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Preface

Our original aspiration with regard to 'Manual Astronaut Navi~
gation" was to prepare a set of charts, tables, and simplified proce-
dures the astronaut could use in solving the orbit determination
problem. But we soon learned that a great deal of background theory
needed development or refinement before such a flight manual approach
could be justified. Our original plan of attack was therefore
changed from preparing a flight manual to research and presentation of
a variety of thecretical approaches to the manual space navigation
problem. Our thesis more closely resembles a textbook approach rather
than the originally intended flight manual.

We have incorporated and presented the theoretical development of
a number of topics applicable to the problem of "Manual Space Navi-
gation." We claim no truly original ideas or significant "break-
throughs." In fact, most of the concepts we have built upon have
been known for centuries. Only recently, though, has man found himself
making observations from the vehicle for which the orbit is desired.
In the past, the observation point has been rigidly constrained to
the surface of the earth. With the new and exciting viewpoint, many
of the classical orbit determination methods assume new and interesting
possibilities. We hope our research points out some of the many
advantages the astronaut has in his position as an observer aboard the

spacecraft.
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Our sincere gratitude is extended to all who assisted and encour-
aged us in the preparation of this report. Our especial thanks is
rendered to Professor Bielkowicz, .r thesis advisor, for his patience
in leading us through several courses in astrodynamics and then allow-
ing us to pursue a research topic under his guidance. Our "thank you"
is also due our families for their help and encouragement in the

preparation of this report.

Roger C. Horrigan
Richard C. Walsh
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Abstract

Manual Astronaut Navigation, onboard orbit determination inde-
pendent of primary system computers, must be developed to insure the
safety of future manned space flight. This report presents selected
methods, procedures, and equipment that form a basis from which a
flexible operational manual navigation system may eventually be
developed.

The Delta-H method of graphically determining eccentricity is
simple and potentially accurate. Prepared charts are entered with
two changes in altitude, or "Delta-H's," and eccentricity is read
directly. An estimate of the size of the orbit, as represented by
the major axis, must be made to allow selection of the correct chart.

The geometric elements of the orbit can be obtained by use of
numerical differentiation of a series of range measurements to obtain
radial velocity and radial acceleration. This procedure is limited
by the effects of truncation and measurement errors. Differential
correction of the orbital elements can be made if a back-up computer
is available to handle the computational load. ‘

The three-dimensional position fix opens the door to many orbit
determination possibilities. Three fixes input to the Gibbs method
is the most promising investigated. . This procedure may be pearformed

by hand or with a small back-up computer.

Xviii




pdBipsanntd daniv

0 A . 1o R et I <

GA/AE/69-1

If the geumetric elements are known, the orientation elements
may be obtained without resorting to lengthy iterative techniques.
Knowledge of angular positions at two times coupled with the true
anomaly at one of those times is all that is required.

Accurate ranging is essential in most orbit determinatiun schemes.
A reference trajectory may be employed with linear perturbation
techniques to obtain a good estimate of spacecraft range. Lineariza-
tion is valid for relatively large deviations from the reference
trajectory. For midcourse trajectories, this method is vastly
superior to methods incorporating angular diameter measurements.

Orbit determination pfécedures exist that do not depend upon
range measurements. The complete orbit may be obtained through
knowledge of three angular positions and three true anomaly rates.

To date, very little has been done in the area of manual naviga-
tion equipmeﬁt design. "Aids" to manual navigation such as back-up
inertial platforms, hand-held mechanical calculators, and battery
operated, hand-held computers are necessary to optimize the performance
of future manual navigation systems.

The manual navigation problem can be solved by comtining the

proper methods, procedures; and equipment.
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«

MANUAL ASTRONAUT NAVIGATION

¢
.

I. Introduction

Background "

The dramatic success of the Apollo 8 lunar mission bas broughi,

this nation to the threshold of an age of interplanetary space travel. -
) o
The earth orbits of projects Mercury and Gemini, once considerad with

awe, are now classified as simple "parking" orbits from whick manned Y

vehicles, such as Apollo, will depart upon loag midcourse trajecto-

DY

ries to the moon and planets., As in the flight of Apollo 8; the ;”

success of these missions will depend heavily upcn accurate and

s

o0

reliable navigation and guidance. In the event of primaryréystem°
failure, an adequate back-up system mrst be available to a110w0£tsaféﬁ
return to earth. Manual navigation and guidance procedures Should:}g,
provided to eliminate all dependeance on primary system meputgrs.é
Such prrocedures would involve use of equipment such as the sg}ce .

stadimeter, a space sextant, prepared tables and charts, and'hgndfheld

computing devices. " v

The Problem -
This report is intended to be a continuation of the work accom-
PN
plished by Captains Richard R. Schehr and Patrick J. Smith in thely
thesis, "Manual Astronaut Navigation: Apollo Mission Applicatioé§,"':»i
(Ref 17). The term "navigation" is defined as the déterminationlof'
any six independant parameters which specify uniquely the geometrig |

’

qualities of an orbit, or trajectory, and its orientation in iner&ial N :

1 -
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space. '"Guidance" is defined as the subsequent determination of the
velocity correction vector necessary to insure the arrival of the
spacecraft at a predetermined point. "Manual" navigation, the problem
attacked in this thesis, is defined as the onboard determination of
the orbitél parameters using procedures and equipment t;tally inde-

pendent of the primary system computer.

Scepe

The previous thesis dealt with manual navigation in low altitude,

~
' ~

nearx-circular earth and lunar orbits. This thesis will explore general
manual navigation techniques applicable to midcourse trajectories such
as the traaslunar phase of the Apollo mission. No attempt is made to
consolidate the procedures described in an operational "flight manual"
presentation, as was done by Captains Schehr and Smith. The principal
objectives are to extend and improve upon their methods, and to
investigate other promising manual navigation techniques. Sources of
error are discussed, and some error analyses are presented. Numerical
examples are provided, wherever possible, to enhance the theoretical

development.

Assumptions

The primary assumption made in this thesis is that of restricted
two~body motion. This implies that:
1. The mass of the vehicle is negligible when compared
to the mass of the attracting body.
2. The gravity field of the attracting body is ideal,

inverse-square, and central.
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The only other assumption made is that all measurements indicated can
be performed.

The first assumption allows all orbits and trajectories to be
: considered as conic sections. This assumption is valid for near planet
orbits and the major part of midcourse tvajectories. The second
assumption is, of course, a practical necessity in any theoretical

discussion of manual navigation.

I

3 The reader is assumed familiar with the basics of astrodynamics
and celestial mechanics.

T Organization

‘ Each of Chapters II through VII in this report deals with an

I . independent method of obtaining one or more of the six orbital param-

eters necessary for solution of the manual navigation problem. These

parameters, or elements, are divided into twc sets: the geometric
parameters,
e - eccentricity N
a - semimajor axis
t - time from perifocus
and the orientation parameters,
i - ineclination of the orbital plane i
2 - longitude of the ascending node

w — argument of perifocus

Chapter VIII deals with an improved method of optical ranging, and

o “'AW'

Chapter IX is a discussion of certain "aids" to manual navigation

such as battery operated, hand-held computers.
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Discussion
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As stated previously, this is not a "flight manual." No "best"

set of procedures is determined. It will be seen that this determina-

tion depends upon the answers to several questions. Most important

are:
1.
2.
3.
4,
This thesis

What back-up computational tools are available?

What types of measurements are possible?

How much time is allowable for the completion of the
procedures?

What is the required accuracy?

forms a basis from which an operational flight manual may

eventually be developed once the above questions have been answered.
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II. The Delta-H Method

Introduction
The cornerstone of the geometric parameters determination for
low eccentricity elliptical orbits in the thesis, 'Manual Astronaut

3 Navigation: Apollo Mission Applications," by Captains Schehr and

of b

Smith, is what they labeled the '"Delta-H" method of obtaining orbital

eccentricity. This is the first of three independent geometric

elements obtained in their approach to the manual navigation problem.

The other two parameters are the time from peripoint and the period.
v In their scheme, once eccentricity is determined it is used to obtain ;

graphically the ratio of time from peripoint to period. The period

is also determined graphically by a comparison with a zero eccentricity,

or circular, orbit.

As will be seen, the Delta~H method of obtaining orbital eccen- !
tricity, original to the aforementioned thesis, is relatively simple.
and can be sufficiently accurate. For this reason, and because the

Delta-H concept was nof. fully developed due to lack of time, this

chapter is devoted primarily to an investigation of this method of

obtaining orbital eccentricity. Particularly, an extension of the

previocus work to highly eccentric geccentric ellipses such as the

iatand

translunar phase of the Apollo mission is accomplished as a follow-

on to the original low eccentricity development.

leamy
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Background

The Delta-H method of eccentricity determination involves the f
!
$
!

measurement of three consecutive altitudes (or ranges) separated by

equal time intervals. The second altitude (range) is subtracted from

the first, and the third from the second, to give two changes in . ﬁ

altitude, or '"Delta-H's." By definition 3 ;

AH1 = h, - h (2-1)

2
and
AH2 = h, - h (2-2)

In their investigation, Captains Schehr and Smith discovered that

if the changes in altitude were taken in pairs successively along the

L mm s s ue

ellipse and plotted as ordinate and abscissa in an orthogonal axis .
system, curves of constant eccentricity resulted (Ref 17:18). Figure

1 is an example of one of their Delta-H plots. To ébtain eccentricity,

the plot is entered with AHl and AH2 and eccentricity is read directly.

The curves were generated for time intervals of 5 and 15 minutes along é
geocentric and selenocentric orbits. Only very low eccentricities

were considered; from .002 to .016 in geocentric orbit, and from .01

to .08 in selenocentric orbit. Most importantly, for the range of

major axes considered, i.e., from planet radius plus 80 nautical miles " !

LI T——

to planet radius plus 170 nautical miles, the curves appeared to be |

v

invariant. This has since been confirmed by the authoxs of this thesis

as well as by the Universal Technology Corporation working under Air

o i m———— e v e

Force contract. The apparent insensitivity to the size of the orbit,
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as represented by the major
axils, means that relatively
few plots are necessary to
cover a sizable range of
orbits. This advantage
makes the Delta-H method
more practical than the
previously developed graph-
ical approaches (Ref 17:18).
Operationally, the accuracy
of the Delta-H method de-~
pends upon the accuracies
of timing and altitude (or
range) measurement.

These,

in turn, depend upon the

()

AR,

H 3 o1 I 1 l 'i 2
0 =30 «20 =0
AN ()

Fig. 1

Typical Low Eccentricity, Low
Altitude Delta-H Plot
(From Ref 17:126)

hardware available, the skill of the user, and the inherent accuracy

of the measurement procedure.

Within the scope of the problem defined, the Delta-H method

appeared to Captains Schehr and Smith to be a simple, direct, and

potentially accurate approach to obtaining orbital eccentricity man-

ually. Motivated by their work, the rest of this chapter deals with

the generation of Delta-H plots, an investigation of their properties,

and a discussion of the possibilities of using them in a high eccen-

tricity manual navigation scheme.
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Data Generation

A double-precision computer program was written to provide accurate
reference data for use in investigating the Delta-H method and other
manual navigation techniques to be described in later chapters. The
computer graphs the Delta-H data via a tape-driven digital plotter.
Details are provided here to minimize the amount of backtracking
necessary in future follow-on work.

Theory. As stated in Chapter I, a two-body approach is taken in
this thesis. The equations used in the development of the computer

program are

/2 (2-3)
n = 2-3
a3/,
. 2n
T o= 3 (2-4)
2 - _2.-!'_ -
\ u(r 5 (2-5)
h = r-R (2-6)
M = nt = E~e sinE -7
r = a{l - e cos E) (2-8)
where
n = mean motion
4 = gravitational comstant

a = semimajor axis
T = period

V = total velocityz

it
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e = eccentricity
r = radial distance

h = altitude

M = mean anomaly

t = time from peripoint

E = eccentric anomaly measured from peripoint
R = planet radius

It is desired to have the computer solve for altitude as a function
of semimajor axis, eccentricity, and time from peripoint. This involves
the solution of Eq (2-7) for eccentric anomaly as a function of the
same three variables, and then Eq (2-8) for radial distance. Altitude
is then obtained from Eq (Z-6). Difficulties arise because Eq (2-7),
Kepler's equation, is transcendental in eccentric anomaly. This
problem is not serious for low eccentricities since many excellent
approximace solutions have been formulated (Ref 4:41). Most of these
solutions are in the form of series expansions. Captains Schehr and
Smith used the first three terms of a series expansion in powers of
eccentricity about the mean anomaly (Ref 17:17). This series diverges
for values of eccentricity above .662743 (Ref 11:I1I-5). Consequently,
to investigate orbits with eccentricities above .9, a different
approach had to be formulated. Further research disclosed that all
series expansions for eccentric anomaly diverge in this regiomn, so it
was decided to employ an iterative procedure based upon the Newton

method of approximations. Rearranging Eq (2-7)

sin(E) = (E - M) (2-7a)

® e
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or

£(E)

sin E - %-(E - M) (2-7b)

When Eq (2-7) is satisfied, £(E) is identically zero. An estimate of

eccentric anomaly is made to start the iteration. Then, the Newton

mothod is employed to obtain a better estimate, or second approxima-

tion.
- R 1 ¢))
B B Tim
dE
1 (2-9)
or
1
sin El - e (El - M)
E, = E, -

1
cos E; " (2-9a)

This procedure is repeated until‘f(E) is zero. The Newton method is
generalized in the text "Astrodynamics--Advanced Topics and Applica-
tions," by Baker (Ref 3:26). Since the altitude computaticns start at
the peripoint, the initial value of eccentric anomaly is zero.
Altitudes are to be computed for every 2.5 minutes thereafter. This
short time interval makes the final value of eccentric anomaly at one
time an excellent initial value for the next. Also, once the desired
sltitudes are obtained., they can be combined in pairs to give
Delta-H's for timing intervals of any integral multiple of 2.5 minvtes.
Thus, the effect of the timing interval can be investigated and the

number of iterations for convergence iz kept small.

10
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The Computer Program. The computer program mentioned at the begin-

ning of this section is reproduced in Appendix A. The statements
required for automatic plotting are not included since they complicate
the program considerably and are not essential for an‘understanding of
the logic involved. Input to the program are semimajor axis, eccen-
tricity, and time from peripoint. The output includes period, altitude,
AH1, AH2, eccentric anomaly, and the ratio of velocity to the velocity

at peripoint.

High Eccentricity Delta-H Plots

The translunar phase of the Apollo mission is a geocentric ellipse
with a typical eccentricity of .9668 and an apogee distance of approxi-~
mateiy 60 earth r;dii (Ref 1). These figures are used as a point of
departure in this section.

The computer was programmed to generate geocentric Delta-H plots
for seven values of eccentricity for each of seven values of semimajor
axis. Thus, the effect of the semimajor axis can be isolated and
studied. The eccentricity was initialized at .9068 and incremented by 3
.0100 until the .9668 value was attained. The semimajor axis was
initialized at 105,000 nautical miles and incremented by 1,000 nautical
miles until a final value of 111,000 nautical miles was attained. This A
set of values for eccentricity and semimajor axis gives a minimum 1
apogee distance of approximately 58 earth radii and a maximum of )

approximately 63 earth radii, since at apogee
r = a(l+e) (2~10) .

from Eq (2-8). The timing interval was set at 15 minutes with the

11
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first altitnde determined at perigee and the last 3.5 hours from perigee.

Yrom the point of view of the Apollo mission, this represents the
portion of the translunar coast phase prior to the first scheduled
midcourse correction (Ref 1). To insure a sufficient number of data
points for accurate curve plotting, the Delta-H pailrs were computed
using 2.5 minute displacements of the three altitudes, i.e., the first
pair consists of altitudes computed at times O, 15, and 30 minutes; the
second pair consists of altitudes computed at times 2.5, 17.5, and

32.5 minutes, and so on. Figure 2 is one of the resulting Delta-H
plots. (To keep the data points in the first quadrant, -AHl is plotted
versus ~AH2.) The apparent overlapping observed is highly undesirable
since it produces ambiguity for certain combinations of AH1 and AH2.
Clearly, the curves of constant eccentricity must be distinct every-
where for these plots to have any real value in a manual navigation
scheme. (NOTE: THE COMPUTER SCALES AUTOMATICALLY AND USES THE

NOTATION X 10! TO MEAN MULTIPLY THE NUMBER ON THE AXIS BY TEN. THIS

MUST BE KEPT IN MIND SINCE IT IS THE OPPOSITE OF WHAT IS USUALLY SEEN
IN ENGINEERING PRACTICE. THE LIBRARY SUBROUTINE WAS NOT ALTERED DUE
TO THE PROHIBITIVE COST OF RERUNNING THE PLOTS REFERRED TO IN THIS
CHAPTER.)

The Effect of the Timing Interval. Intuitively, it was felt that

perhaps the timing interval was too short to allow adequate '"sampling"
of the trajectories in the region of ambiguity. Working on this possi-
bility, the program was altered by increasing the timing interval from
15 minutes to 30 minutes. Figure 3 is the resulting plot for the same

semimajor axis as in Fig. 2. Scme improvement is noted in that the

12
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curves are generally better separated than those in the pre- ious plot.
The timing interval was changed to 60 minutes with the result shown

in Fig. 4. Complete separation is attained, which indicates that
regions of ambiguity can be eliminated by simply increasing the

timing interval, The effect of the timing intexrval on the high
eccentricity Delta-H plots, then, is to increase or decrease the rela-
tive curve separation as the timing interval is made correspondingly
larger or smaller.

The Effect of the Major Axis. As mentioned previously, Captains

Schehr and Smith found that their constant eccentricity curves appeared
to be invariant. However, the high eccentricity curves considered
here shift slowly as the major axis is changed. This is made apparent
by comparison of the plots in Figs. 5, 5a, and 5b with Fig. 4. As
the major axis is decreased, the curves shift slowly upward and to
the right. It is probable that Captains Schehr and Smith did not
encounter this dependence upon the major axis because of the limited
range of values investigated. In che present case, there must be a
change of 2,000 nautical miles in the major axis to materially affect
the Delta-H plots.

To help in establishing the general effect of the major axis on
these high eccentricity plots, several computer runs were made with
a variety of values of major axis. The conclusion drawn upon
examination of the results is that for high eccentricity ellipses
(e above .9); a variation of more than 1 per cent in the major axis
above or below a particular value is necessary to displace the

constant eccentricity curves a significant amount. The Delta-H

16
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plots shown in Figs 2 through 5b are considered typical.

The Analytic Approach

Attempts have been made to analyze and predict the behaviox of
the Delta-H curves mathematically. A general expression (valid for -
any eccentricity less than 1) relating the changes in altitude ﬁ
directly to the major axis, timing interval, and the eccentricity such

as

AH1 f(AH2,a,A0t,e) (2-11) ;

or

AH2 f(AHl,a,At,e) (2-11a) L :

has been sought, but all attempts at formulating such an expression
have failed due to the transceﬁdgntal nature of Kepler's equation
which links time to altitude via Eqs (2-6) through (?-8). With these
equations plus Eqs (2-1) and (2-2), it can be shown that, for alti- ' ' ;
tudes 1, 2, and 3 ’

ARl = ae(cos E; - cos E;) - 0H2 (2-12)

If z, e, At, and AH2 are specified, E; and E; can be obtained from

the simultaneous solution of

AHZ = ae(cos E; ~ cos Ez) {2-13)

and

IS S Sptro i

ndt = (E; - E,) - e(sin E; - sin Ey) (2~14) ' ;

P
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which yields Ez and E3, and then the solution of either
é ndt = (E, - E;) - e(sin E, - sin E;) (2-15)
or

2nAt = (E3 - El) - e(sin E; - sin El) (2-16)

which yields El‘ Therefore, Eq (2-12) can be solved for AHl given
A2, a, At, and e. First, however, El’ E,, and E3 must be obtained by
iteration. The necessity of taking this intermediate step seems to
preclude the possibility of obtaining an explicit relation such as

Eq (2-11) or (2-1la) for use jn a mathematical analysis. An empirical
approach has, therefore, beer taken in this chapter. The computer
program provides an implicit solution of Eq (2-12) so the individual

. effects of varying a, e, and At can be observed.

General Characteristics of the Delta-H Plot

R

To determine some general characteristics of the Delta~H plot,

15 computer runs were made for intermediate (.50 to .75) and low

(.01 to .10) values of eccentricity. Both regions were examined for
sensitivity to changes in the timing interval and the major axis.

