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FOREWORD
*

This document, the final report for Task 2.10e and f is submitted
by the Institute for Telecommunication Sciences, Boulder, Colorado, in
accordance with contract F04701-68-F-0072. The Air Force Project
Officer was Captain M. Marin of Headquarters Space and Missile
Systems Organization, SMQHN, Air Force Systems Command, Norton
Air Force Base, California. The study was initiated on 20 January 1969
and completed on 30 June 1969.

This document is subject to special export controls, and each
transmittal to foreign governments or foreign nationals may be made only
with prior approval of SAMSO (SMSD).

Information in this report is embargoed under the Department of
State International Traffic in Arms Regulations. This report may be
released to foreign governments by departments or agencies of the
U.S. Government subject to approval of Space and Missile Systems
Organization (SMSD), Los Angeles AFS, California, or higher authority
with the Department of the Air Force.

Publication of this report does not constitute Air Force approval
of the report's findings or conclusions. It is published only for the
exchange and stimulation of ideas.
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ABSTRACT

Atmospheric radio-noise samples were recorded near

Boulder, Colorado, and analyzed to obtain amplitude and time

statistics of MF and HF noise. Amplitude and time statistics

derived from the HALL model were compared with the corresponding

measured statistics for atmospheric noise. The measured dis-

tributions of noise samples previously used in error-rate tests

were compared with distributions derived from the HALL model

and from standard atmospheric i adio-noise distributions. Per-

formance curves were computed for a CPSK system and for an

optimum receiver operating under the same conditions. Atmos-

pheric radio-noise predictions for 20 CONUS locations were

furnished.
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SAMSO PHASE C - FINAL REPORT

NOISE DATA AND ANALYSIS

A. D. Spaulding, R. T. Disney, and L. R. Espeland

Atmospheric radio-noise samples were recorded near
Boulder, Colorado, and analyzed to obtain amplitude and time
statistics of MF and HF noise. Amplitude and time statistics
derived from the Hall model were compared with the corres -
ponding measured statistics for atmospheric ncise. The meas -
ured distributions of noise samples used in previous error-
rate tests were compared with distributions derived from the
Hall model and from standard atmospheric radio -noise distri-
butiens. Performance curves were computed for a CPSK
system and for an optimum receiver operating under the same
conditions. Atmospheric radio-noise predictions for 20 CONUS
locations were furnished.

1. INTRODUCTION

The work covered by this report consists of that performed in

compliance with task 2. l0e and f of Addendum No. 2 (Phase C) to

Contract F04701-68-F-0072, Communications Field Te&'L FY-68,

Project 67ZA in support of HRSD Program 12SB. Task Z. 10e was to

record atmospheric radio noise at suitable times near Boulder, Colorado,

at frequencies of 495 kHz and 2. 5 MHz and analyze the recorded noise

samples to obtain the amplitude probability distributions (APD) and pulse

duration distributions (PDD), pulse spacing (interval between pulses)

distributions (PSD), and average crossing rates at various levels. The

recor&!-.g system used made additional recordings posaible at a negli-

gible increase in cost. Because three frequencies at a time can be

recorded on a single seven-track tape, recordings were also made at

250 kHz and 5 MHz. The requirements of Task 2. 10f were to (1) deter-

mine the applicability of the Hall model for impulsive phenomena to HF

atmospheric radio noise, (2) analytically develop an optimum (minimum

probability of bit error) receiver for HF atmospheric radio noise,
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(3) Compute the error rate for the optimum receiver and for a matched

filter linear receiver for NCFSK and DCPSK systems operating in the

same noise environment, and (4) compute the error rate for a CPSK,

8 bps, 4 kHz bandwidth system and the optimum receiver performance

for the atmospheric radio noise samples used in earlier Minuteman tests,

comparing the results with the earlier results. Much of the original

work on the definition and specification of the mathematical modeling of

the noise was performed on a different project (Disney and Spaulding, 1968).

Part of that project report dealing with the Hall model for impulsive

phenomena and its applicabilitj to atmospheric and man-made noise and

the derivation and analysis of performance of the optimum receiving

system is appended to this report for clarity and background information.

In addition to these requirements, additional anai-ysis of the atmos -

pheric radio noise tapes recorded under Task Z. l0e provided other sta-

tistics of the noise. The spectrum and autocovariance were computed

for several 200 ms random segments of the recordings.

Predictions of atmospheric radio noise were provided in terms of

time-block medians, decile deviations from the medians, and standard

deviations of these values within the time block for 20 possible installation

locations in the continental United States.

The results obtained and the methods used in the above tasks are

presented in the following sections.

Z. ATMOSPHERIC RADIO-NOISE RECORDINGS AND ANALYSIS

Estimates of the amplitude statistics of atmospheric radio noise

are given in a report by CCIR (1964), which does not contain a description

of the time statistics at various amplitudes; nor are adequate estimates

of these statistics of the noise envelope available elsewhere.

Time and amplitude statistics of atmospheric radio noise in the

MF and lower HF portions of the spectrum are needed to veriiy the

S~-2-
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accracy of the mathematical model of the noise. This information was

needed also for theoretical prediction of system operation when such

noise is the predominant type. Because of time limitations, noise

recordings from which the statistics could be obtained had to be made
tefeunisoineetTh recordingstefoha tobemd
during a season of the year when daytime atmospheric noise was low at

.the frequencies of interest. The recordings, therefore, had to be made

at night when atmospheric radio noise was higher than other types of

noise. To obtain some variation of the statistics, they were made on

four separate nights. One tape with three simultaneous frequencies

was recorded each night. The 500 kHz and 2.5 MHz channels were

recorded on each of the four nights, the 250 kHz channel was recorded

on three nights, and the 5. 0 MHz channel on one night. The recordings

were all made at a site remote from power and telephone lines and from

highways, and all were recorded shortly after midnight. The tape

recording system described in the Phase B final report (Disney and

Spaulding, 1968) was used. The noise envelope was obtained from the

analog tapes and digitized for computer analysis. The A to D conversion

was done at a 10 kHz sampling rate. Seven levels and U time intervals

were used in the computer analysis. The time intervals throughout were

0. 2, 0. 6, 2, 6, 20, 60, 200, 600, 2000, 6000, and 20000 ms. Thc levels

were limited by the dynamic range of the A to D converter. A 60 dB

dynamic range was available, and only the top 60 dB of the 90 dB recorded

on the analog tape was used. Six levels 10 dB apart (50 dB) and one step

of 8 dB at the top were used. The table 1 calibration sheet gives the levels

in terms of d3 above kT b for each of the following 12 computer print-

outs. Tables 2 through 13 are the computer printouts, all in the same

format. Tables 2, 3, 4, and 5 are the results of the analysis of the

2.5 MHz recordings for March 29 and April 3, 4, and 5, respectively;

tables 6, 7, 8, and 9 are from the 500 kHz channel for the same respec-

tive days; tables 10, U1, and 12 are from the 250 kHz recordings on

-3-



March Z9, April 3, and April 5, and table 13 shows the results of the

analysis of the 5 MHz recordling made on April 4.

The APD's are given at the top of the page. The top line is the

percent of the time that level I is exceeded, the second line is the

percent level 2 is exceeded, etc., through level 7 on line seven.
The cumulative PSD's are given in the next grcup of figures.

