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Preface

Our original aspiration with regard to "Manual Astronaut Navi-

gation" was to prepare a set of charts, tables, and simplified proce-

dures the astronaut could use in solving the orbit determination

problem. But we soon learned that a great deal of background theory

needed development or refinement before such a flight manual approach

could be justified. Our original plan of attack was therefore

changed from preparing a flight manual to research and presentation of

a variety of theoretical approaches to the manual space navigation

problem. Our thesis more closely resembles a textbook approach rather

than the originally intended flight manual.

We have incorporated and presented the theoretical development of

a number of topics applicable to the problem of "Manual Space Navi-

gation." We claim no truly original ideas or significant "break-

throughs." In fact, most of the concepts we have built upon have

been known for centuries. Only recently, though, has man found himself

making observations from the vehicle for which the orbit is desired.

In the past, the observation point has been rigidly constrained to

the surface of the earth. With the new and exciting viewpoint, many

of the classical orbit determination methods assume new and interesting

possibilities. We hope our research points out some of the many

advantages the astronaut has in his position as an observer aboard the

spacecraft.
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Abstract

Manual Astronaut Navigation, onboard orbit determination inde-

pendent of primary system computers, must be developed to insure the

safety of future manned space flight. This report presents selected

methods, procedures, and equipment that form a basis from which a

flexible operational manual navigation system may eventually be

developed.

The Delta-H method of graphically determining eccentricity is

simple and potentially accurate. Prepared charts are entered with

two changes in altitude, or "Delta-H's," and eccentricity is read

directly. An estimate of the size of the orbit, as represented by

the major axis, must be made to-allow selection of the correct chart.

The geometric elements of the orbit can be obtained by use of

numerical differentiation of a series of range measurements to obtain

radial velocity and radial acceleration. This procedure is limited

by the effects of truncation and measurement errors. Differential

correction of the orbital elements can be made if a back-up computer

is available to handle the computational load.

The three-dimensional position fix opens the door to many orbit

determination possibilities. Three fixes input to the Gibbs method

A is the most promising investigated.. This procedure may be performed

by hand or with a small back-up computer.

xviii
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If the geometric elements are known, the orientation elements

may be obtained without resorting to lengthy iterative techniques.

Knowledge of angular positions at two times coupled with the true

anomaly at one of those times is all that is required.

Accurate ranging is essential in most orbit determinatiun schemes.

A reference trajectory may be employed with linear perturbation

techniques to obtain a good estimate of spacecraft range. Lineariza-

tion is valid for relatively large deviations from the reference

trajectory. For midcourse trajectories, this method is vastly

superior to methods incorporating angular diameter meaburements.

Orbit determination procedures exist that do not depend upon

range measurements. The complete orbit may be obtained through

knowledge of three angular positions and three true anomaly rates.

To date, very little has been done in the area of manual naviga-

tion equipment design. "Aids" to manual navigation such as back-up

inertial platforms, hand-held mechanical calculators, and battery

operated, hand-held computers are necessary to optimize the performance

of future manual navigation systems.

The manual navigation problem can be solved by comtining the

proper methods, procedures, and equipment.

xix

xix
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MANUAL ASTRONAUT NAVIGATION ,

C, - I '

I. Introduction

Background

The dramatic success of the Apollo 8 lunar micsior, bas brought '

this nation to the threshold of an age of interplanetary space travel.,

The earth orbits of projects Mercury and Gemini, once considered with ,

awe, are now classified as simple "parking" orbits from which manned

vehicles, such as Apollo, will depart upon loag midcourse trajecto-

ries to the moon and planets. As in the flight of Apollo 8, the

success of these missions will depend heavily upon accurate aud

reliable navigation and guidance. In the event of primary system'

failure, an adequate back-up system mvst be available -to allowoi safe

return to earth. Manual navigation and guidance procedures shouldobe,

provided to eliminate all dependence on primary system Pomputers.-

Such procedures would involve use of equipment such as the s?ce ,,

stadimeter, a space sextant, prepared tables and charts, and hand-held

computing devices.

The Problem

This report is intended to be a continuation of the work accom-

plished by Captains Richard R. Schehr and Patrick J. Smith ,in their---'---

thesis, "Manual Astronaut Navigation: Apollo Mission Applications,"

(Ref 17). The term "navigation" is defined as the determination of

any six independent parameters which specify uniquely the geometric

qualities of an orbit, or trajectory, and its orientation in inertial "

1 4 -.:2
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space. "Guidance" is defined as the subsequent determination of the

velocity correction vector necessary to insure the arrival of the

spacecraft at a predetermined point. "Manual" navigation, the problem

attacked in this thesis, is defined as the onboard determination of

the orbital parameters using procedures and equipment totally inde-

pendent of the primary system computer.

Scope

The previous thesis dealt with manual navigation in low altitude,

near-circular earth and lunar orbits. This thesis will explore general

manual navigation techniques applicable to midcourse trajectories such

as the translunar phase of the Apollo mission. No attempt is made to

consolidate the procedures described in an operational "flight manual"

presentation, as was done by Captains Schehr and Smith. The principal

objectives are to extend and improve upon their methods, and to

investigate other promising manual navigation techniques. Sources of

error are discussed, and some error analyses are presented. Numerical

examples are provided, wherever possible, to enhance the theoretical

development.

Assumptions

The primary assumption made in this thesis is that of restricted

two-body motion. This implies that:

1. The mass of the vehicle is negligible when compared

to the mass of the attracting body. L

2. The gravity field of the attracting body is ideal,

inverse-square, and central.

2
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The only other assumption made is that all measurements indicated can

be performed.

The first assumption allows all orbits and trajectories to be

considered as conic sections. This assumption is valid for near planet

orbits and the major part of midcourse trajectories. The second

assumption is, of course, a practical necessity in any theoretical

discussion of manual navigation.

The reader is assumed familiar With the basics of astrodynamics

and celestial mechanics.

Organization

Each of Chapters II through VII in this report deals with an

independent method of obtaining one or more of the six orbital param-

eters necessary for solution of the manual navigation problem. These

parameters, or elements, are divided into two sets: the geometric

parameters,

e - eccentricity

a - semimajor axis

t - time from perifocus

and the orientation parameters,

i - inclination of the orbital plane

SI - longitude of the ascending node

w - argument of perifocus

Chapter ViiI deals with an improved method of optical ranging, and

Chapter IX is a discussion of certain "aids" to manual navigation

such as battery operated, hand-held computers.

3
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Discussion

As stated previously, this is not a "flight manual." No "best"

set of procedures is determined. It will be seen that this determina-

tion depends upon the answers to several questions. Most important

are:

1. What back-up computational tools are available?

2. What types of measurements are possible?

3, How much time is allowable for the completion of the

procedures?

4. What is the required accuracy?

This thesis forms a basis from which an operational flight manual may

eventually be developed once the above questions have been answered.

1 . . . .....
rI
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II. The Delta-H Method

Introduction

The cornerstone of the geometric parameters determination for

low eccentricity elliptical orbits in the thesis, "Manual Astronaut

Navigation: Apollo Mission Applications," by Captains Schehr and

Smith, is what they labeled the "Delta-H" method of obtaining orbital

eccentricity. This is the first of three independent geometric

elements obtained in their approach to the manual navigation problem.

The other two parameters are the time from peripoint and the period.

In their scheme, once eccentricity is determined it is used to obtain

graphically the ratio of time from peripoint to period. The period

is also determined graphically by a comparison with a zero eccentricity,

or circular, orbit.

As will be seen, the Delta-H method of obtaining orbital eccen-

tricity, original to the aforementioned thesis, is relatively simple.

and can be sufficiently accurate. For this reason, and because the

Delta-H concept was not fully developed due to lack of time, this

chapter is devoted primarily to an investigation of this method of

obtaining obital eccentricity. Particularly, an extension of the

.... o work t highlyV e --centr geocentr ellipses such as the

translunar phase of the Apollo mission is accomplished as a follow-

on to the original low eccentricity development.

5
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Background

The Delta-H method of eccentricity determination involves the

measurement of three consecutive altitudes (or ranges) separated by

equal time intervals. The second altitude (range) is subtracted from

the first, and the third from the second, to give two changes in

altitude, or "Delta-H's." By definition

AH1 = h i -h 2  (2-1)

and

AH2 = h2 -h 3  (2-2)

In their investigation, Captains Schehr and Smith discovered that

if the changes in altitude were t~ken in pairs successively along the

ellipse and plotted as ordinate and abscissa in an orthogonal axis

system, curves of constant eccentricity resulted (Ref 17:18). Figure

1 is an example of one of their Delta-H plots. To obtain eccentricity,

the plot is entered with AHI and AH2 and eccentricity is read directly.

The curves were generated for time intervals of 5 and 15 minutes along

geocentric and selenocentric orbits. Only very low eccentricities

were considered; from .002 to .016 in geocentric orbit, and from .01

to .08 in selenocentric orbit. Most importantly, for the range of

moraxes considered, i.e., from planet radius plus 80 nautical miles

to planet radius plus 170 nautical miles, the curves appeared to be

invariant. This has since been confirmed by the authors of this thesis

as well as by the Universal Technology Corporation working under Air

Force contract. The apparent insensitivity to the size of the orbit,

6 I-p .- ..----,.- -.-. - . --.,, ---. -.
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as represented by the major

axis, means that relatively 50

few plots are necessary to

cover a sizable range of

orbits. This advantage 0 Tc

makes the Delta-H method 
F

more practical than the

previously developed graph- -30:

ical approaches (Ref 17:18).

Operationally, the accuracy

of the Delta-H method de- AZ (on)

pends upon the accuracies Fig. 1

of timing and altitude (or Typical Low Eccentricity, Low
Altitude Delta-H Plot

range)measurement. These, (From Ref 17:126)

in turn, depend upon the

hardware available, the skill of the user, and the inherent accuracy

of the measurement procedure.

Within the scope of the problem defined, the Delta-H method

appeared to Captains Schehr and Smith to be a simple, direct, and

potentially accurate approach to obtaining orbital eccentricity man-

ually. Motivated by their work, the rest of this chapter deals with

the generation of Delta-H plots, an investigation of their properties,

and a discussion of the possibilities of using them in a high eccen-

tricity manual navigation scheme.

7I'
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Data Generation

A double-precision computer program was written to provide accurate

reference data for use in investigating the Delta-H method and other

manual navigation techniques to be described in later chapters. The

computer graphs the Delta-H data via a tape-driven digital plotter.

Details are provided here to minimize the amount of backtracking

necessary in future follow-on work.

Theory. As stated in Chapter I, a two-body approach is taken in

this thesis. The equations used in the development of the computer

program are

1/2
n 3 (2-3)

a f/2

T 2- (2-4)
n

V (21) (2-5)r a

h = r - R (2-6)

M nt E -e sin E (2-7)

r a(l- e cos E) (2-8)

where

n = mean motion

11 = gravitaLional constant

a = semimajor axis

T = period

V = total velocity

8
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e = eccentricity

r = radial distance

h = altitude

M = mean anomaly

t = time from peripoint

E = eccentric anomaly measured from peripoint

R = planet radius

It is desired to have the computer solve for altitude as a function

of semimajor axis, eccentricity, and time from peripoint. This involves

the solution of Eq (2-7) for eccentric anomaly as a function of the

same three variables, and then Eq (2-8) for radial distance. Altitude

is then obtained from Eq (2-6). Difficulties arise because Eq (2-7),

Kepler's equation, is transcendental in eccentric anomaly. This

problem is not serious for low eccentricities since many excellent

approximate solutions have been formulated (Ref 4:41). Most of these

solutions are in the form of series expansions. Captains Schehr and

Smith used the first three terms of a series expansion in powers of

eccentricity about the mean anomaly (Ref 17:17). This series diverges

for values of eccentricity above .662743 (Ref 11:11-5). Consequently,

to investigate orbits with eccentricities above .9, a different

approach had to be formulated. Further research disclosed that all

series expansions for eccentric anomaly diverge in this region, so it

was decided to employ an iterative procedure based upon the Newton

method of approximations. Rearranging Eq (2-7)

sin(E) = (E - M) (2-7a)e

9
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or

f(E) sin E - (E -M) (2-7b)
e

When Eq (2-7) is satisfied, f(E) is identically zero. An estimate of

eccentric anomaly is made to start the iteration. Then, the Newton

m. thod is employed to obtain a better estimate, or second approxima-

tion.

f(E) 7
2 E d f(E)

dE

(2-9)

or

1
sinE 1 - e (El - H)E2 = El- 1

2 1 cos El (2-9a)

This procedure is repeated until f(E) is zero. The Newton method is

generalized in the text "Astrodynamics--Advanced Topics and Applica-

tions," by Baker (Ref 3:26). Since the altitude computaticns start at

the peripoint, the initial value of eccentric anomaly is zero.

Altitudes are to be computed for every 2.5 minutes thereafter. This

short time inteival makes the final value of eccentric anomaly at one

time an excellent initial value for the next. Also, once the desired

altitudes are obtained, they can be combined in pairs to give

Delta-H's for timing intervals of any integral multiple of 2.5 minttes.

Thus, the effect of the timing interval can be investigated and the

number of iterations for convergence is kept small.

10
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The Computer Program. The computer program mentioned at the begin-

ning of this section is reproduced in Appendix A. The statements

required for automatic plotting are not included since they complicate

the program considerably and are not essential for an understanding of

the logic involved. Input to the program are semimajor axis, eccen-

tricity, and time from peripoint. The output includes period, altitude,

AHl, AH2, eccentric anomaly, and the ratio of velocity to the velocity

at peripoint.

High Eccentricity Delta-H Plots

The translunar phase of the Apollo mission is a geocentric ellipse

with a typical eccentricity of .9668 and an apogee distance of approxi-

mately 60 earth radii (Ref 1). These figures are used as a point of

departure in this section.

The computer was programmed to generate geocentric Delta-H plots

for seven values of eccentricity for each of seven Values of semimajor

axis. Thus, the effect of the semimajor axis can be isolated and

studied. The eccentricity was initialized at .9068 and incremented by

.0100 until the .9668 value was af-tained. The semimajor axis was

initialized at 105,000 nautical miles and incremented by 1,000 nautical

miles until a final value of 111,000 nautical miles was attained. This

set of values for eccentricity and semimajor axis gives a minimum

apogee distance of approximately 58 earth radii and a maximum of

approximately 63 earth radti since at apogee

r = a (l + e) (2-10)

from Eq (2-8). The timing interval was set at 15 minutes with the

11
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first altitude determined at perigee and the last 3.5 hours from perigee.

From the point of view of the Apollo mission, this represents the

portion of the translunar coast phase prior to the first scheduled

midcourse correction (Ref 1). To insure a sufficient number of data

points for accurate curve plotting, the Delta-H pairs were computed

using 2.5 minute displacements of the three altitudes, i.e., the first

pair consists of altitudes computed at times 0, 15, and 30 minutes; the

secovd pair consists of altitudes computed at times 2.5, 17.5, and

32.5 minutes, and so on. Figure 2 is one of the resulting Delta-H

plots. (To keep the data points in the first quadrant, -AHl is plotted

versus -AH2.) The apparent overlapping observed is highly undesirable

since it produces ambiguity for certain combinations of AHl and AH2.

Clearly, the curves of constant eccentricity must be distinct every-

where for these plots to have any real value in a manual navigation

scheme. (NOTE: THE COMPUTER SCALES AUTOMATICALLY AND USES THE

NOTATION X 101 TO MEAN MULTIPLY THE NUMBER ON ThE AXIS BY TEN. THIS

MUST BE KEPT IN MIND SINCE IT IS THE OPPOSITE OF WHAT IS USUALLY SEEN

IN ENGINEERING PRACTICE. THE LIBRARY SUBROUTINE WAS NOT ALTERED DUE

TO THE PROHIBITIVE COST OF RERUNNING THE PLOTS REFERRED TO IN THIS

CHAPTER.)

The Effect of the Timing Interval. Intuitively, it was felt that

perhaps the timing interval was too short to allow adequate "sampling"

of the trajectories in the region of ambiguity. Working on this possi-

bility, the program was altered by increasing the timing interval from

15 minutes to 30 minutes. Figure 3 is the resulting plot for the same

semimajor axis as in Fig. 2. Some improvement is noted in that the

12
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curves are generally better separated than those in the pre, ious plot.

The timing interval was changed to 60 minutes with the result shown

in Fig. 4. Complete separation is attained, which indicates that

regions of ambiguity can be eliminated by simply increasing the

timing interval. The effect of the timing interval on the high

eccentricity Delta-H plots, then, is to increase or decrease the rela-

tive curve separation as the timing interval is made correspondingly

larger or smaller.

The Effect of the Major Axis. As mentioned previously, Captains

Schehr and Smith found that their constant eccentricity curves appeared

to be invariant. However, the high eccentricity curves considered

here shift slowly as the major axis is changed. This is made apparent

by comparison of the plots in Figs. 5, 5a, and 5b with Fig. 4. As

the major axis is decreased, the curves shift slowly upward and to

the right. It is probable that Captains Schehr and Smith did not

encounter this dependence upon the major axis because of the limited

range of values investigated. In dhe present case, there must be a

change of 2,000 nautical miles in the major axis to materially affect

the Delta-H plots.

To help in establishing the general effect of the major axis on

these high eccentricity plots, several computer runs were made with

a variety of values of major axis. The conclusion drawn upon

examination of the results is that for high eccentricity ellipses

(e above .9), a variation of more than 1 per cent in the major axis

above or below a particular value is necessary to displace the

constant eccentricity curves a significant amount. The Delta-H

16
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plots shown in Figs 2 through 5b are considered typical.

The Analytic Approach

Attempts have been made to analyze and predict the behavio, of

the Delta-H curves mathematically. A general expression (valid for

any eccentricity less than 1) relating the changes in altitude

directly to the major axis, timing interval, and the eccentricity such

as

AHl = f(AH2,a,At,e) (2-11)

or

AH2 = f(AHl,a,At,e) (2-11a)

has been sought, but all attempts at formulating such an expression

have failed due to the transcendental nature of Kepler's equation

which links time to altitude via Eqs (2-6) through (2-8). With these

equations plus Eqs (2-1) and (2-2), it can be shown that, for alti-

tudes 1, 2, and 3

AHI = ae(cos Er - cos E1 ) - AH2 (2-12)

If a, e, At, and AH2 are specified, E, and E3 can be obtained from

the simultaneous solution of

H2 = ae(cos E3 - cos E2) (2-13)

and

nAt = (E3 - E2 ) - e(sin E3 - sin E2) (2-14)

20
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which yields E2 and E3, and then the solution of either

nAt = (E2 - El) - e(sin E2 - sin E1 ) (2-15)

or

2nAt = (E3 - E1 ) - e(sin E3 - sin E1 ) (2-16)

which yields El. Therefore, Eq (2-12) can be solved for AHl given

AH2, a, At, and e. First, however, E,, E2, and E3 must be obtained by

iteration. The necessity of taking this intermediate step seems to

preclude the possibility of obtaining an explicit relation such as

tq (2-11) or (2-3la) for use In a mathematical analysis. An empirical

approach has, therefore, been taken in this chapter. The computer

program provides an implicit solution of Eq (2-12) so the individual

effects of varying a, e, and At can be observed.

General Characteristics of the Delta-H Plot

To determine some general characteristics of the Delta-H plot,

15 computer runs were made for intermediate (.50 to .75) and low

(.01 to .10) values of eccentricity. Both regions were examined for

sensitivity to changes in the timing interval and the major axis.

Figure 6 is a plot for eccentricities ranging from .50 to .56

in increments of .01. The timing interval is 15 minutes and the

semimajor axis is 106,000 nautical miles. Figures 7, 7a, and 7b are

a set of plots for the same values of eccentricity, but with a 60

minute timing interval. The major axis differs from plot to plot by

2,000 nautical miles. These plots display typical intermediate

eccentricity characteristics. Their behavior is very similar to

21
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that noted in the high eccentricity region.

Figures 8, 8a, and 8b are a typical set of low eccentricity plots.

Separation was again attained with a 60 minute timing interval. A

notable difference in the behavior of these plots lies in the lessened

effect of changes in the major axis. A change of more than 3 per cent

appears necessary to displace the curves a significant amount.

Conclusions. The general conclusions drawn are:

1. Curve separation for all eccentricities can be

controlled by changing the timing interval.

