		BEVEL	X2	2770	0.270375	0.2123
5-39	-	110-34-5			X3	4155	0.405563	0.3175
5-40	-	110-34-6		$(f_{\mathbf{R}} = 107 \text{ Hz})$	+f _R	1492	0.145632	0.1125
5-41	-	110-34-7			-fr	1278	0.124743	0.0777
5-42	1	112-49-1		$(f_{\mathbf{R}} = 69 \text{ Hz})$	+fR	1454	0.141922	0.1105
5-43	-	112-49-2			-fR	1316	0.128452	0.1016

	TABLE X.		ICIES AND ACOUST RY DRIVE SECTION	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS $755-L-5$, -7 ENGINES, ACCESSORY DRIVE SECTION BEARINGS (N_2 - RELATED)	LS T55-L-5, - ED)	7 ENGIN	ES,	
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	Decimal Ratio	mal io	Octal Ratio
1-1		114-3-1 114-3-2	2-300-028-01 (MRC 1911-	POWER OUTPUT SHAFT		53 0.024694 11 0.010834	4694 0834	0.0145
3 4 5 9		114-3-3 114-3-4 114-3-5 114-3-6	SD-1301-1) (Ball Dia No. Balls Raceway	0 4 6	- *		6344 9033 0693	0.1515 0.4750 0.1610
1-7	ı	114-3-7	Shaft RPS	- d ₂ = 2.9628 - f _R = 252.766)	f ₂ 1784	м 0.174133	4133	0.1311
2-8 2-9 2-10 2-11 2-12 2-13 2-14	 -	117-8-1 117-8-2 117-8-4 117-8-5 117-8-6 117-8-7	2-300-017-01 (Fafnir PM 9100 K- E-8211) (Ball Dia No. Balls Raceway Shaft RPS	OVERSPEED DRIVE SHAFT, INTERMEDIATE - dB = 0.1875 - m = 7 - d1 = 0.5210 - d2 = 0.8960 - fR = 272.208)	fR 272 fT 100 fB 478 fB' 956 3fB' 2870 f1 1205 f2 700	272 0.026549 100 0.009760 478 0.046656 956 0.093313 870 0.280136 205 0.117618 700 0.068326	6549 9760 6656 3313 7618 8326	0.0155 0.0050 0.0277 0.0576 0.2173 0.0742
					T			

			TAE	TABLE X - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)		Decimal Ratio	Octal Ratio
3-15	1	117-11-1	2-300-022-01	OVERSPEED DRIVE		272	0.026549	0.0155
3-16	1	117 - 11 - 2	(N.D.	SHAFT, THRUST	fJ	97	0.009468	0.0047
3-17	1	117-11-3	R4AXR1C09)			438	0.042752	0.0257
3-18	-	117-11-4	(Ball Dia	- dB = 0.1406	fB'	876	0.085505	0.0536
3-19	1	117-11-5	No. Balls	9 = w -		2627	0.256417	0.2032
3-20	1	117-11-6	Raceway	$- d_1 = 0.3519$		1050	0.102489	0.0644
3-21	1	117-11-7		$- d_2 = 0.6331$		583	0.056905	0.0351
			Shaft RPS	<pre>- f_R = 272.208)</pre>				

112-109-1		Ref	Program	er		Frequency		Decimal	Octal
112-109-1	Item	Figure	Index	(Vendor)	Component Description	(Hz)		Ratio	Ratio
112-109-2	1-1	1	112-109-1		OVERSPEED CONTROL		22	0.011908	0.0061
112-109-3	1-2	1	112 - 109 - 2		DRIVE, OUTER BEVEL		20	0.004880	0.0024
112-109-4	1-3	1	112-109-3		SHAFT		121	0.031332	0.0200
112-109-5	14	-	112 - 109 - 4	(Ball Dia			141	0.062567	0.0400
112-109-6	1-5	_	112-109-5	No. Balls	11		23	0.187701	0.1401
112-109-7	1-6	_	112-109-6	Raceway	.577 34642		,56	0.070863	0.0442
Shaft RPS - fR = 122.497) 1 112-113-1 1-300-004-01 OVERSPEED CONTROL fR 87.5 0.008540 1 112-113-2 (MRC 1903- DRIVE, IDLER GEAR fT 36 0.003513 1 112-113-3 S-301) 1 112-113-4 (Ball Dia - dB = 0.15625 fB' 503 0.049097 1 112-113-5 No. Balls - m = 11 3fB' 1510 0.147388 1 112-113-6 Raceway - d1 = 0.7690 f1 562 0.054856 1 112-113-7 - d2 = 1.0814 f2 400 0.039043 Shaft RPS - fR = 87.496)	1-7	-	112-109-7		- d ₂ = 1.0028		66	0.048706	0.0307
1 112-113-1 1-300-004-01 OVERSPEED CONTROL f _R 87.5 0.008540 1 112-113-2 (MRC 1903- DRIVE, IDLER GEAR f _T 36 0.003513 1 112-113-3 S-301) 1 112-113-4 (Ball Dia - d _B = 0.15625 f _B ' 503 0.049097 1 112-113-6 Raceway - d ₁ = 0.7690 f ₁ 562 0.054856 1 112-113-7 - d ₂ = 1.0814 f ₂ 400 0.039043 Shaft RPS - f _R = 87.496)				Shaft RPS		I			
112-113-1 1-300-004-01 OVERSPEED CONTROL fR 87.5 0.008540 112-113-2									
1 112-113-2 (MRC 1903- DRIVE, IDLER GEAR fT 36 0.003513 1 112-113-3 S-301) 1 112-113-4 (Ball Dia - dB = 0.15625 fB' 503 0.049097 1 112-113-5 No. Balls - m = 11 3fB' 1510 0.147388 1 112-113-6 Raceway - d1 = 0.7690 f1 562 0.054856 1 112-113-7 Shaft RPS - fR = 87.496) Shaft RPS - fR = 87.496)	8-2	_	112-113-1		OVERSPEED CONTROL		87.5	0.008540	0.0043
1 112-113-3 S-301) 1 112-113-4 (Ball Dia - dg = 0.15625 fg' 503 0.049097 1 112-113-5 No. Balls - m = 11 3fg' 1510 0.147388 1 112-113-6 Raceway - d1 = 0.7690 f1 562 0.054856 1 112-113-7 Shaft RPS - fg = 87.496) Shaft RPS - fg = 87.496)	2-9	-	112 - 113 - 2		DRIVE, IDLER GEAR		36	0.003513	0.0016
1 112-113-4 (Ball Dia - dB = 0.15625 fB' 503 0.049097 1 112-113-5 No. Balls - m = 11 3fB' 1510 0.147388 1 112-113-6 Raceway - d1 = 0.7690 f1 562 0.054856 1 112-113-7 - d2 = 1.0814 f2 400 0.039043 Shaft RPS - fR = 87.496)	2-10	1	112-113-3					0.024597	0.0145
1 112-113-5 No. Balls - m = 11 3fg' 1510 0.147388 1 112-113-6 Raceway - d1 = 0.7690 f ₁ 562 0.054856 1 112-113-7 - d2 = 1.0814 f ₂ 400 0.039043 Shaft RPS - f _R = 87.496)	2-11	1	112-113-4	(Ball Dia			03	0.049097	0.0311
1 112-113-6 Raceway - d1 = 0.7690 f ₁ 562 0.054856 1 112-113-7 - d ₂ = 1.0814 f ₂ 400 0.039043 Shaft RPS - f _R = 87.496)	2-12	_	112-113-5	No. Balls		-	10	0.147388	0.1134
l 112-113-7 - d2 = 1.0814 f ₂ 400 0.039043 Shaft RPS - f _R = 87.496)	2-13	_	112-113-6	Raceway	II			0.054856	0.0341
- f _R = 87.496)	2-14	-	112-113-7		H		00	0.039043	0.0240
				Shaft RPS	11	ı			

			TAE	TABLE XI - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)		Decimal Ratio	Octal Ratio
3-15	-	112-111-1	1-300-004-01	OVERSPEED CONTROL	ę,	3	0.009175	0.0046
3-16	-	112-111-2	(MRC 1903 -	DRIVE, IDLER	į.	39	0.003806	0.0020
3-17	-	112-111-3	8-301)	CLUSTER	fB	271	0.026451	0.0154
3-18	-	112-111-4	(Ball Dia	- dB = 0.15625		542	0.052903	0.0331
3-19	1	112-111-5	No. Balls	E .		1626	0.158711	0.1212
3-20	1	112-111-6	Raceway	$- d_1 = 0.7690$		909	0.059150	0.0362
3-21	-	112-111-7		$- d_2 = 1.0814$		431	0.042069	0.0254
			Shaft RPS	- fr =	1			
4-22	1	110-31-1	1-300-003-01	OVERSPEED CONTROL	fR	106.5	106.5 0.010395	0.0053
4-23	1	110 - 31 - 2	MRC 1902-	OUTPUT, SPUR END	fT	43	0.004197	0.0021
4-24	1	110 - 31 - 3	S-301)			279	0.027232	0.0160
4-25	_	110 - 31 - 4	(Ball Dia	- dB = 0.15625		557	0.054367	0.0337
4-26	1	110 - 31 - 5	No. Balls	ı	3fB' 10	1672	0.163201	0.1234
4-27	1	110-31-6	Raceway	$- d_1 = 0.7690$		631	0.061591	0.0374
4-28	1	110-31-7		$- d_2 = 1.0814$		434	0.042362	0.0256
			Shaft RPS	1	ı			
							,	

			TAB	TABLE XI - Continued			
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	Decimal Ratio	Octal Ratio
5-29	1	110-32-1	1-300-005-01	OVERSPEED CONTROL	f _R 10	106.5 0.010395	0,0053
5-30	1	110 - 32 - 2	(MRC 1905-	OUTPUT, BEVEL END		4 0.004294	0.0022
5-31	1	110 - 32 - 3	S-3404)		fB 312		0.0175
5-32	1	110 - 32 - 4	(Ball Dia	$- d_{\mathbf{B}} = 0.21875$	fB' 625		0.0372
5-33	1	110 - 32 - 5	No. Balls	- m = 11	1		0,1355
5-34	-	110 - 32 - 6	Raceway	$- d_1 = 1.1002$	f ₁ 683		0.0421
5-35	1	110 - 32 - 7		$- d_2 = 1.5376$			0.0304
			Shaft RPS	II			
96-36	1	112-50-1	1-300-004-01	TACHOMETER	69 t	9 0. 003734	0.0034
6-37	1	112 - 50 - 2	(MRC 1903-	DRIVE SHAFT, INNER	f _T 29		0.0014
6-3 8	1	112-50-3	S-301)		f _R 199		0.0120
6-39	1	112-50-4	(Ball Dia	- dB = 0.15625	fB' 398		0.0237
6-40	1	112 - 50 - 5	No. Balls	- m = 11	1		0.0736
6-41	-	112 - 50 - 6	Raceway	$- d_1 = 0.7690$	f ₁ 445	5 0.043435	0.0262
6-42	1	112-50-7		$- d_2 = 1.0814$	f ₂ 316	3 0.030844	0.0176
			Shaft RPS	- fR = 69.236)			

		4407339
	Octal Ratio	0.0034 0.0014 0.0120 0.0237 0.0736 0.0262 0.0176
	Decimal Ratio	0.006743 0.002830 0.019424 0.038848 0.116642 0.043435
	ency ()	69 29 199 398 1195 445
	Frequency (Hz)	អ្ វិ វិ វិ វិ
TABLE XI - Continued	Component Description	TACHOMETER DRIVE SHAFT, OUTER - d _B = 0.15625 - m = 11 - d ₁ = 0.7690 - d ₂ = 1.0814 - f _R = 69.236)
- Cor	nent	OMET T, OU dB = d1 = d2 = fR =
E X	odwo	TACHOMETER I SHAFT, OUTER - dB = 0.15 - d1 = 0.76 - d2 = 1.06 - fR = 69.5
TABL	Part Number (Vendor) C	1-300-004-01 T (MRC 1903- S S-301) (Ball Dia No. Balls Raceway
	Program Index	112-53-1 112-53-2 112-53-3 112-53-4 112-53-5 112-53-6
	Ref Figure	
	Item	444777 84477 84477 84477

			MODEL (N ₁ - R	MODELS T55-L-5, -7 ENGINES, ACCESSORIES (N1 - RELATED)	CCESSORIES			
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Posts	Frequency	Decimal	Octal	
				ocurrent Description	(Hz)	Ratio	Ratio	
	N. A. 72-12	72-12	014081-011 -02	LUBE OIL AND SCAVENGING PUMP (7 teeth), Dual Element (Shaft Speed = 53.0 RPS)	Fund 371 X2 742 X3 1113 X4 1484	0.045312 0.090624 0.135936 0.181248	0.0350 0.0717 0.1055 0.1346	

		TABI	TABLE XIII. FREQUE MODELS ENGINE GEAR TI	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS CH-47A/B HELICOPTERS, ENGINE TRANSMISSIONS (NO. 1, NO. 2) GEAR TRAINS (N2 - RELATED)	OCK RATI S, NO. 2)	\$ 0.		
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	F requency (Hz)	ency	Decimal Ratio	Octal Ratio
1-1	7	152-48-1	114D6044-10	SPIRAL BEVEL TRAIN	Fund	8594	0.838848	0.6554
1-2	2	152-48-2			X2	17188	1,677696	1.5330
1-3	7	152-48-3			X3	25772	2.515568	2.4100
17	7	152-48-4		$(f_{R} = 252.8 \text{ Hz})$	+fR	8847	0.863543	0.6721
1-5	7	152-48-5			+2fR	9100	0.888238	0.7066
1-6	8	152-48-6			+3fR	9353	0.912933	0.7233
1-7	8	152-48-7			-fR	8341	0.814153	0.6407
1-8	8	152-48-8			-2fR	8088	0.789458	0.6242
1-9	7	152 - 48 - 9			-3fR	7835	0.764763	0.6074
1-10	73	152 - 75 - 1	114D6086-2	$(f_{\mathbf{R}} = 199.8 \text{ Hz})$	+fR	8794	0.858369	0.6674
1-11	87	152 - 75 - 2			+2fR	8994	0.877891	0.7014
1-12	7	152-75-3			+3fR	9194	0.897413	0.7134
1-13	7	152-75-4			-fR	8394	0.819326	0.6434
1-14	7	152-75-5			-2fR	8194	0.799804	0.6314
1-15	61	152-75-6			-3fR	1994	0.780283	0.6174

		TABI	LE XIV.	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS CH-47A/B HELICOPTERS, ENGINE TRANSMISSIONS (NO. 1 and NO. 2) BEARINGS (N2 - RELATED)	OCK RATIOS, RS, and NO. 2)			
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)		Decimal Ratio	Octal Ratio
1-1	2	152-40-1	114DS652-1	PINION, OUTBOARD	fr ²	252	0.024597	0.0145
1-2	7	152 - 40 - 2	(SKF)			100	0.009760	0.0050
1-3	7	152-40-3	(Roller Dia	- dB =		591	0.057686	0.0354
1-4	7	152 - 40 - 4	No. Rollers	= m -	fB' 11	1181	0.115275	0.0730
1-5	7	152 - 40 - 5	Raceway	$- d_1 = 3.2073$	3fB' 35	3544	0.345924	0.2611
1-6	7	152 - 40 - 6		- d2 -	f ₁ 18	1827	0.178330	0.1332
1-7	2	152-40-7	Shaft RPS	$5 - f_{\mathbf{R}} = 252.77$		1206	0.117715	0.0742
8-6	87	152-44-1	114D8641-1	PINION GEAR,	f _R	252	0.024597	0.0145
	8	152-44-2	(MRC)	INTERMEDIATE	ţ.ţ	66	0.009663	0.0050
2-10	67	152-44-3	(Ball Dia	- dB = 0.8750		555	0.054172	0.0336
2-11	7	152-44-4	No. Balls	1	_	1109	0.108247	0.0673
2-12	7	152-44-5	Raceway	- d ₁ = 3.1554	-	3328	0.324841	0.2463
2-13	7	152-44-6		$- d_2 = 4.9054$		1846	0,180185	0.1342
2-14	7	152-44-7	Shaft RPS	- fR =		1187	0.115861	0.0733
			Contact Angle	ingle = 29°				
3-15	2	152-47-1	114DS653-1	PINION, INBOARD		252	0.024597	0.0145
3-16	8	152-47-2	(SKF)			101	0.009858	0.0050
3-17	8	152-47-3	(Roller Dia	- qB		909	0.059150	0.0362
3-18	7	152-47-4	No. Rollers	rs - m = 12	fB' 12	1213	0.118399	0.0745
3-19	8	152-47-5	Raceway	- d ₁ = 3,46336		3639	0.355197	0.2657
3-20	73	152-47-6		- d ₂ = 5.19564		1820	0.177647	0.1330
3-21	7	152-47-7	Shaft RPS	3 - fR = 252.77)		1213	0,118399	0.0745

			TAB	rable XIV - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)		Decimal Ratio	Octal Ratio
4-22	7	152-73-1	114DS647-1	CLUTCH SHAFT,	fa	200	0.019521	0.0120
4-23	7	152-73-2	(MRC)	INBOARD	τŢ	90	0.008784	0.0044
4-24	7	152-73-3	(Ball Dia	- dB = 0.2756	fB fB	1025	0.100048	0.0632
4-25	7	152-73-4	No. Balls	- m = 26		2050	0.200097	0.1464
4-26	7	152-73-5	Raceway	- f ₁ = 2.5788	_	6151	0.600390	0.4633
4-27	7	152-73-6		$ \mathbf{f}_2 = 3.1300$		2849	0.278086	0.2163
4-28	8	152-73-7	Shaft RPS	6	ĘZ,	2347	0.229087	0.1652
5-29	8	152-79-1	114DS249-1	CLUTCH SHAFT,	ď	200	0.019521	0.0120
5-30	7	152-79-2	(MRC)	OUTBOARD	Į,	86	0.008394	0.0042
5-31	67	152-79-3	(Roller Dia	a - dB = 0.2756	fr	727	0.070961	0.0443
5-32	8	152-79-4	No. Rollers	1	fB'	1454	0.141922	0.1105
5-33	8	152-79-5	Raceway	- d ₁ = 1.7669		4362	0.425768	0.3320
5-34	87	152-79-6			lJ	1814	0.177061	0.1325
5-35	7	152-79-7	Shaft RPS	(C)		1383	0.134992	0.1051
6-36	2	152-70-1	114DS644-2	OUTPUT SHAFT.	fa	200	0.019521	0.0120
6-37	8	152-70-2	(SKF)	INTERMEDIATE	f.	49	0.007711	0.0040
6-38	83	152-70 -3	(Roller Dia	a - dB = 0.70866	fR	465	0.045387	0.0272
6-39	8	152-70-4	No. Rollers	8	fB,	930	0.090775	0.0564
970	8	152-70-5	Raceway	- d ₁ = 2.7357	-	2790	0.272327	0.2133
6-41	2	152-73-6		"		1446	0.141142	0.1102
6-42	7	152-70-7	Shaft RPS	1	ξ ₂	952	0.092923	0.0575

			TAB	TABLE XIV - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency ion (Hz)	ency z)	Decimal Ratio	Octal Ratio
7-43	8 8	152-66-1 152-66-2	114DS643-1 (Fafnir)	OUTPUT SHAFT, UPPER	ቘ፞፞፞፞፞	200	0.019521	0.0120
745	8 8	152-66-3 152-66-4	(Ball Dia No. Balls	- dB = 0.40625 $- m = 13$	· 中 - -	688	0.067154	0.0423
7-47	87 6	152-66-5	Raceway	= q1 -	3fB	4127	0.402830	0.3162
7-49	N 61	152-66-7	Shaft RPS	- 42 = 3.2000 -S - fR = 199.83)	T \$3	1484	0.108735	0.0675
8-50 8-51	0 0	152-84-1 152-84-2	114DS645-4 (SKF)	OUTPUT SHAFT, LOWER	##	200	0.019521	0.0120
8-52	01 00	152-84-3 152-84-4	(Roller Dia	$\frac{1}{1}$ - $\frac{1}{1}$ = 0.3740 ers - $\frac{1}{1}$ = 26	, tt , tt	1220	0.119082	0.0750
8-54	21 22	152-84-5 152-84-6	Raceway	d	3fB'	7319	0.714397	0.5556
8-56	7	152-84-7	Shaft RPS	- fr	្ស	2386	0.232894	0.1672

		TABI	LE XV.	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS CH-47A/B HELICOPTERS, COMBINING TRANSMISSION GEAR TRAINS (N2 - RELATED)	OCK RATI	98,		
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	ency ()	Decimal Ratio	Octal Ratio
1-1	8 8	147-164-1 147-164-2	114D5056-1	SPIRAL BEVEL, MAIN	Fund X2	6594	0.643631	0.5114
1-3	87	147-164-3			X3	19782	1.930893	1.5345
4 -	c) c	147-164-4		$(f_{R_0}^{-} 117.8 \text{ Hz})$	+fRo	67.12	0.655148	0.5173
9	. 81	147-164-6			+21Ro +3fRo	6948	0.678184	0.5332
1-7	7	147-164-7			-fRo	6476	0.632113	0.5035
1-8	87	147-164-8			-2fRo	6358	0.620595	0.4756
1-9	81	147-164-9			-3fRo	6240	0.609077	0.4677
1-10	N	147-65-1	114D5047-7	$(f_{R_I} = 199.8 \text{ Hz})$	+fRI	6794	0.663152	0.5234
1-11	6 7 (147-65-2		•	+2fRI	7669	0.682674	0.5354
1-12	81 (147-65-3			+3fR _I	7194	0.702196	0.5474
1-13	N (147-65-4			-fRI	6394	0.624109	0.4774
1-14	8 (147-65-5			-2fR	6194	0.604587	0.4654
1-15	N	147-65-6			-3fR	5994	0.585065	0.4534
2-16	8	147-154-1	114D5068-1	LUBE OIL PUMP	Fund	3768	0.367789	0.2742
2-17	7	147-154-2		DRIVE	X2	7536	0.735578	0.5705
2-18	7	147-154-3			X 3	11304	1,103367	1.0647
2-19	8	147-154-4		$(f_{R_0} = 117.8 \text{ Hz})$	+fR	3886	0.379306	0.3022
2-20	8	147-154-5			+2fR	4004	0.390824	0.3101
2-21	8	147-154-6			-fR	3650	0.356271	0.2663

Ref Program Part Number Frequency Ratio Ra				TA	TABLE XV - Continued				
2 147-154-7 114D5068-1 LUBE OIL PUMP -2fR 3532 0.344753 DRIVE	Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequen (Hz)	cy	Decimal Ratio	Octal Ratio
2 147-95-1 DRVE +fR 3844 0,375207 2 147-95-2 (fR = 75.4 Hz) +2fR 3920 0,382925 2 147-95-4 (fR = 83.7 Hz) +fR 3952 0,375982 2 147-94-1 (fR = 83.7 Hz) +fR 3852 0,375982 2 147-94-3 (fR = 83.7 Hz) +fR 3852 0,375982 2 147-94-3 POWER +fR 3852 0,375982 2 147-94-3 SPIRAL BEVEL, MAIN +4fR 3850 0,38187 2 147-65-3B SPIRAL BEVEL, MAIN +4fR 7594 0,760761 2 147-65-3B OWNER +6fR 7794 0,760761 2 147-65-3B FR 7794 0,760761 2 147-65-6B FR 7794 0,702084 2 147-65-6B FR 7784 0,50504 2 147-164-6B FR 7178 0,70217 3 147-164-6B FR	2-22	87 (147-154-7	114D5068-1	LUBE OIL PUMP	-2fR	3532	0.344753	0.2604
2 147 -95 -2 (R = 75.4 Hz) +2f _R 3920 0.382635 2 147 -95 -4 (f _R = 83.7 Hz) +2f _R 3920 0.382635 2 147 -94 -1 (f _R = 83.7 Hz) +4f _R 3650 0.35295 2 147 -94 -3 +4g _R 3852 0.37598 2 147 -94 -3 +4g _R 3852 0.37598 2 147 -94 -3 +4g _R 3852 0.37598 2 147 -95 -4 (f _R = 199.8 Hz) +4f _R 7394 0.72117 2 147 -65 -3B POWER +4f _R 7394 0.72117 2 147 -65 -3B POWER +4f _R 7394 0.72117 2 147 -65 -6B +4f _R 7394 0.72203 3 147 -65 -6B -5f _R 745 0.6544 0.56505 3 147 -65 -6B -7f _R 7394 0.56544 0.65544 3 147 -65 -6B -7f _R 7394 0.56544 3 147 -65 -6B -7f _R 7394 0.56544 3 147 -65 -6B -7f _R 7394 0.56544 3 147 -65 -6B -7f _R 7394 0.730203 3 147 -65 -6B -7f _R 7394 0.56505 3 147 -65 -6B -7f _R 7394 0.730203 4 147 -65 -6B -7f _R 7394 0.730203 5 147 -66 -6B -7f _R 7304 0.730203 5 147 -66 -6B	2-23	61 6	147-95-1	,	2	$^{+\mathbf{f_R}}$	3844	0.375207	0.3001
2 147 −95 − 4 2 147 −94 − 1 2 147 −94 − 1 2 147 −94 − 1 2 147 −94 − 1 2 147 −94 − 1 2 147 −94 − 1 2 147 −94 − 1 2 147 −94 − 1 2 147 −94 − 1 2 147 −94 − 1 2 147 −95 − 38 2 147 −94 − 1 2 147 −95 − 38 2 147 −95 − 38 2 147 −95 − 38 2 147 −65 −38 2 147 −65 −38 2 147 −65 −38 2 147 −65 −39 2 147 −65 −39 2 147 −65 −39 2 147 −65 −39 2 147 −65 −30 3 147 −65 −30 3 147 −65 −30 3 147 −65 −30 3 147 −65 −30 3 147 −65 −30 3 147 −65 −30 3 147 −65 −30 3 147 −65 −60 3 147 −60 3 147	2-24	~ ~	147 - 95 - 2		Ħ	+2fR f-	3920	0.382625	0.3037
2 147-94-1 (fR = 83.7 Hz) +fR 3852 0.375988 2 147-94-2 +2fR 3936 0.384187 2 147-94-3 -6fR 3936 0.384187 2 147-65-3A SPIRAL BEVEL, MAIN +4fR 7394 0.721717 2 147-65-3B POWER +5fR 7794 0.721717 2 147-65-3B +6fR 7794 0.789283 2 147-65-6B -7fR 8194 0.799304 2 147-65-6B -7fR 8194 0.799304 2 147-65-6B -7fR 8194 0.58605 2 147-65-6B -7fR 8194 0.58605 2 147-65-6B -7fR 8194 0.58605 2 147-65-6C -7fR 9194 0.58605 2 147-65-6C -8fR 9194 0.58605 2 147-65-6C -8fR 9194 0.58605 2 147-164-6B -7fR 9194 0.701220 2 147-164-6B -7fR 9194 0.701220 3 147-164-6B -7fR 9194 0.701220 4 147-164-6B -7fR 9194 0.701220 5 147-164-6B -7fR 9194 0.701220 6 147-164-6B -	2-26	1 01	147-95-4			-1 R -2 f R	3616	0.352952	0.2646
2 147-94-2 2 147-94-3 2 147-94-3 2 147-94-4 2 147-94-4 2 147-94-4 2 147-65-3A 2 147-65-3B 2 147-65-6C 2 147-66-CC 2 147-65-CC 2 147-65-CC 2 147-65-CC 2 147-65-CC 3 147-65-CC 3 147-65-CC 4 147-65-CC 5 147-67-CC	2-27	7	147-94-1		tt	+fR	3852	0.375988	0.3004
2 147-94-3	2-28	87	147-94-2			$+2f_{\mathbf{R}}$	3936	0.384187	0.3046
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-29	7	147-94-3			-fR	3684	0.359590	0.2701
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-30	73	147-94-4			$-2f_{\mathbf{R}}$	3600	0.351390	0.2637
2 147-65-3B POWER +5fR _I 7594 0.741239 2 147-65-3C (fR _I = 199.8 Hz) +6fR _I 7794 0.760761 2 147-65-3D +7fR _I 7994 0.780283 2 147-65-3E +8fR _I 7794 0.780283 2 147-65-6A -4fR _I 5794 0.79804 2 147-65-6B -4fR _I 5794 0.624109 2 147-65-6B -6fR _I 5594 0.604587 2 147-65-6C -6fR _I 5394 0.54505 2 147-65-6C -6fR _I 5394 0.585065 2 147-164-6A (fR _O = 117.8 Hz) +4fR _O 7184 0.701220 45fR _O 7302 0.712737 2 147-164-6C 0.73273 2 147-164-6C 0.73273 417-164-6C 0.73273 2 147-164-6C 0.73273 417-164-6C 0.73273 417-164-6C 0.73273 417-164-6C 0.73273	2-31	8	147-65-3A		SPIRAL BEVEL, MAIN	+4fRI	7394	0.721717	0.5614
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-32	2	147-65-3B		POWER	$+5f_{\mathbf{R_I}}$	7594	0.741239	0.5734
2 147-65-3D	2-33	7	147-65-3C		$(f_{R_I} = 199.8 \text{ Hz})$	$^{+6f} m R_I$	7794	0.760761	0.6054
2 147-65-3E	2-34	7	147-65-3D			+7fR ₁	7994	0.780283	0.6174
2 147-65-6A4fR _I 5794 0.624109 -5fR _I 5594 0.604587 -5fR _I 5394 0.604587 -6fR _I 5394 0.604587 -6fR _I 5394 0.604587 2 147-65-6D7fR _I 5194 0.585065 2 147-65-6E - 8fR _I 4994 0.565544 2 147-164-6A - (fR _O = 117.8 Hz) +4fR _O 7066 0.689702 2 147-164-6B - +4fR _O 7184 0.701220 2 147-164-6B - +7fR _O 7302 0.712737 2 147-164-6D - +7fR _O 7302 0.724255 2 147-164-6B - +7fR _O 7420 0.724255 2 147-164-6B - +7fR _O 7538 0.735773 2 147-164-6B4fR _O 7538 0.735773 2 147-164-6B4fR _O 7538 0.735773	2-35	83	147-65-3E			+8fR1	8194	0.799804	0.6314
2 147-65-6B 2 147-65-6C 2 147-65-6C 2 147-65-6C 2 147-65-6C 2 147-65-6C 2 147-65-6C 2 147-164-6A 2 147-164-6B 2 147-164-6C 3 147-164-6C 2 147-164-6C 3 147-164-6C 3 147-164-6C 4 147-164-6C 5 147-164-6C 6 0.695702 6 147-164-6C 7 782 0.732773 7 782 0.732559	2-36	7	147-65-6A			4fR	5794	0.624109	0.4774
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-37	8	147-65-6B		14	-5 fR Î	5594	0.604587	0.4654
2 147-65-6D -7fR _I 5194 0.565544 2 147-65-6E -8fR _I 4994 0.546022 2 147-164-6A (fR _O = 117.8 Hz) +4fR _O 7066 0.689702 2 147-164-6B -7184 0.701220 2 147-164-6C -7184 0.701220 2 147-164-6D +7fR _O 7302 0.712737 2 147-164-6D -7184-6D -7	2-38	7	147-65-6C			$-6f_{\mathbf{R}_{\mathbf{I}}}$	5394	0.585065	0.4534
2 147-65-6E -8fR _I 4994 0.546022 2 147-164-6A (fR _O = 117.8 Hz) +4fR _O 7066 0.689702 2 147-164-6B +5fR _O 7184 0.701220 2 147-164-6C -9 147-164-6D +7fR _O 7302 0.712737 2 147-164-6E -7 7420 0.724255 2 147-164-6E -7 7420 0.724255 2 147-164-6B -7 7538 0.735773 2 147-164-6B -7 7538 0.735773	2-39	8	147-65-6D			-7fRI	5194	0.565544	0.4414
2 147-164-6A (fR ₀ = 117.8 Hz) +4fR ₀ 7066 0.689702 2 147-164-6B +5fR ₀ 7184 0.701220 2 147-164-6C +6fR ₀ 7302 0.712737 2 147-164-6D +7fR ₀ 7420 0.724255 2 147-164-6E +8fR ₀ 7538 0.735773 2 147-164-9A -4fR ₀ 6122 0.597559	2-40	7	147-65-6E			$^{-8}{ m fR}_{ m I}$	4994	0.546022	0.4274
2 147-164-6B 2 147-164-6C 2 147-164-6D 2 147-164-6E 2 147-164-6E 2 147-164-9A 4 fR ₀ 7184 0.701220 7302 0.712737 7420 0.724255 2 147-164-6E 2 147-164-9A 6122 0.597559	2-41	87	147-164-6A		$(fR_0 = 117.8 \text{ Hz})$	+4fRo	9904	0.689702	0.5411
2 147-164-6C 2 147-164-6D 2 147-164-6E 2 147-164-9A 4fR ₀ 7302 0.712737 7538 0.724255 2 147-164-9A 6122 0.597559		8	147-164-6B			+5fRo	7184	0.701220	0.5470
2 147-164-6D +7fR _o 7420 0.724255 2 147-164-6E +8fR _o 7538 0.735773 2 147-164-9A 6122 0.597559	2-43	7	147-164-6C			+6fRo	7302	0.712737	0.5547
2 147-164-6E	2-44	7	147-164-6D			+7fRo	7420	0.724255	0.5626
-56 2 147-164-9A 6122 0.597559	2-55	63	147-164-6E			+8fR	7538	0.735773	0.5706
	2-56	83	147-164-9A			4fR.	6122	0.597559	0.4617