Figure 6 is a plot for eccentricities ranging from .50 to .56
in increments of .0l. The timing interval is 15 minutes and the

semimajor axis is 106,000 nautical miles. Figures 7, 7a, and 7b are

i b

a set of plots for the same values of eccentricity, but with a 60
minute timing interval. The major axis differs from plot to plot by
P 2,000 nautical miles. These plots display typical intermediate

eccentricity characteristics. Their behavior is very similar to

21
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Fig., 7

Intermediate Eccentricity Delta-H Plot for

a = 106,000 WM With At = 60 Minutes
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that noted in the high eccentricity region.

Figures 8, 8a, and 8b are a typical set of low eccentricity plots.
Separation was again attained with a 60 minute timing interval. A
notable difference in the behavior of tbese plots lies in the lessened
effect of changes in the major axis. A change of more than 3 per cent
appears necessary to displace the curves a significant amount.

Conclusions. The general conclusions drawn are:

1. Curve separation for all eccentricities can be
controlled by changing the timing interval,
2. Cengsitivity to changes in the major axis is variable.
It appears that at low eccentricities, a change of
more than 3 per cent is necessary for significant
displacement, and in the high and intermediate
regions, a change of more than 1 per cent is necessary.
Conclusion 2 tends to confirm the supposition that Captains Schehr and
Smith failed to encounter the dependence upon the mgjor axis due to
the limited range of values investigated. They considered low eccen-
tricities and a maximum change of approximately 2 1/Z per cent in the
major axis.

While this has not been a comprehensive analysis of the Delta-H
plot characteristics (since such an analysis is beyond the scope of
this thesis), two important trends have been discovered in the effects
of the timing interval and the major axis. These trends will be us2d
as a basis for fitting the Delta~H method ¢f eccentricity determina-

tion into a high eccentricity manual navigation scheme.
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Discussion

It has been seen that the Delta-H plots are sensitive to changes
in the timing interval and the major axis. These sensitivities must
be taken into account and used to best advantage if the method is to
be extended beyond near circular parking orbits to midcourse
trajectories such as the translunar phase of the Apollo mission.

It would be unrealistic to 1. ‘it the Apollo midcourse problem
by assuming a small (* 1 per cent) variation in the major axis so
that only one Delta-H plot is mnecessary to cover each set of possible
eccentricities. An inflight emergency involving only moderate
deviations from the planned injection velocity could easily place the
actual major axis outside this range; see Eq (2-5). Therefore, a
practical manual scheme incorporating the Delta-H method would have
to include several plots for each set of eccentricities to assure
adequate coverage for such a contingency. A set such as the plots in
Figs. 4 thiough 5b would suffice for a 12,000 nautical mile range of
major axes, and additional plots could be cavried to increase this
coverage. The astronaut would have to know the major axis to within
2,000 nautical miles to choose the correct plot for accurate determi-
nation of the orbital eccentricity. Larger errors in the major axis
are tolerable if some uncertainty in the eccentricity is acceptable.
Careful inspection of Figs. 4 through 5b shows that if the major axis
is known to within plus or minus 6,000 nautical miles (about # 3
per cent), the uncertainty in the eccentricity is no greater than
approximately .003. This can be demonstrated by assuming a combina-

tion of AHl and AH2 and then entering each of the seven plots for an
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2stimate of the eccentricity. (If the central, or fourth, plot is
considered to be the correct plot, then this set represents a * 3
per cent variation from the actual major axis.) The difference
between the highest or lowest estimate and the true eccentricity is
in no case greater than .003. Therefore, this represents an upper
bound on the uncertainty in the eccentricity given that the error
in the major axis is within 6,000 nautical miles.

The errors assumed in the previous paragraph are considered to
be the result of inaccuracies in the method used to determine the

major axis. This does not include the effect of measurement errors.

Measurement errors, of course, affect both the determination of the 4

major axis and the two changes in altitude. It is essential that |

the range (or altitude) measurements be as accurate as possible.

However, it is evident from the relatively large changes in altit "=

noted in Figs. 4 through 5b that small errors can be absorbe. ch

little affect on the eccentricity determination as long as the major

axis is known to within the limits prescribed above. Also, an

advantage of the Delta-H method lies in the elimination of measure~

ment errors due to human bias. These errors tend to be self-

canceling (Ref 17:27). %
The major axis can be obtained from knowledge of the orbital

period; see Eq (2-14). The method used by Captains Schehr and

Smith is not applicable in this case since it assumes eccentricities

close to zero. More flexible methods of determining the major axis

are discussed later in this thesis. Once the major axis and the

eccentricity are obtained, they can be used to find the final

st
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geometric parameter, the time from peripoint to one of the measurements

from
t = E-esinE (2-17)
n
where
= -la-r _
E cos™" S—= (2-18)

and r is the range at the time of interest. If the cosine of E is
positive and the range is increasing, then E is less than 90 degrees.
If the range is decreasing, the angle is greater than 270 degrees, and
S0 on.

The curve separating efgect cf increasing the timing interval can
be used to generate Delta-H plots for eccentricity increments of .00l
or smaller, thereby improving the accuracy with which the graphs may
bé read. Figure 9 is a plot for a 90 minute timing interval, and

Fig. 10-is a portion of the same plot with .00l increments.

Sample Problem. The following is a sample calculation of the

eccentricity and time from peripoint on a known ellipse. The calcu~
lations were performed with a slide rule, standard trigonometric
tables, and a scratch pad. The errors introduced are assumed typical

for the measurements and methods involved.

a = 105,000 NM (NM for all distances)
e = ,9568
hy = 7245.584 at 50 minutes from perigee
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=2
il

15540,412 at 110 minutes from perigee

=
L}

3 22629.467 at 170 minutes from perigee

The assumed measurements, with errors, are

h1

i}

7300

=2
it

15650

=
n

22750

At 60 minutes

The assumed calculated major axis is 108,000 nautical miles.

- With this input data

AHl = h

!
=
[}

-8350

AHZ = h

1
=
i

~-7100

Entering the AH plot for a = 108,000 NM yields

e = ,9598
Then
1 a-~r
E1 = o8 !
ae
a-r = 97260
-~
ae = 103658

E, = cos ' (.9382)
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El = 20° 15' = .3534 radians (range increasing)
sin E1 = ,34612
n = .0254

r
)

r
[

Summary.

.0254

(.8346) (60) = 50.07 minutes from perigee

The positive and negative aspects of using the Delta-H

method in a high eccentricity scheme may be summarized as follows:

Positive Aspects

1.

2.

The computations required are simple.

An uncertainty of no more than about .003 in the
eccentricity is possible with a + 3 per cent error in
the estimate of the major axis.

Small measurement errors can be absorbed with little
adverse affect as long as the estimate of the major
axis is within the limits prescribed.

Human bias as a source of error is eliminated.

If an increased timing interval is acceptable, the
Delta-H cuxves can be separated enough to allow

eccentricity increments of .00l or smaller.

Negative Aspects

1.

A sufficient number of plots must be carried to assure

adequate coverage of possible orbits.
The major axis must be known to within # 1 per cent

of the actual value for accurate eccentricity

determination.
36
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3. Measurement inaccuracies can give totally erronecus
estimates of the eccentricity through erroxs in
a, AH1l and AH2,

4, The timing interval must be large enough to eliminate
ambiguity. Therefore, it may take two ox more hours

to obtain AHl1 and AH2.

All of these factors must be weighed before inclusion of the

Delta-H method in a high eccentricity manual navigation scheme.
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I1II. Geometric Paramesters from Numeyical Differentiation .

Introduction
The following geometric properties of an orbit can be obtained
‘from a set of timed range (or altitude) measurements:
1. the semimajor axis - a
2. the eccentricity =~ e
3. the eccentric anomaly E associated with a position
and time.
The range r is the vehicle's distance from the center of the earth.
The computation method considered in this chapter involves a numerical
differentiation to obtain the radial components of velocity and
acceleration r and Y. Once these quanticies have been obtained, the
geometric elements may be computed from the two-body orbite. equations.
A block diagram outlining the general procedure is shown in Fig. 11.
Knowledge of the eccentric anomaly E at a specific time t is

sufficient to relate position to time through Kepler's equation

E~esinE = M = (t - to)‘/ H? (3-1)
a

where M is the mean anomaly, t, the perifocus time, and u the earth's
gravitational constant. In this chapter, the eccentric anomaly at
its associated time will be considered as one of the orbital elements,

thus simplifying portions of the presentation.

38
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Obtain series of range
measurements from earth
- equal time intervals
between measurements

y

Numerically differentiate
to obtain r and r

4

Compute a

y

Compute E

4

Compute e

Fig. 11

Determination of Geometric
Orbital Parameters

Numerical Differentiation for é_and i

The radial velocity and radial acceleration can be obtained by
numerically differentiating a set of range measurements. Development

and tabulation of numerical differentiation formulas can be found in

et

any text on numerical analysis. 1In general, numerical differentiation
is achieved by using the first few terms of a series not wholly unlike
the familiar Tayior series. Table I is presented as a summary of
numerical differentiation formulas available for sets of range

. measurements having up to seven readings. The time interval between

readings is denoted by t.
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Orbit Determination -~ Geometric Elements

The following notation is introduced:

r = IEI = vehicle distance from earth center
B = earth gravitational constant

a = semimajor axis

E = eccentric anomaly

e = eccentricity

8 = true anomaly

The geometric elements are determined from r, ¥, and ¥ through

three relatively simple equations. For an elliptic orbit

= ] -
N 1Y £y P (3-2)

ecosE = 1~ §- (3-3)
esinE = /53? (3-4)

If the trajectory is hyperbolic, a 1s negative. The equations for the

geometyic elements become

’

a = U (3-5)
(w/r)- 22 -r ¥

ecoshF = 1 —;r- (3-6)
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e sinh F = Lk (3-7)

The hyperbolic functions result from the substitution of iF for E in
the elliptic orbit equations (Ref 2:89).

In the unlikely event the orbit is exactly parabolic, then

a = o i,e. %-— 2-r¥ = 0 (3-8)
e = 1 (3-9)

2 ¥
cos 6 = S (3-10)

A derivation of these cjuations is presented in Appendix B.
There are no approximations involved in the derivations. The numerical

determination of r and ¥ involves some approximation.

Example Problems - Geometric Element Determination

Example Problem 3-1 -~ Low Eccentricity. Liftoff from Cape

Kennedy was normal, but before parking orbit insertion, the space-
craft was besieged with a series of emergencies. The present situation
is complete communication failure coupled with unreliable operation of
the navigation computer. The immediate problem is determination of
the safety of the orbit.

Solution:

The astronauts obtain the following altitudes at time

intervais of five minutes:
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h, = 166.8 mw
h, = 158.7 NM

L]
hy, = 147.8 MM

The expressions for r, and ?2 become

2

- b, 147.8 - 166.8
2 2t B 2(5)

= - 1.9 NM/MIN

hl + h3 - 2h2 166.8 + 147.8 - 2(158.7)

t? (5) (5)

- 0.112 NM/MIN2

For the earth, w and Vﬁ'are

225.90258 x 106 nM3/MIN2

=
]

: 1
Vry 15.03005598 x 103 (3/MIN2) /2

The radial distance from the earth's center is obtained by adding the

earth's radius R@ to the altitude reading h2

r, = h,+ Ry = 158.7 + 3440.2 = 3599 NM

The semimajor axis a is

. a M _ (225.9) 108

(/)= & - x (o 10° _ (1.9)2 + (3599) (.112)

*These data are identical to Example Problem One in Ref 17:65.

43

i

¢
P




N i ok e < e - AR - oo
]
N

GA/AE/69-1

and using a slide rule
a = 3575 M and Va = 59.79

The period of the orbit can now be determined, if desired, from

3 -
P = on /2 = (4.180413) 10" a /&
u
and
P = (4.180) 10~* (3575)(59.79) = 89.3 min

The eccentric anomaly at r, is obtained from

conp - T2 f2 Y3 (3599)(- 1.9)(59.79)
2 A (a - 1p) (15.03) 20° (3575 - 3599)
then
tan E, = 1.133, E, = 228.58° and
sin E, = = 0.7499

The eccentric anomaly is greater than 180° since the radial distance

is decreasing. The orbital eccentricity is given by

r, I, (3599) (- 1.9)
e = = = ,01015
/i /3 sin E (15.03) 103 (59.79) (- .7499)
b4
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With the geometric elements determined, the perigee altitude is given

by

h, = a(l-e) -Ry = 3575(1 - .0101) - 3440

hp = 99 NM

Therefore, the safety of the orbit is established and the astronauts
can then direct their attention to other aspects of the emergency.
The time from perigee of the second range measurement is obtained

from the "easy solution" of Kepler's equation

= 1 - : -
t - t, = = [E - e sin E] (3-11)

where n = 2n/P. Then

-

89.3

_t = ——e—

t, =ty = G.og3 | (228.6)(.01745) + (.0101)(.7499):|

and

t, ~ty = 56.8 min

The iterative computer solution to this example problem is
presented in Ref 17:67. Table II is a comparison of the numerical
differentiation and computer solutions. Note that identical input
data were used and these data were assumed perfect. Therefore, at
this point, no claim can be made regarding the ability to handle

altitude measurements containing normal measurement error.
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Table II

Comparison of Computer and Numerical
Differentiation Solutions of

Example Problem 3-1
Numerical

Orbital Differentiation Computer

Parameter Solution Solution
a 3575 NM 3575.9 NM

e 0.0101 0.0100
t, - t, 56.8 min 57.43 min
Period 89.3 min 89.40 win

Example Problem 3-2.

catastrophic. In addition to premature engine shutdown, the space-
craft tumbled during the burn.

spacecraft orbit is completely unknown.

The translunar injection burn has been

that the orbit must be determined manually.

Solution:

The result is that the present

Other emergencies dictate

The following altitudes are obtained at 30 minute

intervals:
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hl = 7232.8 NM
h, = 9078.8 NM J
h3 = 10373.2 NM i

These altitudes are known to be slightly in error. The actual alti-

tudes are:

(h)op = 7195.833 WM
(hy)pop = 9031.767 M i
(h)pop = 10348.165 M

but the astronauts must use their only information--the measured alti-

tudes. The expressions for r and ¥ become

. - .2 - 7232.

£, = 1—13--—“-’7 . 10373 U 8 . 52.34 NM/MIN

2 2t s 2(30)

. _ by +hg=2h, 7232 + 10373 - 2(9078) ]
2 £2 302 g

= - 0,6138 NM/MIN?

For the earth, p and Vi are

225.90258 x 108 w3 /MIN2

=
[}

l/2

N 15.03005 x 103 (3/MIN2Z)

The radial distance from the earth's center is obtained by adding

47
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the earth's radius Re to the altitude reading h2

r, = h,+ R = 9079 + 3440 = 12,519 WM
2 2 ®

The semimajor axis a is

a = H - (225.9) 108
u . 2 e 6
- r, -1 T (225.9) 10° _ arrNZ
r, 2 2 "2 e (52.34)¢ + (12519)(.6138)
6
2 = (225.9) 105 _ oaa0 o

(22286

The period of the orbit is

- a®  _  (4.180) 10~"% (9830)(99.15) _
P = zn,/u = ) = 6.79 hr

The eccentric anomaly at r, is obtained from

banE, = 22 Ya_ _ (12519) (52.34) (99.15) . 1.607
A (a- 1) (15.03) 10% (9830 - 12519)
E, = 121.88°

The eccentric anomaly is less than 180° since the radial distance is
increasing. The orbital eccentricity is given by
T, fz (12519) (52.34)

e = = 0.517
/i v/a sin E, (15.03) 103 (99.15)(.8491)
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The actual orbit, the computed orbit using perfect range measurements,

and the approximate orbit using the measured values of range are shown

4
in Table III.

il e

Table III ]

Comparison of Geometric Parameters
of Example Problem 3-2

Computed Orbit Computed Orbit
Actual Using Perfect Using Measured
Orbit Range Values Values of Range
a 10,000 NM 10,017 ™ 9831.5 NM
e 0.5000 0.4998 - 0.5177 1
E, 119.629° 119.364° 121.88°

Example Problem 3-2 was selected o illustrate two points:

e

1. Measurement error is always present.

2. Comparison of computer versus manual solutions
where the same input data is used is meaningiess , 3
when measurement error is present. The important

question is: How far is the manual solution from

the real orbit?

49

. .. - - - mn e e a e m e

j\
_..ii PN S |




GA/AE/69~1

The adverse effect of measurement error will be examined further in the

next section.

Sumniary

The geometric elements can be obtained quite easily by obtaining
a series of successive range measurements at equal time intervals.
Numerical differentiation of these measurements yields the radial
velocity and radial acceleration at one of the range readings. With
knowledge of range, rad:al velocity, and radial acceleration, the
geometric elements a, e, and E are readily determined from fairly
simple equations. A block diagram outlining the steps required to

obtain the geometric parameters is shown below.

Obtain set of range measurements
from attracting center

Numerically differentiate to
obtain r and ¥

Conpute a from a =

Compute E from zan E =
P A (a - 1)

Compute e from e sin E

50
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Preliminary Error Analysis

Introduction. Before any orbit determination scheme can be
presented in "flight manual" form, it must be determined if the
method will, in fact, yileld the desired results. Example Problem 3-2
illustrated that measurement error cannot be ignored.
This section is a preliminary error analysis of the numerical
differentiation method of orbit determination. The word "preliminary"
is used since a statistical approach is not used. Rather, the role
of measurement error is studied by determining the worst effect it
could produce. The general results and conclusions from either type of
error analysis are similar.
The trajectory considered is that which tests manual navigation
capability to the utmost--the high eccentricity ellipse. Although
this will highlight the shortcomings of the numerical differentiation
scheme, readers should deduce that as eccentricity is lowered, the
effect of measurement error is somewhat reduced.
The major error gsources in the numerical differentiation
technique of orbit determination are:
1. numerical differentiation truncation error
2. range measurement exrror
3. riming measurement error.

Each of these error sources will be discussed.

Truncation Error Effect. Truncation error results from using

numerical differentiation to obtain radial velocity and radial

acceleration, Using five tabulations, the truncation error for the
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first derivative is given by

y
¥'o(xg) = P! (xg) = %5' y(5) (&) (3-12)
where
y' (xo) = actual derivative
3
p' (x,) = approximate derivative
4 h = X, = Xq (the tabular interval)
£ = some value of X, generally
indeterminate, within the range
of values of x under consideration.
¥ A derivation of this equation may be found in Ref 16:101., Applied to

the orbit determination prcoblem

e

- S ()] )
r3 (Actual) 3 (Approx) 30 r (g) (3 13)

for five range measurements. The presence of t' in the numerator
suggests that t, the time interval between readings of range, should be
small if truncation error is to be minimized. A similar conclusion
holds for the second derivative. For three range measurements, the

expression for truncation error for ?2 is

¥
2(Actual)

.

T
2 (Approx)

- 2
= S @ (3-14)

Since determination of truncation error using the formulas above is
only an estimate, the effect of truncation errcr on the orbit determi-
nation scheme was obtained in a slightly different manner. Accurate
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values of range at equal time intervals were obtained by computer for

a representative high eccentricity trajectory. Then the actual orbital
parameters were compared with those obtained from the formulas involving
numerical differentiation. The results are presented graphically im
Figs. 12, 13, and 14. ©Note that in all cases, truncation error, as
expected, increases as the time interval between range measurements

is increased.

Range and Timing Measurement Error. Inaccurate values of range are

a major source of error in the numerical determination of r and ¥. In
addition to its effect through the numerical differentiation process,
an inaccurate range measurement also directly affects the values of the
orbital elements through the value of r itself (since the equations

for a, e, and E each contain an explicit value of ranggz. Therefore,
it is necessary to consider the effect of errors in range measurement
on the orbit determination method being considered. Another error
source is that of timing between measurements. The following presenta-
tion will begin with a brief discussion of how range measurement error
affects the numerical diffgrentiat;;n p;écess. Then the effect‘oﬁ

range and timing measurement error will be investigated for each of

the orbital parameters being considered.

Measurement Error Effect - Numerical Differentiation. A major

step in the orbit determination method being considered is the
numerical determination of r and ¥ from a set of range measurements.
A brief discussion of how inaccurate range measurements can affect

these derivatives is thus in order. The cumulative effect of

53
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measurement errors on the final output--the orbital parameters~-will
be treated in a later section.

