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ABSTRACT

Advanced small free-turbine engines in the 2-to-5-pound-per- second airflow

class currently envisioned for both helicopter and turboprop applications have
undergone vast improvements in performance and efficiency which have led to large
reductions in overall size. Effort is required at performance optimization and
miniaturization of the engine control system to keep pace with these improvements.

This study program was undertaken to conceptually design an advanced engine con-
trol system for this class of engine, providing gas generator and power turbine
control with torque, temperature, load sharing and overspeed limiting functions.
The control system was to be designed to accommodate, with minimum hardware
changes, such variants as regenerative cycle and/or variable geometry.

Efforts to determine the optimum control for the small engine of the mid-1970's
fell into two major categories: mode of control selection and technology selection.

The overall system performance of ten modes of control was evaluated in detail.
The selected mode consisted of a Wg/PT3 scheduling gas generator control and a
proportional plus integral isochronous Ny governing control with turbine discharge
temperature limiting,

Technology selection consisted of reviewing electronic, fluidic and hydromechan-
ical technologies against a weighted set of evaluation criteria mutually established
by Hamilton Standard and USAAVLABS for application to all portions of the pro-
posed control system. This resulted in the selection of a hydromechanical gas
generator control and an electronic Nf control with fluidic Ng overspeed sensing.

The resulting control is considered to be the optimum control for this class of

engine based on the established criteria for production application in the mid-
1970's.
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FOREWORD

This is the final report on the Hamilton Stardard project entitled "Advanced Con-
trol System for Application to Small Free-Turbine Engines'. This study was con-
ducted for the U.S. Army Aviation Materiel Laboratories (USAAVLABS) under

Contract No. DAAJ02-68-C-0041, Project 1G162203D144, between July 1, 1968 and
December 31, 1968.

USAAVLABS technical direction was provided by Mr. R. Furgurson, Propulsion
Division. Mr. T.L. Soule served as the Hamilton Standard Program Manager and
was supported by co-authors D. E. Anschutz, Design Project Engineer, and M. L.
Perkins, Analytical Project Engineer. Mr. R.K. Rose of the General Electric

Specialty Fluidics Operation supplied the fluidics technology contribution to the
program.
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INTRODUC TION

This program was directed at the conceptual design and analytical study of an
advanced engine control system for a small (2-to-5-pound-per-second airflow)
free-turbine engine. Program technical objectives included the following:

1,

10.

11.

Maintenance of a high degree of flexibility and commonality in the
control system for this range of engine size

Elimination of the need for gear reduction to drive the control
Decreased contamination sensitivity

Ability to operate with various fuel grades

Efficient integration with other accessories

Increased reliability

Decreased maintenance

Provision for engine analyzer inputs

Adaptability for control of a regenerative mode engine
Improved vulnerability resistance

Lower cost potential

Specific design features of the control included the following:

1,

Control of starting, acceleration and deceleration fuel flow
Automatic start sequencing

Full-range governing of gas generator speed

Free-turbine power control with speed selection
Closed-loop turbine temperature limiting

Torque limiting

Load sharing




7 Vs

8. Provision for compressor and turbine variahble geometry
9. Backup redundancy for single component failure

10. Satisfactory performance over the range of environment defined in
MIL-E-5007C

11, Provision to allow operation from sea level to 35, 000 feet at ambient
temperatures of -65°F to 130°F

The program was accomplished in two phases: Phase I, Preliminary Design Phase;
and Phase II, Final Design Phase. The tasks accomplished under Phase I included
the following:

1. Definition of the characteristics of the engine

2. Finalization of the requirements and functions required by the control
system

3. Analysis of proposed control modes

4, Technology review and selection

5.  Optimized packaging studies
Phase II tasks accomplished included the following:

1. Modifications to the preliminary design

2. Finalization of the control system design

3. Analysis and simulation of the final system

4, Identification of high-risk components

5. Definition of the system design configuration
A flow diagram showing how the study program developed, significant milestones
along the way and their interrelationship, as well as results and conclusions

arising from the program. are shown in Figure 1.

Subsequent sections of this report will explain how the program was conducted
and will discuss the results in detail.