			TA	TABLE XV - Continued				
Item	Ref I Item Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)		Decimal Ratio	Octal Ratio
2-57 2-58 2-59 2-60	0000	147 - 164 - 9B 147 - 164 - 9C 147 - 164 - 9D 147 - 164 - 9E			-5fRo 6 -6fRo 5 -7fRo 5 -8fRo 5	6004 5886 5768 5650	0.586041 0.574524 0.563006 0.551488	0.4540 0.4461 0.4402 0.4323

		TABI	BLE XVI FREQUE MODELS ENGINE (N2 - RE	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS CH-47A/B HELICOPTERS, ENGINE COMBINING TRANSMISSION BEARINGS (N2 - RELATED)	LOCK RATI ERS, SSION BEARI	OS,		·	
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency	acy	Decimal Ratio	Octal Ratio	
1-1	81	147-91-1	114D8548-1	FORWARD OUTPUT	fr	118	0.011517	0.0057	
1-2	8	147-91-2	(MRC114-KS)	SHAFT, FORWARD	f	51	0.004978	0.0024	
1-3	8	147-91-3	(Ball Dia	- dB	æ	408	0.039824	0.0243	
7	8	147-91-4	No. Balls	B	fB'	815	0.079551	0.0506	
1-5	7	147-91-5	Raceway	11	3fB'	2445	0.238653	0.1722	
1-6	8	147-91-6		$- d_2 = 4.0320$	ţ,	1613	0.157442	0.1205	
1-7	81	147-91-7	Shaft RPS	ı	f2	1213	0.118399	0.0745	
2 -8	8	147-173-1	114DS549-1	FORWARD OUTPUT	Æ	118	0.011517	0.0057	
2-9	8	147-173-2	(MRC R114-	SHAFT, AFT	F	52	0.005075	0.0025	
2-10	8	147-173-3	KEX)		ff.	523	0.051049	0.0321	
2-11	7	147-173-4	(Roller Dia	a - dB = 0.3937	fB,	1046	0.102098	0.0642	
2-12	7	147-173-5	No. Rollers	rs - m = 13	3fB'	3140	0.306490	0.2347	
2-13	87	147-173-6	Raceway	- d ₁ = 3.1490	fl	850	0.082967	0.0524	
2-14	พ	147-173-7		$- d_2 = 3.9370$	ដ្	680	0.066373	0.0420	
			Shaft RPS	•					
-									

			TAB	TABLE XVI - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	AG OA	Decimal Ratio	Octal Ratio
3-15	87 6	147-173-1	114D8550-1	COUPLING SHAFT	Ř 1	118	0.011517	0.0057
3-17	1 01	147-173-3	(F 2.m. F MM9319-K-		r t	639	0.062371	0.0377
3-18	2	147-173-4	MBR E-7843)		a Te	1279	0.124841	0.0777
3-19	87	147-173-5	(Roller Dia	a - dB = 0.40625	3fB'	3837	0.374524	0.2776
3-20	7	147-173-6	No. Rollers	1 00	f ₁	1221	0.119180	0.0750
3-21	81	147-173-7	Raceway	lf I	f2	1016	0.099170	0.0626
			Shaft RPS	$- \frac{d2}{R} = \frac{4.030}{117.75}$				
4-22	8	147-168-1	114DS545-1	BEVEL OUTPUT	f	118	0.011517	0.0057
4-23	7	147 - 168 - 2	(SKF 454724)	SHAFT	fī	53	0.005173	0.0025
4-24	7	147-168-3	(Roller Dia	a - dB = 0.40625	fB	558	0.054465	0.0337
4-25	8	147-168-4	No. Rollers	ı	fB,	1116	0.108931	0.0676
4-26	7	147-168-5	Raceway	$- d_1 = 3.4848$	$3f_{\mathbf{B}}$	3346	0.326598	0.2472
4-27	7	147-168-6		II	fı	1170	0.114202	0.0724
4-28	87	147-168-7	Shaft RPS	ı	f ₂	949	0.092630	0.0573
5-29	87	147-147-1	114DS544-1	AFT OUTPUT SHAFT	fb B	118	0.011517	0.0057
2-30	7	147-147-2	(MRC 9112-	INTERMEDIATE	fT	51	0.004978	0.0024
5-31	81	147-147-3	UK)		fB	433	0.042264	0.0255
5-32	8	147-147-4	(Ball Dia	- dB = 0.40625	fB,	865	0.084431	0.0532
5-33	7	147-147-5	No. Balls	ı	3fB'	2596	0.253391	0.2016
5-34	63	147-147-6	Raceway	$- d_1 = 2.6336$	f1	1201	0.117227	0.0740
5-35	7	147-147-7		$- d_2 = 3.4462$	f2	918	0.089604	0.0557
			Shaft RPS	1				

Ref Program Part Number 6 2 147-151-1 114DS543-1 7 2 147-151-2 (MRC 8 2 147-151-3 R-112-KE) 9 2 147-151-4 (Roller Dia Raceway) 1 2 147-151-5 No. Roller Dia Raceway 2 147-66-2 (SKF454719) CROLLER DIA RACEWAY 3 147-66-3 (Roller Dia Raceway) CROLLER DIA RACEWAY 4 2 147-66-4 No. Roller DIA RACEWAY 5 147-66-5 Raceway CRAPA FA713) 6 2 147-66-7 Shaft RPS 7 147-66-7 SKF454723) I 8 147-70-3 (SKF454723) I 9 147-70-3 (SKF454723) I 2 147-70-3 (SKF454723) I 2 147-70-3 (SKF454723) I 2 147-70-3 (SKF454723) I 2 147-70-3 (SKF454723)	TABLE XVI - Continued			
6 2 147-151-1 114DS543-1 8 2 147-151-2 (MRC 9 2 147-151-4 (Roller Dia 1 2 147-151-5 No. Roller 1 2 147-151-6 Raceway 2 147-151-7 Shaft RPS 2 147-66-1 114DS642-2 2 147-66-3 (Roller Dia 2 147-66-4 No. Roller 2 147-66-5 Raceway 3 2 147-66-5 Shaft RPS 4 2 147-66-7 Shaft RPS 5 147-70-1 114DS541-2 1 5 147-70-2 (SKF454723) 1 5 147-70-3 (Ball Dia 7 147-70-4 No. Balls 8 2 147-70-5 Raceway 9 147-70-6 Raceway	Component Description	Frequency (Hz)	Decimal Ratio	Octal Ratio
7 2 147-151-2 (MRC 8 2 147-151-3 R-112-KE) 9 2 147-151-4 (Roller Dia 1 2 147-151-5 No. Roller 1 2 147-151-6 Raceway 2 147-151-6 Raceway 2 147-66-1 114DS642-2 147-66-3 (SKF454719) 5 2 147-66-4 No. Roller 6 2 147-66-5 Raceway 7 147-66-6 Shaft RPS 8 2 147-70-1 114DS541-2 8 147-70-2 (SKF454723) 8 2 147-70-2 (SKF454723) 8 2 147-70-3 (Ball Dia 8 2 147-70-4 No. Balls 9 147-70-5 Raceway 9 147-70-5 Raceway	AFT OUTPUT SHAFT,	fR 118	0.011517	0.0057
8 2 147-151-3 R-112-KE) 9 2 147-151-4 (Roller Dia 147-151-5 No. Roller Dia 147-151-6 Raceway 2 147-151-6 Raceway 2 147-151-7 Shaft RPS 3 2 147-66-1 114DS642-2 (47-66-3 (47-66-4 No. Roller Dia 147-66-4 No. Roller Dia 147-66-5 Raceway 5 2 147-66-6 Shaft RPS 6 2 147-66-7 Shaft RPS 7 147-66-7 Shaft RPS 8 2 147-70-2 (5KF454723) 8 2 147-70-2 (5KF454723) 8 2 147-70-3 (Ball Dia 147-70-5 Raceway 8 2 147-70-5 Raceway 9 2 147-70-6 Raceway 9 3 147-70-6 Raceway 9 4 147-70-6 Raceway	REAR	fT 52	0.005075	0.0025
9 2 147-151-4 (Roller Dia 147-151-5 No. Roller Dia 147-151-6 Raceway No. Roller Dia 147-151-6 Raceway 147-151-7 Shaft RPS 147-66-1 144DS642-2 147-66-4 (SKF454719) Roller Dia 147-66-5 Raceway 147-66-5 Raceway 147-66-6 Shaft RPS 147-70-1 114DS541-2 147-70-2 (SKF454723) Raceway 147-70-3 (SKF454723) Raceway 147-70-3 Raceway 147-70-5 Raceway 147-70-5 Raceway 147-70-5 Raceway 147-70-6		fB 500	0.048804	0.0310
2 147-151-5 No. Roller 1 2 147-151-6 Raceway 2 2 147-151-7 Shaft RPS 3 2 147-66-1 114DS642-2 4 2 147-66-3 (SKF454719) 5 2 147-66-4 No. Roller Dia 6 2 147-66-5 Raceway 7 147-66-6 Shaft RPS 8 2 147-70-1 114DS541-2 8 147-70-2 (SKF454723) 8 2 147-70-3 (Ball Dia 8 2 147-70-3 Raceway 9 2 147-70-4 No. Balls 9 147-70-5 Raceway 1 2 147-70-5 Raceway 1 3 147-70-6 Raceway	- dB = 0.3543	fB' 1000	0.097608	0.0620
1 2 147-151-6 Raceway 2 2 147-151-7 Shaft RPS 3 2 147-66-1 114DS642-2 4 2 147-66-3 (RKF454719) 5 2 147-66-4 No. Roller Dia 6 2 147-66-5 Raceway 7 147-66-5 Raceway 8 2 147-66-6 Shaft RPS 9 2 147-70-1 114DS541-2 9 147-70-2 (SKF454723) 9 147-70-3 (Ball Dia 9 147-70-3 Raceway 1 2 147-70-4 No. Balls 1 2 147-70-5 Raceway	- m = 22	3fB' 3001	0,292923	0.2260
Shaft RPS 147-151-7 Shaft RPS 147-66-1 114DS642-2 147-66-3 (SKF454719) 147-66-4 No. Roller 147-66-5 Raceway 147-66-6 Shaft RPS 147-66-7 Shaft RPS 147-70-1 114DS541-2 2 147-70-2 3 147-70-3 (SKF454723) 2 147-70-3 147-70-3 147-70-4 No. Balls 2 147-70-5 Raceway 2 147-70-6	= 2.6969		0.141142	0,1102
2 147-66-1 114DS642-2 147-66-2 (SKF454719) 2 147-66-4 No. Roller Dia 2 147-66-5 Raceway 147-66-5 Raceway 147-66-6 Shaft RPS 2 147-70-1 114DS541-2 2 147-70-2 (SKF454723) 2 147-70-3 (Ball Dia 2 147-70-3 147-70-4 2 147-70-5 Raceway 2 147-70-6	$- d_2 = 3.4055$ $- f_R = 117.75$	f ₂ 1145	0.111761	0.0712
2 147-66-2 (SKF454719) 2 147-66-3 (Roller Dia 147-66-4 No. Roller Dia 147-66-5 Raceway 147-66-6 Shaft RPS 2 147-66-6 Shaft RPS 2 147-70-1 114DS541-2 2 147-70-2 (SKF454723) 2 147-70-3 (Ball Dia 147-70-4 No. Balls 2 147-70-5 Raceway 2 147-70-6	BEVEL GEARSHAFT.	f _R 199	0.019424	0.0120
2 147-66-3 (Roller Dia 2 147-66-4 No. Roller 2 147-66-5 Raceway 2 147-66-6 Shaft RPS 2 147-70-1 114DS541-2 2 147-70-2 (SKF454723) 2 147-70-3 (Ball Dia 2 147-70-4 No. Balls 2 147-70-5 Raceway 2 147-70-5			0.007027	0.0035
2 147-66-4 No. Roller 2 147-66-5 Raceway 2 147-66-6 Shaft RPS 2 147-70-1 114DS541-2 2 147-70-2 (SKF454723) 2 147-70-3 (Ball Dia 2 147-70-4 No. Balls 2 147-70-5 Raceway 2 147-70-6	- dB = 1.031	~	0.036408	0.0225
2 147-66-5 Raceway 2 147-66-6 Shaft RPS 2 147-70-1 114DS541-2 2 147-70-2 (SKF454723) 2 147-70-3 (Ball Dia 2 147-70-4 No. Balls 2 147-70-5 Raceway 2 147-70-6	- m = 11	_	0.072816	0.0452
2 147-66-6 2 147-66-7 Shaft RPS 2 147-70-1 114DS541-2 2 147-70-3 (SKF454723) 2 147-70-3 (Ball Dia 2 147-70-4 No. Balls 2 147-70-5 Raceway 2 147-70-6	$- d_1 = 3.000$. 2	0.218350	0.1576
2 147-66-7 Shaft RPS 2 147-70-1 114DS541-2 2 147-70-2 (SKF454723) 2 147-70-3 (Ball Dia 2 147-70-4 No. Balls 2 147-70-5 Raceway 2 147-70-6	= 5,362		0.137530	0,1063
2 147-70-1 114DS541-2 2 147-70-2 (SKF454723) 2 147-70-3 (Ball Dia 2 147-70-4 No. Balls 2 147-70-5 Raceway 2 147-70-6	= 199.8)	f ₂ 788	0.076915	0.0473
2 147-70-2 (SKF454723) 2 147-70-3 (Ball Dia 2 147-70-4 No. Balls 2 147-70-5 Raceway 2 147-70-6	BEVEL GEARSHAFT.	fR 199	0.019424	0.0120
2 147-70-3 (Ball Dia - 2 147-70-4 No. Balls - 2 147-70-5 Raceway - 2 147-70-6 -			0.007418	0.0036
2 147-70-4 No. Balls - 2 147-70-5 Raceway - 2 147-70-6 -	- dB = 1.031	f _B 396	0.038653	0.0236
2 147-70-5 Raceway - 2 147-70-6 -	- m = 11		0.077306	0.0475
2 147-70-6 -	$- d_1 = 3.000$. 2	0.231918	0,1666
	= 5.362		1360.7 0.132845	0.1040
147-70-7 Shaft RPS -	fR = 199.8)		0.081698	0.0517

			TABI	TABLE XVI - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	$\lceil \rceil$	Decimal Ratio	Octal Ratio
9-57	87	147-73-1	114DS542-3	BEVEL GEARSHAFT,	fR 1	199 0	0.019424	0.0120
9-28	2	147-73-2	(SKF456657)	INBOARD		0 66	0.009663	0.0050
9-59	61	147-73-3	(Roller Dia	a - dB = 0.4687		1040 0	0.101512	0.0640
09-6	7	147-73-4	No. Rollers	= w - s	fB' 20	2079 0	0.202928	0.1477
9-61	7	147-73-5	Raceway	$- d_1 = 4.4526$	-	6238 0	0.608882	0.4676
9-6	7	147-73-6		Ħ		1970 0	0.192288	0.1424
69-63	61	147-73-7	Shaft RPS	ı		1627 0	0.158809	0.1212
10-64	67	147-96-1	114DS252-1	ACCESSORY IDLER	fR	75 0	0.007320	0.0036
10-65	7	147-96-2	(Fafnir JM206	SHAFT		30 0	0.002928	0.0014
10-66	2	147-96-3	KMBR E-7842)		fB 1	175 0	0.017081	0.0106
10-67	7	147-96-4	(Ball Dia	- dB = 0.3750		350 0	0.034163	0.0214
10-68	87	147-96-5	No. Balls	1		1050 0	0.102489	0.0644
10-69	87	147-96-6	Raceway	$- d_1 = 1.4444$		409 0	0.039921	0.0244
10-70	67	147-96-7		II		269 0	0.026256	0.0154
			Shaft RPS	- fR = 75.36)				
11-71	2	147-96-8	114DS252-1	LUBE OIL PUMP	fR	84 0	0.008199	0.0042
11-72	7	147-96-9	(Fafnir JM206	SHAFT		33 0	0.003221	0.0015
11-73	8	147-96-10	KMBR E-7842)		fr	194 0	0.018936	0.0116
11-74	8	147-96-11	(Ball Dia	- dB = 0.3750		389 0	0.037969	0.0234
11-75	2	147-96-12	No. Balls	# H -	•	1167 0	0.113909	0.0723
11-76	2	147-96-13	Raceway	$- d_1 = 1.4444$		454 0	0.044314	0.0266
11-77	7	147-96-14		$- d_2 = 2.193$		299 0	0.029184	0.0170
			Shaft RPS	1				
)	88							

			(N2 - I	(N2 - RELATED)	CESSORIES			
Item	Ref P Figure	Program Index	Part Number (Vendor)	,	Frequency	Decimal	1	
7	2	100		component Description	(Hz)	Ratio	Ratio	_
	d .	6-)c1 19/-8	114D8450-2	COMBINING TRANS- MISSION OIL COOLING FAN (14 Blades) (fR = 81.52)	Fund 1141 X2 2282 X3 3423 +fR 1223 -fR 1059	0.111371 0.222742 0.334113 0.119365 0.103360	0.1111 0.1643 0.2531 0.1153 0.1021	

\ <u></u>	3	TABLE	E XVIII, FREQUENCIES A MODELS CH-47A AFT SYNCHRONI (N2 - RELATED)	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS CH-47A/B HELICOPTERS, AFT SYNCHRONIZING SHAFT BEARINGS (N2 - RELATED)	CK RATIOS,		
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	Decimal Ratio	Octal Ratio
1-1-1-1-2-1-1-5-1-1-5-1-1-5-1-1-5-1-1-6-1-6-1-1-6		155-11-1 155-11-2 155-11-3 155-11-4 155-11-6 155-11-6	(Fafnir JMM9313K MBR E-7843) (Ball Dia No. Balls Raceway	SHAFT - dB = 0.28125 - m = 19 - d ₁ = 2.874 - d ₂ = 3.436 - f _R = 117.76)	fr 117.8 fr 53.4 fb 655 fb 1311 3fb 3933 f1 1219 f2 1019	117.8 0.011498 53.7 0.005270 655 0.063933 311 0.127964 933 0.383894 219 0.118984 019 0.099463	0.0057 0.0026 0.0406 0.1014 0.3044 0.0747

	Octal Ratio	0.0057 0.0026 0.0406 0.1014 0.3044 0.0747
	Decima! Ratio	117.8 0.011498 54 0.005270 555 0.063933 311 0.127964 333 0.383894 119 0.118984 119 0.099463
SOS,	quency (Hz)	117.8 54 655 1311 3933 1219 1019
CK RATI 3, T BEARI	F requency (Hz)	fr fr fb fb' 3fb' f1 f2
FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS CH-47A/B HELICOPTERS, FORWARD SYNCHRONIZING SHAFT BEARINGS (N2 - RELATED)	Component Description	SYNCHRONIZING DRIVE SHAFT - dB = 0.28125 - m = 19 - d1 = 2.874 - d2 = 3.436 - fR = 117.76)
CIES A CH-47A SYNC ATED)	Compo	SYNCH SHAFT - d - d - d - d
LE XIX. FREQUENCIES A MODELS CH-47A FORWARD SYNC (N2 - RELATED)	Part Number (Vendor)	114DS340-1 (Fafnir JMM9313K MBR E-7843) (Ball Dia No. Balls Raceway
TABL	Program Index	155-47-1 155-47-2 155-47-3 155-47-4 155-47-5 155-47-6
	Ref Figure	4 4 4 4 2 2 2 2 2
	Item	1-1 1-2 1-3 1-6 1-6

		TABL	TABLE XX. FREQUE MODELS AFT RO (N2 - RE	FREQUENCIES AND ACOUSTIC LOCK RATIOS MODELS CH-47A/B HELICOPTERS, AFT ROTOR TRANSMISSION GEAR TRAINS (N2 - RELATED)	OCK RATIC	8		
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	ncy	Decimal Ratio	Octal Ratio
1-1	4	150-190-1	114D2045-5	INPUT BEVEL DRIVE	Fund	3415	0.333333	0.2525
1-2	7	150-190-2			X	6830	0.666666	0.5253
1-3	77	150-190-3			X3	10245	1.000000	1.0000
14	4	150-190-4		$(f_{\mathbf{D}} = f_{\mathbf{L}} = 117.76 \text{ Hz})$	+fR	3533	0.344851	0.2605
1-5	4	150-190-5		N BEV	+2fR	3651	0.356368	0.2664
1-6	4	150-190-6			+3f R	3769	0.367886	0.2743
1-7	4	150-190-7			-fR	3297	0.321815	0.2446
1-8	4	150-190-8			-2fR	3179	0.310297	0.2367
1-9	चं	150-190-9			-3fR	3061	0.298779	0.2310
1-10	4	150 - 280 - 1	114D2062-1	$(f_{\mathbf{R}} = 66.96 \text{ Hz})$	+fR	3482	0.339873	0.2560
1-11	7	150 - 280 - 2			+2fR	3549	0.346412	0.2613
1-12	7	150-280-3			+3fR	3616	0.352952	0.2646
1-13	4	150-280-4			-fR	3348	0.326793	0.2473
1-14	'	150-280-5			-2fR	3281	0.320253	0.2440
1-15	4	150-280-6			-3fR	3214	0.313714	0.2405
1-16	4	150-190-10	114D2045-5	$(f_{R} = 117.76 \text{ Hz})$	(X2)+fR	6948	0.678184	0.5332
1-17	4	150-190-11			(X2)-fR	6712	0.655148	0.5173
1-18	4	150-280-7	114D2062-1	$(f_{\mathbf{R}} = 66.96 \text{ Hz})$	(X2)+fR	6897	0.673206	0.5305
1-19	4	150-280-8			(X2)-fR	6763	0.660126	0.5220

	Ref	Program	Part Number		Frequency	o.	Decimal	Octal
Item	Figure	Index	(Vendor)	Component Description	(HZ)	,	Ratio	Ratio
2-20	4	150-284-1	114D2066-1	1ST STAGE PLANETARY	$Fund_I$	1483	0.144753	0.1121
2-21	4	150-284-2			$X2_1 = 2f_1$	2966	0.289507	0.2242
2-22	4	150-284-3			X3 = 3fI	4449	0.434260	0.3363
2-23	4	150-284-4		$(fS_I = f_R = 66.96 \text{ Hz})$	IS _{J+}	1550	0.151293	0.1154
2-24	4	150-284-5		1	+2fS _l	1617	0.157833	0.1206
2-25	4	150 - 284 - 6			-fSI	1416	0.138213	0.1066
2-26	4	150-284-7			-2fs	1349	0.131673	0.1033
2-27	4	150-284-8		$(fS'_{I} = 52.97 \text{ Hz})$	-fs'I	1536	0.149926	0.1146
2-28	4	150 - 284 - 9			$+2fS'_{\rm I}$	1589	0.155100	0.1173
2-29	4	150-284-10			I, Sj-	1430	0.139580	0.1074
2-30	4	150-284-11			-2fS' _I	1377	0.134407	0.1047
2-31	⋪ .	150 - 254 - 1	114D2076-1	$(fp_1 = 38.03 \text{ Hz})$	+fP _I	1521	0.148462	0.1140
2-32	₽,	150-254-2			$+2f_{PI}$	1559	0.152171	0.1157
2-33	4	150 - 254 - 3			-fP _l	1445	0.141044	0.1102
2-34	4	150-254-4			$-2f\bar{\mathbf{p}}_{\mathbf{l}}$	1407	0.137335	0.1063
2-35	4	150 - 284 - 12	114D2066-1	$(fS_{I} = fR = 66.96 \text{ Hz})$	(X2)+fSI	3033	0.296046	0.2275
2-36	4	150-284-13			$(X2)-fS_1$	2899	0.282967	0.2207
2-37	4	150-284-14		$(fS'_{I} = 52.97 \text{ Hz})$	$(X2)+fS^{\dagger}$	3019	0.294680	0.2267
2-38	4	150-284-15			$(X2)-fS'_{I}$	2913	0.284333	0.2215
2-39	4	150-254-5	114D2076-1	$(fp_I = 38.03 \text{ Hz})$	(X2)+fP _I	2980	0.290873	0.2247
2-40	4	150-254-6			(X2)-fP _T	2952	0.288140	0.2234

			TA	TABLE XX - Continued			
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	Decimal Ratio	Octal Ratio
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ਚਾ ਚਾ ਚਾ ਚਾ ਚਾ	150-284-16 150-284-17 150-284-18 150-284-19 150-284-20	114D2045-5	(f _{BEV} = 117.76 Hz)	fl+fbEV 1601 fl+2fbEV 1719 fl+3fbEV 1837 fl-fbEV 1365 fl-2fbEV 1247 fl-3fbEV 1129	0.156271 0.167789 0.179307 0.233236 0.121718	0. 1200 0. 1257 0. 1336 0. 1042 0. 0762

			TAE	TABLE XX - Continued		l I		
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	N	Decimal Ratio	Octal Ratio
3-41	4	150-240-1	114D2077-1	2ND STAGE PLANETARY Fundir	7 Fundri	406	0.039629	0.0242
3-42	4	150 - 240 - 2			$X2 = 2f_{II}$	812	0.079258	0.0505
3-43	4	150-240-3				1218	0.118887	0.0747
3-44	4	150-240-4		$(f_{S_1} = f_R = 13.99 \text{ Hz})$	IISJ+	420	0.040995	0.0250
3-45	4	150-240-5		1	+2fSII	434	0.042362	0.0256
3-46	4	150-240-6			$^{-1}S_{\Pi}$	392	0.038262	0.0235
3-47	4	150-240-7			-2 $\mathbf{f}_{\mathbf{M}}$	378	0.036896	0.0227
3-48	4	150-240-8		$(f_{SH} = 10.16 \text{ Hz})$	II,SJ+	416	0.60005	0.0246
3-49	4	150-240-9			+2fS'II	426	0.041381	0.0252
3-20	4	150-240-10			II,SJ-	396	0.038653	0.0236
3-51	4	150-240-11			-2fS' _{II}	386	0.037676	0.0232
3-52	4	150-247-1	114D2084-1	$(f_{\rm PH}^{-}\ 12.31\ {\rm Hz})$	$^{-}$ t $_{ m II}$	418	0.040800	0.0247
3-53	4	150-247-2			$^{+2}\mathrm{fP_{II}}$	430	0.041971	0.0254
3-54	4	150-247-3			$^{-f}$ P $_{\Pi}$	394	0.038457	0.0236
3-55	4	150-247-4			$^{-2}\mathrm{fp_{II}}$	382	0.037286	0.0231
3-56	4	150-240-12	114D2077-1	$(fS_{H} = fR = 13.99 \text{ Hz})$	$(X2)+fS_{II}$	826	0.080624	0.0512
3-57	4	150-240-13			$(X2)$ - f_{SII}	798	0.077891	0.0477
3-58	4	150-240-14		$(fS'_{H}=10.16 Hz)$	$(X2)+fS'_{II}$	822	0.080234	0.0511
3-59	4	150-240-15			$(X2)$ - $f_S'_{II}$	192	0.077306	0.0475
3-60	4	150-247-5	114D2084-1	$(f_{HI} = 12.31 \text{ Hz})$	$(X2)+fP_{II}$	824	0.080429	0.0511
3-61	4	150-247-6			$(X2)$ -fp $_{II}$	800	0.078086	0.0550

			TAB	TABLE XX - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	cy	Decimal Ratio	Octal Ratio
4-62	4 4	150-284-16	114D2077-1	PLANETARY	$(\Pi_{\mathbf{j}+} \mathbf{l}_{\mathbf{j}})$	1889	0.184382	0.1363
4-64	4	150-284-18	1-10070111	(1ST & 2ND STAGES)	X X	5667	0.553147	0.4332
4-65	4 4	150-284-19 150-284-20		(1st Stage fg=66.96 Hz)	X4 +fsr	755 6 1956	0.737530	0.5715
4-67	4	150-284-21		· · · · · · · · · · · · · · · · · · ·	Ę,	1822	0.177842	0.1330
4-68	4 -	150-284-22		(2nd Stage fg=13, 99 Hz)	II SJ+	1903	0.185749	0.1371
4-69	ます	150-284-23 $150-284-24$		(1st Stage foe38, 03 Hz)	-fs _{II}	1875	0.183016	0.1356
4-71	4	150-284-25		(U	Į.	1851	0.180673	0.1344
4-72	4	150-284-26		(2nd Stage fp=12, 31 Hz)	+fp _{TT}	1901	0.185553	0.1370
4-73	4	150-284-27			-fp _{II}	1877	0.183211	0.1356
4-14	4	150-284-28		(1st Stage $fS'_1 = 52.97 \text{ Hz}$)	I,S _{J+}	1942	0.189555	0.1410
4-75	₩,	150-284-29			I,SJ-	1836	0.179209	0, 1336
4-76	4	150-284-30		(2nd Stage $fS'_{II} = 10.16 \text{ Hz}$)	$\Pi_{s_{J^+}}$	1899	0.185358	0.1367
4-77	4	150-284-31			-fS'II	1879	0.183406	0.1357
4-78	4	150-284-32		(2nd Stage Fil and 1st	fII+6fPr	634	0.061883	0.0375
4-79	4	150-284-33		Stage fp. Modulations)	fII-6fp	178	0.017374	0.0107
4-80	4	150-284-34			fu+7fp	672	0.065592	0.0415
4-81	4	150-284-35			fu-7fpi	140	0.013665	0.0010
4-82	4	150-284-36			$f_{II}^{+}12f_{P_I}$	862	0.084138	0.0531
4-83	4	150-284-37			$f_{II}^{+18}f_{PI}$	1090	0.106393	0.0664
4-84	₹'	150-284-38			$f_{II}^{+24}f_{P_I}$	1318	0.128648	0.1017

• ...