Assume that €)s €, ~7= €. represent the errors associated with

2! 5
each measurement of range and that Rl’ Rz’ ~--- Rg are the actual

range values that should be observed. Then
Ry, = 1+ ¢ (3-15)

where r, represents the observed range. Then using this definition
4
in the five-measurement differentiation formula, the error in output

due to input inaccuracy is

- (R1 - Rs) - 8(R2 - Rq) ) (r1 - rs) - 8(r2 - rq)
12t 12¢ i
- ) (e, - €g) - 8(g, - ¢€,) 1
12t (3-16)

If €15 + + o Eg do not exceed €nax in magnitude, the output error is,

PYIR

at worst !

Maximum output error in 18¢ 3e

. , - max _ max
r, due inaccurate data ot = e (3-17)

A small time interval t generally associated with high accuracy (i.e., 1
small truncation error) thus magnifies the effect of measurement
error~-many times making the trouble of minimizing truncation error

pnintless.

PR

i
i
|
;
)
‘ . By similar analysis, the maximum error for the second derivative
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(using five measurements again) is

Maximum output error in 16

€
¥3 due inaccurate data = 08X
3t2 (3-18)

This shows that higher derivatives become increasingly inaccurate as

PP

the time interval is reduced. Note, however, the particular arrange-
ment of measurement errors such that r and ¥ both exhibit their
maximum errors at the same time cannot occur. Nevertheless, the adverse
effect of measurement error on numerical differentiation is severe.
Long time intervals between measurements act to reduce this adverse
effect.

The cumulative effect of measurement errors (thus including
numerical differentiation) on the final output--the orbital parameters—-
is the topic of the next section. -

Estimate of the Error in Determining a, e, and E. The orbit

determination scheme, az developed so far, involves the measurement of
several values of range at equzl time intervals. These observations
are numerically differentiated to yield r and ¥ for the central
measurement and then the geometric orbital elements are obtained from

the three equations

a = M _ (3-2) .

|

tan E R CRES) (3~19)
e sin E = _:%%J%Z? (3-4) .

%
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The error arising from numerical differentiation has been briefly
discussed. It remains to determine the overall effect of measure-
ment errors on the values of a, e, and E obtaineé through the use of
these approximate data in the three equations listed above.

In general, the maximum error E, in the value of a function is

given by
. Jaf f
T
X =a =
y:b y:b (3—20)
where
E, = |Max error in function argument a
E, = |Max error in function argument b

A derivation of this expression is shown in Appendix C. This
expression will be used to examine the possible errors in orbital
parameters due to measurement errors.

Error in Major Axis Determination. For the following analysis,

it is assumed that truncation error in the determination of T and ¥
is negligible (a valid assumption if a sufficient number of range

measurements are used). Then the maximum error in a, due to range
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metsurement and timing error, is

= |9a dd laa l da

E, = || E. + |&=|E,., + || E. + {Z=| E

a or, | 1 [8rp| T2 [drg 3 r,| b
a |g 2al g
drg| s at t

E, = da | 4 |32 | & [8a| 4+ [32 | 4+ |2a E,
or, | or, | 3r, | or, T
|aa
The equation for a is
a = ¥
R L
r
and for five measurements,
. -2 .
da u * 9 . U r . Ors ar
—— =2 u.—— - - _3_+2 ] 3
Ix (r3 s T3 13) (r32 X Gl o
or
.0 3
t Iy 9x )
60

(3-21)

then

(3-22)

(3-2)

(3-23)
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gr v v Tos and t.

where x is taken to successively represent r» T
The partial derivatives of r and ¥ may be obtained by differentiating
the approximate differentiation formulas. For convenience, let Ca,r

represent the coefficient of E, and Ca,t the coefficient of E.. Then

E; = Cq,r Ex +Cayt B¢ (3-24)
where
Ja | da | da l da da
= + |28 4 |82 9a
Casr 8r1| 3r2| 8r3| ary, + org (3-25)

and Ca,t = |3a/dt|. Then by examining the behavior of Ca,r and
Ca,t the steps required to minimize the effect of range measurement
error can be determined.

A computer program was written to evaluate the coefficients Ca,r
and Ca,t for various values of t and for a high eccentricity trajectory
similar to the initial translunar coast portion of a moon mission. The
results are presented graphically in Figs. 15 and 16. It should be
noted that Figs. 15 and 16 yield the behavior of the maximum error--not

the actual or rms error.

Error in Eccentxric Anomaly Determination. Eccentric anomaly error

can be investigated using the same procedure as was followed in examining
the error in major axis determination. The equation for eccentric
anomaly is

E = tan ~ X

~jrie

61
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and substituting for a, this equation becomes

1
i(%-i‘ -r'f)/2
E = tan”! - (3-26)
(r2 + ¢ ¥)

For simplication, let

v = r

. A2

v = (-‘i{-—rz-rr> (3-27)

w = (r2+ 17
then

E = tan-!} 52- (3-28)

Taking partial derivatives as before,

3E _ 1

) (3-29)

(the independent variable x is again taken to successively represent

r, X

12 Spr e Tpo t). The maximum error in E (EE) due to range

measurement and timing errors is then

3E 3E 9E | - OE )
oo [, v Iarz By Foee B B+ |3t| B, (3-30)
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where n denotes the number of range measurements taken. Again assuming

E "E =oouE
r r2 rn

= [2E ] 4+ [2E_ 3E_ 3E (-
£y [ e ] e | oo
or
EE = CE,I’ Er+CE,t Et (3"32)

where CE,r and CE,t represent the coefficients of E, and E respec-
tively. Again, CE,r and CE,t can be examined and the steps required
to minimize the effect of measurement errors can be determineq.
Figures 17 and 18 are the graphical results of a computer
program written to evaluate CE,r and CE,t for a typical trajectory.

Error in Eccentricity Determination. The effect of measurement

error on the calculation of eccentricity can be examined in the same
manner as for the major axis and eccentric anomaly. The expression

for eccentricity is

a - T

e = a cos E (3-33)
Differentiating as before
(a cos E) 2a _2r)_ (a - )/(- a sin E) 9 (cos E)-ﬁg
Se Ix 9x ox 9x
— = (3-34)
ox a2 cos? E
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where the independent variable x is again taken successively as r , r_,

« + « Ipy, and t. The maximum error in e is then approximately

E = ||% | + (3] +.., + [2e_ E. + (28| E 3-35
e ar)|  |or 3T, L FT (3-33)
2
or
Ee = Co,y Er + Co ¢ Et (3-36)

where E; is the maximum error in eccentricity and Ce,r and Ce,t
represent the coefficients of range measurement error E,. and timing
error E. respectively.

Figures 19 and 20 are the graphical results of a computer program
written to evaluate Ce,r and Ce,t for a typical trajectory.

Accuracy of Range Measurement. Measurement of the earth's angular

diameter is assumed the primary means of determining distance from the

earth. The geometry of the measurement is shown in Fig. 21.

Trajectory

Vehicle

Fig. 21

Range Measurement Geometry
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The distance r is given by the equation

Re
r = X (3-37)
sin -2—

where R9 is the radius of the earth and A is the earth's subtended

angle as measured from the spacecraft. Then

- R, cos A/
® 2 (3-38)

ar = —E—sinz A9
As distance from the earth increases, the angle A becomes smaller--
the net result for a given measurement error dA is a decrease in
accuracy as distance from the earth increases. Figure 22, from
"Space Position Fixing Techniques," (Ref 22:318), is a graph showing
the error in distance per minute error in A as a function of distance
from the earth. Note that statute, not nauticzl, miles are presented
on the graph.

With proper training, practice, and instrument calibration,
sighting measurement error can be held appreciably below one arc
minute (Ref 17:5). Therefore, Fig. 22 can be considered to represent
the upper bound on range measurement error.

When only a portion of the earth's horizon is visible, the
stadimeter, a device which measures the curvature of the horizon, can
be used to determine altitude (Ref 17:12). The stadimervar is designed
to measure altitudes below 2500 NM. The trajectories considered in

this thesis are generally above this altitude.
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2000

Rzage Error, mil' s/arc min

1000}
200,000 mi
O 1 ) 1 1 1 1 L I \l
0 4 8 12 16 20

»

Distance From Earth, (10% miles)

Fig. 22

Range Measurement Error

Summary. IA comparison to the severe effect of measurement
error, the truncation exrror resulting from numerical differentiation
is negligible. Tables IV and V are tabulations showing specific
valaes of maximum error effects. In all cases, it is seen that
measurement error is by far the major culprit in producing erroneous
orbital parameter values. Increasing the time interval between
measurements decreases the effect of measurement error. This
decrease more than offsets the resulting increase in truncation
error. For a trajectory of extremely high eccentricity (as those
being considered in this thesis), time intervals on the order of

hours are necessary.
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Another unfortunate situation is also apparent. As distance from
the earth increases, the accuracy of range measurement decreases. At
] . the same time, the effect of measurement error on some orbital param-
eters becomes more severe. It is essential, therefore, to begin orbit
determination as near the earth as possible.

It can be safely assumed that timing error can be held to less
than five seconds. For the high eccentricity orbits examined and a
one hour time interval between readings, five seconds is capable of
causing a maximum error in major axis of less than 100 NM. Timing
e.re ; thus not a major drawback in orbit determination using this
method.

Conclusions. The conclusions derived from the preliminary error

analysis are:

* 1. Decreasing truncation error by taking five range
measurements instead of three is pointless unless
extremely accurate range measurements are available.

2. TFor high eccentricity lunar trajectories, a minimum
time interval of five hours between measurements is
required to determine the approximate orbit (thus,
ten hours are required for orbit determination).

- 3. Every effort must be directed toward the highest
attainable accuracy in range measurements.

4. Timing error of five seconds or less is insignificant.

5. Orbit determination must commence as near the earth

as possible.
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6.

8.

A supplementary correction scheme may be required to
further improve‘the accuracy of the orbital elements.
Alternate, more accurate, means of obtaining range,
range rate, and radial acceleration should be explored.
The use of graphs, slide rule, and/or uninterpolated
tabular data is entirely consistent with the degree of
accuracy attainable using this orbit determination

method.
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IV. Differential Correction of Orbital Elements

Introduction

The orbital elements obtained by any means or technique will con-
tain a certain amount of error. For example, in the orbit determina-
tion method of Chapter III (orbit determination using range, range rate,
and radial acceleration), the orbital elements were found to be
increasingly in error as the time interval between range measurements
was reduced. This section is a brief discussion of a means to

correct the geometric elements of a preliminary orbit to obtain more

O iotns [P 20 s e o

precise values of a, e, and My. The method, however, requires the use

of a digital or mechanical analog computer because of the complexity

of the computations. The inclusion of such a method in a thesis

titled "Manual Astronaut Navigation" can be justified by supposing

[OPRR

the eventual development of a hand-held back-up computer.

Differential Correction of Geometric Orbit Parameters

Differential correction of orbits is discussed in most books

[

covering methods of orbit determination. For example, see Ref 6:233

or Ref 3:77. Most applications of differential corrections in the
field of celestial mechanics, however, require the simulténeous

sclution of six equations for the corrections to the six independent

be reduced somewhat by the technique of dividing the six parameters

!
i
: ) eiements characterizing an orbit. The computation complexity can ‘
into two groups-—three parameters (a, e, M) describing the size
1
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and shape of the orbit, and the remaining three (i, @, w) describing
the orbit orientation. Thus, instead of six equations with six unknown

corrections, there are two groups of three equations in three unknowns.

Differential Correction Equations - Geometric Elements

The conic section equation is

r = a(l - e cos E) (4-1)

The total differential dr is then

or or

= 3r dx dr -
dr e da + e de + Y dE (4-2)
Then, approximately,
_ dr or or _
Ar = 2% Ba+ o= de+ I AE (4-3)

The quantity Ar can be obtained by comparing the measured value of r
at a certain time with the corresponding preliminary reference orbit

value at the same time. That is,

Ar

Yobserved Yrreliminary orbit (4-4)

The partial derivatives are obtained from the conic section equation
and frem Kepler's equation. Three values of Ar, obtained at different
times, yield three equations which can be solved for the correctioms
to be applied to the preliminary orbital elements. The partial

derivatives with respect to a, e, and E are, from the conic section

78
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. equation,
2
. 3 = 1-ecosE = X (4-5)
2a a
9 = _ a cosE (4-6)
de
%E = aesinkE (4-7) ]

The term dE (to be replaced lzt2r by AE) is better represented in
terms of dM,, the differential change in mean anomaly. The mean

angular velocity n is given by

. a = \/%— (4-8)

then
f n n =-%‘-znu—%2na (4-9)
and
B g ww
; The mean anomaly M is given by ;
i M = Mg+mn (t-t,) (%4-11)

where ty and t are the times correspeading to M, and M respectively.
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The differential change in mean anomaly is then

M = dM, + dn (t - tg)

Substitutivy for dn,

M = @y, -3aS (e -ty

Since
n(t - tg) = M- M,
M = dMo—%:—a(M—Mo)

From Kepler's equation, M = E — e sin E

M

dE - e cos E dE - sin E de

or

am (L - e cos E) dE - (sin E) de

and substituting

l-ecosE,

LR

i = X dE - (sin E) de
a

and solving for dE

JE = %EM + (sin E) de:,

80
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(4-13)

(4-14)

(4-15)

(4-16)

(4-17)
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(4-18)

(4-19)
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Now substituting for dM

= 2 - 3 da - +a -
& = 2 |:dMo o Mo):l k2 (sin E) de (4-20)

Approximating the differentials with the incremental corrections Aa,

Ae, and AM,

Ar = -§ Aa - a(cos E) Ae + a e(sin E) AE (4-21)

Substituting for AE and simplifying results in

Ar =

2r

Co e !

3 -M) ae sin E:l Aa

) -
+ [%—E sin2 E - a cos E Ae
r _
ae ]
+ |2= sin E | &M, (4-22)
r .

The bracketed coefficients of Aa, Ae, and AMo are to be evaluated on
the preliminary orbit at the times corresponding to the range measure-

ments.

Discussion

Three measurements of Ar obtained at different times provides
three equations in the unknowns Aa, Ae, and AM,. The equations can
be inverted to yield the values la, Ae, and AM,. When the number of

readings exceeds three, the number of unknowns, the most probable
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values of the corrections can be found by least squares—-but this

greatly increases the computational load.

Assuming the availability of a back-up computer, the geometxic
parameters can be obtained directly from Eq (4-~22) by estimating
values of a, e, and M, and then correcting these assumed values in an .

iterative process until the orbital elements approach the desired

accuracy. However, such a procedure is of questicnable value since

any of a number of iterative techniques cogld be developed to evaluate

2 the geometric parameters. Also, a number of iterative techniques

are available which yield all six orbital elements--so why iterate to

L‘ obtain only the geometric elements?

Lr A computer program was written to test the effectiveness of the

? differential correction procedure. Data generated from previous ;
computer programs were used to improve an orbit known to be in error.

Only one correction was applied to the erroneous orbit, hence, the

"

z final orbit is still not precise--but further corrections could be

applied to improve the final orbit. Figure 23 is a block diagram

presentation of the results. i

Conclusion
; The computer makes simple work of the computations involved in

this differential correction scheme. It is out of the question to

f consider accomnlishing the calrulations manually. If a small

back-up computer is available, the differential correction equations

may be of great value because:

PR R e R (W

1. The gecmetric parameters can be refined to more -

accurate values.
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2. 'The capability exists to handle redundant data.
The differential correction method will not be considered further
in this thesis. However, the recommendation section will contain a

suggestion for continued study in this arc..
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V. Orbit Determination Using Position Fixes

Introduction

Two complete three-dimensional fixes in space and knowledge of the
time between the two fixes is sufficient for orbit determination using
Lambert's theorem (Ref 4:70). Lambert's theorem requires iterative
solution and its use is impractical unless a back-up computer is avail-
able. By taking another position fix, thus providing three position
fixes in space, any of a number of orbit determination methods may be
considered (see Ref 3:Ch 1). This section will discuss first a simpli-
fied and then a general method of obtaining three-~dimensional fixes in
space using the hand-held space sextant. These fixes will be used as
input to orbit determination methods which will yield both the geometric
and orientation orbital elements. Unless otherwise specified, the
geocentric equatorial coordinate system is used in this chapter (and

succeeding chaptexs).

Position Vector From Polaris, Earth, 2nd Star

Introduction. The navigaticen fix in space is discussed in
Ref 4:221. 1In general, a three-dimensional fix requires two star-earth
horizon measurements coupled with a means to determine radial disténce
from the earth. The equations are nonlinear and impractical for manual
computations. Considerable simpiification results, however, if one of
the selected stars is Polaris; the North Star. The development to

follow is due, in part, to Mr. L. C. Ragland, of TRW Systems (Ref 14).
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,,_..,.,

Declination From Polaris. Figure 24 is an illustration of two

t ‘ sextant measurements--the earth's angular diameter A and the Polaris-

vehicle-earth horizon angle y,g. Since the lines of sight to Polaris

Tv Polaris )

|
;
|
To Polaris ; :
} o
b
- i
-
|
Lo
Cod
’ Equatorial f i
j Plane ! it
s !
o
53 Vehicle < ;
! ! i
Fig. 24 ;
Sextant Measurements: Polaris ;
and Earth's Diameter 4
:
are parallel, the vehicle declination §y ig given by ;
- 8y +90° + A/2 + vy, = 180° (5-1) 1

-

or

A

8§, = (Yns + A/2) - 90° (5-2)

The radial distance from the earth's center, r, is given by

v mmmmns o i d = ke ¥

K o i
. 2 (3-37) ' :
sin A/2 ‘
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wheve Ry is the earth's radius.

Right Ascension Determination. Figure 25 shows the geometrical

arrangement for finding the right ascension of the vehicle, ay.

L Z

Polaris <

Celestial Sphere

Vehicle [—>

f

——

Y = Star-Earth-Vehicle Angle
8y = Vehicle declination
- Ao = Difference in Right Ascensicns of Star and Vehicle
tg,8g = Right Ascension and Declination of Star

Fig. 25

. Geometry for Vehicle Right Ascension

From the spherical triangle star-—Polarig~vehicle,

cos y = cos (90 - &5) cos (90 - &)

+ sin (90 ~ §5) sin (90 - &) cos Aa (5-3)
or

. cos ¥ = sin &g sin &y + cos §g cos §; cos Ax (5-4)
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then

cos ¥ - sin §g sin &y
cos Aa = (5-5)
cos 8g cos &y

The terms are defined on Fig. 25. Let G be a unit vector normal to
the star-earth-vehicle plane. An observer looking down from the tip
of this vector toward the earth would see the picture shown in

Fig. 26. Again, since the lines of sight to the star are parallel,
v+ vg + A/2 = 180° (5-6)

or

y = 180° - (yg + A/2) (5-7)

Vehicle

\
To Star To Star

Fig. 26
Geometry of Star-Earth-Vehicle Piane
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Substituting ¢ into the expression for Ac results in

- ¢c63 (yg + A/2) - sin §g sin 8y
cos Ao = S (5-8)
cos 8g cos Oy

from which Aa can be determined. Note the resulting simplification
if a star can be chosen with 85 = 0. With Aa known the right

ascension of the vehicle is given by
ay = Gg * Ao (5-9)

where a simple "right-hand-rule" determines the sign. If the origin,
for the moment, is considered at the vehicle, then the sign is plus
if the general direction of istar X iPolaris is toward the earth.
istar and iPolaris represent unit vectors in the directions of the
star and Polaris respectively.

When a star with zero declination can be chosen Eq (5-8)

becomes

- cos (yg + A/2)
cos Gy

cos Ao = (5-10)
A number of stars are very close to the celestial equator. (Most of
these are closer to the equator than Polaris is to the pole position.)
Table VI is a tabulation of some stars with near zero declination.

