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Preface

This thesis reports two studies concerned with the
feasibility of plasma contalnment in toroidal megnetic
flields. Lt., Col. R. C. Wingerson of the Plasma Physics
Research Laboratory of the Aerospace Research Laboratcries
sponsored this research., Dr, Wingerson's interest in mag-
netic contalnuent schemes 1s reflected by the current
experimental and theoretical work of the Plasma Physics
Research Laboratory, to which this report might hopefully
have some application. Much of the theoretical work upon
which this thesis is based is Dr. Wingerson'®s own.

The first part of the gtudy 1s an investigation of the
magnetic field of an infinite system of thin loops of cur-
rent. The second part develops the equations describing
an axisymmetric system of charged particles in crossed
electric and magnetic fields.

I would like to thank Dr. Wingerson tor his very
generously given tlmé and effort. I am also indebted to
the Applied Mathematics Research Laboratory and the Digital
Computation Division of the Aeronautical Systems Division at
Wright-Patterson Alr Force Base. My wife has contributed a
great deal of encouragemeht and understanding.

Richard D. Franklin
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Abstract

A toroidal magnetic plasma contalnment configuration
is proposed wherein colls are centered on a closed helix,
It is possible to optimize the qualities of the field by ad-
Justing the coll configuration. The equations describing
an equilibrium plasma in an axisymmetric system are derived
in terms of the particle density distributions, radial and
azimuthal drift velocitles, and the electric and magnetic

field strengths necessary to maintain equilibrium,
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Symbols

Azimuthal component of magnetic vector
potential

Radius of current loops in meters

Coefficients in polynomlal expansions of
elliptic integrals

Angle between displacements of neighboring
colls

Magnetlic field vector
Axlal magnitude of B
Magnitude of B

Transverse and axlal components of B in
cylindrical coordinates

Transverse components of B in cartesian
coordinates

Coefficlent of collision force term

Complementary modulus and modulus of elliptic
integrals

Displacement of coil centers from axis
Electric fleld vector

Complete elliptic integrals of second and first
kind, respectively

Magnitude of electron charge

Maximum relative error in any field 1line
coordinate

Orthogonal unit vectors in auxillary cylindri-
cal coordinate system

Force on a particle

Averagé force due to collisions between
electrons and ions

viil
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Average force due to acceleration of injected
particles

Distribution function in phase space
Arbitrary constant in distribution function

Particle distribution function of trombarding
particles in Coulomb collisions

Change in partiocle momentum per unit time due
to collisions

Relative veloclty of colliding particles

Relative velocity of colliding particles after
collision

Unit vectors of g - g*

Hamiltonian of a particle

Increment of indeperdent varliable, x
Current in a coll in amps

Integral of collision force between ions and
electrons

Current density

Boltzmann's constait, 1.38 x 1023 joule/OK
Kinetlic energy

Reduced mass of electron-ion pair
Particlevmass (electron, ion)

Unit vector in direction of collision force
term

Number of iterations in numerical integration
scheme

Particle number density
Pressure tensor

Probabllity per unit time of change in velocity
of a particle from ¥ to v'

Azimuthal component of canonical angular
momentum
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q Particle charge

R, B, 2 Cylindrical coordinates

r, 6, ? Spherical coordinates

RTA Ratlo of transverse to axlal B components in
cylindrical coordinates

space Axial interval between coils

Ey Normalized relative velocity between colliding
particles

T (Tgs Ty) Particle temperature

tol Maximum relative error in Bm

u Velocity of bombarding particle

v Velocity of center of mass of electron-ion pailr

h'4 Particle velocity

vr(ur) Electron (ion) average radlal velocity

vglug) Electron (ion) average azimuthal velocity

V1, V2 Transverse velocity components in an auxiliary
coordinate system

Y Original velocity >f injected particles

AV Ion thermal speed

v Velocity.or particle after Coulomb collision

w Average azimuthal velocilty

X, Y, 2 Cartesian coordinates

x Initial value of independent variable, x

YP (¥9) Predicted (corrected) value of independent
variable

Yy Dependent variable in Taylor series expansion

Yn Value of indepsndent varliable at n th integra-
tion step

zZ Ion atomic number
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Arbitrary constant in particle distribution
function

Coefficient in electric field equation
Permittivity in vacuum, 8.55 x 10~12 farad/m
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Arcsin of one half of scattering angle
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collisions

Vacuum permeability, 47 x 10~7 weber/amp-m

Difference between ion and electron number
densities

Charge density

Normalized difference between electron and ion
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CONTAINING CONTROLLED FUSION REACTIONS
WITH CROSSED ELECTRIC AND MAGNETIC FIELDS

I. Introduction

Dating back to 1944 the possibility of controlled
fusion has held the interest of a large segment of the
world scientific commun’ty. The basic principles of con-
trolled thermonuclear reactions, if not already known, were
1aid down by scientists at the Los Alamos Scientific Labo-
ratory as early as 1946, Among these were Fermi, Teller,
Tuck, and Wilson. Since that time, however, no controlled
fusion reactions of extended duration or energy have been

possible.

Confinement

One of the major obstacles to controlled fusion 1is
st1l1l the need for a method of plasma confinement, Almost
all currently proposed methods can be divided into three
types of devices: the pinch (Ref 2:22), the magnetic
mirror (Ref 2:151), and the torus (Ref 2:33). All of these
utilize magnetic fields in attempting to trap the charged
particles composing a plasma into helical orbits about
field lines., The objective of all methods is to contain
the colliding particles long enough for a copious numbesr of

nuclear reactions to occur.
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A high-temperature plasma is much like an ordinary gas
in that it tends to diffuse because of interparticle colli-
sions. Magnetic containment devices are designed to exert
containing pressures on the expanding plasma and limit
diffusion., It can be shown (Ref §3;275) that the rate of
plasma diffusion across a straight, uniform magnetic field
1s inversely proportional to the square of the magnetic
field strength. This 1s important because 1t shows that if
stable confinewent is possible diffusion can be reduced by
raising field strength. Thus, if the density of the plasma
can be raised high enough, thermonuclear reactions can
occur at a self-sustalning rate,

The toroldal magnetic field 1s attractive for plasma
confinement because it presumably does away with the end
effects of the pinch and the magnetic mirror. The toroid
appears to the plasma as an endless tube, In this type of
system the field 1s generated with current windings around
a toroidal shape. The flield lines are roughly circles
inside the torus. It 18 easily seen, however, that the
field within the torus is stronger at the inside circum-
ference than at the outside of the torus because the
windings are closer together.