		TABI	BLE XXL FREQUENCIES A MODELS CH-47A AFT ROTOR TR (N ₂ - RELATED)	NCIES AND CH-47A/B OR TRANSI LATED)	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS CH-47A/B HELICOPTERS, AFT ROTOR TRANSMISSION BEARINGS (N ₂ - RELATED)	CK RATI S, UNGS	os,		
	Ref	Program	er			Frequency	ıcy	Decimal	Octal
Item	Figure	Index	(Vendor)	Component	Component Description	(Hz)		Ratio	Ratio
1-1	4	150-287-1	114DS242-1	ROTOR SHA	ROTOR SHAFT, LOWER	fR	29	0.006539	0.0033
1-2	4	150-287-2	(MRC	THRUST		f.	53	0.002830	0.0014
1-3	4	150-287-3	7116KRDF)			fB	265	0.025866	0.0152
77	4	150-287-4	(Ball Dia	- dB =	0.2000	fB'	530	0.051732	0.0324
1-5	4	150-287-5	No. Balls	= H	21	3fB'	1590	0.155197	0.1174
1-6	4	150-287-6	Raceway	- d1 =	3.5200	Į.	791	0.077208	0.0474
1-7	4	150-287-7		- d2 =	4.5200	[2	616	0.060126	0.0366
			Shaft RPS	- fr =	. 66.96)	l,			
2-8	4	150-275-1	114DS243-1	MAIN ROTOR SHAFT	OR SHAFT	Ħ	67	0.006539	0.0033
2-9	4	150 - 275 - 2	(MRC			fŢ	31	0.003025	0.0014
2-10	4	150-275-3	R-1930-EX)			fB	374	0.036505	0.0226
2-11	4	150-275-4	(Roller Dia	- dB -	0.6299	fB'	747	0.072913	0.0453
2-12	4	150-275-5	No. Rollers	18 - III =	30	3fB'	2242	0.218838	0.1600
2-13	4	150-275-6	Raceway	- d1 =	6.4562	ſ1	1094	0.106783	0.0965
2-14	4	150-275-7		= d ₂ =	7.7165	f ₂	915	0.089311	0.0556
			Shaft RPS	- fR =	(96.99)	1			
			,						

	Ref	Frogram	er	7	Frequency		Decimal	1
Item	Figure	Index	(Vendor)	Component Description	(Hz)		Ratio	Ratio
-15	4	150-254-1	114DS244-13	1ST STAGE PLANET	fR	38	0.003708	0.0017
3-16	4	150 - 254 - 2	(SKF		Į.	16	0.001561	0.0006
3-17	4	150-254-3	454713A)			139	0.013567	0.0070
-18	4	150-254-4	(Roller Dia	- dB = 0.6299		278	0.027135	0.0157
3-19	4	150-254-5	No. Rollers	m - 8	3fB'	833	0.081307	0.0515
3-20	4	150-254-6	Raceway	- d ₁ = 4.0538		388	0.037872	0.0233
3-21	4	150-254-7		- d ₂ = 5,5136		296	0.028892	0.0166
			Shaft RPS	11 1				
			100	200				
-22	4	150-238-1	114DS250-1	1ST STAGE	fR	10	0.000976	0.0004
4-23	4	150-238-2	(Fafnir (CARRIER, INTER-	f	4.6	4.6 0.000448	0.0002
4-24	4	150-238-3	PMM9321K	SHAFT	ff.	53.1	53.1 0.005183	0.0025
4-25	4	150-238-4	MBR E-7842)			106	0.010346	0.0052
-26	4	150-238-5	(Ball Dia	$- d_{\rm B} = 0.46875$		319	0.031137	0.0200
4-27	4	150-238-6	No. Balls	- m = 18		100	0.009760	0.0050
-28	4	150-238-7	Raceway	$- d_1 = 4.476$	¹ 23	83	0.008101	0.0041
				$- d_2 = 5.413$				
			Shaft RPS	- (diff) = 10.16)				

			TABLE XXI - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor) Component Description	Frequency (Hz)	X	Decimal Ratio	Octal Ratio
5-29	4	150-247-1	114DS258-3 2ND STAGE PLANET	fR	12	0.001171	0.0005
5-30	4	150-247-2	(SKF	Į.	2	0.000488	0.0002
5-31	4	150-247-3	456716C)	f,	33	0.003221	0.0015
5-32	4	150-247-4	(Roller Dia - $d_{\rm B}$ = 0.8071	, Œ	99	0.006442	0.0032
5-33	4	150-247-5	No. Rollers - $m = 14$	3fB'	199	0.019424	0.0120
5-34	4	150-247-6	Raceway - $d_1 = 3.6800$	f ₁	102	0.009956	0.0051
5-35	4	150-247-7	= d ₂ ,	f ₂	7.1	0.006930	0.0034
			Shaft RPS - fR = 12.31				
96-9	4	150-210-1	114DS274-1 2ND STAGE	fR	8.8	3,83 0,000373	0.0002
6-37	4	150 - 210 - 2	(Fafnir CARRIER, OUTPUT	ţ.	1.8	1,82 0.000177	0.0001
6-38	4	150 - 210 - 3	AAM9250K2 SHAFT	fh	36.8	0.003591	0.0017
6-39	4	150 - 210 - 4	MBRE-9060)	fa'	73.6		0.0035
6-40	4	150-210-5	(Roller Dia - $d_{\rm B} = 0.5625$	3fB	221		0.0130
6-41	4	150-210-6	No. Rollers - $m = 31$	f ₁	62.5	0.006100	0.0031
6-42	4	150-210-7	Raceway - $d_1 = 10.263$	^t 2	56.3		0.0027
			$- d_2 = 11.388$				
			Shaft RPS - $f_{R} = 3.833$)				

Ref Program Part Number Frequency Ratio Ra	Ref Figure 4	rogram	Part Number (Vendor)		Frequency	Decimal	Octal
Figure Index (Vendor) Component Description (Hz) Hatto 4 150-201-1 114DS262-1 INPUT GEAR SHAFT, fr fr 51 0.004978 4 150-201-2 (MRC OUTER fr 51 0.004978 4 150-201-3 MR-122-KE) fr 426 0.041581 4 150-201-4 (Rollers - m = 20.7480 fg 852 0.041581 4 150-201-5 Raceway - d1 = 4.7638 f1 1337 0.130502 4 150-201-7 Raceway - d1 = 4.7638 f2 1018 0.099365 4 150-201-7 Shaft RPS - fR = 117.76) 118 0.099365 4 150-197-1 114DS241-1 INPUT GEAR SHAFT, fr fR 48 0.004685 4 150-197-2 (Fafnir DUAL, INTER- fp 48 0.004685 4 150-197-3 3AAMM222 MEDIATE fB 592 0.055077	Figure 4	Index	(Vendor)				
4 150-201-1 114DS262-1 INPUT GEAR SHAFT, fR 118 0.011517 4 150-201-2 (MRC OUTER fT 51 0.004978 4 150-201-3 MR-122-KE) fg 426 0.041581 4 150-201-4 (Roller Dia - dB = 0.7480) fg 852 0.083162 4 150-201-5 No. Rollers - m = 20 3fg 2555 0.249389 4 150-201-7 Raceway - d1 = 4.7638 f1 1337 0.130502 5 150-201-7 Shaft RPS - fR = 117.76 1018 0.099365 4 150-197-1 114DS241-1 INPUT GEAR SHAFT, fR 118 0.011517 4 150-197-2 (Fafnir DUAL, INTER- fT 48 0.004685 4 150-197-3 3AAMM222 MEDIATE fB fB 592 0.057784 4 150-197-4 WOMBR DF Secondary - dB = 1.1250 f1 982 0.065007 4 150-197-7 Raceway - d1 = 4.744 f2 666 0.065007 4 150-197-7 -	₹ ₹		7.2	Component Description	(HZ)	Katio	Ratio
4 150-201-2 (MRC OUTER fT 51 0.004978 4 150-201-3 MR-122-KE) fB 426 0.041581 4 150-201-4 (Roller Dia - dB = 0.7480) fB' 852 0.083162 4 150-201-5 No. Rollers - m = 20 3fB' 2555 0.249389 4 150-201-7 Raceway - d1 = 4.7638 f1 1337 0.130502 4 150-201-7 Raceway - fR = 6.2598 f2 1018 0.099365 5 150-197-1 114DS241-1 INPUT GEAR SHAFT, fR fR 18 0.099365 4 150-197-2 (Fafnir DUAL, INTER- fT fT 48 0.004685 4 150-197-3 3AAMM222 MEDIATE fB 596 0.057784 4 150-197-4 WOMBR DF S-7846 Outer) 666 0.065007 4 150-197-5 (Ball Dia - de - d	•	50-201-1	114DS262-1	INPUT GEAR SHAFT.			0.0057
4 150-201-3 MR-122-KE) fB 426 0.041581 4 150-201-4 (Roller Dia - dB = 0.7480) fB' 852 0.083162 4 150-201-5 No. Rollers - m = 20 3fB' 2555 0.249389 4 150-201-7 Raceway - d ₁ = 4.7638 f ₁ 1337 0.130502 4 150-201-7 Shaft RPS - f _R = 117.76) 1018 0.099365 5 Shaft RPS - f _R = 117.76) 114DS241-1 INPUT GEAR SHAFT, f _R f _R 118 0.011517 4 150-197-2 (Fafnir DUAL, INTER- f _R f _R 128 2.96 0.028892 4 150-197-3 3AAMM222 MEDIATE f _B 5.92 0.057784 4 150-197-4 WOMBR DF 150-197-6 (Ball Dia - d _B = 1.1250 f ₁ 982 0.055077 4 150-197-6 (Ball Dia - d _B = 1.744 f ₂ 666 0.065007 4 150-197-7 Raceway - d ₁ = 4.744 f ₂ 6.994	4.	50-201-2	(MRC	OUTER			0.0024
4 150-201-4 (Roller Dia - dg = 0.7480 fg, as 50 0.083162) 4 150-201-5 No. Rollers - m = 20 3fg, 2555 0.249389 4 150-201-6 Raceway - d1 = 4.7638 fg 1 1337 0.130502 4 150-201-7 - d2 = 6.2598 fg 1 1018 0.099365 5 Shaft RPS - fg = 117.76) 1018 0.099365 4 150-197-1 114DS241-1 INPUT GEAR SHAFT, fg 118 0.011517 4 150-197-2 (Fafrir DUAL, INTER- ff fg 296 0.028892 4 150-197-3 3AAMM222 MEDIATE fg 177 48 4 150-197-4 WOMBR DF fg 296 0.028892 4 150-197-5 E-7846 Outer) 4 150-197-6 (Ball Dia - dg = 1.1250 ff 1 982 0.095851 4 150-197-7 No. Balls - m = 14 f2 666 0.065007 4 150-197-7 Raceway - d1 = 4.744 f2 666 0.065007	4	50-201-3	MR-122-KE)				0.0252
4 150-201-5 No. Rollers - m = 20 3fB' 2555 0.249389 4 150-201-6 Raceway - d ₁ = 4.7638 f ₁ 1337 0.130502 4 150-201-7 - d ₂ = 6.2598 f ₂ 1018 0.099365 5 Shaft RPS - f _R = 117.76) 1018 0.099365 4 150-197-1 114DS241-1 INPUT GEAR SHAFT, f _R f _R 118 0.011517 4 150-197-2 (Fafnir DUAL, INTER- f _B f _T +8 0.004685 4 150-197-3 3AAMM222 MEDIATE f _B 296 0.028892 4 150-197-4 WOMBR DF 1775 0.173255 4 150-197-5 E-7846 Outer) 3f _B ' 1775 0.173255 4 150-197-6 (Ball Dia - d _B - d _B 1.1250 f ₁ 982 0.065007 4 150-197-7 Raceway - d ₁ = 4.744 f ₂ 66.994	4	50-201-4	(Roller Di	- qB			0.0525
4 150-201-6 Raceway - d1 = 4.7638 f1 1337 0.130502 4 150-201-7 Shaft RPS - fR = 1018 0.099365 5 Shaft RPS - fR = 1018 0.099365 4 150-197-1 114DS241-1 INPUT GEAR SHAFT, fR 118 0.011517 4 150-197-2 (Fafnir DUAL, INTER- fT +8 0.004685 0.028892 4 150-197-3 3AAMM222 MEDIATE fB fB 296 0.028892 4 150-197-4 WOMBR DF 592 0.057784 4 150-197-5 E-7846 Outer) 1775 0.173255 4 150-197-6 (Ball Dia - dB = 1.1250 f1 982 0.095851 4 150-197-7 No. Balls - m = 14 f2 666 0.065007 8 - d2 = 6.994 - 6.994 - 6.994	4 4	50-201-5	No. Rolle	= m -			0.1775
4 150-201-7 Shaft RPS - f _R = 117.76) 4 150-197-1 114DS241-1 INPUT GEAR SHAFT, f _R 118 0.011517 4 150-197-2 (Fafnir DUAL, INTER- f _T 48 0.004685 4 150-197-2 (Fafnir DUAL, INTER- f _T 48 0.004685 4 150-197-4 WOMBR DF 4 150-197-5 E-7846 Outer) 4 150-197-6 (Ball Dia - d _B = 1.1250 f ₁ 982 0.055784 5 150-197-7 No. Balls - m = 14 f ₂ 666 0.065007 Raceway - d ₁ = 4.744 - d ₂ = 6.994	48 4	50-201-6	Raceway				0.1027
4 150-197-1 114DS241-1 INPUT GEAR SHAFT, fR 118 0.011517 4 150-197-2 (Fafnir DUAL, INTER- fT 48 0.004685 4 150-197-2 (Fafnir DUAL, INTER- fT 48 0.004685 4 150-197-3 3AAMM222 MEDIATE fB 296 0.028892 4 150-197-4 WOMBR DF 3fB 1775 0.173255 4 150-197-5 E-7846 Outer) 3fB 1775 0.173255 4 150-197-7 (Ball Dia - dB = 1.1250 f1 982 0.095851 4 150-197-7 No. Balls - m = 14 f2 666 0.065007 Raceway - d1 = 4.744 - d2 = 6.994 - 6.994	4	50-201-7					0.0627
4 150-197-1 114DS241-1 INPUT GEAR SHAFT, fR 118 0.011517 4 150-197-2 (Fafnir DUAL, INTER- fT ±8 0.004685 4 150-197-3 3AAMM222 MEDIATE fB 296 0.028892 4 150-197-4 WOMBR DF 592 0.057784 4 150-197-5 E-7846 Outer) 3fB' 1775 0.173255 4 150-197-6 (Ball Dia - dB = 1.1250 f1 982 0.095851 4 150-197-7 No. Balls - m = 14 f2 666 0.065007 Raceway - d1 = 4.744 - d2 = 6.994 - 6.994			Shaft RPs	- fR			
4 150-197-2 (Fafnir DUAL, INTER- fT 48 0.004685 4 150-197-3 3AAMM222 MEDIATE fB 296 0.028892 4 150-197-4 WOMBR DF fB 592 0.057784 4 150-197-5 E-7846 Outer) 3fB' 1775 0.173255 4 150-197-6 (Ball Dia (Balls - m = 14) f2 666 0.095851 4 150-197-7 No. Balls - m = 14 f2 666 0.065007 Raceway - d1 = 4.744 - d2 = 6.994 - 694	4	50-197-1	114DS241-1	INPUT GEAR SHAFT			0.0057
4 150-197-3 3AAMM222 MEDIATE fB 296 0.028892 4 150-197-4 WOMBR DF fB 592 0.057784 4 150-197-5 E-7846 Outer) 3fB' 1775 0.173255 4 150-197-6 (Ball Dia Graph - Machine - Machin	4	50-197-2	(Fafnir	DUAL, INTER-			0.0023
4 150-197-4 WOMBR DF 4 150-197-5 E-7846 Outer) 4 150-197-6 (Ball Dia - dB = 1.1250 f ₁ 982 0.057784 4 150-197-7 No. Balls - m = 14 f ₂ 666 0.065007 Raceway - d ₁ = 4.744 - d ₂ = 6.994	4	50-197-3	3AAMM222	MEDIATE			0.0166
-54 4 150-197-5 E-7846 Outer) -55 4 150-197-6 (Ball Dia - dB = 1.1250 f ₁ 982 0.095851 -56 4 150-197-7 No. Balls - m = 14 f ₂ 666 0.065007 -56 4 150-197-7 - d ₁ = 4.744 - d ₂ = 6.994	4	50-197-4	WOMBR DF				0.0355
-55 4 150-197-6 (Ball Dia - dB = 1.1250 f ₁ 982 0.095851 -56 4 150-197-7 No. Balls - m = 14 f ₂ 666 0.065007 Raceway - d ₁ = 4.744 - d ₂ = 6.994	-54 4	50-197-5	E-7846 Outer)				0.1306
-56 4 150-197-7 No. Balls - m = 14 f ₂ 666 0.065007 Raceway - d_1 = 4.744 - d_2 = 6.994	-55 4	50-197-6	(Ball Dia	ф			0.0611
- d ₁ = d ₂	-56 4	50-197-7	No. Balls	= m -			0.0412
II			Raceway				
				II			
Shaft RPS - fR = 117.76)			Chaft Duc	اا و ا			

	lo;		TABI	TABLE XXI - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	cy.	Decimal Ratio	Octal Ratio
8-57	4 4	150-197-8 150-197-9	(Fafnir 3AAMMF	INPUT GEAR SHAFT, DUAL, INTER-	fr fr	118 52	0.011517	0.0057
8-59	4 4	150-197-10	9122 WI3 WRRDF	MEDIATE	fB fn'	465	0.045387	0.0272
8-61	4	150-197-12	E-7846 Inner)		3fB'	2787	0.272035	0.2132
8-62	4	150-197-13	(Ball Dia	$- d\mathbf{B} = 0.6875$	$\mathbf{f_1}$	1457	0.142215	0.1107
8-63	4	150-197-14	No. Balls Raceway	- m = 22 $- d_1 = 4.823$	\mathbf{f}_{2}	1134	0.110688	0.0705
				- d ₂ = 6.198				
			Shaft RPS	11				
9-64	4	150-193-1	114DS240-2	INPUT GEAR SHAFT,	fR	118	0.011517	0.0057
9-65	4	150 - 193 - 2	(SKF 456650)	INNER THRUST	fŢ	20	0.004880	0.0024
99-6	4	150-193-3	(Roller Dia	$1 - d_{\rm B} = 1.0236$	fB	370	0.036115	0.0224
29-6	4	150-193-4	No. Rollers	= m -	fB'	740	0.072230	0.0447
89-6	4	150-193-5	Raceway	$- d_1 = 5.5704$	3 t $^{\mathrm{B}}$	2221	0.216788	0.1567
69-6	4	150-193-6		$- d_2 = 7.6176$	\mathfrak{t}_1	1088	0.106198	0.0663
02-6	4	150-193-7	Shaft RPS	1	\mathbf{f}_2	962	0.077696	0.0476

H		TABL	LE XXII, FREQUI MODELS AFT RO AND TR	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS CH-47A/B HELICOPTERS, AFT ROTOR TRANSMISSION, ACCESSORY DRIVE AND TRANSMISSION, GEAR TRAINS (N2 - RELATED)	OCK RATI RS, CESSORY INS (N2 - 1	IOS, DRIVE RELATE	(C)	
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	ncy	Decimal Ratio	Octal Ratio
1-1 1-2 1-3	ਚਾ ਚਾ ਚਾ	150-171-1 150-171-2 150-171-3	114D2056-1	OIL COOLING FAN BEVEL TRAIN AFT XMSN	Fund X2 X3	4239 8478 12717	0.413762 0.827525 1.241288	0.3237 0.6476 1.1734
1-5	4 4 4 4	150-171-4 150-171-5 150-171-6 150-171-7		$(f_{\mathbf{R}} = 117.76)$	+fR +2fR -fR -2fR	4357 4475 4121 4003	0.425280 0.436798 0.402244 0.390727	0.3316 0.3375 0.3160 0.3100
1-8 1-9 1-10 1-11	4 4 4 4	150-127-1 150-127-2 150-127-3 150-127-4	114D2169-1	(f _R = 81, 52)	^{-f} R ^{+2f} R -fR -2fR	4321 4403 4157 4075	0.421766 0.429770 0.405758 0.397755	0.3300 0.3340 0.3176 0.3135
2-12 2-13 2-14 2-15 2-16 2-17	ਚ ਚ ਚ ਚ ਚ ਚ	150-278-1 150-278-2 150-278-3 150-278-4 150-278-6 150-278-6	114D2063-1	ACCESSORY DRIVE BEVEL, AFT (f _R = 66.96)	Fund X2 X3 +fR +2fR -fR -fR	4955 9910 14865 5022 5089 4888	0.483650 0.967301 1.450951 0.490190 0.496730 0.477110	0.3675 0.7572 1.3467 0.3730 0.3763 0.3642
2-19 2-20 2-21 2-22	' 4' 4' 4' 4'	150-310-1 150-310-2 150-310-3 150-310-4	114D2091-1	$(f_{\mathbf{R}} = 137.64)$	-fr +2fr -fr -fr -2fr	5093 5231 4817 4679	0.497120 0.510590 0.470180 0.456710	0.3764 0.4053 0.3606 0.3517

			TAB	TABLE XXII - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	cy	Decimal Ratio	Octal Ratio
3-23	c	150-65-1	114D2106-1	ACCESSORY DRIVE	Fund	4129	0.403025	0.3163
3-24	5	150-65-2		MAIN TRAIN	X2	8228	0.806051	0.6346
3-25	2	150-65-3			X3	12387	1.209077	1,1530
3-26	2	150-65-4		$(f_{\mathbf{R}} = 137.64)$	+fR	4267	0.416495	0.3252
3-27	2	150-65-5			+2fR	4405	0.429965	0.3341
3-28	သ	150-65-6			-fR	3991	0.389555	0.3074
3-29	2	150-65-7			-2fR	3853	0.376085	0.3004
3-30	വ	150 - 75 - 1	114D2108-1	$(f_{\mathbf{R}} = 114.70)$	+fR	4244	0.414250	0.3241
3-31	ည	150 - 75 - 2			+2fR	4359	0.425475	0.3317
3-32	2	150-75-3			-fR	4014	0.391800	0.3105
3-33	2	150-75-4			-2fR	3899	0.380575	0.3027
3-34	က	150 - 57 - 1	114D2132-1	$(\mathbf{f_R} = 66.60)$	+f R	4196	0.409565	0.3216
3-35	ည	150 - 57 - 2			+2f R	4263	0.416105	0.3250
3-36	သ	150-57-3			-fR	4062	0.396486	0.3130
3-37	2	150-57-4			-2fR	3995	0.389946	0.3075
3-38	ည	150-54-1	114D2178-1	$(\mathbf{fR} = 77.91)$	+fR	4207	0.410639	0.3222
3-39	2	150-54-2			+2fR	4285	0.418252	0.3261
340	2	150-54-3			-fR	4051	0.395412	0.3124
3-41	ည	150-54-4			-2fR	3973	0.387798	0.3064
3-42	ဥ	150 - 72 - 1	114D2107-1	$(f_{R} = 142.22)$	+fR	4271	0.416886	0.3254
3-43	ວ	150-72-2			+2fR	4413	0.430746	0.3344
3-44	ວ	150-72-3			-fR	3937	0.389165	0.3072
3-45	2	150-72-4			-2fR	3845	0.375305	0.3001

			TABI	TABLE XXII - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	,	Decima 1 Ratio	Octal Ratio
3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	വ വ വ വ വ വ വ	150-68-1 150-68-2 150-68-3 150-60-1 150-60-2 150-60-3	114D2109-1 114D2110-1	ACCESSORY DRIVE MAIN TRAIN (fR = 133.20) (f _R = 77.91)	######################################	4262 4395 3996 3863 4207 4285 4051	0.416007 0.428989 0.390043 0.377061 0.410639 0.418252 0.395412	0.3250 0.3335 0.3076 0.3010 0.3222 0.3261 0.3124

			E XXIII. FREQUE MODELS AFT RO DRIVE A (N2 - RE	FREQUENCIES AND ACOUSTIC LOCK RATIOS MODELS CH-47A/B HELICOPTERS, AFT ROTOR TRANSMISSION, ACCESSORY DRIVE AND TRANSMISSION, BEARINGS (N2 - RELATED)	LOCK RATIORS SCESSORY ARINGS	\$5			
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	3y	Decimal Ratio	Octal Ratio	
1-1	41 -	150-174-1	114DS257-1	OIL COOLER BEVEL	fR	118	0.011517	0.0057	
7 -7	4 4	150 - 174 - 2 $150 - 174 - 3$	(MRC R-112-KD)	PINION, OUTER	F. T	500	0.005075	0.0025	_
4	4	150-174-4	(Roller Dia	a - dB = 0.3543	fB.	1000	0.097608	0.0620	_
1-5	4	150-174-5	No. Rollers	# #		3001	0.292923	0.2260	_
1-6	4 4	150-174-6	Raceway		fj ,	1446	0.141142	0.1102	_
) - T	н)-\$)1-00T	Shaft RPS	- q2 = 3.4055 - fR = 117.76)		1145	0.111761	0.0712	
2-8	4	150-165-1	114DS251-1	OIL COOLER BEVEL	f.	118	0.011517	0.0057	
2-9	4	150-165-2	(Fafnir	PINION, INNER	F	53	0.005173	0.0025	_
2-10	4	150-165-3	M9318KMBR		fB	611	0.059638	0.0364	
2-11	4	150-165-4	E7843)			1221	0.119180	0.0750	_
2-12	4	150-165-5	(Ball Dia	- dB =	3fB'	3664	0.357637	0.2671	
2-13	4 4	150-165-6	No. Balls	# 1		1161	0.113323	0.0720	
#T - 7	ť	1-601-061	Maccaway	- d ₂ = 4.659	ស្ន	n Cn	0.032000	0.0077	
			Shaft RPS	- f _R = 117.76)					
						d	2023		_