An easily identifiable star is § Ori (Mintak.) which is in the belt

of Orion. With r, ay, and 6y known, the coordinates of the vehicle
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Table VI
Selected Stars Near Celestial Equator
Star TAU Right
Name Abbreviation | Constellation | Ascension | Declination
Mintaka § ori Orion 84.249° - 0.321° -
H
- § Mon Monoceros 107.557° ~ 0.438° % ;
- § Vir Virgo 203.265° - 0.433° E g
s |
Sadalmelik o Aqr Aquarius 331.035° - 0.476° é '
b
b
.
P
are given by . %
X = r cos §; cos ay ﬁ :
P
¥y = x cos &y sin ay (5-11) ;
z = r sin & !

omg e

Conclusion. The simplified three-dimensional fix presented in i

this section has as its basis the fact that Polaris is very near the '

o e e s

H
i
north celestial pole. Of course, Polaris is not exactly at the pole !
position and this discrepancy must be examined. But even if a [
detailed error analysis proves the method unsatisfactory

plified three-dimensional fix can be of great value to the astronaut.

R R T

Or the earth, Polaris is extremely useful as an instant cross-check

of heading and latitude. Its analogous role in space navigation is k

as a source of vehicle declination. Using another star on the
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celestial equator, the astronaut can quickly determine the right
ascension of the vehicle. Therefore, even if eventually deemed
. unsatisfactory for manual navigation, the Polaris position fiz will

serve as a quick cross-check of more sophisticated fixing means.

General Solution for Position Vector

Introduction. The Polaris-earth-star measurement scheme is the
simplest method known to the authors of obtaining a three-dimensional
fix. This section will attack the more difficult general problem
when, for some reason, Polaris is not observed.

The general formulation of the tiiree-dimensional fix is given
in Ref 4:Ch 7. 1In general, the three~d:imensional fix, using the

minimum number of measurements, requires the simultaneous solution of

% ] the following nonlinear equations
T - il = -~ T cos (Y1 + A/2)
T . iz = - r cOos (y2 + A/2) (5-12)
|z] = «r

where T is the position vector of the vehicle, il and fz are unit

vectors in the directions of two selected stars, Y, o> the star-
’

vehicle-earth horizon angles, and A, the earth's subtended angle.

As mentioned previously, the manual solution of these equaticns for

. the components of r is impractical. Some simplification results,

however, if an additional star sighting is made.

91

oy

COrdinie
€7 e

B L T TN

. . e =

e ————— c e a e e - . ———— <ty




REVR ARy TTT T TR S o i e sk e A ey s A e e et o s g | o R T - | -
R b e ety Jmerel - - .

T

GA/AE/69-1

The Three Star Fix. The unit position vector of the vehicle is

obtained fairly simply by making three star-earth horizon measure-

ments. The set of linear equations

r e il = - cos (Yl + A/2)
re I, = - cos (v, +4/2) ' (5-13)
p ol 13 = - ¢OS (Y3 + AJ2)

must be solved for the components of the unit vector r. The solution

NI

for ry, the x component of the unit vector r, is

I,2)

., I ,.-1
ry = - cos (v, +A/2) y2 23 _"y3

A

(Iyy I3 = Iyg I,))
+ cos (v, + A/2) —Y1 23 - ¥ (5-14)

(Iyl I, - Lys 1)

A

- cos (y; + Al2)

where A represents the determinant of coefficients

Iy Iyl 121

1=

b= | Iy Iy, I (5-14a)
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The solutions for Iy and r, are, of course, similar. In general, the

solutions take the form

= A_, cos (yl + A/2) + B

Ty %1 o €O (72 + A/2)

+ C

w3 COS (y3 + Af2)

Ty Ay1 cos (Yl + A/2) + By2 cos (Y2 + Af2)

+ C

y3 ©0S (73 + A/2)

r, = A, cos (Yl + Af2) + B,, cos (v, + Al2)
+ C,, cos (y3 + A/2) "~ (5-15).
with the terms defined as follows:

By = (g3 Iy =Ty, I,9)/4 Cys_ = (T Iy - Iy, I/
Bx?. = (Iyl Izs - Iy3 Izl)/A Azl = (Ixa Iy2 - Ix2 Iya)/A
Cez = (Iyz I - Iyl 1.0/ Bp = (Iy Iy3 = Ixs I'yl)/A
Ayl = Ty Ty = Tyg ) /A Cas = Ty Tyl = Txi Iyz)/’“\
Bop = (yg Iy = Iy I5)/8 (5-16)

b= Ig [Iyz T3~ Iy3 IzZ] ) [Iyl L Iy3 Ia

T I3 [Iyl T2~ 1y 1,
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It is a simple computer problem to tabulate the above constants for a
considerable number of three-star sets. The astronaut is thus
provided some semblance of general capability to manually compute his
position in space. Once the uvait vector r is obtained, the vehicle

position vector is given by
T = rz (5-17)

where r = |T| and is obtained by semi-diameter or other means.

Manual calculation of position using this procedure will require
a publication listing the constants Ax1 through C,3 for selected
three~star sets.* Table VII shows a typical format for such a
publication. Although the requirement exists for a third star
sighting (compared to the nonlinear three-dimensional fix equatioms),
the additional measurement removes the nonlinearity plus the possible
ambiguity in the direction of r (Ref 4:221). Fcllowing Table VII is

a sample problem illustrating the manuil position fix.

% If 25 stars are established as "space navigation stars," there are
2,300 possible three-star sets. Assuming 20 sets per page, the
publication would require only 115 pages to cover all possibilities.
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Table VII
Example of Three-Star Position Fix Data

AX 1 sz Cx3

Star Set Ayl By2 Cy3

Azl Bzz Cz3
1 Dubhe -.90368847 -.29882173 -1.68227200
2 Betelgeuse «23797789 -.99759279 .16392111
3 Fomalhaut -1.63183470 -.02032258 -.89050598
1 Pollux 3.16269770 -5.84253850 -3.38404430
2 Betelgeuse -.19226972 ~,28394138 .58373726
3 Rasalague . 78242022 ~4,28971420 -3.74551760
1 Capella -.32702313 .28773730 -.98883642
2 Acrux -1.67469260 -1.15633370 ~.35108396
3 Fomalhaut .25868869 1.04071820 .52196385
1 Acrux .22619851 .84496636 - 51440839
2 Arcturus .28928391 .35811369 .90990474
3 Altair .99216655 -.44923096 .21120275
1 Dubhe .25166101 3.02868280 2..96921080
2 Sirus -.24731313 -.00109432 1.00028020
3 Rasalague -.97028150 1.56380340 1.39883810
1 Capella 1.76155570 -1.74660870 2.98233530
2 Canopus -.93319008 -.62009385 -.19967779
3 Acrux ~-.84378145 .92195900 ~.3816431A
1 Dubhe -1.69239350 -.52695925 -2.16196100
2 Canopus -2.39505190 -1,75921190 -1.43748310
3 Fomalhaui ~1.68600160 -.03619068 ~-.92345019
1 Acrux .77487909 90722594 -.64576203
2 Arcturus -.68124277 .24798659 1.14224790
3 Shaula . 76689250 ~. 47479314 .26513315
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Example Problem 5-1 ~ Manual Three-Dimensional Fix. Communication

failure occurred during the translunar injection burn. Although the

navigation computer seems to be working properly, the astrenauts suspect

the cause of communication failure may have also affected the computer.

[P

" The astronauts decide to obtain a manual fix and cross—check the
manual poéition with the computer read-out. If the positions cross-check |
reasonably well, the computer will be relied upon for further naviga-
tion. Looking toward the earth, the astronauts can identify the

following navigation stars:

Acrux
Arcturus : é
Altair |
The following angular measurements are obtained at TLI (Trans Lunar

Injection) plus three hours:

Acrux-vehicle~earth horizon - 43,970° %

Arcturus-vehicle~earth horizon -  48.011°

Altair-vehicle-earth horizon - 56.503°

Earth's subtended angle -  14.018° ;
Tre star-vehicle-earth center angles are then ?

Acrux-vehicle-earth - 50.979° é

Arcturus~vehicle-earth - 55.020°

Altair-vehicle-earth - 63.512°

i

Using data from Tsble VII, the components of the vehicle's unit

[t

position vector are :

Prary

r, = (.22619) cos 50.979° + (.84496) cos 55.020°
- (.51440) cos 63.512°
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2]
fl

(.28928) cos 50.979° + (.35811) cos 55.020°

+ (.90990) cos 63.512°

r, = (.99216) cos 50.979° - (.44293) cos 55.020°

+ (,21120) cos 63.512°

or

[a]
I

- (.22619)(.62960) + (.84496) (.57329) - (.51440) (.44600)

ja
1l

y (.28928) (.62960) + (.35811)(.57329) + (.90990) (.44600)

la]
1t

z (.99216) (.62960) - (.44923)(.57329) + (.21120) (.44600)

and carrying out the operations

ry = .39739
Iy = .79324
r, = 46132

The radial distance from the earth is

Rg 3443.93
Y B e S e = 28,226 M
. 14.018° 0.12201
sin —5——
2

so the cocrdinates of the vehicle are (geocentric equatorial system) j
x = (.39739)(28226) = 11,216 NM §
:
y = (.79324)(28226) = 22,389 NM :
!
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The declination of the vehicle is simply

Sy = (ypg + A/2) - 90° = 117.467° - 90.000° = 27.467°

& St

The expression for Ag is

- cos (yg + A/2) - sin 8g sin &y
cos Ao =

cos Gs cos Gv

and substituting values

cos Aa = L=2445937) ~ (.152598) (.461232)
i (.988273) (.887279)

Ao = * 126.08°

The astronauts determine the proper sign as "plus" by looking out the

- PRIV SV NI - SORPSWEET PP 2 Pe

window and establishing the direction of IAltair X IPolaris as

generally toward the earth. The right ascension of the vehicle is ]

then

LR

a, = ag + Ao

The right ascension of Altalr is obtained from the ephemiris as

297.305°. Then

@y = 297.305° + 126.08° = 63.38°

The polar coordinates of the vehicle are thus

ay = 63.38°
Sy = é?.47°
r = 28,226 NM
99
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The rectangular coordinates of the unit position vactor are given by
ry = cos 8y cos ay

r, = cos 8y sin ay (5-18)

r, = sin dy

Substituting values

r, = (.887279)(.448019) = 0.39752
r, = (.887279) (.894024) = 0.79325
r, = (.461232) = 0.46123

The coordinates of the vehicle are

” x = rr, = (28226)(.39752) = 11,220 WM

'?, "

3 y = rr, = (28226)(.79325) = 22,390 MM

3

. z = rr, = (28226)(.46123) = 13,019 MM

which agree with the values obtained using three-star fix proce-

dures. Note, however, that Polaris was assumed at the pole position.

Position Fix Simultaneous Measurement Requirement. The

position fix techniques presented require, iu the ideal case,
cimultaneous measurements. Obviously, if only one sextant is
available, it is impossible to measure all angles simultaneously.

A number of techniques resolving the difficulty are available.
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Linear interpolation batween an early and late sighting could
be used to solve the simultaneous measurement requirement. If
linear interpolation is insufficient, more measurements can be

obtained for use with a higher orxder interpolation formula (Ref

24: Ch 10). This procedure is illustrated in the following

example:

Example Problem 5-3 - Interpolation for Measurement., The

angular measurement of Arcturus-vehicle-earth is desired at time

12:25. The following measurements are obtailned:

Reading
Number Time Y
1 12:10 41.265°
. 2 12:20 39.271
L . 3 12:30 37.370
) 4 12:40 35.568

, Bessel's interpolation formula (Ref 24:107) reduces to

s <

Yot Y3 Y-V m Y3ty
y 27 Y3 Y1 " Y2 T Y3y (5-19)
12:25 2 16

L =i

and

76.641 _ 0.192 _ o “
Y12:25 T T3 16~ -~ 28.308

Jrecem——

R

For comparison, linear interpolation for the angle at 12:25 yields

. Yot g

" = = 38.320°
12:25 ) ===

ST i
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A number of other interpolation formulas are available--see any text on
numerical analysis.

The extrapolation of measurements to an earlier or later time can
also be achieved using an interpolation formula. Another interesting
related technique, which has been used by astronomers for hundreds of
years, is also available. The procedure will be illustrated by an

example.

Example Problem 5-~4 - Early and Late Measurement. The angular

measurements of Arcturiis-vehicle-earth are desired at 12:00 and 12:50.
The measurements of Exanple Problem 5-3 are to be used.

To obtain the early and late measurement, the set of measure-
ments is used to construct a difference table (Table VIII). First,
the difference column of the measurements is obtained by subtracting
from each reading the reading immediately preceding it. Then’the
differences of the differences are tabulated. The table is continued
as far as ﬁossible. Table VIII is the completed difference array
for the set of measurements used in this example.

To extend the table, the last difference is assumed constant
and the last column of the difference array is extended. Starting
with the extended values in the last column, the table is built
"backward" to finally arrive at the desired early and late values.
Table IX illustrates the procedure. The underlined values in
Table IX represent the extension cf the difference array.

The desired values at 12:00 and 12:50 are then:

12:00 - 43.346°

12:50 - 33.871°
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Table VIII
Difference Array
1st 2nd 3rd
Time Angle Diff. Diff. Diff.
12:10 43..265°
-1.994
12:20 39.271° .093
~-1.901 .006
12:30 37.370° .099
~-1.802
12:40 35.568°
Table IX
Extended Difference Array
Ist 2nd 3rd
Time Angle Diff. Diff. Diff.
12:00 43.346
-2.081
12:10 41.265 .087
-1.994 006
12:20 39.271 .093
-1.901 .006
12:30 37.370 .099
-1.802 006
12:40 35.568 2105
-1.697
103
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The differencing technique is more fully treated in:
1. Ref 2:135
2., Ref 24:98
3. Ref 6:134
and maay others.
The simultaneous measurement problem is also considered in
Ref 8:18. The technique employed is to convert measurements ¢o a
common time by the use of pre-calculated data on the rate of change
of angle with time along a reference trajectory. The method is fully
treated in Ref 8 and thus will not be repeated here.
Avotl,er possibility is the use of a photograph to obtain the
angular sightings--with a photograph, the measurements can indeed
be simultaneous.* In any event, the simultaneous measurement
requirement represents nothing more than a slight inconvenience to the

astronaut.

Graphical Solution ~ Unit Position Vector

The graphical solution for the unit position vector is straight~
forward when the temporary view is taken that the earth is orbiting

the spacecraft, The graphical solution solves the equations

I, = - cos (Yl + A/2)
re+ I, = -cos (y, +4/2) o (5-21)
x| = 1

* Additionally, photographs of the stars are in gnomonic projection
(Ref 15:81), thus perhaps aiding in the graphical sclution for
ay and 6y discussed later.
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’ 1,

3.

7.

and yields the right ascension and declination of the vehicle.

precision measurement is unnecessary and the only calculation involved
is addition or subtraction. The graphical solution is illustrated in

! Fig. 27. The step-by~step procedure is as follows:

Determine the star-vehicle-earth center angle

y ++ A/2 for two stars.

Find the same two stars on a star chart. The chart
projection must be such that a straight line represents
a great circle (gnomonic projection).

Using Star 1 as a center, lay off an arc of radius

Y + A/2. The angular scale on the equator or a

meridian must be used to set the radius.

Using Star 2 as a center, l;y off an arc of radius

Y, + A/2.

The atrcs intersect at two points. Select the proper
point by an oyeball sighting of a third star--an arc
drawn using the third star will fall close to the
proper point. (Or observe Polaris and roughly determine
the earth's declination using §; = =§,.)

The plottsd point represents the appafént position of
the earth (the temporary view has been taken that the

earth is orbiting the spacecraft).

Determine the vehicle coordinates using

Oy = Og * 180°
GV = - 6e
105
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Graphical Solution For Unit Position Vector

Example Problem 5-5 - Graphical Solution For ay and §y,. The

situation described in Example Problem 5-1 will be used to i1llustrate
the graphical determinaticn of vehicle right ascension and declination.
Thé angular scale of the star chart (Fig. 28) has been constructed to
fit the thesis page--accuracy is therefore sacrificed.

At TLI plus three hours, the astronauts determine the angles

55.020°

Arcturus-vehicle—-earth center

Rasalhague-vehicle-earth center 44 491°
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The graphical solution is completed on Fig. 28. Using the star
Arcturus as center, an arc of radius 55.0° is drawn. Another arec
of radius 44.5° is drawn using Rasalhague as center point, By an

eyeball sighting of Polaris, the vehicle declination is around
6y = 110° - 90° = +20°

so the declination of the earth as viewed from the spacecraft is
around -20°. With this knowledge, the proper arc intersection point

is read as

4

g 244°

1

8g = =27°

The coordinates of the vehicle are then

=3
I

v = 2644° - 180° = 64°

8y - (=27°) = +27°

1

Liﬁitations. The surprising simplicity of the graphical solution
is marred by the fact that it yields only an approximate angular
position. The angular scale of the gnomonic projection varies over
the chart, therefore, the intersecting arcs are not truly arcs of
circles. However, within a limited range of the chart (the central
region of Fig. 28), the scale is fairly uniform; positions obtained
within this region will be close to the actual spacecraft coordinates.

Since the chart can only yield an approximate position, the

graphical solution is limited to being a cross—check of more
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sophisticated fixing means. For example, after obtaining ay and §y by
other means, the astronauts can quickly check their calculations by
determining the vehicle angular position graphically. Gross errors in
computation can thus be detected without actually repeating the cal-

culations.

Velocity Determination

An intermediate step before some orbit computation methods is
determination of the vehicle's velocity vector. In general, this is
an iterative computer problem. Several approximate methods, however,
are available.

Numerical Differentiation. Any of the numerical differentiation

formulas introduced in Chapter II can be used to obtain velocity.

For three position fixes separated by time t

2 ES -1, .
r, = —— (5-22)
2t
and for four fixes
0 3(2%, - r,) - 2%, + 1,)
r, = 2 L& (5-23)
6t

Each vector equation represents three scalar equations. Thus, Eq

(5-22) represents three equations, the first of which is

X, = —o— (5-24)

and similar equations for &2 and 52.
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¢ Taylor Series., If only two fixes are available, the numerical

differentiation technique to obtain velocity fails. However, as

suggested in Ref 4:88, a Taylox series expansion about ?1 will

yield an approximate solution for ?1

[ . 2 oo 3
T, = F+T) t+ I -;:—-+'fl%—+.... (5~25) ]

The series is truncated after the t3 term. The second derivative is

given by 3
= - n-i:l ;
r, = —— (5-26)
r13

The third derivative is obtained, approximately, from an expansion
for r,

¥, = %1 +'1;:'1 t+ ... (5-27)

which is truncated after the second term. Then

=

2 -1
‘e + —L
oes r - T 3 3
T T r r (5-28)

Substituting into Eq (5-25) and simplifying yields )

lall
4 e eay

. ¥r -F ut | 2%
r, = 2—Ll4+ ___; -2 (5-29) )
. t 6 ry r23
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Lambert's Theorem. Two vector positions and their time separation

are sufficient for velocity determination using Lambert's theorem
(Ref 4:80). Solution of Lambert's theorem involves a double iteration

process and is thus impractical unless a back-up computer is available.

Orbit Determination From Position and Velocity

Knowledge of position and velocity at a specific time completely
defines an orbit. Methods for computing the orbital elements from

position and velocity are presented in most texts on astrodynamics.

One of the orbit computation methods discussed in Ref 3:Ch 1 is
briefly outlined step-by-step in Table X. The items in Table X
labeled "intermediate steps'" are fully derived and discussed in
Ref 3:Ch 1.

Figure 29 shows the orientation unit vectors ﬁ, 6, and W used in
the procedure as well as a pictorial definition of the descriptive
orientation parameters i, 2, and w. Two of the unit vectors establish
the orbit orien*ation--the third unit vector as well as i, Q, and ©
are not really required.