Several toroidal devices have been proposed and built
to correct this non-uniformity. Among them are the Scyllac
(Ref 131543), the Wisconsin (Ref 11:1115), and the most
famous, the Stellarator (Ref 2:37).
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In 1951 Spitzer proposed a device called the
"Stellarator™” which introduced a rotation of field lines
within a twisted torus. This phenomenon cancelled charged
particle dArifts transverse to the field. Later he placed
helical windings around an ordinary torus which accomplished
the same thing.

Part of thlis thesis 1s a study of the field of a
toroidal device proposed by Lt., Col. R. C., Wingerson of thes
Plasma Prysics Research Laboratory of the Aerospace Research
Laboratories. This device is a series of solenoid colils
with centers roughly concentric on a circle. The centers of
the colls are displaced off the major circumference of a
torus by a small distance in such a way as to leave an equal
angle between the directions of displacement of successive
colls, Fig. 1 is a schematic representaticn of this system.
The paraxeters of the configuration, such as the number of
coils, tre spacing between coils, the displacements off
axis, and the angle between displacemesnt, are the variables
used to manipulate the field,

If only a short segment of the arc of this toroid is
considereid, the systes can be approximated by an infinitely-
long straight system of coils, The colls are then plane-
parallel.

Charter 1I of this paper describes the methods and
procedures for the astudy of the field of this infinite
stralght system, and it reports the findings., The analysis
of the fisld is directed meinly towards determining the




1. Schematic of Toroid of Displaced Coils
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transverse uniformity of the field strength, the linearity
of the field lines and the stellarator-type rotations of the
field lines,

The purpose of this study is to determine the feasibil-
1ty of designing a theoretically useful containment device
by adjusting the parameters of the coil configuration, If
the characteristics of the field can bs controlled by vary-
ing the spatial parameters of the coil configuration, we
may have a feaslble way of designing magnetic fields with
very specific properties,

Plasma in Equilibrium
The second part of this study develops thes hydro-

dynamic equations of a system of two types of particles,
eleotrons and positive ions, in equilibrium with an axially
directed magnetic field. Only the time-indepsndent case is
dealt with., First a generalized distribution function is
derived in which particle energy and canonical angular
momentum are oonserqu. The resulting function 1s essen-
tially Maxwellian, but an azimuthally symmetric rotation of
the single distribution is predicted. It is necessary to
derive an average volumetric force which arises from colli-
sions bestween unlike particles in order to account for the
interaction of the superimposed distributions,

Ths steady~-state Boltzmann equation is relied upon to
provide the hydrodynamic equations for each distribution,
Except fcr the inclusion of a force term describing changes
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in the distributions due to collisions, the distributions
are treated entirely separately, One of the objectives of
the study iz to test theoretically the effects on the
equilibrium situation of great differences between the
electron and ion kinetic temperatures.

Another prime objective of the study is to investigate
the feasiblility of prescribing radial particle number
density profiles by the injection of charged particles. It
is assumed that electrons and lons can be separately depos-
ited in the plasma at any radial position and at any time
rate desired.

If moments of the Boltzmann equation are taken in
cylindrical coordinates, all the variables describing each
distribution become averages which are functions of the
only indepsndent variable, radius. The two non-zero
average velocitles are the azimuthal and radial velocities.
Density is a third varlable describing each distrivution.
The moments of the Boltzmann ejuation yleld one continuity
equation and two momentum transfer equations for each
distribution. These s81x equatlions are all first order
differential equations.

Two of Maxwell's equations apply in the steady-state,
Current densities and charge density are finite dbut are
taken as local averages, The magnetic fleld is assumed
axially directed, and its magnitude on axis 18 to be se-
lected. The electric fileld is assumed entirely radial in

direction, and no external electric field 1s utilized. 1In
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the cylindrical geometry then Maxwell's equations supply/'
two first order differential equations,

Thus a total of eight simultaneous differential equa-
tions are available., They are in terms of the two densities,
the pairs of radial and azimuthal average velocitiles, and
the electric and magnetic flelds. Thus there are in prin-
ciple enough differentlial equations to solve simultaneously
for the radlial profiles of the distribution variables and
the electric and magnetlic fields. Since the distribution
function 1s based on an equilibrium system, these profiles
should describe an equilibrium plasma.

Procedures are to be developed for studying the effects
on such an equilibrium of the injection of particles, and of
the imposition of temperatures, and the axlial magnetic field.
Involved is the dev:lopment of numerical irntegration methods
for the simultaneous solution of the equations. A careful
analysis 1s made of those characteristics of the hydro-
dynamic equations which determine the applicability of
numerical methods to thelr solution.

The type of plasma of interest in this study is the
high-temperature, high-density thermonuclear ionized gas.