	T T		
	Octal Ratio	0.0041 0.0016 0.0133 0.0266 0.1041 0.0414	0.0041 0.0015 0.0114 0.0230 0.0706 0.0261
	Decimal Ratio	0.008003 0.003318 0.022157 0.044411 0.133138 0.065397	0.008003 0.003123 0.018448 0.036993 0.110883 0.043240
	ancy 2)	82 34 227 455 1364 670 471	82 32 189 379 1136 443 291
	Frequency (Hz)	ች ያ ነ ³ ነ ³ ነ ነ	ችተቴች ት -
TABLE XXIII - Continued	Component Description	OIL COOLER BEVEL DRIVE, LOWER Dia - dp = 0.3150 ers - m = 14 - d ₁ = 1.4960 - d ₂ = 2.1260 S - f _R = 81.52)	OIL COOLER BEVEL DRIVE, UPPER - dB = 0.3750 s - m = 9 - d ₁ = 1.444 - d ₂ = 2.194 S - f _R = 81.52)
TAB	Part Number (Vendor)	(MRC D) (R-206-D) (Roller Dia No. Rollers Raceway	(Fafnir JM206K MBR E7842) (Ball Dia No. Balls Raceway Shaft RPS
	Program Index	150-125-1 150-125-2 150-125-3 150-125-4 150-125-5 150-125-6	150-123-1 150-123-2 150-123-4 150-123-4 150-123-6 150-123-6
	Ref Figure	ਚਾ ਚਾ ਚਾ ਚਾ ਚਾ	ਚਾ ਚਾ ਚਾ ਚਾ ਚਾ ਚਾ
	Item	3-15 3-16 3-17 3-18 3-20 3-21	4-22 4-23 4-25 4-25 4-27 4-27

			TABLI	TABLE XXIII - Continued	1			
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)		Decimal Ratio	Octal Ratio
5-29	Z.	157-14-1	(No Vertol #)	OIL COOLER BLOWER	E)	82	0.008003	0.0041
5-30	N. A.	157-14-2	(MRC 204 SZ)	SHAFT, LOWER	î Î	31	0,003025	0.0014
5-31		157-14-3	(Ball Dia	- dB = 0.3125	fB,	160	0.015617	0.0080
5-32	N. A.	157-14-4	No. Balls	8 = B ·		320	0.031234	0.0180
5-33		157-14-5	Raceway	$- d_1 = 0.9841$	_	961	0.093801	0.0600
5-34		157-14-6		$- d_2 = 1.6091$		407	0.039726	0.0243
5-35		157-14-7	Shaft RPS	- f _R = 81.52)		249	0.024304	0.0144
6-36	Ä.	157-13-1	(No Vertol #)	OIL COOLER BLOWER	Ħ	82	0.008003	0.0041
6-37	N. A.	157-13-2	(MRC 205 SZ)	SHAFT, UPPER	fŢ	31	0.003025	0.0014
6-38	N. A.	157-13-3	(Ball Dia	- dB = 0.3125	ft.	160	0.015617	0.0100
6-39	N. A.	157-13-4	No. Balls	. B = 8		320	0.031234	0.0200
6-40	N. A.	157-13-5	Raceway	- d ₁ = 0.9841	-	961	0.093801	0.0600
6-41	N. A.	157-13-6		$- d_2 = 1.6091$		407	0.039726	0.0243
6-42	N. A.	157-13-7	Shaft RPS	- fR = 81.52)		249	0.024304	0.0143
7-43	Ä.A.	150-303-1	114D8265-1	ACCESSORY DRIVE	fr	138	0.013469	0.0067
7-44	N.A.	150-303-2	(MRC R-	QUILL SHAFT,	f.	29	0.005758	0.0030
7-45	Ä.Ä.	150-303-3	106-KEX)	FORWARD		450	0.043923	0.0264
7-46	Ä. A.	150-303-4	(Roller Dia	- dB = 0.2500		900	0.087847	0.0550
7-47	N. A.	150-303-5	No. Rollers	rs - m = 16		2701	0.263640	0.2070
7-48	N. A.	150-303-6	Raceway	$- d_1 = 1.4226$		1266	0.123572	0.0772
749	N. A.	150-303-7		- d ₂ = 1.9232		936	0.091361	0.0566
			Shaft RPS	- fg = 137.64)	l			

			TABL	TABLE XXIII - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)		Decimal Ratio	Octal Ratio
8-50	N. A.	150-295-1	114DS247-1	ACCESSORY DRIVE		138	0.013469	0.0067
8-51	N.A.	150-295-2	(SKF 453931)	GEAR SHAFT, AFT	:F	63	0.009224	0.0046
8-52	N. A.	150-295-3	(Roller Dia	a - d _B = 0.315		811	0.118740	0.0746
8-53	N. A.	150-295-4	No. Rollers	rs - m = 30		1623	0.237628	0.1715
8-54	N. A.	150-295-5	Raceway	- d ₁ = 3.425	-	4868	0.712737	0.5547
8-55	N. A.	150-295-6		$- d_2 = 4.055$		2238	0.327672	0.2476
8-56	N. A.	150-295-7	Shaft RPS	1		1891	0.276866	0.2156
9-57	Ä.A.	150-307-1	114DS249-1	ACCESSORY DRIVE		138	0.013469	0.0067
9-28	N. A.	150-307-2	(MRC R-	QUILL SHAFT, AFT		29	0.005758	0.0030
9-59	N. A.	150-307-3	107-KEX)		f _B 4	467	0.045583	0.0273
09-6	N. A.	150-307-4	(Ball Dia	- dB = 0.2756		934	0.091166	0.0565
9-61	N. A.	150-307-5	No. Balls	•	-	2801	0.273401	0.2140
9-62	N. A.	150-307-6	Raceway	$- d_1 = 1.6333$		1260	0.122986	0.0770
9-63	N. A.	150-307-7		$- d_2 = 2.1851$	f ₂ 9	942	0.091947	0.0571
			Shaft RPS	1				-
10-64	N. A.	150-292-1	114DS248-1	ACCESSORY DRIVE	fr 1	138	0.013469	0.0067
10-65	N. A.	150 - 292 - 2	(MRC 115-KS)	GEAR SHAFT, AFT		09	0.005856	0.0030
10-66	N. A.	150-292-3	(Ball Dia	- dB = 0.5000	fb.	504	0.049194	0.0311
10-67	N. A.	150 - 292 - 4	No. Balls	H		1008	0.098389	0.0623
10-68	N. A.	150-292-5	Raceway	$- d_1 = 3.2287$	~	3024	0.295168	0.2271
10-69	N. A.	150-292-6		$- d_2 = 4.2287$		1093	0.106686	0.0665
10-70	N. A.	150-292-7	Shaft RPS	1		834	0.081405	0.0515

Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	<u></u>	Decimal Ratio	Octal Ratio
11-71	5	150-67-1	114DS255-1	ACCESSORY DRIVE	fR	138	0.013469	0.0067
11-72		150-67-2	(MRC 107-KS)	GEAR	fŢ	28	0.005661	0.0027
11-73	S	150-67-3	(Ball Dia	- dB = 0.3125	g.	407	0.039726	0.0243
11-74		150-67-4	No. Balls	- m = 11	_	815	0.079551	0.0506
11-75		150-67-5	Raceway	$- d_1 = 1.5882$	•	2444	0.238555	0.1721
11-76		150-67-6		$- d_2 = 2.2132$		881	0.085993	0.0540
11-77		150-67-7	Shaft RPS	- f _R = 137.64)		633	0.061786	0.0375
12-78	2	150-77-1	114D8256-1	ACCESSORY DRIVE	fR	115	0.011224	0.0056
12-79		150-77-2	(MRC 106-KS)	DLER GEAR	fŢ	47	0.004587	0.0023
12-80	in	150-77-3	(Ball Dia	- dB = 0.3125	£	295	0.028794	0.0166
12-81	in.	150-77-4	No. Balls	- m = 10		590	0.057589	0.0354
12-82		150-77-5	Raceway	$- d_1 = 1.3535$	-~	1770	0.172767	0.1304
12-83	1.7	150-77-6		$- d_2 = 1.9785$		681	0.066471	0.0420
12-84		150-77-7	Shaft RPS	- fR = 114.70)		466	0.045485	0.0272
13-85		150-73-1	114D8255-1	ALTERNATOR DRIVE	fR	142	0.013860	0.0071
13-86	ın	150-73-2	(MRC 107-KS)	PINION	f	59	0.005758	0.0030
13-87		150-73-3	(Ball Dia	- dB = 0.3125		421	0.041093	0.0250
13-88		150-73-4	No. Balls	- m = 11	fB,	842	0.082186	P. 0521
13-89	ın	150-73-5	Raceway	- d ₁ = 1.5882	•	2525	0.246461	. 1762
13-90		150-73-6		$- d_2 = 2.2132$		911	0.088921	0.0554
13-91		150-73-7	Shaft RPS	- fg = 142.22)		654	0.063836	0.0405

			TABL	TABLE XXIII - Continued			
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	Decimal Rs tio	Octal Ratio
14-92	ເລ	150-70-1	114D8256-1	HYDRAULIC MOTOR	fo 133	0.012381	0.0065
14-93	3	150-70-2	(MRC 106-KS)	DRIVE GEAR		1,52	0.0026
14-94	က	150-70-3	(Ball Dia	- dB = 0.3125	fa 343		0.0211
14-95	ខ	150-70-4	No. Balls		fH 685		0.0422
14-96	သ	150-70-5	Raceway	- d ₁ = 1.3535	2		0.1466
14-97	S	150-70-6				7	0.0474
14-98	ß	150-70-7	Shaft RPS	1 800			0.0330
15-99	<u>ភ</u>	150-58-1	114DS256-1	REDRAULIC PUMP	(p	0.006539	0.0033
15-100	S	150-58-2	(MRC 106-KS)	DRIVE GEAR			0.0013
15-101	ည	150-58-3	(Ball Dia	- dB = 0.3125	fa 171		0.0
15-102	2	150-58-4	No. Balls				0.0211
15-103	လ	150-58-5	Racoway		3fg' 1028		0.0633
15-104	2	150-58-6		H		Ē	0.0236
15-105	c	150-58-7	Shaft RPS				0.0154
16-106	လ	150-55-1	114DS256-1	AXIAL PISTON PUMP	fo 78	0.007613	2200 0
16-107	co	150-55-2	(MRC 106-KS)	DRIVE GEAR	fT 32		0.0015
16-108	വ	150-55-3	(Ball Dia	- dn = 0.3125	2		0.010
16-109	၁	150-55-4	No. Balls				0.0240
16-110	2	150-55-5	Raceway	- d ₁ = 1,3535			0 0741
16-111	2	150-55-6		11			0 0271
16-112	2	150-55-7	Shaft RPS	- fR	f ₂ 316		0.0176

TABLE XXIII - Continued	Number Frequency Decimal Octal 82:6-1 LUBE OIL PUMP DRIVE fn 78 0.007613 0.0037 106-KS GEAR fr 32 0.003123 0.0015 No. Ball Dia - dB 0.3125 fn 200 0.015521 0.0120 No. Balls - m 10 fill 401 0.035141 0.0210 Raccway - dj 1.3535 3fn 1202 0.117325 0.0741 Shaft RPS - fR 77.91 f2 316 0.030844 0.0176
TABLE XXIII - Continued	Component Description LUBE OIL PUMP DRIVE GEAR - dB = 0.3125 - m = 10 - d1 = 1.3535 - d2 = 1.9785 - d2 = 1.9785
	Program Index 150-61-1 150-61-2 150-61-3 150-61-4 150-61-5 150-61-6
	Ref Item Figure 17-113 5 17-114 5 17-115 5 17-116 5 17-119 5 17-119 5
	Item 17-113 17-114 17-115 17-116 17-117 17-119

		TABE	E XXIV. FREQUENCIES A MODELS CH-47A AFT ROTARY W (N2 - RELATED)	LE XXIV. FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS CH-47A/B HELICOPTERS, AFT ROTARY WING DRIVE SHAFT BEARINGS (N2 - RELATED)	OCK RATIC RS, 'T BEARING	, 8. 8.		
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	3,4	Decimal Ratio	Octal Ratio
1-1 1-2 1-5 1-6 1-7	4 4 4 2 2 2 2 2 2 2 2	154-20-1 154-20-2 154-20-3 154-20-4 154-20-5 154-20-6	(Fafnir AAM 9134-4 MBRE-9203) (Ball Dia No. Balls Raceway	AFT ROTOR SHAFT - dB = 1.0625 - m = 21 - d1 = 7.4020 - d2 = 9.5270 - fR = 3.833)	fr fr fr fr fr fr 3fb' 30 fr fr fr fr fr fr fr 36 30 fr fr fr fr fr fr fr fr fr fr fr fr fr	3.833 1.68 0 0 5	0.000374 0.00163 0.001464 0.002928 0.008784 0.004392 0.003416	0.0002 0.0001 0.0014 0.0044 0.0022 0.0016

1-1 3 149-17-2 3 149-17-3 3 149-17-5 3 149-17-5 3 149-17-5 3 149-17-6 3 149-1	Index 149-96-1 149-96-2 149-96-3	(Vendor)		Frequency		Decimal	Octal
	-96-1 -96-2 -96-3		Component Description	(Hz)		Katio	Katio
	-96-2 -96-3	114D1044-8	INPUT BEVEL DRIVE	Fund frey 3415		0.333333	0.2525
	-96-3				6830 0.	0.666666	0.5253
ကကက				X3 10	10245 1.	1.000000	1.0000
es es	149-96-4		$(f_{\mathbf{R}} = 117.76 \text{ Hz})$		3533 0.	0.344851	0.2605
۲.	149-96-5				3651 0,	0.356368	0.2664
•	149-96-6				3769 0.	0.367886	0.2743
1-7 3 $149-$	149-96-7			-fr 3;	3297 0.	0.321815	0.2446
1-8 3 149-	149-96-8				3179 0.	0.310297	0.2367
1-9 3 149-	149-96-6			-3f _R 3(3061 0.	0.298779	0.2310
1-10 3 149-	149-182-1	114D1053-1	$(f_{R} = 66.96 \text{ Hz})$		3482 0.	0.339873	0.2560
	149-182-2				3549 0,	0.346412	0.2613
	149-182-3				3616 0.	0.352952	0.2646
1-13 3 149-	149-182-4				3348 0.	0.326793	0.2473
	149-182-5				3281 0.	0.320253	0.2440
1-15 3 149-	149-182-6			-3fR 3%	3214 0.	0.313714	0.2405
_	149-96-10	4D1044-8	$(f_{R} = 117.76 \text{ Hz})$	Ę,	6948 0.	0.678184	0.5332
	149 - 96 - 11				6712 0.	0.655148	0.5173
1-18 3 149-	149-182-7	14D1053-1	$(f_{\mathbf{R}} = 66.96 \text{ Hz})$		6897 0.	0.673206	0.5305
	149-182-8				6763 0.	0.660126	0.5220

			TAI	TABLE XXV - Continued					
Itenı	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	ncy	Decimal Ratio	Octal Ratio	
2-20	က	149-186-1	114D1043-1	IST STAGE PLANETARY	Fund fr	1483	0.144753	0.1121	
2-21	က	149-186-2				5968	0.289507	0.2242	
2-52	က	149-186-3			13E=6X	4449	0.434260	0.3363	
2-23	က	149-186-4		$(f_{S} = f_{R} = 66.96 \text{ Hz})$	SJ+	1550	0.151293	0, 1154	
2-24	က	1.49 - 186 - 5			+2fs	1617	0.157833	0.1206	
2-25	က	149-186-6			-fs	1416	0, 138213	0, 1066	
2-26	က	1.19-186-7			-2fs	1349	0, 131673	0, 1033	
2-27	က	1.19-186-8		(fS' = 52.97 Hz)	'S]+	1536	0.149926	0.1146	
2-28	က	149-186-9			+2fS'	1589	0.155100	0.1173	
2-29	က	149-186-10			-fs'	1430	0.139580	0.1074	
2-30	က	149-186-11			-2fg'	1377	0.134407	0.1047	
2-31	က	149-146-1	114DS244-13	(fp = 38.03 Hz)	+fp	1521	0.148462	0.1140	_
2-32	က	149-146-2			+2fp	1559	0.152171	0,1157	
2-33	က	149-146-3			-tp	1-1-15	0.141044	0,1102	
2-34	m	149-146-4			-2fp	1.407	0.137335	0.1063	_
2-35	· m	149-186-12	114D1043-1	$(f_{S} = f_{R} = 66.96 \text{ Hz})$	(X2) + fS	3033	0.296046	0.2275	
2-36	es	149-186-13			(X2)-fs	2899	0.282967	0.2207	
2-37	က	149-186-14		(fS' = 52.97 Hz)	(X2)+fS'	3019	0.294680	0.2267	
2-38	က	149-186-15			(X2)-fS'	2913	0.284333	0,2215	
2-39	m	149-146-5	114DS244-13	(fp = 38.03 Hz)	(X2) th	3004	0.293216	0.2261	_
2-10	m	149-146-6			(X2)-fp	2928	0.285797	0.2223	
									_

Г				Г			_		_		_
		Octal	Ratio		0001	0.1200	0.1237	0.1336	0.0762	0.0703	
		Decimal	Ratio		0.156271	0.167789	0.179307	0.233236	0.121718	0.110200	
		r requency			fI+fBEV 1601			fBEV 1365	fI-2fBEV 1247	^{3f} BEV 1129	
pen						$^{+}\mathrm{I_{J}}$	+IJ	ff-	-IJ	-IJ	
TABLE XXV - Continued		Component Description		(fram: - 110 co.	(*BEV = 117.76 HZ)						
TA	Part Number	(Vendor)		114D1044-8							
	Program	Index	140 100 10	91-991-67	149-186-17	149-186-18	149-186-19	149-186-20	149-186-21		
	Ref	aJng,	c	>	က [်]	က	က	က	က		
	Itom		2-41	1 0	2-42	2-43	244	2-45	2-46		

			TAI	TABLE XXV - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	y.	Decimal Ratio	Octal Ratio
3.41	٣	140_141_1	11413077-1	SND STACE DI ANETA BV	Dund 6	904	069060 0	0.0949
3-42	ာက	149-141-2	1 1077111		X2=2ftr	812	0.079258	0.0505
3-43	က	149-141-3			X3=3f _H	1218	0,118887	0.0747
3-44	က	149-141-1		$(f_S = f_R = 13.99 \text{ Hz})$	+fs	420	0.040995	0.0250
3-45	က	149-141-5			+2fS	434	0.042362	0.0256
3-46	က	149-141-6			-fs	392	0.038262	0.0235
3-47	က	149-141-7			-2fS	378	0.036896	0.0227
348	က	149-141-8		$(f_S' = 10.16 \text{ Hz})$	+fs'	416	0.040605	0.0246
3-49	က	149-141-9			+2fS'	426	0.041581	0.0252
3-20	က	149-141-10			-fs,	396	0.038653	0.0236
3-51	က	149-141-11			-2fs'	386	0.037676	0.0232
3-52	က	149-153-1	114DS258-3	(fp = 12.31 Hz)	+fp	418	0.040800	0.0247
3-53	က	149-153-2			$+2f_{\mathbf{p}}$	430	0.041971	0.0254
3-54	က	149-153-3			-fp	394	0.038457	0.0236
3-55	က	149-153-4			-2fp	382	0.037286	0.0231
3-56	က	149-141-12	114D2077-1	$(f_{S} = f_{R} = 13.99 \text{ Hz})$	(X2)+fS	826	0.080624	0.0512
3-57	က	149-141-13			(X2)-fS	798	0.077891	0.0477
3-58	က	149-141-14		(fS' = 10.16 Hz)	(X2)+fS'	822	0.080234	0.0511
3-59	က	149-141-15			(X2)-fs'	792	0.077306	0.0475
3-60	က	149-153-5	114DS258-3	(fp = 12.31 Hz)	(X2)+fp	824	0.080429	0.0511
3-61	က	149-153-6			(X2)-fp	800	0.07808A	0.0200

Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	cy	Decimal Ratio	Octal Ratio
4-62	က	149-186-16	114D2077-1	PLANETARY	(fr+frr)	1889	0.184382	0.1363
4-63	က	149-186-17	114DS258-3	ADDITIONS (1ST &	X2 X2	3778	0.368765	0.2746
4-64	က	149-186-18		2ND STAGES)	X3	2667	0.553147	0.4332
4-65	က	149-186-19			X4	7556	0.737530	0.5715
4-66	က	149-186-20		(1st Stage fg=66.96 Hz)	$^{\mathrm{I}}\mathrm{S}_{\mathrm{J}^{+}}$	1956	0.190922	0.1416
-67	က	149-186-21		•	-fSI	1822	0.177842	0.1330
4-68	က	149-186-22		(2nd Stage fs 13.99 Hz)	+fS _{II}	1903	0.185749	0.1371
4-69	က	149-186-23			-fS _{II}	1875	0.183016	0.1356
4-70	က	149-186-24		(1st Stage fp= 38.03 Hz)	$+\mathbf{f}\mathbf{p_{I}}$	1927	0.188091	0.1402
-71	က	149-186-25			-fPI	1851	0.180673	0.1344
4-72	က	149-186-26		(2nd Stage fpf 12.31 Hz)	$_{ m H}^{-}$	1901	0.185553	0.1370
4-73	က	149-186-27			-fPII	1877	0.183211	0.1356
4-74	က	149-186-28		(1st Stage fg' ₁ =52.97 Hz)	LSJ+	1942	0.189555	0.1410
-75	က	149-186-29		•	-fs ₁	1836	0.179209	0.1336
92-	က	149-186-30		(2nd Stage f8' _H =10.16 Hz)	HsJ+	1899	0.185358	0,1367
-77	က	149-186-31			II,sj-	1879	0.183406	0.1357
-78	က	149-186-32		(2nd Stage fll and 1st	fn+6fpr	634	0.061883	0.0375
-79	က	149-186-33		Stage fpr Modulations)	fn-6fp	178	0.017374	0.0107
4-80	က	149-186-34			fil+7fp	672	0.065592	0.0415
4-81	က	149-186-35			ful-7fPi	140	0.013665	0.0070
4-82	က	149-186-36			$f_{II}^{+12}f_{P_I}$	862	0.084138	0.0531
4-83	က	149-186-37			frr+18fp,	1090	0, 106393	0.0664
787	~	140_126_22			1 2 7 6	1 1		

	Octal Ratio	0.0033 0.0013 0.0114 0.0230 0.0353 0.0247 0.0014 0.0226 0.0453 0.1600 0.0665
	Decimal Ratio	0.006539 0.002733 0.018643 0.037188 0.111664 0.057393 0.040702 0.036505 0.036505 0.036505 0.018838 0.106783
rios,	ancy	67 28 191 381 1144 588 417 67 31 374 747 2242 1094 915
OCK RAT	Frequency (Hz)	ដុក្សង្គិ។
XXVI FREQUENCIES AND ACOUSTIC LOCK RATIOS MODELS CH-47A/B HELICOPTERS, FORWARD ROTOR TRANSMISSION BEARINGS (N ₂ - RELATED)	Part Number (Vendor) Component Description	THRUST
TABLE XXVI	Program Index	149-178-1 149-178-2 149-178-3 149-178-4 149-178-6 149-178-7 149-174-1 149-174-3 149-174-4 149-174-5 149-174-6 149-174-6
	Ref Figure	
	Item	1-1 1-2 1-3 1-4 1-5 1-6 1-7 2-9 2-11 2-12 2-13

			TABI	TABLE XXVI - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	y	Decimal Ratio	Octal Ratio
6 4	c	140-146-1	11406944-19	TET STATE BY ANET	દ	06	000000	0.0017
9.16	o er	1-0-146-9	CI_FF2CGFII	isi siyas rawei	국 1	90	0.003103	0.000
01-0	. ~	149-140-2	(SNF		Į, į	07	0.001361	0.0000
3-10	າ ຕ	149-146-3	404 (13A) (Dollon Dia	ı	# J	139	0.013367	0.0070
3-19) m	149-146-5	No Bollers	H H H	1H 3fr'	2 2 2	0.021120	0.015
3-20	, es	149-146-6	Raceway	 	4.	8 8 8	0.037879	0.0010
9-91	er.	149-146-7		ı	T 3	906	0000000	0.0200
17-0	•	1-0-T-C-T		- 2n	7	067	0.060036	0.0100
			Shaft RPS Contact Angle	- fR = 38.03) ngle = 8°				
4-22	က	149-139-1	114DS250-1	1ST STAGE CARRIER	fR	10	0.000976	0.0004
4-23	က	149-139-2	(Fafnir PMM	INTERSHAFT	f	4.6	4.6 0.000448	0.0002
4-24	က	149-139-3	9321K MBR		fg.	53.	53.10.005183	0.0025
4-25	က	149-139-4	E-7842)		f _B '	106	0.010346	0.0052
4-26	က	149-139-5	(Ball Dia	$- d_{\mathbf{B}} = 0.46875$	3fB	319	0.031137	0.0200
4-27	က	149-139-6	No. Balls	- m = 18	f ₁	100	0.009760	0.0050
4-28	က	149-139-7	Raceway	$- d_1 = 4.476$	$\mathbf{f_2}$	83	0.008101	0.0041
				$- d_2 = 5.413$				
			Shaft RPS (diff.					

:			TABL	TABLE XXVI - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	ıcy	Decimal Ratio	Octal Ratio
5-29	က	149-153-1	114DS258-3	2ND STAGE PLANET		12 7	0.001171	0.0005
5-31	ာ က	149-153-3	(SAF 430/10C) (Roller Dia	- dB = 0.8071	r a	33 1	0.003221	0.0015
5-32	m m	149-153-4 149-153-5	No. Rollers Raceway	3 - m = 14 - $d_1 = 3.6800$	-	66 199	0.006442	0.0032
5-34		149-153-6		42 q		102	0.009956	0.0051
ე- <u>კე</u>	n	149-153-7	Shaft RPS	- fR = 12.31 =	12	7.1	0.006930	0.0034
6-36	က	149-162-1		2ND STAGE	fr	3,83	0.000373	0.0002
6-37	က	149-162-2	(SKF 453958)	CARRIER, OUTPUT	Ţ.	1.82	0.000177	0.0001
6-38	က	149-162-3		SHAFT		36.8	0.003591	0.0017
6-39	က	149-162-4	(Ball Dia	- dB = 0.5625	_	73.6	0.007183	0.0035
9	က	149-162-5	No. Balls	- m = 31	_	221	0.021571	0.0130
641	က	149-162-6	Raceway	$- d_1 = 10.263$		62.5	0.006100	0.0031
6-42	က	149-162-7		$- d_2 = 11.388$	ن او	56.3	0.005495	0.0027
			Shaft RPS	- f _R = 3,833)				
7-43	က	149-160-1		OUTPUT ROTOR SHAFT	fR	3.33	0.000373	0.0002
7-44	က	149-160-2	(SKF 156649)	UPPER	f _T	1,75	0.000170	0.0001
7-45	က	149-160-3	(Roller Dia	- dB = 0.6693	fB	21	0.002049	0.0010
7-46	က	149-160-4	No. Pollers	- m = 30		43	0.004197	0.0021
7-47	က	149-160-5	Raceway	$- d_1 = 6.8106$		128	0.012493	0.0063
748	က	149-160-6		$- d_2 = 8.1492$		63	0.006149	0.0031
7-49	က	149-160-7	Shaft RPS	- f _R = 3,833)		53	0.005173	0.0025

			TAB	TABLE XXVI - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	Decimal Ratio	1 Octal Ratio	
	ကက	149-85-1 149-85-2	114DS262-1 (MRC MR-	INPUT BEVEL GEAR SHAFT, OUTER		118 0.011517 51 0.004978	7 0.0057 8 0.0024	
	.	149-85-3 149-85-4	122-KE) (Roller Dia	= qp -	fB 426 fB' 852		000	
7-55 7-55 7-56	ာ က က	149-85-5 149-85-6 149-85-7	No. Kollers Raceway Shaft RPS	rs - m = 20 - d ₁ = 4.7638 - d ₂ = 6.2598 3 - f _R = 117.76)	3tB 2555 f ₁ 1337 f ₂ 1018	5 0.249389 7 0.130502 8 0.099365	9 0.1775 2 0.1027 5 0.0627	
		149-89-1 149-89-2 149-89-3	114D8241-1 (Fafnir 3AAMM222 WOMBR DF	INPUT GEAR SHAFT, DUAL INTERMEDIATE	fR 118 fT 48 fB 296 fB' 592		7 0.0057 5 0.0023 2 0.0166 4 0.0355	
8 8 8 9 8 9 8	ာ က က	149-89-5 149-89-7	E-7846 Outer) (Ball Dia No. Balls Raceway	- dB = 1.1250 - m = 14 - d ₁ = 4.744 - d ₂ = 6.994 3 - f _R = 117.76)	3fB' 1775 f ₁ 982 f ₂ 666	5 0.173255 2 0.095851 6 0.065007	5 0.1306 1 0.0611 7 0.0412	
								_

-			TABI	TABLE XXVI - Continued				
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)		Decimal Ratio	Octal Ratio
8-64 8-65	ი ი	149-89-8 149-89-9	114D8241-1 (Fafnir	INPUT GEAR SHAFT, DUAL INTERMEDIATE	ជា	118 52	0.011517	0.0057
8-66 8-67	ကက	149-89-10 149-89-11	3AAMMF9122 WI3MBR DF		. E. j.	465	0.045387	0.0272
89-88	က	149-89-12	E-7846 Inner)			2787	0.272035	0.2132
8-69	, ,	149-89-13 149-89-14	(Ball Dia No. Balls	- dB = 0.6875 - m = 22		1457 1134	0.142215 0.110688	0.1107
. <u>.</u>			Raceway Shaft RPS	- d ₁ = f _R = -		I		
9-71	ი ი	149-93-1 149-93-2	114DS240-2	INPUT GEAR SHAFT,	Ħ î	118	0.011517	0.0057
9-73	m (149-93-3	(Roller Dia	a - dB = 1.0236	f3	370	0.036115	0.0224
9-74	, ,	149-93-4 149-93-5	No. Rollers Raceway	s - m = 16 - d ₁ = 5.5704		740 2221	0.072230 0.216788	0.0447
9-76	ကက	149-93-6 149-93-7	Shaft RPS	1 1		1088	0.106198	0.0663
				¥.		8		

