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If a sphere moves in a friction-producing fluid, propelled by I
a force 1, which is constant in magnitude and direction, the velo-

city in the stationary terminal state will have the direction of

the force and will be proportional to it. Therefore, the equation

will be valid and ( could be designated the mobility in the liquid

in question. The veidity will be characterized by the work per-

formed by the acting force being equal to the frictional heat do-

veloped by the flow., Acoo ing to equation (1)

(2) F-I
must, therefore, be the heat produced in the liqaid in the unit of

time.

Integrating the differential equations of the hydrodynamics

that apply to this situation, Stokes 1 found that

where L. stands for the radius of the sphere,t& for the coefficient

of friction. The hypothesis here is that '.s' is a small figure

as compared with the unit o' which designates the density of the

liquid.

If the-aoting force, 7, is the gravity, thus:

(4)- 3

1 Stokes, Gambr. Trans. g, 1851 or SoientifioPapers 3, p. 1,
see also Lamb, Textbook of Hydrodynamics (Lehrbuch der Hydro-
dynamik), german- by .'". !ricdol, LOipzig and Berlin, p. 662.



where a stands tor the average specific gravity of the sphere* The

radius of the sphaere can be determined to be

IAA

trom the speed of the fall, the coefficient of friction being

* known, according to equations' (1), (3), and (4).

N:_ This theory of Sftkes has recently gained importance since

it has been employed for the determination or atomic electrical

charge, The prinaiple of this test consists of letting a parti-

cle charged with the quantity of electricinty Io op Simply under

the Influence of gravity# The speed of fall V1 can be calculated

according to equations (1), (3), and (4) in the equation:

N and then overlaying the tikid of gravity by an equi- (or Inverse-)

directional electrical field of the intensity • , of which a speed

of fall will result, to be calcUlated from

* From (6) and (7) follows the radius of the particle as well as

its electrical charge, namely,

(8) VV

At the Physicists' meeting in Koenigsberg last year, Mr.

Ehrenaftt reported on his determination of the atomic electkioal

charge, and it appeaxrl to result from his tests that the atomic

charge is not constant but that some particles show a higher, some

aEhrenhaft, Phys. Zs. 11, 1910, p. 940.
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a lower charge, as it also has been shown by other methods.

The discussion resulting from this report centered around the

question as to what would be the reasons for the fluctuations of

the results and thus, among other things, the premises of Stoke's

theory was discussed.

First of ael, it was indicated by Mr. Von2erfead 2 that or u:

the pro-conditions for the use of Btoke's formula is the spherical

shape of the falling particles and that diso- or rod-shaped parti-

plea would compe up with too small values for e, using the formula

which is valid for a sphere.

During a private conversation with some colleagues after the

session described above, I posed the question:"Pow how iS it ezaotly

that discs or rods fa).! in a friction-producing fluid?" and one per-

son answered. "discs drop down edgewise". He gave as a reason for

his statement that each body would fall in such a way as to adapt

itself to the least resistance of the surrounding fluid. Others#

however, gave the opinion: " No. Discs fall front-wise". And, to

make their point, pointed out that playing cards drop frontwise

without any distnbance. Mien they are dropped edgewise, they turn

end over end several times before reaching the ground. These are

phenomena which are well-known in aviation. Finally, some one still

mentioned that he recalls from his boMod having dived for plates

which always sunk right side up, as they stand on the table, that

is, frontwise.

Since it appears quite evident that the opinions as to hew a

plate or rod fall in a friction-ppddacing liquid, are quite divided,

may I be allowed to deal with problem in the following lines,

A. Sommerfeld, Phys. Zsa 11, 1910, p. 949.

jt1
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entirely apart from the discussion of Ehrenhaft's test which, in

the meantime, has gone a completely different way.

SFirst of all, let it be noted that a minimal principle of the

resistanoe in the sense umed above for the moveaent of a buid body

In a liquid does not exist. What seems to have happened here is a

coafuýioa with a theorem by HelmholzI which states that under Civen

surface conditions, the development of heat at a stationary flow Is

lower than at any other movements of the liquid. Ftrthermore, the

experiment dealing with dropping of playing cards proves nothing

with regards to our prcoblem as we are dealing only with the border-

line case of infinitply low speeds treated by Stokes in which the

factors dependent on the inertia of the liquid can be disregarded.