[

The computation method of Table X can be extended to include

parabolic and hyperbolic trajectories (Ref 3:Ch 1). H

Orbit Determination From Three Position Fixes: Gibbsian Method

An approximate orbit can always be obtained from three fixes by .

using numerical differentiation to determine velocity at one of the
positions. But such methods are only approximate. The Gibbsian
method, however, yields the orbit with no need for approximations or

iterations of any kind. The computed orbit using the Gibbsian method
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Table X
Orbital Elements From Position and Velocity
Given: . _
X . [x] r = position vector
f= T =y :
y [YJ r = velocity vector
z z
y
c T $2 -
Compute |T| and $ r = |%|
r2 = (x% + y2 + 22) §2 - |32
. . . . =]r
§2 = %2 + y2 + 22

s Yields semimajor axis a

D = intermediate step
r = radial velocity # I;]
D = intermediate step

——3 Yields e and Eo

A, v,2z = intermediate steps

(ax,y,z does not refer to
semimajor axis a)

s
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Table X (Continued)
Py = (ay/e) -
P, = (ay/e) t——>=  Ylelds unit vector P
y y (see Fig. 29)
P, = (a,/e)
r
L = a(l - e?) 2 = semilatus rectum
H=1r-~- 2% H = intermediate step
H=gy=dED H = intermediate step
r
)
by = (ix = xH) /AT
by = (gy - YH)//F bx,y,z = intermediate steps
b, = (Hz - zH) /W
Qx = bx/(e /D .
Qy = by/(e /2 ——»  Yields unit vector Q
Qz - bz/(e /RT) (see Fig. 29)

Yields unit vector ﬁ
(see Fig. 29)

Vields i, @, w
if desired
(see Fig. 29)
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vehicle position vector

true anomaly

inclination

argument of perilfocus

longitude of ascending
node

DE B @Kl
It ow onn

unit sphere

-Vehicle
y
P = unit vector in direction
of perifocus
Perifocus W = unit vector in direction
of TxFT
Q = unit vector directed
X such that PxQ=W
Fig. 29

~ ~

Orientation Parameters and Vectors f, Q, W

is as accurate as the position fix input data.

The Gibbsian method is treated in Ref 3:5l. A step-by-step
outline of the computation procedure is presented in Tzble XI.
Note that the time interval between fixes i1s not required. The
computation procedure can be extended to include hyperbolic
trajectories and variations exist that use redundant data (Ref

3:Ch 1).
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Gibbsian Method:

Table X1
Orbit Determination From Three Position Fixes

Previously determined:

Yields unit vector W
{see Fig. 29)

Y .

xfl 2l %
T, S| T2 Y2 T3 T|¥3
! Z, Z3
S = r1 X r3|
ﬁ - rl X r3
S
c _ r2 X r3
1 S _
Y. X
2 ¥ T
C, 3
C r

(cy + c53 - 1)

% = gemilatus rectum

(]
P
1l

3

r. 8- rl) - r1 - rg

5

©
N
[}

e2 sz + @2 Qy2 + e2 QZZ

e o

Yields e
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1 Tahle XI (Continued)

Qx = (e Qx/e) R
= —~——» Yields unit vector Q
gy i E: gy;:; (see Fig. 29)
z - z/®
i
- 2 ——> Yields a
Q B meeceme——
(1 - e?)
Y
P = 6 x W L » vields unit vector P
(see Fig. 29)
A4
a - ry
cos Eg = =
ae .
F; < 180° if |7| is increas-| » = 1» 2, 3 (or any other
ing. known r)
v f—— Yields ry time from
éi [:Ei - e sin Ei,l perifocus
i
cosi=W, (0<i<m
tan @ = - (Wy/Wy)
sin Q@ = (Wy/sin i) > Yields i, @, w if desired.
] (see Fig. 29)
tan w = (P,/Q,)
cos w = (Q,/sin i)
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Position in the Orbit - Direct Measurement of True Aaomaly

If the orbit orientation is known, the true anomaly difference
between two positions can be measured directly. This section will
treat a simplified and then general method of measuring true anomaly.

True Anomaly From Star in Orbit Plane. The true anomaly can be

measured directly by sighting a star known to be in the orbit plane.

Figure 30 illustrates the geometry of the measurement. If the star

*

To Star in
Earth Orbit Plane

‘Orbit

Perifocus

/’
-~ ~
~\\“"Line Parallel to P

Fig. 30

True Anomaly Measurement

1s in the orbit plane, then

6 = B+ (y+ A/2) (5~30)

The angle (y + A/2), the star-vehicle-earth center angle, can be
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measured with the sextant. The angle B, which corresponds to the true
anomaly of the orbit plane star, is obtained from
I+P = - cos 8B (5-31)

If only the difference in true anomaly between two positions is needed,

then

92 -6, = (Y + A/2)2 - (‘Y + A/Z)l

and there is no need to determine 8.

A star in the orbit plane can he found by establishing « and §
of two known orbital points, plotting these points on a properly
constructed star chart, and joining them with a straight line. Any
gtar on the line is "in" the orbit plane. The two known points may
consist of two unit position vootois or the unit vectors ﬁ and a.
Knowledge of i and Q also establishes the line.

The type of stax chart is important since the straight line
drawn between the two known points must represent a great circle on
the celestial sphere. Projections having this characteristic are:

1. equatorial gnomonic
2, oblique gnomonic
3. polar gnomonic

True Anomaly from any Star. If a gtar in the orbit plame camnot

be found, the situation is more ccmplicated. However, it is possible
to sight any star and derive a measure of true anomaly. Preliminary
data needed are two angular positions--right ascensions and

declinations or the unit position vectors. Complete derivations of

118
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the equations to follow may be found in Appendix D.

An illustration of the orbital trace across the celestial sphere

is shown in Fig. 31.

¥ = 180° -(YS + A/2)

Celestial Sphere

Orbital Trace

Celestial Equator

Fig. 31

Orbital Trace on Celestial Sphere

From spherical trigonometxry

- cos (ys + A/2)
cos (85 - 8) = . (5~33)
cos Y,
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where

vg + (A/2) = the measured star-vehicle-earth center angle.

Yo = the minimum possible star-earth-vehicle angle.*
8 = true anomaly of vehicle.
g = true anomaly of star's unit vector as projected

into orbit plane.

A = earth's subtended angle.

Note that Y, represents the minimum possible star-earth-vehicle angle.

Therefore, if the star and the earth can be observed simultaneously,
the vehicle must travel close to 180° before y, will actually occur.

The angle Y, can be determined from

- cos (yg + A/Z)Z'

cos Yo =
cos (85 - 62) I

0 < ¥y, < 90° (5-34)

where (yg + A/2)2 represents the star-vehicle-earth center angle as
measured at position two. The angle (65 - 0,) can be determined

from

tan (8 - 8,) = cot (65 - 6;)

cos (yg + A/2)1
~ cos (vg + A/2)2 sin (62 - 61) (5-35)

* y, is called "minimum coaltitude" in Ref 17:46 and is denoted by’?.
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aﬁd (62 - 91) from

cos (6, - 6;) = cos §; cos &, cos ﬁaz - 0;) + sin §; sin §,

(5-36)

The angle Y, for a given star is constant. Therefore, once
¢ is established, the true anomaly difference between two positions
0

can be determined through

- cos (yg + A/2)

cos (65 - 0) = (5-37)

cos Y,

For the special case when the star is in the orbit plane cos y, = 1
and Eq (5-37) reduces to the simpler expression treated in the first
part of this section.

The angle Y, can also be determined by direct measurement
(Ref 13:8). The astronaut simply observes a star passing close by
the earth and records the minimum star-vehicle-earth angle. The
minimum star-vehicle-earth angle corresponds to Y,- Figure 32 is

an illustration of this concept.

Conclusion

The manual determination of the three~dimensional fix is within
the realm of possibility. With three fixes, the orbit can be
obtained using straightforward computations. Although direct manual
computation of the orbit will be tedious and time consuming, the
capability is there., Simplifying techniques and procedures will

become apparent if the method is adopted and analyzed step-by-step.
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Star

X
Star
X

(Ys+A/2) 4’0
oS
Vehicle Orbit Plane
Earth
Fig. 32

Star-Vehicle-Earth (SVE) Plane at Instant
of o Measurement (Orbit Plane
and SVE Plane Perpendicular)
If a back~up computer is available, several avenues are open:
1. Program the approximate orbit--i.e., obtain velocity
using numerical differentiation.
2. Solve Lambert's theorem.
3. Program the Gibbsian method.
Programming an approximate orbit is undesirable if better methcds are
available. Lambert's theorem involves a double iteration which would
probably exceed a back-up computer's capability. Obviously, the
Gibbsian method, or a variation, should be programmed. Chapter IX will
present such a program. The output of this program will be used as
input to a second program that 'projects" position and velocity as a
function of time along the trajectory. This information could be used,

in turn, as input to a back-up guidance scheme.
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VI. Orientation Parameters - Geometric
Elements Known ]

Summary of Present Manual System

References 12, 17, and 22 present a manual means for determining
the orientation parameters i (inclination), @ (longitude of ascending
node}, and w (argument of perifocus). The method consists of determin-
ing minimum coaltitudes for a selected star palr (minimum coaltitude
is the minimum star-earth-vehicle angle for a given star). Given two
minimum coaltitudes, (wo)1 and (wo)z, the following nonlinear set of

equations* is solved for the components of W

Wel = sin (y);
WelI, = sin (¥, (6-1)
W = 1

where the unit vector W is normal to the orbit plane (Fig. 29). il

and I, are unit vectors toward star one and star two respectively.

The orientation elements are then determined from knowledge of ﬁ

and presented graphically as a function of (yg), and (wo)z. The
system is ingenicus and works, but there are several disadvantages

in determining the orientation parameters using this method.

* Notice the similarity of this set of equations to the nonrlinear
thrée~dimensional fix (Eq (5-12)).
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‘ 1. The geometric parameters are used in determining

‘ (tl:o)1 and ’po)z. Therefore, any errors in the
geometric parameters will be carried over to the
computation of each orientation element.

2. The system is dependent upon pre-computations using
pre-selected star pairs--star pairs are chosen with
regard to the expetted orbit and an established range

E of probable values of i, Q, and w. Therefore, the

method is not entirely flexible.
3. The solution of the nonlinear set of equations,
Eq (6-1), is a disagreeable task even for a ground
based computer. Programming a small back-up computer
for inflight solution of Eq (6-1) is of questionable
practicality.
Alternate methods for determining the orientation parameters are
available. The unit vector W can be obtained from any two vectors
known to be in the orbit plane. For example, if E, and T, represent

the vehicle position vector at time one and later time two, then

3
b N -I:XE
W = _1 _2 (6-2)
I L X r2|
The position vectors fl and Ez can be determined by the methods £
discussed in Chapter V. -

The object in this discussion is not blind criticism of a manual

method which works (and quite well - see Ref 12), but is rather an

i
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attempt to start development of a general method of orientation element
computation applicable to any orbit whatsoever--with no requirement

for prior knowledge of what that orbit might be. The following
paragraphs treat the problem of orientation element computation from

partial knowledge of two positions in space.

Orientation Elements From Position Fixes

If the geometric elements are obtained by other means, only two
partial fixes are needed to specify the orientation elements i, {,
and w (defined in Fig. 29). In the development to follow, it is
assumed that two such fixes have been obtained using ome of the
methods of Chapter V.,

At position one and a later position two, the unit position

vectors are

o T 1 1 jhr, Kk
r, L i+ ry2 3 r., k (6-3)

Then the unit vector W (see Fig. 29) is given by

- ¥, X T
R N (6-4)
1% 7|
from which
cos i = W, (0 <iz<m) (6-5)
125
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and

=

tan @ = - X (6-6)
y

The ambiguity for @ is resolved by noting that

W

sin @ = siﬁ T (6-7)

Thus, the orbital inclination i and the longitude of ascending
node @ are determined with no requirement for prior knowiedge of
the geometric parameters.

The solution for w, the argument of perifocus, requires knowledge
of the true anomaly at some position r. This can be position one,
two, or amy other known position. Therefore, the geometric elements
nust be determined before w can be calculated. The argument of

perifocus is given by

T
w = sin"l[ Z ,]— 8 (6-8)
sin 1

where 6 is the true anomaly at the vehicle position r. The ambiguity

for w can be resolved using

r "~ b |
_ -1 x ‘-z tan _ _
w cos l:cos 5 + e 0 (6-9)

Example Problem 6-1 - Orientation Elements. Several spacecraft

emergencies have compounded to the point that manual determination
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of the orientation elements is necessary. Using the three-star fix
procedures of Chapter V, the astronauts obtain the follcwing unit

position vectors and corresponding radial distaaces:

t=t t=t1+31/2hr
Iy = -50837 Tyy = . 25442
L 74113 g, = .83992
r,, = .43850 r,, = 47937
r, = 21098 NM r, = unknown--but
greater than
r
1
The cross-product ;1 X §2 is given by
r,xr, = i (ryl LI ryz)
ti 2 'zl rxl rzz)
+k (rxl ry2 - ryl rxz) (6-10)
and substituting values
tox%, = 1 (-.01303) + J (-.13213) + k (.23843)
|r1 X r2| = 0.27290

The unit vector ﬁ is then

‘3 ;_ (~.04774) .*.3 (~.48417) +12 (.87369)
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from which
cos 1 = 0.87369
and
i = 29.,11°

The longitude of the ascending node, 2, is given by

-W.
e My 0e778)
tan Q wy ’(‘m— 0.09860
from which
174.36°
= or
354.36°

Since sin Q = Wx/sin i is negative, the correct value is
Q = 354.360 = ""5.640

The true anomaly at one of the positions must be determined before
the argument of perifocus, w, can be calculated. The geometric

elements (assumed Previously determined) yield the true anomaly at

position one through *he equation

- e2y -
cos 6, = a {1- e L3 |
er,

(6-11)
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Using the values

a = 132,875 WM
e = .9737
r = 21,098 NM

the expression for cos 6, is

cos o, = 132875)(1 - .0481) - 21098

= - . 2
/(.9737) (21098) 0.6913

and

61 = 133.73°

The true anomaly is less than 180° since the radial distance is

increasing. The argument of perifocus is given by

r
w = sin~! |[—2L{ -9 = sin-l [’2’3——2—2%:‘— 133.73°

then

64&330 - 690400
w = or -~ 133,73° = or
115.67° ~ 18.06°

The proper angle is determined by

T. T tan §
w = cos™! X1 4 “=z) 7 -8
cos tan i
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which becomes

o -1 [(.5)) _ a1 °
w = cos l;.gg) C.56) J 134

Then roughly

64° 70°
w=| or| -~ 134° = or
-64° ~198°

The angle common to both calculations is -69.40° so the argument of

perifocus is

® = - 69.400

Orientation Elements from oy and Sy

Knowledge of vehicle right ascension and declination at two
points coupled with the true anomaly at either point is sufficient to
define the orientation elements. Conversion from polar to rectangular
coordinates is unnecessary. Figure 33, an illustration of the
vehicle's path on the celestial sphere, will be used for some of the
derivations. to follow.

From the previous section

cos 1 = Wz

(ry, Tys = Iy Ty,)/ %1 X i:z (6-12)
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4
z 3
Celestial Sphere
fV ‘
4
]
Perifocus —- 1
Fig., 33
Orbital Path on Celestial Sphere
Substituting
r, = cos § cos a 1
x, = cos § sin o (5-18)
r, =-'s8in §
131 ]
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o Al

leads to
cos &, cos §, sin (a, - a,) ]

cos 1 = 1 - 2 - 2 1 (6-13) f

r, xr,

The cross product of the two unit vectors is

~ I 3
rzl sin A© sin 4 6 (6-14) .

1

where A9 is the true anomaly difference between T, and §2.

From the spherical triangle def (Fig. 33)

cos A6 = sin 61 sin 62 + cos 61 cos 62 cos (az— al) (6-15)

thus A6 and sin A6 can be determined and the inclination is given

by

cos 8§, cos 6, sin (o, - a.) s
cos i = 1 2 2 1 0 (6-16) ?
! lsin Ael

| A
e
| A
=S

R

P

The longitude of the ascending node, Q, can be found from the

spherical triangles abe and acd using

tan 62 !
sin (a2 - Q) = (6-17)
] tan 1
The ambiguity is resolved using
i ' b
3 tan 61 "]
sin (“1 - = (6-18) ‘ ]
tan 1 f @

3 t
I

The common valiue of Q is the solution.
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The argument of perifocus requires knowledge of the true anomaly
at one of the positions. Assume 62 is known. Then, from the

spherical triangle acd

in (w+e,) = on2 (6-19)
sin (w = -
2 sin 1
The ambiguity can be resolved using
in (0 + 6,) sin 9 (6-20)
sin (w = -
1 sin 1
and since 6, = 6, + A6
in [ + (8,~ A6) sin %) 6-21
w + - = -
sin 2m 801 = o3 (6-21)

Example Calculation 6-2 (i, @, and w from o and §). Using the

Polaris fix technique (Chapter V) the astronauts establish the

following angular data:

t= tl t2 = t1 4+ 2 hr
@, = 55.55° o, = 68.29°
8, = 26.01° 5, = 28.15°

In addition, the true anomaly at position vne is known to be

6, = 133.73°

The orientation of the orbit is desired.
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Solution. The true anomaly difference between position one and

3 two is

cos A6 = sin 81 sin 62 + cos 61 cos 62 cos (“2 - al) (6-15) ' ]

and substituting values

cos A8 = (.43851)(.47178) + (.89873)(.88171) (.97541)

= .97981 ;
from which |
A8 = 11.53°
sin 46 = .19991 . ;
3 é The inclination is given by .

cos §, cos 8, sin (a, - a,)
cos 1 = 1 2 2 1 (6-16)
| sin Ael

and substituting values

(.89873) (.88171) (.22042)
(.19991)

cos i = .87372

Then

LT

e
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The longitude of the ascending node is found from

tan §
o 2 _ (.53508) _
sin (a, - ) tan 1 (.55673)

73.97°
a, - Q = or = 68.29° - @
106.03°

Then

~-5.68°
Q = or
~-37.74°

The ambiguity is resolved by a rough calculation of

other position. Accordingly

tan §, .49
sin (o) - ) = tan 1 = .56
~50
Q = or
-65°

The angle common to both calculations is near -5° so
2 = -5.68°

The argument of perifocus is determined from

sin § (.43851)
+ = = Il =
sin (04 9)) = =g (. 486439
64.35°
w + 61 = or = -+ 133.73°
115.65°
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and

-69.38°
or
-18.08°

14
[}

A rough calculation of w using the other position yields

sin §, 47
sin [w + (6, + AB)] = TR = A = .96
74°
w + 133.73° + 11.53° = or
106°
-71°
w o= or
-39°

The common value is selected, i.e.,
w = -69.38°

Graphical Solution for i, 2, and w.

A graphical solution for the orientation parameters is illus-

trated in Fig. 34. The graphical solution for i, 2, and w consists

of the following steps:

9

constructed star chart, i.e., plot (avl, le)

and (a,,, sz) where position twc is later than

position one.

2. Draw a straight line from position two through

position one and inte_sect the equator.
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Celestial Sphere-Equatorial Gnomonic Projection
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loo elz./l?:;/ ((1,6)
i

90° 0° /(/ \\ 60° 50° 40° 30°
t
=760 Perifocus_J
//// Q=75 jtabubutund

-10°

Fig. 34

Graphical Solution - Orientation Elements

3. The right ascension of the intersection point is Q.*

The angle between the orbit plane and the equatorial
plane Is ihe inciinatlion--but the angle i cannot be
¢ measured directly from the chart. Instead, the

inclination must be calculated using the right

i % The intersection will yield the descending node if the line is
drawn f£rom position one to two to the equator.
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spherical trigonometry relationship

tan Gv
tan i = —mm——— -
an sTn (ay = ® (6-22) .
:
4, Assume the true anomaly of position one is known. . )

Plot the point representing perifocus by measuring :
backward on the constructed line (i.e., in direction
of point two to point one) from point one an angular
distance equal to the true anomaly (the angular
scale on the equator or a meridian must be used).
The angular distance from the equator to perifocus,
measured on the constructed line, is w.
The star chart must be constructed such that a straight line repre-
sents g portion of a great circle. Projections having this
characteristic are:‘ ) ]
1. equatorial gnomonic
2. oblique gnomonic
3. polar gnomonic %
The scale distortion of the gnomonic projection does not
appreciably affect the accuracy of the graphical detexrmination of @
and 1. However, the distorted scale must be used to determine
w--therefore, w can only be determined approximately.

Example 6-3 (Graphical Solution for i and Q). Using the

Polaris fix techniques (Chapter V), the astronauts establish the
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following angular data:

t=t1 t2=t1+2hr
- o - o
@ 39.12 o, 63.39
= ° = °
61 21.40 62 27.47

The inclination of the orbital plane and the longitude of the
ascending node is desired.