The first column is the distribution for level 1, the second column for

level 2, etc.,through the seventh column for level 7. The first line is

the percentage of the intervals betweer pulses that are 0. 2 ms or more

in duration. The ether lines in order are the percentage of intervals

that equal or exceed 0, 6, 2, 6, 20, 60, 200, 600, 2000, 6000, and

20000 Ms.

The next group of numbers givee the percentage of pulse durations

that equal or exceed the various lengths of time in the same order as the

intervals are given. That is, the first column gives the percentage of

pulse durations that equal or exceed 0. 2, 0. 6, 2, 6, etc., ms at level 1.

The bottom line on the printout is the average crossing rate at

each of the levels. The number of positive crossings per second at

level 1 through 7 are given from left to right.

Computer printouts of the same information for man-made radio

noise have been furnished in an earlier report (ESSA, 1968).

Sample plots of the data given in the tables are shown on figures 1

through 1Z. Figures 1 through 4 are the plots of the data given in table 2

for atmospheric radio noise at Z. 5 MHz. Figure 1 is a plot of the ampli-

tude probability distribui.'o, figure 2 presents the curves of the PSD's,

figure 3 shows the PDD's, and figure 4 is a plot of average crossing

rates. These values were recorded on March 29. The same sets of

values for 500 kHz recorded on April 3 and tabulated in table 7 are shown

on figures 5 through 8, and the data for 250 kHz recorded on April 5

(table 12) are presented in figures 9 through 12.

-4-
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Each tape was further analyzed to obtain the autocovwriarice

function. From each tape, three intervals of 2048 samples each were

* chosen at random. The 2048 data points correspond to a time interval

of essentially 0. 2 s (10000 kHz sampling rate). For each set of data,

the d-c term was removed, and the conditioned data were fast-Fourier-

transformed to obtain ax, estimate of the spectrum. Each data point is

considered to be complex, and the resulting spectrum is used to compute

the power spectrum. The power spectrum (properly scaled) is inverse

fast-Fourier-transformed to obtain the autocovariance. This procedure

is, by far, faster for obtaining the autocovariance than the standard,

average -lagged products method.

Figures 13 through 18 show two such sets of calculations for

500 kHz recorded on April 3. Figures 19 through 21 show a set for 500 kHz
recorded on April 4, and figures 22 through 24 show a set for 2. 5 MHz

recorded on April 4. Each set of three figures first shows the input

(digitized) data, then the amplitude spectrum, and third, the resulting

autocovariance. All levels given are in millivolts and can be converted

to absolute levels using table 1. While all possible (1024) Fourier coeffi-

cients are computed in the above, only the first 50 are given in the

figures. Each point shown on the spectrum corresponds to harmonics

spaced about five cycles apart, and each harmonic has its corresponding

negative frequency component. That is, the result is a two-sided spec-

trum, of which only the first 50 harmonics of the positive half are shown.

Because the desired result is the autocovariance, the above pro-

cedure does not give a particularly good estimate of the spectrum itself,

since no conditioning (windowing) of the data was used. The spectral

estimates obtained above can be converted to a reasonable estimate of

the true spectrum by standard conditioning (Hamming, for example) of

these estimates.

-5-



Each of the above samples is taken from within a burst of noise.

Two low-level and two relatively high-level bursts are shown. Figure 22

also shows the start of a short burst at 2. 5 MHz. Between such bursts

are periods of much lower-level background noise.

3. COMPARISON OF MEASUREMENTS WITH THE HALL MODEL

In this section we will compare the measured statistics (APD,

average crossrig ,-tea, PDD'9, and PSD's) obtained for atmospheric

radio noise with .he :o±'re.sponding statistics calculated from the Hall

model. The model haab beeu specified in a previous report to SAMSO

(Disney and Spaulding, 1968), and the portion of that report concerning

the Hall model and optimum receiver performance is included here for

completeness as appendix A. While measured APD's and average

crossing rates have been compared before ior LF atmospherics (Hall, 1966),

the above four statistics have never been obtained for the same sample of

noise and, of course, never compared with any model.

The computations of the envelope and phase probability distribu-

tions are given in appendix B. Note that the phase is uniformly distribu-

ted and independent of the envelope, as one would intuitively expect.

The APD used in the comparisons is given by (B-15).

The computations of the average rate of envelope-level crossings

is given in appendix C. Some of the calculations in appendices B and C

were performed earlier under a different contract (USAFSS Memorandum

of Agreement TT-67-334). As shown, the average crossing rate is

dependent on the spectral moments of the rm,-ieasurement receiver bandpass

characteristic and the autocovariance function of the noise process. For
typical receiver characteristics, these parameters can be included in

the rms bandwidth, Ps as defined in (C-13). Our measurements were

made in a bandwidth of 4 kHz, which corresponds for typical bandpaes
shapes to an rms bandwidth, B somewhere between 800 ard 1500 Hz.

-6-
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We will use 1000 Hz for B in the following comparisons so that theC

average number of crossings by the envelope of the level Vo, N(V ) is

given by (C-14). Since we obtained only the positive going crossings

from the tape recordings of the noise, we require N(V )/2.

The determination of the distribution of envelope-level crossings

(PDD's and PSD's) for a random process is, in general, a classical

unsolved problem--even for Gaussian processes. Since we are dealing

with a bandlimited envelope, a useful representation of the envelope can

be given in terms of 2 T B samples, along with a set of appropriate0

orthonormal basis functions (see, for example, Hannock and Wintz, 1966,

App. II), where 2B is the bandwidth and T is the time interval of0

interest. That is, the envelope for the time interval is given by

ZT B

•(t} • Ati)•it 0 11M

where V(ti) denotes the value of the envelope at time tI and + 1(t) denotes

the basis function. Of course, each V(ti) is a random variable. Since

the expected shape of the received atmospherics is determined by the

bandpass of the receiver, *.(t) should be related to this bandpass charac-

teristic. Although generally the best approximation comes from using

prolate spheroidal-wave functions for 41(t), we will follow Hall's (1966)

example and use pulse-basis functions. The ith-basis functions will be

a rectangle pulse of width At from t. - At/2 to t. + At/2 and a height11

1/ t-, At denoting the tii.te interval between samples. Letting the

number of samples 2 T B be denoted by N, and from (C -2), we have the0

envelope given by

N
At - a(ti)I E(ti) -0i(t) _At (2)v(t) )

i= 0

-7- I



where, as in appendix C, E(t) is the envelope of the narrow-band

Gaussian process, n(t).

We can now proceed to compute the distribution of the pulse

spacings at the envelope level V 0 . Let Prob [T > T] denote the proba-

bility that the time between a down crossing of level V to the next up
0

crossing, T, is greater than T . Then

Prob [T >T = Prob noup crossing of V in[t, t + T
0 0 01

(3)

a down crossing at time ti .

The vertical line in (3) denotes a conditional probability, i.e. , (3) is the

probability the first statement is true, given that the second is true,

and is, therefore, given by

Prob {no up crossing of V in [t, t+ To, and a downcrossing at t)

Prob[T>T 0 ] = Prob {down crossing at tj

(4)

In the range [t, t + T ] we have N samples, where N = 2ToB (i.e.,

smallest integer > ZT B). Thus (4) becomes, in terms of these samples,
_- 0

Prob[V(t > V, V(t) < V,. V(t 2 ) < Vo "'.' V(tN)<Vo
0] Prob V(to >V VI(t) < V

(5)

If atmospheric noise were composed of independently occurring

events (e. g., events occurring according to a Poisson distribution), the

pulse spacings would be essentially exponentially distributed, especially

at the higher envelope levels. Some slight deviation might be expected

due to the receiver response characteristic. The measurernents given

indicate that we are not dealing with independently occurring cvents,

since an exponential distribution plots as a straight line of slope -1 on

the coordinates used for plotting the PS1's aad PDD's (Rayleigh paper).