It is8 current opinion that temperatures on the order of

108 - 109°K and particle densities on the order of 1016

cm ~ are required to sustailn fusion reactions in the plasma
environment., In Chapter IV some numerical examples are
carried out to examine some of the predicted velocities and

electric flelds which corresponil to this type of plasma.
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Much of the theoretical work leading to the derivation

of these equations was done by Dr. Wingerson in unpublished

papers. He and the sclentists of the Plasma Physics
Research Laboratory are at this time actlively engaged in
the design and testing of axisymmetric plasma systems, It
is hoped that the efforts reported in this paper can be

applied to the deslgn of experimental plasma containment

devices,
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II. Magnetic Field of the Displaced-Coil Configuration

Introduction
This chapter 18 a report of a study on the applica-

bility of a proposed plasma containment device, dubbed the
*"displaced-coil configuration.” The major objective of the
study was to determine how the characteristics of the field
of a device similar tp the system of colls shown in Fig, 1
depend on the geometric arrangement of the separate colls,
Some of these important characteristics are mentioned in
Chapter I3 of interest are the gradients of field strength
through the field, the direction of the field, and tge
stellarator rotations of fleld lines in the field. It was
not the objective of the study to determine what field
characteristics are necessary or desirable for plasma con-
tainment, Nor was the objectire to design a magnetic field
using the displaced-coil configuration. This study was
made to ascertaln the feasiblility of controlling the major
characteristics of a‘toroldal ragnatic fleld by varying the
geometric parameters of the displaced-coll corfiguration.
First, the geometry of a straight coil configuration
which aprroximates the configuration of Fig. 1 is defined.
Notation of varlables 1s established. An orthogonal coor=-
dinate syster 18 also defined relative to the coll system.
The equations for the vector components of B are
derived, and computer progr:.as are described which calcu-

late the magnitude and direction of B, Procedures are
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developed to systematically investigate field variables as
functions of field position and the geometric parameters.

The method of generating mathematically the field 1lines
of the magnetic field is explained. Two characteristics of
interest in the pattern of flield lines are identified, and
the procedures for studying each are explained,

The section covering results reports the variations of
the quantities of interest through the field, and their
functional relationships to the geometric parameters. The
feasibility of designing filelds with very particular

characteristics 1s ascertained,

Coil Configuration

Let us consider as an approximation to the torus of
real multiple=turn coils an infinite straight system of
thin, single-loo0p colls, The approximation is valid if
only a small segment of arc of the torus of solenoids is
considered.

The magnetic field of a single loop of current is very
similar to that of a‘finite solenold. The strength of the
B field variles similarly in either as a function of posi-
tion, and the shapes of the filelds of the two are
characteristically the same.

The equations of the transverse and axlal components
of B for an infinitely-thin 1loop of o»:.ent are presented
in Appendix A. Techniques are der’!. 4 there for computing

numerical values for these comporents.

10
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Fig. 2 18 a schematic representation of the scheme
for constructing the infinite straight system of colls. The
axial interval between colils is designated "space.” The
displacement of the coil centers off the Z axis is "disp.”
These equal displacements are made such that there is a
constant angle "alpha" between the directions of disp of
neighboring colls., The arbitrary convention is made that
the sigr. of alpha 18 positive as measured from one coll
center to the next when proceeding from coll to coll in the
positive axial direction. The radius of all coils is "a.”

The result of these manipulations is a configuration
of plane-parallel loops whose centers lie on a uniform he-
1ix. The pitch length of the helix is the product of space
and alpha, and its radius 1s disp. The axis of the helix 1is
chosen as the Z axis of an orthogonal coor inate system.
The X axis of the system is arbitrarily located through the
center of one of the colls.

ILet the radil of the colls be normalized to unity, and
let all distances henceforth be measured in units of coil
radius, Choose the currents in the colls to be equal, in
the same direction, and of magnitude such that

“-3_-2—3 =L (1)

This concludes the definition of the displaced-coll
configuration, Its geometric parameters are space, disp,
and alpha, This chapter is primarily concerned with the
dependence of the magretic fleld on these three variables,

11
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Objectives of Study
This section describes more fully the areas to be

investigated in this study. It also attempts to supplement
Chapter I in its justification of the study.
Characteristiss of B. Again, the properties of B most

critical to contalnme:: feasibility are uniformity of
strength and the ratio of transverse to axial component
strengths, This study attempts first to discover in general
the orders of magnitude of these properties, Then relatiors
between them and the three configuration parameters are
sought. The varliations of the two properties, as functions
of both the radius out from the axis and position along the
axls, are also investigated.

Field Line Paths. The magnetic field lines surrouni=-

inz a single thin loop are closed loop3 in planes
perpeniicular to the plane ol the loop. Fileld strengths
vary aloag the paths of these lines, but the magnitudes are
symnetric about the plane of th2 loop.

Whea many single loops are arranged with their centers
on a helix the field lines of the flield zan 2o loager be
planar. The field is expected to exhibit a helical twist
in the region inside all colls.,

Questions immediately come to mind. * Do the field
1lines en:ircle the axis of the system as dées the helix
describel by the colil centers, or do they remain in the
same quadrant of the system? Do subharmoanics of this field

line twist exist such that “he entire field line pattern
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rotates as a s80lid body? No matter how either of these
rotations appear their frequencies and the radii of the

resulting helices should be determined.

Methods and Procedures
This section outlines the computational methods and
procedures employed in studying the magneti~ field.
Appendices are used to support this explanation. Appendix A
1s the derivation of the numerical approximations for the
transverse and axial vector components of B. Appendix B
describes a computer subroutine called "Field" which -om-
putes the direction cosines and strength of B at any given
point in the fiéld. The program "Tracer" is explained in
Appendix C3 1t 1s designed to integrate the paths of the
field 1lines. .
Ranges of Variables., The volume of interest in th=
magnetic field, and the ranges over which the geometric
parameters are to be studied need specification. Because
of the undesirable behavior of the fileld variables near ths
conductors, the voluﬁe over which the field is expected to
be at all well-behaved 1s limited to be entirely within all
c.onduotors. The size of disp obviously determines the size
of the volume csatisfying this condition.
The ranges of the geometric parameters to be considered
in this study are asg follows: .
space: 0,1 - 1,0
disps 0, = 0.2
alpha: 0 — 180 degrees

14
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Limits are imposed on space and disp only for definiteness,
and are not meant to be exclusive. They can be expanded if
they do not seem to include all the interesting cases, By
symmetry the range of alpha covers also the cases for alpha
greater than 180 degrees. The above intervals are sub-
divided sufficlently to reveal the important functional
relationships,

Bm and RTA. Let "Bm" refer to the magnitude of B,
Appendix A presents the equations for the axial (Bz) compo-
nent and the total component transverse to the axis (Br).
Let "RTA" stand for the ratio of Br and Bz, Field i= a sub-
routine which can deliver Bm and RTA at any location.