Solution. Figure 35 represents an equatorial gnomonic projection
of the celestial sphere. The two angular positions are plotted and
a straight line is drawn from position two through position one. The

line intersects the equator at o = -5.5°, therefore

-505°

Fel
il

The inclination is given by

g i = % } tan 27.47°
P T = ) sin (63.39° + 5.5°)
. .51983
= 222299 = 5572
tan i ~53285 55725
; from which
i = 29.1°

The solution for w is not shown since, for the example orbit

% . selected, the construction lies outside the range of the chart.
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Orientation Elements From Minimum Coaltitudes

Ty

This section is an outline of an alternafe method for determining
the unit vector.ﬁ (Fig. 29). The scheme is related to the present
r ninimum coaltitude method used in Refs 12, 17, and 23. The present
method was briefly summarized at the opening of this chapter.

Three minimum coaltitudes can yield the unit vector W through

I e A N,

the equations

=

.
>
1]

1 sin (lpo) 1

=
-
]

2 sin (¥),

?
>

sin (yo) " (6-23)

=
~
w
i

3 ) Eq (6-23) is the same form zs the three-dimensional fix equations of
Chapter V, Fq (5~13). Solution for thu components of the unit vector E

ﬁ leids to

=
n

. = A, sin (¥o), - By, sin (Yg), - C,5 sin (Yo,

i Al

=
1]

- A , sin (tpo)1 - B

y v , sin (o), - Cy3 sin (o) 4

y

e

=
I

-4 sin (W), - B22 sin (Y), - Czs sin (¥5) , (6-24)

T

g The constants Ay; through C,3 are the same quantities defined by
Eq (5-16) and used in the three star fix procedure of Chapter V.
2 , The same publication tabulating the constants can therefore be used

. ‘ 3
i ct either for three star fix procedures or for directly determining the ]

unit vector W. The orientation elements can be derived from knowledge i
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of ﬁ.

The minimum coaltitudes can be determined geometrically using
spherical trigonometry if the geometric elements are known (Ref
17:45). Minimum coaltitude can also be observed directly~—the

ot tgeometry is shown in Fig. 32 in Chapter V.

Other than eliminating the simultaneous measurement requirement
of the three-dimensional fix, the minimum coaltitude method offers
little advantage over the position fix technique. Indeed, since
similar equations must be solved for either method, the position fix

is preferrec. A position fix in space yields more information the

astronaut can use directly in solving the navigation and guidance

problem.

Sumnary ~ Orientation Elements

Compared to the geom ric elements, the solution for the
orientation parameters is simple. The exact solution for the
geometric elements from a set of range measurements involves a set
of nonlinear equations. The orientation elements, with the exception
of ©w which depends on true anomaly, can be obtained using simpler
equations. There is no need to toil over nonlinear interative
techniques to obtain the orientation elements. Notice that the
soluticns for i and Q do uot require knowledge of the vehicle's
stance from the earth~—-a plus feature since the range measurement

is the most difficult to obtain accurately,
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VII. Orbit Determinacion - No Range Measurements

Most of the orbit determination methods presented in this thesis
require one or more measurements of range (range is radial distance
from the center of the earth). In general, the range measurement is
the most difficult to obtain accurately. For this reason, it seems
logical to seek an orbit determination scheme that does not require
any range measurement whatsoever. One such method will be briefly
described. Time permits the presentation of only the bare details--
the recommendation section of this thesis will suggest further

analysis of this orbit determination scheme.

Orbit Determination ~ No Range Measurements

One possible method of computing an orbit without knowledge of
radial distance is briefly presentegl‘.

1. Determine the orbit plane-~two angular positions
are required from which i and Q can be determined.

2. Find a star in the orbit plane. This can be done
using procedures described in Chapter V.

3. Obtain three values of 6. 6 might be determined
using numerical differentiation. TFor three

measurements

6, = —— (7-1)
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The quantity (8, - 6,) can be measured directly by b
{ i ;
; .
5 sighting the orbit-plane star. Chapter V-butlines b
the procedure. : i
4. Compute e and 0, using¥ ; 3
C
nony ;
e cos 6, = Q/s ('1-2) 5
' N N v
! e sin 6, = R/S (7-3) ,
! } where é
= %
f n . 1/2 . 1/2 ,
! - - ; :
o Q = (62) sin A0, , (93) sin A8,, ;
3 }
é g
Cod o 1/2
i
| . i
| n .1/2 . 1/2 :
b R = - (93 - 91 ) cos A612
4
. 1/2 .12 5
+ (92 - 61 ) cos A013 ,
« 1/2 + 1/2 ,
- (62 / - 8 / ) (7-5)
= ;
z N . 1/2 E
S = 61 sin (A913 - A612) ‘
{ . 1/2 « 1/2 4
+ 6, sin 46,, - 9, sin A6, , (7-6)
9
L .
2 A8 = 9, -0 (7-7) ( i
ij h| i i
p 3 i‘
; L} .‘
w’ L
; o
B
] !
* These equations are presented iun Ref 20:697. i s
o
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Note that if a suitable measurement schedule is
followed, a number of terms can be pre-~calculated.

5. Compute £ (semilatus rectum) from

1/3
. = p(l + e cos 61)l+

- = a(l - e2) (7-8)
6,2

Summary
Only the bare essentials of a "nmo range" orbit determination method
have been presented. Other orbit determination schemes that involve
indirect measurements of distance are also available--the classical
Laplacian method (Ref 3:36) is one example. Intuitively, it seems
that an orbit determination scheme of this type would be highly
advantageous because:
1. To date, the accuracy of range determination is
marginal.
2. Angular measurements can be obtained more directly
and probably with greater accuracy.
3. The semi-diameter method of obtaining range is
limited to close earth orbits. Range in deep space
requires the solution of a more complex equation
(Ref 4:222).
4. Range determination methods using a reference trajectory
are useless if the reference trajectory is invalidated

(this topic is treated in Chapter VIII).
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VIII. An Improved Optical Method of
Range Measurement

Introduction

As has been seen in the previous chapters, accurate range or
altitude measurement is essential in most manual navigation schemes.
Optical measurement using the planet angular diameter is subject to
large errors as the distance from the measured body increases.
Therefore, other optical ranging techniques have been investigated.
Harold A. Hamer, of the NASA Langley Research Center, has proposed a
method based upon linear perturbations from a pre-computed reference
trajectory (Ref 8). This chapter deals with Mr. Hamer's approach to

accurate optical range measurement.

The Method

The geometry of the measurement procedure is depicted in Fig. 36.
The angle D, which can vary between 0 degrees and 180 degrees, lies in
the instantaneous earth-moon-vehicle plane. If Fig. 36 represents the
vehicle on a reference trajectory at a given time, then the incremental

range Arev (actual range minus reference range) at that time is obtained

as follows:

8]

3

- em - en _
Yoy TN sin C Y sin (A + B) (8-1)
or
Yoy = Tep €0S B+ rgo, sin B cot A (8-1a)
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As shown in Eq (8-la), the *rariables which define T,y ata given time

are the angles A and B;

drev B

From Eq (8-1a)

therefore

dr ar
&V aa + —=¥ g
2A 9B

ar
& - . 2
5A rem sin B cscc A
but
Tnv
sin B = T—sin A
Tem
so that
arev - _ _rhv
%A sin A
where
r 24 2. 2
cos A = - mv em
Zrev.rmv

Further, from Eq (8-la)

ey

9B

Tom (cos B cot A - sin B)

(8-2)

(8-3)

(8-4)

(8-5)

(8-6)

(8-7)

where angle B is given by Eq (8-4) and angle A is given by Eq (8-6).

The values of r T

ev: mv?

trajectory.

L TR

and Ten
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The variables A and B in Eq (8-2) refer to angular meacuremeits
which must be made onboard the vehicle. Angle B cannot be measured
from the vehicle. Therefore, a related angle which can be measured
must be substituted. As shown in Fig. 36, the angle F, measured
between a star and the earth's center, can be used in the following
manner. For the case in which the star is in the instantaneous

earth-moon-vehicle plane, dD/dB = * 1, (this is true because Tom

and the line-of-sight to the star are fixed in direction for the
instant being considered), where the sign is determined by the
relative directions of the earth and the star. Equation (8-2),

therefore, can be written

d = -—.are" da + k ey dD (8-8)
Tev © 34 3B

where dD represents the change in the star-to-earth angle and k is
plus or minus one. (The equation for determining k is derived in
Appendix E.) If the star is not in the instantaneous plane, as
shown in Fig. 36, dD can be determined from the right spherical

trigonometric relationship

cos F = cos D cos E (8-9)
or
D = qos™} <%2§~$> (8-9a)
cos E
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Thus
1/2
sin? F
db = > 5 dF (8-10)
cos“ E - cos“ F
or
1/2
1- cos?F
dD = dr (8-11)

cos?2 E - cos? F

Therefore, in terms of two angles which can be measured from the
vehicle (earxth center to moon center and star-to-earth center),
Eq (8-8) can be written

1/2

ar =Fev . Tev [ 1-cos?F dF (8-12)

ev %A 9B cos2 E -~ cos? F

or, for the region in which a change in Yoy is linear with changes

in A and B
3 2 He
r r
pr = =¥ M+ kY 1 - cos? F AF (8-13)
ev 9A 9B cos? E - cos? F
where
aa Agctual ~ Areference (8-14)
AF = F_tual ~ Freference (8~15)

The incremental range Ar,,, then, is determined by the two measure-

ments A{actual) and F(actual), and by the pre-calculated values of
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A(reference), F(reference), arevlaA, arev/aB, and k.El - cos? BY
(cos2 E - cos? Fﬂl/z. Equations for calculating F& E, and k, which

pertain to the reference trajectory, are derived in Appendix E.

Linearity Characteristics. Mr. Hamer's investigation of the

variations of Ar,, with AA and 4B for a typical lunar trajectory
showed that at a given time the partials arevlaA and 8rev/83 can

be considered to be essentially constant over a wide region, as
indicated in Fig. 37. (Note that the kilometer is used as the unit of
distance in this chapter.) The reference trajectory used was selected

from Ref 7. 1In Fig. 37, the curve for AB was determined from the

relations
Tev
sin C = —— sin A (8-16)
Tom
and
B = 180° -~ (A + C) (8-17)

where A is held constant at the reference value and is given by

Eq (8-6). The curve for AA was determined from the relation

r
sin A = r_e?; sin B (8-18)
nv *
where
- 2 2 _ 1/2 -
v (rev + T 2 ron, Ty, COS B) / (8-19)

and B is held constant at the reference value, and is determired by

Eqs (8-16) and (8-17). The curves shown in Fig. 37 are for a
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4 x 10°

-4 1 .
-6 -4 -2 0 2 4 6

AA or AB, Degrees

Rt i S A, S

|
- el

Fig. 37

Linearity Characteristics of the Hamer Method for a Reference
Distance of 162,000 KM From Earth (Ref 8:10) '

A

: 152




Rica

at.

Bt s e i o 7 e

GA/AE/69-1

reference time from injection (perigee) of 16.125 hours. (Here, Tov

is approximately 162,000 kilometers.) At this time, a two hour
difference at injection from the reference injection time would
repregent a difference in range from the earth of about 13,000 kilo-
meters. The data in Fig. 37 show that this difference can be
considered to be within the linear'region. Several reference
trajectories, therefore, could suffice for range determination for a
given launch window.

The linearity characteristics of arev/BA and arevlaB illustrated
in Fig. 37 are representative of those over most of the earth-moon
distance. Actually, the linear approximation f;r arevlaA improves as

the moon is approached, as shown by the derivative of Eq (8-5), which
is

2 .
Tey cos A

= I, _—n -
242 ™ sin2 A (8-20)

The angle A approaches 90 degrees as the moon is approached. From

the derivative of Eq (8-7)

2
9 Tay

382

= -r. (cot A sin B + cos B) (8~-21)

it can be determined that the linear approximation for Brev/BB will
also improve as the moon is approached.

Effect of Proximity to the Earth-Moon Line. The values of

arev/BA and 8rev/8B which are pre-—calculated and supplied to the
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astronaut in the form of charts or tables are shown in Fig. 38 for
vehicle positions along the translunar portion of the reference
trajectoxry. The partials 3ry,/9A and 9rx,,/39C required to determine
range from the moon are also shown. These values will approach those
shown for 9rg,/9A and 3Tey/8B at distances near the earth. It is to
be noted that for a position fix near the moon, higher accuracy is
obtained by measuring range from the earth rather than from the moon,
inasmuch as the geometry gives lower vzlues for arevlaA and 3rg,/9B.
It will be seen that the error in determining the incremental range,
Arev’ is proportional to the magnitudes of the partials.

In Fig. 38, the large values shown for arev/BA argd arev/EB neax
the earth occur because of the close proximity to the earth-moon line
(angle A approaches 180 degrees). Thus, range determipation using
Eq (8-13) would be inaccurate for about the first five hours (or
75,000 KM) from injection. These results would be typical for any
method based upon earth-moon measurements. The accuracy of angular
diameter measurements is much better for the first five hours, as
shown in Fig. 39. The dashed curve represents.the error in the range
for an angular diameter measurement ¢ error of 10 arc-seconds.

For times along the reference trajectory except for the first
five hours, the error in determining range by Eq (8-13) is relatively
small, us shown by the solid curve in Fig. 39. This curve represents
the error in the incremental range along the translunar portion of
the reference trajectory where the angular measurements A and F are

considered to have random uncorrelated errors, each with a standard
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deviation o of 10 arc-seconds, such that

1/2
2 2
or or

. o - ev + ev o 8-22)
Arev A A F F ( )

where B -

1/2

Ty = k 1-cos®F oy (8-22a)

‘oF cos? E - cos? F 9B

In Fig. 39, the star which is used to measure F is assumed to lie in

(or near) the instantaneous earth-moon-vehicle plane sc that the

i s o

value of the temm Bl - cos? B)fcos? E ~ cos? Fjllz in Eq (8-13) is one,

and 3rev/aB = % 3r,,/9F.

PR PR Y-

Effect of the Star Selected for Measurement. The value of the

quantity [(1 - cos? Bjfcos? E - cos? Fﬂllz can vary from one to infinity,
depending on the reference trajectory and the star selected for the

measurement of F. The effect of star position on the error in Arev

is shown in Fig. 40. The error in Ar,, is a minimum when the
quantity [(1 - cos? Ffeos? E - cos? FBI/Z is a minimum. This quantity

has its minimum with respect to F at F = 90 degrees and rises rapidly

as the extreme values, F = E and F

180 degrees minus E, are

approached. The extreme values of F occur when the star position is

in the plane: containing the vehicle-earth line and the vertical to

4
%
1
.
Ml

. the earth-moon-vehicle plane. The desired stars, therefore, are those

o3

that lie near the earth-moon~-vehicle plane (E within about plus or

minus 30 degrees) with projections in that plane away from the
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vehicle-earth line.

Corrections for Nonsimultaneous Measurements. In the equation for

range determination, Eq (8-13), both measurements are assumed to have
been made simultaneously. Since simultaneous measurements are not
usually possible, errors would be introduced in the results unless the
measurements were corrected or converted to some common time. This

time could be either before or after the actual time of the measurements.
If the time corresponding to one of the measurements is made the common
time, only one measurement would have to be converted.

The measurements can be converted to a common time (small time
increments only) by use of pre-calculated data on the rate of change
of angle with time along the reference trajectory. These data would
be practically the same for any other trajectory reasonably near the
reference, so that they would apply for making corrections when off
the reference trajectory. Equations for calculating dA/dt and dF/dt
along a reference trajectory are given in Appendix B of Ref 8.

In converting a measurement to a common time, the corresponding
value of dA/dt or dF/dt at the given range multiplied by the time
increment would be sufficient to calculate the incremental angle to
be added algebraically to the measured angle. The range would have
to be known only approximately. For trajectories launched near
nominal injection time, the nominal range at the time of the
measurements would be adequate, wherecas for trajectories not launched
near the nominal injection time, the approximate range could be

determined according to the time from actual injection time.
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Measurements of the Center of a Body

Throughout this discussion, it has been assumed that optical
measurements to the center of the earth and moon are possible. The
USAF Hand-held Space Sextant has been qualified for star~horizon
measur~ments only. It is felt by the authors of this thesis that
this sextant could be adapted to measure star-earth center and
moon-earth center angles. The incorporation of an attachment such as
a filter enscribed with concentric circles and centering cross-~hairs
has been suggested to the Air Force Avionics Laboratory, sponsors of
the sextant's development and testing. Their response has been
favorable, and this idea may be investigated with possible operational

testing in the D-009 Apolio experiment.

Discussion

Mr. Hamer points out that the range measurement method he has
proposed could be used just as easily with the Sun and a planet as
with the earth and the moon. Also, he has determined that after the
first five hours from injection on a translunar trajectory, the
uncertainty in range is relat’vely constant at about 35 kilometers as
long as the star used is within plus or minus 30 degrees of the
earth~moon-vehicle plane.

These results are very encouraging. With range measurements of
this accuracy, the manual navigation techniques described in this
thesis are of much greater utility in cislunar and, indeed, in
interplanetary space than they wculd have been if angular diameter

measurements were used exclusively to determine range. The linearity
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characteristics of the method allow large deviations from the reference
trajectory. Thus, barring a catastrophic failure such as an uncon-
trollable propulsion system, this method is flexible enough to be
incorporated in a manual navigation scheme. The only equipment
necessary would be the space sextant with attachmen: for body center
measurements, a time history of the reference trajectory (or
trajectories, if several sets of data are carried for greater
flexibility), and a computational 200l for use in the solution of

Eq (8-13).

Sumnagz

The precomputations necessary for the Hamer method of range

determination are:

ravesnd

1. fev’ ?mv’ Tom? A, B, and F as functions of time on the

reference trajectory

2. 3rgy Ty
%A sin A
g
> 8rev = r.. {(cos B cot A - sin B)
9B em
4, h = Toy ¥ Tpy (See Appendix E)
L hx+mhy+nh
S, sin B = X hy z! {S8ee Appendix E)
6. b = Eev x h (See Appendix E)
§
161 3
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2 bx + m by +n bz

7. k = (See Appendix E)
A bx +m by +n bz

All of these values must be precomputed before flight., Inflight, the

astronaut is required to sclve only

N

Arev = C AA + C, AF (8-13a)

where C; and C, are constants which are precomputed for the reference

trajectory, i.e.,

or
ev
C = 8‘23
N o3 ( )
and
or 1/2
1 - cos? F

c, = k— (8-24)
2 3B cos?2 E - cos? F

Sample Problem. The following is a sample calculation of distance

from the earth using the Hamer method. The reference values were
taken from Ref 8.
At 31.125 hours from injection (about halfway to the moon),

the reference trajectory values are:

Xoy =~ 9233.1921
Vev = 211785.18
z = 116836.74
ev
Loy = 242051.73
162

T TS e e ——" T T

e e —————— ————

e




GA/AE/69-1

nv

mv

mnv

em

The precomputation yields

and

¢,

ev

PO

ev

e

=

n

- 113475.61

- 1011%6.23

- 49059.589

159725.06

362198.98

132.4675 degrees

18.0877 degrees

82.4794 degrees {the star chosen is

Algenib)

- 212234.26

- 450855.29

An actual position was assumed at

- 15000

220000

122000
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So that

T = 252010

which is approximately 10000 kilometers off the reference value. (This

position was chosen to test the linearity characteristics of the Hamer
method.) At this position, the actual angular measurements would be,

assuming 10 arc~seconds error in each:

A 127.2446 degrees

actual

Factual = 83,6540 degrees
Applying Eq (8-13a)

AreV = CIAA + CZAF
or

Tactusl ~ Tref + C a4 + G AF
yields

ractual = 252155 kilometers ,

This value is in error by 145 kilometers, since the precise assumed

value is 252010 kilometers. This represents a .06 per cent error.

An angular diameter measurement would have been in error by more

than 500 kilometers. It is probable that the error in the Hamer
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estimate of the actual range is primarily due to nonlinearity at such
1

a large distance off the reference trajectory. The coefficients
. C1 and C2 are fairly large also, and this magnifies the measurement

error introduced. In any case, the Hamer method is a vast improvement

over the angular diameter method.
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IX. Aids to Manual Navigation

As progress is made in the exploration of space, operational
manual navigation and guidance systems will become a necessity. The
authors vf this thesis believe that as this requirement makes itself
felt certain "aids" will be developed to enhance the performance of
these systems.