Figure 1, Development of Advanced

Control Program,
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DISC USSION

DE FINITION OF ENGINE AND LOAD CHARACTERISTICS

An appropriate engine definition is essential in evaluating the performance of one
control mode versus another. To this extent the engine definition must be suffi-
ciently sophisticated that all control modes are evaluated fairly on a realistic,
rather than an idealistic, model. A balance must be reached in which the engine
model does not become overly intricate,or study time and attention will be diverted
from the primary object of comparing and selecting means of control. A deliber-
ate attempt has been made in selecting the following engine to delete second-order
effects that would not likely alter the choice between modes while retaining the
features that lend realism to the study. To this end, a single-spool gas generator,
rather than a twin spool, was studied; component efficiencies have been held con-
stant,and the variable -geometry compressor is represented as a fixed, ideal com-
pressor.

The basic engine cycle considered in this report is a single-spool gas generator
with variable compressor stators supplying hot gas to a fixed-geometry, free tur-
bine driving the power output shaft, A second engine cycle is considered in lesser
detail to explore the growth possibilities of the base control mode. This cycle adds
a regenerator and variable power turbine stators to the basic cycle. Simple sche-
matics of both engines are shown ir. Figures 2 and 3.
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Figure 2, Schematic of Base Engine.

The block diagram of the engines (and loads) is presented in Figure 4. The ther-
modyiamic engine equations are conventional in most respects. Additional
dynamic features are incorporated in the block diagram on the basis of simulation
experience to more nearly reproduce the transient behavior of an engine. These
features include an exponential lag and delay time to approximate the burner -
dynamics, lag and lead/lag transfer functions for a first-order regenerator
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simulation, and the metal thermal storage dynamic effects. A selector switch is
shown, indicating burner inlet temperature, and is either T3 for the base engine or
TT3,.5 for the regenerative engine. W, AN

L K

3 FNG w5 _!

F04>IMIMOND

3 35 4 o
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Figure 3. Schematic of Regenerator Engine,

Input signals to the engine (and loads) are fuel flow (Wf), power turbine stator area
(Ax), collective pitch (By), and propeller blade angle (BP). The specific param-
eter supplied to the load by the engine is optimum power turbine horsepower
(HPPT). A parabolic decrement of power as a function of load speed is included
before evaluation of the specific load equations. The load speed, which is used to
define power turbine torque (QpT),is either power turbine speed or propeller
speed, depending on the application. The propeller and helicopter load simulations
are also shown on Figure 4, although only one would be used in a given study.

Gear ratios are not shown,and all output shaft parameters are referred to pro-
peller shaft speed.

Parametric values assigned to the engine cycles are presented in Figures 5 and 6

for the base engine and in Figures 7 and 8 for the regenerative engine. These values

are a prognosis of the advance in engine design techniques anticipated in the near
future. The base engine is assumed to have a design point pressure ratio of 17:1
and a steady-state turbine inlet temperature of 2760°R. This is typical of what
will likely be available with advances in materials and cooling techniques of en-
gines designed in the early 1970's. It is further assumed that the base engine effi-
ciencies will permit the delivery of 1285 optimum horsepower from an iirflow of

5 pounds per second and a fuel flow of 458 pounds per hour. Figures 5 and 6 show
steady-state engine parameter values throughout the useful power range and also
show the acceleration limiting condition assumed for proper surge and tempera-

ture protection of the engine. A plot of Wg/Pr3 ratio is also included for steady-
state and acceleration limiting.

The gas generator rotor time constant given in Figure 5 has conventional values
ranging from 0.36 second to 2.0 seconds. Other engine dynamics of vital impor-
tance are a 0.01-second burner lag, a 0.035-second burner delay time, and a
thermal storage lag time constant of 1 second accompanied by a 0.95-second
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lead time constant. These dynamics were maintained at a constant value during
the transients, although the effect of varying the values was determined for closed
temperature loop control modes.