YTe s
This is the case if is small in comparkson to 1. 4 stands for

a linear dimension of the falling body. Now, this condition was

not fulfilled in any way during the tests since for air, a' is

* 0.00129 and At is 0.00017. V would have to be still small in

comparison to 0.01 cm per sec.

Since the tlsts which have been carried out are not relevant

tO the question that has been posed by us and since it would also

be difficult to design any decisive egperiments, we shall now try

to determine what kind of solution is to be found in theory.

Insteaddof determining the velocity and the pressure existing

in any place of the liquid while imparting a movement of a constant

spped to the body present in this liquid, we can ask ourselves how

a constant field of flow will be modified by a solid body resint in

the same, and what forces and tortional mewants must be krought to

v. Helmholtz, Wiss. Abh. 1, P. 22W.
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bear f'r the purpose of holding the body statio in this flow.

This problem is covered by these differential equations: A

(10) z4 ~

if one the surfaoe of the solid body

and in infinity possibly the conditions

(12a) -V, =0 0

or

are valid.

The forces of pressure are given further by the formulae

- MIN(13)

1 H. Lamb, 1i 0, p. 862, par* 314.



"The differential equations, the limit conditions, and the

pressure are, as can be seen from equations (9) and(l3)* linear

in the oomponents of vel4oity, i.e., the superposition of two

solutien Systems (part motions) results again in the possible

solution system (resulting motion).

Consequently, the following principle is directly acceptable:

¶Thie components of the force and the tortional motion neoeasazy

for holding the solid body in a static position in the resulting

motion are simply the summation of the corresponding components

;equired for the part motions.

In particular: if a body with three planes of symmetry, that

are vertical with respect to each other, whose lines of interjection,

the "major axes", may lUe parallel with the axes of the oordinates,

is in the liquid, and if the velocity in the infintte has the cos-

ponents U, V, W, the solution is composed of the three part motions

that result if we introduce as a condition in the infintbe first

equation (12a), second (12b), and third (12a).

Now in none of these part motions, characterized by the body

lying parallel with one of its major axes to the undisturbed field

of flow, any rotational moment is required, for reasons of symmetry,

to hold the body in its position; therefore, in the resulting

motion, in which the body has any orientation whatsoever in regard

to the field of flow, no rotational moment is required either or,

if we go back to the case in which the liquid is situated in in-

finity, the body, however, is moved in the same in a straight line,

the principle valid is:

No tortional moment acts upon the body because of the forces

of pressure of the liquid, Discs or rods which have three plaees

j-

1 I I I I I I I I I I I I I I
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of symmetry in right angk&s with respect to each other, do, there-

fore, show no tendency to act in any,particular way when falling

slowly in a liquid. 1

While the results up to this point were the consequence of the

lineerlty of the equations and of the properties of symmetry of the

body, we have to define the shape of the body more precissly in order V
to be able to determine the process of the motion in detail.

As a result, we will assume that a disc is a flattened-out

robational ellipsoid while a rod is an elongated rotational ellipsoid;

the long half axis will designate a the short one . The formulae

pertinent to the stationary motion have been established by Oberbeok1

From these formulae, it can be seen that the mobility I , i.e.

the relation of the velocity of the body to the actlng force can be

calculated from the

(14) X.° '-F•

.or

(15) 6,, f,.4-

depending whether the motion occurs in the direction of the long or

the short axis*
In this cases, for discs where a-m b•,o

CL(1'?)

1 Oberbeck, Crelles Journal 81, 1876, p, 62; see also H. Lamb,
l.o. par 326.

2 H. Lamb, l.o., par 326, formulae (6), (7), (14), (15).
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and for rods, where a > b o 0:

frr

Carrying out the squares for disos gives:

t ~ ~~ (14TL~ o' S

S1~18' )_

5V

'17''+ (,, 8,.-.+• -" • •" - !1'a--•.'"'

> !

z (16') is used for edgewise motion while (17•) is used for froat-

wise motion,

* If the disc is flattened to the point where the second powers

of - oan be neglected, (16') and (17') were transform into:

(17'') -

If, on theeother hand, the flattened rotational ellipsoid deviates

so little from the spherical form that 1 - becomes very small the

equation will become:

(16'',) V*

11 ____________
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In •he case of rods, the oaloulation will be quite similar.