-8-



We see from the measured statistics (figs. 2, 6, and 10)

that for time intervals on the order of 20 ms or less the PSD's

are reasonably close to being exponentially distributed. These

time intervals correspond to events within a burst of noise, and

we have seen that the autocovariance function generally shows only

low correlation for these short time periods (figs. 15 and 24).

However, a great deal of correlation exists at longer time periods

(time between bursts, for example), as reflected by the much

greater steepness of the PSD's at the longer time intervals and

higher envelope levels.

We will calculate (5) and the corresponding expression for

PDD's for two cases. In the first case we will assume independent

samples, and in the second we will introduce some correlation
between samples.

If the samples are -'ndependent, then (5) becomes

Prob [V(t) > V] {Prob [ V(t) < V_0

Prob [T >T = , (6)
Prob[V(t) >Vo Prob[V(t) < Vo]

so that
N-I

Prob[T >To = {Prob [V(t) < V 01 (7)

and, fronm. the expression for the envelope distribution (B-15),

m N-1

Prob[T > T] 0 */ (8

The result (8) corresponds to one previously obtained by Hall (1966).

Similarly, if we let U denote the time interval of interest, then for the
o

-9-



pulse durations, i. e. , the time between an up-going crossing and the

next down-going crossing of level V , we have
0

Prb[9 >)<V V(t.,) > V_, .,V(t )> V
o0 0 N- oProb U >U 0 = -

P rob[ V(t ) <. V t>v]

which reduces, for independent samples, to

N-I
Prob [U>U ] {Prob V(t) > V_ (10)

0

so that

m N- 1

o { (_y/V mProb[U>roU ( 1)

[1+(Y/Vt ) 2V

We next introduce some correlation into the noise process.
This means that a covariance function must be specified for the process a(t).

(whe independence assumption above corresponds to specifying a delta

function covariance.) We will let aI~t) remain constant over the time
interval of interest (T or U ), so that a(t) is now a random variable

0 0

rather than a random process.

Let PN(V,) denote the numerator of (5),

No-

Prrob[>V(t )U>oV A Vo.VV(t)< V ... ,V(t )< v11

We now have

lo-

c!tPN(Vo) dendt the duerto of.~ dY 5), , (

VV VN

-10
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where V. denotes V(ti), and V denotes the vector of samples

NV0 , V1 ,..., VN). To maintain notation consistent with previous work,

we now have an ambiguity. Although V is the particular envelope level

of interest, in (12) V is also used for the sample V(t ). The context

is such, however, that no confusion will arise.

Since our envelope V(t) over the time interval T is now given

by (see app. C)

V(t)= ja E(t) (13)

where E(t) is the envelope of the narrow-band Gaussian process n(t),

d P 1  (x) PE (() (14)PV -V N- a I
"" o

where E denotes the vector {E. } of N samples corresponding to thew IL

vector {V.I. Now Ia 1 (X) is given by (C-7) and, since E is the envelope

of a Gaussian process, each E. is Rayleigh distributed and independent
1

so that (see app. A)

N

PE(E) = 11 exp_ - i = 0 20-1

The integral (14) can now be evaluated, giving

ZN+m+zI N

P ) M ZN+I m 2 9 i=O i
m M ZN+rm+ 7  . (16)

KrG- [ z z

-11- 1+
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Substituting (16) into (12) and evaluating the N + I dimensional integral,

we have

m k 7(- )P(V) ? (17)No 0 k o [k+l) V0
2 + 2jm

Likewise, for pulse durations (time interval U ), P (V,,) is now given by
o0 N

V
0

PN(V) = dV° 1dv SdVNPV(V) (18)

0 V V
0 0

which gives

1P N(V° 0 [12 2m/ - [/2]m• 19
N+I) V + (N+2) V +

0 0

Finally then, for this case of dependent samples, (5) gives

Prob[T> T = T "k (20)(-1)1

k ~o. +k1 + (Y/V)z]

and (9) gives I I
[( lm/2 ( ]m/2

NP+oI)[(Vo/Y)2 + N + 2) (V o/-)2 + I*121)Prob[U > Uo] = I ' 1
0 1 1

[(o/)2+ I] m/2 [21Vo/Y) + 1]m/z

I

-12



Figures 25 through 34 show the comparison of the measured

envelope distributions and average crossing rates with those calculated

(B-15) and (C-14) for the Hali r-rodel for five of the atmospheric-noise

tapes analyzed, two at 500 kHz, two at 2. 5 M'iz~and one at Z50 kI-iz. The

levels are given relative to the parameter y, since the theoretical results

are in terms of V /y. They can be converted easily to absolute values
0

(dB > kT b), as explained earlier. The comparison shows good agree-
0

ment. and for the average crossing rates could be ,nado! even better by

specifying the proper spectral moments (app. C), r ither than the "loose"

p-•rameter B
c

Figures 35 and 1" show the comparison of the nneasured PSD's

an PDD's with those de. ived from the Hall model, considering independent

aa.wples ((8) and (11)). The comparison is shown only for the 250 kHz case.

We see that the derived distributions are essentially exponential espe-

cially at the low probabilities, and do not match the measured distribu-

tions for the larger time intervals.

Figures 37 and 38 shcrt, the comparison for considering dependent

samples ((20) and (21)). which indicates too much deperTdence at tUe

larger time intervals as characterized by the derived distributions

becoming too steep and grouping together more rapidly than the nmeas-

ured distributions at the higher envelope levels.

While the amplitude statistics and the average time statistics

(average nu-mber of crossingr per second) match quite well, the PDD's

ani PSD's do not matcn as w•, The two cases given (independent

samples and some degree of correlation) bracket the rýal sit-.lat-on. It

is apparent that a proper covariance function can be specified for a(t),

so that these time statistics also can be closeiy matched.

Note that (2) is quite difficult to evaluate if N is at all large

because of the alternating series, coupled with the binomial coefficients,

-13 -
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N For example, in our 4 kHz bandwidth, a time intervai of 2000 ma

corresponds tc an N of 8000 Techniques have been developed to evaluate

(20) and computer programs written to implement them.

Consider also the special case 0 3(m 2), where (Z0) can be

evaluated easily, since

-1 [ k Z Y/v/ 1)2 ] N dz(22)

and the integral can be readily evaluated numerically.

4. CALCULATION OF PERFORMANCE OF OPTIMUM RECEIVER

FOP CUJRRENT MINUTEMAN SYSTEM

The current Minuteman receiver uses limiting of the noise in a

4 kHz bandwidth, followed by an effective bandwidth reduction to 8 Hz.

The receiver is a standard DCPSK receiver operating at 8 bps. We will

apply the results of appendix A to the above situation to obtain the per -

formance of the optimum receiver.

Many tests of the effect of limiting and hole punching on the per-

formance of the above standard receiver have been conducted (Sisco,

1964, Sylvania, 1963), and the object .f:re is to determine how much

better the optimum receiver would perf3rm. Since atmospheric -noise

tapes were used in the tests cited, we must first specify the parameters

of the Hall model that match the statistics of the noise used. The noise

had essentially the values of Vd(app. A) of 26. 0 dB, 12. 0 dB, and 7. 0 dB.