		TABLE	TABLE XXVII. FREQUI MODELS FORWA ACCESS	FREQUENCIES AND ACOUSTIC LOCK RATIOS, MODELS CH-47A/B HELICOPTERS, FORWARD ROTOR TRANSMISSION ACCESSORY DRIVE GEAR TRAINS (N2 - RELATED)	OCK RAT. S, I	IOS,		
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency	ney	Decimal Ratio	Octal Ratio
-		149-181-1	114D1066-1	LIBE OIL PIMP DRIVE	E Ind	3750	0 366039	0 9744
1-2	က	149-181-2			X2	7500	0.732064	0.5667
1-3	က	149-181-3			X3	11250	1,098096	1,0622
14	က	149-181-4		(fR = 66.96 Hz)	+fR	3817	0.372571	0.2766
1-5	က	149-181-5			+2fR	3884	0.379111	0.3021
1-6	က	149-181-6			-fR	3683	0.359492	0.2700
1-7	က	149-181-7			-2fR	3616	0.352952	0.2646
1-8	က	149-192-1	114D1067-1	$(f_{\mathbf{R}} = 75.00 \text{ Hz})$	+fR	3825	0.373352	0.2771
1-9	က	149-192-2			-2fR	3900	0.380673	0.3027
1-10	က	149-192-3			-fR	3675	0.358711	0.2675
1-11	က	149-192-4			-2fR	3600	0.351390	0.2637
					Control of the Contro			

		TABLE XXVII		FREQUENCIES AND ACOUSTIC LOCK RATIOS MODELS CH-47A/B HELICOPTERS, FORWARD ROTOR TRANSMISSION ACCESSORY DRIVE BEARINGS (N2 - RELATED)	OCK RATIOS. 15, N (N2 - RELATED)		
Item	Ref Figure	Program Index	Part Number (Vendor)	Component Description	Frequency (Hz)	Decimal Ratio	Octal Ratio
1-1 1-2 1-3 1-4 1-6 1-6	നനനനനന	149-190-1 149-190-2 149-190-4 149-190-5 149-190-6 149-190-7	(MRC 107-KS) (Ball Dia No. Balls Raceway Shaft RPS	EUBE OIL PUMP DRIVE SHAFT - dB = 0.3125 - m = 11 - d ₁ = 1.5882 - d ₂ = 2.2132 - f _R = 74.995)	fr 75 fr 31 fb 222 fb 444 3fb' 1332 f ₁ 480 f ₂ 345	0.007320 0.003025 0.021669 0.043339 0.130014 0.046852	0.0036 0.0014 0.0131 0.0262 0.1025 0.0300

TABLE XXIX. INDEXED SUMMARY OF SONIC FREQUENCIES - CH-47A/B HELICOPTERS

Reference Table	Title - Components	Ratio To Engine Rotor Speed	Frequency (Hz)
I	T55-L-5, -7 GAS PRODUCER SECTION, COMPRESSOR ROTOR BLADE PASSAGE	(N ₁)	
	c_1	28.0000 N ₁	6552
	C_2	36.0000 N ₁	8424
	c_3	40.0000 N ₁	9360
	C4-5	48.0000 N ₁	11232
	C6-7	50.0000 N ₁	11700
	$c_{\mathbf{C}}$	34.0000 N ₁	7956
п	T55-L-5, -7 GAS PRODUCER SECTION, TURBINE ROTOR BLADE PASSAGE	(N ₁)	
	T ₁	84.0000 N ₁	19656
ш	T55-L-5, -7 POWER TURBINE SECTION, ROTOR BLADE PASSAGE	(N ₂)	
	T_2	66.0000 N2	16682
	T_3	56.0000 N ₂	14 155
VI	T55-L-5, -7 ACCESSORY DRIVE TRAINS GEAR TOOTH CONTACT	(N ₁)	
	Inner Bevel Main Drive	39.0000 N ₁	9126
	Outer Accessory Drive Bevel Accessory Xmsn Main Train	14.0000 N ₁	3276
	(N ₁ Locking Signal)	8.7500 N ₁	2047

	TABLE XXIX - Continue	ed	
Reference Table	Title - Components	Ratio To Engine Rotor Speed	Frequency (Hz)
IX	T55-L-5, -7 ACCESSORY DRIVE AND XMSN TRAINS, GEAR TOOTH CONTACT	(N ₂)	
	Torquemeter Actuating Drive	42.0151 N2	10620
	Overspeed Drive Bevel, Inner	16. 1532 N ₂	4083
	Overspeed Control Bevel, Outer Overspeed Control Drive	_	2450
	Idler Train and Cluster N2 Tachometer Drive Bevel	9.6927 N ₂	2450
	(not used)	$5.4794 N_2$	1385
xiv	ENGINE XMSNS (NO. 1, NO. 2), GEAR TRAIN, TOOTH CONTACT	(N ₂)	
	Spiral Bevel Train	33.9997 N ₂	8 594
xvı	COMBINING TRANSMISSION GEAR TRAINS, TOOTH CONTACT	(N ₂)	
	Spiral Bevel, Main Power	26.0873 N ₂	6594
	Lube Oil Pump Drive	14.9070 N2	376 8
	Lube Oil Pump Drive	13.9734 N ₂	3532
xxı	AFT ROTOR TRANSMISSION GEAR TRAIN TOOTH CONTACT Input Bevel Drive (N ₂ Locking	(N ₂)	
	Signal)	13.5105 N2	3415
	1st Stage Planetary (f _I)	5.8671 N ₂	1483
	2nd Stage Planetary (f_{II})	1.6062 N ₂	406
ххш	AFT ROTOR TRANSMISSION ACCESSORY DRIVE AND XMSN GEAR TRAIN TOOTH CONTACT	(N ₂)	
	Oil Cooling Fan Bevel	16.7704 N2	4239
	Accessory Drive Bevel, Aft	19.6031 N ₂	4955
	Accessory Drive Main Train	16.3352 N ₂	4129

Reference Table	Title - Components	Ratio To Engine Rotor Speed	Frequency (Hz)
XXVII	FORWARD ROTOR XMSN GEAR TRAIN TOOTH CONTACT Input Bevel Drive (N2 Locking	(N ₂)	
	Signal)	13.5105 N2	3415
	1st Stage Planetary (f _I)	5.8671 N2	1483
	2nd Stage Planetary (f _{II})	$1.6062 N_2$	406
XXIX	FORWARD ROTOR XMSN ACCESSORY DRIVE GEAR TRAIN TOOTH CONTACT	(N ₂)	
	Lube Oil Pump Drive N ₂ Tachometer Drive	14.8358 N ₂	3750

TABLE XXX. FUNDAMENTAL ROTATIONAL SHAFT SPEEDS - CH-47A/B HELICOPTERS

		• •	
		Ratio To	
Table		Engine Rotor	Speed
Reference	Shaft Identification	Speed	(RPS)
I	T55-L-5, -7 COMPRESSOR ROTOR	1.00000 N ₁	234.00
II	T55-L-5, -7 POWER TURBINE		
	ROTOR	$1.00000 N_2$	252.77
VI	T55-L-5, -7 ENGINES		
	N ₁ ACCESSORY DRIVE AND XMSN		
	N ₁ Gas Producer Bevel Pinion	1.00000 N1	234.00
	Inner Bevel, Idler	0.72222 N ₁	169.00
	Radial Bevel Accessory Drive	1.00000 N ₁	234.00
	Radial Bevel Starter Drive	1.00000 N ₁	234.00
	Outer Accessory Drive Bevel	0.58333 N ₁	136.50
	Power Control Drive	0.22435 N ₁	52.50
	Oil Pump Drive	0.22435 N ₁	52.50
	Fuel Filter Drive	0.22435 N ₁	52.50
IX	T55-L-5, -7 ENGINES		
	N2 ACCESSORY DRIVE AND XMSN		
	Torquemeter Actuating Sleeve	1.00000 N2	252.77
	Overspeed Drive Shaft, Inner	1.07690 N ₂	272.21
	Overspeed Drive Shaft, Radial	0.64615 N ₂	1.3.33
	Overspeed Control Drive Shaft, Outer Bevel	0.48461 N_2	122.50
	Overspeed Control Drive Idler	0.34615 N2	87.50
	Overspeed Control Drive Idler Cluster	0.37278 N ₂	94.23
	Overspeed Control Output Bevel Drive	$0.42140 N_2$	106.52
	N ₂ Tachometer Drive Shaft	$0.27391 N_2$	69.24
xıv	ENGINE XMSNS, NOS. 1 & 2		
	Input Bevel Pinion	1.00000 N ₂	252.77
	Output Bevel Driven	0.79061 N ₂	199.84

	TABLE XXX - Continu	ed	
Table Reference	Shaft Identification	Ratio To Engine Rotor Speed	Speed (RPS)
ххш	AFT ROTOR XMSN, ACCESSORY		
	DRIVE AND ACCESSORY XMSN		
	Accessory Drive Quill	0.54453 N2	137.64
	Accessory Drive Idler, (2) each Flight Control Hydraulic Pump	0.45378 N2	114.70
	Drive, (2) each	0.26348 N2	66.60
	Hydraulic Motor Drive	0.52697 N2	133.20
	Alternator Drive	0.56269 N ₂	142.23
	Axial Piston Pump Drive	0.30823 N ₂	77.91
	Lube Oil Pump Drive	_	
XXVII	FORWARD ROTOR XMSN		
	Input Bevel Pinion (Aft		
	Synchronizing Shaft)	0.46588 N2	117.76
	Bevel Ring & 1st Stage Sun Gear	•	
	(High Speed)	0.26491 N2	66.96
	1st Stage Sun (relative to 1st	-	
	Stage Carrier)	0.20596 N2	52.97
	1st Stage Sun (relative to 2nd	-	
	Stage Carrier)	0.24976 N2	63.13
	1st Stage Planets (relative to	_	
	1st Stage Carrier)	0.15046 N2	38.03
	1st Stage Carrier & 2nd Stage Sun	0.05535 N ₂	13.99
	2nd Stage Sun (relative to	-	
	Stationary Ring Gear)	0.05535 N ₂	13.99
	2nd Stage Sun (relative to 2nd	-	
	Stage Carrier)	0.04020 N2	10.16
	2nd Stage Sun (relative to 1st	_	
	Stage Carrier)	(Common)	0.00
	2nd Stage Planets (relative to		
	2nd Stage Carrier)	0.04870 N ₂	12.31
	2nd Stage Carrier (Output & Aft		
	Rotary-Wing Drive Shaft)	0.01515 N2	3.83

	TABLE XXX - Continued		
		Ratio To	
Table		Engine Rotor	Speed
Reference	Shaft Identification	Speed	(RPS)
XVI	ENGINE COMBINING XMSN		
	Input Bevel Drive	$0.79061 N_2$	199. 84
	Output, Forward and Bevel	$0.46588 N_2$	117.76
	Mixture Idler Shaft	0.29814 N ₂	75.36
	L.O. Pump Drive Shaft	$0.33125 N_2$	83.73
XIX,XX	FORWARD AND AFT		
•	SYNCHRONIZING SHAFTS		
	Forward Synchronizing Shaft	0.46588 N2	117.76
	Aft Synchronizing Shaft	0.46588 N2	117.76
	J		
XXI	AFT ROTOR XMSN		
	Input Bevel Pinion (Aft		
	Synchronizing Shaft)	0.46588 N2	117.76
	Oil Cooling Blower Bevel	0.32251 N ₂	81.52
	Accessory Drive Quill	0.54453 N ₂	137.64
	Bevel Ring & 1st Stage Sun Gear	_	
	(High Speed)	$0.26491 N_2$	66.96
	1st Stage Sun (relative to 1st		
	Stage Carrier)	0.20596 N2	52.97
	1st Stage Sun (relative to 2nd	-	
	Stage Carrier)	0.24976 N2	63.13
	1st Stage Planets (relative to	-	
	1st Stage Carrier)	0.15046 N2	38.03
	1st Stage Carrier & 2nd Stage Sun	0.05535 N ₂	13.99
	2nd Stage Sun (relative to	2.2	
	Stationary Ring Gear)	0.05535 N2	13.99
	2nd Stage Sun (relative to 2nd	1.2	20,00
	Stage Carrier)	0.04020 N2	10.16
	2nd Stage Sun (relative to 1st		-0, 20
	Stage Carrier)	(Common)	0.00
	2nd Stage Planets (relative to	(20)	0.00
	2nd Stage Carrier)	0.04870 N2	12.31
	2nd Stage Carrier (Output & Aft	112	22.01
	Rotary-Wing Drive Shaft)	0.01515 N2	3.83
	,		

Table		Ratio To	
Table Reference	Shaft Identification	Engine Rotor Speed	Speed (RPS)
XXIX	FORWARD ROTOR XMSN		
	ACCESSORY DRIVE		
	N ₂ Tachometer Drive Shaft		
XXVI	FORWARD AND AFT ROTARY		
	WING DRIVE SHAFTS		
	Forward Rotary Wing Drive Shaft	0.01515 N2	3.83
	Aft Rotary Wing Drive Shaft	0.01515 N2	3.83

TABLE XXXL SUMMARY - CH-47A COMPOUND PLANETARY SPEEDS*
(Forward & Aft Rotor Transmissions are Identical in Gear Ratios)

Gear Data	1st Stage	2nd Stage
T _S = No. of Teeth - Sun Gear	28	40
Tp = No. of Teeth - Planet	39	33
TR = No. of Teeth - Ring Gear	106	106
WS = Angular Speed of Sun Relative to Ring Gear (Input)	66.96 RPS	13.99 RPS
W's = Angular Speed of Sun Relative to Carrier		
$= (W_S - W_C)$	52.97 RPS	10.16 RPS
Wp = Angular Speed of Planet Relative to Carrier	38.03 RPS	12.31 RPS
WR = Angular Speed of Ring Gear	0	0
W _C = Angular Speed of Carrier Relative to Ring		
Gear (Output)	13.99 RPS	3.83 RPS
W_S/W_C = Overall Speed Reduction	4.786	3.6499
Planetary Tooth Contact Frequency	1.483 Hz	406.2 Hz
$(W_PT_P = W_CT_R = W_ST_S = (W_S - W_C) T_S$		
Tooth Contact Frequency of Spiral Bevel Input Drive Train	3415 Hz	-
n = No. of Planet Gears/Stage	4	6

TABLE XXXII. MODEL CH-47A/B HELICOPTERS RECORDED DURING MICROPHONE SURVEY AT U.S. ARMY AVIATION CENTER, FORT RUCKER, ALABAMA

		Engine No. 1	Engine No. 2
Recording No.	Helicopter No.	Serial No.	Serial No.
,			
1-10	66-19115	-	-
1-11	63-7911	-	-
1-12	61-2123	-	-
1-13	61-2123	-	-
1-14	61-2123	-	-
2-10	63-7911	LE-01158	LE-01164
2-11	61-2415	LE-05769	LE-04440
2-12	61-9003	LE-04110	LE-04234
2-13	61-9139	LE-05564	LE-05576
2-14	62-2114	LE-01042	LE-01108
2-15	61-2408	LE-05743	LE-04839
2-16	61-2423	LE-05740	LE-01092

	TABLE XXXIII	ACOU	STIC L	ACOUSTIC LOG SHEETS SONIC ANALYZER PROC	' દ્ર	CH-47A/B HELICOPTER, AM NO, 2011	LICOPT	ЕК	
Item						Ratio	Gains	Cond	Cond
Š	Component Description	Mode	Mike	Chan	Lock N	Set	II-II	Limit	Level
-	Start AFT Rotor XMSN Trains				81			Start	0
83	Clear				81			Clear	0
က	N2 Calibrate	က	က	က	8	0.2257	05-20	Peak	0
4	Mike 3 Noise Normalize	က	က	က	8	0.4444	10-30	Set 5	0
ß	Input Spiral Bevel Fund	က	က	က	8	0.2525	04-10	Read	0
9	2nd Harmonic Monitor	က	က	က	2	0.5253	07-20	Read	0
2	Sideband Monitor	က	က	က	8	0.2446	08-20	Read	0
0 0		က	က	က	8	0.2605	08-20	Read	0
6		က	က	က	8	0.2473	06 - 20	Read	0
10		က	က	က	2	0.2560	06-20	Read	0
11	Fund Normalize	က	က	က	2	0.2525	00-10	Set 5	0
12	2nd Harmonic Ratio	က	က	က	83	0.5253	03 - 20	Read	0
13	Sideband Ratios	က	က	က	2	0.2367	06 - 20	Read	0
14	Bevel Input	က	က	က	2	0.2446	04-20	Read	0
15		က	က	က	8	0.2560	04 - 20	Read	0
16		က	က	က	2	0.2613	06 - 20	Read	0
17	1st Stage Sun	က	က	က	8	0.2440	06 - 20	Read	0
18		က	က	က	7	0.2473	02 - 20	Read	0
19		က	က	က	7	0.2560	02 - 20	Read	0
20		က	က	က	8	0.2613	06 - 20	Read	0
21	Mike 3 Noise Normalize Check	က	က	က	8	0.4444	10-30	Set 5	0
22	1st Stage Planetary Fund	က	က	က	8	0, 1121	10-00	Read	0
53	2nd Harmonic Monitor	က	က	က	81	0.2242	03-20	Read	0
24	Sideband Monitor	က	က	က	7	0.1066	04 - 20	Read	0
22		က	က	က	7	0.1154	01 - 20	Read	0
56		က	က	က	7	0.1102	03-20	Read	0

- 1			rable	шххх	TABLE XXXIII - Continued	Ę.			
Item						Ratio	Gains	Cond	Cond
Š	Component Description	Mode	Mike	Chan	Lock N	Set	п-1	Limit	Level
24		6	c	e	c	01170	00	Ę,	•
8	Fund Normalize	, m	. r	° °	1 c		00-10	Sot 5	
9 6	The state of the s	,	o 6	9 6	4 (01-00	c lac	> '
53	Sideband Ratios	က	က	က	81	0.1033	06 - 20	Read	0
30	1st Stage Sun	က	က	က	87	0.1066	04-20	Read	0
31		က	က	က	7	0.1154	01 - 20	Read	0
32		က	က	က	8	0.1206	04 - 20	Read	0
33	1st Stage Planets	က	က	က	7	0.1063	06 - 20	Read	0
34		ო	က	က	8	0.1102	03-20	Read	0
35		က	က	က	2	0.1140	08-10	Read	0
36		က	က	က	8	0.1157	02 - 40	Read	0
37	1st Stage Sun Rel Carr	က	က	က	87	0.1074	08-20	Read	0
38		က	က	က	87	0.1146	08-10	Read	0
39	Mike 3 Noise Normalize	က	က	က	81	0.4444	10-30	Chk 5	•
9	Mike 4 Noise Normalize	က	4	7	87	0.4444	10-30	Set 5	0
41	2nd Stage Planetary Fund	က	4	7	87	0.0242	09-10	Read	0
42	2nd Harmonic Monitor	က	4	-	7	0.0505	06-20	Read	0
43	Fund Normalize	က	4	-	87	0.0242	00-10	Set 5	0
4	Sideband Ratios	က	4	,	87	0.0236	03-10	Read	0
45	2nd Stage Planets	က	4	7	7	0.0247	02-10	Read	0
46	1st Stage Planets	က	4	1	2	0.0375	04-10	Read	0
47		က	4	-	7	0.0531	01-10	Read	0
48		က	4	-	8	0.1017	03-10	Read	0
49		က	4	-	7	0.0070	05-10	Read	0
20		က	4	-	8	0.0415	03-10	Read	0
21	Clear				8			Clear	0

			SONIC ANALYZER PROC	LYZER	H.	AM NO. 2021	1		
Item No.	Component Description	Mode	Mike	Chan	Lock N	Ratio Set	Gains I-II	Cond	Cond
-	Start Fwd Rotor XMSN Trains				67		i i	Start	
8					8			Clear	0
က	N2 Calibrate	4	7	1	87	0, 2257	05-20	Peak	0
4	Mike 3 Noise Normalize	4	7	1	87	0.4444	10-30	Set 5	0
သ	Input Spiral Bev Fund	4	7	-	8	0, 2525	04-10	Read	0
9	2nd Harmonic Monitor	4	7	-	81	0.5253	07-20	Read	0
7	Sideband Monitor	4	7	-	8	0.2446	09-50	Read	0
∞		4	7	1	8	0.2605	09-50	Read	0
6		4	7	7	81	0.2473	07-20	Read	0
10		4	7	7	81	0.2560	07-20	Read	0
11	Fund Normalize	4	7	-	8	0.2525	00-10	Set 5	0
12	2nd Harmonic Ratio	4	7	-	8	0.5253	03-20	Read	0
13	Sideband Ratios	4	7	-	8	0.2367	08-20	Read	0
14	Bevel Input	4	2	1	8	0.2446	05-20	Read	0
15		4	2	-	7	0.2560	05-20	Read	0
16		4	7	1	5	0.2613	08-20	Read	0
17	1st Stage Sun	4	2	1	87	0.2440	07 - 20	Read	0
18		4	2	7	77	0.2473	03 - 20	Read	0
19		4	7	1	8	0.2560	03-20	Read	0
20		4	7	1	87	0.2613	07 - 20	Read	0
21	Mike 3 Noise Normalize Check	4	7	-	73	0.4444	10-30	Set 5	0
25	1st Stage Planetary Fund	4	2	1	7	0.1121	10-00	Read	0
23	2nd Harmonic Monitor	4	7	1	7	0.2242	03 - 20	Read	0
24	Sideband Monitor	4	7	-	2	0, 1066	10-10	Read	0
25		4	7	1	2	0.1154	10-10	Read	0
56		4	7		5	0.1102	08-10	Read	0

set I-II 1140			TABI	TABLE XXXIV - Continued	V - Con	itinued				
Component Description Mode Milés Chan Lock N Set I-II	Rem						Ratio	Gains	Cond	Cond
Fund Normalize Sideband Ratios 1st Stage Sun 4 7 1 1 2 0.1140 04-10 1st Stage Planets 4 7 1 1 2 0.1056 00-20 1st Stage Planets 4 7 1 1 2 0.1056 00-20 1st Stage Planets 4 7 1 1 2 0.1164 00-20 1st Stage Planets 4 7 1 1 2 0.1165 06-20 1st Stage Planets 4 7 1 1 2 0.1167 04-10 4 7 1 1 2 0.1167 04-10 2nd Stage Planetary Fund 4 7 1 1 2 0.1167 01-20 2nd Stage Planetary Fund 5 8 2 2 0.0245 09-10 2nd Stage Planets 4 8 2 2 0.0245 09-10 2nd Stage Planets 4 8 2 2 0.0246 03-10 2nd Stage Planets 4 8 2 2 0.0247 02-10 2nd Stage Planets 4 8 2 2 0.0275 04-10 2nd Stage Planets 4 8 2 2 0.0275 04-10 2nd Stage Planets 4 8 2 2 0.0275 04-10 2nd Stage Planets 4 8 2 2 0.0275 04-10 2nd Stage Planets 4 8 2 2 0.0275 04-10 2nd Stage Planets 4 8 2 2 0.0277 02-10 2nd Stage Planets 5 0.0077 02-10 2nd Stage Planets 6 8 2 2 0.0277 02-10 2nd Stage Planets 6 9 0.0277 02-10 2nd Stage Planets 7 0 0.0277 02-10 2nd Stage Planets 7 0 0.0277 02-10 2nd Stage Planets 8 0 0.0277 02-10	ટ્રે	Component Description	Mode	Mike	Chan	Lock N	Set	п-п	Limit	Level
Fund Normalize Sideband Ratios Ist Stage Sum 4 7 1 2 0.1033 06-20 Ist Stage Sum 4 7 1 1 2 0.1066 00-20 Ist Stage Planets 4 7 1 1 2 0.1154 00-20 Ist Stage Planets 4 7 1 1 2 0.1155 06-20 Ist Stage Planets 4 7 1 1 2 0.1165 06-20 Ist Stage Planets 4 7 1 1 2 0.1167 04-10 Mike 7 Noise Normalize Check 4 7 1 1 2 0.1174 05-20 Mike 8 Noise Normalize Check 4 7 1 1 2 0.1174 05-20 Mike 8 Noise Normalize 5 20 4444 10-30 2nd Stage Planetary Fund 4 8 2 2 0.0242 09-10 Sideband Ratios 5 20 0.0242 09-10 Sideband Ratios 5 20 0.0247 02-10 Ist Stage Planets 4 8 2 2 0.0247 02-10 Ist Stage Planets 4 8 2 2 0.0247 02-10 Ist Stage Planets 4 8 2 2 0.0247 02-10 Ist Stage Planets 4 8 2 2 0.0247 02-10 Ist Stage Planets 4 8 2 2 0.0247 02-10 Ist Stage Planets 4 8 2 2 0.0247 02-10 Ist Stage Planets 4 8 2 2 0.0247 02-10 Ist Stage Planets 4 8 2 2 0.0247 02-10 Ist Stage Planets 4 8 2 2 0.0247 02-10 Ist Stage Planets 5 0.0247 02-10 5 0.0247 02-10 Ist Stage Planets 5 0.0247 02-10 5	27		4	7	-	81		04-10	Read	0
Sideband Ratios	28	Fund Normalize	4	2	-	8	0.1121	00-10	Set 5	0
1st Stage Sun 4 7 1 2 0.1066 00-20 4 7 1 2 0.1154 00-20 1st Stage Planets 4 7 1 2 0.1063 04-20 4 7 1 2 0.1102 08-10 4 7 1 2 0.1140 04-10 4 7 1 2 0.1140 04-10 Mike 7 Noise Sun Rel Carr 4 7 1 2 0.1140 04-10 Aike 8 Noise Sun Rel Carr 4 7 1 2 0.1140 04-10 Aike 8 Noise Normalize 4 7 1 2 0.1146 06-10 2nd Stage Planetary Fund 4 8 2 0 0.242 09-10 2nd Stage Planetary Fund 4 8 2 2 0 0.242 09-10 Sideband Ratios 4 8 2 2 0 0.242 09-10 Sideband Ratios 4 8 2 2 0 0.242 09-10 2nd Stage Planeta 4 8 2 2 0 0.0547 01-10 4 8 2	23	Sideband Ratios	₹	7	-	8	0, 1033	06-20	Read	0
1st Stage Planets	30	1st Stage Sun	4	7	7	8	0.1066	00-20	Read	0
1st Stage Planets	31		4	7	7	8		00-20	Read	0
1st Stage Planets	32		4	7	-	8	0, 1205	06-20	Read	0
1st Stage Sun Rel Carr	8	1st Stage Planets	4	2	-	8	0.1063	04-20	Read	0
1st Stage Sun Rel Carr	ಕ		4	2	1	8		08-10	Read	•
1st Stage Sun Rei Carr	35		4	1	-	8	0.1140	04-10	Read	0
1st Stage Sun Rel Carr 4 7 1 2 0.1074 05-20 Mike 7 Noise Normalize Check 4 7 1 2 0.1146 06-10 Mike 8 Noise Normalize 4 8 2 2 0.444 10-30 2nd Stage Planetary Fund 4 8 2 2 0.0444 10-30 2nd Harmonic Monitor 4 8 2 2 0.0505 06-20 Fund Normalize 4 8 2 2 0.0505 06-20 Sideband Ratioe 4 8 2 2 0.0242 00-10 Sideband Ratioe 4 8 2 2 0.0247 02-10 2nd Stage Planets 4 8 2 2 0.0247 02-10 1st Stage Planets 4 8 2 2 0.0375 04-10 4 8 2 2 0.0551 01-10 4 8 2 2 0.0577 0.0415 03-10	36		*	1	1	8		01 - 20	Read	0
Mike 7 Noise Normalize Check 4 7 1 2 0.1146 06-10 Mike 8 Noise Normalize 4 7 1 2 0.444 10-30 2nd Stage Planetary Fund 4 8 2 2 0.0242 09-10 2nd Harmonic Monitor 4 8 2 2 0.0242 09-10 Fund Normalize 4 8 2 2 0.0242 00-10 Sideband Ratios 4 8 2 2 0.0242 00-10 Sideband Ratios 4 8 2 2 0.0247 02-10 2nd Stage Planets 4 8 2 2 0.0247 02-10 1st Stage Planets 4 8 2 2 0.0247 02-10 4 8 2 2 0.0375 04-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0537 0.0415 03-10	37		~	7	1	8		05-20	Read	•
Mike 7 Noise Normalize Check 4 7 1 2 0.4444 10-30 Mike 8 Noise Normalize 4 8 2 2 0.4444 10-30 2nd Stage Planetary Fund 4 8 2 2 0.0242 09-10 2nd Harmonic Monitor 4 8 2 2 0.0542 00-10 Fund Normalize 4 8 2 2 0.0242 00-10 Sideband Ratios 4 8 2 2 0.0242 00-10 Sideband Ratios 4 8 2 2 0.0247 02-10 2nd Stage Planets 4 8 2 2 0.0247 02-10 1st Stage Planets 4 8 2 2 0.0247 02-10 4 8 2 2 0.0247 00-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.070 0.0415 03-10	38		+	-	-	8		06-10	Read	0
Mike 8 Noise Normalize 4 8 2 2 0.444 10-30 2nd Stage Planetary Fund 4 8 2 2 0.0242 09-10 2nd Harmonic Monitor 4 8 2 2 0.0505 06-20 Fund Normalize 4 8 2 2 0.0242 00-10 Sideband Ratios 4 8 2 2 0.0247 02-10 2nd Stage Planets 4 8 2 2 0.0247 02-10 1st Stage Planets 4 8 2 2 0.0247 02-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0670 05-10 4 8 2 2 0.0770 05-10 4 8 2 2 0.0415 03-10	39	•	4	7	-	8		10-30	Chk 5	0
2nd Stage Planetary Fund 4 8 2 0.0242 09-10 2nd Harmonic Monitor 4 8 2 2 0.0505 06-20 Fund Normalize 4 8 2 2 0.0242 00-10 Sideband Ratios 4 8 2 2 0.0247 00-10 2nd Stage Planets 4 8 2 2 0.0247 02-10 1st Stage Planets 4 8 2 2 0.0375 04-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0070 05-10 5 0 0.0415 0.0415 0.0415	\$	Mike 8 Noise Normalize	*	œ	8	~	0.4444	10-30	Set 5	0
2nd Harmonic Monitor 4 8 2 2 0.0505 06-20 Fund Normalize 4 8 2 2 0.0242 00-10 Sideband Ratios 4 8 2 2 0.0236 03-10 2nd Stage Planets 4 8 2 2 0.0247 02-10 1st Stage Planets 4 8 2 2 0.0375 04-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0571 05-10 4 8 2 2 0.0415 05-10	7	2nd Stage Planetary Fund	+	œ	8	8	0.0242	09-10	Read	0
Fund Normalize 4 8 2 2 0.0242 00-10 Sideband Ratios 4 8 2 2 0.0247 02-10 2nd Stage Planets 4 8 2 2 0.0247 02-10 1st Stage Planets 4 8 2 2 0.0247 02-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.0670 05-10 4 8 2 2 0.0415 03-10	7	2nd Harmonic Monitor	-	œ	8	8	0.0505	06-20	Read	0
Sideband Ratios 4 8 2 2 0.0236 03-10 2nd Stage Planets 4 8 2 2 0.0247 02-10 1st Stage Planets 4 8 2 2 0.0375 04-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.1017 03-10 4 8 2 2 0.0070 05-10 4 8 2 2 0.0415 03-10	3	Fund Normalize	4	œ	8	8	0.0242	00-10	Set 5	0
2nd Stage Planets 4 8 2 2 0.0247 02-10 1st Stage Planets 4 8 2 2 0.0375 04-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.1017 03-10 4 8 2 2 0.0070 05-10 4 8 2 2 0.0415 03-10	\$	Sideband Ratios	•	œ	8	~	0.0236	03-10	Read	0
1st Stage Planets 4 8 2 2 0.0375 04-10 4 8 2 2 0.0531 01-10 4 8 2 2 0.1017 03-10 4 8 2 2 0.0070 05-10 4 8 2 2 0.0415 03-10	45	2nd Stage Planets	~	œ	8	~	0.0247	02-10	Read	0
4 8 2 2 0.0531 01-10 4 8 2 2 0.1017 03-10 4 8 2 2 0.0070 05-10 4 8 2 2 0.0415 03-10	\$	1st Stage Planets	•	œ	8	64	0.0375	04-10	Read	•
4 8 2 2 0.1017 03-10 4 8 2 2 0.0070 05-10 4 8 2 2 0.0415 03-10	41		+	œ	8	8		01-10	Read	0
4 8 2 2 0.0070 05-10 4 8 2 2 0.0415 03-10	\$		•	∞	64	61		03-10	Read	0
4 8 2 2 0.0415 03-10	4		~	60	8	~	0.0010	05-10	Read	0
	ୟ		•	6 0	8	~	0.0415	03-10	Read	•
51 Clear 2 2	21	Clear			(1)	8			Clear	0