To date, no concerted effort has been made to develop a general
manual system. Those who have worked on the idea have been limited
by the constraints of the hardware available at the present time.
(The sum total of this hardware consists of the USAF Hand~held
Space Sextant and the USAF Space Stadimeter.) The manual navigation
techniques developed thus far are inflexible due to these constraints.
Many of the methods described in this thesis are impractical when
viewed from the standpoint of current equipment. The authors feel
that no promising method or approach should be discarded on this
basis. Indeed, the equipment must be designed to fit the best
approach, and not vice versa.

It is, therefore,nthe purpose of this chapter to explore the
utility of three categories of “aids" to manual navigaticn; the
back-up inertial platform, the hand-held mechanical calculator, and

the hand-held, battery operated, digital computer.
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é The Back—up Inextial Platform

A back-up inertial platform would be invaluable in determining
spacecraft position. An instrument such as a theodolite mounted on
an inertizl platfomm is capable of measuring directly the right
ascension and declination of the vehicle by simply sighting the earth,
sun, or any other body whose coordinates are known. No computations
would be necessary to obtain this information. The space sextant
could be used to align the platform by sighring two known stars.

Since the lines-of-sight define a plane, the élatform can be oriented
so as to be parallel to any desired reference plane. The power source

could be electrical (batteries) or mechanical (hand-crank).

A

The Hand-held Mechanical Calculator

Many of the manual navigat, n techniques described in this report
involve several computation steps. It would be difficult to achieve
consistent accuracy with a slide rule. Reducing the equatiomns to
graphical form is not always practical because of the volume of graphs
necessary for flexiblie operation. A better approach may lie in the
use of a small, highly accurate mechanical calculator. Such a device
; is manufactured by the Curta Corporation, of Van Nuys, California.
Figure 41 is a photograph of the Curta Calculator. This machine is
capable of performing addition, subtraction, multiplication, and
: division. It also squares, cubes, and extracts square roots. The
. accuracy of the Curta Calculator is an amazing eight significant

figures! (This is based upon the limit imposed by division.

i L Multiplication can be carried to fifteen figures.) The diameter of
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Fig. 41

The Curta Calculator

the machine is 2 9/16 inch, and the height is 3 5/8 inch. WMost
importantly, the weight of the Curta Calculator is but 12 1/2 ounces.
This hand-held mechanical calculator combines the accuracy of a desk
calculator with the portability of 2 slide rule. The authors feoel
that such a computational tool is ideally suited as an aid to manual

navigation.
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The Hand-held, Battery Operated, Digital Computer

The hand~held, battery operated, digital computer is, in the

opinion of the authors, the most important tool in the future of man-

ual navigation in space. With the proper measuring equipment, such a

device could be capable of solving explicitly the manual navigation
problem. The most promising methods explored in this thesis are
ideally suited to being programmed into a small computer. The proper
use of such a tool is paramount in determining its true utility.

Memory space is the prime limitation. It would be unreasonable to

attempt "brute force" techniques that require excessive iterationms.

The hand-held computer should not be used to duplicate the functions of

the primary system computers. It should not be pre-programmed with

inflexible routines that cannot be altered as needed. It should be
designed so that the astronaut, who is obviously familiar with astro-

dynamics and celestial mechanics, can program the equations he needs

under any circumstances. Several small computers are in existence

today. The most promising investigated is the Hewlett-~Packard 9100A.

This computer is capable of performing at least as well as the IBM 1620.

It can be programmed with magnetic “credit cards" to solve problems
up to and including numerical integration. The present weight of the

9100A is 40 pounds. There is no reason to believe that this couldn't

be reduced for manual navigation and guidance applications.

To demonstrate the utility of a small, hand-held computer in
manual navigation, the Gibbs method of orbit determination (see
Chapter V) was programmed in Fortran II and run on the IBM 1620.

This program would easily fit into the Hewlett-Packard 9100A.
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Figure 42 is a reproduction of the Gibbs program with output. This
program is totally flexible in that it may be applied to elliptic and
hyperbolic trajectories. The output includes the type of trajectory,
the eccentri;ity, the semimajor axis, the time past perifocus to the
third fix, the,ﬁ, a, and ﬁ orientation vectors, and the velocity
components at the third fix. The three input fixes were obtained from
a precision trajectory in Ref 8. .'l of the output values are within
.01 per cent of the quoted precision (translunar) trajectory values.
Since the program is written in general form, it is applicable to any
inverse~square field, as long as the gravitational constant for the
attracting body is known. This constant must be input with the three
fixes. The output, then, is in the units of the gravitational constant
and the position fixes. For example, in Fig. 42, the gravitational
constant and fixes are in the kilometer-second system of units. There-
fore, the output distances are in kilometers and the velocities are in
KM/SEC.

Since position and velocity are known at fix three, the position
and velocity at any time thereafter can be projected. Figure 43 is
a reproduction of a program which uses the universal formulas developed
by Battin in Ref 4. The output is position and velocity at hourly
intervals past the third fix. Again, a general form is used for
flexibility, and the units of the input determine the units of the
output. (Since the output of the Gibbs program is input to this
program, its output is in kilometers and KM/SEC.) This information

could be used to initiate a guidance scheme.
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C C GIBBS METHOD OF ORBIT DETERMINATION~-HORRIGAN AND WALSH

PI=341415927
READ#X19Y10Z19X29Y29220X39Y39239EMU

A=SQRT((Y1#Z3-Y3#Z] ) #%24 (71 %¥X3~X1%Z3 ) ##2+ (X1 ¥Y3=Y]1#X3)%%2)
B=SQRT({Y2RZ3~YIHRZ2 ) H¥24+{ 728X 3= X2H 23 ) H A2+ (X 2%YI-Y 2 X3 ) #%2)
CaSQRTI(Y2RZ1-Y1IRZ2)HH2+(Z2%X1~X2%Z]1 ) %2+ (X2#Y1~Y2%X1)%%2)

ClaB/A

C3=C/A |

RI=SQRT(X1HX2+Y1 %2421 #%2)
R2=§ART(X2HH24LY2HH2422%%2 )
R3=nSAIRTIXSHN4YSIHK2+23%%£2)
Px{Cl#R1+C3#R3«R2)/{Cl+C3~1s)
WX=(Y1%#Z3-Y3%21)/A

WY={Z]1#X3=X1%23)/A

WZm(X1%Y3=-Y1*X3)/A
EQX=(X3#{P=R1)~X1¥(P=-R3))/A
EQY=(Y3%(P=R1)~Y1*{P~R3))/A
EQZ=(Z3%(P~R1)~Z1%¥(P~R3))/A
E=SQRTIEQX#X2+EQYX%2+EQ7 ¥ %2}

QX=EQX/E

QY=EQY/E

QZ=EQZ/E

AXIS=P/(1le—-E*%2)

PX=QYXNZ=QZ¥WY

PY=QZEWX~QX*WZ v
PZ=QX*WY~WX*QY

YW3=QX¥*X3+QY#Y3+QZ*Z3

IF(AXIS)19192

COSE3=(AXIS—R3)/{AXIS*E)
SINE3=YW3/{AXIS*SQRT(le~E%%2})
GAMMA=ATAN({E/(SQRT(1le~EX%2) ) ) *SINE3)
PUNCH 100

FORMAT (26HTHE TRAJECTORY IS ELLIPTICs//)
IF(COSE3)5+543
EANOM=ATAN(SINE3/COSE3)+P1

GO (0 11

EANOM=ATAN{SINE3/COSE3)

EN=EMU/ (AXIS##145)

DELTT=(¢ (EANOM~E*SINE3)/EN} /3600

GO TO 15
SINHF=~YW3/(AXIS*SQRT(E*¥2~14))
GAMMA=SQRT{ (P*#2) /{R3* (24 ¥P+R3* (EX¥X2=14})))
PUNCH 101°

FORMAT (28HTHE TRAJECTORY IS HYPERBOLICs//)
F=l.OG{SINHF+SQRT( (SINHF##2)+14) )
EN:EMU/Z((-AXIS) #%]e5)

DELTT=( (E*SINHF~F}/EN) /36004
RTDOT=(EMU/R3) *SQRT (AXIS*¥ABS(1.~E*%2))
RDOT=RTDOT#SIN(GAMMA) /COS ( GAMMA)
VX=(IDOT*X3+RTDOT*(WY*Z3-wWZ*Y3)) /R3
VY=(RROT#Y3+RTOOT*{ WZXX5~WX*Z31) /R3
VZ={(RDOT#Z3+RTOOT* (WX*Y3=WY*X3) ) /R3
PUNCH 102sE

FORMAT(20HTHE ECCENTRICITY IS 9FT7e4s//)
PUNCH 103sAXIS

FORMAT(23HTHE SEMI-MAJOR AXIS IS 9F12e49/7/)
PUNCH 104sDELTT

Fig. 42
Typical Gibbs Method Program
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PUNCH 105

105 FORMAT(16HPXsPYsAND PZ ARE)
PUNCH 1063PXsPYsPZ

106 FORMAT(3F12e49//)
PUNCH 107

107 FORMAT(16HQGX+QY+AND QZ ARE)
PUNCH 1065QXsQYsQZ
PUNCH 108

108 FORMAT(16HWX sWYsAND WZ ARE)
PUNCH 106sWXsWYoWZ
PUNCH 109

PUNCH 106sVXsVYVZ
s$ToP
END

170000141 1382654706 859145583 202844239 66965325 38219.273
157976195 10625719 597474541 631435093

TH

n

TRAJECTORY IS ELUIPTIC
THE ECCENTRICITY IS «9739
THE SEMI-MAJOR AXIS IS 247285.1800

THE TIME PAST PERIFOCUS TO FIX THREE 1S 1045060
PX,PYsAND PZ ARE
02694 ~e 8485 ~e 4555
CX,QY»AND QZ ARE
¢9619 +2136 1709
WX,WYsAND WZ ARE
-e0478 <o 4842 08737

THE XsYsAND Z VELOCITY COMPONENTS AT THE VTHIRD FIX ARE
~¢3010 149199 160475

104 FORMAT(4OHTHE TIME PAST PERIFOCUS TO FIX THREE IS sFl2e49//)

109 FORMAT(54HTHE X»YsAND Z VELOCITY COMPONENTS AT THE THIRD FIX ARE)

Fig. 42 (Continued)
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C C PROJECTED POSITION AND VELOCITY=~HORRIGAN AND WALSH

O -

READ» X9 Y 0Z9VXoVYsVZEMU

TT=36000

B=le

XXx=1e

DIST=SQRT{X%X+Y®Y+Z%2)

VSQR aVX¥VX+VYRVY+VZRYZ

ALPFAR24/DIST=VSQR/ (EMUX*2)

IF(ALPHA) 89742

D=SQRT(=~ALPHAX (XX%X%2)}

S=({EXP(D)~EXP(=D)}/2e~D)/(D%%3)

C={(EXP(D)+EXP(=D})/24~1e)/{(D*%2Z)

GO TO 3

S$=1e/60

C=e¢5

GO TO 3

E=SQRT(ALPHAX{XX#%2)}

S=(E~SIN(E) )/ (Ex%3)

C=(1le~COS(E) )/ (E*%2)

Tias{ (XeVX+YXVYHLEVZ )R {XX%X2)%C)/ (EMU*¥2)

TZ2=((1e~ALPHAXDIST) #{XX*%¥3)+S)/EMU+(DIST*XX) /EMU

T=T1+T2

IF(ABS{TT-=T})=e01)69645

Q= (XHVX+YRVY+2%XVZ) /(EMU#*2)

DERIV=Q¥* ( XX—~ALPHAX (XX¥%¥3)%#S)+{(1le~D{STHALPHA) ¥ (XX¥%#2)¥C+DIST ) /EMU

XX=2XX~(T=TT)/DERIV

GO TO0 1 .

RX=({ 1o~ (XX%X2)/DISTIHC) XX+ (TT~(XX¥%3)*xS/EMU)*VX

RY=(1le=({ (XX%%2)}/DIST)*C)*Y+{TT-{XX%%3)*S/EMU) *VY

RZ= (Lo~ (XX%%2)/DIST)*C)RZ+{TT~{AXX%3)%S/EMU) *¥VvZ

R=SQRT{RX*RX+RY*RY+RZ*RZ)

A=EMU

VXX=((1./(R*DIST;}*(ALPHA*(XX**3)*S“XX))*X*A+(lo‘((XX**ZJ/R)?C)*VX

VYY={(1c/(R¥DIST) ) ¥ (ALPHA® { XX¥%3 ) #S—XX) ) *Y A+ (L= (XX¥X2)/R)¥C)*¥VY

¥%%‘é(lo/(R*DIST))*(ALPHA*(XX**3)*S-XA))*Z*A+(lo-(‘XX**Z)/R)*C)*VZ
=

PUNCH 100sTTT

100 FORMAT(38HPOSITION AND VELOCITY COMPONENTS AT T=9FTeks//)

PUNCH 101sRXsRY9RZ

101 FORMAT(3Fl2e44//)

PUNCH 101sVXXoVYYsVZZ
B=B+1,

X=RX

Y=RY

Z=RZ

VX=v XX

vY=\YY

vZ=VZZ

GO TO &

END

157976195 106257419 597474541 ~e3010 1e9199 130475 63135093

Fig. 43

Projected Position and Velocity Program
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C C PROJECTED POSITION AND VELOCITY

POSITION AND VELOCITY COMPOMENTS AT T= 140000

1469304090 113027.0500 6343848700 \
~e3118 148426 140041 ‘ $
POSITION AND VELOCITY COMPONENTS AT T= 240000 ‘
1355542520 11953345600 6698243800
~e3202 147733 49652
POSITION AND VELOCITY COMPONENTS AT T= 30000 ;
1239041440 12580302800 7039341990 |
~e3268 147108 29302
POSITION AND VELOCITY COMPONENTS AT T= 440000
1120348160 131858,2800 73683.8680 ;
-¢3320 106539 <8984 )
FISITION AND VELOCITY COMPONENTS AT T= 5.0000
1000047620 13771761100 7686449120 .
-e3352 1469017 8693

1 POSITION AND VELOCITY COMPONENTS AT T= 640000

878445643 14339545600 79945,2750 ;
~e3394 145536 e 8424

5 POSITION AND VELOCITY COMPONENTS AT T= 7.0000

755841158 14890742500 8293246660

~e3419 1.50%90 «8176
POSITION AND VELOCITY COMPONENTS AT T= 840000

632347722 15426349600 8583347390

~e3438 144674 s 7944 1

Fig. 43 (Continved)
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101
3

102
103
104
105
106

107

ORBIT GEOMETRY FROM ANGULAR RATE DATA--HORRIGAN AND WALSH
READsDT12sDT13sTD1sTD2sTD3sEMU

STD1=SQRT(TO1)

STD2=SQRT(TD2)

STD3=8QRT(TD3)
Q=STD2*SIN(DT13)~STD3*SIN(DT12)+STOI*(SIN(DT12)~SIN(DT13))
R=={STD3-STD1)*#COS(DT12}+{STD2~5STD1) *¥COS{DT13)~(STD2~5TD3)
S=STDLI*SIN(DT13~DT12)+STD3*#SINIDT12)~STD2*SIN(DT13)
E=SQRT((R/S) ®*2+(Q/S)**2}

T1=ATAN(R/Q) 4341415927
P=((EMUR({1e+EXCOS(T1) ) #%4) )} /{TD1%%2))¥*%¢33333333
A=P/ABS(le~E¥%2)

RDOT=E*SQRT{EMU/ (A*ABS({1+—E*%2) ) )XSIN{T1)

R1=( (EMU%P)#¥,425)/STD1

T1=T1%5742957795

RTDOT=R1%¥TD1

IF(A)1s192

PUNCH 100

FORMAT(28HTHE TRAJECTORY IS HYPRRBOLICe//)

GO TO 3

PUNCH 101

FORMAT{26HTHE TRAJECTORY 1S ELLIPTICs//)

PUNCH 1C2»sE

FORMAT(20HTHE ECCENTRICITY IS sF7e4s//)

PUNHCH 103+A

FORMAT(23HTHE SEMI~MAJOR AXIS IS sFl2e44/7/)

PUNCH 104»71

FORMAT(39HTHE TRUE ANOMALY AT ANGULAR FIX ONE IS sF1l2e45//)
PUNCH 105sRDOT .
FORMAT (42HTHE RADIAL VELOCITY AT ANGULAR FIX ONE IS »sF12449//)
PUNCH 106sRTDOT

FORMAT(45HTHE TRANSVERSE VELOCITY AT ANGULAR FIX ONE 1S9Fl2eb9//)
PUNCH 107sR1

FORMAT{42HTHE RADIAL DISTANCE AT ANGULAR FIX ONE IS #F12e4s//)
STOP

END

¢138862 +2271076 +00001G214764 «0000059230245 +0000040938722 627506717

THE TRAJECTORY IS ELLIPTIC

THE ECCENTRICITY IS 09063

THE SEMI-MAJOR AXIS 15 10494846000

THE TRUE ANQMALY AT ANGULAR FIX ONE IS 13843645

THE RADIAL VELOCITY AT ANGULAR FIX ONE IS lel051
THE TRANSVERSE VELOCITY AT ANGULAR FIX ONE IS 5911

THE RADIAL DISTANCE AT ANGULAR FIX ONE IS 5787046980

v

Fig. 44

Orbit Determination Program Using Angular Rate Data
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If a complete position fix is not available, the trajectory may

TR AR

be determined by knowledge of the angular position of the vehicle and
three true anomaly rates (see Chapter VII). Figure 44 i¢ a reproduction
of a program which utilizes angular rate data. In this case, only the ]
true anomaly rates and differences in true anomaly are known. The
orbit geometry can, therefore, be determined; but not the inertial
3 orientation. The program can be altered to provide this information
if angular position data is available. The units of the input and

1 output are nautical miles and NM/SEC. ?

Discussion |
This chapter has been a discussion of some important aids to

E 4 manual navigation. This, by no means, exhausts the list of possi- . ‘

bilities. Total commitment to the development of manual navigation and

guidance systems will bring forth many more new ideas. " Flexibility ' f

and accuracy are the.bywords for the future. Equipment must be designed J

with this in mind. Methods cannot be limited just because hardware is

not available. It must be madé available. !
i B

IS Lt
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X. Conclusions and Recommendations

Introduction

This chapter completes the theoretical development of this report
with general conclusions and recommendations for follow-on research.
Many intevesting possibilities remain to be examined and some of these

topics are listed under '"Recommendations."

The "Conclusions" para-
graph lists some of the important determinations resulting from

research associated with this thesis.

Conclusions

The following conclusions are offered as the result of experience
gained in preparing this report:

1. The AH method, a graphical method of obtaining
eccentricity, is feasible for high eccentricity
elliptical trajectories. A major drawback is the
need for prior knowledge of the semimajor axis.

2. The numerical differentiation approach for computing
the geometric elements is sensitive to measurement
accuracy. But tho method is simple, explicit, and
entirely adequate if accurate values of range are
available. The method appears to be especially well
suited for near earth orbits.

3. Differential correction procedures are impracticzal

unless a back-up computer is available. If such a
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computer is provided, the differeutial corxrection mrthod

should be exploited.

Position fixes can be obtained usinr, straightforward

procedures. The simultaneous measurement requirement,
frequently cited as a major problem in obtaining a
three~dimensional £ix, can be resolved using procedures
similar to those presently used in astronomy and
celestial aircraft navigation. With position fixing
capability, the astronaut possesses a powerful and
flexible tool that can be used for:
(a) orbit determination
(b) cross-check.of the primary navigation
computer
(¢) manual guidance procedures (yet to be
developed)
The orientation elements are much easier to obtain
than the geometric elements. Two angular positions
and knowledge of true anomaly at some point of the
orbit are al. that is required to completely define
the orientation parameters.
Range can be determined optically with much better
precision than previously thought. The accuracy
of the Hamer method of measuring range (Chapter VIII)
is far better than the semi-diameter method.
Manual navigation aids such as small mechanical

calculators and back-up computers that can be
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programmed in fligh ., zre practical necessities.

Recommendations for Follow-on Theses

research:

N S——

The following areas are suggested as worthy endeavors for future

+
-
'y

Further study of graphical methods for obtaining

orbital parameters. Extend the AH method to hyperbolic

trajectories. Study the beh?vior of the AH plots
around an entire high-eccentficity ellipse (perigee to
perigee). Examine other graphical solutions to the
orbit determination problem.‘

Extended study of methods for detemmining range. The

range measurement accuracy is considerably improved
using the methods of Chapter VIII. However, if a
suitable reference trajectory is not available, other
range measurement procedures must be provided. Several
alternate methods are discussed in Ref 4:223.