Figure 39 is a comparison of -the measured dxetribution and the

distribution from the Hall model for m = 1. 0 (Vd = 26. 0 dB) for tracks

5 and 7, reel 1, of the Canal Zone tapt. Figure 40 shows the standard

atmospheric-noise distribution for Vd= 7.0 dB, with the distribution

-14-.



from the Hall model for m = 2, 5. Figure 41 is a comparison of the

measured distribution from tracks 1 and 3, reel 2, of a Canal Zone

tape, along with distributions for V = 12. 0 dB and m = 1.7. Figure 42

dshows the measured distribution from tracks 1 and 3, reel 1, Canal Zone

tape along with the distribution for m = 1. 0. The value V = 26. 0 dB
d

would correspond here also. The frequency throughout is 450 kHz, and

since the bandwidth is 4 kHz we require the performance of the optimum

receiving system for m = 1. 0, 1. 7, and 2. 5.

The tests reported by Sisco (1964) and Sylvania (1963) were generally

conducted with the receiver operating in a CPSK mode rather than DCPSK.

We will therefore compute performance for CPSK signale.

First, for comparison, we will give the performance of the

standard CPSK receiver operating at 8 bps. The 4 kHz noise distribu-

tions of V 's of 26. 0, 12. 0, and 7. 0 dE reduce in an 8 Hz bandwidth to
d

distributions with V 's of 3. 7, 1. 83, and 1. 55 dB (Spaulding et al., 1962).
d

The performance for these three values of Vd is shown in figure 43 and

were computed by Haiton and Spaulding (1966) and Spaulding. Also

shown is the performance curve for the standard (linear, matched filter

Now it remains to compute the performance of the optimum

receiving system for the corresponding situations. As shown in (A-35),
performance (probability of error, pe) is given by

2TB I
L: pe=Prob 1ni>._0' (23) •

where 2B is the bandwidth, T is the time duration of the signal, and the

random variables z. are functions of the complex envelopes of the noise

iSILI
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and signal, as given in (A-36). In our situation then, 2TB is 500. In

appendix A, performance was calculated for 2TB aqual 10 and 20, and

was given by the appropriate Chernoff upper bound (A-46). Here the high

value of ZTB results in this upper bound not, in itself, being a very good

estimate, which must be modified according to (A-41). That is, the

factor 1/-I 21 s2 p" (s) must be calculated. While this factor was of

little significance in the previous calculation, it now becomes highly

significant, as can be seen from (A-52), which gives "p7(s) for the special

case m = Z. Numerical techniques were developed to evaluate 'p(s) for

the values of m of interest here. Even so, since we are dealing with low

signal-to-noise ratios, the resulting esLimate (A-41) is valid only for

quite lnw p
eA

To complete the performance estimates, we now will obtain a

lower bound that is quite good for low signal-to-noise ratios and high

p.e
Using the inequalitysas suggested by Hall (1966),

1
In z. >1--, (24)

1 - Z. (4

we have SZTB

p ro O(. (25)

Since 2TB is 500, we now apply the central limit theorem to (25), that

is, we require the mean and variance of the random variables 1 - l/z..

-16-
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From appendix A, we have

1> 2 21 --- = ,(26)z. 2+

Swhere n. is the ith sample of the complex noise envelope, ii: is the ith

sample of the complex signal envelope, and it, (app. A).ism1 It2 ap )
With .= + and &. = pL. +j t* (that is, % andi are the

real and imaginary parts of the complex random variable i.) we have

(27)

.• where (Hall, 1966)

nici nii • 2

PZi + ýc is s is

whr (Hall 1966)

p, I (28)
71i~ ~ ~~ ~n C,' i , i+2i +
\1 i [.2 + ~]2

and E denotes the expectation operation (mean value operation).

Evaluating (27), we obtain
E - MI mii Iz

E 1 -. ] - - - (29)

( oM+2)

so ZT 1 2TB 2

Z.m+2 (30)

Similarly,
[ 2 4m I, i2 mi4

I[ 1 = (31)

1 (m+2)(m+4) (m m+4)

-17-
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The variance of the variable I - lI/z. is then given by

2 4

Vart1- 1 4n + m r
(m+•2)(mr+4) - m+4 m+2)-

(32)
Finally, with

2TB 2

4 z rn+2 (33)
M+2

and
2TB 2 2B 1

4

2 4r m" + mm
z -7 2-- (34)
z (mrn4)(+- (rn+2) =L-41

i=l i+ 1

we obtain an estimate of the lower bound given by (25)

p > erfc Z (35)
e-o

z

Here

erfc c- exp (-y/2) dy (36)
e-

x

By using both the upper bound (A-41) and the lower bound (35), the

performance curves for m = 1. 0, 1. 7, and 2. 5, given in figure 43,

were obtained. Note that the above calculations are for signals

with zero crosscorrelation (app. A), so that the curves of figure 43

also incorporate the standard 3 dB improvement one expects in

going to signals with -1 crosscorrelation (as in the case of CPSK

signals).

While the results of the limiter tests (Sisco, 1964; Sylvania,

1963) a-e not inciuded in figure 43, they generally group abot the

Gaussian characteristic, indicating that even in this rather extreme

case of limiting and bandwidth reduction, the optimum receiver

still performs substantially better.

-18-
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Table 1. Calibration Sheet

Absolute levels corresponding to levels 1 through 7 on
computer printouts. Levels given to nearest dB.

Ievel dB > kT b dB > B > kT dB>kTb
0 0 0 0

Table 2 Table 3 Table 4 Tabie 5

1 42 41 53 57

2 52 51 63 67

3 62 61 73 77

4 72 71 83 87

5 82 81 93 97

6 92 91 103 107

7 100 99 111 115

Table 6 Table 7 Table 8 Table 9

1 63 42 67 77

2 73 52 77 87

3 83 62 87 97

93 72 97 107

5 103 82 107 117

6 113 92 117 127

7 121 100 125 135

Table 10 Table 11 Table 12 Table 13

1 83 62 91 67

2 93 72 101 77

3 103 82 111 87

4 113 92 121 97

5 123 102 131 107

6 133 112 141 117

7 141 120 149 125

II
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Figure 1. Amplitude probability distribution of atmospheric r&dio noise
recorded at Eggleston Reservoir No. 4t Boulder, Cplorado.
F = 2. 5 MHz, B. = 4 kHz, March 29, 1969, 0000-0400 hrs.
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APPENDIX A

A 1 Mathematical Modeling of the Noise Process

To be able to determine the performance of an optimum receiver

subjected to man-made radio noise, a model for this narrow-band

random noise process must be developed. Narrow-band noise processes

result whenever the receiver bandwidth is substantially less than the

receiver center frequency. The received waveform of the narrow-band

process has an envelope and a phase. For determining the optimum

receiver, more information about the noise is required than generally

can be obtained from measurements. The problem is to develop a model

for the noise that fits all the available measurements, that is physically

meaningful when the nature of the noise sources are considered, and

that still is simple enough that the required statistics can be obtained

for solving signal detection problems.

Many attempts have been made to model narrow-band impulsive
noise processes (Furutsu and Ishida, 1960; Middleton, 1961; Beckmann,

1964; Galejs, 1966). These models are essentially similar in that they

take the received noise to be composed of a sum of filtered impulses

whose amplitudes and occurrence in time follow various probability

distributions. For example, the amplitudes of the impulse responses

may be assumed to be log-normally distributed, while their times of

occurrence may be assumed to be Poisson distributed.