The procedure is to compute both these terms for any
given set of space, disp, and alpha at several different
radii within all loops and also at points along the axis
between any two loops. The computations for varying radius
are conducted halfway between two colls to minimize anom-
alies dve to nearby conductors,

The analysis cf results consists first of finding how
RTA varies with space, disp, alpha, radius from the axis,
and position along the axis. Then the rates of change of
Bm with radius and axial position are determined as gener-
alized functions. Finally, these rates of change, JdBm/Jr
and JBm/dz, are investigated as functions of space, disp,
and alpra. Since the normalized Bm 1s a s8trong function of
space, 1t is necessary to calculate JBm/dr and dBm/dz as

relative rates of change.
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Fileld Line Pattern. We have mentioned that the ftou.ilow-

ing two pha2nomena are probably of interest: the helical
twist of the lines caused by the helical coll configuration,
and the possible slow rotations of the entire field line
pattern about the axis, Let us call the helical twist a
first order occurrence. This twist is studied as a function
of radial position in the field and of the coil geometry.

Fleld lines are traced over one repetition or cycle of
coll displacement, The tracings are begun from points at
various radii in the plane of an arbitrary coil.

A convenient measure of the resulting h=lices is the
helical radius., It 1s expected that the pitch length of
the first order twist i1s the same as that of the coil
pattern. That 1s, the pltch length of the lines should be
the same as that of the coll center helix, This must be
verified, however,

It 18 necessary to determine if the second type of
rotation is important to the shape of the field. These
rotational drifts become evident only over several cycles
of the first order twist. Therefore, a few lines bezinning
at different radii are traced over one hundred first order
cycles for several sets of space, disp, and alrpha. If the
frequency of the rotation of any line around the axis 1is
such that the axis is encircled in less than one hundred
cycles, the second order rotation may be important. A more
detalled analysis of the frequencies of these rotations is

then to be undertaken,

16
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The fleld lines are generated by successively integrat-
ing, point ty point, the direction cosines of B over
incremenrtal distances,.,” Appendix C describes and gives
operating instructions for a program which integrates lines,
beginning at selected X-Y coordinates, over selected dis-
tances,

The program supplies a record of tha three coordinates
of points along the field line, It is also written to be
amenable to plotting subroutines so that the lines can be
traced i1 machine drawings.

The diameters of the first order helices are easily
calculable from the printed records of the X and Y coordi-
nates of a line. We need merely subtract, say, the minimum
X coordiilate from the maximum, Tracer =supplies these coor-
dinates 3o.rour rlaces,

The pitch length of the lines 1s the same as that of
the coil-center helix if the field lines cross the planes
of concentric coils at the same X and Y coordinates.
Appendix C detaills the maximum errors in these coordinates
whicl ca:i arise cut of the numerical integration methods
utilized

To measure the frequencies of the drifts, the numerical
listing of point coordinates is studied to find the differ-
ences in both the X and Y coordinates of a line as it passes
through the planes of coils one hundred first order cycles
apart. The resulting differences give a good average

measure ¢f the mazgnitude ar.. direction of the drift of a

17
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particular line.

Results

This section 18 a report of how the characteristics of
the field of the displaced~coil configuration vary with
space, disp, and alpha. The dependence of RTA and the
uniformity of Bm on these parameters 1s presented graphical-
1y in Figs, 3 and 4, These curves quantitatively depict
RTA and the relative gradient with radius of Bm on axis,
halfway between any two colls. However, curves were drawn
for other locations in the field, and their shapes are
very similar to the curves in Figs, 3 and 4, The general
dependence of RTA and Bm on position in the field is qual-
itatively described below. Also, sample compututions of
RTA and dB/dr for values of space, disp, and alpha not
included in the ranges previously set down indicated no
unexpected behavior,

RTA. Fig. 3 contalns gradhs of RTA on axis as a
function of each of the configuration parameters alone,
holding the other two parameters fixed. RTA is a strong
function of all three geometric parameters and of radial
position in the field. The almost linear function of RTA
with disp is predictable. Increasing disp accentuates the
helical twist of the fleld lines, and hence the transverse
components of B, of which RTA is a measure. RTA increases
exponentially with radius from the axis, The rate of in-
crease with radius depends on the specific combination of

space, disp, and alpha.
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Bm, The mean magnitude B is inversely proportional to
space, and 18 not strongly dependent on disp and alpha.

The dependence on space is expected since in general the
magnetic field of a coll varies inversely with distance
from the center of the coil,

Uniformity of Bm. Consider first the relative quantlfy
dB/dr on axis as a function of space, disp, and alpha as
depicted in Fig. 4. Note that the curves of dB/dr are very
much like the RTA curves, Bm does not vary azimuthally
near the axis, that 18, well within all the colls. With
increasing radius, as the coils themselves are approached,
the field 1s dominated by the nearest coils, It is diffi-
cult to describe in general the field near the coils. Bm
is quite uniform along the axis, As a quantitative exam-
prle, Bm varies along the axis by less than three percent
for space equal to unity,.