2. Cnsitivity to changes in the major axis is variable.

It appears that at low eccentricities, a change of

more than 3 per cent is necessary for significant

displacement, and in the high and intermediate

regions, a change of more than I per cent is necessary.

Conclusion 2 tends to confirm the supposition that Captains Schehr and

Smith failed to encounter the dependence upon the m~jor axis due to

the limited range of values investigated. They considered low eccen-

tricities and a maximum change of approximately 2 1/2 per cent in the

major axis.

While this has not been a comprehensive analysis of the Delta-H

plot characteristics (since such an analysis is beyond the scope of

this thesis), two important trends have been discovered in the effects

of the timing interval and the maior axis. These trends will be used

as a basis for fitting the Delta-H method of eccentricity determina- *

tion into a high eccentricity manual navigation scheme. .

26
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Discussion

It has been seen that the Delta-H plots are sensitive to changes

in the timing interval and the major axis. These sensitivities must

be taken into account and used to best advantage if the method is to

be extended beyond near circular parking orbits to midcourse

trajectories such as the translunar phase of the Apollo mission.

It would be unrealistic to i. 'it the Apollo midcourse problem

by assuming a small (± 1 per cent) variation in the major axis so

that only one Delta-H plot is necessary to cover each set of possible

eccentricities. Au inflight emergency involving only moderate

deviations from the planned injection velocity could easily place the

actual major axis outside this range; see Eq (2-5). Therefore, a

practical manual scheme incorporating the Delta-H method would have

to include several plots for each set of eccentricities to assure

adequate coverage for such a contingency. A set such as the plots in

Figs. 4 through 5b would suffice for a 12,000 nautical mile range of

major axes, and additional plots could be carried to increase this

coverage. The astronaut would have to know the major axis to within

2,000 nautical miles to choose the correct plot for accurate determi-

nation of the orbital eccentricity. Larger errors in the major axis

are tolerable if some uncertainty in the eccentricity is acceptable.

Careful inspection of Figs. 4 through 5b shows that if the major axis

is known to within plus or minus 6,000 nautical miles (about ± 3

per cent), the uncertainty in the eccentricity is no greater than

approximately .003. This can be demonstrated by assuming a combina-

tion of AHI and AH2 and then entering each of the seven plots for an

30
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2stimate of the eccentricity. (If the central, or fourth, plot is

considered to be the correct plot, then this set represents a ± 3

per cent variation from the actual major axis.) The difference

between the highest or lowest estimate and the true eccentricity is

in no case greater than .003. Therefore, this represents an upper

bound on the uncertainty in the eccentricity given that the error

in the major axis is within 6,000 nautical miles.

The errors assumed in the previous paragraph are considered to

be the result of inaccuracies in the method used to determine the

major axis. This does not include the effect of measurement errors.

Measurement errors, of course, affect both the determination of the

major axis and the two changes in altitude. It is essential that

the range (or altitude) measurements be as accurate as possible.

However, it is evident from the relatively large changes in aitit

noted in Figs. 4 through 5b that small errors can be absorbec. ch

little affect on the eccentricity determination as long as the major

axis is known to within the limits prescribed above. Also, an

advantage of the Delta-H method lies in the elimination of measure-

ment errors due to human bias. These errors tend to be self-

canceling (Ref 17:27).

The major axis can be obtained from knowledge of. the orbital

period; see Eq (2-14). The method used by Captains Schehr and

Smith is not applicable in this case since it assumes eccentricities

close to zero. More flexible methods of determining the major axis

are discussed later in this thesis. Once the major axis and the

eccentricity are obtained, they can be used to find the final

31
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geometric parameter, the time from peripoint to one of the measurements

from

E - e sinE (2-17)
n

where

E = cos-i a - r (2-18)
ae

and r is the range at the time of interest. If the cosine of E is

positive and the range is increasing, then E is less than 90 degrees.

If the range is decreasing, the angle is greater than 270 degrees, and

so on.

The curve separating effect of increasing the timing interval can

be used to generate Delta-H plots for eccentricity increments of .001

or smaller, thereby improving the accuracy with which the graphs may

be read. Figure 9 is a plot for a 90 minute timing interval, and

Fig. 10 is a portion of the same plot with .001 increments.

Sample Problem. The following is a sample calculation of the

eccentricity and time from peripoint on a known ellipse. The calcu-

lations were performed with a slide rule, standard trigonometric

tables, and a scratch pad. The errors introduced are assumed typical

for the measurements and methods involved.

On the known -ipe^ a values)

a = 105,000 NM (NM for all distances)

e - .9568

h = 7245.584 at 50 minutes from perigee
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h2 = 15540.412 at 110 minutes from perigee

h3 = 22629.467 at 170 minutes from perigee

The assumed measurements, with errors, are

hi = 7300

h2 = 15650

h3 = 22750

At = 60 minutes

The assumed calculated major axis is 108,000 nautical miles.

With this input data

AHI = h1 - h2 = -8350

AH2 = h2 - h3 = -7100

Entering the AH plot for a = 108,000 MI yields

e = .9598

Then

-1 a - r,
E1 = cos aae

a -r I = 97260

ae = 103658

El = cos -  (.9382)

35
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E 200 15' = .3534 radians (range increasing)

sin E, = .34612

n = .0254

t = .3534 - .3322 minutes
.0254

tI = (.8346) (60) = 50.07 minutes from perigee

Summary. The positive and negative aspects of using the Delta-H

method in a high eccentricity scheme may be summarized as follows:

Positive Aspects

1. The computations required are simple.

2. An uncertainty of no more than about .003 in the

eccentricity is possible with a i 3 per cent error in

the estimate of the major axis.

3. Small measurement errors can be absorbed with little

adverse affect as long as the estimate of the major

axis is within the limits prescribed.

4. Human bias as a source of error is eliminated.

5. If an increased timing interval is acceptable, the

Delta-H curves can be separated enough to allow

eccentricity increments of .001 or smaller.

Negati._ve Aspects

1. A sufficient number of plots must be carried to assure

adequate coverage of possible orbits.

2. The major axis must be known to within ± 1 per cent

of the actual value for accurate eccentricity

determination.
36
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3. Measurement inaccuracies can give totally erroneous

estimates of the eccentricity through errors in

a, AHl and AH2.

4. The timing interval must be large enough to eliminate

ambiguity. Therefore, it may take two or more hours

to obtain AH and A1t2.

All of these factors must be weighed before inclusion of the

Delta-H method in a high eccentricity manual navigation scheme.
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III. Geometric Parameters from Numerical Differentiation

Introduction

The following geometric properties of an orbit can be obtained

from a set of timed range (or altitude) measurements:

1. the semimajor axis - a

2. the eccentricity - e

3. the eccentric anomaly E associated with a position

and time.

The range r is the vehicle's distance from the center of the earth.

The computation method considered in this chapter involves a numerical

differentiation to obtain the radial components of velocity and

acceleration r and r. Once these quanticies have been obtained, the

geometric elements may be computed from the two-body orbitE- equations.

A block diagram outlining the general procedure is shown in Fig. 11.

Knowledge of the eccentric anomaly E at a specific time t is

sufficient to relate position to time through Kepler's equation

E - e sin E = M = (t - t o ) I (3-1)
a3

where M is the mean anomaly, to the perifocus time, and p the earth's

gravitational consLant. In this chapter, the eccentric anomaly at

its associated time will be considered as one of the orbital elements,

thus simplifying portions of the presentation.
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Obtain series of range
measurements from earth
- equal time intervals
between measurements

Numerically differentiate
to obtain i and

Compute a

Compute_

Compute e

Fig. 11

Determination of Geometric
Orbital Parameters

Numerical Differentiation for r and

The radial velocity and radial acceleration can be obtained by

numerically differentiating a set of range measurements. Development

and tabulation of numerical differentiation formulas can be found in

any text on numerical analysis. In general, numerical differentiation

is achieved by using the first few terms of a series not wholly unlike

the familiar Taylor series. Table I is presented as a summary of

numerical differentiation formulas available for sets of range

measurements having up to seven readings. The time interval between

readings is denoted by t.
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Orbit Determination - Geometric Elements

The following notation is introduced:

r = JEJ = vehicle distance from earth center

= earth gravitational constant

a = semimajor axis

E = eccentric anomaly

e = eccentricity

0 = true anomaly

The geometric elements are determined from r, r, and r through

three relatively simple equations. For an elliptic orbit

(1/r)- t2 -r (3-2)

e cos E = 1 -r (3-3)

.a

e sin E rr (3-4)

If the trajectory is hyperbolic, a is negative. The equations for the

geometric elements become

a = 
(3-5)

(P/r)- j2 - r

e cosh F = -r (3-6)• 
a

41
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r
e sinh F - r (3-7)

The hyperbolic functions result from the substitution of iF for E in

the elliptic orbit equations (Ref 2:89).

In the unlikely event the orbit is exactly parabolic, then

a =c i.e. j_ 2 rir = 0 (3-8)
r

e = 1 (3-9)

r2
cos r (3-10)

A derivation of these cquations is presented in Appendix B.

There are no approximations involved in the derivations. The numerical

determination of r and r involves some approximation.

Example Problems - Geometric Element Determination

Example Problem 3-1 - Low Eccentricity. Liftoff from Cape

Kennedy was normal, but before parking orbit insertion, the space-

craft was besieged with a series of emergencies. The present situation

is complete communication failure coupled with unreliable operation of

the navigation computer. The immediate problem is determinatdon of

the safety of the orbit.

Solution:

The astronauts obtain the following altitudes at time

intervals of five minutes:
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hI = 166.8 NM*

h'; = 158.7 NM

h 3 = 147.8 NM

The expressions for 2 and ri2 become

h3 - hi - 147.8 - 166.8 1.9 NM/KIN

2 - 2t 2(5)

h + h3 - 2h 166.8 + 147.8 -- 2(158.7)1 3- 2 _ __ _ _ _ _ _

t2  (5)(5)

- 0.112 NII/MIN
2

For the earth, p and A/ are

P = 225.90258 x 106 NM3 /MIN 2

v7 = 15.03005598 x 103 (NM
3/MIN2) /2

The radial distance from the earth's center is obtained by adding the

earth's radius RE to the altitude reading h2

r2  h2 + R = 158.7 + 3440.2 3599 NM

The semimajor axis a is

a = = (225.9) 106

/r)-2 - r (225.9) 106 - (1.9)2 + (3599)(.112)

*These data are identical to Example Problem One in Ref 17:65.
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and using a slide rule

a = 3575 NM and Fa 59.79

The period of the orbit can now be determined, if desired, from

= 2i 2. = (4.180413) 10- a 4

and

P = (4.180) 10 - 4 (3575)(59.79) = 89.3 min

The eccentric anomaly at r2 is obtained from

tanE r2  2 /a- (3599)(- 1.9)(59.79)
2 (a - r2) (15.03) 103 (3575 - 3599)

then

tan E2  = 1.133, E2 = 228.580 and

sin E2 = - 0.7499

The eccentric anomaly is greater than 1800 since the radial distance

is decreasing. The orbital eccentricity is given by

r2 r2  -(3599)(- 1.9)e r. i2 A .001

F4 / sin E (15.03) 103 (59.79)(- .7499)
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With the geometric elements determined, the perigee altitude is given

by

hp = a(l - e),- R+ = 3575(1 - .0101) - 3440

hp = 99 NM

Therefore, the safety of the orbit is established and the astronauts

can then direct their attention to other aspects of the emergency.

The time from perigee of the second range measurement is obtained

from the "easy solution" of Kepler's equation

t - t _ [E - e sin E] (3-11)
0 n

where n = 2v/P. Then

89.3 F
2 to 6.283 3 (228.6)(.01745) + (.0101)(.7499)]

and

t 2 - t o  56.8 min

The iterative computer solution to this example problem is

presented in Ref 17:67. Table II is a comparison of the numerical

differentiation and computer solutions. Note that identical input

data were used and these data were assumed perfect. Therefore, at

this point, no claim can be made regarding the ability to handle

altitude measurements containing normal measurement error.
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Table II

Comparison of Computer and Nmerical
Differentiation Solutions of

Example Problem 3-1

Numerical
Orbital Differentiation Computer

Parameter Solution Solution

a 3575 NM 3575.9 NM

e 0.0101 0.0100

t 2 - t o  56.8 min 57.43 miin

Period 89.3 min 89.40 min

Example Problem 3-2. The translunar injection burn has been

catastrophic. In addition to premature engine shutdown, the space-

craft tumbled during the burn. The result is that the present

spacecraft orbit is completely unknown. Other emergencies dictate

that the orbit must be determined manually.

Solution:

The following altitudes are obtained at 30 minute

intervals:
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iI 1 7232.8 NM

h2 = 9078.8 NM

h 3 = 10373.2 NM

These altitudes are known to be slightly in error. The actual alti-

tudes are:

( 11)ACT = 7195.833 NM

(12)ACT = 9031.767 NM

(h)ACT = 10348.165 NM

but the astronauts must use their only information--the measured alti-

tudes. The expressions for r and become

- h 1iL 10373.2 - 7232.8 52.34 NM/MIN
2t \- 2(30)

II 11 32 1 2(9078)__ __ __ __ __

1 +32h2 7232 + 10373 - 2(9078)
t 302

= - 0.6138 NM/MIN 2

For the earth, p and AT are

p = 225.90258 x 106 NM 3/IIN 2

,T = 15.03005 x 103 (NM3/MIN2) /2

Tile radial distance from the earth's center is obtained by adding
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the earth's radius Re to the altitude reading h2

r2  = h2 + R 9079 + 3440 = 12,519 NM

The semimajor axis a is

a2 (225,9) 106

r- r2 "2  (225.9) 10 - (52.34)2 + (12519)(.6138)
r2  12519

a - (225.9) 106 9830 NM
(221)S.,

The period of the orbit is

a3  (4.180) i0-6 (9830)(99.15) _ 6.79 hr
1' (60)

The eccentric anomaly at r2 is obtained from

tan E r2 r2 a (12519) (52.34) (99.15) = - 1.607

A- (a - r2) (15.03) 103 (9830 - 12519)

E2  = 121.880

The eccentric anomaly is less than 1800 since the radial distance is

increasing. The orbital eccentricity is given by

r2 r2  (12519) (52.34)2 = 0.517
AT/a sin E2  (15.03) 103 (99.15)(.8491)
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The actual orbit, the computed orbit using perfect range measurements,

and the approximate orbit using the measured values of range are shown

in Table III.

Table III

Comparison of Geometric Parameters
of Example Problem 3-2

Computed Orbit Computed Orbit
Actual Using Perfect Using Measured
Orbit Range Values Values of Range

a 10,000 NM 10,017 NM 9831.5 NM

e 0.5000 0.4998 0.5177

E 119.6290 119.3640 121.880

Example Problem 3-2 was selected to illustrate two points:

1. Measurement error is always present.

2. Comparison of computer versus manual solutions

where the same input data is used is meaningless

when measurement error is present. The important

question is: How far is the manual solution from

the real orbit?
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The adverse effect of measurement error will be examined further in the

next section.

Summary

The geometric elements can be obtained quite easily by obtaining

a series of successive range measurements at equal time intervals.

Numerical differentiation of these measurements yields the radial

velocity and radial acceleration at one of the range readings. With

knowledge of range, radial velocity, and radial acceleration, the

geometric elements a, e, and E are readily determined from fairly

simple equations. A block diagram outlining the steps required to

obtain the geometric parameters is shown below.

Obtain set of range measurements
from attracting center

Numerically differentiate to
obtain and i

Compute a froma =
V -i- r
r

Compute E from tan E r i a

rr

Compute e from e sin E r
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Preliminary Error Analysis

Introduction. Before any orbit determination scheme can be

presented in "flight manual" form, it must be determined if the

method will, in fact, yield the desired results, Example Problem 3-2

illustrated that measurement error cannot be ignored.

This section is a preliminary error analysis of the numerical

differentiation method of orbit determination. The word "preliminary"

is used since a statistical approach is not used. Rather, the role

of measurement error is studied by determining the worst effect it

could produce. The general results and conclusions from either type of

error analysis are similar.

The trajectory considered is that which tests manual navigation

capability to the utmost--the high eccentricity ellipse. Although

this will highlight the shortcomings of the numerical differentiation

scheme, readers should deduce that as eccentricity is lowered, the

effect of measurement error is somewhat reduced.

The major error sources in the numerical differentiation

technique of orbit determination are:

1. numerical differentiation truncation error

2. range measurement error

3. timing measurement error.

Each of these error sources will be discussed.

Truncation Error Effect. Truncation error results from using

numerical differentiation to obtain radial velocity and radial

acceleration. Using five tabulations, the truncation. error for the
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first derivative is given by

y, (xo)_ p, (xo) =h' y(5) ( ) (3-12)
30

where

y' (xo ) = actual derivative

p' (xo ) = approximate derivative

h =x - xo (the tabular interval)

= some value of x, generally
indeterminate, within the range

of values of x under consideration.

A derivation of this equation may be found in Ref 16:101. Applied to

the orbit determination problem

r 3 (Actual) 3 (Approx) 30r( () (3-13)

for five range measurements. The presence of t4 in the numerator

suggests that t, the time interval between readings of range, should be

small if truncation error is to be minimized. A similar conclusion

holds for the second derivative. For three range measurements, the

expression for truncation error for r is2

- 2 r) () (3-14)
2 (Actual) 2 (Approx)

Since determination of truncation error using the formulas above is

only an estimate, the effect of truncation error on the orbit determi-

natiou scheme was obtained in a slightly different manner. Accurate
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values of range at equal time intervals were obtained by computer for

a representative high eccentricity trajectory. Then the actual orbital

parameters were compared with those obtained from the formulas involving

numerical differentiation. The results are presented graphically in

Figs. 12, 13, and 14. Note that in all cases, truncation error, as

expected, increases as the time interval between range measurements

is increased.

Range and Timing Measurement Error. Inaccurate values of range are

a major source of error in the numerical determination of i and i. In

addition to its effect through the numerical differentiation process,

an inaccurate range measurement also directly affects the values of the

orbital elements through the value of r itself (since the equations

for a, e, and E each contain an explicit value of range). Therefore,

it is necessary to consider the effect of errors in range measurement

on the orbit determination method being considered. Another error

source is that of timing between measurements. The following presenta-

tion will begin with a brief discussion of how range measurement error

affects the numerical differentiation process. Then the effect of

range and timing measurement error will be investigated for each of

the orbital parameters being considered.

Measurement Error Effect - Numerical Differentiation. A major

step in the orbit determination method being considered is the

numerical determination of i and i from a set of range measurements.

A brief discussion of how inaccurate range measurements can affect

these derivatives is thus in order. The cumulative effect of
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measurement errors on the final output--the orbital parameters--will

be treated in a later section.

Assume that £, V 2' --- C5 represent the errors associated with

each measurement of range and that R1, R2 , --- R5 are the actual

range values that should be observed. Then

R I = r, + e1  (3-15)

where r, represents the observed range. Then using this definition
4

in the five-measurement differentiation formula, the error in output

due to input inaccuracy is

(Ri - R5) - 8(R2 - R) (r - r5 ) - 8(r2 - r4)

12t 12t

(e1 - C) - 8(c2 -

12t (3-16)

If el, . . .5 do not exceed emax in magnitude, the output error is,

at worst

Maximum output error in 18emax  3e
i3 due inaccurate data 1 m1_ max312t t(3-17)

A small time iuterval t generally associated with high accuracy (i.e.,

small truncation error) thus magnifies the effect of measurement

error--many times making the trouble of minimizing truncation error

pointless.

By similar analysis, the maximum error for the second derivative
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(using five measurements again) is

Maximum output error in 16a
r3 due inaccurate data -

3t2  (3-18)

This shows that higher derivatives become increasingly inaccurate PA

the time interval is reduced. Note, however, the particular arrange-

ment of measurement errors such that r and . both exhibit their

maximum errors at the same time cannot occur. Nevertheless, the adverse

effect of measurement error on numerical differentiation is severe.

Long time intervals between measurements act to reduce this adverse

effect.

The cumulative effect of measurement errors (thus including

numerical differentiation) on the final output--the orbital parameters--

is the topic of the next section.