Carrying out the squares required in (18) and (19) will yield:

(18-) -- -o .I.- .

48') and (19') a~r used for the motions parallel with and vertical
to the eiks of the r-od respeotively.

t or small values of o .r

(3") -. - -

For small values of -(18"'1111 ~ L

in Table 1, the values of and S• have been calculated for

various axis ratios aooording to equations (18'), (17'), and (18')

and (19') for c."Lsop and rode.

__ _ _ __ _ i
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TAME

a for discs for rods

0.0 1.767 1.178

0.1 1.631 1.174 3.763 2.617
n 0.2 1.516 1.160 2.'099 2-108

0.3 1.418 1.145 2.267 2.815
0.4 1.335 1.125 1.914 1,608
0.5 1.261 1.105 1.662 1.451
0.6 1.196 1.084 1.467 1,326
0.7 1.139 1,063 1.314 1.224
0.8 1.068 1i041 1.191 1.138
0.9 1.041 1.019 1*091 1.063
1.0 1.000 1.000 1.000 1o000

If the foroe,ý4 f orms the angle'O with the diso (or rod)

axist the velocity vector V will produce an angle 19 with the

axis (the illustration relates to discs), the relationships, being.:

W" (20)

-. C' (20t)

BY division of both equations, (g0'e

I gives:

As a oonsequenoe~it follows that when ~.0 and 3: .

the direction of the velocity and that of the force *oincide.

The iuaximumi deviation. between the directions of velocity and

* for occur, according to (21) when

is a naximumo In the case of rods,%- . is positive and then



the relationship becomes:

that is, and T• oomplete saah other to beoooe go 0 (for rods,

.• and I are interohangable)
C

In table 2, the angles lb in different axial ratios -C for

whioh T- for discs andS- P for rods, have the maximal value,

and these values " and , or in other words, the devia-

tions between the velocity and force directions, are shown.

Table 2

a for discs for rods

0.0 390 41' 110 32' 540 44? 190 28f
0.1 40 18' 9 24' 50 11' 10 22?
0.2 41 11' 7 38f 49 03' 8 06'
0.3 41 56# 6 08' 48 11' 6 22f
0.4 42 33' 4 54' 47 31' 5 02'
0.5 43 06f 3 48t 46 57' 3 54'
0.6 43 35' 2 50' 46 27' 2 54t
0.7 44 01' 1 58' 48 Ol 2 02'
0.8 44 22' 1 16' 45 39' 1 18'
0.9 44 41' 0 38' 45 22? 0 44'
"1.0 45 00 0 00 45 00 0 00

In Table 3, ultimatelyI- 4 andr- Cf are oaloulated as functions

for very flat discs and very thin rods (1. 0) for which 1. is 1.5

(2 reap.),

Table 3

for discs for rods

00 0000 00 00,
10 4 49 4 58
20 8 38 9 41

I0 I0 54 13 54
40 11 32 17 14
50 10 47 19 22
60 a 57 19 06
70 6 21 16V 04
80 3 18 9 26
90 0 00 0 00



from
From Table 2, it can be seen that the non-vertical rail of

particles in a liquid, conclusion can be drawn concerning their

deviation from soherloal shape, however, this criterion is not

very sha~rp~y defined as was pointed out by Kr. Sommerfeld during

an exchange of letters concerning this question, The reason for

this is that, In the most extreme oases, the deviation from the

vertical is 110 53' in the case of discs, and 190 28t in the case

of rods,

The eq~uations which are pertinent to the determination of the

atomic charge (equations (6) and (7)) now take the form:

(S

m3

And from them: M

(81) Om

in place of equation (8) and, to be aure, the value is

replaced by 9,,and & according to whether the disc is falling

edgewise or frontwise.

In the case of rods, the analogous equations a~re:

mI

rý

e C

mC
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if in the these equations, the c values valid for rods are substi-

tuted.

3Sommerfeld mentioned In the disoussion that the values caloulated

by Ehrenhaft for a would have to be multiplied by 4 '• in the parti-

oleo were very thin disos or byL)- ir they were very thin rods.

As we can see from formulae (8') and (8'') as well as from the

assaytotio values of S (equations (16t't) (18"), and (19'')),

this result is oorreot, no matter how the partioles are orientited

with respect to the vertical.

m