Field Lines., Fig. 5 shows the paths of ten field
lines traced over two cycles of coill displacement. PFig. 6
is a listing of coordinates along the line nearest the axis
for two cycles, The coll configuration for these lines 1ie
defined as follows:

space = ,6
disp = ,2
alpha = 60°

The pitch length of the line twist is the same as that
of the coll center helix. The rad;us of the helical line
on axis is .07. The radiil of the helices described vy
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Fig. 5. Ten Magnetic Fleld Lines Traced Over Two Cycles
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lines farther off the axis increase exponentially from this
value, This behavior explains the dependence of RTA on
radius from the axis. The pattern of the first order twist
shown in Fig. 5 is symmetric about the axis,

From Fig. 5 it appears that the field lines do not
tend to rotate about the Z axis of the system, Actually
there 18 a s8light drift of these lines about the axis.
Selected lines were integrated over one hundred first order
cycles for various combinations of space, disp, and alpha.
The transverse coordinates of the lines did not return to
their starting values after each first order revolution.
The indicated drifts over one hundred first order cycles
were extrapolated to compute how many first order cycles
would be required to encircle the Z axis and return to the
transverse starting coordinates, On the average these
extrapolations indicated that it takes about 100,000 first

order cycles for the fleld lines to encircle the axis,

Summary
We have investigated the magnetic field of the

displaced-coll configuration. Two characteristics, the
uniformity of field magnitude and the ratio of transverse
to axial field components, have been analyzed as functions
of space, disp, alpha, and location within the field. The
pattern of field lines has been ascertained.

The qualities of a magnetic field which are important
to plasma containment seem to be controllable by ad justment

of the coil configuration. The field lines are helices,
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and the entire field seems to rotate about the central
axis,

Note that the displaced-coll configuration does not
depend on any particular solenoidal windings as far as shape
or size are concerned. Standard solenoids, commercilally
available, could be used as long as the minimum required
field strengths could be attalned, Fleld design is accom-
pPlished solely through the geometric arrangemesnt of the
colls., Thus the necessity of designing and constructing
special windings is eliminated. Many different configura-
tions could be experimentally tested cheaply and
conveniently.

It is mentioned in Chapter I that stellarator-type
revolutions of the fleld 1lines can be useful in cancelling
the drifts of charged particles in a toroidal magnetic
field. Although this study concentrates on an infinite
straight coil configuration, it was demonstrated that rota-
tion of the field lines does take place, The toroidal coil
configuration from which the stralght system 1is derived
would also cause the fleld lines to rotate. Hence the
advantages of the stellarator would be avallable without

the additional stellarator windings.
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III. Plasma in Equilibrium

In this chapter the steady-state hydrodynamic equations
of a plasma in equilibrium in an axisymmetric system are
derived. The distribution function for a system of like
particles is first derived from Liouville®s equation. The
distribution function is applied separately for ions and
electrons, The hydrodynamic equations for each distribution
are found as moments of the Boltzmann equation. Two of
Maxwell®s equations can be applied to the axisymmetric
system., The result is a system of elght simultaneous, first
order differential equations in terms of eight unknown

variables,.

Distribution Function
From Liouville®’s theorem (Ref 7:156) the most general

squilibrium distribution for a system of like particles is
a function only of the Hamiltor.ian constants of motion. 1In
an axisymmetric system two appropriate dynamical constants

are the Hamiltonian and the canonical angular momentum,

n

H Lmv o+ ch; (2)

R = mrw + ctr‘Ae (3)
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Then a distribution function which is consistent with the

conservation of i and P, 1is

f=fexp-p [W-aR]

(%)

=£ exp —3 [}:Lmv" + cvb —-amruw -_o.%rAe]

where £, , f. and {2 are arbitrary constants. In principle
all variables of the system of particles obeying this
distribution can be found as moments of the function. How-
ever, it 1is convenient to transform to another coordinate
system before taking moments,

Let a coordlinate system be chosen in which the orthog-
onal unit vectors are 81, 82, and 8, such that

B = BE& T
and

&, ~-8E (6)

The new system 1s illustrated in Fig. 7.

ILst us make the convention that the 8 direction
always coincides with the azimuthal direction relative to
the original cylindrical coordinate system. Then the prod-
uct (raw) in Eq (3) 1s azimuthal velocity, and is in the
é\ direction., The other two components of total particle

velocity can be called V1 and VZ‘ Thus

Vi i v+ o)t (7)
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R 4[32

Fig. 7. Cylindrical Coordinate System
The distribution can now be written

f=% exp —f [cl[tp—r_n.Ae]
(8)
+4m [+ v+ [r] —r_n.mrw]

If we add and subtract the quantity %m(r.ﬂ.)2 in the expo-

nent, the terms of f can be rearranged:

F=£ exp —ﬁ[CL[(b—f‘_ﬂ-Ae] +Em [V +V3]
(9)

~Im[ra]* + ‘:'rm[rw—rn_]"]

Certain moments can now be conveniently calculated,

Particle density 1is

nsg'pd\_/

(20)
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where each component of velocity must be integrated from

minus infinity to plus infinity.
132
n-g(;sL*:“ exp-Algld-rar -kmral’]

(Ref 8:284), Define the average azimuthal particle veloc-

ity as W,
W =‘rL\f[ru] fdy =ran (12)
Average particle kinetic energy 1s
X =39 VEdY = 35 + xm[ra] (13)

These last three equations suggest the following
conclusions:

1. The density distribution 1s not necessarily
constant with radius in the azimuthal system,

2. The plasma exhibits rotation as a solid at an
angular frequency {1.

3. Particle energy 1s partitioned between the
kinetic energy associated with random velocities and
the kinetic energy of an average rotation. If

B = 1/KT, the distribution behaves like a Maxwellian
distribution with a drift veloclty of (r.fl) super-
imposed.

The distribution function derived above describes a

system of like particles in an axial magnetic flield. It
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implicitly accounts for interactions between like particles,
The derivation is not valid if different types of particles
are considered together because it does not account for
collisions between unlike particles. However, a real plasma
composed of weakly 1interacting electrons and ions can be
described by applying Eq (9) separately for each distribu-
tion Af the interaction between them can be expressed. The
two distributions can be approximately connected via an
inter-particle collision force., Appendix D derives the
expression for such a force. The interaction force can be
expressed as an average force arising from collisions be-
tween electrqns and ions, The force 1s proportional to the
product of the two local densities and the difference
between the pwo average rates of rotation. The force then
can be thought of as an average drag between two distribu-

tions rotating at different frequencies.