The regenerative engine is characterized at the design point by a pressure ratio of
12:1 and a turbine inlet temperature of 2760°R. The steady-state curves of Fig-
ures 7 and 8 illustrate the manner in which the power turbine stator area (Ay)
must be scheduled to maintain an efficient operating temperature of 2650°R
throughout the mid-power range. This temperature reduction provides longer
engine life in the normally used power range while retaining a reserve of power for
emergency or short-term use, Power turbine stator modulation is not employed
for powers less than 45 percent to avoid the acceleration limit,

Also shown with the regenerator characteristics of Figures 7 and 8 is an interest-
ing ratio of engine parameters designated as the Z parameters. These param-
eters are similar to the conventional Wg/Prg ratio for Zg or the conventional
Wi/PTg ratio for Zg; but both have been modified by the factor Ty 5/(Try-

Trs, 5). This factor is of value because it is a unique function of gas generator
speed and inlet temperature for the acceleration limit. Hence it is possible to
schedule a T4 limit by measuring regenerator discharge temperature TT3,5,
NG’ and TT2'

The dynamics for the regenerator engine are similar to those given for the base
engine above plus a regenerator time constant that varies from 2.5 seconds at
5-pounds-per-second airflow to 7.5 seconds at 1-pound-per-second airflow. An
increase of regenerator effectiveness from 60 percent to 68 percent was assumed
for these same airflows.

LOAD DEFINITION

Helicopter

A schematic diagram of a simple, nonarticulated rotor without hydraulic
damping is shown in Figure 9.

This type of rotor was selected because it offers the most severe test of
control system stability. Coefficients, shown in the list of symbols, have
been assigned to the components that represent a system having a resonant
frequency of 25 radians per second with 10 percent of critical damping. In
general, the control system that has the stability margin to control this
rotor would have ample margin to control an articulated rotor with hydraulic
damping.

13



RS v——

e sty e o - —m———

FREE TURBINE DRIVE SHAFT ROTOR

A AL, ) VIR
Kp . [\
\

11
U

Dp
POWER TURBINE ROTOR

lI, DAMPING III DRAG

Figure 9. Schematic of Helicopter Load Representation,

The steady-state power requirements for a sea level, standard day hover
condition are presented in Figure 10 as a function of rotor speed (referred
to propeller shaft speed) and collective pitch angle. While this character-
istic is typical, the power characteristics will, of course, change signifi-
cantly throughout the flight envelope and preclude any precise scheduling of
power with rotor speed and collective pitch. The combination of inexact
schedule prediction and limited system gain for stability margin creates an
absolute necessity for an isochronous rotor speed control to maintain + 0.5
percent speed accuracy under all flight conditions. Hence, all control modes
considered in this report have been evaluated on the basis of requiring an
error-integrating speed governor.

Propeller

The propeller selected for this study is a lightweight, 10-foot-diameter
propeller having a tip speed of 900 ft/sec at takeoff and a polar moment
of inertia equal to 7.5 ft-lb-sec2/rad. The propeller is designed with
an integral speed control which can be overriden by a variable minimum
pitch stop to gain manual control. A schematic of the propeller load
representation is shown in Figure 11.

The fixed-wing propeller characteristics are shown on Figure 10 in a non-
dimensional form, Further discussion on the control correlation is pre-
sented in the section entitled '"Description of Proposed System for Regener-
ator Mode''.

14
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DEFINITION OF CONTROL REQUIREMENTS

Since the objective of this advanced engine control system program is to study
various approaches to control design,including effects of both mode of control

and various technologies available to perform the required functions, the results
of an extensive study such as this depend considerably on the complexity of the
basic control requirements that are needed to satisfy the engine. As can be seen
in the previous section describing engine requirements, the engine is a complex
high-performance machine requiring many control parameters and relatively good
accuracies. It was therefore important to establish a realistic control specifica~-
tion as a solid,nonchanging set of ground rules to be used during the ensuing trade-
off studies.

The specification was arrived at by summarizing the general requirements of
several small advanced engines currently under development, These were then
modified as required to meet the objectives of the basic study program. Control
schedules were defined for both the base and the regenerator engines in general
terms wherever poss.ble to allow the schedules to be adapted to any mode of con-
trol or technology. Typical examples of these curves are shown at the end of the
following condensed version of the control specification used as the base for this
study program.

Condensed Control Specification

Scope
This specification describes the requirements for a main fuel control to be
used on an aircraft gas turbine engine having a free-turbine power shaft.
The control shall perform the following functions:
1.  Control gas generator speed
2, Control power turbine speed
3.  Schedule acceleration and deceleration fuel flows
4, Provide positive fuel flow shutoff in the power lever off position
5. Establish minimum fuel flow

6. Limit maximum gas generator speed

7. Limit maximum power turbine speed

17
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10,

11,

12,

13.

14,

15.