Estimate of the Error in Determining a, e, and E. The orbit

determination scheme, as developed so far, involves the measurement of

several values of range at eque! time intervals. These observations

are numerically differentiated to yield r and i for the central

measurement and then the geometric orbital elements are obtained from

the three equations

a =(3-2)

r

tanE = r ra-
tan r (a - r) (3-19)

rr
e sin E = r (3-4)
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The error arising from numerical differentiation has been briefly

discussed. It remains to determine the overall effect of -measure-

ment errors on the values of a, e, and E obtained through the use of

these approximate data in the three equations listed above.

In general, the maximum error Eu in the value of a function is

given by

Eu =Ea+E

x =a x= a

y =b y =b (3-20)

where

Ea = Max error in function argument a

Eb = Max error in function argument b

A derivation of this expression is shown in Appendix C. This

expression will be used to examine the possible errors in orbital

parameters due to measurement errors.

Error in Major Axis Determination. For the following analysis,

it is assumed that truncation error in the determination of i and

is negligible (a valid assumption if a sufficient number of range

measurements are used). Then the maximum error in a, due to range
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meLsurement and timing error, is

E 12_Ia I E + a -E + Ia =r r Er 2 13r31 4r Er21 31 4

+ IlaIEr +I.2Lal Et3r r I5 at t (3-21)

for five measurements of range. Assuming Er Er. . . Er then
Err = Er2 • 5. r

L r r2 D 3 94 Dr51

+ 13 Et (3-22)

The equation for a is

aJ (3-2)
11 - -r r

r

and for five measurements,

-2

3  -7 ax + x +r 3 ax

/Dr
a3

+ r3 Tx) (3-23)
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where x is taken to successively represent r1, r2, • . • rs5 and t.

The partial derivatives of i and may be obtained by differentiating

the approximate differentiation formulas. For convenience, let Ca,r

represent the coefficient of Er and Ca,t the coefficient of Et. Then

Ea = Ca,r Er + Ca,t Et (3-24)

where

Ca,r 3 + D 9r4 + (3-25)

and Ca,t = laa/3tl. Then by examining the behavior of Ca,r and

Ca,t the steps required to minimize the effect of range measurement

error can be determined.

A computer program was written to evaluate the coefficients Ca,r

and Ca,t for various values of t and for a high eccentricity trajectory

similar to the initial translunar coast portion of a moon mission. The

resUts are presented graphically in Figs. 15 and 16. It should be

noted that Figs. 15 and 16 yield the behavior of the maximum error--not

the actual or rms error.

Error in Eccentric Anomaly Determination. Eccentric anomaly error

can be investigated using the same procedure as was followed in examining

the error in major axis determination. The equation for eccentric

anomaly is

E = tan- r i (-
'(a - )(3-19)1r)
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and substituting for a, this equation becomes

E = tan( (3-26)
(2+ r

For simplication, let

u = r

1/2

v U j (3-27)

w = (j 2 +ri)

then

E = tan I uv (3-28)w

Taking partial derivatives as before,

E U w ( V+v au) u v w

3E aux ax ax
aX 1+ u2 v 2  w2

w2  (3-29)

(the independent variable x is again taken to successively represent

r1 , r2 ,.. r n , t). The maximum error in E (EE) due to range

measurement and timing errors is then

EE aE I + E Er +. + aE I Er + 1 Et (3-30)
6r2  arn at
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where n denotes the number of range measurements taken. Again assuming

Er, = Er = . . Er n

EE Dr [ + rE +... + I 1 Er + I f Et (3-31)

or

EE = CE,r Er + CE,t Et (3-32)

where CE,r and CEt represent the coefficients of Er and Et respec-

tively. Again, CE' r and CE,t can be examined and the steps required

to minimize the effect of measurement errors can be determined.

Figures 17 and 18 are the graphical results of a computer

program written to evaluate CE,r and CE,t for a typical trajectory.

Error in Eccentricity Determination. The effect of measurement

error on the calculation of eccentricity can be examined in the same

manner as for the major axis and eccentric anomaly. The expression

for eccentricity is

e a - r (3-33)a cos E

Differentiating as before

~e_(a cos E) a (a - r) a sin E) E + (cos E)
3e x a2 1o(= (3-34)
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where the independent variable x is again taken successively as r1, r2,

. . . rn, and t. The maximum error in e is then approximately

Ee [Ie + 13e.I + Ile I Er+11 Et (3-35)

or

Ee = Ce,r Er + Ce,t Et (3-36)

where Ee is the maximum error in eccentricity and Ce,r and Ce,t

represent the coefficients of range measurement error Er and timing

error Et respectively.

Figures 19 and 20 are the graphical results of a computer program

written to evaluate Cer and Ce t for a typical trajectory.

Accuracy of Range Measurement. Measurement of the earth's angular

diameter is assumed the primary means of determining distance from the

earth. The geometry of the measurement is shown in Fig. 21.

Trajectory

A/2 "

I Vehicle

~r

Earth

Fig. 21

Range Measurement Geometry
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The distance r is given by the equation

r A (3-37)
sin A2

where R is the radius of the earth and A is the earth's subtended
0

angle as measured from the spacecraft. Then

- R. cos A/2
dr = dA (3-38)

2 sin2 A/2

As distance from the earth increases, the angle A becomes smaller--

the net result for a given measurement error dA is a decrease in

accuracy as distance from the earth increases. Figure 22, from

"Space Position Fixing Techniques," (Ref 22:318), is a graph showing

the error in distance per minute error in A as a function of distance

from the earth. Note that statute, not nautical, miles are presented

on the graph.

With proper training, practice, and instrument calibration,

sighting measurement error can be held appreciably below one arc

minute (Ref 17:5). Therefore, Fig. 22 can be considered to represent

the upper bound on range measurement error.

When only a portion of the earth's horizon is visible, the

stadimeter, a device which measures the curvature of the horizon, can

be used to determine altitude (Ref 17:12). The stadimeLar is designed

to measure altitudes below 2500 NM. The trajectories considered in

this thesis are generally above this altitude.
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2000

1000

0

200,000 mi
--- ------ I i

00 4 8 12 1G 20
Distance From Earth, (104 miles)

Fig. 22

Range Measurement Error

Summary. In comparison to the severe effect of measurement

error, the truncation error resulting from numerical differentiation

is negligible. Tables IV and V are tabulations showing specific

values of maximum error effects. In all cases, it is seen that

measurement error is by far the major culprit in producing erroneous

orbital parameter values. Increasing the time interval between

measurements decreases the effect of measurement error. This

decrease more than offsets the resulting increase in truncation

error. For a trajectory of extremely high eccentricity (as those

being considered in this thesis), time intervals on the order of

hours are necessary.
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Another unfortunate situation is also apparent. As distance from

the earth increases, the accuracy of range measurement decreases. At

the same time, the effect of measurement error on some orbital param-

eters becomes more severe. It is essential, therefore, to begin orbit

determination as near the earth as possible.

It can be safely assumed that timing error can be held to less

than five seconds. For the high eccentricity orbits examined and a

one hour time interval between readings, five seconds is capable of

causing a maximum error in major axis of less than 100 NM. Timing

elro i thus not a major drawback in orbit determination using this

method.

Conclusions. The conclusions derived from the preliminary error

analysis are:

1. Decreasing truncation error by taking five range

measurements instead of three is pointless unless

extremely accurate range measurements are available.

2. For high eccentricity lunar trajectories, a minimum

time interval of five hours between ieasurements is

required to determine the approximate orbit (thus,

ten hours are required for orbit determination).

3. Every effort must be directed toward the highest

attainable accuracy in range measurements.

4. Timing error of five seconds or less is insignificant.

5. Orbit determination must commence as near the earth

as possible.
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6. A supplementary correction scheme may be required to

further improve the accuracy of the orbital elements.

7. Alternate, more accurate, means of obtaining range,

range rate, and radial acceleration should be explored.

8. The use of graphs, slide rule, and/or uninterpolated

tabular data is entirely consistent with the degree of

accuracy attainable using this orbit determination

method.
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IV. Differential Correction of Orbital Elements

Introduction

The orbital elements obtained by any means or technique will con-

tain a certain amount of error. For example, in the orbit determina-

tion method of Chapter III (orbit determination using range, range rate,

and radial acceleration), the orbital elements were found to be

increasingly in error as the time interval between range measurements

was reduced. This section is a brief discussion of a means to

correct the geometric elements of a preliminary orbit to obtain more

precise values of a, e, and MO . The method, however, requires the use

of a digital or mechanical analog computer because of the complexity

of the computations. The inclusion of such a method in a thesis

titled "Manual Astronaut Navigation" can be justified by supposing

the eventual development of a hand-held back-up computer.

Differential Correction of Geometric Orbit Parameters

Differential correction of orbits is discussed in most books

covering methods of orbit determination. For example, see Ref 6:233

or Ref 3:77. Most applications of differential corrections in the

field of celestial. mechanics, however, require the simultaneous

solution of six equations for the corrections to the six independent

elements characterizing an orbit. The computation complexity can

be reduced somewhat by the technique of dividing the six parameters

into two groups--three parameters (a, e, Mo) describing the size
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and shape of the orbit, and the remaining three (i, Q, w) describing

the orbit orientation. Thus, instead of six equations with six unknown

corrections, there are two groups of three equations in three unknowns.

Differential Correction Equations - Geometric Elements

The conic section equation is

r = a(l - e cos E) (4-1)

The total differential dr is then

dr- r a+ r ar
dr = a + L- de +L dE (4-2)

Ba De HE

Then, approximately,

Ar = -r Aa + rAe + r AE (4-3)Ba Be BE

The quantity Ar can be obtained by comparing the measured value of r

at a certain time with the corresponding preliminary reference orbit

value at the same time. That ia,

Ar = robserved - rpreliminary orbit (4-4)

The partial derivatives are obtained from the conic section equation

and from Kepler's equation. Three values of Ar, obtained at different

times, yield three equations which can be solved for the corrections

to be applied to the preliminary orbital elements. The partial

derivatives with respect to a, e, and E are, from the conic section
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equation,

= -e cos E = r (4-5)
Ba a

-
r  -a cos E (4-6)De

-E= a e sin E (4-7)

The term dE (to be replaced lUter by AE) is better represented in

terms of dMo , the differential change in mean anomaly. The mean

angular velocity n is given by

n (4-8)
a3

then

knn 1 kn P - kn a (4-9)
2 2

and

dn _ 3da (4-10)
n 2 a

The mean anomaly M is given by

M = MO +n (t- to) (4-i3)

where to and t are the times corresponding to Mo and M respectively.
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The differential change in mean anomaly is then

dM = dMo + dn (t- to) (4-12)

Substitutis for dn,

3 da

dM dMo -3 n-- (t - to) (4-13)

Since

n(t - to) =M Mo  (4-14)

dM = dMo - 3 da (M M0 ) (4-15)
0 2 a

From Kepler's equation, M = E - e sin E

dM = dE- e cos E dE - sin E de (4-16)

or

dM = (1 - e cos E) dE - (sin E) de (4-17)

and substituting

r = 1- e cos E, (4-1)
a

dM = a dE- (sin E) de (4-18)

a

and solving for dE

rdE = a (sinE)dej (4-19)
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Now substituting for dM

dE a dr  o 3 da m o) ] + r (sin E) de (4-20)

Approximating the differentials with the incremental corrections Aa,

Ae, and AMo

Ar = Aa - a(cos E) Ae + a e(sin E) AE (4-21)
a

Substituting for AE and simplifying results in

Ar = [ - 3(M-M)2a e sin E] Aa

+ aesin2 E - a cos E] Ae

rL
+ Ia --r sin E] AMo (4-22)

The bracketed coefficients of Aa, Ae, and AMo are to be evaluated on

the preliminary orbit at the times corresponding to the range measure-

ments.

Discussion

Three measurements of Ar obtained at different times provides

three equations in the unknowns Aa, Ae, and AMo . The equations can

be inverted to yield the values Aa, Ae, and AMo . When the number of

readings exceeds three, the number of unknowns, the most probable
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values of the corrections can be found by least squares--but this

greatly increases the computational load.

Assuming the availability of a back-up computer, the geometric

parameters can be obtained directly from Eq (4-22) by estimating

values of a, e, and Mo and then correcting these assumed values in an

iterative process until the orbital elements approach the desired

accuracy. However, such a procedure is of questionable value since

any of a number of iterative techniques could be developed to evaluate

the geometric parameters. Also, a number of iterative techniques

are available which yield all six orbital elements--so why iterate to

obtain only the geometric elements?

A computer program was written to test the effectiveness of the

differential correction procedure. Data generated from previous

computer programs were used to improve an orbit known to be in error.

Only one correction was applied to the erroneous orbit, hence, the

final orbit is still not precise--but further corrections could be

applied to improve the final orbit. Figure 23 is a block diagram

presentation of the results.

Conclusion

The computer makes simple work of the computations involved in

this differential correction scheme. It is out of the question to

consider accomp1ish!ng the calculations manually. If a small

back-up computer is available, the differential correction equations

may be of great value because:

1. The geometric parameters can be refined to more

accurate values.
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2. The capability exists to handle redundant data.

The differential correction method will not be considered further

in this thesis. However, the recommendation section will contain a

suggestion for continued study in this arc..

-84
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V. Orbit Determination Using Position Fixes

Introduction

Two complete three-dimensional fixes in space and knowledge of the

time between the two fixes is sufficient for orbit determination using

Lambert's theorem (Ref 4:70). Lambert's theorem requires iterative

solution and its use is impractical unless a back-up computer is avail-

able. By taking another position fix, thus providing three position

fixes in space, any of a number of orbit determination methods may be

considered (see Ref 3:Ch 1). This section will discuss first a simpli-

fied and then a general method of obtaining three-dimensional fixes in

space using the hand-held space sextant. These fixes will be used as

input to orbit determination methods which will yield both the geometric

and orientation orbital elements. Unless otherwise specified, the

geocentric equatorial coordinate system is used in this chapter (and

succeeding chapters).

Position Vector From Polaris, Earth, 2nd Star

Introduction. The navigation fix in space is discussed in

Ref 4:221. In general, a three-dimensional fix requires two star-earth

horizon measurements coupled with a means to determine radial distance

from the earth. The equations are nonlinear and impractical for manual

computations. Considerable simplification results, however, if one of

the selected stars is Polaris, the North Star. The development to

follow is due, in part, to Mr. L. C. Ragland, of TRW Systems (Ref 14).
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Declination From Polaris. Figure 24 is an illustration of two

sextant measurements--the earth's angular diameter A and the Polaris-

vehicle-earth horizon angle Yns" Since the lines of sight to Polaris

To Polaris

To Polaris

. A/2

Yns

Equatorial
Planer

Vehicle

Fig. 24

Sextant Measurements: Polaris
and Earth's Diameter

areparallel, the vehicle declination 6v io given by

6v + 900 + A/2 + Yns = 1800 (5-1)

or

Cv (Yns + A/2) - 90 °  (5-2)

The radial distance from the earth's center, r, is given by

~R e
r =(3-37)
r sin A/2
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where R. is the earth's radius.

Right Ascension Determination. Figure 25 shows the geometrical

arrangement for finding the right ascension of the vehicle, av.

Polaris

Celestial Sphere

: C~ehicle \ s

Celestial
"'P -Equator

= Star-Earth-Vehicle Angle
6v = Vehicle declination
Aa = Difference in Right Ascensions of Star and Vehicle

as,6 s = Right Ascension and Declination of Star

Fig. 25

Geometry for Vehicle Right Ascension

From the spherical triangle star--Polaris-vehicle,

cos T = cos (90 - 6s) cos (90 - 6v)

+ sin (90 - 6s) sin (90 - 6
v) cos Aa (5-3)

or

cos 4 = sin 6s sin 6 + cos 6s cos 6v cos Aa (5-4)
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then

cos -sin Ss sin 6v
cos A = (5-5)

cos 6s cos Sv

The terms are defined on Fig. 25. Let G be a unit vector normal to

the star-earth-vehicle plane. An observer looking down from the tip

of this vector toward the earth would see the picture shown in

Fig. 26. Again, since the lines of sight to the star are parallel,

+ ys + A/2 1800 (5-6)

or

= 180' (Ys + A/2) (5-7)

Earth

VehiclA

To Star To Star

Fig. 26

Geometry of Star-Earth-Vehicle Plane
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Substituting i into the expression for Aa results in

Co- cs (Ys + A/2) - sin Ss sin 
6v (5-8)

cos 6S cos 6
v

from which Aa can be determined. Note the resulting simplification

if a star can be chosen with 6s = 0. With As known the right

ascension of the vehicle is given by

av  = as ± Aa (5-9)

where a simple "right-hand-rule" determines the sign. If the origin,

for the moment, is considered at the vehicle, then the sign is plus

if the general direction of Istar x 'Polaris is toward the earth.

Istar and IPolaris represent unit vectors in the directions of the

star and Polaris respectively.

When a star with zero declination can be chosen Eq (5-8)

becomes

cos Ac - - cos (ys + A/2) (5-10)Cos 6v (-0

A number of stars are very close to the celestial equator. (Most of

these are closer to the equator than Polaris is to the pole position.)

Table VI is a tabulation of some stars with near zero declination.

An easily identifiable star is 6 Ori (Mintak-) which is in the belt

of Orion. With r, av, and 6v known, the coordinates of the vehicle
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Table VI

Selected Stars Near Celestial Equator

Star IAU Right .

Name Abbreviation Constellation Ascension Declination

Mintaka 6 Ori Orion 84.2490 - 0.3210

-- 6 Mon Monoceros 107.5570 - 0.4380

-- 6 Vir Virgo 203.2650 - 0.4330 .
S&dalmelik a Aqr Aquarius 331.0350 - 0.4760

are given by

x = r cos v cos v 

y = r cos 6v sin av  (5-11)

z = r sin 6v

Conclusion. The simplified three-dimensional fix presented in

this section has as its basis the fact that Polaris is very near the

north celestial pole. Of course, Polaris is not exactly at the pole

position and this discrepancy must be examined. But even if a

plified three-dimensional fix can be of great value to the astronaut.

Or the earth, Polaris is extremely useful as an instant cross-check

of heading and latitude. Its analogous role in space navigation is

as a source of vehicle declination. Using another star on the

90
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celestial equator, the astronaut can quickly determine the right

ascension of the vehicle. Therefore, even if eventually deemed

unsatisfactory for manual navigation, the Polaris position fix will

serve as a quick cross-check of more sophisticated fixing means.

General Solution for Position Vector

Introduction. The Polaris-earth-star measurement scheme is the

simplest method known to the authors of obtaining a three-dimensional

fix. This section will attack the more difficult general problem

when, for some reason, Polaris is not observed.

The general formulation of the three-dimensional fix is given

in Ref 4:Ch 7. In general, the three-diLmensional fix, using the

minimum number of measurements, requires the simultaneous solution of

the following nonlinear equations

r Ir -rcos (y, + A/2)

r 12 = - r cos (Y2 + A/2) (5-12)

i =  r

where r is the position vector of the vehicle, II and I2 are unit

vectors in the directions of two selected stars, y1 P2' the star-

vehicle-earth horizon angles, and A, the earth's subtended angle.

As mentioned previously, the manual solution of these equations for

the components of i is impractical. Some simplification results,

however, if an additional star sighting is made.
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The Three Star Fix. The unit position vector of the vehicle is

obtained fairly simply by making three star-earth horizon measure-

ments. The set of linear equations

r• = -cos (y1 + A/2)

r • 1 2 
=  - cos (Y2 + A/2) (5-13)

r *1 3 = - cos (Y3 + A/2)

must be solved for the components of the unit vector r. The solution
A

for rx , the x component of the unit vector r, is

rx = -cos (y, + A/2) (ly2 I z3 -I3 Iz)
A

+ cs (2 +A/ (y1 I z3 - y3 I l

.Cos + (5-14)

(I I -I I)
Cos (Y3 + A/2) vI Z2 Y2 Zi

where A represents the determinant of coefficients

IX, 'yl Izi

A = x2 y2 Z2 (5-14a)

IX3 1y3 Iz3
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The solutions for ry and rz are, of course, similar. In general, the

solutions take the form

r x  = AX1 COs (y, + A/2) + BX2 co' ( 2 + A/2)

+ CX3 cos (Y3 + A/2)

ry = Ayl cos (y1 + A/2) + By2 COS (y2 + A/2)

+ Cy3 COS (Y3 + A/2)

rz = AzI COs (y, + A/2) + Bz2 cos (72 + A/2)

+ Cz3 cos (Y3 + A/2) (5-15),

with the terms defined as follows:

A = 1 I )/A C =(I Iz I /
xl (Iy3 Iz2 -y2 z3 y3 xl z2 x2 z/

Bx2  (y1I Iz3 -y 3 Izj)/A A = (Ix3 - Ix2 ly3)/A

Cx3 = (Iy 2 Izl I YI z2 ) / A  B = (Ix Iy3 -I I Y1)/A

Ay, = (Ix2 Iz3 - Ix3 T2 )/A Cz3 = (Tx2 T y - Txi Ty2)!A

By2  = (1x3 Iz1 - Ix1 Iz3) (5-16)

A = Ixl [Iy2 Iz3 - 'y3 iz2j] - Ix2 [:l Iz3 - 'y3 Izl]

+ Ix3 [lyl Iz2 - Iy2I]
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It is a simple computer problem to tabulate the above constants for a

considerable number of three-star sets. The astronaut is thus

provided some semblance of general capability to manually compute his

position in space. Once the unit vector r is obtained, the vehicle

position vector is given by

r r r (5-17)

where r = I i and is obtained by semi.-diameter or other means.