Hydrodynamic Equations
This section outlines the derivation of the equations

describing a system of electrons and ions nearly in equi-
1ibrium. The relations employed are the Boltzmann
phase-space equation and Maxwell's equations, Mks units are
used throughout.

Assumptions. The assumption of an axially directed
magnetic rield has already been made, Assume also a purely
radial electric rigld. It was mentioned in Chapter I thét
we -wish to investigate the effects of artificially inserting

ions and electrons into the plasma., Assume, therefore, that
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particles may be inserted anywhere within the plasma at any
time rate desired., For instance, ions and electrons may be
deposited separately or together, according to some contin-
uous radial distribution or perhaps only within a cylindrical
band of some Zxr in the system,

Boltzmann's Equation and Moments. The steady-state

Boltzmann relation for a system of llke particles obeying

the distribution function of f is

v-vf +_rEr;\_-Vv-? = f » o

where

£~ £y | (15)
E=E(y < o

(Ref 16:1155). F is used here as the sum of all applied
forces which may be described as averages.af/gt accounts
for processes such as ionizatlon or recombination, charge
exchange, or creation of partlcles,

F i1s composed of the followlng:
E:gL[g+gx5] +Fs + B/ (17)

The first term is simply the classical Lorentz force on a
charged particle of velocity v. Fc 1s the average volu-
metric force due tp collisions between unlike particles,
It is8 divided by density, n, in order to reduce it to a

particulate term,
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Fs is the average force per particle necessary to
accelerate newly created particles from their original input
velocities to the local average velocity of like particles
in the plasma. The process of acceleration is assumed to Dbe
by elastic collisions wilth llke particles only. This
assumption is jJustified by the very small degree of energy
transfer in collisions between electrons and ions, Electron-
ion collisions tend mainly to randomize the electron
velocitles; lon velocltlies are not appreclably changed in
such collisions, .

Define S as the time rate of creatlon of particle
density at any glven point. Consistent with this definition

Es=-my-x%] S (18)

n

where ¥V 1s local veloclty and Ve 1s the original velocity
of the new particle. The minus sign on the force conforms
to the use of Fs as a force applied to the Aistribution.
Let us assume henceforth that new particles are input at
zexro veloclty. This is not a dangerous assumption in thét
we must assume that we may control the input velocity any-
way. It will be seen that vo can te reinstated at a finite
value at a later point in the derivation with little
difficulty.

Macroscopic equations of a plasma are derived as

moments of the Boltzmann eguation. The first moment is the

continuity relation.
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v-[yn] = S (19)

The second moment describes momentum transfer per
particle, 1In steady-state: '
L o d
my-v]y = -w- E (20)
n
(Ref 18:161), where P 1s the pressure tensor.
If a Maxwelllian distribution is assumed locally for
each distribution, the pressure tensor is a diagonal with

equal terms (Ref 19:124),.
P-nKT (21)

The most important assumption implicit ih the use of this
term 1s that the pressure on a single distribution is due
cnly to random motion of particles and collisions between

like particles,

Maxwell's Equations., Under the assumptions in force

two of Maxwell's equations supply useful relations.

VxB=j (22)

——

V-E=,% (23)

where fé is charge density and'j is current density.

Vector Component Eguations. In cylindrical coordi-

nates the continulty relation 1s simply a scalar equation,
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] d rnvr] _

— ——-—[ =S (24)
r dr

where Yy is the average radial drift veloclty of particles

out of the system, Note that only partial derivatives with
respect to r are non-zero in an axisymmetric system,
The romentum transfer vector equation supplies two

vector component equations. The radial vector component

equation is

m[vr dvr — \lel]:- -KT dn ‘\'%[E.""\JGB] ’m\i,.§_ (25)
dr r n dr n

(Ref 19:219) where vy 1s the average azimuthal velocity of

particles about the ax’s of the system. The azimuthal

vector component equation is

dve M]-_ S R
"‘[\’rdr T Qe e £ (26)

Fc appears only 1n this equaticn because it 1s azimuthal in
direction only. Hence we write 1t as a scalar in this equea-
tion, The sign of Fc derends on whether Eq (26) is writter
for electrons or ions., Let the electron distribution te
chosen as the zero-subscripted distribution in Appendix D.
Then Fc should appear as a negative term in the electron
equation and as a positive term in the lon equation.

In an axisymmetric system Eq (22) becomes
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dB .
dr ~ o Jo (27)

The azimuthal current density, J, , can be writtenr so that

4B

dr T «.e [heVe‘Zl’\;LL.] (28)

where e is the electronic charge. The subscripts e and 1
are introduced to differentiate betweer. the electron and
ion distributions, Henceforth v will be used to refer to
electron velocities and u to refer to 1on velocities,

The electric field equation is

1 drE - e [Znione]

r dr € (29)

where we have rewritten charge density as the sum of the
electron and ion charge densities,

We have then a set of simultanecus first order differ-
entlial equatlons with r as the indeprendent variable. There
are two momentum transfer equations and one continuity equa-
tion for each particle distribution, in addition to two
Maxwell equations for B and E, for a total of elght equa-
tlions. The equations are in terms of particle densities,
average radlal and azimuthal velocitles, radlal electric
field strength, and axlial magnetic field strength.

These variables are the unknowns of interest. We
wish eventually to study the radial profiles of each, This

does not necessarlly mean that we must solve each of the
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elght equations for one of these unknowns. Several possible
changes of varliables are considered in the next chapter.

Normalization. Before moving on to the next chapter,

wherein attempts are made to solve the elght equations just
derived, we introduce normalization of the variables,
Normalizatlor. eliminates dimensional units and provides very
convenient scaling of our particular variables,

For instance, let all velocitles be normalized in

terms of the mean random veloclty of the positive ion:

V=V 3KT (30)

m;
where T1 is temperature 1in degrees Kelvin. The cbject 1is to
replace all veloclties with corresponding primed, dimension-
less numbers., For convenience define

V=, BKE (31)

ILet time be normalized in terms of the cyclotron period of

the 1on near the axis,
]
£ =T (32)
m,
T = =0——o
ZkiEﬂg (33)
where B, 18 the axlal magnetic fleld strength. It was
agssumed earlier that B, could be specified.