Limit control inlet pressure during fuel shutoff conditions

Sequence automatic starting

Limit gas generator turbine inlet temperature

Limit power turbine torque

Provide for load sharing (torque) in multiengine installations

Control compressor variable stator vane position

Control power turbine variable stator vane position.

Provide compressor inlet temperature bias for schedules

Physical Characteristics

Weight (dry)
Size

Electromagnetic Inter-
ference Resistance

Leakage (External)

Drive (NG and Ny)

Flight Maneuver Forces

Flight Attitude Condi-
tions

Life Requirements

Service Conditions

9.0 lb maximum

See Figure 12

Per MIL-STD-461 Class ID

1.5 cc/minute at overboard drain only
Either capable of operating at engine
speed (75,000 rpm maximum) or
operating withoult mechanical drive

Withstand conditions per Figure 3
of MIL-E-8593 (ASG)

Withstand conditions per paragraph
3.3. 8 of MIL-E-8593 (ASG)

2000 hours minimum between over-
hauls

Extreme range conditions will not be encountered during more than
2 percent of the control operating time.

18
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Parameter

Pressures

Control Discharge
(psia)

Bypass (psia)
Control Inlet (psia)
Ambient Air,
PAMB (psia)
Compressor Dis-
charge Air, Ppg
(psia)
Compressor Inlet,
Pr2 (psia)

Flows

Control Discharge
(Ib/hr)

Shutoff Leakage
(cc/min)

Temperatures

Ambient Air
Fuel (control
inlet)

Fuel (control
discharge)
Compressor
Inlet, TT2
Compressor Dis-
charge, TT3
Turbine Inlet,
TT4

Mechanical Inputs

Nf Speed, Turbine
(rpm)

19

Normal

Range

5 to 600
40 to 145
200 to 850

0to15

5 to 250

3.5 to 22

15 to 625

1.0 max at
200 psi

-65°F to +180°F

-65°F or 12 centi-
stokes to +130°F

200°F max
-65°F to +200°F
1420°R

2780°R

0 to 34, 400

Extreme

650
5 to 150
200 to 900

" 0to 15

5 to 275

3.5 to 22

1.0 max at
200 psi

-65°F to +250°F

-65°F or 12 centi-
stokes to +130°F

200°F max
-125°F to +210°F
1600°

2900°R to 1-2
sec bursts

36, 000




NR Speed, Gear-

box (rpm) 0 to 1720
Qpt Torque

(in. -1b) 45

Ng Acceleration

(rpm/sec) 25%/sec
NG Speed (rpm) 0 to 53, 000

NG Torque (in.-lb) 5
NG Acceleration

(rpm/sec) 16,500

NG Deceleration

(rpm/sec) 25, 000

Power Lever Posi-

tion, Ng
Off 0° to 3°
Ground Idle 23.5° to 26.5°
Flight Idle 45° to 50°
Military 98.5° to 101, 5°

Emergency 117° to 120°

Power Lever
Operating Torque

Range (in. -1b) 0 to 25

Variation

(in. -1b) 10 max
Vibration

See Figure 13

Electrical Power Avéilable

1806

25%/sec
57, 800
10

Variable voltage/variable frequency alternator, 10 watts

at 10 percent Ng

Operating Fluids and Fuel Specific Gravity Compensation

A design objective shall be the capability of operating the control with JP4, JP5,
CITE, and calibration fluid w:thont the use of a specific gravity adjustment.

Fuel Contamination and Filtration

The control shall function satisfactorily with fuel contaminated to the extent speci-
fied in paragraph 3.4.1.3 of MIL-E~5007C. Filters shall be capable of success-
fully passing the engine control qualification test without cleaning.

20
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Schedules and Accuracies

All the specified accuracies in Tables I and I include repeatability, hysteresis
fuel temperature, and full altitude and temperature envelope effects. In addiﬁc;n
the accuracy of any remote sensors, such as torque sensors, temperature sen- ’
sors, etc., shall be included in the maximum allowable band specified, Figures
14 through 20 referred to in Tables I and II indicate various scheduling require-
ments.