Continued study and development of orbit determination

methods. Many of the classical orbit determination
methods are simplified by the fact that the observer is
on the spacecraft and not on the surface of the earth.
Several excellent orbit determination schemes are
suggested in Ref 20:683, Ref 13, and Ref 3:Ch 1., All
of the published met“odq shruld be investigated. The
goal should be to assemble new orbit csmputation

methods using the good points of previous schemes.
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Special attention should be given to methods that
4 require no direct measurement of distance (such as
the method of Chapter VTI).

4. Error Analyses. A numbier of methods discussed in

this thesis require comprehensive error analysis.

For example, the Polaris fixing procedure must be

investigated to see what corrections, if any, are
required to compensate for the fact that Polaris
deviates from the pole position. Other topics of
the thesis require error analysis before final
adoption as manual navigation procedures.

5. Back-up Computer Techniques. A small back-up computer

will greatly enhance manual navigation capability.

But the capability of such a computer can be easily
wasted on.needless iterative techniques. Several
short programs were presented in this thesis. Other
programs and procedures should be devised--the purpose
being the most efficient use of a limited memory
computer.

6. Application of Differential Correction. The differential

correction equations are complex but extremely useful

if a back-up computer is available. It appears that

a navigation scheme incorporating redundant data could
be constructed using the differential correction concept.
The use of redundant data is desirable since the effect

of measurement error is reduced considerably.
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7. Systematized Navigation Procedures. After the suitability

of a navigation scheme is established, the astronaut must
be provided systematic procedures in flight manual form.
The flight nanual should consist of charts, worksheets,
and operational procedures arranged to render the
solution of the navigation problem to step-by-step form.
Compilation of such a flight manual is suggested as

a follow-on thesis project.

cas

8. Manual Guidance. After the orbit is known, the astronaut

must have the capability to determine what corrections

] are required to make the spacecraft go where he wants to

- go. The problem of a manual abort after translunar
injection is of prime concern. At first glance, it
appears the Gibbsian procedure (Chapter V) could be

molded into an explicit guidance scheme. In any event,

LA o

the guidance problem is complex and could well support

several thesis topics.

amaasae
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XI.

Concluding Remarks

As stated in Chapter I, the purpose of this thesis is to lay a

foundation for qﬁe develcpment of an operational manual navigation

system. Several independent methods of obtaining the necessary orbital

parameters have been presented. The combination of procedures selected

for use in an operational system depends upon several factors, and

\

most importantly upon the answers to the four questions posed in the

Introduction (Chapter I:4).

The authors believe that these questions

should be answered as follows:

10

What computational tools are available?

Answer -

What types of

Answer -

How much time
procedures?

Answer -

A hand-held, battery operated, computer
capable of flexible operaticen, and a
hand-held mechanical calculator for
incidental computations.

measurements are possibie?

Equipment and procedures will be made
available to allow complete position
fixing using star-body and range measure-
ments.

is allowable for the completion of the

At least five hours for highly eccentric
trajectories, and correspondingly less for

lower eccentricity orbits.
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4. What is the required accuracy?
Answer - ¥his depends upon the use to which the

orbital parameters are put. Different

requirements will exist for re-entry

navigation and guidance than for mid-

course navigation and guidance. The
best accuracy attainable should be a
goal, however, since the same manqal
system will probably be used throughout
the mission.

If the above answers are acceptable, the manual navigation problem

is solved. An operational system consisting of position fixes input to

the Gibbs method of orbit determination programmed into a back-up
computer is, in the author's opinion, the most promising combination
devised to date. It is completely flexible; it involves no approxi-
mations or iterations:; and it provides direct input to a manual guidance

system.
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Appendix A

The Computer Program

This Appendix consists of a reproduction of the double-precision
computer program developed to investigate the Delta-H method of
eccentricity determination and to provide accurate data for use
throughout this thesis. A listing of the variables is included to aid

the reader in followirg the logic involved.
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List of Variables

RPLAN

AXSS

AXI

EN

TAU

ETAU

TEE

ECAN

RAD1

VEL

ALT

RAD

CONT

DELTA

(gravitational constant)1/2
earth's radius in NM

semimajor axis of ellipse in NM
(axss)t+s

mean motion

orbital period in hours

number of 2.5 minute increments
eccenzricity

time in seconds from perigee
eccentric anomaly in radians
perigee radius

velocity magnitude in NM/SEC
altitude

mean snomaly

radial disiance

time in minutes from perigee

AHL1
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3
DELTB = AH2
ECA = eccentric anomaly in degrees
VELO = ratio of velocity to perigee velocity
The program that follows generates data for high eccentricity 4

ellipses with a five minute timing interval for AHl and AH2. A portion
of the resulting output is also included. Total running time on the

IBM 7094 digital computer is approximately two minutes.

adh
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019395000 68-514 WALSHsRC AF!T-~SE

SIRFTC MAIN

C

14

1o

GEOCENTRIC 5 MINUTE DELTA-H FOR HIGH ECCENTRICITY

DOUBLE PRECISION ECANsALTsVEL 9EMUSTAUSECCIRADLSRIGHT 9CONT)
1VELOsRPLANSAXT sETAUSEMANSRADSDELTASECA9AXSSsENSTEE»ALEFT4DELTE
DIMENSION ECAN(85)sALT(85)9VEL(85)

EMU=DSQRT(627504717)

RPLAN=344041728

AXSS=105000400

DO 12 I=1,7

AXI=DSQRT(AXSS*AXSS*AXSS)

EN=EMU/AXI

TAU=6428318530/(EN%¥36004)

ETAU=210e/245

N=ETAU

ECC=069068

DO 11 J=1s7

TEE=15040

WRITE(6s1)

FORMAT{1HL 99X s 4HAXIS913Xs 12ZHECCENTRICITY» 7X96HPERIODs//)

- WRITE(692) AXSSHECCH»TAU

FORMAT{1Xs3F1Te4s//)
ECAN(1)=0e

RAD1=AXSS~AXSS*ECC
VEL{1}=EMU%DSQRT ( (24 /RAD1)~{14/AXSS})

ALT (1)=RAD1-RPLAN

DO 12 K=2»N

EMAN =EN*TEE

ECAN(K}=ECAN(K=1)

ALEFT=DSIN(ECAN(K))
RIGHT={1¢/ECC)*(ECAN(K)~EMAN)

IF (ABS{ALEFT~RIGHT)~40000001)6+659
ECAN(K)=ECAN (K)={ ALEFT-RIGHT )} /(DCOS(ECAN(K) ) =14 /ECC)
GO TO 14

RAD=AXSS—~AXSS*ECC*DCOS(ECAN(K))
ALT(K)=RAD-RPLAN

VEL (K)=EMU*DSQRT { (24 /RAD)~(1e/AXSS) )
TEE=TEE+15040

WRITE(693)
FORMAT(2X»4HT IME »5X » SHALT ITUDE s 5X 9 8HDELTA H195Xs8HDELTA H2,3X,
111HECC ANOMALY s TXs&HV/VPs//)

MxN—4

CONT=040

DO 13 L=1sM

DELTA=ALT(L)=ALT{L+2)
DELTB=ALT(L+2)~ALT(L4+4)
ECA=ECAN(L)%#5742957795D0

VELO=VEL (L) /VEL(1)

WRITE(6354) CONT9ALT(L) sDELTAIDELTBIECAIVELO
FORMAT(Z6e135F1343)

CONT=CONT+26e5

ECC=ECC+0001

AXSS=AXSS+1000¢00

STOP

END
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AXIS ECCENTRICITY PERIOD
. .105000.0000 _ 09068 237.0566
TIME ALTITUDE DELTA H1 DELTA H2 ECC ANOMOLY v/VP
00 63‘50827 "260688 -79.475 Qe 10000
2.5 6352,508 53,228 =105,.291 04479 1.000
_ %0 6372.515 ~79.475 «130.547 1.357 0.999
Fes 6405,737 105,291 155,128 2.033 0.997
10.0 6451.991 «130.547 =178.933 2.70% 0.9%%
12.5 6511.028 =155.128 ~201,878 3,37% 9.991
150 6582.538 178,933 223,884 4,061 0.988
17.5 66664156 =201.875 ~244,906 4,701 0.983
.20.0  6761.471 ~223.884  =2644902 54356 - 0.978
22.5 6868.031 264,906 =283,850 6.00% 0.973
25.0 6985,355 2644902 =301.739 6eG6hh 0.967
3060 ___ 72504257 =3016739 =334,.35%5 74503 0955
32.5 73964787 =318,570 =349.115 8.521 0.948
35.0 7551.996  =334,355 ~362.878 9,130 0,941
37.5 771%5.3%6 =349,115 375,677 9,730 . 0,933
40s0 78864350 =362.8178 ~387.5%0 10.321 06926
$2.% 8064.471 375,677 =398,539 10,902 0.918
45.0  8249.228 =387.550 =478,686 11.476 0.911
4T, % 8440.148 =398.539 ~418,035% 12.€39 3.903
500  8636,778 =408+686 ~426.630 12.59 0.895
52.5 8838,687 =418.035 ~434 517 13.i40 0.847
5540 9045, 466 =4264630 44l 737 13,676 0879
BTe5 9256,722 =434,517 448,334 14,204 2872
600 9472.0% 441,737 wh54,347 14,723 J. 864
$2.9 96914239 448,334 -459,816 15.233 0.3%6
6540 9913832 =454,347 464,778 15.735 0.848
—67.-5 10139‘512 "59.816 '469.268 16022"8‘- O. 3‘1
70.0 10368.178 =4564e778 =-473,320 16,714 0.833
72.5 10599.388 469,268 «4T6.964 17.191 0.826
750 10832,956 473,320 =480,231 17.660 0.619
77.5 11068.656 =475.964 ~483.148 18.122 0.812
8000 11306,276 “480,231 485,740 18.576 9.804
82.5  11545.620 483,148 488,032 19,023 0.798
85.0 11786.,507 “485.T40 «490 . 045 19,463 0.791
875 12028.767 ~488,032 =-491,802 19.896 0e 764
92,5 125164799 =491.802 =494 4620 20.741 0.771
95.0 127624292 =493.321 -495,715 21.15% 0e 765
97,5~ 13008,601 *4940620 =496,622 21.%62 0.758
100.0 13255,613 =-495,715 -497.35%6 21,962 0.752
191

o e e ey e e

Rt v,

L T e

R




'

o

a1

GA/AE/69-1

Appendix B

Derivation of Equations for Geometric
Elements Using ¥ and ¥

The following notation is used in the derivation:

i
1]

vehicle position vector

X,¥,2 = coordinates of vehicle

~y

r= |rj

r = radial velocity

radial acceleration

(a1
]

i,j,k = unit vectors in x, y, z directions
u = earth gravitational coastant

Iil = magnitude of vehicle velocity

e
(]

a = semimajor axis

E = eccentric anomaly

e = eccentricity

6 = true anomaly

% = semilatus rectum

h = angular momentum

192
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Starting with
2 = x%2+ y2 4 32

and differentiating with respect to time obtain
rr = xx + y§ + 2z

Taking the derivative of rr leads to

P2 4 r¥ = (xK gy + 28) + (k2 + y2 + z2)
Now x2 + §2 +22 = §2 and
¥ = -ywe/ed , ¥+ -upy/rd , Z = - uz/rd
then
S
r r r

= g2 -k
T
From the energy equation
$2 ur_2_ _ 1]
r a
%2 + rr = 2u MU
a r
r2 +rf = B_B
r a
193
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Therefore

L ¥
r aa
a relatively simple expression for the semimajor axis a.
Two more expressions are required to obtain the eccentricity and

eccentric anomaly. The first expression is the equation of the

conic section
r = a (1 - e cos E) (B-10)
from which

ecos E = 1- E- . (B-11)

The second expression is derived from the conic section equation

involving the true anomaly 9

- L
T = T¥ ccos o (B-12)
where £ is the semilatus rectum.

The first derivative yields r

r = %e (sin 6) 8
{1 +ecos 0)2

(B~13)
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then multiplying and dividing by &

e2e (sin®) 6 _ r2oe
2 (L+e cos 8)2 %

o SK3

However, r2 ¢ is the angular momentum per unit mass, i.e.,

SO

r = iEELEfiﬁlli =\ /%- e sin 6

from which

The orbit plane coordinate system is shown in Fig. 45. In this

Auxiliary
Circle Y
S
Ellipse
a p
/€ 8 -
X
ae (1Y)
Fig. 45

Orbit Plane Coordinate System
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coordinate system

and als.

Vg = 2Vl -e2sinE

then

\/&—
av/] - e2sinE = X Z L

For an ellipse, & = a (1 - e?), therefore

then

esinE = LX
Ha
The two equations for e and E are
esing = X
ey
ecos E = 1-1L
a
Dividing
tan E = rr /a
A (a - 1)

- - ) - I s

(B-18)

(B-19)

(B-20)

(B-21)

(B-22)

(B~23)

(B-24)

(B-25)
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from which E can be determined. Note that if r is positive, the radial
velocity is away from the focus and E is less than 180°. Knowing E,
the eccentricity may be determined from either Eq (B-23) or (B-24).

The expression for cos 9 for the parabolic case is easily

derived. Since the total velocity can be determined, i.e.,

g2

l‘r-+ 2 +r? (B-26)

and the radial velocity r is known, the transversal velocity 6

must be

(r6)2 = §2 - 12 = -‘ri+ r ¥ (B-27)

The angular momentum h is then

h = r (ré)-’= r %-+ rt (B~28)
h? = m+ 37 (B-29)
Since h? = 1132
3 F
L = r+ v (B-30)

1+ cos 6 (3-31)
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!
H
yields . /:
1

cos 8 = X-1 (B-32) /’ ./
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//% Appendix C

The Error InvolvedlgE_Functions
of Several Variables

Suppose that U = f(x,y) is a continuously differentiable function
on some set of values of the arguments x and y. Suppose x and y are
replaced by their appreximate values a and b. Then the approximate

value of the function is

!
s

u = £(g,b) (c-1)
Let A, and A, be the errors in the arguments, i.e.,

. A = a+d, , B = b+ (c-2)

where A and B are the exact values of the arguments. The exact value

of the function is then

U = fa+b8, , b+ 4 (c-3)

Using Taylor's theorem for functions of two variables

U = £(a,b) + 4, [%5] + By lﬁf]
X=a

3Y |x=a
y=b y=b
2
1 d ) .
+E I:Aaﬁ"i' Ab Wﬁ] f(k,y)x___a + .. .
y=b (c-4)
199
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Assuming the errors are small and dropping the terms containing squares

of errors

by = U -f£(ab) = [%%]x=a b, + [§§]X=a A (C-5)
y=b y=b

where A, represents an approximate value of the error (since only the

first two terms of the expansion were retained). Then

of of!
NS - TS Y (c-6)
y=b y=b

Now let E,, Ea’ aand Eb be the maximum absolute values of error.

Then

E, + ‘%ﬁ E, (c-7)

a
X=a X=3a
y=b y=b

of
9x

Given the maximum errors of the arguments of a function, the maximum
error in the value of the functicvn can be obtained. If E, and Ey are
unknown, the conditions necessary to minimize the total error can
still be obtained by examining the partial derivatives 3f/9x and

9£/9y. The derivation can be extended to functions of more than two
variables with analogous results. This derivation and further support-

ing material may be found in Ref 20:34,
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Appendix D

Derivation of Equations for True
Anomaly Determinaticn

Figure 46, an illustration of the vehicle's path across the

celestial sphere, will be used in the derivation to follow.

Celestial Sphere

Orbital

Fig. 46

Vehicle Path on Celestial Sphere
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From the spherical triangles bced and acd

cos wz = cos P, cos (Aes)* (b-1)

cos ¥, cos Y, cos (A6 + Aes)* (D-2)

e S

where Aes = es - 92 and A6 = 62 - 61.

e .

Dividing the above equations yields

cos cos (A6, + A6 ;
LY (485 + 46) (D-3) ?
cos wz cos Aes .
which reduces to .
{
3
% tan Aes = cot AB - cos y, sec |y, csc A (D-4) ;

The angles wl and y, can be obtained by direct measurement or by the

3 vector dot products

>
L ]

2]
|

cos wl

35>
e
rt
]

N cos ¥, (D-5)

In polar coordinates, the dot products become

cos ¥, cos §, cos 85 cos (a; ~ ag) + sin §; sin §

cos §, = cos 62 cos §g cos (az - ag) + sin 62 sin &, (D-6) X

-

* §o 1s termed "minimum coaltitude" in Ref 17:46. ;
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By direct measurement, the angles wl and wz can be determined from
Y = 180° - {yg + A/2) (D-7)

as can be seen from Fig. 26.
The angle A8 represents the true anomaly difference between

A

r, and ;2. The vector dot product yields

cos A6 = Ty1 Tyo + ryl ry2 + T, Ty (D-8)

or

cos A6 = cos §, cos 62 cos (az - a9'+ sin §, sin §, (D-9)

All of the quantities appearing in Eq (D-4) can therefore be evaluated
and A8g can be determined. With 464 known for one position, the

angle P, can be calculated from

cos Y,
cos Y, =T ——— 0 <y, <90° (D-10)

cos Afg
and this angle remains constant. Then for any subsequent measurement

using the same star

- +
cos Afg = S8 - zcos (s + A4/2) (D-11)
cos Y, cos Y,
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Appendix E

Equations for Calculating E, F, and _l_c_.

This Appendix gives the equations for calculating E, F, and k for

use in the Hamer method of range determination.
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The angles E and F (see Fig. 47), as well as the value k, pertain-
ing to a reference trajectory can be pre-calculated for any given star

with known direction cosines £, m, and n.

To Star

/== Vehicle

== Instentaneous Earth-
4
Moon-Vehicle Plane

Moon

Earth

Fig. 47
Illustration Showing Vectors
b and h (From Ref 8:23)
The angle F, which is the angle measured from the vehicle between
the lines-of-sight to a star and a body center (earth, for example),
is obtained from the dot product of the position vectors of the earth

center and star so that

cos F = : (0° < F < 180%) (E-1).

Ry defining a vector h perpendicular to the instantaneous earth-moon-

o

] vehicle plane, the angle E, which is the angle between the line-of-
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sight to a star and its projection in this plane, is obtained from the
dot product of the vector h and the unit position vector of the star

giving

R.hx+mhy
h |

+ n hzl
(E-2)

sin E =

where the absolute value can be used such that 0° < E < 90° and where

the values for hx’ hy’ and hz are obtained from the cross product f

- the position vectors of the earth and moon centers. Thus, B

r By = Yev Zmy ~ Zev Ymv . o
2 \
. ] A\
h =z x -x 2 )
y ev mv ev mv \
o\ -
T
h = - ¥y \X N
z ev “mv ev\ mv . . (E-3)
\ -\ ¥,
: . v\ .
and * \ .
. ] . N \\
o ' iz A\ i
ho= (h?'+ hy? + 1,%) (E-4)

=3

-

e
-

) ) s Wy . -
The sign 6§ the quantity k in Eq 8-13{ iQJ\etefmined by the

\

position of the star with respect to th‘ggapih-véh;cle line, Toy®
The sign is positfﬁe (tegative) if, as vieyéh from the direction of

= LN »
h, the projection of the i%ﬁg ta the star in the \dnstantaneous
B . .

\ A . )
eerth-moonﬂvehicle plane 1is é?:thé right (left) of the earth-vehicle
line. As ‘shown in Fig.' 47, the relative directions of these two

‘\ i . %) i
lines at &igiven time along a reference trajectory can be determined

Al

by fi‘?t ddfifing a vector b which is perpendicular to the plane

——
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containing the vectors ;ev and h.

The vector b is obtained from the cross product of the vectors

;ev and h such that the components of b are given by

z ev v ’ev x (E-5)

where the values of hx’ hy, and hz are given in Eq (E-3). Next, the
dot product of the unit position vector of the star and the vector b
will yield the component of the star vector along the vector b which is
given by the term (2 bx + m by +n bz)/b. If this term is positive,
the projection of the unit star vector in the instantaneous earth-moon-

vehicle plane is to the right of the earth-vehicle line so that the

quantity k is given as

£b +mb +nb
kK = X y z

(E-6)

L bx +mb

y y +n bz

The quantity k is, of course, always either plus or minus one.

¥
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