	TABLE XXXV. AC	ACOUSTIC LOG SHEETS - CH-47A SONIC ANALYZER PROGRAM NO.	LOG SHI	EETS - PROGRA	CH-47A/1	- CH-47A/B HELICOPTER, RAM NO, 2031	PTER		9
Item No.	Component Description	Mode	Mike	Chan	Lock N	Ratio Set	Gains I-II	Cond	Cond
H	Start Comb XMSN Gear Trains				c			t	c
8	Clear				1 0			Clear	
ო	N2 Calibrate	0	0	0	~ ~1	0. 2257	05-20	Peak	•
4	Mike 6 Normalize	-	9	1	8	0.4444	10-20	Set 5	0
သ	Spiral Bevel Pwr Tr Fund	-	9	7	8	0.5114	01-10	Read	•
9	2nd Harmonic Monitor	-	9	-	8	1. 2231	01-30	Read	0
7	L O Pump Dr Tr Monitor	-	9	1	8	0.2742	01-30	Read	0
0 0	Fund Normalize	-	9	-	8	0.5114	00-10	Set 5	•
6	2nd Harmonic Ratio		9	-	8	1, 2231	05-20	Read	0
10	S/B 2nd Upper Input	-	9	-	87	0.5354	07-10	Read	•
11	S/B 4th Upper Input	1	9	-	2	0.5614	09-10	Read	0
12	S/B 6th Upper Input	_	9	1	8	0.6054	09-10	Read	0
13	S/B 1st Lower Input	-	9	1	7	0.4774	05-10	Read	•
14	S/B 3rd Lower Input	-	9	-	8	0.4534	00-04	Read	c
15	S/B 5th Lower Input	-	9	1	8	0.4274	09-10	Read	0
16	S/B 2nd Upper Output	-	9	-	8	0.5253	07-10	Read	0
17	S/B 4th Upper Output	-	9	1	7	0.5411	09-10	Read	0
18	S/B 6th Upper Output	-	9	-	8	0.5547	09-10	Read	0
19	S/B 1st Lower Output	-	9	-	8	0.5035	02-10	Read	0
20	S/B 3rd Lower Output		9	1	8	0.4677	08-10	Read	0
21	S/B 5th Lower Output	-	9	-	8	0.4540	09-10	Read	0
22	Fund Norm Check		9	1	8	0.5114	00-10	Check 5	0
83	Clear				87			Clear	0

	TABLE XXXVI	ACOUS	STIC LC	G SHE	ACOUSTIC LOG SHEETS - CH-47A SONIC ANALYZER PROGRAM NO.	ACOUSTIC LOG SHEETS - CH-47A/B HELICOPTER, SONIC ANALYZER PROGRAM NO. 2041	LICOPT	ЕВ	
Item No.	Component Description	Mode	Mike	Chan	Lock N	Ratio Set	Gains I-II	Cond	Cond
•					(
	Start No. 1 Engine XMSN				8				0
87	Clear				7				0
က	N2 Calibrate	-	-	87	7	0.2257	05-20	Peak	0
4	Mike 1 Normalize	-	1	7	2	0.4444	10-20	Set 5	0
ည	Spiral Bev Tr Fund	-	-	8	7	0.6554	07-20	Read	0
9	Pinion Brg Outboard	1	1	7	2	0.0730	02 - 30	Read	0
7	652-1		1	8	87	0.2611	01-30	Read	0
∞		1	-	8	87	0.1332	03-30	Read	0
6		1	1	8	81	0.0742	04-30	Read	0
10					81				0
11	Pinion Brg Intermediate	1	-	7	8	0.0673	04-30	Read	0
12	641-1	1	-	8	7	0.2463	01 - 30	Read	0
13		-	-	8	83	0.1342	02-30	Read	0
14		-	_	8	8	0.0733	03-30	Read	0
15					7				0
91	Pinion Brg Inboard	1	-	87	7	0.0745	01-30	Read	0
17	653-1	-	-	8	8	0.2657	02-30	Read	0
18		1	-	83	81	0.1330	04-30	Read	0
19		-	-	87	87	0.0745	04-30	Read	0
20					81				0
21	Output Brg Inter	-	-	84	81	0.0564	06-30	Read	0
22	644-2	-	-	8	N	0.2133	01-30	Read	0
ឌ		-	-	8	61	0.1102	04-30	Read	0
24		_	-	87	81	0.0575	04-30	Read	•
25					7				0
56	Output Brg Upper	1	1	7	8	0.1046	04-30	Read	•

		TAB	TABLE XXXVI - Continued	VI - Co	ntinued				
Item						Ratio	Gains	Cond	Cond
Š	Component Description	Mode	Mike	Chan	Lock N	Set	II-I	Limit	Level
27	643-1	-	1	8	87	0.3162	01-30	Read	0
28		-	_	8	2	0, 1121	02 - 30	Read	0
29		-	-	7	2	0.0675	06-30	Read	0
30					2				0
31	Output Brg Lower	-	-	87	8	0.1720	02 - 30	Read	0
32	645-4	-	-	2	2	0.5556	02 - 30	Read	0
33		-	-	8	8	0.2143	01 - 30	Read	0
34		-	-	8	2	0.1672	02 - 30	Read	0
35	Mike 1 Normalize Check	-	-	8	8	0.4444	10 - 20	Set 5	0
36	Clear				2				0
37	Start				8				0
38	Start				2				0
39	Start				21				0
40	Start				2				0
41	Start No. 2 Engine XMSN				21				0
45	Clear				2				0
43	N2 Calibrate	21	21	87	21	0.2257	05-20	Peak	0
44	Mike I Normalize	÷1	?1	2	21	0.4444	10 - 20	Set 5	0
45	Spiral Bev Tr Fund	21	?1	21	21	0.6554	07 - 20	Read	0
46	Pinion Brg Outboard	21	21	21	21	0.0730	07 - 20	Read	0
47	652-1	21	2	21	23	0, 2611	01 - 30	Read	0
48		31	21	2	21	0.1332	08 - 20	Read	0
49		21	21	87	21	0.0742	07 - 20	Read	0
20					?1				0
5	Pinton Brg Intermediate	21	21	21	?1	0,0673	07 - 20	Read	0
25	641-1	21	2	21	21	0, 2463	06 - 20	Read	0
<u> </u>		?1	?1	?1	21	0. 1342	09 - 50	Read	0

		TAB	TABLE XXXVI - Continued	VI - Ca	ntfnucd				
Ren No.	Connonent Description	Mode	Mike	Chan	Lock N	Ratio	Cains I-II	Cond	Cond
ò									
Ä		: 1	2	2	8	0.0733	02-20	Read	0
55		÷1	?1	8	8				0
95	Pinion Brg Inboard	; N	2	2	23	0.0745	08 - 20	Read	0
57	653-1	21	ล	21	21	0.2657	08-50	Read	0
58		ห	2	?	21	0.1330	01 - 30	Read	0
59		ก	2	2	23	0.0745	07-20	Read	0
09		ผ	20	જા	ก				0
61	Output Brg Inter	21	21	21	81	0.0564	07 - 20	Read	0
62	644-2	21	ผ	21	8	0.2133	00-30	Read	0
63		:1	8	8	21	0.1102	00-30	Read	0
64		21	સ	8	2	0.0575	01-30	Read	0
65					21				0
99	Output Brg Upper	21	87	7	21	0.1046	09-30	Read	0
67	643-1	સ	21	8	21	0, 3162	02 - 30	Read	0
89		3 1	ผ	2	23	0.1121	07-50	Read	0
69		ล	21	7	7	0.0675	01 - 30	Read	0
70		31	ณ	8	8				0
71	Output Brg Lower	ผ	ผ	87	7	0.1720	02-30	Read	0
72	645-4	21	ম	87	8	0.5556	02-30	Read	9
73						0.2143	05-30	Read	0
74						0.1672	02 - 30	Read	0
75	Mike 2 Normalize Check	গ	63	2	2	0. 44-1-1	10-50	Read	0
92	Clear				87				0

	TABLE XXXVII,		FIC LOC	SHEET	ACOUSTIC LOG SHEETS - CH-47A SONIC ANALYZER PROGRAM NO.	ACOUSTIC LOG SHEETS - CH-47A/B HELLCOPTER, SONIC ANALYZER PROGRAM NO. 2051	COPTE		
Rem						Ratio	Gains	Cond	Cond
ġ Z	Component Description	Mode	Mike	Chan	Lock N	Set	I-II	Limit	Level
1	Start Brgs Aft Rotor XMSN	1			81				0
64	Clear				8				0
က	N2 Calibrate	က	0	0	2	0. 2257	05-20	Peak	0
4	Mike 4 Normalize	က	4	1	8	0.4444	10-30	Set 5	0
က	Mike 3 Normalize	က	က	က	7	0.4444	10-30	Set 5	0
ဖ	Rotor Shaft Lower Thrust	က	က	က	7	0.0324	01-30	Read	0
7	242-1	က	က	က	2	0.1174	00-30	Read	0
∞		က	က	က	7	0.0474	09-50	Read	0
6		က	က	က	8	0.0366	02-50	Read	0
91					63				0
11	Main Rotor Shaft	က	က	က	7	0.0453	00-30	Read	0
12	243-1	က	က	က	87	0.1600	03-30	Read	0
13		က	က	က	8	0.0665	03-30	Read	0
14		က	က	က	8	0.0556	02-30	Read	0
15					8				0
16	1st Stage Planet	က	က	က	7	0.0157	00-30	Read	0
17	244-13	က	က	က	7	0.0515	06-20	Read	0
18		က	က	က	87	0.0233	04-20	Read	0
19		က	က	က	7	0.0166	09-50	Read	0
0Z									•
21	1st Stage Carr Intershit	က	က	က	8	0.0052	07-20	Read	•
55	250-1	က	က	က	7	0.0200	08-20	Read	0
23		က	က	က	87	0.0050	06-20	Read	0
24		က	က	က	8	0.0041	06-20	Read	•
22					83				0
56	2nd Stage Planet	3	4		2	0.0032	09-20	Read	0

		TABLE	TABLE XXXVII - Continued	[- Cont	inued				
Item						Ratio	Gains	Cond	Cond
No.	Component Description	Mode	Mike	Chan	Lock N	Set	I-I	Limit	Level
26	-1- -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	c	4	-	c	0 0100	06 30	Dood	-
4 6	0-007	.	μ.	٠,	4	0.0120	07-00	read	>
87			4	-	21	0.0051	08 - 20	Read	0
59		က	4	1	7	0.0034	04 - 30	Read	0
30					7				0
31	2nd Stage Carr Output	က	4	1	2	0.0035	04 - 30	Read	0
32	274-1	က	4	1	7	0.0130	06-20	Read	0
33		ဇ	4	7	7	0.0031	06-30	Read	0
34		က	4	7	7	0.0027	05-30	Read	0
35					7				0
36	Input Gearshaft Outer	က	က	က	2	0.0525	01 - 20	Read	0
37	262-1	က	က	က	7	0, 1775	02-30	Read	0
38		က	က	က	7	0.1027	00-30	Read	0
39		က	က	က	67	0.0627	01-30	Read	0
40					7				.0
41	Input Gearshaft Dual Int	က	က	က	7	0.0355	05-20	Read	0
42	241-1 Outer	က	က	က	7	0, 1306	09-50	Read	0
43		က	က	က	87	0.0611	04-30	Read	0
4		က	က	က	87	0.0412	00-30	Read	0
45					7				0
46	Input Gearshaft Dual Int	ເລ	က	က	87	0.0563	02 - 30	Read	0
47	241-1 Inner	က	က	က	87	0.2132	00-30	Read	0
48		က	က	က	7	0, 1107	00-20	Read	0
49		က	က	က	7	0,0705	02-30	Read	0
20					7				0
51	Input Gearshaft Inner Thr	က	က	က	87	0.0447	08-20	Read	0
25	240-2	က	က	က	87	0.1567	03-30	Read	0
23		က	က	က	81	0.0663	03-30	Read	0
									1

Trem						Ratio	Gains	Cond	Cond
Š.	Component Description	Mode	Mike	Chan	Lock N	Set	п-п	Limit	Level
2		c	c	c	c	2440	90	Dood	•
5		2	2	9	7	0.0410	06-10	read	•
22					7				0
26	Mike 4 Norm Check	က	4	-	7	0.4444	10 - 30	Set 5	0
22	Mike 3 Norm Check	က	က	က	67	0.4444	10 - 30	Set 5	0
28	Clear Fwd Rotor XMSN Follow				7				0
29	Mike 8 Normalize	4	œ	7	7	0.4444	10-30	Set 5	0
09	Mike 7 Normalize	4	7	1	7	0.4444	10-30	Set 5	0
61	Rotor Shaft Lower Thrust	4	7	1	7	0.0230	01 - 30	Read	0
62	143-1	4	7	1	7	0.0711	08-30	Read	0
63		4	7	1	2	0.0353	06-30	Read	0
64		4	7	1	7	0.0247	07-30	Read	0
65					7				0
99	Main Rotor Shaft	4	7	1	2	0.0453	06 - 30	Read	0
29	243-1	4	7	1	2	0.1600	00-30	Read	0
89		4	7	-1	7	0.0665	06-30	Read	0
69		4	7	1	7	0.0556	07 - 30	Read	0
20					2				0
71	1st Stage Planet	4	7	1	7	0.0157	02 - 30	Read	0
72	244-13	4	7	1	7	0.0515	03 - 30	Read	0
73		4	7	1	2	0.0233	04 - 30	Read	0
74		4	7	-	7	0.0166	05-30	Read	0
15					2				0
92	1st Stage Carrier	4	7	1	2	0.0052	03 - 30	Read	0
11	250-1	4	7	1	2	0.0200	02 - 30	Read	0
48		4	7	1	2	0.0050	05-30	Read	0
43		4	7	1	2	0.0041	05 - 30	Read	0
80									

Item No.									STATE OF THE STATE
No.						Ratio	Gains	Cond	Cond
	Component Description	Mode	Mike	Chan	Lock N	Set	1-1	Limit	Level
81	2nd Stage Planet	4	œ	67	2	0.0032	03-30	Read	0
85	258-3	4	.00	2	2	0.0120	00-30	Read	0
83		4	o o	8	2	0.0051	02 - 30	Read	0
84		4	œ	2	2	0.0034	03 - 30	Read	0
85					2				0
98	2nd Stage Carr Output	4	œ	7	2	0.0035	03 - 30	Read	0
87	274-1	4	80	8	8	0.0130	00-30	Read	0
88		4	œ	8	2	0.0031	03 - 30	Read	0
89		4	œ	7	8	0.0027	03 - 30	Read	0
90					87				0
91	Input Gearshaft Outer	4	7	1	2	0.0525	03 - 30	Read	0
92	262-1	4	7	7	2	0.1775	06-30	Read	0
93		4	7	-	87	0.1027	03 - 30	Read	0
94		4	7	-	2	0.0627	06 - 30	Read	0
92					8				0
96	Input Gearshaft Dual Int	4	7	1	87	0.0355	04-30	Read	0
97	241-1 Outer	4	7	1	8	0.1306	05 - 30	Read	0
86		4	7	-	87	0.0611	05-30	Read	0
66		4	7	-	7	0.0412	04 - 30	Read	0
100									0
101	Input Gearshaft Dual Int	4	7	-	87	0.0563	03 - 30	Read	0
102	241-1 Inner	4	7	-	8	0.2132	05 - 30	Read	0
103		4	7	-	7	0.1107	01 - 30	Read	0
104		4	7	1	63	0.0705	05-30	Read	0
105									0
106	Input Gearshaft Inner Thr	4	7	-1	87	0.0447	05 - 30	Read	0
107		4	7	-	87	0.1567	07-30	Read	0

		TAI	SLE XX	куп - с	TABLE XXXVII - Continued	i			
Item No.	Component Description	Mode	Mike	Chan	Mike Chan Lock N	Ratio	Gains I-II	Cond	Cond
108 109 110	Mike 8 Normalize Check	41 4	r - a		81 81 8	0.0663	07-30	Read Read	0000
113	Mike 7 Normalize Check Clear	4 4 4) -	₹	N 01 01	0. 4444	10-30	Set 5 Clear	000
		,							

No. Component Description Mode Mike Chan Lock Set I-II Limit Lock Lock Set I-II Limit Lock		TABLE XXXVIII.	1	STIC L	OG SHE YZER 1	ACOUSTIC LOG SHEETS - CH-47A SONIC ANALYZER PROGRAM NO.	ACOUSTIC LOG SHEETS - CH-47A/B HELICOPTER, SONIC ANALYZER PROGRAM NO. 2061	ELICOPT	'ER,	
Start Brgs Combining XMSN	Rem No.	Component Description	Mode	Mike	Chan	Lock N	Ratio Set	Gains I-II	Cond	Cond
Clear N2 Calibrate Mike 3 Normalize Mike 3 Normalize Mike 5 Normalize Mike 6 Normalize Mike 6 Normalize Mike 6 Normalize Fwd Output Shaft Fwd 1 6 11 2 0.0506 05-20 549-1 Fwd Output Shaft Aft 1 6 11 2 0.0745 04-20 Coupling Shaft 1 6 11 2 0.0745 04-20 2 0.0420 2 0.0420 2 0.0420 2 0.0420 44 10-20 1 6 11 2 0.0745 04-20 2 0.0524 1 6 11 2 0.0777 09-20 550-1 Aft Output Shaft Interm 1 6 11 2 0.0750 07-20 544-1 1 6 11 2 0.0750 07-20 544-1 1 6 11 2 0.0750 07-20 544-1 1 6 11 2 0.0750 07-20 544-1 1 6 11 2 0.0532 05-20 544-1 1 6 11 2 0.0570 07-20 544-1 1 6 11 2 0.0570 07-20 544-1 1 6 11 2 0.0570 07-20 544-1 1 6 11 2 0.0570 07-20 544-1 1 6 11 2 0.0571 08-20 544-1 1 6 11 2 0.0571 08-20	-		1	•	ı	83	1	ı	Start	0
Mike 3 Normalize Mike 3 Normalize Mike 6 Normalize Mike 6 Normalize Mike 6 Normalize Fwd Output Shaft Fwd 1 6 11 2 0.4444 10-20 549-1 Fwd Output Shaft Aft 1 6 11 2 0.0745 04-20 549-1 Coupling Shaft 1 6 11 2 0.0745 04-20 550-1 Coupling Shaft 1 6 11 2 0.0745 04-20 550-1 Aft Output Shaft Mear 1 6 11 2 0.0750 07-20 544-1 1 6 11 2 0.0777 09-20 544-1 Aft Output Shaft Rear 1 6 11 2 0.0750 07-20 544-1 6 11 2 0.0750 07-20 6 20 20 20 20 20 20 20 20 20 20 20 20 20	81	Clear	•	ı	1	87	1	ı	Clear	0
Mike 3 Normalize 1 3 3 2 0. 4444 10-20 Mike 6 Normalize 1 6 1 2 0. 4444 10-20 Fwd Output Shaft Fwd 1 6 1 2 0. 1722 09-20 548-1 1 6 1 2 0. 1722 09-20 548-1 1 6 1 2 0. 1725 09-20 548-1 1 6 1 2 0. 0745 04-20 549-1 1 6 1 2 0. 0524 04-20 Coupling Shaft 1 6 1 2 0. 0777 09-20 550-1 1 6 1 2 0. 0777 09-20 550-1 1 6 1 2 0. 0777 09-20 550-1 1 6 1 2 0. 0777 09-20 554-1 1 6 1 2 0. 0532 05-20 Aft Output Shaft Interm 1 6 1 2 0. 0740 06-20 544-1 6 1 2 0. 0557 08-20 Aft Output Shaft Rear 1 6 1 2 0. 0502 07-20	က	N2 Calibrate	1	0	0	2		02-50	Peak	0
Mike 6 Normalize 1 6 1 2 0.4444 10-20 548-1 1 6 1 2 0.0506 05-20 548-1 1 6 1 2 0.0506 05-20 548-1 1 6 1 2 0.1752 09-20 549-1 1 6 1 2 0.0745 04-20 549-1 1 6 1 2 0.0745 04-20 549-1 1 6 1 2 0.0524 04-20 550-1 1 6 1 2 0.0420 07-20 550-1 1 6 1 2 0.0420 07-20 550-1 1 6 1 2 0.0777 09-20 550-1 1 6 1 2 0.0750 07-20 550-1 1 6 1 2 0.052 0.052 544-1 1	*	Mike 3 Normalize	7	က	က	81	0.4444	10-20	Set 5	0
Fwd Output Shaft Fwd 1 6 1 2 0.0506 05-20 548-1 1 6 1 2 0.1722 09-20 1 6 1 2 0.1722 09-20 1 6 1 2 0.1722 09-20 1 6 1 2 0.1722 09-20 1 6 1 2 0.0745 04-20 1 2 0.0745 04-20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	Mike 6 Normalize	-	9	7	8	0.4444	10-20	Set 5	0
Fwd Output Shaft Interm 1 6 1 2 0.1722 09-20 1 2 0.1205 08-20 1 6 1 2 0.1205 08-20 1 2 0.045 04-20 1 2 0.045 04-20 1 2 0.045 04-20 1 2 0.0524 04-20 1 2 0.0524 04-20 1 2 0.0524 04-20 1 2 0.0524 04-20 1 2 0.0524 04-20 1 2 0.0420 07-20 1 0 6 0 1 2 0.0777 09-20 05-20 1 0 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	Fwd Output Shaft Fwd	-	9	-	8	0.0506	05-20	Read	0
Fwd Output Shaft Aft 1 6 1 2 0.1205 08-20 Fwd Output Shaft Aft 1 6 1 2 0.0745 04-20 549-1 Coupling Shaft 1 6 1 2 0.0622 06-20 550-1 Aft Output Shaft Interm 1 6 1 2 0.0534 07-20 544-1 Aft Output Shaft Rear 1 6 1 2 0.0770 09-20 544-1 Aft Output Shaft Rear 1 6 1 2 0.0750 07-20 544-1 Aft Output Shaft Rear 1 6 1 2 0.0750 07-20 574-1 6 1 2 0.0532 05-20 544-1 6 1 2 0.0532 05-20 544-1 6 1 2 0.0532 05-20 7 0.0557 08-20 7 0.0557 08-20 7 0.0557 08-20	7	548-1	-	9	-	87	0.1722	09-50	Read	0
Fwd Output Shaft Aft 1 6 1 2 0.0745 04-20 549-1 Coupling Shaft Aft Output Shaft Rear 1 6 1 2 0.0642 06-20 5549-1 Aft Output Shaft Rear 1 6 1 2 0.0750 07-20 Aft Output Shaft Rear 1 6 1 2 0.0750 07-20 Aft Output Shaft Rear 1 6 1 2 0.0750 07-20 Aft Output Shaft Rear 1 6 1 2 0.0750 07-20 Aft Output Shaft Rear 1 6 1 2 0.0750 07-20 Aft Output Shaft Rear 1 6 1 2 0.0750 07-20 Aft Output Shaft Rear 1 6 1 2 0.0750 07-20 Aft Output Shaft Rear 1 6 1 2 0.0750 07-20	œ		-	9	1	8	0.1205	08-20	Read	0
Fwd Output Shaft Aft 1 6 1 2 0.0642 06-20 549-1 1 6 1 2 0.2347 07-20 1 6 1 2 0.2347 07-20 1 6 1 2 0.0524 04-20 1 6 1 2 0.0524 04-20 1 1 6 1 2 0.0420 07-20 550-1 1 6 1 2 0.0777 09-20 550-1 1 6 1 2 0.0777 09-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0532 05-20 544-1 1 6 1 6 1 2 0.0532 05-20 544-1 1 6 1 6 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08-20 1 6 1 1 2 0.0557 08	Ò		-	ø	-	81	0.0745	04-20	Read	0
Fwd Output Shaft Aft 1 6 1 2 0.0642 06-20 549-1 1 6 1 2 0.2347 07-20 1 6 1 2 0.2347 07-20 1 6 1 2 0.0524 04-20 1 6 1 2 0.0524 04-20 1 6 1 2 0.0420 07-20 1 6 1 2 0.0420 07-20 1 1 6 1 2 0.0777 09-20 1 6 1 2 0.0777 09-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0532 05-20 544-1 1 6 1 2 0.0532 05-20 1 6 0.05	10					81				0
549-1 1 6 1 2 0.2347 07-20 1 6 1 2 0.0524 04-20 1 6 1 2 0.0420 07-20 2 Coupling Shaft 1 6 1 2 0.0420 07-20 2 Coupling Shaft 1 6 1 2 0.0477 09-20 1 6 1 2 0.0777 09-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0532 05-20 544-1 1 6 1 2 0.0532 05-20 1 6 1 2 0.0740 06-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0750 07-20	11	Fwd Output Shaft Aft	1	9	1	8	0.0642	06-20	Read	0
Coupling Shaft Coupling Shaft Coupling Shaft Coupling Shaft 1 6 1 2 0.0420 07-20 2 0.0777 09-20 1 6 1 2 0.0777 09-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.052 06-20 Aft Output Shaft Interm 1 6 1 2 0.0532 05-20 544-1 1 6 1 2 0.0532 05-20 Aft Output Shaft Rear 1 6 1 2 0.0557 08-20 1 6 1 2 0.0557 08-20	12	549-1	1	9	-	8	0. 2347	07-20	Read	0
Coupling Shaft Coupling Shaft Coupling Shaft 1 6 1 2 0.0420 07-20 1 6 1 2 0.0777 09-20 1 6 1 2 0.0776 08-20 1 6 1 2 0.0750 07-20 Aft Output Shaft Interm 1 6 1 2 0.0532 05-20 544-1 1 6 1 2 0.0532 05-20 Aft Output Shaft Rear 1 6 1 2 0.0537 08-20 1 6 1 2 0.0557 08-20	13		—	•	-	N	0.0524	04-20	Read	0
Coupling Shaft 1 6 1 2 0.0777 09-20 550-1 1 6 1 2 0.2776 08-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0526 06-20 2 Aft Output Shaft Interm 1 6 1 2 0.0532 05-20 544-1 1 6 1 2 0.0740 06-20 1 6 1 2 0.0740 06-20 Aft Output Shaft Rear 1 6 1 2 0.0557 08-20	14		-	•	-	87	0.0420	07-20	Read	0
Coupling Shaft 1 6 1 2 0.0777 09-20 550-1 1 6 1 2 0.2776 08-20 1 6 1 2 0.0750 07-20 1 6 1 2 0.0526 06-20 Aft Output Shaft Interm 1 6 1 2 0.0532 05-20 1 6 1 2 0.0532 05-20 1 6 1 2 0.0740 06-20 Aft Output Shaft Rear 1 6 1 2 0.0557 08-20	15					84				0
Aft Output Shaft Rear 1 6 1 2 0. 2776 08-20 Aft Output Shaft Interm 1 6 1 2 0. 0532 05-20 Aft Output Shaft Rear 1 6 1 2 0. 0532 05-20 Aft Output Shaft Rear 1 6 1 2 0. 0557 08-20 Aft Output Shaft Rear 1 6 1 2 0. 0557 08-20	16	Coupling Shaft	-	•	-	87	0.0777	09-20	Read	0
Aft Output Shaft Interm 1 6 1 2 0.0750 07-20 Aft Output Shaft Interm 1 6 1 2 0.0532 05-20 544-1 1 6 1 2 0.0532 05-20 1 6 1 2 0.0740 06-20 1 6 1 2 0.0557 08-20 Aft Output Shaft Rear 1 6 1 2 0.0620 07-20	17	550-1	-	9	-	8	0.2776	08-20	Read	0
Aft Output Shaft Interm 1 6 1 2 0.0626 06-20 Aft Output Shaft Interm 1 6 1 2 0.0532 05-20 1 6 1 2 0.2016 07-20 1 6 1 2 0.0740 06-20 Aft Output Shaft Rear 1 6 1 2 0.0620 07-20	18		-	9		8	0.0750	07-20	Read	0
Aft Output Shaft Interm 1 6 1 2 0.0532 05-20 544-1 1 6 1 2 0.2016 07-20 1 6 1 2 0.740 06-20 1 6 1 2 0.0740 06-20 Aft Output Shaft Rear 1 6 1 2 0.0620 07-20	19		-	9	-	64	0.0626	06-20	Read	0
Aft Output Shaft Interm 1 6 1 2 0.0532 05-20 544-1 1 6 1 2 0.2016 07-20 1 6 1 2 0.0740 06-20 1 6 1 2 0.0557 08-20 Aft Output Shaft Rear 1 6 1 2 0.0620 07-20	20					81				0
544-1 1 6 1 2 0. 2016 07-20 1 6 2 0. 0740 06-20 1 6 1 2 0. 0557 08-20 1 6 1 2 0. 0557 08-20 20 21	21	Aft Output Shaft Interm	-	9	-	81	0.0532	05-20	Read	0
1 6 1 2 0.0740 06-20 1 6 1 2 0.0557 08-20 2 Aft Output Shaft Rear 1 6 1 2 0.0620 07-20	22	544-1	-	9	-	N	0.2016	07-20	Read	0
1 6 1 2 0.0557 08-20 2 2 Aft Output Shaft Rear 1 6 1 2 0.0620 07-20	ន		7	9	-	84	0.0740	06-20	Read	0
Aft Output Shaft Rear 1 6 1 2 0.0620 07-20	77		1	9	-	81	0.0557	08-50	Read	0
Aft Output Shaft Rear 1 6 1 2 0.0620 07-20	25					8				0
	8	Aft Output Shaft Rear	-	9	-	64	0.0620	07-20	Read	0