21




‘padojaAap SapoWl Mau SE PajB|NO|Bd 2JoM §3]0BINCIE JuajBAINDY °

1eoy10ads Joj palap)

Ajjeu)BjI0 8apow 10} 3IE UAANS §210BINDOY,

uojjisod J03enOy uopsod JojBNOY 0z 2an8) 3 aag 0z 2an8y g aag A1pwosn
%9 ¥ 19 - ONgz # ON %2 + Jogsaxdwo) ajqelavp
- s ydd gy ¥ g1 ydd g°1 ¥ 9¢ Mol UIN
Ly 30°z3 ¥ly queysuoy
(12 sanBr3) ON 9,1+ :peads jumsuo)
- - ELg/Im %GF :aamodasaoy pazaaliod jueisuo) Supjuyy
. Im pue ON 61 aan8) aog 61 aandyg 29g
u3IaMjaq Xeul 998 $0°0 3 pue DN usamjaq xeWw 298 $0°0 ON %1 F ° ON %1 ¥ Sujuza.nop paadg
'#33INUIIUCIBIP JNOYIIM MO]j WINUIIUIUL Y3|M UOIIEUIGUIOD U}
L1 pue 91 ‘G[ 82JnB)J Jo SaUFU0D Y3 UIYIIM UOj}80d J2A3] Jamod Jo juapuadapuy Supraels oy e Jo ojqedeo aq ||8ys Jojeasual sel ayy aouanbeg 1238

‘juajsuBI)

uojjeaa|202p InoyBnoayy
Qo1 + nduy dage zaye
P38 Z°0 ulgnm oz ¥ wda
000'0¢ <oNeYy a1y [ang

‘uajsuBy) UojjBIR
~129ap noyBnoayy PLy g ¥ yndu)
dajs Jaye o098 g0 ujym PLy

%8 ¥ wda 000°0¢ < apow "Ly

BT

~UBJ] UOJJBIR]20ap JnoyBnoayy
ELg/1m %eF Induj dags Jaye
098 g0 uynm ELg/Im ¥8F

wda 0000 < PO TXd/IM

%01 ¥ S£00°0
onsy 1y [eng

WLL 08 F
(1 @anByJ) apo ¥LL

ELd/IM %S F 9LV 0

apoW ELZ/IM

«3uinpayog uoyeaalaceq

‘Jul|suBI)

uojjeaaj2a00® InoyBnoay)
FL1 %= indu) dajs Jaye
aas ¢cr-0 mynw Py o5
wda 00 '0€ < apojy L1

*JUL|S U} UO}JEIR[2008
woyBnoays ¥Ly, gpF ndu)

dajs Jaye 098 G0 UIYIM LY
¥8¥ wda 000°'0€ < 2poW _H.—.

*JUa|9UBI) UOJIBIA|2008 JnoySnoay)
ELg/1m %¥F ndu) degs Jaye

008 1°0 migam SLa/3m $3F

wdx 000°0¢ < apoW ELd/zm

PLy cogF
(9 @anByj) apopy ¥Lj,

VL1 ,08F apol ¥,
BLy/1M %SF DN %88 aa0qy,

*19828] 8] 1940

-yorym ‘Elg/m gg°LF 20
ydd z¥ :ON §gg mojeg

(v 2an813) opow C1d/3M

« 3WInpagog uopvIejecOY

aujuz aanelauaBay

TRETEr

amBug ageg

Tnboy ojuvuAq

aujBug eapuieuaBoy ouug eswg
TR SR TR

Uopoung

SHIOVHNDDV HOLVHIANID SVD

‘T I19dVL

22




"$1 9an8yg seg

- - *93j0J438 XBWI JO % F paainbaa jop| Sujuoyisog 0338
. - %0 °C UIy3im SpEO] ouiBus YoJuW —Rujieys peoT
c - %2 ¥ AN %021 poadszeag IN

298 20'0 S  Josuag
'qo31d 9413081100 U} 898BaIOU] 38 S8048 Joye Y21 F

%S ¥ 8qi-¥ 082¥

Buypuryy anbacy,

AN %L¥ peaoxa jou jBys (1030 paseaq Suipnjou)
peadsJaapun a[p} punos B UIOJy 38BAIOU] J9Ad] Jamod
de3s ® Bupmojjo} peadsaaso JualsueI} AUjqaN] Jamod Ayl

dmaeg Suruzeson peadg

298 $0°0 :[e303 3| [BUOINPPY
$0°0 ¥ 2°0 :onex 8ej/peo]
008 1°0F 