Although the above forms are well-motivated physically and can

be made to fit measured first-order statistics (amplitude probability

distribution of the noise envelope, for example), they have several dis-

advantages as far as the signal detection problem is concerned:

(1) The models assume independence in the noise, while meas -

urements indicate that this is not the case for either atmospheric noise

or most forms of man-made noise. When one considers- the correlation

in the sources of man-made noise (automobile ignition systems resulting
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in essentially periodic pulse trains, for example), the assumption of

independence is obviously wrong.

(2) The resulting probability distributions are quite complicated

and usually cannot even be put in closed form. For this reason no

attempt has ever been made to apply these models to statistical detection

problems at the receiver.

Various empirical models have been developed and related to

measurements (Crichlow et al. , 1960; Spaulding et al., 1962; Ibukun,

1966). These models do not represent the noise process but only the

measured statistics of the process and, therefore, are not. in general,

applicable in determining optimal receivers for the particular noise under

consideration. They have been used to dete.-mine performance of various

3uboptimum linear receivers. The receivers now in use are designed

to be optimum in Gaussian noise, and the performance of these receivers

acting in impulsive noise has been determined (Akima, 1967; Bello, 1965;

Conda, 1965; Halton and Spaulding, 1966; Lindenlaub and Chen, 1965;

Shepelavey, 1963; Spaulding, 1964, 1966).

Here we are considering digital systems in which each signaling

element is equally probable, and since the "cost" associated with making

an error is the same for each type of possible error, "optimum" here

simply means minimum probability of error. For example, in a binary

system, by equal "costs " we mean making the error "decide signal one

-when signal two was sent" is just as bad as making the error "decide

signal two when signal one was sent. " Indications as to performance

improvement by use of nonlineaz elements (hole punchers, limiters,

etc.) have also been given (ESSA, 1967; Linfield,, 1965; Shchukln, 1946;

Sisco, 1964; Sylvania, 1963).

Recently, Hall (1966) applied work on the applicability of a class

of "self-similar" random processes as a model for certain intermittent
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phenomena to signal detection problems considering LF atmospheric

noise. The concept introduced is that of a random process controlled by

one "regime" for the duration of observation, while this regime is itself

a random process. This concept was introduced by Mandelbrot (1964) in

the study of turbulence.

Hall (1966) has shown that the model to be specified in the next

section fits the measured statistics of LF atmospheric noise. Other

work at ITS has indicated that the medel may be modified to fit HF atmos -

pherics and man-made noise.

In the following section we will specify the model and possible
modifications, determine the optimum receiver for some examples of
LF atmospheric noise, considering frequencies around 500 kHz, obtain

estimates of this optimum receiver's performance, and show how this

performance compares with the performance of typical linear (matched

filter or correlation) receivers.

As expected, the optimum receiver is nonlinear and its perfor-

mance therefore depends on more than just the signal-to-noise ratio.

We will see that, in general, performance will depend on the actual

noise power, the actual signal energy, the signal shape, bandwidth, and

time duration of the signals. We will analyze our optimum receiver's i
performance for the following situations:

(a) lO0OHz bandwidth, binary system, signaling rate of 100 bps,

with the highest atmospheric noise levels, as predicted by

CCIR (1964) for the northwest U.S.

(b) Same as (a), but with a signaling rate of 50 bps.

For comparison with current receivers, case (a) would correspond to a
Sreceiver that tries to fight the noise by limiting in a 1000 Hz bandwidth]

and then uses approximately a 10-to-I bandwidth reduction to limit the

noise.
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A. 2 Specification of the Hall Model

The model proposed for received impulsive noise is one that takes

the received noise to be a narrow-band Gaussian process multiplied by a

weighting factor that varies with time. We will consider the narrow-band

noise process y(t), to be of the form

y(t) = a(t) . n(t) , (A-1)

where n(t) is a zero-mean narrow-band Gaussian process centered on the

frequency of interest, w , with covariance function, R (Q, and a(t), the

"regime" process, is stationary and independent of n(t). The statistics of

a(t) must be chosen so that y(t) is an accurate description of the received

noise. We will further make the reasonable assumption that the modulating

process, a(t), is slowly varying (compared with n(t)) so that the spectrum of

a(t) has negligible overlap with the spectrum of n(t). That is, n(t) is a

bandpass process, while a(t) is a lowpass process. The details and

arguments as to why this is a reasonable model for physical, as well as

mathematical reasons, are given by Hall (1966).

An appropriate choice for a(t) turns out to be a process with a

probability density function given by f

2(x ) W___ r2 i
p W =2 x

where m and a are parameters defining a two-sided chi distribution, X2 (m. al.

The zero mean Gaussian process, n(t), is completely described by its

covariance function, Rn(-r), and its probability density is given by

W exp Go X 00 x< (A -3)
Pn(X) 2
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where R = 012 the variance of nrt). Since n(t) and a(t) are assumed to

be statistically independent,

p(x = I d pa([ ) Pn(z) (AA-4)

I welet y= mlo-/G- and = m+l >1, then

0

0-1.1
Y { 1---) 0-1 1 2 2

For this model Hall has computed the distribution of the noise

envelope, the average number of level crossings of the noise envelope,

and the distribution of level crossings (i. e., time between bursts) and

has shown that by proper choice of the parameters, 0 and y, the proposed 4

model fits quite well these measured statistics for LF atmospheric noise.

Even so, there are some problems. First, when 0 is in the range

2 < 0 !3, y(t) has infinite variance (i.e., infinite energy) and therefore

cannot be a model for physical noise, even though it is found to fit the

measurements. The problem arises in the tails of the distribution of

y(t) being such that y(t) is either barely convergent or barely divergent,

depending on the parameter E). This in turn arises from allowing the

modulating process, which represents the statistics of the noise sources,

to have an infinite range. Note that y and 0 can be related to the two

ii parameters commonly usf-' to define the distribution of the noise envelope

for atmospheric noise, Vd and the rms level, F (Spaulding et al., 1962)."d a

As we shall see, the problem of infinite variance will not bother us,

because we will simply normalize our analysis to the point on the envelope

: 1 distribution that corresponds to the actual rms level measured. That is,

instead of normalizing to the (sometimes nonexistent) rms level of the
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model, we will use a level that corresponds to the rms level of the actual

measured atmospheric noise.

If we are interested in HF atmospheric or man-made noise, we
can modify the above model as follow-,: since HF atmospheric nois6 and

man-made noise generally exhibit a much smaller dynamic range than

LF atmospherics, the modulation process, a(t), can be allowed to have

only a finite range, - a < P. While this introduces another parameter,

0, and complicates the mathematics, this not only results in finite

energy for y(t) (for all choices of 0), but should make it possible to

model man-made noise quite closely by proper specification of covariance

functions for a(t) and n(t). That is, we will use for the distribution of the

process a(t),

( IX IM+l 2 2 (A-6)

where k is chosen so that

Figure 1 shows the APD's (envelope distributions) for a range of

values, 0, and a value of y that corresponds to the expected APD's in

1000 Hz bandwidth in the northwest United States. Figure 2 shows the

kind of modification that results in the envelope distribution (0 = 3) when

various values of 0 are used. The expressions for the envelope distribu-

tions have been derived by Hall (1966) and are given in appendix B. The

APD's shown in figures 1 and 2 were calculated by computer.