		TABL	E XXXI	TABLE XXXVIII - Continued	ntinued				
Item						Ratio	Gains	Cond	Cond
Š.	Component Description	Mode	Mike	Chan	Lock N	Set	II-II	Limit	Level
27	543-1	-	9	-	83	0. 2260	06-20	Read	0
28		-	9	-	83	0.1102	06 - 20	Read	0
29		1	9	-	8	0.0712	08-20	Read	0
30					67	i	1	1	0
31	Bevel Gearshaft Outboard	1	9	-	8	1	1	1	0
32	642-2	-	9	~	8	ı	ı	1	0
33		1	9	-	67	1	ı	1	0
34		1	0	-	c4	ı	ı	1	0
35					a	ı	1	1	0
36	Bevel Gearshaft Intermediate	. 1	9	-	87	0.0475	06-20	Read	0
37	541-2	1	•	-	8	0.1666	06-20	Read	0
38		1	9	-	8	0.1040	08-20	Read	0
39		-	9	-	87	0.0517	07 - 20	Read	0
40					8				0
41	Bevel Gearshaft Inboard	_	9	-	2	0.1477	08 - 20	Read	0
42		-	9	-	7	0.4676	04 - 20	Read	0
43		-	9	-	2	0.1424	05-20	Read	0
4		_	9	-	2	0.1212	08 - 20	Read	0
45					87				0
46	Mike 6 Normalize Check	-	9	-	7	0.4444	10-20	Read	0
47	Clear	1	ı	1	7	ı	ı	Clear	0

No. Component Description Mode Mike Chan Lock N Set I-II Limit Lev Limit Lev Limit Lev Limit Limit Lev Limit Lev Limit Limit Limit Limit Lev Limit		TABLE XXXIX,	ACOUS	TIC 10 ANALY	G SHEE Zer Pf	ACOUSTIC LOG SHEETS - CH-47A/B H SONIC ANALYZER PROGRAM NO. 2071	ACOUSTIC LOG SHEETS - CH-47A/B HELICOPTEI, SONIC ANALYZER PROGRAM NO. 2071	LICOPTE	ı.	
Start No. 1 Engine Components - - - - - - Clear N1 Calibrate N1 Calibrate - - - - - - - Clear N1 Calibrate 1 1 2 2 0.2277 05-20 Peak Nike I Normalize 1 1 2 2 0.4444 10-20 Set 5 Noise Store 1 1 2 1 1.066 99-10 Store -FR S/B Ratio 1 1 2 1 1.0001 10-20 Store -FR S/B Ratio 1 1 2 1 1.0001 10-20 Store -FR S/B Ratio 1 1 2 1 1.0001 10-20 Store -FR S/B Ratio 1 1 2 1 1.0001 10-20 Store -FR S/B Ratio 1 1 2 1 1.0001 10-20 Reject 2:1 -FR S/B Ratio<	Rem No.		Mode	Mike	Chan	Lock N	Ratio Set	Gains I-II	Cond	Cond
Clear NI Calibrate	-	Start No. 1 Engine Components		ı	ı	N	,	1	T ag	0
N1 Calibrate N2 Calibrate N2 Calibrate N2 Calibrate N2 Calibrate N2 Calibrate Noise Store +FR S/B Ratio -FR S/B Ra	2	Clear	ı	,	•	. 2	•	ı	Clear	•
N2 Calibrate 1 1 2 2 0.2557 65-20 Peak Mike I Normalize 1 1 2 2 0.4444 10-20 Set 5 Noise Store 1 1 1 2 1 0.4444 10-20 Set 5 Noise Store 1 1 1 2 1 1.066 99-10 Store -FR S/B Ratio 1 1 2 1 1.0001 10-20 Store Clear Noise Store 1 1 2 1 1.0001 10-20 Store CZ Fund Store 1 1 2 1 1.0001 10-20 Store CZ Fund Store 1 1 2 1 1.0001 10-20 Store -FR S/B Ratio 1 1 2 1 1.072 Store -FR S/B Ratio 1 1 2 1 1.072 Store -FR S/B Ratio 1 1	ო	N1 Calibrate	-	-	8	_	0, 2735	05-20	Peak	0
Mike I Normalize 1 1 2 0.4444 10-20 Set 5 Noise Store C.2 Fund Store 1 1 2 1 0.4444 10-20 Store C.2 Fund Store 1 1 2 1 1.066 09-10 Store FR S/B Ratio 1 1 2 1 1.0601 10-20 Reject 2:1 Clear Noise Store 1 1 2 1 1.0001 10-20 Reject 2:1 Clear FR S/B Ratio 1 1 2 1 1.0001 10-20 Reject 2:1 Clear FF S/B Ratio 1 1 2 1 1.1112 07-20 Reject 2:1 Clear FF S/B Ratio 1 1 2 1 1.1112 07-20 Reject 2:1 Clear FF S/B Ratio 1 1 2 1 1.112 07-20 Read Ool-02 F1 1 1 2 1	4	N2 Calibrate	-	_	2	2	0, 2257	05-20	Peak	0
Noise Store 1 1 2 1 0.4444 10-20 Store C2 Fund Store FR S/B Ratio 1 1 2 1 1.0166 09-10 Store -FR S/B Ratio 1 1 2 1 1.066 09-10 Store Clear 1 1 2 1 1.0001 10-20 Reject 2:1 Clear Noise Store 1 1 2 1 1.0001 10-20 Reject 2:1 Clear 1 1 2 1 1.112 07-20 Store Store FE S/B Ratio 1 1 2 1 1.112 07-20 Store Store FF S/B Ratio 1 1 2 1 1.072 Store Store Feet 1.1072 Store Clear Clear No. 2 Matin Brg 3FB' 1 1 2 1 1.0725 Read No. 2 Matin Brg 3FB' 1 1 2<	2	Mike 1 Normalize	-	-	7	7	0.4444	10-20	Set 5	•
C2 Fund Store +FR S/B Ratio -FR S/B Ratio -F	9	Noise Store	-	-	8	-	0.4444	10-20	Store	0
FR S/B Ratio 1 1 2 1 1.0353 10-20 Reject 2:1 -FR S/B Ratio 1 1 2 1 1.0001 10-20 Reject 2:1 Clear Clear 1 1 2 1 1.0001 10-20 Reject 2:1 CS Fund Store 1 1 2 1 1.1112 07-20 Store -FR S/B Ratio 1 1 2 1 1.1127 09-20 Reject 2:1 -FR S/B Ratio 1 1 2 1 1.0725 09-20 Reject 2:1 Clear No. 2 Main Brg 3FB' 1 1 2 1 1.0725 09-20 Reject 2:1 Clear No. 2 Main Brg 3FB' 1 1 2 1 0.2012 0.202 Read No. 3 Main Brg 3FB' 1 1 2 1 0.244 0.242 Read No. 3 Main Brg 3FB' 1 1 2 1 0.244 0.262	7	C2 Fund Store	-	-	8	-	1.0166	01-60	Store	•
-FR S/B Ratio 1 1 2 1 1.0001 10-20 Reject 2:1 Clear Noise Store 1 1 2 1 0.4444 10-20 Store C2 Fund Store 1 1 2 1 1.1112 07-20 Store +FR S/B Ratio 1 1 2 1 1.1277 09-20 Reject 2:1 -FR S/B Ratio 1 1 2 1 1.1277 09-20 Reject 2:1 Clear -FR S/B Ratio 1 1 2 1 1.0725 09-20 Reject 2:1 Clear -FR S/B Ratio 1 1 2 1 1.0725 09-20 Read No. 2 Main Brg 3FB' 1 1 2 1 0.2012 07-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.1662 07-20 Rea	∞	+FR S/B Ratio	-	-	7	-	1,0353	10-20	Reject 2:1	0
Clear Clear Clear Clear Noise Store 1 1 2 1 0.444 10-20 Store C2 Fund Store 1 1 2 1 1.1112 07-20 Store +FR S/B Ratio 1 1 2 1 1.1277 09-20 Reject 2:1 -FR S/B Ratio 1 1 2 1 1.0725 09-20 Reject 2:1 Clear No. 2 Main Brg 3FB' 1 1 2 1 1.0725 09-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.2012 07-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.1322 04-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.2012 07-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.2213 05-20 Read Inner Bevel Main Dr Train 1 1 2 1 0.1662 07-20 Read Accy Main Train 1	6	-FR S/B Ratio	-	-	8	-	1.0001	10-20	Reject 2:1	•
Noise Store 1 1 2 1 0.4444 10-20 Store C2 Fund Store 1 1 2 1 1.1112 07-20 Store +FR S/B Ratio 1 1 2 1 1.1277 09-20 Reject 2:1 Clear 1 1 2 1 1.0725 09-20 Reject 2:1 Clear No. 2 Main Brg 3FB' 1 1 2 1 0.2012 Read No. 3 Main Brg 3FB' 1 1 2 1 0.2012 Read No. 3 Main Brg 3FB' 1 1 2 1 0.2012 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read Inner Bevel Main Dr Train 1 1 2 1 0.1662 07-20 Read Accy Main Train 1 1 2<	10	Clear				-			Clear	0
C2 Fund Store 1 1 2 1 1.1112 07-20 Store +FR S/B Ratio 1 1 2 1 1.1277 09-20 Reject 2:1 -FR S/B Ratio 1 1 2 1 1.0725 09-20 Reject 2:1 Clear No. 2 Main Brg 3FB' 1 1 2 1 0.205 09-20 Reject 2:1 No. 2 Main Brg 3FB' 1 1 2 1 0.2012 07-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.2012 07-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.1322 04-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read Inner Bevel Main Dr Train 1 1 2 1 0.1662 07-20 Read Accy Main Train 1 1 2 1 0.213 07-20 Read Accy Main Train 1 1 2 1 0.2000 02-20 R	11	Noise Store	-	1	8	-	0.4444	10-20	Store	0
+FR S/B Ratio 1 1 2 1 1.1277 09-20 Reject 2:1 -FR S/B Ratio 1 1 2 1 1.0725 09-20 Reject 2:1 Clear No. 2 Main Brg 3FB' 1 1 2 1 0.3576 08-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.2012 07-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read No. 4-02 F1 1 2 1 0.6467 08-20 Read Inner Bevel Main Dr Train 1 2 1 0.1662 07-20 Read Accy Main Train 1 1 2 1 0.3652 07-20 Read Accy Main Train 1 2 1 0.2000 02-20 Read Mike I Normalize Check 1 1 2 1 0.2000 0.2-20 Read A	12	C2 Fund Store	-	-	8	1	1.1112	07-20	Store	0
-FR S/B Ratio 1 1 2 1 1.0725 09-20 Reject 2:1 Clear No. 2 Main Brg 3FB' 1 1 2 1 0.3576 08-20 Read No. 2 Main Brg 3FB' 1 1 2 1 0.2012 07-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read No. 4-02 F1 1 1 2 1 0.2213 05-20 Read Inner Bevel Main Dr Train 1 1 2 1 1.0725 08-20 Read Accy Main Train 1 1 2 1 0.2000 02-20 Read Mike I Normalize Check 1 1 2 1 0.2000 02-20 Read Accy Main Train 1 1 2 1 0.4444 10-20	13	+FR S/B Ratio	1	-	8	-	1.1277	09-50		0
Clear I 1 2 1 0.3576 08-20 Read No. 2 Main Brg 3FB' 1 1 2 1 0.2012 07-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.1322 04-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read Inner Bevel Main Dr Train 1 1 2 1 1.0725 08-20 Read Outer Accy Dr Bevel Tr 1 1 2 1 1.0725 08-20 Read Accy Main Train 1 1 2 1 0.3147 07-20 Read Mike I Normalize Check 1 1 2 0.4444 10-20 Set 5	14	-FR S/B Ratio	1	-	8	-		09-50	Reject 2:1	0
No. 2 Main Brg 3FB' 1 1 2 1 0.3576 08-20 Read 001-02 F1 1 1 2 1 0.2012 07-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read Inner Bevel F1 1 1 2 1 0.2213 05-20 Read Inner Bevel Main Dr Train 1 1 2 1 1.0725 08-20 Read Outer Accy Dr Bevel Tr 1 1 2 1 1.0725 08-20 Read Accy Main Train 1 1 2 1 0.3147 07-20 Read Mike I Normalize Check 1 1 2 0.4444 10-20 Set 5	15	Clear				-			Clear	0
001-02 F1 1 1 2 1 0.2012 07-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.1322 04-20 Read No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read 004-02 F1 1 1 2 1 0.1662 07-20 Read Inner Bevel Main Dr Train 1 1 2 1 0.1662 07-20 Read Outer Accy Dr Bevel Tr 1 1 2 1 1.0725 08-20 Read Accy Main Train 1 2 1 0.2000 02-20 Read Mike I Normalize Check 1 2 1 0.2000 02-20 Read	16	No. 2 Main Brg 3FB'	1	-	8	-	0.3576	08-20	Read	0
F2 1 1 2 1 0.1322 04-20 Read No. 3 Main Brg 3FB' 1 1 1 2 1 0.6467 08-20 Read 004-02 F1 1 1 2 1 0.2213 05-20 Read Inner Bevel Main Dr Train 1 1 2 1 1.0725 08-20 Read Outer Accy Dr Bevel Tr 1 1 2 1 0.3147 07-20 Read Accy Main Train 1 1 2 1 0.2000 02-20 Read Mike 1 Normalize Check 1 1 2 0.4444 10-20 Set 5	17	001-02 F1		-	64	-	0.2012	07-20	Read	0
No. 3 Main Brg 3FB' 1 1 2 1 0.6467 08-20 Read 004-02 F1 1 1 2 1 0.2213 05-20 Read F2 1 1 2 1 0.1662 07-20 Read Inner Bevel Main Dr Train 1 1 2 1 1.0725 08-20 Read Accy Main Train 1 1 2 1 0.3147 07-20 Read Mike 1 Normalize Check 1 1 2 0.4444 10-20 Set 5	18	F2	-	-	87	1	0.1322	04-20	Read	0
004-02 F1 1 1 2 1 0.2213 05-20 Read F2 1 1 2 1 0.1662 07-20 Read Inner Bevel Main Dr Train 1 1 2 1 1.0725 08-20 Read Accy Main Train 1 1 2 1 0.3147 07-20 Read Mike 1 Normalize Check 1 1 2 1 0.2000 02-20 Read Mike 1 Normalize Check 1 1 2 0.4444 10-20 Set 5	19	No. 3 Main Brg 3FB'	-	-	81	1	0.6467	08-20	Read	0
F2 1 1 2 1 0.1662 07-20 Read Inner Bevel Main Dr Train 1 1 2 1 1.0725 08-20 Read Outer Accy Dr Bevel Tr 1 1 2 1 0.3147 07-20 Read Accy Main Train 1 1 2 1 0.2000 02-20 Read Mike 1 Normalize Check 1 1 2 0.4444 10-20 Set 5	20	004-02 F1	-	-	87	-	0.2213	05-20	Read	0
Inner Bevel Main Dr Train 1 1 2 1 1.0725 08-20 Read Outer Accy Dr Bevel Tr 1 1 2 1 0.3147 07-20 Read Accy Main Train 1 1 2 1 0.2000 02-20 Read Mike 1 Normalize Check 1 1 2 2 0.4444 10-20 Set 5	21	F2	-	-	8	-	0.1662	07-20	Read	0
Outer Accy Dr Bevel Tr 1 1 2 1 0.3147 07-20 Read Accy Main Train 1 1 2 1 0.2000 02-20 Read Mike 1 Normalize Check 1 1 2 2 0.4444 10-20 Set 5	22	Inner Bevel Main Dr Train	1	-	7	-	1.0725	08-20	Read	0
Accy Main Train 1 1 2 1 0.2000 02-20 Read Mike 1 Normalize Check 1 1 2 2 0.4444 10-20 Set 5	23	evel	-	1	81	1	0.3147	07-20	Read	0
Mike 1 Normalize Check 1 1 2 2 0.4444 10-20 Set 5	24	Accy Main Train	-	1	8	1	0.2000	02 - 20	Read	0
	56	Mike 1 Normalize Check	-	-	87	7	0.4444	10-20	Set 5	0

		TAB	TABLE XXXIX - Continued	X - Co	ntinued				
Kem						Ratio	Gains	Cond	Cond
No.	Component Description	Mode	Mike	Chan	Lock N	Set	п-1	Limit	Level
13									
22	Noise Store	-	-1	8	7	0.4444	10-30	Store	0
78	T2 Fund Store	-	-	8	87	1, 5015	10-20	Store	0
59	+FR S/B Ratio	-	1	8	7	1.5163	07-20	Reject 2:1	0
30	-FR S/B Ratio	1		87	8	1,4650	07-20	Reject 2:1	0
31	Clear				2			Clear	0
32	Noise Store	1	-	8	8	0.4444	10-30	Store	0
33	T3 Fund Store		1	8	8	1.3033	05-30	Store	0
34	+FR S/B Ratio	-	1	୍ଷ	8	1.3200	07-30	Reject 2:1	0
35	-FR S/B Ratio	-	-	83	87	1.2666	07-30	Reject 2:1	0
36	Clear		-	87	83			Clear	0
37	No. 1 Main Brg 3FB'	-	1	81	7	0.4271	09-50	Read	0
38	006-02 F1	-	-	87	7	0.2007	09-50	Read	0
39	F2	-	1	7	7	0.1424	01 - 30	Read	0
\$	No. 2 Main Brg 3FB'	7	-	8	7	0.3031	09-50	Read	0
41	011-02 F1	-	-	8	8	0.1505	09-50	Read	0
42	F2	1	-	87	7	0.1102	08-20	Read	0
3	Torquemeter Actuating Dr Tr	-	7	8	7	1.0226	08-20	Read	0
4	Overspeed Drive Bevel Inner	-	-	8	7	0.3140	04-30	Read	0
45	Overspeed Control Bev Idler	1	1	8	87	0.1724	00-30	Read	0
46	Clear	-	1	7	7	ı	•	Clear	0
47	Start	1	•	•	1	•	1	Start	0
48	Start	•		1	1	1		Start	0
49	Start	•	1	•	1	•	•	Start	0
20		1	•	•	1	ı	•	Start	0
21	Start No. 2 Engine Compt	ı	1	•	87	•	1	Start	0
25	Clear	1	•	•	7	•	1	Clear	0
<u>ස</u>	N1 Calibrate	7	7	8	-	0.2735	05-20	Peak	0

Benn Component Description Mode Mike Chan Cond			TAB	TABLE XXXIX - Continued	K - Co	ntinued				
Name Component Description Mode Mike Chan Lock N Set I-III Limit	Rem						Ratio	Gains	Cond	Cond
Nulse Store	ģ	Component Description	Mode	Mike	Chan	Lock N	Set	1-1	Limit	Level
Mike 1 Normalize	ī		c	ć	ć	•				
Mike 1 Normalize 2	\$	NZ Calibrate	N	N	N	20	0.2257	05-20	Peak	0
Noise Store	22	Mike 1 Normalize	87	87	7	77	0.4444	10-20	Set 5	0
C2 Fwnd Store	26	Noise Store	7	7	2	-	0.4444	10-30	Store	0
FR S/B Ratio 2 2 2 1 1.0353 10-20 Reject 2:1 1.001 10-	57	C2 Fund Store	7	7	2	1	1.0166	05-20	Store	0
Clear Noise Store 2	28	+FR S/B Ratio	7	7	8	-	1.0353	10-20	Reject 2:1	0
Clear Noise Store 2	59	-FR S/B Ratio	7	7	8	1		10-20	Reject 2:1	0
Noise Store	09	Clear				1			Clear	0
C3 Fund Store	61	Noise Store	7	87	8	1	0.4444	10-20	Store	0
+FR S/B Ratio 2 2 2 1 1.1277 09-20 Reject 2:1 -FR S/B Ratio 2 2 1 1.0725 09-20 Reject 2:1 Clear No. 2 Main Brg 3FB' 2 2 1 0.3576 04-30 Read No. 3 Main Brg 3FB' 2 2 2 1 0.2012 03-30 Read No. 3 Main Brg 3FB' 2 2 1 0.2012 03-30 Read No. 3 Main Brg 3FB' 2 2 1 0.2012 03-30 Read Out-02 F1 2 2 1 0.2213 02-30 Read Outer Acy Dr Bevel Tr 2 2 2 1 0.26467 03-30 Read Acy Main Train 2 2 2 1 0.2662 0-30 Read Acy Main Train 2 2 2 1 0.2144 10-20 Set 5 Noise Store 2 2 2 <td< td=""><td>62</td><td>C3 Fund Store</td><td>7</td><td>7</td><td>8</td><td>1</td><td>1.1112</td><td>08-20</td><td>Store</td><td>0</td></td<>	62	C3 Fund Store	7	7	8	1	1.1112	08-20	Store	0
Clear No. 2 Main Brg 3FB' 2 2 2 1 1.0725 09-20 Reject 2:1	63	+FR S/B Ratio	8	8	7	1	1. 1277	09-50		0
Clear No. 2 Main Brg 3FB' 2 2 2 1 0.3576 04-30 Read	64	-FR S/B Ratio	8	87	7	1		09-50		0
No. 2 Main Brg 3FB'	65	Clear				-			Clear	0
No. 3 Main Brg 3FB'	99	No. 2 Main Brg 3FB'	87	87	87	1	0.3576	04-30	Read	0
F2 2 2 2 1 0.1322 02-30 Read No. 3 Main Brg 3FB' 2 2 2 1 0.6467 03-30 Read The colspan="6">F2 1 0.6467 03-30 Read F2 2 2 2 1 0.2213 02-30 Read Inner Bevel Main Dr Train 2 2 2 1 0.1662 01-30 Read Accy Main Train 2 2 2 1 0.725 04-30 Read Accy Main Train 2 2 2 1 0.3147 03-30 Read Accy Main Train 2 2 2 1 0.2000 04-30 Read Mike 2 Normalize Check 2 2 2 2 2 4.444 10-20 Store T2 Fund Store 4FR S/B Ratio 2 2 2 1.5163 07-20 Reject 2:1 FR S/B Ratio 2 2 <t< td=""><td>67</td><td></td><td>7</td><td>87</td><td>8</td><td>Н</td><td>0.2012</td><td>03-30</td><td>Read</td><td>0</td></t<>	67		7	87	8	Н	0.2012	03-30	Read	0
No. 3 Main Brg 3FB' 2 2 2 1 0.6467 03-30 Read 004-02 F1 2 2 1 0.2213 02-30 Read F2 2 2 2 1 0.1662 01-30 Read Inner Bevel Main Dr Train 2 2 2 1 0.1662 01-30 Read Accy Main Train 2 2 2 1 0.725 04-30 Read Accy Main Train 2 2 2 1 0.3147 03-30 Read Mike 2 Normalize Check 2 2 2 2 4-444 10-20 Set 5 Noise Store 2 2 2 2 4-444 10-20 Store T2 Fund Store 2 2 2 1.5016 10-20 Store +FR S/B Ratio 2 2 2 2 1.5016 10-20 Reject 2:1 -FR S/B Pattio 2 2 2 <td>89</td> <td>F2</td> <td>7</td> <td>87</td> <td>7</td> <td>1</td> <td>0.1322</td> <td>02-30</td> <td>Read</td> <td>0</td>	89	F2	7	87	7	1	0.1322	02-30	Read	0
Dock-02 F1	69	No. 3 Main Brg 3FB'	87	87	87	1	0.6467	03-30	Read	0
F2	70		87	87	81	1	0.2213	02-30	Read	0
Inner Bevel Main Dr Train 2 2 1 1.0725 04-30 Read Outer Accy Dr Bevel Tr 2 2 1 0.3147 03-30 Read Accy Main Train 2 2 2 1 0.2000 04-30 Read Mike 2 Normalize Check 2 2 2 2 2 4444 10-20 Set 5 Nolse Store 2 2 2 2 0.4444 10-30 Store T2 Fund Store 2 2 2 1.5016 10-20 Store +FR S/B Ratio 2 2 2 2 1.5016 10-20 Reject 2:1 -FR S/B Ratio 2 2 2 1.505 07-20 Reject 2:1 Clear 2 2 2 2 1.445 10-20 Reject 2:1	71	F2	83	8	7	1	0.1662	01-30	Read	0
Outer Accy Dr Bevel Tr 2 2 2 1 0.3147 03-30 Read Accy Main Train 2 2 2 1 0.2000 04-30 Read Mike 2 Normalize Check 2 2 2 2 2 0.444 10-20 Set 5 Noise Store 2 2 2 2 2 30 tht T2 Fund Store 2 2 2 2 1.5016 10-20 Store +FR S/B Ratio 2 2 2 2 1.5016 10-20 Reject 2:1 -FR S/B Ratio 2 2 2 1.5163 07-20 Reject 2:1 Clear 3 3 3 3 3 3	72		87	8	87	1	1.0725	04-30	Read	0
Accy Main Train 2 2 2 1 0.2000 04-30 Read Mike 2 Normalize Check 2 2 2 2 0.4444 10-20 Set 5 Noise Store 2 2 2 2 0.4444 10-20 Store T2 Fund Store 2 2 2 2 1.5016 10-20 Store +FR S/B Ratio 2 2 2 1.5163 07-20 Reject 2:1 -FR S/B Ratio 2 2 2 1.4650 07-20 Reject 2:1 Clear 2 2 2 1.4650 07-20 Reject 2:1	73	Outer Accy Dr Bevel Tr	8	81	81	7	0.3147	03-30	Read	0
Mike 2 Normalize Check 2 2 2 0.4444 10-20 Set 5 Noise Store 2 2 2 0.4444 10-30 Store T2 Fund Store 2 2 2 1.5016 10-20 Store +FR S/B Ratio 2 2 2 2 1.5163 07-20 Reject 2:1 -FR S/B Ratio 2 2 2 1.4650 07-20 Reject 2:1 Clear 2 2 2 2 1.4650 07-20 Reject 2:1	74	Accy Main Train	83	81	81	-	0.2000	04-30	Read	0
Noise Store 2 2 2 2 0.4444 10-30 Store T2 Fund Store 2 2 2 1.5016 10-20 Store +FR S/B Ratio 2 2 2 1.5163 07-20 Reject 2:1 -FR S/B Ratio 2 2 2 2 1.4650 07-20 Reject 2:1 Clear 2 2 2 2 1.4650 07-20 Reject 2:1	16	Mike 2 Normalize Check	87	8	87	7	0.4444	10-20	Set 5	0
T2 Fund Store +FR 8/B Ratio 2 2 2 2 1.5016 10-20 Store +FR 8/B Ratio 2 2 2 2 1.5163 07-20 Reject 2:1 -FR 8/B Ratio 2 2 2 2 2 1.4650 07-20 Reject 2:1 Clear	11	Noise Store	64	83	8	8		10-30	Store	0
+FR S/B Ratio 2 2 2 2 1.5163 07-20 Reject 2:1 -FR S/B Ratio 2 2 2 2 1.4650 07-20 Reject 2:1 Clear	78	T2 Fund Store	7	87	87	81	1, 5016	10-20	Store	0
-FR 8/B Ratio 2 2 2 2 1.4650 07-20 Reject 2:1 Clear	79	+FR S/B Ratio	7	8	87	7	1, 5163	07-20		0
Clear Clear	80	-FR S/B Ratio	8	8	8	83	1.4650	07-20		0
	81	Clear				8			Clear	0