Earlier 1t was mentioned that one of the goals of this

study 18 to determine theoretically the feasibility of
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attaining particle number densitlies on the order of
1020 m'3. Iet densities and the density source terms be

normalized to
20 -3
=10 m (34)

Consistent with the above definitions are the follow-

ing normalizations:

Radius r=r'VT (35)
Magnetic field: B=R Bo (36)
Rate of particle creation: S = %—L (37)
Ar;gular frequency w = LA/’I‘ " (38)

Electric field: E = E’VBO (39)

Collision force: E = F;—’ —_ m; (50)

T-

When these definitions are substituted into the eight
equations all dimensions cancel out., Let us then drop all
primes, remembering from the above definitions how to
recbver the real variables, Table I is a compllation of all
eight normalized equations, plus Fc, the normalized
collision force from Appendix D, after the primes are

dropped.
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Summary
This chapter is a derivation of a set of time-

independent differential equations which describe the
macroscopic variables of a system of lons and electroms

near equilibrium, It 1s useful to summarize the assumptions
upon which the derivation is based:

l, The system 1s axisymmetric.

2. Both ions and electrons obey Boltzmann-like
distribvutions and a real plasma can be accurately
described by applying their respective distribution
functions separately.

3. The magnetic fleld is axially directed and
1ts strength on axis can be specified.

4, The electric field is radial in direction.

5. Jons and electrons can be inserted into the
plasma arbltrarily at any time rate desired. Decel-
erating drag forces on the two separate distributious
arise from collisions between like particles only, and
may be treated as average forces.

6. The drag force between electron and ion
distributions may be treated as an average volumetric
force,

7. Pressure on a single distribution 1s due only

to random collisions between llke particles in the

distribution. '
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8. The electron and ion temperatures are known

and are uniform across the plasma,
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IV. Solving the Differential Equations

Introduction

This chapter describes in detall attempts to develop
procedures for the numerical integration of the system of
differential equations derived in Chapter III. The objec-
tive of these attempts was to select in terms of accuracy
and efficiency the best methods for numerical solution of
this partlcular system of equations. Involved are the
cholce of variables sought as solutions, the adaptation of
standard numerical integration techniques to the specific
problem, and the writing of computer programs to perform
calculations most accurately and efficiently.

First a set of variables 1s selected and the equations
in Table I are solved for the first derivative of one of
the variables. Equations for the initlal conditions on
the variables are derlved from the equations written on
axis., Sample calculations are made of non-zero initial
conditions., These representative values for the initial
conditions serve to point out potential sources of error
in the computation of the derivatives, Various changes of
variables are sthdied in attempting to eliminate the
sources of error. The chapter is concluded with an anal-
ysis of the application of numerical integration techniques

to the solution of the differential equations.
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Cholce of Variables

In Chapter III mention 1s made of which of the vari-
ables involved in the system of equations are of interest,
but equations are not selected to be solved for specific
variables., In this section alternative methods of solving
the equations sre discussed.

The following macroscoplic quantities, as functions of
radius, are the otjects of this study: Nge Ny Vo Vg Ugs
B and E. (The equations in Table I are in terms of the
corresponding normalized varlables, but the conversions
back to the real quantities are simple.) A stralghtforward
approach 18 to solve each equation for the first derivative
with radius of each of these unknowns, but other arrange-
ments of the equations are possible and may be more useful.
This chapter is primarily concerned with evolving a set of
variables and the solutions for thelr first derivatives
which are most amenable to numerical integration, keeping
in mind the limitations ilmposed by the available numerical
techniques and computer technology.

Eq (47) for magnetic fileld in Table I 1s apparertly
already in its most useful form. There are no obvious
rearrangements which might improve 1it.

Consider Eq (45). Move the second term on the left
hand side to the right hand side and divide through by

m V.. The result 1s a direct expression for dvg /dr,
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dwe =_ Yo _ Vo rSe + m; [_B.-—EL] (51)
dr r Vr Ne me [ Z NeNr

However, note that

dve + Ve = 1 dlrve
dr r r dr ' (52)

Thus, rearranging Eq (45)

dlrve] = —rve Se + m;_[ﬁ—i_]
dr Ve Ne mMe LZ Nevel (53)
The independent variable, r, 1s always known exactly 1n the
step-wlse numerical integration techniques usually employed
with first order differential equations, Therefore, there
should be no trouble retrieving vy from the solution,

Similarly Eq (46) becomes

drus =—r_u_-S_i—[B— Fe ]

dr Wwr n,; gV (54)
Divide Eq (41) by n, v, and expand the Jderivative,

1o+ dne + 1 dve = _Se

r ne dr vr dr Ne Vi (55)

Note that this equation cou’d e solved for the first
derivative of elther n, or v,.. For the moment use Eq (55)
to eliminate dvr/dr from Eq (43). Then a solution for

dne/dr is
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[& + v,.[vr - zse] - _m [E+veeﬂ
dne =nel r r ne Zme o
dr I Te mi —'V;L

3 .17 Me

Similarly for the ion equation

P S|

dr [_L_ _.LLE}
3

Assuming that n, 1s a wise choice of variable, Eq (55)

could be s0lved for dvr/dr and the result integrated for Ve

(57)

directly. However, if rn,v, 1s chosen as a variatle,
d(rnevr)/dr is rSe, a quantity which has been assumed to be
exactly specified. Therefore the differential of rn.v, 1is

known exactly, and for this reason 1t seems a wise choice

of variable. Hence,

Y Ne Vr
\/r = Me (58)
TNl
Uy = rn:~ (59)
Eq (48)'can be left almost as is,
dlrE) = _mir [Zm—ne_] (60)

2
dr Ze B,
The equations in Table I of Chapter III have been

rearranged as solutions for the first derivatives of the

following variables: TNyV,y.y, INylpy XV, TUy, B, and rE,.
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The next loglcal step is to find the initial conditions on

all variables so that the differential equations can be

solved.