Manual calculation of position using this procedure will require

a publication listing the constants A, through Cz3 for selected

three-star sets.* Table VII shows a typical format for such a

publication, Although the requirement exists for a third star

sighting (compared to the nonlinear three-dimensional fix equations),

the additional measurement removes the nonlinearity plus the possible

ambiguity in the direction of r (Ref 4:221). Following Table VII is

a sample problem illustrating the manual position fix.

* If 25 stars are established as "space navigation stars," there are
2,300 possible three-star sets. Assuming 20 sets per page, the
publication would require only 115 pages to cover all possibilities.
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Table VII

Example of Three-Star Position Fix Data

Ax, Bx2CX 3
Star Set AyI  By2  Cy3

Azl Bz2  Cz3

. Dubhe -.90368847 -.29882173 -1.68227200
2 Betelgeuse .23797789 -.99759279 .16392111
3 Fomalhaut -1.63183470 -.02032258 -.89050598

1 Pollux 3.16269770 -5.84253850 -3.38404430
2 Betelgeuse -.19226972 -.28394138 .58373726
3 Rasalague .78242022 -4.28971420 -3.74551760

1 Capella -.32702313 .28773730 -.98883642
2 Acrux -1.67469260 -1.15633370 -.35108396
3 Fomalhaut .25868869 1.04071820 .52196385

1 Acrux .22619851 .84496636 -.51440839
2 Arcturus .28928391 .35811369 .90990474
3 Altair .99216655 -.44923096 .21120275

1 Dubhe .25166101 3.02868280 2.96921080
2 Sirus -.24731313 -.00109432 1.00028020
3 Rasalague -.97028150 1.56380340 1.39883810

1 Capella 1.76155570 -1.74660870 2.98233530
2 Canopus -.93319008 -.620G9385 -.19967779
3 Acrux -.84378145 .92195900 -.3816431A

1 Dubhe -1.69239350 -.52695925 -2.16196100
2 Canopus -2.39505190 -1.75921190 -1.43748310

FoiaihauL -1.68600160 -.03619068 -.92345019

1 Acrux .77487909 90722594 -.64576203
2 Arcturus -.68124277 .24798659 1.14224790
3 Shaula .76689250 -.47479314 .26513315
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Example Problem 5-1 - Manual Three-Dimensional Fix. Communication

failure occurred during the translunar injection burn. Although the

navigation computer seems to be working properly, the astronauts suspect

the cause of communication failure may have also affected the computer.

The astronauts decide to obtain a manual fix and cross-check the

manual position with the computer read-out. If the positions cross-check

reasonably well, the computer will be relied upon for further naviga-

tion. Looking toward the earth, the astronauts can identify the

following navigation stars:

Acrux

Arcturus

Altair

The following angular measurements are obtained at TLI (Trans Lunar

Injection) plus three hours:

Acrux-vehicle-earth horizon - 43.9700

Arcturus-vehicle-earth horizon - 48.0110

Altair-vehicle-earth horizon - 56.5030

Earth's subtended angle - 14.0180

The star-vehicle-earth center angles are then

Acrux-vehicle-earth - 50.9790

Arcturus-vehicle-earth - 55.0200

Altair-veh~cle-earrh - 63.5120

Using data from Table VII, the components of the vehicle's unit

position vector are

rx  =(.22619) cos 50.9790 + (.84496) cos 55.0200

(.51440) cos 63.5120
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ry = (.28928) cos 50.9790 + (.35811) cos 55.0200

+ (.90990) cos 63.5120

rz = (.99216) cos 50.979' - (.44293) cos 55.0200

+ (.21120) cos 63.5120

or

r x = (.22619) (.62960) + (.84496) (.57329) - (.51440) (.44600)

ry = (.28928)(.62960) + (.35811)(.57329) 4- (.90990)(.44600)

r. = (.99216)(.62960) - (.44923)(.57329) + (.21120)(.44600)

and carrying out the operations

r x  = .39739

ry = .79324

rz = .46132

The radial distance from the earth is

Re  3443.93
r = - = 28,226 NM

sin 14.0180 0.12201
2

so the coordinates of the vehicle are (geocentric equatorial system)

x = (.39739)(28226) = 11,216 NM

y = (.79324)(28226) = 22,389 hN
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The declination of the vehicle is simply

6v = (Yns + A/2) - 900 = 117.4670 - 90.000* - 27.4670

The expression for Aa is

co- cos (Y. + A/2) - sin 6. sin 6v
cos 6s cos 6v

and substituting values

cos A = (--.445937) - (.152698)(.461232)
(.988273)(.887279)

a= 126.080

The astronauts determine the proper sign as "plus" by looking out the
A

window and establishing the direction of IAltair x Ipolaris as

generally toward the earth. The right ascension of the vehicle is

then

av = as + A

The right ascension of Altair is obtained from the ephemiris as

297.3050. Then

av = 297.3050 + 126.080 63.380

The polar coordinates of the vehicle are thas

aV = 63.380

6v  = 27.470

r = 28,226 NM
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The rectangular coordinates of the unit position vector are given by

rx  cos 6v cos av

ry = cos 6v sin av (5-18)

rz = sin 6v

Substituting values

rx  = (.887279)(.448019) = 0.39752

ry = (.887279)(.894024) = 0.79325

rz  (.461232) = 0.46123

The coordinates of the vehicle are

x = rr, = (28226)(.39752) = 11,220 NM

y = rry = (28226)(.79325) = 22,390 NM

z = rrz = (28226)(.46123) = 13,019 NM

which agree with the values obtained using three-star fix proce-

dures. Note, however, that Polaris was assumed at the pole position.

Position Fix Simultaneous Measurement Requirement. The

position fix techniques presented require, in the ideal case,

simultaneous measurements. Obviously, if only one sextant is

available, it is impossible to measure all angles simultaneously.

A number of techniques resolving the difficulty are available.
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Linear interpolation between an early and late sighting could

be used to solve the simultaneous measurement requirement. If

linear interpolation is insufficient, more measurements can be

obtained for use with a higher order interpolation formula (Ref

24: Ch 10). This procedure is illustrated in the following

example:

Example Problem 5-3 - Interpolation for Measurement. The

angular measurement of Arcturus-vehicle-earth is desired at time

12:25. The following measurements are obtained:

Reading
Number Time

1 12:10 41.2650

2 12:20 39.271

3 12:30 37.370

4 12:40 35.568

Bessel's interpolation formula (Ref 24:107) reduces to

- Y2 +Y 3  Y1 -2 '3+'4 (5-19)

12:25 2 16

and

_ 76.641 _ 0.192 = 38.3080Y 12: 25 2 16

For comparison, linear interpolation for the angle at .12:25 yields

2 Y2 + Y3 = 38.3200
2
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A number of other interpolation formulas are available--see any text on

numerical analysis.

The extrapolation of measurements to an earlier or later time can

also be achieved using an interpolation formula. Another interesting

related technique, which has been used by astronomers for hundreds of

years, is also available. The procedure will be illustrated by an

example.

Example Problem 5-4 - Early and Late Measurement. The angular

measurements of Arctur is-vehicle-earth are desired at 12:00 and 12:50.

The measurements of Example Problem 5-3 are to be used.

To obtain the early and late measurement, the set of measure-

ments is used to construct a difference table (Table VIII). First,

the difference column of the measurements is obtained by subtracting

from each reading the reading immediately preceding it. Then the

differences of the differences are tabulated. The table is continued

as far as possible. Table VIII is the completed difference array

for the set of measurements used in this example.

To extend the table, the last difference is assumed constant

and the last column of the difference array is extended. Starting

with the extended values in the last column, the table is built

"backward" to finally arrive at the desired early and late values.

Table IX illustrates the procedure. The underlined values in

Table IX represent the extension of the difference array.

The desired values at 12:00 and 12:50 are then:

12:00 - 43.3460

12:50 - 33.871'
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Table VIII

Difference Array

ist 2nd 3rd
Time Angle Diff. Diff. Diff.

12:10 4j..2650

-1.994

12:20 39.271' .093

-1.901 .006

12:30 37.3700 .099

-1.802

12:40 35.5680

Table IX

Extended Difference Array

lst 2nd 3rd

Time Angle Diff. Diff. Diff.

12:00 43.346

-2.081

12:10 41.265 .087

-1.994 .006

12:20 39.271 .093

-1.901 .006

12:30 37.370 .099

-1.802 .006

12:40 35.568 .105

-1.697

12:50 33.871
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The differencing technique is more fully treated in:

1. Ref 2:135

2. Ref 24:98

3. Ref 6:134

and maiy others.

The simultaneous measurement problem is also considered in

Ref 8:18. The technique employed is to convert measurements to a

common time by the use of pre-calculated data on the rate of change

of angle with time along a reference trajectory. The method is fully

treated in Ref 8 and thus will not be repeated here.

Arot!,er possibility is the use of a photograph to obtain the

angular sightings--with a photograph, the measurements can indeed

be simultaneous.* In any event, the simultaneous measurement

requirement represents nothing more than a slight inconvenience to the

astronaut.

Graphical Solution - Unit Position Vector

The graphical solution for the unit position vector is straight-

forward when the temporary view is taken that the earth is orbiting

the spacecraft. The graphical solution solves the equations

r I I = - cos (y, + A/2)

r *I2 = - cos (Y2 + A/2) (5-21)

• Additionally, photographs of the stars are in gnomonic projection
(Ref 15:81), thus perhaps aiding in the graphical solution for
av and Sv discussed later.
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and yields the right ascension and declination of the vehicle. A third

precision measurement is unnecessary and the only calculation involved

is addition or subtraction. The graphical solution is illustrated in

Fig. 27. The step-by-step procedure is as follows:

1. Determine the star-vehicle-earth center angle

y + A/2 for two stars.

2. Find the same two stars on a star chart. The chart

projection must be such that a straight line represents

a great circle (gnomonic projection).

3. Using Star 1 as a center, lay off an arc of radius

•Y1 + A/2. The angular scale on the equator or a

meridian must be used to set the radius.

4. Using Star 2 as a center, lay off an arc of radius

Y2 + A/2.

5. The arcs intersect at two points. Select the proper

point by an eyeball sighting of a third star--an arc

drawn using the third star will fall close to the

proper point. (Or observe Polaris and roughly determine

the earth's declination using S. = -60

6. The plotteid point represents the apparent position of

the earth (the temporary view has been taken that the

earth is orbiting the spacecraft).

7. Determine the vehicle coordiuiates using

av =as ± 1800
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3 I

10a 's Apen j [So tareI

-I

Earth's Apparent (
i r Position A

Ecuatorial Gnomonic Projection

of Celestial Spherefied

Fig. 27

Graphical Solution For Unit Position Vector

SExample Problem 5-5 - Graphical Solution For av and 6v. The

l situation described in Example Problem 5-1 will be used to illustrate

~~the graphical determination of vehicle right ascension and declination.

The angular scale of the star chart (Fig. 28) has been constructed to -

fit the thesis page--accuracy is therefore sacrificed.

At TLI plus three hours, the astronauts determine the angles

Arcturus-vehicle-earth center = 55.0200

Rasalhague-vehicle-earth center = 44491c'
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The graphical solution is completed on Fig. 28. Using the star

Arcturus as center, an arc of radius 55.0* is drawn. Another arc

of radius 44.5* is drawn using Rasalhague as center point. By an

eyeball sighting of Polaris, the vehicle declination is around

6v = 1100 - 900 = +200

so the declination of the earth as viewed from the spacecraft is

around -20*. With this knowledge, the proper arc intersection point

is read as

a e = 2440

6 = -270

The coordinates of the vehicle are then

av  = 2440 - 1800 = 640

6v = - (-27°) = +270

Limitations. The surprising simplicity of the graphical solution

is marred by the fact that it yields only an approximate angular

position. The angular scale of the gnomonic projection varies over

the chart, therefore, the intersecting arcs are not truly arcs of

circles. However, within a limited range of the chart (the central

region of Fig. 28), the scale is fairly uniform; positions obtained

*within this region will be close to the actual spacecraft coordinates.

Since the chart can only yield an approximate position, the

graphical solution is limited to being a cross-check of more
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sophisticated fixing means. For example, after obtaining av and Sv by

other means, the astronauts can quickly check their calculations by

determining the vehicle angular pobltion graphically. Gross errors in

computation can thus be detected without actually repeating the cal-

culations.

Velocity Determination

An intermediate step before some orbit computation methods is

determination of the vehicle's velocity vector. In general, this is

an iterative computer problem. Several approximate methods, however,

are available.

Numerical Differentiation. Any of the numerical differentiation

formulas introduced in Chapter II can be used to obtain velocity.

For three position fixes separated by time t

r 2  3 (5-22)
2t

and for four fixes

S 3(2ri - (2i +

r. = r2) 4 (5-23)
6t

Each vector equation represents three scalar equations. Thus, Eq

(5-22) represents three equations, the first of which is

• x3 - x1x2 - 2t (5-24)
2 2t

and similar equations for Y2 and z2 "
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Taylor Series. If only two fixes are available, the numerical

differentiation technique to obtain velocity fails. However, as

suggested in Ref 4:88, a Taylor series expansion about i will

yield an approximate solution for i

1 1 t 2  ... t32= 1+ t+ 1 - t3  (5-25)

The series is truncated after the t3 term. The second derivative is

given by

r - 3 (5-26)
r
1

The third derivative is obtained, approximately, from an expansion

for r2

r2 = +  
1 t+. . (5-27)

which is truncated after the second term. Then

- Vr2 +
ri

r -r r 3  r 3

r,= 2 1 (5-28)
t t

Substituting into Eq (5-25) and simplifying yields

rl - 2 - rIli --t6 ':l 2?1 + T2-

-r + t6Lr1 3](5-29)
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Lambert's Theorem. Two vector positions and their time separation

are sufficient for velocity determination using Lambert's theorem

(Ref 4:80). Solution of Lambert's theorem involves a double iteration

process and is ttus impractical unless a back-up computer is available.

Orbit Determ4nation From Position and Velocity

Knowledge of position and velocity at a specific time completely

defines an orbit. Methods for computing the orbital elements from

position and velocity are presented in most texts on astrodynamics.

One of the orbit computation methods discussed in Ref 3:Ch 1 is

briefly outlined step-by-step in Table X. The items in Table X

labeled "intermediate steps" are fully derived and discussed in

Ref 3:Ch 1.

Figure 29 shows the orientation unit vectors P, Q, and W used in

the procedure as well as a pictorial definition of the descriptive

orientation parameters i, 2, and w. Two of the unit vectors establish

the orbit orientation--the third unit vector as well as i, 2, and wI

are not really required.

The computation method of Table X can be extended to include

parabolic and hyperbolic trajectories (Ref 3:Ch 1).

Orbit Determination From Three Position Fixes: Gibbsian Method

An approximate orbit can always be obtained from three fixes by

using numerical differentiation to determine velocity at one of the

positions. But such methods are only approximate. The Gibbsian

method, however, yields the orbit with no need for approximations or

iterations of any kind. The computed orbit using the Gibbsian method
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Table X

Orbital Elements From Position and Velocity

Given:
G El r = position vector

r = velocity 
vectorL1

Compute Iii and g2 r =

r2 = (x2 + y2 + z2) = 1112

= + + + r

Compute a
. . Yields semimajor axis a

a = 2Pr -
(2ji/r) - S2

Compute D D = intermediate step
=rr- = 1(xx + yy +z)

r = radial velocity r

Compute D intermediate step

eosE o = rb=1

rDD

T- . a Yields e and Eoe sin E0 = D = rr-

F ax = (Dx - xD)/- ax,y,z = intermediate steps
ay=(Dy - y)

az = (Dz - zD)/3 (ax,y,z does not refer to

semimajor axis a)
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Table X (Continued)

ex = (ax/e)
Py = (ay/e) Yields unit vectorP

Pz = az/e)(see Fig. 29)

Lz = aZ e)2.=s iltsrcu

k= a(l - e2)  Z -- semilatus rectum

H r - k H = intermediate step

/u D H = intermediate step
r

bx = (kix - xH)lj

by = (Hy - yH)//j bx,yz = intermediate steps

b z = (Hz - zH)/rp

Qx = bx/(e )
Qy = by/(e /£) Yields unit vector Q
Qz = bz/(e /£) (see Fig. 29)

or Yields unit vector W

= (y x r)/IY x ] (see Fig. 29)

Cos i = Wz  (0 < i <) i

tan Q =- (Wx/Wy) Yields i, Q, w

sin . = WI,/si, ±) if desired

tan w= (Pz/Qz) (see Fig. 29)

cos w (Qz/sin i)
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= vehicle position vector
0 = true anomaly
i = inclination

w = argument of perifocus

unit sphere S = longitude of ascending
node

~---Orbit Plane

y

' P = unit vector in direction
of perifocus

Perifocus W = unit vector in direction
of - x i

= unit vector directed
such that PxQ=W

Fig. 29

Orientation Parameters and Vectors P, Q, W

is as accurate as the position fix input data.

The Gibbsian method is treated in Ref 3:51. A step-by-step

outline of the computation procedure is presented in Teble XI.

Note that the time interval between fixes is not required. The

computation procedure can be extended to include hyperbolic

trajectories and variations exist that use redundant data (Ref

3:Ch 1).
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Table XI

Gibbsian Method: Orbit Determination From Three Position Fixes

Previously determined:
___ __ r2 3
r, Y I 2 = y2 ! 3 = Y3

zI1 z 2 z 3

S Ii x i 31
. -

s=i x f1

W 1 x r3 Yields unit vector W
S (see Fig. 29)

c r2 x 3

3 S21

c r1 + c r -r
11 3 3 2 k semilatus rectum

(c + C3- )

eQ = - 1 1

Q S

e2 =e 2 Qx2 + e2 Qy2 + e2 Qz2  Yields e
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I Table XI (Continued)

Qx= (e Qx/e)

Q= (e Qy/e) Yields unit vector Q
Q= (e Qz/e) (see Fig. 29)

a ( Yields a
a-(l -e2)

P =Q x W Yields unit vector

(see Fig. 29)

cos Ei -
ae i 1, 2, 3 (or any other

Ei < 1800 if I J is increas- konr

ing. known r)

ti -to

FYields ri time from
a Ei - e sin E i perifocus

cos i = Wz  (0 < i< 7r)

tan 9 - (Wx/Wy)

sin 0 = (Wx/sin i) Yields i, P, w if desired.

(see Fig. 29)

tan w (Pz/Qz)

cos W = (Qz/sin i)
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Position in the Orbit - Direct Measurement of True Anomaly

If the orbit orientation is known, the true anomaly difference

between two positions can be measured directly. This section will

treat a simplified and then general method of measuring true anomaly.

True Anomaly From Star in Orbit Plane. The true anomaly can be

measured directly by sighting a star known to be in the orbit plane.

Figure 30 illustrates the geometry of the measurement. If the star

To Star in
Earth Orbit Plane

• ,'Orbit
P

Perifocus

- Line Parallel to P

Fig. 30

True Anomaly Measurement

Is in the orbit plane, then

0 = 3 + (y + A/2) (5-30)

The angle (y + A/2), the star-vehicle-earth center angle, can be
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measured with the sextant. 1 ie angle 0, which corresponds to the true

anomaly of the orbit plane star, is obtained from

I = - cos 0 (5-31)

If only the difference in true anomaly between two positions is needed,

then

62 - 61 (Y + A/2)2 - (y + A/2),

and there is no need to determine a.