A. 3 Signal Representation and Determination of the Optimum Receiver

In this section we will derive the optimum receiver for noise a
and signal situations pertinent to the present problem. As shown by

Hall, to gain any advantage over linear matched filter receivers, the
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time duration of the signals must be many times the reciprocal of the

receiver RF bandwidth. In fact, Hall has shown that the linear matched

filter receiver is optimum when the signal duration is on the same order

as the receiver reciprocal bandwidth. This is analogous to current

noise-limiting techniques, in which large bandwidths (compared with signal

duration) are required. Typically, we may use a signal length of

0. 01 sec (100 bps)/sec with an RF bandwidth of 1000 Hz, so that the signal

length is 10 times the reciprocal bandwidth.

Let us consider the problem of deciding which signal from

among a set of two signals, s9(t) and sQ(t), is represented by some

received waveform, x(t). We want to develop a decision scheme that
will minimize the average "risk." The "risk" involved in making an

error is defined as the probability of making that error times the "cost"

of making that error. The problem is how to choose between two hypotheses,

H1 and H., where

Hl x(t) = sl(t) + a(t) n(t)
I (A-7)

H : x(t)= s2(t) +a(t) n(t)

We denote the "cost" associated with H' by Cl (the cost to the

observer if he decides H2 is true when, in fact, H, is true minus the cost

to the observer if he decides H1 is true when, indeed, it is true) and the

cost associated with H2 by C0. If the probability of occurrence of sI is

ql. and the probability of occurrence of sZ is q7, we have the threshold,

0, where

f Q -. (A -8)
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Let L[x(t) denote the likelihood ratio, given by

!I
p(x(t)IHz)S"L[ xltl] "p( xt) H) (A -9)

The minimum average risk is achieved then by choosing H when
1

Lbx(t)] > Q , (A-10)

and choosing H otherwise.

The probability of making the error, "decide sI when s was sent,"

is then
L

[P prob IL[x(t)] >Qs 2 r (A-11) j• e

so that the probability density of the likelihood ratio is required.

In the completely general case given by (A-7), the probabilities

in the likelihood ratio are extremely difficult (if not impossible) to compute. j
In the situations of interest here, in which the receiver bandwidth is sub-

stantially less than the band center frequency, the hypotheses (A -7) can be

formulated in terms of the complex envelope of x(t) (Helstron, 1960).

Without loss of generality, we can lt Q = I (equal probabilities of occurrence

and equal costs associated with s and s and we will further let s(t) = 0.

Hall has evaluated the likeilhood ratio for the case m = 1. We will follow

Hall's procedure but will carry the calculations through for arbitrary m.

Our two hypotheses can now be given in the following form:

H 1 : x(t)=M t) + (t)
0!<t ST (A-12)

H : x(t)= It)

Where T is the time duration of the signal, A(t) denotes the complex

envelope of the signal, TI(t) denotes the complex eDvelope of the additive
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noise process, y(t), and X(t) denotes the complex envelope of the ztceived

narrowband waveform, e. g. ,
!I

I At) = Xct M o CSwot - xs(t) sin w t

C 0 9 0
!l ~~= R { ~)ei•°t ,
t e

Sand
andX(t)= x (t) +ixst) .1

Let the signal, 4(t), be represented by a N dimensional vector, &, ie.,

P = [pis A2" ..." " iMJ where the Ii are complex nimbers and are samples

from the waveform k(t). We will now assume that the bandwidth if the

signal is substantiaUy less than the receiver bandwidth, ZB. The signal

may then be represented by 2BT samples. We break the interval, [0, TJ,

into N subintervals, At. and p. = 4(t.), where t. denotes some time in the

interval,At.. The waveform, p(t), can be represented exactly in this mannez.

Let the complex noise process, I•(t, be also represented by N

samples, 3o that 1i = T(t)(At.). The qi are now complex random variables,

and the process, T1t), is represented by the random vector T = , *""

(For the problems involved in representing a random waveform by a finite

dimensional random vector and the connection between the processing of

random vectors and the processing of continuous random waveforms, see

5. Hannock and Wintz (1966, app. B).

Because of the above constraint on the signal, we may assume that

the various are independent (which corresponds to the atmospheric

noise being white prior to detection).

Our two hypotheses are now given in vector form:

H :x=p+I_
(A-13)

H :X=T
2-

and we must now compute p(x IH1) and p(x I I
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Now
Sj Hi pi (X -P) (A I-14)I'

I so that (1, is required. Recalling that the noise process, y(t), is

9given by a(t)n(t), we can write

T a. v•i (A-15)

where a = a(t.) and v. v(t.) (Ati), in which v(t) is the complex envelope

of n(t). Since n(t) is a Gaussian process, (t' is a complex Gaussian

process. Thus the probability density function, p (v), of the vector, v,

can be written in the form

1 *
p(V) - expL- Iv f , (A -16)

V N -T

where v denotes the conjugate of v, and v denotes the transpose of

the vector, v ; is the N by N covariance matrix of v(t), i.e.,
•=[E(V. 1:5,I i, j <5N, where

(A-17)
E(V. v.) = E[ (ti) v(t.)I (AtAt.)Z

where E denotes the expectation operator.

Our assumption of impedance states that1E L E*(t ) v(t.)] = 6  i, j = 1, Z, ... ,N (A-O8)

where 6.. is Kronecker's delta, i.e., 6.. = 0 for i /j, and 6.. = 1. i j.
1i 1i 1i

Letting At. At for all i, we obtain then

p (V)= - exp - -TVN At) N At (A-19)

To compute pT,(I) we will make the transformation b = 1/a, where now,

since the distribution of a is given by (A-2), the distribution for b is

% n/2

b(b) z m -.1Pb m r m ) IbI exp b
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and then

where b is the vector [bl, b2 , ... bn 1, and b. = 1/a.. Our assumption of

independence makes the b.'s independent, i.e.,
1

Therefore the distribution of the vector, b, based on (A-ZO)

M M/2 N b

_r~ )= 1b~ e m -3

Now, since I. = v.,/. 'f and v complex, the Jacobian of the transformation

v. -1. iv' b.. This means, then,

{NP• ('in- = T Pb Z pi b bIli# i la1 2s ... ,# N).

Therefore from (A-19), N-
ANN

p (qj Ib)(TT b,2  1 Lxp -. Iv2 1A4
N(2 N 2e(A-[4-(• aAt) Cr Ati"= 1

Substituting into (A-21)

N 2 2

p[K db1... dbm lbl ep +--2) 1 2 IAt

where m m/2

K = (A-26)

0m r IW (0 At)N

Evaluating (A-25), we obtain

n+ 2
2+2pNI)K r (a_ m 2(A-27)

N) -- + -
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S~m+2

N m 2a tKr~m~ (Cr, )~ TT+ma A-28)

From (A-14), our likelihood ratio, L x_, becomes

L[ M +_2 (A-29)22

mi= 2

Our optimLzt decision rule (A-4) becomes "choose H1 , if

I m 12t N [,, (A-30)

This is equival.nt to t!'e rule

N 2 -N 2
mIn MT 1 mR mar,

202 L i-Z (A-31)
':i=l i=l

and in terms of the time functions available to the receiver, the rule

(A-31) becomes

In - dt > In x(t) -_L(t)1
2 +

U + 12a +t (A-32)
0 0

There are many physical realizations of (A-32) (see, for example, Hall,

1966). The receiver consists of two branches, one to compute each side of

the inequality (A-32). Each branch could contain an envelope detector,
2followed by a, square law device (which gives Ix(t)l2, for example),

followed by a log amplifier biased by ma I /2ca 2 (a bias proportional to the

-89-



actual expected noise power), followed by an integrator. Threshold logic

circuitry would then compare the thus computed quantities and announce

a decision. This receiver can, therefore, be easily constructed. Any

digital receiver is simply a box for computing some quantity from the
received waveform and for comparing this quantity with a threshold.