Item						Ratio	Gains	Cond	Cond
No.	Component Description	Mode	Mike	Chan	Lock N	Set	II-II	Limit	Level
83	Noise Store	8	8	8	67	0.4444	10-30	Store	0
83	T3 Fund Store	7	2	2	8	1, 3033	05-30	Store	0
84	+FR S/B Ratio	2	2	87	2	1,3200	07-30	Reject 2:1	0
82	-FR S/B Ratio	2	2	87	7	1, 2666	07-30	Reject 2:1	0
98	Clear	2	2	87	8			Clear	0
87	No. 1 Main Brg 3FB'	7	2	8	87	0.4271	09-50	Read	0
88	006-02 F1	7	7	7	2	0.2007	00-30	Read	0
68	F2	7	7	8	87	0.1424	01 - 30	Read	0
90	No. 4 Main Brg 3FB'	7	7	8	2	0.3031	02-30	Read	0
91	011-02 F1	87	7	2	87	0.1505	02-30	Read	0
92	F2	7	7	2	87	0.1102	09-50	Read	0
83	Torquemeter Actuating Dr Tr	7	7	87	67	1.0226	01 - 30	Read	0
94	Overspeed Drive Bevel Inner	7	7	23	87	0.3140	03-30	Read	0
92	Overspeed Control Bevel Idler	2	7	2	2	0.1724	00-30	Read	0
96	Clear	7	7	2	2			Clear	0

	FABLE XL, AC	ACOUSTIC LOG SHEETS - CH-47A SONIC ANALYZER PROGRAM NO.	LOG SH	SHEETS - ER PROGR	CH-47A/1	- CH-47A/B HELICOPTER, RAM NO. 2081	тек		
Rem		Mode	Mike	, i	V 4001	Ratio	Cains	Cond	Cond
L	Component Description	MODE	MINE	Cinn	LOCK N	100	=	Cimic	Tevel
-	Start Aft Rotor Accy XMSN			0	81			Start	0
7	Clear			0	~			Clear	0
ო	N2 Calibrate	0	0	0	7	0.2257	05-20	Peak	0
4	Mike 5 Normalize	က	ß	8	8	0.4444	10-20	Set 5	0
လ	Oil Cool Fan Bev Tr Fund	က	ro	8	8	0.3237	05-20	Read	0
9	2nd Harmonic Monitor	က	လ	8	8	0.6476	07-30	Read	0
7	Accy Dr Bevel Tr Fund	က	ß	8	8	0.3675	08-20	Read	0
6 0	2nd Harmonic Monitor	က	ເດ	87	7	0.7572	08-30	Read	0
6	Accy Dr Main Tr Fund	က	လ	87	87	0.3163	02-30	Read	0
10	2nd Harmonic Monitor	က	ဌ	87	7	0.6346	09-30	Read	0
11	Oil Cool Bev Pinion Brg Out	က	သ	7	8	0.0620	06-20	Read	0
12	257-1	က	വ	87	7	0.2260	02-20	Read	0
13		က	2	7	87	0, 1102	01-10	Read	0
14		က	ည	7	7	0.0712	05-20	Read	0
15	Clear				81			Clear	0
16	Oil Cool Bev Pin Brg Inner	က	D.	67	7	0.0750	03-20	Read	0
17	251-1	က	ည	7	87	0.2671	07-20	Read	0
18		က	ည	7	81	0.0720	04 - 20	Read	0
19		က	ည	83	83	0.0577	07-20	Read	0
20	Clear				81			Clear	0
21	Accy Dr Quill Bearing Fwd	က	က	87	81	0.0550	02-20	Read	0
22	265-1	က	ວ	7	87	0.2070	04-20	Read	0
23		က	2	87	87	0.0772	04-20	Read	0
24		က	2	81	87	0.0566	02-20	Read	0
25	Clear				87			Clear	0
56	Accy Dr Gearshaft Brg Aft	3	5	7	7	0.1715	07 - 20	Read	0

		TA	TABLE XL - Continued	L - Con	inued				
Item						Ratio	Gains	Cond	Cond
ટ્ર	Component Description	Mode	Mike	Chan	Lock N	Set	п-I	Limit	Level
Š				Į	9			•	,
7	7-047	m	S.	N	24	0.5547	02-30	Read	•
58		က	S.	61	8	0.2476	03 - 20	Read	0
29		က	S	7	81	0.2156	04-20	Read	0
30	Clear				8			Clear	0
31	Accy Dr Gear Main Brg	က	သ	8	8	0.0506	01 - 20	Read	0
32	255-1	က	2	87	8	0. 1721	06-20	Read	0
33		ო	ស	8	2	0.0540	09-10	Read	0
34		က	ည	7	8	0.0375	02 - 20	Read	0
35	Clear				87			Clear	0
36	Accy Dr Idler Gear Brg	က	သ	7	87	0.0354	04-10	Read	•
37	256-1	က	သ	67	2	0.1304	05-20	Read	0
38		က	သ	87	8	0.0420	03-20	Read	0
39		က	2	81	87	0.0272	03-20	Read	0
40	Clear				81			Clear	0
41	Alternator Dr Pinion Brg	က	S	8	81	0.0521	07-10	Read	0
42	255-1	က	ប	7	8	0.1762	06-20	Read	0
£		က	ល	7	7	0.0554	09-10	Read	0
4		က	လ	7	8	0.0405	08-10	Read	0
45	Clear				8			Clear	0
4	Hydr Motor Dr Gear Brg	က	c	7	8	0.0422	03 - 20	Read	0
41	256-1	က	2	7	7	0.1466	06-20	Read	0
48		က	co	8	8	0.0474	03-20	Read	0
49		က	ည	7	8	0.0330	04-20	Read	0
20	Clear				8			Clear	0
21	Hydr Pump Dr Gear Brg	က	ည	8	8	0.0211	03-50	Read	0
25	256-1	က	S	83	83	0.0633	06-20	Read	0
ន		က	သ	87	7	0.0236	04-20	Read	0

		TA	BLE X	TABLE XL - Continued	penui				
Item	Communent Description	Mode	Mike	88	Chan I not N	Ratio	Gains	Cond	Cond
	Compared Description	Moun	DUIT	Cimil	TOCK IN	100	17_7	רווווור	Tevel
<u> </u>		ო	S	81	81	0.0154	03-20	Read	0
55	Clear				83			Clear	0
%	Axial Piston Pump Dr Gr Brg	က	2	23	87	0.0240	03-20	Read	0
57	Lube Oil Pump Dr Gear Brg	က	2	7	2	0.0741	02 - 20	Read	0
28	256-1	က	2	8	87	0.0271	03-20	Read	0
29		က	ည	67	81	0.0176	03 - 20	Read	0
09	Clear				87			Clear	0
61	Accy Dr Quill Shaft Brg Aft	က	വ	87	8	0.0565	05-20	Read	0
62	249-1	က	ß	7	7	0.2140	04-20	Read	O
63		က	ß	7	7	0.0770	05-20	Read	0
64		က	വ	7	7	0.0571	05-20	Read	0
65	Clear	က	ည	7	83			Clear	0
99	Accy Drive Gearshaft Aft	က	ည	87	87	0.0623	02-50	Read	0
67	248-1	က	ည	87	7	0.2271	02 - 20	Read	0
89		က	വ	83	7	0.0665	07-20	Read	0
69		က	ည	87	7	0,0515	00-50	Read	0
20	Mike 5 Normalize Check	က	ည	87	87	0.4444	10-20	Check 5	0
11	Clear				87			Clear	•

TABLE XLI. MODEL CH-47A/B HELICOPTER RECORDED DURING EVALUATION PROGRAM AT U.S. ARMY AVIATION C FORT RUCKER, ALABAMA

Decemb	Dete	Heli-	Heli-	Engine	Engine	No. 1 90°	No. 290°	Forv XM
Record	Date	copter	copter	No. 1	No. 2	Gearbox	Gearbox	
No.	Recorded	Model	No.	Serial No.	Serial No.	S/N	S/N	S/
3-10	5-13-68	CH-47A	62-2114	LE-05617	LE-05646	A-11-480	A-11-613	A-7-
3-11	5-15-68	CH-47B	61-19123	LE-04885	LE-04364	A-11-1223	A-11-791	A-7-
3-12	5-20-68	CH-47B	61-19123	LE-04885	LE-04364	A-11-1223	A-11-791	A-7
3-13-1	5-28-68	CH-47B	66-19124	LE-05721	LE-04713	A-11-1063	A-11-496	A-7
3-13-2	5-28-68	CH-47B	66-19124	LE-05721	LE-04713	A-11-1063	A-11-496	A-7
3-14	5-29-68	CH-47A	61-2422	LE-04137	LE-05750	A-11-1120	A-11-356	A-7
3-15-1	6-3-68	CH-47A	66-19005	LE-04755	LE-05530	A-11-203	A-11-569	A-7
3-15-2	6-3-68	CH-47A	66-19005	LE-04755	LE-05530	A-11-203	A-11-569	A-7
3-16	6-5-68	CH-47A	63-7912	LE-04175	LE-05597	A-11-213	A-11-808	A-7
3-17	6-7-68	CH-47A	62-2137	LE-04889	LE-04162	A-11-533	A-11-52	A-7
3-18	6-11-68	CH-47B	66-19119	LE-05761	LE-04234	A-11-622	A-11-289	A-7
3-19	6-17-68	CH-47B	66-19139	LE-04688	LE-04261	A-11-1243	A-11-511	A-7
3-20	7-9-68	CH-47A	61-2422	LE-04765	LE-05750	A-11-1120	A-11-356	A-7
3-21	7-15-68	CH-47A	66-19003	LE-05633	LE-04539	A-11-462	A-11-48	A-9
3-22	7-17-68	CH-47B	66-19120	LE-04103	LE-04962	A-11-141	A-11-13	A-7

ABLE XLI. MODEL CH-47A/B HELICOPTER RECORDED DURING THE FIELD EVALUATION PROGRAM AT U.S. ARMY AVIATION CENTER, FORT RUCKER, ALABAMA

l eli- opter	Engine No. 1	Engine No. 2	No. 1 90° Gearbox	No. 290° Gearbox	Forward XMSN	Aft XMSN	Comb. Box	Mike
No.	Serial No.	Serial No.	S/N	s/n	S/N	s/n	S/N	No.
0114			. 11 400	A 11 C19	4 7 004	4 0 410	A-8-157	0
2114	LE-05617	LE-05646	A-11-480	A-11-613	A-7-324	A-9-418		8
19123	LE-04885	LE-04364	A-11-1223	A-11-791	A-7-129	A-9-571	A-8-567	8
19123	LE-04885	LE-04364	A-11-1223	A-11-791	A-7-129	A - 9 - 571	A-8-567	8
19124	LE-05721	LE-04713	A-11-1063	A-11-496	A-7-666	A-9-573	A - 8 - 85	3
19124	LE-05721	LE-04713	A-11-1063	A-11-496	A-7-666	A-9-573	A-8-85	3
2422	LE-04137	LE-05750	A-11-1120	A-11-356	A-7-423	A-9-486	A-8-665	3
19005	LE-04755	LE-05530	A-11-203	A-11-569	A-7-25	A-9-217	A-8-191	3
19005	LE-04755	LE-05530	A-11-203	A-11-569	A-7-25	A-9-217	A-8-191	3
7912	LE-04175	LE-05597	A-11-213	A-11-808	A-7-172	A-9-362	A-8-21	3
2137	LE-04889	LE-04162	A-11-533	A-11-52	A-7-661	A-9-567	A-8-562	3
19119	LE-05761	LE-04234	A-11-622	A-11-289	A-7-96	A-9-235	A-8-156	3
19139	LE-04688	LE-04261	A-11-1243	A-11-511	A-7-671	A-9-595	A-8-582	8
2422	LE-04765	LE-05750	A-11-1120	A-11-356	A-7-423	A-9-486	A-8-665	8
19003	LE-05633	LE-04539	A-11-462	A-11-48	A-9-683	A-9-393	A - 8 - 468	8
19120	LE-04103	LE-04962	A-11-141	A-11-13	A-7-738	A-9-726	A-8-564	8

	TABLE XLII. CORRECTIONS TO ACOUSTIC LOG SHEETS - CH-47A HELICOPTER, SONIC ANALYZER PROGRAM NO. 2011	ONS TO A	COUST	IC LOG M NO.	SHEETS .	- CH-47A	HELICOP	Ter,	•
Item No.	Component Description	Mode	Mike	Chan	Mode Mike Chan Lock N	Ratio Set	Gains I-II	Cond	Cond
3 51 52	N2 Calibrate Lock Check Input Spiral Bevel Clear	0 %	0 %	0 8	N N N	0, 2257 0, 2525	05-20	Peak Peg Meter Clear	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	TABLE XLIII, COF	CORRECTIONS TO ACOUSTIC LOG SHE SONIC ANALYZER PROGRAM NO. 2021	S TO AC	OUSTIC	LOG SHE	ETS - CH	47A HE)	CORRECTIONS TO ACOUSTIC LOG SHEETS - CH-47A HELICOPTER, SONIC ANALYZER PROGRAM NO. 2021	
Item No.	Component Description	Mode	Mike	Chan	Mode Mike Chan Lock N Set	Ratio Set	Gains I-II	Cond	Cond
3 51 52	N2 Calibrate Lock Check Input Spiral Bevel Clear	0 4	0 %	0 8	8 8 8	0, 2257	05-20	Peak Peg Meter Clear	00 00 00

	TABLE XLIV. CORRECTIONS TO ACOUSTIC LOG SHEETS - CH-47A HELICOPTER, SONIC ANALYZER PROGRAM NO. 2031	NS TO A	COUBT	TC LOG	BHEETS 2031	- CH-47A	HELLCOI	PTER,	
Rem No.	Component Description	Mode	Mike	Chan	Rativ Mode Mike Chan Lock N Set	Ratio Set	Gains I-II	Cond	Cond
2 2	Lock Check Input Spiral Bevel Clear	-	m	က	80 80	0. 2525	00-50	00-20 Peg Meter Clear	8 8

	TABLE XLV. CORRECTIONS TO ACOUSTIC LOG SHE SONIC ANALYZER PROGRAM NO. 2041	FIONS TO	ACOUR	STIC LO	0 Sheet)	CORRECTIONS TO ACOUSTIC LOG SHEETS - CH-47A HELICOPTER, SONIC ANALYZER PROGRAM NO. 2041	A HELICO	PTER,	
Item No.	Component Description	Mode	Mike	Chan	Mode Mike Chan Lock N	Ratio Set	Gains I-II	Cond	Cond
က	N2 Calibrate	0	0	0	8	0. 2257	02-20	Peak	0
10	Lock Check, Input Spiral Bev	-	က	က	~	0.2525	00-20	Peg Meter	8
3	N2 Calibrate	0	()	0	8	0.2257	05-20	Peak	0
23	Lock Check Input Spiral Bevel	8	က	က	7	0.2525	00-20	Peg Meter	90

	TABL	TABLE XLVL	EON SONE	RECTIC C ANA!	CORRECTIONS TO ACOUSTIC LOG SHE SONIC ANALYZER PROGRAM NO. 2051	VCOUST PROGRA	TC LOG	SHEETS 2051	CORRECTIONS TO ACOUSTIC LOG SHEETS - CH-47A HELICOPTER. SONIC ANALYZER PROGRAM NO. 2051	HELICOI	YFER.	
Item									Ratio	Gains	Cond	Cond
No.	Compone	Component Description	iption		Mode	Mike	Chan	Mode Mike Chan Lock N	Set	П-1	Limit	Level
က	N2 Calibrate	•			0	0	0	2	0.2257	05-20	Peak	0
20	Lock Check. Input Spin	Input Spi	iral E	ral Bevel	က	က	က	2	0.2525	00-20	Peg Meter	90
55	Lock Check.	Input Spiral Gears	iral C	iears	က	က	က	2	0.2525	00 - 50	Peg Meter	90
82	Lock Check.	Input Spi	iral (iears	4	æ	က	7	0.2525	00-20	Peg Meter	90
110	Lock Check.	Input Spi	iral (ral Gears	₩	æ	က	3	0.2525	00 . 50	Peg Meter	90

	TABLE XIV	TABLE XIVIL CORRECTIONS TO ACOUSTIC LOG SHEETS - CH-47A HELICOPTER, SONIC ANALYZER PROGRAM NO. 2061	INS TO A	COUST	IC LOG M NO.	SHEETS	- СН-47Л	неысор	Ter,	
Item							Ratio	(fains	Cond	Cond
No.	Component Description	eecription	Mode	Mike	Chan	Mode Mike Chan Lock N	Set	п-1	Limit	Level
•			•	ć	(6		
7	NZ Callurate		>	>	>	7	0. 22:5(0:50	Peak	- -
22	Lock Check, Input Spiral Bevel	it Spiral Bevel	,	က	က	2	0.2525	00 - 20	Peg Meter	90
45	Lock Check, Input Spiral Bevel	it Spiral Bevel	_	c:	က	7	0.2525	00-20	Peg Meter	ક

	TABLE XLVIII. CORRECTIONS TO ACOUSTIC LOG SHEETS - CH-47A HELICOPTER, SONIC ANALYZER PROGRAM NO. 2071	DNS TO	ACOUST PROGR	FIC LOG AM NO.	SHEETS 2071	- CH-47A	негісо	PTER	
Item No.	Component Description	Mode	Mike	Chan	Chan Lock N	Ratio Set	Gains I-II	Cond	Cond
က	N1 Calibrate	0	0	0	1	0.2735	02-50	Peak	0
4	N2 Calibrate	0	0	0	8	0.2257	02-50	Peak	•
24	Accy Main Train	1	-	8	1	0.2000	08-10	Read	0
25	Lock Check (Accy Main Train)	1	7	7	-	0.2000	05-20	Peg Meter	8
83	N1 Calibrate	0	0	0	-	0.2735	02-50	Peak	0
22	N2 Calibrate	0	0	0	7	0.2257	05-20	Peak	0
74	Accy Main Train	7	7	7	-	0.2000	04 - 20	Read	0
81	Lock Check Accy Main Tr	81	81	61	67	0. 2000	05-30	Peg Meter	90

	TABLE XLIX, CORRECTIONS TO ACOUSTIC LOG SHE SONIC ANALYZER PROGRAM NO. 2081	S TO ACC	OUSTIC OGRAM	LOG SI NO. 20	IEETS - (81	RECTIONS TO ACOUSTIC LOG SHEETS - CH-47A HELLCOPTER, IC ANALYZER PROGRAM NO, 2081	LICOPT	Е R	-
Item No.	Component Description	Mode	Mike	Chan	Mode Mike Chan Lock N	Ratio Set	Gains I-II	Cond	Cond Level
40 71 72	Lock Check Input Spiral Bevel Lock Check Input Spiral Bevel Clear	က က	ကက	m m	0 0 0	0. 2525 0. 2525	00-20	Peg Meter Peg Meter	06 06 02

APPENDIX I SAMPLE CALCULATIONS

The following sample calculations are based on data from model T55-L-5 engine:

1. Compressor

Example: 1st stage = 28 blades, N₁ = 14040 RPM

(a) Fundamental rotational frequency

$$f_R = \frac{\text{Speed of compressor rotor, N1 (RPM)}}{60} = \frac{14040}{60} = 234.0 \text{ RPS}$$

(b) Compressor rotor blade passage frequency

$$C_1 = f_R \times \text{no. of rotor blades} = 234.0 \times 28 = 6552 \text{ Hz}$$

2. Accessory Transmission Main Gear Train

Example: Inner bevel main drive gear, 39 teeth (Ref 124-3, Figure 1); inner bevel main driven gear, 39 teeth (Ref 118-20, Figure 1); outer accessory drive bevel gear, 14 teeth (Ref 112-89, Figure 1); outer accessory driven bevel gear, 24 teeth (Ref 112-15, Figure 1); accessory transmission main drive gear, 15 teeth (Ref 110-11, Figure 1); N₁ = 234 RPS.

(a) RPS of Accessory Transmission Main Drive Gear

RPS =
$$N_1 \times \frac{\text{no. of teeth on drive gear}}{\text{no. of teeth on driven gear}}$$

RPS = 234 x
$$\frac{39}{39}$$
 x $\frac{14}{24}$ = 136.5 RPS

(b) Rotational Frequency of Accessory Transmission Main Drive Gear

$$f = RPS \times no.$$
 of gear teeth

$$f = 136.5 \times 15 = 2047 Hz$$

3. Bearing Formulae

Example: No. 2 Main Engine Bearing, N1 = 14040 RPM,
$$d_B$$
 = 0.6875", d_1 = 3.188", d_2 = 4.563" and m = 15

(a) Fundamental rotational frequency

$$f_R = \frac{RPM \text{ of shaft}}{60} = \frac{14040}{60} = 234 \text{ RPS}$$

(b) Frequency caused by irregularity on inner race

$$f_1 = f_R = \frac{d_2}{d_1 + d_2}$$

=
$$234 \times 15 \times \frac{4.563}{3.188 + 4.563}$$
 = 2067 Hz

(c) Frequency caused by irregularity on outer race

$$f_2 = f_R m \frac{d_1}{d_1 + d_2}$$

= 234 x 15 x $\frac{3.188}{3.188 + 4.563} = 1444 Hz$

(d) Frequency caused by spin of rolling element

$$f_B = f_R \frac{d_2}{d_B} = \frac{d_1}{d_1 + d_2}$$

$$= 234 \times \frac{4.563}{0.6875} \times \frac{3.188}{3.188 + 4.563} = 639 \text{ Hz}$$

(e) Frequency caused by rough spot on rolling element

$$f_B^1 = 2 f_B = 2 \times 639 = 1278 Hz$$

(f) Frequency due to rotation of train of rolling elements

$$f_T = \frac{f_2}{m} = \frac{1444}{15} = 96 \text{ Hz}$$

4. Octal Ratios

Example: Component frequency (1st stage compressor) = 6552 Hz
Tracking frequency = 8188 Hz

(a) Decimal ratio

Decimal ratio =
$$\frac{\text{component frequency}}{\text{tracking frequency}} = \frac{6552}{8188} = 0.800195$$

(b) Octal Ratio

Convert the decimal ratio to an octal ratio as follows:

(1) The number to the left of the decimal ratio is the first number of the octal number.

- (2) Multiply all digits to the right of the decimal point in the decimal ratio by 8. The number to the left of the decimal point in this product is the first number to the right of the decimal point in the octal number.
- (3) Multiply all digits to the right of the decimal point in the product obtained in (2) by 8. The number to the left of the decimal point in this product is the second number to the right of the decimal point in the octal number.
- (4) Continue this process until the desired number of decimal places for the octal ratio is obtained.
- (5) Round off last decimal place using the number 4 as the midpoint since these numbers are to base 8.

Example: Decimal ratio = 0.800195

Multiply 0.800195 x 8 = 6.401560 0.401560 x 8 = 3.212480 0.212480 x 8 = 1.699840 0.699840 x 8 = 5.598720

 $0.598720 \times 8 = 4.789760$

Therefore, Octal Ratio = 0.6315 rounded off to 4 decimal places.

APPENDIX II EXPLANATION OF TABLES*

Octal ratio settings, corresponding to rotating component frequencies at analysis speeds, are tabulated against component description for each mechanical section of the CH-47A/B helicopters power trains and T55-L-5,-7 engines.

For convenience in parts identification and reference, each listing contains:

Item No. - Numerical listing by mechanical grouping and subgrouping within the tables.

Ref-Figure - Cross-reference of mechanical grouping to figure number where illustration or mechanical schematic may be found.

Program Index - Cross-reference of individual component to related part in Department of the Army TM 55-1520-209-20P Organizational Maintenance Repair Parts and Special Tool Lists. This number is identical to the "Figure and Index Number" listed in the Army TM.

Part Number (Vendor) - Federal part number, as listed in TM 55-1520-209-20P followed by vendor or manufacturer's part number, where applicable.

Frequency - Frequency symbol and value.

The source reference for parts identification is Department of the Army TM 55-1520-209-20P, dated March 1967.

^{*} Reference pages 44-115

Unclassified

-					

DOCUMENT CONT	ROL DATA - R &	D	
(Security classification of title, body of obstract and indexing a	mnotation must be or		
1. ORIGINATING ACTIVITY (Corporate author)			CURITY CLASSIFICATION
Curtiss-Wright Corporation			assified
Aerospace Equipment Division		ab. Shoup	
Caldwell, New Jersey			
S. REPORT TITLE	-		
CWCD-1000/1010 SONIC ANALYZER WIT	TH CH-47 A/	B HELICO	OPTER CAPABILITY
4. DESCRIPTIVE NOTES (Type of report and inclusive detec) Final Report			
S. AUTHORIS) (First mans, middle initial, last name)	***************************************		
Robert G. Locklin			
George W. Stetson, III			
4. REPORT DATE	74. TOTAL NO. OF	PAGES	75. NO. OF REFS
July 1969	169		2
BL. CONTRACT OR BRANT NO.	SA. ORIGINATOR'S	REPORT NUMB	ENIS
DAAJ02-67-C-0006	1	10 m 1 ·	1.75
& PROJECT NO.	DSAAVLAD	35 Technic	cal Report 69-38
Task 1F162203A43405			
e,	Sè. OTHER REPOR	T HO(S) (Amy of	her numbers that may be essigned
4	C-3055		
19. DISTRIBUTION STATEMENT			
This document is subject to special expor-			
governments or foreign nationals may be		-	approval of US Army
Aviation Materiel Laboratories, Fort Eus			
11. SUPPLEMENTARY NOTES	12. SPONSORING M	ILITARY ACTIV	NTY
	US Army A	viation M	ateriel Laboratories
	Fort Eusti	s, Virgini	a
13. ABSTRACT			
The purpose of the work encompassed in this re sonic analyser, (2) to design and fabricate a CH engine and CH-47A/B believater power train co-	1-47A/B helicopter	plug-in module	with both T55

engine and CH-47A/B helicopter power train components capability, and (3) to design and fabricate an auxiliary microphone switch box.

The methods employed in achieving this work consisted of (1) analyzing mechanical data to determine

The methods employed in achieving this work consisted of (1) analyzing mechanical data to determine the frequencies of the rotating components, (2) performing a microphone survey and locking frequency investigation, (3) analyzing the acoustical data to develop spectral familiarity and to establish initial analyzer programming and system compatibility, and (4) conducting a field application program utilizing the automated sonic analyzer to correlate analyzer indications with the mechanical condition of the rotating components and to establish analyzer limits.

As a result of the work accomplished under this program, a Curtisa-Wright model CWCD-1000 Sonic Analyzer with a CWCD-1010 automation unit, developed under Naval Air Systems Command Contract NOw 66-0704f, was fabricated and delivered to the Army together with a CWCD-1020 microphone auxiliary switch box. The CH-47A/B acoustic plug-in module, delivered with the analyzer, was designed and fabricated under this program to incorporate the T55 engine (models T55-L-5 and T55-L-7) and CH-47A/B helicopter power train components (forward and aft rotor transmissions and combining transmission) capability. The component limits for the aft rotor transmission were established during the three-month field application program conducted at Henchy Army Air Field, Fort Rucker, Alabama. An additional four-month study was conducted in the Curtiss-Wright laboratory to evaluate the complete CH-47A/B helicopter dynamic system utilizing the tape recordings made during the three-month field application program. As a result of this study, tentative component limits have been established. However, a considerable amount of additional data will be required to confirm these limits.

The utilization of the CWCD-1000/1010 Sonic Analyzer and the CWCD-1020 switch box by ground maintenance personnel at military installations will reduce the aircraft downtime by eliminating unnecessary troubleshooting as now being practiced under conventional inspection methods. As the confidence level in the CWCD-1000/1010 analyzer is increased, the time between periodic inspections may also be increased.

		 4454 AAAA 4455	I LAM BE THEFT IS
		 10 00 00 1 000 1010.	
1	 7	 1473.	

Unclassified

Security Classification

MONEY.

Unclassified

Sonic Analyzer CH-47A/B Helicopter	LIN	K A WT	LIN	WT	ROLE	K C
Sonic Analyzer	ROLE	WT	ROLE	wT	ROLE	WT
CH-47A/B Helicopter						
					l	
						•
				l		ľ
				ĺ	ľ	
		l	l		i	
		i	l		l	
					ŀ	
				I		
	1			<u> </u>		
	1					
				İ		
			1		1	
	1			ł		
				1		
				1		
			1]	
	!			ł		
	i 1					
	i l					
	1					- 1
	1					
	1 1					
	1 1]	
					1 1	
	i I				l i	
				-	1 1	
					l 1	
					}	
			i			
			i			

Unclassified
Security Classification