A star in the orbit plane can be found by establishing o and 6

of two known orbital points, plotting these points on a properly

constructed star chart, and joining them with a straight line. Any

star on the line is "in" the orbit plane. The two known points may

consist of two unit position vctooi or the unit vectors P and Q.

Knowledge of i and 1 also establishes the line.

The type of star chart is important since the straight line

drawn between the two known points must represent a great circle on

the celestial sphere. Projections having this characteristic are:

1. equatorial gnomonic

2. oblique gnomonic

3. polar gnomonic

True Anomaly from an Star. If a star in the orbit plane cannot

be found, the situation is more complicated. However, it is possible

to sight any star and derive a measure of true anomaly. Preliminary

data needed are two angular positions--right ascensions and

declinations or the unit position vectors. Complete derivations of
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the equations to follow may be found in Appendix D.

An illustration of the orbital trace across the celestial sphere

is shown in Fig. 31.

= 1800 (ys + A/2)

z

Celestial Sphere

Star
Orbital Trace

0

'1 2es

i~e2

Fig. 31

Orbital Trace on Celestial Sphere

From spherical trigonometry

Cos (es - 0) = - cos (ys + A!2)
Cos s=
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where

Ys + (A/2) = the measured star-vehicle-earth center angle.

o = the minimum possible star-earth-vehicle angle.*

8 = true anomaly of vehicle.

es = true anomaly of star's unit vector as projected

into orbit plane.

A = earth's subtended angle.

Note that io represents the minimum possible star-earth-vehicle angle.

Therefore, if the star and the earth can be observed simultaneously,

the vehicle must travel close to 1800 before *o will actually occur,

The angle *o can be determined from

-Cos (ys + A/2 2

cos *o = 0 < o <. 900 (5-34)
cos (es - 82)

where (ys + A/2)2 represents the star-vehicle-earth center angle as

measured at position two. The angle (0s - 82) can be determined

from

tan (8s - 82) = cot (02 - 6I)

cos (ys + A/2)1
cos (ys + A/2)2 sin (82 - 01) (5-35)

* o is called "minimum coaltitude" in Ref 17:46 and is denoted by r.
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and (02 - 01) from

cos (02 - 01) = cos 61 cos 62 cos (02 - a,) + sin 61 sin 62

(5-36)

The angle o for a given star is constant. Therefore, once

is established, the true anomaly difference between two positions
0

can be determined through

cocos (Ys + A/2)
Cos (es - ) Cos (5-37)

For the special case when the star is in the orbit plane cos o= 1

and Eq (5-37) reduces to the simpler expression treated in the first

part of this section.

The angle io can also be determined by direct measurement

(Ref 13:8). The astronaut simply observes a star passing close by

the earth and records the minimum star-vehicle-earth angle. The

minimum star-vehicle-earth angle corresponds to %o Figure 32 is

an illustration of this concept.

Conclusion

The manual determination of the three-dimensional fix is within

the realm of possibility. With three fixes, the orbit can be

obtained using straightforward computations. Although direct manual

computation of the orbit will be tedious and time consuming, the

capability is there. Simplifying techniques and procedures will

become apparent if the method is adopted and analyzed step-by-step.
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Star

Star

(ys+A/2) 0

Vehicle Orbit Plane

Earth

Fig. 32

Star-Vehicle-Earth (SVE) Plane at Instant
of o Measurement (Orbit Plane
and SVE Plane Perpendicular)

If a back-up computer is available, several avenues are open:

1. Program the approximate orbit--i.e., obtain velocity

using numerical differentiation.

2. Solve Lambert's theorem.

3. Program the Gibbsian method.

Programming an approximate orbit is undesirable if better methods are

available. Lambert's theorem involves a double iteration which would

probably exceed a back-up computer's capability. Obviously, the

Gibbsian method, or a variation, should be programmed. Chapter IX will

present such a program. The output of this program will be used as

input to a second program that "projects" position and velocity as a

function of time along the trajectory. This information could be used,

in turn, as input to a back-up guidance scheme.
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VI. Orientation Parameters - Geometric
Elements Known

Summary of Present Manual System

References 12, 17, and 22 present a manual means for determining

the orientation parameters i (inclination), 0 (longitude of ascending

node), and w (argument of perifocus). The method consists of determin-

ing minimum coaltitudes for a selected star pair (minimum coaltitude

is the minimum star-earth-vehicle angle for a given star). Given two

minimum coaltitudes, (*O)l and ( o)2' the following nonlinear set of

AA

equations* is solved f or the components of W

W *I 1 = sin ( o)i

W " 1 2  sin (O)2 (6-1)

Iw = 1

where the unit vector W is normal to the orbit plane (Fig. 29). I

and 12 are unit vectors toward star one and star two respectively.

The orientation elements are then determined from knowledge of W

and presented graphically as a function of (*o)1 and (*o)2. The

system is ingniosand o , but there are several disadvantages

in determining the orientation parameters using this method.

* Notice the similarity of this set of equations to the nonlinear

three-dimensional fix (Eq (5-12)).
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1. The geometric parameters are used in determining

( o)! and '?o)2. Therefore, any errors in the

geometric parameters will be carried over to the

computation of each orientation element.

2. The system is dependent upon pre-computations using

pre-selected star pairs--star pairs are chosen with

regard to the expe(.ted orbit and an established range

of probable values of i, S2, and w. Therefore, the

method is not entirely flexible.

3. The solution of the nonlinear set of equations,

Eq (6-1), is a disagreeable task even for a ground

based computer. Programming a small back-up computer

for inflight solution of Eq (6-1) is of questionable

practicality.

Alternate methods for determining the orientation parameters are

available. The unit vector W can be obtained from any two vectors

known to be in the orbit plane. For example, if Y and T2 represent

the vehicle position vector at time one and later time two, then

r 1 x r2
W (6-2)

The position vectors r and i2 can be determined by the methods

discussed in Chapter V.

The object in this discussion is not blind criticism of a manual

method which works (and quite well - see Ref 12), but is rather an
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attempt to start development of a general method of orientation element

computation applicable to any orbit whatsoever--with no requirement

for prior knowledge of what that orbit might be. The following

paragraphs treat the problem of orientation element computation from

partial knowledge of two positions in space.

Orientation Elements From Position Fixes

If the geometric elements are obtained by other means, only two

partial fixes are needed to specify the orientation eleinents i, S2,

and w (defined in Fig. 29). In the development to follow, it is

assumed that two such fixes have been obtained using one of the

methods of Chapter V.

At position one and a later position two, the unit position

vectors are

r = i+r j + r k
1 xi yl zi

r 2 r2 2 + ry2 Y + rz 2 k (6-3)

Then the unit vector W (see Fig. 29) is given by

r, rxr 2  (6-4)
^  1 ^ I

from which

Cos i Wz (0 <_i < (6-5)
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and

tan g = W (6-6)

W Y

The ambiguity for S is resolved by noting that

W

sin x = X (6-7)
sin i

Thus, the orbital inclination i and the longitude of ascending

node Q are determined with no requirement for prior knowledge of

the geometric parameters.

The solution for w, the argument of perifocus, requires knowledge

of the true anomaly at some position r. This can be position one,

two, or any other known position. Therefore, the geometric elements

must be determined before w can be calculated. The argument of

perifocus is given by

W = sin-i[ - 0 (6-8)

where 0 is the true anomaly at the vehicle position r. The ambiguity

for w can be resolved using

rlco___ rLan SI

W cos-1  + z (6-9)
tan i

Example Problem 6-1 - Orientation Elements. Several spacecraft

emergencies have compounded to the point that manual determination
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of the orientation elements Is necessary. Using the three-star fix

procedures of Chapter V, the astronauts obtain the following unit

position vectors and corresponding radial distaaces:

t = t1  t = t1 + 3 1/2 hr

rxl .50837 rx2 = .25442

ry= .74113 ry2 = .83992

r = .43850 rz2 =47937

r= 21098 NM r2, unknown--but
greater than
r1

The cross-product r1 x r2 is given by

r I x r2  l(r YIrz2  Zr1  2
= (yl r -rzry2)

+ 3 (rx2 rz - rxl rz2

+ k (rx1 ry 2 -r r x2) (6-10)

and substituting values

A A A

r1 x r 2 = 1 (-.01303) + j (-.13213) + k (.23843)

x1A = 0.27290

The unit vector W is then

W= i (-.04774) + j (-.48417) + k (.87369)
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from which

cos i = 0.87369

and

i = 29.110

The longitude of the ascending node, 0, is given by

-Wx (.04774)

tan _ W - -. 484) = -0.09860

from which

174.360

or

354. 360

Since sin Q = Wx/sin i is negative, the correct value is

= 354.360 = -5.640

The true anomaly at one of the positions must be determined before

the argument of perifocus, w, can be calculated. The geometric

elements (assumed previously determined) yield the true anomaly at

position one through the equation

Cosa ( - e2) - ,r(
er1
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Using the values

a = 132,875 NM

e = .9737

r = 21,098 NM

the expression for cos 01 is

Cos 0 (132875)(1 - .9481) - 21098 - - 0.69132cos 81 =(.9737) (21098)

and

T t = 133.730

The true anomaly is less than 1800 since the radial distance is

increasing. The argument of perifocus is given by

r~~1  [4380
si n 1 sn L4865i13373

then

64.330 1[69.4001D
or j 3 3 .730 or

L115.67 18.06 °]

The proper angle is determined by a rough calculation of

= cos- 1  o + r. tan ] -
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which becomes

-- cos-I L(.99)40

Then roughly

[6401 F001

w ort 340 or
_64 L -19801

The angle common to both calculations is -69.40' so the argument of

perifocus is

w - 69.400

Orientation Elements from a and Sv

Knowledge of vehicle right ascension and declination at two

points coupled with the true anomaly at either point is sufficient to

define the orientation elements. Conversion from polar to rectangular

coordinates is unnecessary. Figure 33, an illustration of the

vehicle's path on the celestial sphere, will be used for some of the

derivations, to follow.

From the previous section

Cos i = Wz= (r., ry,2 - r rx2)/r x r21 (6-12)
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z

Celestial Sphere

f

(k%2162)

d
Perifocus-

e
a

!Q b

Fig. 33

Orbital Path on Celestial Sphere

Substituting

r.,. = cos 6cos a

ry= cos 6sin a (5-18)

rz 'sin 6
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leads to

S =cos 61 cos 62 sin (a2 -6-13Cos i A (6-13)

r X r2

The cross product of the two unit vectors is

A A 1A 11AI

r1  = rllr sin AG = sin A 0 (6-14)

A A

where AO is the true anomaly difference between r1 and r2.

From the spherical triangle def (Fig. 33)

cos AO = sin 61 sin 62 + cos 61 cos 62 cos (a2- a1) (6-15)

thus AO and sin A6 can be determined and the inclination is given

by

Cos 6 1 Cos 6 2 sin (a 2  a 1)  _

cosi = 0 < i < 7 (6-16)
Isin AO1

The longitude of the ascending node, S, can be found from the

spherical triangles abe and acd using

tan 62
sin (a2 - Q) - (6-17)

tan i

The ambiguity is resolved using

tan 61
sin (a- a) (6-18)

tan i

The common value of Q is the solution.
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The argument of perifocus requires knowledge of the true anomaly

at one of the positions. Assume 02 is known. Then, from the

spherical triangle acd

sin 62
sin (w2 (6-19)

sin (w + 02) sin i

The ambiguity can be resolved using

sin 61 6-0
sin (W + ei) sin i (6-20)

and since 2 = 1 + As

sin [w + (02- AG)] si 61 (6-21)
sin i

Example Calculation 6-2 (i, R, and w from a and 6). Using the

Polaris fix technique (Chapter V) the astronauts establish the

following angular data:

t = t I  t 2 = t1 + 2 hr

a, = 55.550 a2 = 68.29*

61 = 26.010 62 = 28.150

In addition, the true anomaly at position one is known to be

01 133.730

The orientation of the orbit is desired.
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Solution. The true anomaly difference between position one and

two is

cos A6 = sin 61 sin 62 + cos 61 cos 62 cos (a2 - a) (6-15)

and substituting values

cos Ae = (.43851)(.47178) + (.89873)(.88171)(.97541)

= .97981

from which

AO = 11.530

sin AO = .19991

The inclination is given by

cos 61 cos 62 sin (a2 - (-6
cos i = (6-16)

Isin A61

and substituting values

cos i = (.89873)(.88171)(.22042) = .87372
(.19991)

Then

i= 29.110
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The longitude of the ascending node is found from

tan 62 - (.53508) = .96110sin (a2 - R
tan i (.55673)

F3.9701
a - a = 

"or = 68.29° -
2 r106.03]

Then

or
37.740

The ambiguity is resolved by a rough calculation of 1 using the

other position. Accordingly

tan6 -I.4

sin (a1 - tan i .56 .87

or
-65°

The angle common to both calculations is near -5* so

n= -5.68*

The argument of perifocus is determined from

sin 61 (.43851) -. 90149

sin (w + o) sin i (.48643)

64.350
w + 1 or = w+ 133.730

115.65o
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and

w 0or

A rough calculation of w using the other position yields

sin 62 .47
sin [w + (61 + AO)] = __ - =.96

w + 133.73* + 11.530 or

C!1 
390

The common value is selected, i.e.,

w= -69.38'

Graphical Solution fbr i, SI, and w.

A graphical solution for the orientation parameters is illus-

trated in Fig. 34. The graphical solution for i, 2, and w consists

of the following steps:

1.Plot two known unit position vectors on a properly

constructed star chart, i.e., plot (cxvl, 6VI)

and (ac2  6 ) where position two is later than

r position one.

2. Draw a straight line from position two through

position one and inte-.sect the equator.
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i .I I I .. . . ' "

tial Sphere-Equatorial Gnomonic Projection
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Fig. 34

Graphical. Solution - Orientation Elements

3. The right ascension of the intersection point is S.*

The angle between the orbit plane and the equatorial

plane is Lhe inclination--but the angle i cannot be

measured directly from the chart. Instead, the

inclination must be calculated using the right

* The intersection will yield the descending node if the line is

drawn from position one to two to the equator.
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spherical trigonometry relationship

tan Sv
tan i = sin (av - S) (6-22)

4. Assume the true anomaly of position one is known.

Plot the point representing perifocus by measuring

backward on the constructed line (i.e., in direction

of point two to point one) from point one an angular

distance equal to the true anomaly (the angular

scale on the equator or a meridian must be used).

The angular distance from the equator to perifocus,

measured on the constructed line, is w.

The star chart must be constructed such that a straight line repre-

sents 4 portion of a great circle. Projections having this

characteristic are:

1. equatorial gnomonic

2. oblique gnomonic

3. polar gnomonic

The scale distortion of the gnomonic projection does not

appreciably affect the accuracy of the graphical determination of SI

and i. However, the distorted scale must be used to determine

w--therefore, w can only be determined approximately.

Example 6-3 (Graphical Solution for i and SI). Using the

Polaris fix techniques (Chapter V), the astronauts establish the
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follo-ing angular data:

t = tI  t2 = tI +2 hr

= 39.120 a = 63.390

6 = 21.400 6 = 27.4701 2

The inclination of the orbital plane and the longitude of the

ascending node is desired.

Solution. Figure 35 represents an equatorial gnomonic projection

of the celestial sphere. The two angular positions are plotted and

a straight line is drawn from position two through position one. The

line intersects the equator at a = -5.5*, therefore

= -5.50

The inclination is given by

tan 6.2 tan 27.47'tan i = =__ _ _ _ __ __ _ _ _ _ _ _ _sin (a2 - ) sin (63.390 + 5.5)

tan i .51983 - .55725
.93285

from which

i = 29.10

The solution for w is not shown since, for the example orbit

selected, the construction lies outside the range of the chart.
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Orientation Elements From Minimum Coaltitudes

This section is an outline of an alternate method for determining

the unit vector. W (Fig. 29). The scheme is related to the present

minimum coaltitude method used in Refs 12, 17, and 23. The present

method was briefly summarized at the opening of this chapter.

Three minimum coaltitudes can yield the unit vector W through

the equations

W 1 1  = sin (*o)l

W . 12 = sin (*o)2

W • 13 = sin ( o)3 (6-23)

Eq (6-23) is the same form as the three-dimensional fix equations of

Chapter V, Eq (5-13). Solution for tho compone-its of the unit vector

W leids to

Wx = - Ax, sin ( 0) -Bx2 sin (i 0 ) 2 - Cx3 sin (*o)3

Wy = - Ay1 sin (io)i - By2 sin (*0)2 -Cy 3 sin (*o)3

Wz = - Az1 sin (o) 1 -BZ 2 sin (*o) 2 -Cz3 sin (o)3 (6-24)

The constants Ax, through Cz3 are the same quantities defined by

Eq (5-16) and used in the three star fix procedure of Chapter V.

The same publication tabulating the constants can therefore be used

either for three star fix procedures or for directly determining the

unit vector W. The orientation elements can be derived from knowledge
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A

of W.

The minimum coaltitudes can be dete-mined geometrically using

spherical trigonometry if the geometric elements are known (Ref

17:45). Minimum coaltitude can also be observed directly-the

, geometry is shown in Fig. 32 in Chapter V.

Other than eliminating the simultaneous measurement requirement

of the three-dimensional fix, the minimum coaltitude method offers

little advantage over the position fix technique. Indeed, since

similar equations must be solved for either method, the position fix

is preferred. A position fix in space yields more information the

astronaut can use directly in solving the navigation and guidance

problem.

Summary - Orientation Elements

Compared to the geom 'ric elements, the solution for the

orientation parameters is simple. The exact solution for the

geometric elements from a set of range measurements involves a set

of nonlinear equations. The orientation elements, with the exception

of w which depends on true anomaly, can be obtained using simpler

equations. There is no need to toil over nonlinear interative

techniques to obtain the orientation elements. Notice that the

solutions for i and $1 do ilot require knowledge of the vehicle's

distance from Lhe earth--a plus feature since the range measurement

is the most difficult to obtain accurately,
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VII. Orbit Determinazion - No Range Measurements

Most of the orbit determination methods presented in this thesis

require one or more measurements of range (range is radial distance

from the center of the earth). In general, the range measurement is

the most difficult to obtain accurately. For this reason, it seems

logical to seek an orbit determination scheme that does not require

any range measurement whatsoever. One such method will be briefly

described. Time permits the presentation of only the bare details--

the recommendation section of this thesis will suggest further

analysis of this orbit determination scheme.

Orbit Determination - No Range Measurements

One possible method of computing an orbit without knowledge of

radial distance is briefly presented.

I. Determine the orbit plane--two angular positions

are required from which i and S can be determined.

2. Find a star in the orbit plane. This can be done

using procedures described in Chapter V.

3. Obtain three values of 0. 0 might be determined

using numerical differentiation. For three

measurements

[2 - 3 2t (7-1)

143



GA/AE/69-1

The quantity (63 - OI) can be measured directly by

sighting the orbit-plane star. Chapter V-Dutlines

the procedure.

4. Compute e and 01 using*

e cos 6i = Q/S (7-2) i
e sin6 1  = R/S (7-3)

where

1/2 1/2
Q (02) sin Ae13  (63) sin A01,

*1/2
+ (61) [sin A612 - sin A81 3] (7-4)

• 12 12)1

1/2 .1/2

R = -C( -01 cos A012

*12 ;1112)
+ (021  -61/) cos A013

1/2 1/2 (7-5)
-2 63

.1/2
S = 61 sin (A13 - A612)

1/2 * 1/2
+ 3  sin AO12 - 2  sin 4013 (7-6)

Ae = 0 -6 (7-7)

These equations are presented in Ref 20:697.
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Note that if a suitable measurement schedule is

followed, a number of terms can be pre-calculated.

5. Compute k (semilatus rectum) from

1/3

P(l + e cos )1)/ = a(1 - e2) (7-8)

Summary

Only the bare essentials of a "no range" orbit determination method

have been presented. Other orbit determination schemes that involve

indirect measurements of distance are also available--the classical

Laplacian method (Ref 3:36) is one example. Intuitively, it seems

that an orbit determination scheme of this type would be highly

advantageous because:

1. To date, the accuracy of range determination is

marginal.

2. Angular measurements can be obtained more directly

and probably with greater accuracy.