Figure 3 (from Hall,1966 ) shows a block diagram of one receiver structure

which implements the decision rule. It now remains to analyze the per -

formance (compute the error rate) of our receiver.

A. 4 Calculation of Probability of Error

The probability of error expression (A-11) is

Pe = prob {L(X) > I H2 is truel , (A-33)

or, from (A-29), since H being true implies No(t)I = IT(t) I
2

02
2 m1  At

p1 e ro N~ Ili~ + a 2 1> (A-34)
e i-Ti 2,prob MITrPi r~ AtJ

Putting (A-34) in a more manageableform, we have

N

prob { Inzi>O} , (A-35)

where m

Iil + 2
20.SZ. -Z•2h

MT At (A-36)

20

Now, it is not possible to compute l directly, since we cannot
N e

obtain the probability density for 2, lnz1 , and we must be satisfied with

i~l
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good estimates for pe" Since pe is given in terms of a sum of random

variables, the characteristic functions for the random variables, Inzi,

should be useful. We will use characteristic functions to obtain the

appropriate Chernoff bound on p (Van Trees, 1968).

Let 4(s) denote the characteristic function for our likelihood

ratio L, under hypothesis H2 , that is,

SsLO(s)- e S LIH dL
2 (A-37)

Now define

p(s) = Ino(s) . (A-38)

We then have the Chernoff upper bound

Sep(s) - s(s) >
pe <_ (A-39)

and the minimum upper bound is obtained by evaluating (A-39) for the

value of s, s, which makes p (s) = 0. We can now apply the central

limit theorem to the above to obtain the approximation (Van Trees, 1968)
2

Pe -{exp [ p(s) - s (s) + *- p'(s)]l erfc [s- /%rp(s) ' (A-40)

where erfc denotes the complimentary error function. For values of

si > 3, we can ap.,roximate the erfc term to obtain

Peex [ P (s) - sk(s)]
%e /-W s2"p(s) (A -41)

I turns out that for the range of p e of interest to us (10-3 and less) the

factor /2r- E2•.s) will not appreciably change the results, and besides,

2 SP (s)
as we shall see, it is extremely difficult to evaluate p(s 0).

in our case, then, if gi(s) denotes the characteristic functions

for the independent random variables Inz.,

N

p(s) = In T' g.(s) , (A-42)i=1
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so that the approximation we will use is given by

N
PC : TI gi (so) " (A-43)

-i l

It folows that (Hall, 1966)

X I(s) E[ exp (sin z i)]

f(I1+z. s s-m- 7)/2

- ... )dn. * dn.
2 S

2- [I+ ]I 2 (A-44)

2

where m' , and 11 tc' i, denote the real and imaginary parts
ZW N

of the complex number T.. Equation (A-43) states that the performance is
1 2

dependent on the actual noise power (which is proportional to 1 and on

the actual signal shape and energy (i. e., depends on the 2TB samples,

1 i, of the signal complex envelope). To simplify things, let the

imaginary part of pi = 0, for all i. An example of such a signal would be

SIt) = At) Cos t0 t A

The samples, pi, are now real numbers, and our integral (A-44) reduces to
r2 -

i~i I) = " 'n dic dy-) V (X-[(x.)2 i+ y2 4-4"

As one might expect, and as Hall (1966) has shown, the best signal design

is a signal whose energy is uniformly distributed in the signaling interval.

This means that the li can be considered equal, resulting in needing
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to evaluate only one g.(s). Our estimate now becomes

N 2 31 N g 2BT (A-46)

i=l

In terms of the total energy per received bit, and the noise power

density, (A-45) becomes

2s -m -2
r ( .m + 2 . , , (m-) x2 +v2 +1iA7

=(S 2 dx Jdy (X2 Y2+(A -47)

Wrm 2 2 22 (x- +y -2ax + a +

where the parameter, a, is given by

= !~- (A-48)

where E denotes the signal energy (joules) and N denotes the noise power

density (watts/hertz). The integral (A-41) must be evaluated for s8s,

where, from (A-4Z), s is the solution to
0

2s - mn - 2)/2

Cx ddym(x+y + In x 2 +Y 2 ÷l +1
S(x2÷y ÷ 1)In

2 2 2 x +y -Zax+ a+2 (A-49)
(x +yz-zax+a +1) 2• (2s - M- Z2•/Sdx Sdy X+ 2+-i.+ 1)

(xL+yZ l

- - (x + 2 ax +1)

For each a of interest, (A-49) must be soled for s and then evaluated

for this value of s. Quite fortunately it can be shown that (A-49) is

uniquely solved, for all a, by

(A-50)m+Z
0 4
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The integral (A-47) must now be evaluated for this so, and computer tech-

niques have been developed and programs written to do this.

The case, 0 = 3 (m = 2), is a special case. For m = 2, (A-49)

is uniquely solved for all a by s = 1, and for s = l, the integral (A-47)

can be evaluated in closed form by first performing the x integration and

then the y integration. The result is

g-l) a4n2T4+4a) (A-51)

g4+4aa +4

From (A-46), we see that we can make the probability of error

arbitrarily small by making ZBT large enough. Of course, it is well

known that by signaling slowly enough (i. e., making T large), the

probability of error can be made as small as desired.

We will now consider the following example: summer nighttime,

Washington state area, w = 500 kHz, 1000 Hz bandwidth, ando

100(ZTB = 10) and 50 (2TB = 20) bps. From CCIR (196-) we have F
am

F (500 kHz)= 133 dB, and V (l kHz bandwidth)= 14 dB, i.e.,
am dm.

dynamic range of the envelope distribution for probabilities from 10-6

to .99 is about 88 dB. This corresponds toO = 3. F = 133 dB givesam
us that the noise power density is 7.95 x 108 This number is

required to determine the value of y to use in specifying the envelope

distribution and the amount of bias required on the log amplifiers of our

optimum receiver.

Figure 4 shows the performance of the optimum receiver. It also

shows the performance of a binary matched filter, differentially coherent

phase shift keying receiver for both Gaussian noise and atmospheric

noise (0 = 3).
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If we now tried to improve our estimate by using (A-40) or

(A-41), we would need to evaluate p (s) for s = 1, m = 2. This is

2 2 2 22
S (x 2 + +y ) -[ + y÷+lI2TB dx Tdy 2Ln 2 2

(x -a) +Y2+1 (x -a) +

(x- 2 2 -2
Sdx dy .

(x -a) 2 +y +l

However, instead of trying to evaluate the above, we note from
figure 4 that, ii the factor / _2-n were on the order of 0.1, this

ans P(s)

would change our estimate by less than 1 dB, and even if I/V/2rsZ2•(s)

were on the order of 0. 01, a change of less than 2 dB would result.

That is, for a given probability of error, the required SNR would

be not more than 2 dB less. This indicates that, while the curve shown

is an upper bound on the true probability of error characteristic, it is

a very tight upper bound. Estimates of (A-52) indicate that the factor

I/l/ZVs2.6{s) is somewhere between 0. 1 and 0. 25.

Figure 5 shows the performance of the optimum receiver for a

range of values of 0 for 2 TB = 10; and figure 6 shows the same for

2TB = 20.