3. The semi-diameter method of obtaining range is

limited to close earth orbits. Range in deep space

requires the solution of a more complex equation

(Ref 4:222).

4. Range determination methods using a reference trajectory

are useless if the reference trajectory is invalidated

(this topic is treated in Chapter VIII).
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VIII. An Improved Optical Method of
Range Measurement

Introduction

As has been seen in the previous chapters, accurate range or

altitude measurement is essential in most manual navigation schemes.

Optical measurement using the planet angular diameter is subject to

large errors as the distance from the measured body increases.

Therefore, other optical ranging techniques have been investigated.

Harold A. Hamer, of the NASA Langley Research Center, has proposed a

method based upon linear perturbations from -a pre-computed reference

trajectory (Ref 8). This chapter deals with Mr. Hamer's approach to

accurate optical range measurement.

The Method

The geometry of the measurement procedure is depicted in Fig. 36.

The angle D, which can vary between 0 degrees and 180 degrees, lies in

the instantaneous earth-moon-vehicle plane. If Fig. 36 represents the

vehicle on a reference trajectory at a given time, then the incremental

range Arev (actual range minus reference range) at that time is obtained

as follows:

rC= vem sin C = em sin (A+ B) (8-1)
rev sin A sin (-

or

rev = rem cos B + rem sin B cot A (8-1a)
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As shown in Eq (8-1a), the ariables which define rev at a given time

are the angles A and B; therefore

dr evev dA + ev dB (8-2)ev 3A DB

From Eq (8-1a)

ar = - r sin B csc2 A (8-3)DA em

but

rmv
sin B - sin A (8-4)rem

so that

'rev - rmv (8-5)
aA sin A

where

r 2 +r 2 -r 2

cos A = ev mv em (8-6)
2rev rmv

Further, from Eq (8-1a)

3rev
- = rem (cos B cot A - sin B) (8-7)

where angle B is given by Eq (8-4) and angle A is given by Eq (8-6).

The values of rev rmv, and rem are known for the reference

trajectory.
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The variables A and B in Eq (8-2) refer to angular meacurements

which must be made onboard the vehicle. Angle B cannot be measured

from the vehicle. Therefore, a related angle which can be measured

must be substituted. As shown in Fig. 36, the angle F, measured

between a star and the earth's center, can be used in the following

manner. For the case in which the star is in the instantaneous

earth-moon-vehicle plane, dD/dB 1 1, (this is true because rem

and the line-of-sight to the star are fixed in direction for the

instant being considered), where the sign is determined by the

relative directions of the earth and the star. Equation (8-2),

therefore, can be written

ar ar_ ev dA+ k- ev
drv e A +k - -- dD (8-8)rev 3B

where dD represents the change in the star-to-earth angle and k is

plus or minus one. (The equation for determining k is derived in

Appendix E.) If the star is not in the instantaneous plane, as

shown in Fig. 36, dD can be determined from the right spherical

trigonometric relationship

cos F cos D cos E (8-9)

or

Dco-1(osEF (8-9a)
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Thus

I/ 1/2
( sin2 F :

d D 2' E .O2 F dF (8-10)

or

dD d (8-11
E -cos2  F

Therefore, in terms of two angles which can be measured from the

vehicle (earth center to moon center and star-to-earth center),

Eq (8-8) can be written

( 1/2

ev DA aB cs 2 E - cos2 F

or, for the region in which a change in rev is linear with changes

in A and B

/ 1/2re Drev O2-

Ar - ev A + k-- 1-cos2 AF F (8-13)
ev BA BB Cs2 E-cos 2

where

AA A actual Areference (8-14)

AF =F -Factual reference (8-15)

The incremental range Arev, then, is determined by the two measure-

ments A(actual) and F(actual), and by the pre-calculated values of
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A(reference), F(reference), Dr ev/A, r ev/8B, and k 4 - cos2 Y

(cos2 E - cos2 F)1/2. Equations for calculating F, E, and k, which

pertain to the reference trajectory, are derived in Appendix E.

Linearity Characteristics. Mr. Hamer's investigation of the

variations of Arev with MA and AB for a typical lunar trajectory

showed that at a given time the partials BrevaA and Bre/8B can

be considered to be essentially constant over a wide region, as

indicated in Fig. 37. (Note that the kilometer is used as the unit of

distance in this chapter.) The reference trajectory used was selected

from Ref 7. In Fig. 37, the curve for AB was determined from the

relations

sin C rev sin A (8-16)
rem

and

B = 1800 - (A + C) (8-17)

where A is held constant at the reference value and is given by

Eq (8-6). The curve for AA was determined from the relation

rem
sin A = - sin B (8-18)r

mv

r where
and rmv (rev2 + r e 2 - 2 rem rev cos B) / 2  

(8-19)

and B is held constant at the reference value, and is determined by

Eqs (8-16) and (8-17). The curves shown n Fig. 37 are for a
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Fig. 37

Linearity Characteristics of the Hamer Method for a Reference
Distance of 162,000 KM From Earth (Ref 8:10)
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reference time from injection (perigee) of 16.125 hours. (Here, rev

is approximately 162,000 kilometers.) At this time, a two hour

difference at injection from the reference injection time would

represent a difference in range from the earth of about 13,000 kilo-

meters. The data in Fig. 37 show that this difference can be

considered to be within the linear region. Several reference

trajectories, therefore, could suffice for range determination for a

given launch window

The linearity characteristics of Dr /DA and ar e/B illustratedev ev

in Fig. 37 are representative of those over most of the earth-moon

distance. Actually, the linear approximation for Drev/DA improves as

the moon is approached, as shown by the derivative of Eq (8-5), which

is

a2rev cos A

aA2  sin2 A (8-2)

The angle A approaches 90 degrees as the moon is approached. From

the derivative of Eq (8-7)

a2r v  ,

v= -r (cot A sin B + cos B) (8-21)BB2  em

it can be determined that the linear approximation for Dr /3B will

also improve as the moon is approached.

Effect of Proximity to the Earth-Moon Line. The values of

9r ev /3A and r ev aB which are pre-calculated and supplied to the
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astronaut in the form of charts or tables are shown in Fig. 38 for

vehicle positions along the translunar portion of the reference

trajectory. The partials Brmv/DA and Drmv/C required to determine

range from the moon are also shown. These values will approach those

shown for arev/3A and arev/DB at distances near the earth. It is to

be noted that for a position fix near the moon, higher accuracy is

obtained by measuring range from the earth rather than from the moon,

inasmuch as the geometry gives lowei ;rslues for arev/aA and Drev/aB.

It will be seen that the error in determining the incremental range,

Arev , is proportional to the magnitudes of the partials.

In Fig. 38, the large values shown for Drev/9A aP4 arev/'B near

the earth occur because of the close proximity to the. earth-moon line

(angle A approaches 180 degrees). Thus, range determination using

Eq (8-13) would be inaccurate for about the first five hours (or

75,000 KM) from injection. These results would be typical for any

method based upon earth-moon measurements. The accuracy of angular

diameter measurements is much better for the first five hours, as

shown in Fig. 39. The dashed curve represents the error in the range

for an angular diameter measurement a error of 10 arc-seconds.

For times along the xeference trajectory except for the first

five hours, the error in determining range by Eq (8-13) is relatively

small, us shown by the solid curve in Fig. 39. This curve represents

the error in the incremental range along the translunar portion of

the reference trajectory where the angular measurements A and F are

considered to have random uncorrelated errors, each with a standard
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deviation a of 10 arc-seconds, such that

Kr 2 r >211/2
Ar ev A + (8-22)L A cA) 3

where

o 2 k 1 - cos2 F ev (8-22a)

"Ss 2 E - cos 2 )B

In Fig. 39, the star which is used to measure F is assumed to lie in

(or near) the instantaneous earth-moon-vehicle plane so that the

value of the term - cos 2 4(cos2 E - cos 2 FJ1/2 in Eq (8-13) is one,

and Drev/aB = ± Drev/aF.

Effect of the Star Selected for Measurement. The value of the

quantity [1 - cos 2 F)/(cos 2 E - cos2 F J1/2 can vary from one to infinity,

depending on the reference trajectory and the star selected for the

measurement of F. The effect of star position on the error in Arev

is shown in Fig. 40. The error in Arev is a minimum when the

quantity (1 - cos2 F)/(Cos2 E - cos2 FJ1/2 is a minimum. This quantity

has its minimum with respect to F at F = 90 degrees and rises rapidly

as the extreme values, F = E and F = 180 degrees minus E, are

approached. The extreme values of F occur when the star position is

in the plane containing the vehicle-earth line and the vertical to

the earth-moon-vehicle plane. The desired stars, therefore, are those

that lie near the earth-moon-vehicle plane (E within about plus or

minus 30 degrees) with projections in that plane away from the
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vehicle-earth line.

Corrections for Nonsimultaneous Measurements. In the equation for

range determination, Eq (8-13), both measurements are assumed to have

been made simultaneousl!. Since simultaneous measurements are not

usually possible, errors would be introduced in the results unless the

measurements were corrected or converted to some common time. This

time could be either before or after the actual time of the measurements.

If the time corresponding to one of the measurements is made the common

time, only one measurement would have to be converted.

The measurements can be converted to a common time (small time

increments only) by use of pre-calculated data on the rate of change

of angle with time along the reference trajectory. These data would

be practically the same for any other trajectory reasonably near the

reference, so that they would apply for making corrections when off

the reference trajectory. Equations for calculating dA/dt and dF/dt

along a reference trajectory are given in Appendix B of Ref 8.

In converting a measurement to a common time, the corresponding

value of dA/dt or dF/dt at the given range multiplied by the time

increment would be sufficient to calculate the incremental angle to

be added algebraically to the measured angle. The range would have

to be known only approximately. For trajectories launched near

nominal injection time, the nominal range at the time of the

measurements would be adequate, whereas for trajectories not launched

near the nominal injection time, the approximate range could be

determined according to the time from actual injection time.
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Measurements of the Center of a Body

Throughout this discussion, it has been assumed that optical

measurements to the center of the earth and moon are possible. The

USAF Hand-held Space Sextant has been qualified for star-horizon

measur'ments only. It is felt by the authors of this thesis that

this sextant could be adapted to measure star-earth center and

moon-earth center angles. The incorporation of an attachment such as

a filter enscribed with concentric circles and centering cross-hairs

has been suggested to the Air Force Avionics Laboratory, sponsors of

the sextant's development and testing. Their response has been

favorable, and this idea may be investigated with possible operational

testing in the D-009 Apollo experiment.

Discussion

Mr. Hamer points out that the range measurement method he has

proposed could be used just as easily with the Sun and a planet as

with the earth and the moon. Also, he has determined that after the

first five hours from injection on a translunar trajectory, the

uncertainty in range is relatively constant at about 35 kilometers as

long as the star used is within plus or minus 30 degrees of the

earth-moon-vehicle plane.

These results are very encouraging. With range measurements of

this accuracy, the manual navigation techniques described in this

r thesis are of much greater utility in cislunar and, indeed, in

interplanetary space than they would have been if angular diameter

measurements were used exclusively to determine range. The linearity
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characteristics of the method allow large deviations from the reference

trajectory. Thus, barring a catastrophic failure such as an uncon-

trollable propulsion system, this method is flexible enough to be

incorporated in a manual navigation scheme. The only equipment

necessary would be the space sextant with attachment for body center

measurements, a time history of the reference trajectory (or

trajectories, if several sets of data are carried for greater

flexibility), and a computational t:ool for use in the solution of

Eq (8-13).

Sumt.ary

The precomputations necessary for the Hamer method of range

determination are:

1. revI rmv, rem, A, B, and F as functions of time on the

reference trajectory

2. Drev rmv
BA sin A

3. arevB rem (cos B cot A - sin B)

4. = rev x rmv (See Appendix E)

S-.4- E = (+mhy+nhZ See Appendix E)h

6. b = x h (See Appendix E)
ev
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,b + m b + n b
7. k (See Appendix E)

k b + m b + n b z

All of these values must be precomputed before flight. Inflight, the

astronaut is required to solve only

Ar =C AA + C2 AF (8-13a)ev

where C, and C2 are constants which are precomputed for the reference

trajectory, i.e.,

C ev (8-23)

and

(r 1/2
C2 = 1- cos2 F (8-24)3B os2 E - cos 2

Sample Problem. The following is a sample calculation of distance

from the earth using the Hamer method. The reference values were

taken from Ref 8.

At 31.125 hours from injection (about halfway to the moon),

the reference trajectory values are:

x = - 9233.1921

Yev = 211785.18

z = 116836.74
ev

rv = 242051.73
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x = - 113475.61my

Ymv = - 1011'6.23

z = - 49059.589my

r = 159725.06mv

r = 369198.98

A = 132.4675 degrees

B = 18.0877 degrees

F = 82.4794 degrees (the star chosen is

Algenib)

The precomputation yields

C1  = - 212234.26

and

C = 450855.29

An actual position was assumed at

x = - 15000

ev

v = 220000

~163
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So that

r = 252010
ev

which is approximately 10000 kilometers off the reference value. (This

position was chosen to test the linearity characteristics of the Hamer

method.) At this position, the actual angular measurements would be,

assuming 10 arc-seconds error in each:

Aactual = 127.2446 degrees

Factual = 83.6540 degrees

Applying Eq (8-13a)

Ar = CIAA + C2AFev 1 2

or

ractul ref + CIAA + C2AF

yields

r a = 252155 kilometers

This value is in error by 145 kilometers, since the precise assumed

value is 252010 kilometers. This represents a .06 per cent error.

An angular diameter measurement would have been in error by more

than 500 kilometers. It is probable that the error in the Hamer
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estimate of the actual range is primarily due to nonlinearity at such

a large distance off the reference trajectory. The coefficients

C1 and C2 are fairly large also, and this magnifies the measurement

error introduced. In any case, the Hamer method is a vast improvement

over the angular diameter method.
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IX. Aids to Manual Navigation

As progress is made in the exploration of spdce, operational

manual navigation and guidance systems will become a necessity. The

authors of this thesis believe that as this requirement makes itself

felt certain "aids" will be developed to enhance the performance of

these systems.

To date, no concerted effort has been made to develop a general

manual system. Those who have worked on the idea have been limited

by the constraints of the hardware available at the present time.

(The sum total c' this haTdware consists of the USAF Hand-held

Space Sextant and the USAF Space Stadimeter.) The manual navigation

techniques developed thus far are inflexible due to these constraints.

Many of the methods aescribed in this thesis are impractical when

viewed from the standpoint of current equipment. The authors feel

that no promising method or approach should be discarded on this

basis. Indeed, the equipment must be designed to fit the best

approach, and not vice versa.

It is, therefore, the purpose of this chapter to explore the

utility of three categories of "aids" to manual navigation; the

back-up inertial platform, the band-held mechanical calculator, and

the hand-held, battery operated, digital computer.
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The Back-up Inertial Platform

A back-up inertial platform would be invaluable in determining

spacecraft position. An instrument such as a theodolite mounted on

an inertial platform is capable of measuring directly the right

ascension and declination of the vehicle by simply sighting the earth,

sun, or any other body whose coordinates are known. No computations

would be necessary to obtain this information. The space sextant

could be used to align the platform by sighting two known stars.

Since the lines-of-sight define a plane, the platform can be oriented

so as to be parallel to any desired reference plane. The power source

could be electrical (batteries) or mechanical (hand-crank).

The Hand-held Mechanical Calculator

Many of the manual navigatj n techniques described in this report

involve several computation steps. It would be difficult to achieve

consistent accuracy with a slide rule. Reducing the equations to

graphical form is not always practical because of the volume of graphs

necessary for flexibie operation. A better approach may lie in the

use of a small, highly accurate mechanical calculator. Such a device

is manufactured by the Curta Corporation, of Van Nuys, California.

Figure 41 is a photograph of the Curta Calculator. This machine is

capable of performing addition, subtraction, multiplication, and

division. It also squares, cubes, and extracts square roots. The

accuracy of the Curta Calculator is an amazing eight significant

figures! (This is based upon the limit imposed by division.

Multiplication can be carried to fifteen figures.) The diameter of
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Fig. 41

The Curta Calculator

the machine is 2 9/16 inch, and the height is 3 5/8 inch. Most

importantly, the weight of the Curta Calculator is but 12 1/2 ounces.

This hand-held mechanical calculator combines the accuracy of a desk

calculator with the portability of a slide rule. The authors feel

that such a computational tool is ideally suited as an aid to manual C

navigation.
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The Hand-held, Battery Operated, Digital Computer

The hand-held, battery operated, digital computer is, in the

opinion of the authors, the most important tool in the future of man-

ual navigation in space. With the proper measuring equipment, such a

device could be capable of solving explicitly the manual navigation

problem. The most promising methods explored in this thesis are

ideally suited to being programmed into a small computer. The proper

use of such a tool is paramount in determining its true utility.

Memory space is the prime limitation. It would be unreasonable to

attempt "brute force" techniques that require excessive iterations.

The hand-held computer should not be used to duplicate the functions of

the primary system computers. It should not be pre-programmed with

inflexible routines that cannot be altered as needed. It should be

designed so that the astronaut, who is obviously familiar with astro-

dynamics and celestial mechanics, can program the equations he needs

under any circumstances. Several small computers are in existence

today. The most promising investigated is the Hewlett-Packard 9100A.

This computer is capable of performing at least as well as the IBM 1620.

It can be programmed with magnetic "credit cards" to solve problems

up to and including numerical integration. The present weight of the

9100A is 40 pounds. There is no reason to believe that this couldn't

be reduced for manual navigation and guidance applications.

To demonstrate the utility of a small, hand-held computer in

manual navigation, the Gibbs method of orbit determination (see

Chapter V) was programmed in Fortran II and run on the IBM 1620.

This program would easily fit into the Hewlett-Packard 9100A.
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Figure 42 is a reproduction of the Gibbs program with output. This

program is totally flexible in that it may be applied to elliptic and

hyperbolic trajectories. The output includes the type of trajectory,

the eccentricity, the semimajor axis, the time past perifocus to the

third fix, theP, Q, and W orientation vectors, and the velocity

components at the third fix. The three input fixes were obtained from

a precision trajectory in Ref 8. .'1 of the output values are within

.01 per cent of the quoted precision (translunar) trajectory values.

Since the program is written in general form, it is applicable to any

inverse-square field, as long as the gravitational constant for the

attracting body is known. This constant must be input with the three

fixes. The output, then, is in the units of the gravitational constant

and the position fixes. For example, in Fig. 42, the gravitational

constant and fixes are in the kilometer-second system of units. There-

fore, the output distances are in kilometers and the velocities are in

KM/SEC.

Since position and velocity are known at fix three, the position

and velocity at any time thereafter can be projected. Figure 43 is

a reproduction of a program which uses the universal formulas developed

by Battin in Ref 4. The output is position and velocity at hourly

intervals past the third fix. Again, a general form is used for

flexibility, and the units of the input determine the units of the

output. (Since the output of the Gibbs program is input to this

program, its output is in kilometers and KM/SEC.) This information

could be used to initiate a guidance scheme.

170



GA/AE/69-1

C C GIBBS METHOD OF ORBIT DETERMII1ATION--HORRIGAN AND WALSH
P1=3*1415927
READX1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,EMU
A=SQRT( (Y1*Z3-Y3*Z1)**2+(Z1*X3-X1*Z3)**2+(X1*Y3-Yl*X3)**2)
B=SQRT((Y2*Z3-Y3*Z2)**2+IZ2*X3-X2*Z3)**2+(X2*Y3:Y2*X3 **2)
C=SQRT((Y2*Z1-Y1*Z2)**2+(Z2*X3.-X2*Zl)**2+(X2*Y1 Y2*Xli)**2)
Clt*B/A
C3=C/A
Rl=SQRT(CX1**2+Y1**24-Zl**2)
R2=$ RT( X2**2+Y2**2+Z2**2)
R3u= IRT (X3**2+YS**2+Z3**2)
P=(C1*R1+C3*R3-R2)/(C1+C3-1.)
WX=(Yl*Z3-Y3*Zl) IA

EQX=(X3*IP-Rl)-Xl*CP-R3) )/A
EQY=(Y3*(P-Rl)-Y1*(P-R3) )/A
EQZ=(Z3*CP-Rl)-Zl*(P-R3) 2/A
E=SQRT CEQX**2+EQY**2+EQZ**2)
QXxEQX/E
QY=EQY/E
QZxEQZ/E
AXIS=P/( 1.-E**2)
PXZQY*WZ-QZ*WY

PY-QZ*WX-QX*WZ

YW3uQX*X3+QY*Y3+QZ*ZPZQ*Y-XQ
IF (AXIS)119,2

2 COSE3=(AXIS-R3)/(AXIS*E)
SINE3=YW3/(AXIS*SORTC1*.E**2))
GAMMA-ATAN((E/(SQRT(1.-E**2)))*SINE3)
PUNCH 100

100 FORMAT(26HTHE TRAJECTORY IS ELLIPTICs/1)
IF(COSE3)5*593

5 EANOf4=ATAN (SINE3/COSE3 )+PI
GO CO 11

3 EANOMwATAN CSINE3/COSE3)
11 ENmEMU/(AXIS**1#5)

DELTT- 4(EANOM-E*SIN.3) lEN) /3600.
GO TO 15

1 SINHF=-YW3/(AXIS*SQRT(E**2-1.)
GAMMiA=SQRT((P**2)/iR3*(2.*P+R3*(E**2-1.))
PUNCH 101'

101 FORMAT(28HTHE TRAJECTORY IS HYPERBOLICt//)
F=IOG(SINHF+SQRTU(SINHF**2)+l.))
EN~sEMU/( (-AXIS)**1*5)
DELTT=( (E*SINHF-F)/EN) /3600.

15 RTDOT=(EMU/R3)*SQRT(AXIS*ABSC1.-E**2))
RDOT ZRTDOT*S IN(CGAMMA 2/COS CGAMIMA)
VX C IDOT*X3+RTDOT* CWY*Z3-WZ*Y3 2 /R3
VY=(CREDOT*Y3+RTD0T* 4WZ*X3-WX*Z3))2/R3
VZ(RDOT*Z3+RTDOT*(WX*Y3-WY*X3))2/R3
PUNCH 1029E

102 FORMAT(20HTHE ECCENTRICITY IS #F7,4#//)
PUNCH 103tAXIS

103 FORMAT(23HTHE SEMI-MAJOR AXIS IS ,F12*4#//)

Fig. 42

Typical Gibbs Method Program
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104 FORMAT(4OHTHE TIME PAST PERIFOCUS TO FIX THREE IS #F12e4s//)
PUNCH 105

105 FORMAT(16HPX#PY#AND PZ ARE)
PUNCH 106,PXPYoPZ

106 FORMAT(3F12*4,//)
PUNCH 107

107 FORMAT(16HQX9QY9AND QZ ARE)
PUNCH 106tQXoQYtQZ
PUNCH 108

108 FORMAT(16HWX#WY#AND WZ ARE)
PUNCH 106*WX*WY#WZ
PUNCH 109

109 FORMAT(54HTHE X*Y#AND Z VELOCITY COMPONENTS AT THE THIRD FIX ARE)
PUNCH 1069VXtVY#VZ
STOP
END

17000,141 13826.706 8591.5583 20284o239 66965o325 38219o273
15797.195 106257.19 59747.541 631.35093

THE TRAJECTORY IS ELLIPTIC

THE ECCENTRICITY IS .9739

THE SEMI-MAJOR AXIS IS 247285*1800

THE TIME PAST PERIFOCUS TO FIX THREE IS 10.5060

PXPYvAND PZ ARE
*2694 -.8485 -o4555

CXQYvAND QZ ARE
.9619 ,2136 *1709

WX#WY#AND WZ ARE
-.0478 -o4842 *8737

THE X*Y*AND Z VELOCITY COMPONENTS AT THE THIRD FIX ARE
-.3010 1.9199 1.0475

Fig. 42 (Continued)

172

*d



GA/AE/69-1

C C PROJECTED POSITION AND VELOCITY-HORRIGAN AND WALSH
READvXoY#Z#VX#VYtVZgEMU
TT=360O.

4 XX'v1.
DI ST=SQRT( X*X+Y*Y+Z*Z)
VSQF xVX*VX+VY*VY+VZ*VZ
ALPI z=2 */01 ST-VSQR! C EMU**2)

1 IFCALPHAJ8*7,2
8 D=SQRT(-ALPHA*XX**,2))

S=C EXPCD)-EXP(-D) )/2.-D3/(D**3)
C=C CEXP(D)+EXP(-D))/2.-l.)/CD**2)
GO TO 3

7 S=1*/69

GO TO 3
2 E=SQRT(ALPHA*CXX**2))

S=(E-SINCE) )/(E**3)
CC1.o-COS(E) 3/CE**2)

3 TiaC (X*VX+Y*VY+Z*VZ)*(XX**2)*C)/CEMU**2)
T2=(1.*-ALPHA*DIST)*(XX**3)-S)/EMU+(DIST*XX)/EMU
T=Tl+T2
IF(ABS(TT-T )-*01)6,6,5

5 Q CX*VX+Y*VY+Z*VZ) /(IEMU**2)
DERIV=Q*(XX-ALPHA*(XX**3)*SI+CC1.-D(ST*ALPHA)*(XX**2)*C+DIST)/EMU

* XX=XX-CT-TT)/DERIV
GO TO 1

6 RX( 1.-C CXX**2)/DJST)*C)*X+(TT-(XX**3)*S/EMU)*VX
RY=C 1.-C(XX**2)/DIST)*C)*Y+CTT-(XX**3)*S/EMU)*VY
RZC 1.-C CXX**2)/DIST)*C)*Z+(TT-CXX**3)*S/EMU)*VZ
R=SQRTtIRX*RX+RY*RY+RZ*RZ)
A=EMU
VXX=((1./CR*DIST')*(ALPHA*CXX**3)*S-XX) )*X*A+C1.-((XX**23/R)*C)*VX
VYY=CClc/CR*DIST))*(ALPHA*CXX**3)*S-XX))*Y*A+(1.-u(XX**2)/R)*'C)*VY
VZZC C1./(R*DIST) )*(ALPHA*(XX**3)*S-XA) )*i*A+C 1.-CCXX**2)/R)*C)*VZ
TTT=B
PUNCH 1009TTT

100 FORMAT(38HPOSITION AND VELOCITY COMPONENTS AT T,?F7o4#//)rPUNCH 101,RXtRY*RZ
101 FORMAT(3F12*4t//)

PUNCH 101*VXXoVYY#VZZ
B=R+10

Y-RY
ZwRZ

VZ=VZZ
GO TO 4
END

15797.195 106257.19 59747o541 -.3010 1e9199 10'0475 631.35093

Fig. 43

Projected Position and Velocity Program
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C C PROJECTED POSITION AND VELOCITY

POSITION AND VELOCITY COMPONENTS AT Tu 1.0000

1469394090 113027.0500 63438.8700

-.3118 1.8426 1.0041

POSITION AND VELOCITY COMPONENTS AT Tu 2.0000

13555*2520 119533.5600 66982.3800

-o3202 1.7733 .9652

POSITION AND VELOCITY COMPONENTS AT Ta 3.0000

12390*1440 125803.2800 70393.1990

-.3268 17108 .9302

POSITION AND VELOCITY COMPONENTS AT Ta 4.0000

11203.8160 131858.2800 73683.8680

-.3320 1.6539 98984

F3sITION AND VELOCITY COMPONENTS AT T3 5.0000

10000.7620 137717o1100 76864.9120

-.3362 1.6017 .8693

POSITION AND VELOCITY COMPONENTS AT Tw 6.0000

8784.5643 143395.5600 79945.2750

-o3394 1*5536 e8424

POSITION AND VELOCITY COMPONENTS AT Ts 7.0000

7558.1158 148907.2500 82932.6660

-.3419 105090 o8176

POSITION AND VELOCITY COMPONENTS AT T
= 8.0000

6323.7722 154263.9600 85833.7390

-.3438 1.4674 o7944

Fig. 43 (Continued)
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C C ORBIT GEOMETRY FROM ANGULAR RATE DATA-HORRIGAN AND WALSH

READDT12,DT139TD1*TD2*TD3#EMU
STD1=SQRTCTD1)
STD2=SQRT(TD2)
STD3=SQRT(TD3)
Q=STD2*SIN(DT13)-STD3*SIN(DT12)+STD1*(SIN(DT12)-SIN(DT13))
R=-CSTD3-STD1)*COS(DT12)+CSTD2-STD1)*COS(DT13)-fSTD2-STD3)
S=STDI*SIN(DT13-DT12)+STD3*SIN(DT12)-STD2*SIN(DT13)
E=SQRT((R/S)**-2+(Q/S)**2)
T1=ATAN(R/Q)+3*1415927
P=((EMU*((1.+E*COS(T1))**4))/(TD1**2))**.33333333
A=P/ABS(1o-E**2)
RDOT=E*SQRT(EMU/(A*ABS(1o-E**2)))*SIN(T1)
Rl=((EMU*P)***25)/STD1
T1=T1*57*2957795
RTDOT=R1*TD1
IF(A3 *112

1 PUNCH 100
100 FORMAT(28HTHE TRAJECTORY IS HYPFRBOLICv//)

GO TO 3
2 PUNCH 101
101 FORMAT126HTHE TRAJECTORY IS ELLIPTIC#//)
3 PUNCH 1C2*E
102 FORMAT(2OHTHE ECCENTRICITY IS 9F7.4.//)

PUN4CH 103*A
103 FORMAT(23HTHE SEMI-MAJOR AXIS IS *F12.4#//)

PUNCH 1049T1
104 FOR kT(39HTHE IRUE ANOMALY AT ANGULAR FIX ONE IS #F12.4%//)

PUNCA 1059RDOT
105 FORMAT(42HTHE RADIAL VELOCITY AT ANGULAR FIX ONE I5 oF12,4,//)

PUNCH 106tRTDOT
106 FORMAT(45HTHE TRANSVERSE VELOCITY AT ANGULAR FIX ONE ISF12.4ti;

PUNCH 1079R1
107 FORMAT(42HTHE RAD'IAL DISTANCE AT ANGULAR FIX ONE IS *F12.4,//)

STOP

END
.138862 *2271076 .000010214764 °0000059230245 .0000040938722 62750717

THE TRAJECTORY IS ELLIPTIC

THE ECCENTRICITY IS 0906a

THE SEMI-MAJOR AXIS IS 104948.6000

THE'TRUE ANOMALY AT ANGULAR FIX ONE IS 138o3645

THE RADIAL VELOCITY AT ANGULAR FIX ONE IS 1.1051

THE TRANSVERSE VELOCITY AT ANGULAR FIX ONE IS .5911

THE RADIAL DISTANCE AT ANGULAR FIX ONE IS 57870.6980

Fig. 44

Orbit Determination Program Using Angular Rate Data
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If a complete position fix is not available, the trajectory may

be determined by knowledge of the angular position of the vehicle and

three true anomaly rates (see Chapter VII). Figure 44 is a reproduction

of a program which utilizes angular rate data. In this case, only the

true anomaly rates and differences in true anomaly are known. The

orbit geometry can, therefore, be determined; but not the inertial

orientation. The program can be altered to provide this information

if angular position data is available. The units of the input and

output are nautical miles and NM/SEC.

Discussion

This chapter has been a discussion of some important aids to

manual navigation. This, by no means, exhausts the list of possi-

bilities. Total commitment to the development of manual navigation and

guidance systems will bring forth many more new ideas. *Flexibility

and accuracy are the.bywords for the future. Equipment must be designed

with this in mind. Methods cannot be limited just because hardware is

not available. It must be made available.
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X. Conclusions and Recommendations

Introduction

This chapter completes the theoretical development of this report

with general conclusions and recommendations for follow-on research.

Many interesting possibilities remain to be examined and some of these

topics are listed under "Recommendations." The "Conclusions" para-

graph lists some of the important determinations resulting from

research associated with this thesis.

Conclusions

The following conclusions are offered as the result of experience

gained in preparing this report:

1. The AH method, a graphical method of obtaining

eccentricity, is feasible for high eccentricity

elliptical trajectories. A major drawback is the

need for prior knowledge of the semimajor axis.

2. The numerical differentiation approach for computing

the geometric elements is sensitive to measurement

accuracy. But the method is simple, explicit, and

entirely adequate if accurate values of range are

available. The method appears to be especially well

suited for near earth orbits.

3. Differential correction procedures are impractical

unless a back-up computer is available. If such a
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computer is provided, the differeatial correction mrthod

should be exploited.

4. Position fixes can be obtained usir.0 straightforward

procedures. The simultaneous measurement requirement,

frequently cited as a major problem in obtaining a

three-dimensional fix, can be resolved using procedures

similar to those presently used in astronomy and

celestial aircraft navigation. With position fixing

capability, the astronaut possesses a powerful and

flexible tool that can be used for:

(a) orbit determination

(b) cross-check- of the primary navigation

computer

(c) manual guidance procedures (yet to be

developed)

5. The orientation elements are much easier to obtain

than the geometric elements. Two angular positions

and knowledge of true anomaly at some point of the

orbit are al. that is required to completely define

the orientation parameters.

6. Range can be determined optically with much better

precision than previously thought. The accuracy

of the Hamer method of measuring range (Chapter VIII)

is far better than the semi-diameter method.

7. Manual navigation aids such as small mechanical

calculators and back-up computers that can be
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programmed in fligh, &re practical necessities.

Recommendations for Follow-on Theses

The following areas are suggested as worthy endeavors for future

research:

1. Further study of graphical methods for obtaining

- orbital parameters. Extend the AH method to hyperbolic

trajectories. Study the behavior of the AH plots

around an entire high-eccentricity ellipse (perigee to

perigee). Examine other graphical solutions to the

orbit determination problem.

2. Extended sttidyof methods for determining range. The

range measurement accuracy is considerably improved

using the methods of Chapter VIII. However, if a

suitable reference trajectory is not available, other

range measurement procedures must be provided. Several

alternate methods are discussed in Ref 4:223.

3. Continued study and development of orbit determination

methods. Many of the classical orbit determination

methods are simplified by the fact that the observer is

on the spacecraft and not on the surface of the earth.

Several excellent orbit determination schemes are

suggested in Ref 20:683, Ref 13, and Rei 3:Ch 1. All

of the published metlod.,c should be investigated. The

goal should be to assemble new orbit computation

methods using the good points of previous schemes.
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Special attention should be given to methods that

require no direct measurement of distance (such as

the method of Chapter VTI).

4. Error Analyses. A number of methods discussed in

this thesis require comprehensive error analysis.

For example, the Polaris fixing procedure must be

investigated to see what corrections, if any, are

required to compensate for the fact that Polaris

deviates from the pole position. Other topics of

the thesis require error analysis before final

adoption as manual navigation procedures.

5. Back-up Computer Techniques. A small back-up computer

will greatly enhance manual navigation capability.

But the capability of such a computer can be easily

wasted on.needless iterative techniques. Several

short programs were presented in this thesis. Other

programs and procedures should be devised--the purpose

being the most efficient use of a limited memory

computer.

6. Application of Differential Correction. The differential

correction equations are complex but extremely useful

if a back-up computer is available. It appears that

a navigation scheme incorporating redundant data could

be constructed using the differential correction concept.

The use of redundant data is desirable since the effect

of measurement error is reduced considerably.
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7. Systematized Navigation Procedures. After the suitability

of a navigation scheme is established, the astronaut must

be provided systematic procedures in flight manual form.

The flight ranual should consist of charts, worksheets,

and operational procedures arranged to render the

solution of the navigation problem to step-by-step form.

Compilation of such a flight manual is suggested as

a follow-on thesis project.

8. Manual Guidance. After the orbit is known, the astronaut

must have the capability to determine what corrections

are required to make the spacecraft go where he wants to

go. The problem of a manual abort after translunar

injection is of prime concern. At first glance, it

appears the Gibbsian procedure (Chapter V) could be

molded into an explicit guidance scheme. In any event,

the guidance problem is complex and could well support

several thesis topics.
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XI. Concluding Remarks

As stated in Chapter I, the purpose of this thesis is to lay a

foundation for the development of an operational manual navigation

system. Several independent methods of obtaining the necessary orbital

parameters have been presented. The combination of procedures selected

for use in an operational system depends upon several factors, and

most importantly upon the answers to the four questions posed in the

Introduction (Chapter 1:4). The authors believe that these questions

should be answered as follows:

1. What computational tools are available?

Answer - A hand-held, battery operated, computer

capable of flexible operation, and a

hand-held mechanical calculator for

incidental computations.

2. What types of measurements are possible?

Answer - Equipment and procedures will be made

available to allow coiplete position

fixing using star-body and range measure-

ments.

3. How much time is allowable for the completion of the

procedures?

Answer - At least five hours for highly eccentric

trajectories, and correspondingly less for

lower eccentricity orbits.
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4. What is the required accuracy?

Answer - This depends upon the use to which the

orbital parameters are put. Different

requirements will exist for re-entry

navigation and guidance than for mid-

course navigation and guidance. The

best accuracy attainable should be a

goal, however, since the same manual

system will probably be used throughout

the mission.

If the above answers are acceptable, the manual navigation problem

is solved. An operational system consisting of position fixes input to

the Gibbs method of orbit determination programmed into a back-up

computer is, in the author's opinion, the most promising combination

devised to date. It is completely flexible; it involves no approxi-

mations or iterations; and it provides direct input to a manual guidance

system.
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Appendix A

The Computer Program

This Appendix consists of a reproduction of the double-precision

computer program developed to investigate the Delta-H method of

eccentricity determination and to provide accurate data for use

throughout this thesis. A listing of the variables is included to aid

the reader in following the logic involved.
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List of Variables

EMU = (gravitational constant)1/2

RPLAN = earth's radius in NM

AXSS = semimajor axis of ellipse in NM

AXI = (AXSS) 1 5'

EN = mean motion

TAU = orbital period in h1ours

ETAU = number of 2.5 minute increments

ECC eccentricity

TEE = time in seconds from perigee

ECAN = eccentric anomaly in radians

RADI = perigee radius

VEL = velocity magnitude in NM/SEC

ALT = altitude

EMAN = mean anomaly

RAD = radial disLance

CONT = time in minutes from perigee

DELTA = AH

188



GA/AE/69-1

DELTB = AH2

ECA = eccentric anomaly in degrees

VELO = ratio of velocity to perigee velocity

The program that follows generates data for high eccentricity

ellipses with a five minute timing interval for AHI and AH2. A portion

of the resulting output is also included. Total running time on the

IBM 7094 digital computer is approximately two minutes.