If we try to carry out the above calculations with a modified

Hall model (to fit HF atmospherics or man-made noise), we find that,

besides being much more difficult, the optimum receiver is different

for each value of 0 we might use. Studies like this with a modified

model remain to be done.

For completeness, we have included figures 7, 8, and 9, which I
summarize the performance of typical linear receivers in noise of

atmospheric type. Figure 7 shows the relationship between the proba-

bility of error and the signal-to-noise ratio, parametric in Vd, for
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binary differentially coherent phase shift keying (DCPSK). These curves

were obtained by the method described by Halton and Spaulding (1966)

and also are applicable to noncoherent frequency shift keying (NCFSK),

if we add 3 dB to the abscissa value.

Figure 8 shows the probability of element error for a four-phase

DCPSK system as a function of signal-to-noise ratio, parametric inVd'

As in figure 7, the signal is assumed to be steady. The binary error rate

is approximately equal to one-half the element error rate at large

signal-to-noise ratios.

Figure 9 shows probability of error characteristics for both

two- and four-phase DCPSK systems when the signal is Rayleigh fading,

as described by Halton and Spaulding (1966).
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80 
Linear by

atV o V We

8 3.0

60--

A

20

0-

20LJ

* !

20 -- - - _ _

le 0.11 510 2030405060TO 80 90 95 98 99
Percent of Time Ordinate is Exceeded

Figure A. 2 Amplitude probability distributions of the noise envelope of the

modified Hall model for a range of values of the parameter •.
-98-



--4-0I

04 0 04
0 0

I U

sz E0

-99-,



N Z7.95z 10"8 Waits/Hz

S iW 500 ki,

3 1000 Pi Bondwidth

IC.,_ _ _ _ _ _ _o_.

5

11

-Linear Matched Filter
DCPSK Receiver

Optimum Receiver
100 bits/sec (ZTB = 10)io -I

.50 bits/sec(ZTB - 20)

s - I

DCPSK!
Gaussian

- _ _ _ SNR=IO Io° L

E- Signol Energy JouIles)
S-per received bit.

IN Noise Power Oensity

; to~ i_ _ _ _ _ _ _ I •

5 10 15 20 25 30 45 '0

SNRtdB)
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APPENDIX B

Distribution of the Envelope and Phase for the Hall Model

I Our narrowband noise process is of the form

y(t) = a(t) n(t) . (B-I)

Since this is a narrowbard process, it can be expressed as

ylt) = V(t) cos I t+4(t) )

where V(t) is the noise envelope process,and c(t) is the phase process.

The joint probability density of V and 4) is given by

(B-3)

pvI,(vi4,1Vpy, i (Vcosio, Vsino) B

where Y denotes the Hilbert transform (quadrature component) of y.

That is, the envelope V is given by

z 2 7i
V = (y + . (B-4)

Now since the spectrum of a(t) has negligible overlap with the spectrum

of n(t), we have

y(t)= a(t) ii(t)
(B-5)

and since n(t) is a Gaussian process, n(t) is a Gaussian process, indepen-

dent of n(t), and identically distributed as n(t).

Thus,

Py, y(Y' Pan, ani(7'

(B-6)
-,dx Ix( ( )

_Pa, n, n x x

x
~~P = ai)n(Y-) Pi7-)Y
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and

2
p Wx) pii W 2z •exp( ••7

and

k exp(2L-)Pa 1xi• e• -<x <m , (B-8)

where k is chosen to satisfy

S•Pa.(x)d 1
3 ~P()dX=1

-p

So, we have, substituting (B-7) and (B-8) into (B-6),

ex - m " --k (B -g)
lo mo x 2 -- 2L -

Substituting into (B-3) gives

(B -A)
Vk M d 2 2 2 2

x Voos-2 Vsin4-

(V = • __.._ Y V_
. m exp 2 2 22- 2 2

Troa- 0 x 2orx 2o0- x 2o- 1x

Vk 1 x Zx

1 0 OI

• • Let z= then

x

- m - d z ( B - 1 )
1 z

So, we see that d is uniformly distributed, i.e.,

0 -, 0 < 2<2i• (B-12)
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and
PvlV)Y_ S zm2ep (m V 2 l

S(Z dz (B -13)V 2 2°' 2 20lz

The integral, pv(V) is easily evaluated in closed form for m even, and

is easily evaluated numerically (by Gauss-Laquerre quadratures) for

any m.

For 3= ., we have

m

p(V) 
(B -14)

2
(vz + z)

and for the probability of the envelope exceeding the level V , that is,
0

the APD,

P(V >V) pv(x) dx= 
(B-15)

[ )
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APPENDIX C

Average Rate of Envelope Level Crossings

Letting N(Vo) denote the average number of crossings per second j
of the level V by the noise envelope, V, it is well known (Middleton, 1961,

0

p. 427) that for a stationary random process, V(t).

NV0 PVjV. d (0-1)
Nl~o)= • ['l PV V~v =1 dV

where V(t)= dV(t)/dt.

As shown in appendix A, the assumption of negligible spectral- over-

lap of a(t) and n(t) allows the envelope of the noise process to be given
by jt

V(t)= a(t) IE(t) , 
(C-Z)

where E(t) is the envelope of the narrow-band Gaussian process n(t).

Thus,

dV(t) _ a(t) dE(t) + da(t) E(t) (C-3)
dt dt dt

If we are dealing with bandwidths that are a small fraction of our

center frequency, wo, it is reasonable to assume that the modulating

process, a(t), is varying sufficiently slowly, so that

a(t) dE(t) >> da(t) E(t) (C-4)
Ia dt dt

which allows us to represent V(t), where

V(t) = Ia(t)I E(t). (C-5)

So, Pv, •(v, V) =PlZ la l E v. a 0 .V

(C-6)

00
Sdx2 V VX

= j-PallX)EIt (x x

-10
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where, from appendix B.
2k m

fromappendix m B, 1 Sincez , o< x the (C-7)Plal x ,+l ~4 M-ZT) c x<

The problem now reduces to finding p p(E,E). Since Elt) is the

envelope of a narrow-band Gaussian process, it can be shown that, in

general (Middleton, 1961, p. 420),
E-33("1l1"33-". 14)1.

E (EE E xp( )exp[ P C -8)331' 14 ] 8

where liii =(bb 2 - b12 ) 1= bz bo b

and the b are the frequency moments
n

Go

b = So(f)(W ) - df , (C-9)

0

where S (f) dbnotes the spectral density of the process n(t). Since Sn(f)
n n~f

is the Fourier transform of the correlation function for n(t), R (T),

these moments can also be computed from Rn ().

If the spectrum is symmetrical about W , then (C-8) reduces to

E LE 2
(E, E) exp (C-10)

.b° o2 1-T 2b Zb0

Then, with z = 1/x 2

m+l 2

kV~ 2nP I _ ( V V ) =b o q r2 _b _ 2 1 2 Z b o Z

The frequency moments, b , are determined by the bandpass shape of
n

the receiver, and once known, then N(Vo) can be evPI-ted.
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Now, if R (T) has the typical form
n

Rn(T) Rc(T) cos W T (CG-12)

and we define the rms bandwidth, B.,

D f S(f)
B= R ) df (C-13)

- C
-- 00

where S (f) is the Fouiier transform of R (T), Hall(1966) has shown that,
C C

when P3 c=

~~ +. (__ )8r ,,yO "BcV°

N(V)= 2 C (C -14)

where, as before, y= m/2 and 0 = m + 1>1.
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