18
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$JOB 09305000 68-514 WALSHoRC AFIT-SE

sIfSJOB

C GEOCENTRIC 5 MINUTE DELTA-H FOR HIGH ECCENTRICITY

DOUBLE PRECISION ECANALTVELE MUTAUECCRAD1,RIGHTCONT,
1VELORPLANAXI ,ETAUEMANRADDELTAECAAXSSENTEEPALEFTOELTB
DIMENSION ECAN(85)vALT(85)qVEL(85)

EMU=DSQRT( 62750*717)
RPLAN-3440. 1728
AXSS=105 000. 00
DO 12 1=107
AXI=DSQRT CAXSS*AXSS*AXSS)
EN=EMU/AXI
TAU=6*28318530/(EN*3600*)
ETAU=210o/2. 5
N=ETAU
ECC=0*9068
DO 11 J=1#7
TEE=150. 0

1 FORMAY( 1Hl,9X,4HAXIS,13X,1ZHECCENIRICITY,7X,6HPERIOD/)
WRITE(692) AXSSECCTAU

2 FORMAT(1X,3Fl7o4*//)
ECAN(1)=0*
RAI)1=AXSS-AXSS*ECC
VEL(1)=EMU*DSQRTC (2./RADI )-(1./AXSS))
ALTC1)=RAD1-RPLAN
DO 13 K=ZPN
EMA~ EN* TEE
ECAN CK) ECAN CK-i)

14 ALEFT=DSIN(ECAN(K))
RIGHT=(1./ECC)*(ECAN(K)-EMAN)
IF(ABS{ALEFT-RIGHT)-.0000001)6,6,9

9 ECAN(K)=ECANCK)-(ALEFT-RIGHT)/(DCOS(ECANCK) )-1./E CC)
GO TO 14

6 RAD=AXSS-AXSS*ECC*DCOS(CECAN CK))
ALT (K)=RAD-RPLAN
VEL(K)=EMU*DSQRT C(2./RAD)-( 1./AXSS))

lo TEE=TEE+150.o
WRITE(6,3)

3 FORMAT( 2X,4HTIME,5X,8HALT ITUDE,5X,8HDELTA Hi ,5X%8HDELTA H2 ,3X,
111HECC ANOMALY97X,4HV/VP,/1)
MxN-4
CONT=0*0
DO 13 L=1,M
DELTA=ALT( L)-ALT(L+2)
DELTB-ALT (L+2 )-ALT CL-4)
ECA=ECANCL )*57#2957795D0
VELO;VELCL)/VELC 1)
WRIT (6#4) CONTALTCL),DELTADELTBECAVELO

4 FORMAT(:6*195Fl3*3)
13 CONT=CON4T+2*5

12 AXSS=AXSS+1000*00
30 STOP

END
SEOF
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AXIS ECCENTRICITY PERIOD

- .105000.0003 . 0.9068 237.0566

TIME ALTITUDE DELTA HI DELTA H2 ECC ANOMOLY V/VP

0. 6345.827 -26.688 -79.475 0. 1.000
2.5 6352.508 -5-3.228 -105.291 09679 10000
5.0 6372.515 -79.475 -130.547 1.357 0.999
1.3.' -6465.037 -105.291 -155.128 2.033 0.907
10.0 6451.991 -130.547 -178.933 2.70u 0.994
1"2.5 6511.028 -155.128 -201.875 3.376 0.991
15.0 6582e538 -178*933 -223.884 4041 0.988
17.5* 66669156 -201.875 -244.906 4.701 0.983
20o0 6761.471 -223.884 -264.902 5356 0.978
22.5' '6864.631~ -244.;406 -283.850 6.004 6.473
25.0 6985.355 -264.902 -301.739 6.644 0.967
21.5 7112.937 -283*850 -318.570 70278 0.961
3000 7250e257 -301*739 -334.355 7.9G3 0.955
32.5-- 7396.787 -318.570 -349.115 8.521 0*948
35.0 7551.996 -334.355 -362.878 9*130 0.941
37.5 - 715.356 '- 34j9'15 -375.677 9.730 0 t933
40.0 7886*350 -362.878 -387.550 10.321 0:926
4:2- 8064.471 -375.677 -398.539 10.903 0.918
45.0 8249.228 -38r.550 -4189686 11.476 0.911
4r'- 8440.148 -398.539 -418.035 12.C39 0.903
50.0 8636.778 -408.686 -426*630 12.594 0,895
~5 38863-gt.6 -4i8o.05 -434.~517 13 o14ti
55.0 9045*464 -426*630 -441.737 13.676 00879
575 9256.722 -434.517 -448.334 14.204 0.872
60.0 9472.094 -441.737 -454.347 14.723 3.864
l " 9691.239 -448.334 -4590816 15.233 0.856
65.0 9913,832 -454.347 -464.778 15.735 0.848
670.5 1013N.512 - -4540816 -469.268 16.228" 0.841
70.0 10368.178 -464.778 -473.320 16.714 0*833
72.5 10599.388 -469.268 -476.964 17.191 0.826
75.0 10832.956 -473.320 -480.231 17.660 0.819
77.5 11068.656 -476.964 -483.148 18.122 0.812
80.0 11306.276 -480.231 -485.740 18.576 0.804
j-8.5" 11545.620 -483.148 -488,032 19C23 00798
8500 11786.507 -485.740 -490.045 19.463 0.791
87.5 12028.767 -488.032 -491o802 19.896 00784
90.0 12272.246 -490.045 -493.321 209322 0.777
92.5 12516.799 -491,802 -494.620 20.741 0.771
95.0 12762.292 -493.321 -495.715 21.155 0*765
9"-5 1680.101 -494.620 -4960622 21.562 00758
100.0 13255.613 -495.715 -497o356 21*962 0.752
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Appendix B

Derivation of Equations for Geometric
Elements Usin k and J

The following notation is used in the derivation:

r = vehicle position vector

x,y,z = coordinates of vehicle

r= Irl

= radial velocity

radial acceleration

AA

i,j,k = unit vectors in x, y, z directions

= earth gravitational constant

S = Ir = magnitude of vehicle velocity

a - semimajor axis

E = eccentric anomaly

e = eccentricity

e = true anomaly

£ = semilatu rectum

h = angular momentum

192
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Starting with

r2  x 2 + y 2 + z 2  (B-1)

and differentiating with respect to time obtain

rr = xx + yy + zz (B-2)

Taking the derivative of rr leads to

2 +r = (x+ yy + z) + (x2 + y 2 + z 2) (B-3)

Now x2 + y 2 +z 2  = g2 and

S= -lr/r 3  , y -- py/r 3  , z = -pz/r 3  (B-4)

then

- 2 ' 3(x2+y2 + z2)
r3

j2 __ (B-5)
r

From the energy equation

+ r -(B-6)

j r r+ (B-7)r a r

r2+r = R - U (B-8)
r a
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Therefore

a =(B-9)

r

a relatively simple expression for the semimajor axis a.

Two more expressions are required to obtain the eccentricity and

eccentric anomaly. The first expression is the equation of the

conic section

r = a (- e cos E) (B-10)

from which

e cos E = i(B-)
a

The second expression is derived from the conic section equation

involving the true anomaly 0

r = + e cos 6 (B-12)

where k is the semilatus rectum.

The first derivative yields r

k e (sin e) (-3
(I + e cos 0)2 (B-13)
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then multiplying and dividing by k

Z = 2 e (sin e) e r2 e sin 0 (B-14)

(1 + e cos 6)2

However, r2 0 is the angular momentum per unit mass, i.e.,

h = r 2 8 = (B-15)

so

fit e sin e = e sin (B-16)

from which

sin = F! (B-17)
e

The orbit plane coordinate system is shown in Fig. 45. In this

Auxiliary
Circle Yw

;Ellip~se_

ae

Fig. 45

Orbit Plane Coordinate System
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coordinate system

yw r sinG 0 (B-18)

and als.,

yw = a w'-e 2 sin E (B-19)

then

a /i -e 2s in E e (B-20)

For an ellipse, k. a (1 -e 2), therefore

"avr e2sin E e r/T~ (B-21)

then

e sin E r r (B-22)

The two equations for e and E are

rre sin E (B-23)

"ecos E I - (B-24)
a

Dividing

tan E =~ (a r) (B-25)
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from which E can be determined. Note that if r is positive, the radial

velocity is away from the focus and E is less than 1800. Knowing E,

the eccentricity may be determined from either Eq (B-23) or (B-24).

The expression for cos 6 for the parabolic case is easily

derived. Since the total velocity can be determined, i.e.,

j2 + j2 + r (B-26)
r

and the radial velocity " is known, the transversal velocity r6

must be

(r6) 2 = 2 - 2 + +r (B-27)
r

The angular momentum h is then

h = r (r)-= r R + r (B-28)Vr

h2 = rp + r3 i (B-29)

Since h2 = By

S£= r+ r 3 . 3-0

r -+5r (B-30)

The general equation of the parabola

r - 1 + cos 8 (-31)
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yields yl

cos e -1 (B-32) "
r

/ ,

and substituting the expression for k,.

r ,"
cor2 (B-33)/
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/ / Appendix C
/ /

The Error Involved in Functions
of Several Variables

Suppose that U = f(x,y) is a continuously differentiable function

on qome set of values of the arguments x and y. Suppose x and y are

replaced by their appr~ximate values a and b. Then the approximate

value of the function is

/ / ,u = f(4,b) (C-1)

/

I
Let Aa and Ab be the errors in the arguments, i.e.,

I

A = a+ Aa , B = b + Ab (C-2)

where A and B are the exact values of the arguments. The exact value

of th function is then
+ /

U = f(a + Aa , b + Ab ) (C-3)

Using Taylor's theorem for functions of two variables

U = f(a,b) + Aa axx + Ab x aRx~a [ TYJx=a

y=b y=b

2I

+ Aa a + Ab  f(x'Y)x=a +

y=b (C-4)
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Assuming the errors are small and dropping the terms containing squares

of errors

A- f(a,b) ~ A + fl a~ (C-5)
y=b y=b

where Au represents an approximate value of the error (since only the

first two terms of the expansion were retained). Then

lAul <- I x=a IAal + kylxa +Abi (0-6)

y=b y~b

Now let Eu, Ea, and Eb be the maximum absolute values of error.

Then

Eu-II Ea + 'f b(0-7)E a x x=a 3Yx=a

y=b y=b '

Given the maximum errors of the arguments of a function, the maximum

error in the value of the functi~i can be obtained. If Ea and Eb are ]
unknown, the conditions necessary to minimize the total error can

still be obtained by examining the partial derivatives Df/3x and

af/Dy. The derivation can be extended to functions of more than two

variables with analogous results. This derivation and further support-

ing material may be found in Ref 20:34.
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Appendix D

Derivation of Equations for True
Anomaly Determination

Figure 46, an illustration of the vehicle's path across the

celestial sphere, will be used in the derivation to follow.

z

Celestial Sphere

d

201c

Fig. 46
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From the spherical triangles bcd and acd

Cos *2 = Cos O Cos (AGs)* (D-l)

Cos I = Cos Co Cos (AG + Aes)* (D-2)

where A s =e s - 02 and A6 = 62 - 01.

Dividing the above equations yields

Cos *1 - Cos (AGs + AG) (D-3)

Cos Cos Ae
B

which reduces to

tan AGs = cot AG - cos *i sec *2 csc AG (D-4)

The angles *1 and *2 can be obtained by direct measurement or by the

vector dot products

rI = cos * 1

°r2  = cos *2 (D-5)

In polar coordinates, the dot products become

Cos 4)i = Cos 61 Cos 6s cos (al - as) + sin 61 sin 6s

CoB *2 = Cos 2 Cos 6s cos (a2 - as) + sin 62 sin 6s  (D-6)

* -* is termed "minimum coaltitude" in Ref 17:46. j
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By direct measurement, the angles 1 and 2 can be determined from

= 1800 - (ys + A/2) (D-7)

as can be seen from Fig. 26.

The angle Ae represents the true anomaly difference between
A A

rI and r2 . The vector dot product yields

cos AO = rxl rx2 + r y ry2 + rzl rz2  (D-8)

or

Cos A8 = cos 61 cos 62 Cos (a2 - a + sin 6, sin 62 (D-9)

All of the quantities appearing in Eq (D-4) can therefore be evaluated

and AOs can be determined. With AOs known for one position, the
V

angle 'o can be calculated from

Cos =Oco o=cos 8 < <o 9 0  (D-10)

and this angle remains constant. Then for any subsequent measurement

using the same star

cos A s = cos = - cos (ys + A/2) (D-11)
Cos o cos o
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Appendix E

Equations for CalculatingE, F, and k

This Appendix gives the equations for calculating E, F, and k for

use in the Hamer method of range determination.

204



GA/AE/69-1

The angles E and F (see Fig. 47), as well as the value k, pertain-

ing to a refe:ence trajectory can be pre-calculated for any given star

with known direction cosines 1, m, and n.

To Star

1 ,,. ...V e h i c l e

Instntaneous Earth-
Moon-Vehicle Plane

rev

~Moon

Earth

Fig. 47

Illustration Showing Vectors
b and h (From Ref 8:23)

The angle F, which is the angle measured from the vehicle between

the lines-of-sight to a star and a body center (earth, for example),

is obtained from the dot product of the position vectors of the earth

center and star so that

~Xe +m Yv + n Zev

cos F = + ev (00 < F < 1800) (E-1):
rev

By defining a vector h perpendicular to the instantaneous earth-moon-

vehicle plane, the angle E, which is the angle between the line-of-
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sight to a star and its projection in this plane, is obtained from the

dot product of the vector h and the unit position vector of the star

giving

s E hx + m hY + n hz (E-2)
sin E = (E2

h

where the absolute value can be used such that 0* < R < 90* and where

the values for h , hy, and h are obtained from the cross product f

the position vectors of the earth and moon centers. Thus,

hx =Yev Z - Zev Ymv

y ev mv ev mv

h x y Ye\X

z ev mv ev'mv '(E'3)

and

h = (hx2%+ h2 + hz2)I/2 \(E-4)

The sign of the quantity k in Eq . eteimined by the
position of the h rp ththr

The sign is positive (tetative) if, as viewed froi the dire~tion of

h, the projection of the 1ite t" the star :Lh the 'instantaneous

e~rth-moon-vehicle plane is thb right (left) of the earth-vehicle

line. As shown in Fig.' 47, the relative direcdtions of these two

lines at give time along a reference trajectory can be determined

by ft st din a vector b which is perpendicular to the plane

' 206
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containing the vectors rev and h.

The vector b is obtained from the cross product of the vectors

r and h such that the components of b are given by
ev

bx= yev h z Zev hy

b = z h -x h
y ev x ev z

b = x h -y h
z ev y y ev x (E-5)

where the values of h x, hy, and hz are given in Eq (E-3). Next, the

dot product of the unit position vector of the star and the vector

will yield the component of the star vector along the vector b which is

given by the, term (k b + m b + n b )/b. If this term is positive,x y z

the projection of the unit star vector in the instantaneous earth-moon-

vehicle plane is to the right of the earth-vehicle line so that the

quantity k is given as

kb +mb +nb
k x z (E-6)

It b x + m by + n bzI

The quantity k is, of course, always either plus or minus one.

207



GA/AE/69-1

VITA

Roger Charles Horrigan was born in hi-

JIM. He graduated from Brooklyn High School, Brooklyn, Iowa in

1953 and entered Iowa State University where he majored in Mechanical

Engineering. After graduating with a Bachelor of Science degree in

1957, he was employedby General Telephone Laboratories, Chicago,

Illinois, before entering the United States Air Force in 1958. After

completing pilot training, he was assigned to B-47 aircraft at Lake

Charles, Louisiana. Before coming to the Air Force Institute of I
Technology, he served as an Aircraft Commander in B-52 aircraft at

Ellsworth Air Force Base, South Dakota. He is a member of the follow-

ing societies: Phi Eta Sigma, Pi Tau Sigma, Phi Kappa Phi, and Tau I
Beta Pi.

Permanent address:

This thesis was typed by Mrs. Mary E. Mahaffey

208



GA/AE/69-1

VITA

Richard C. Walsh was born on _

N He graduated from Lowrey High School, Dearborn, Michigan

in 1959 and entered the Detroit Institute of Technology where be

majored in Electrical Engineering until June 1960, when he entered

the United States Air Force Academy, at Colorado Springs, Colorado.

He graduated with a Bachelor of Science degree in International

Affairs in June 1964. He was stationed at Williams Air Force Base,

Arizona from that time until his entry into the Air Force Institute

of Technology. He served as Executive Officer oi the 3525th

Organizational Maintenance Squadron while at Williams Air Force Base.

He is a member of Tau Beta Pi.

Permanent add1ess:

This thesis was typed by Mrs. Mary E. Mahaffey

I..

209

-MMUNWo



Unclassified
Security ',?assification

DOCUMENT CONTROL DATA- R&D
(.Security ctasuiflcetion of title, body of abhtract end Indexing annotatlon -nuet be entered vhen the overall report i. claeslled)

I. ORIGINATIN G ACTIVITY (Corporete author) 2". XKPORT SECURITY C LASSIFICATION

Air Force Institute of Technology Unlassified
Wright-Patterson Air Force Base, Ohio, 45433 2b GROUP

3. REPORT TITLE

Manual Astronaut Navigation

4. DESCRIPTIVE NOTES (2"ype of report and Inclueive dotes)

AFIT Thesis
S. AUTHOR(S) (Let name. flrt name, Initial)

Roger C. Horrigan and Richard C. Walsh
Major USAF Captain USAF

6. REPORT DATE 74.. TOTAL NO. OF PAGES7b NO. OF REFS

June 1969 I 229 I 24
8a. CONTRACT OR GRANT NO. 3a. ORIGINATOR'S RFPORT NUMBER(S)

b. ,P.JECT NO. GA/AE/69-1

C. N/A Sb. OTHER REPORT NO(S) (Any other numbers that may be &sign ed

d.

10. AVA ILASILITY/LIMITATION NOTICES This document is subject to special export controls arti
each transmittal to foreign governments or foreign nationals may be made only with
prior approval of the Dean of Engineering, Air Force Institute of Technology
(AFIT-SE), Wright-Patterson Air Force Base, Ohio, 45433.
I. SUPPLEMENTARY NOTES 12. SPONSORIWG MILITARY ACTIVITY

i 3 \ABSTRACT
J Th
This report presents selected methods, procedures, and equipment that form a
basis for the development of a flexible manual space navigation system. These
include a graphical method of eccentricity determination, geometric element
determination by numerical differentiation of range measurements, differential
correction of orbital elements, manual position fix4' orientation elements
determination, improved optical ranging, and the po uses of back-up
inertial platforms, hand-held mechanical calculators. ,nd hand-held, battery
operated, computers. Numerical examples and error aialyses are also presented.

q

D FORM 1A7/I" -'-"D O i 0 A 17 Unclassified
Security Classification



Unclassified
Security Classification ,,

14. LINK A LINK 8 LINK 0
KEY WORDS ROLK WT ROLE~ WT ROL WT

Manual Space Navigation

Space Navigation

Orbit Determination

Manual Orbit Determination

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the nange and address imposed by security classification, using st&ndard statements
of the contractor, subcontractor, grantee, Department of De- such as:
tense activity or other organization (corporate author) issuing (1) "Qualified requesters may obtain copies of this
the report. report from DDC."

2a. REPORT SECUIqTY CLASSIFICATION: Enter the over- (2) "Foreign announcement and dissemination of this
all security classification of the report. Indicate whether report by DDC is not authorized."
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations. (3) "U. 4. Government agencies may obtain copies of~this report directly from DDC. Other qualifed DDC
2b. GROUP: Automatic downgrading is specified in DoD Di- users ohall request through 
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have boeen used for Group 3 and Group 4 'as author- (4) "1U. S. military agencies may obtain copies of this
ized. report directly from DDC. Other qualified users

3. REPORT TITLE: Ether the complete report title in all shall request through 0
capital letters. Titles in al cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, sliw title classification in all capitals in parenthesis (S) "All distribution of this report is controlled. Qual-

immediately following the title. ified DDC usem shall request through

4. DESCRIPTIVE NOTES* If appropriate, enter the type of _ _b__ _P

report, e.g., interim, progress, summary, annual, or final. If the report has becn furnished to the Office of Technical
Give the inch sive dates when a specific reporting period is Services, Department of Commerce, for 3ale to the public, indi-
covered. --ate this fact and enter the price, if known.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on 1L -SUPPLEMENTARY NOTES: Use for additional explana-
or in the report. Enter last name, first name, middle initial, tory notes.
If military, show rank and branch of service. The name of
the principal u.thor is an absolute minimum requirement. 12. SPONSO: irG MILITARY ACTIVITY: Enter the name of

the departmental project office or laboratory sponsoring (pay.

month, year; or month, year. If more than one date appears i 3. A r A ese r an abs t In glu e ad fa tua

on the report, use date of publication. M ABSTRACT: Enter an abstract giving a brief and factual7. Tsummary of the document indicative of the report, even though
7a. TOTAL NUMBER OF PAGES: The total page count it may also appear elsewhere ur the body of the technical re-
should follow normal pagination procedures, i.e., enter the it I as o a lspwce i n r equ d y o theut in e -
number of par.es containing information, be attached.

-7b, NUMBER OF REFERENCES Enter the total number of It is highly desirable that the abstract of classified reports
references cited in the report. be unclassified. Each paragraph of the abstiact shall end with

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-

the applicable number of the contract or grant under which formation in the paragraph, represented as (TS). (S), (C), or (U)
the report was written. There is no limitation on lhe length of tho abstract..How-

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate ever, the suggested length is from 150 to 225 words.
military department identification, stich as project number,
subproject number, system numbers, task number, etc. 14. KEY WORDS: Key words are technically meaningful terms

or short phrases that characterize a report and may be used as
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- riidex entries for cataloging the report. Key words must be
-.ial report number by which the document will be identified selected so that no security classificetion is required. Identi-
and controlled by the originating activity. This number must fiers. such as ejuipment model designation, trade name, military

be unique to this teport. project cod. name, geographic location, may be used as key

9b. OTHER REPORT NUMBER(S): If the report has been words but will be followed by an indication of technical con-

assigned any other report numbers (either by the originetor text. The assignment of links, rles, and weights is optional.

or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report other than those

Unclassified

AFLC-WPAF-OCT 66 6M Security Classification