Initial Conditions

If the numerical integration of the system of differ-
ential equations is to be started froﬁ zero radius, it 1s
necessary to have a means of computing the numeric values
of all varlables on axis., Some of the variables are zero
bty symmetrys; those others which are not arbitrarily con-
trolled must be analytically derived. Then standard
nunerical methods of solving first order simultaneous
differentlal equations can be used to carry on the integra-
tion away from the axls.

Some of the initial conditi&ns are lmmediately eyi&ent
from symmetry. Recall that the radial and azimuthal veloc-
ity terms are averages, or drift velocities, referenced to
the axis, Then on axis all the velocitles are zero. The
electric field must be zero on axis by symmetry also.

Aithough the &zimuthal velocitles at r=0 must be zero,
the angular frequencles of rotation, We snd W; , can be
finite, Indeed in Chapter III 1t was suggested that such
' frequencies are cons;:ant across the plasma,

Since in Chapter III the magnetic field 1s normalized
to its axial magnitude, B is unity on axis. Recalil the
assumption thet the real value of B on axis, B,, can be

arbitrarily imposed. It was also assumed that the two
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distribution terperatures, Te end Ti' are known and are

uniform across the plasma,

The electron and ion number densitles, ne and ni, are
the remaining initial condlitions. ILet us seek algebralc
solutions for rg and n, by solving simultaneously the

differential equations as they can be written orn axis.

First multiply Eq (55) by r.

r 4+ 1 dng‘: + r Cl\/r' = r S& (61)
r Ne dr vr dr Ve Ne

Take the 1limit of vr/r as r goes to zero

,Q_im-\ Vr = ClVr‘AY‘ = dvr (62)
rso r dr. dr dr

(Ref 14:262), Since dne/nedr must be finite on axis, the

second term in Eq (61) 1s zero on axis., Then

2 Ve = De
r Ne (63)

Reduce Eq (56) to an algebraic equation with no Vy OTr Y,

terms by use of Eqs (61), (62), (63), and

. e
We = v (64)

The result 1s

3 [Sel* = wlt- mi we + £
4 |ne Zme r (65)

where B has been set equal to one. Similarly for the ion

distribution
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(66)

3 [é_r= Wi+ wy + L

4 ni r

At thils polint 1t 1s convenlent to make a change of

varlable for the purposes of the solution for initial condi-

tions, Define as the difference between densities
/o= EZni—ne | (67)
Also define an average density
n=[{Zn + ne,]/_l
As in Eq (62) when r goes to zero..

van _E; = §L£; . (69)

- r—Oo r cir

(68)

Therefore Eq (60) becomes on axis

r\

Define for subsequent use
E= 752 (71)
EZG-Ego

Turn to Eq3s (53) and (54) to see Af expressions for
(Ve and (W; can be derived. Using the definition of W,,
Eq (64), and the initial value of B, Eq (53) becomes

b7

2k - Z:éolﬁ | ‘ (70)
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Jwe = ~JWe + mi L~ Fe ]
(72)
Me Z ne_Vr_J

Assume Iin the normalized expression for Fe¢ in Table I that
the first power of the difference (e -~ (W;) 1is much
greater than any of its higher powers, This assumption

will be verified when We and Wy are solved for. Then

approximately

o= Ce Znine [we -wi] (73)

C¢ includes all the constants in the first term of the
serles of the normalized expression for Fec. A glance at
Appendix D shows that in a strict sense an unknown, ln(ne).
1s thus Included in Cy. However, it happens that the
normalization of densities causes 1ln(ng) on axis to be very
near zero. When the actual nethod of computing the axial
ng, and ny is described, it will be shown how the value of
In(ng) is corrected in the coefficlent Cg.

Using the change of varlable previously defineé,

2
Znine = nl—/o/‘F (74)

Assume for the moment that the relative difference between

Zny and n, 1s so small that

a 1
/& «“n (75)

This approximation wlill be validated. Therefore
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Znne = n*

Then using Eq (63) solve Eq (53) for We

2 : | 1
We = _ & Ce¢ [ZS‘. Se_] n<
Eme + 4 Ce¢ [_|_+__gm ;] n*
mi e m; S

Similarly from Eq (54) W; on axis is

Wi = _l%’*'C? [Z|S'. — Sle,] ~
8 _me +1+C{=[_'_+_m_l_‘] n’-'
m; e m, E;I ’

The assumption made in Eq (75) also allows the
following:
| o~

L = U
ne* n* — An|

Expand this result in a binomlal series

° 3 ~2°7

| = \-+ n 4+ 4 n o

n .
Invoking Eq (75) again,
\ ~ | \-F-;fz_
né? n* n ]

Similarly for ny

Lo

(76)

(77)

(78)

(79)

(80)

(81)
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Table II
Degree of Tzrm Coefficient
(3
2 m: L
o e B ()
8 0
? ECrjymil[me L, 1| 2 (me § . 1\[S
Sl (me v £) 126 (mxst +fj(
- Me !, { e m:SH) - L2l L
¢ 3C’(mt5.+5,)( 2ZMe ) /€CF (ZSJ
5 I2€ E’*’}%-)* 3656,_.—,’;3(%5"+5'e (Suz”;{‘
me b, L) me¥ST, S, 3 (_L-L(f-
v 6Cs (m65e+§:')(£m€) v )t ECeEs SJ?
2 . g2
5 yge (B (584 g )
o < 2 .2 .
2 (i e 5) e 720808 (B el
1 0
mez 2 12
o 72(ng sis;
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A~ - = A
2 : 2) -
n'\l n n . ( )
These approximations can be used to replace ne2 apd nl2 in

Eqs (65) and (66). Eq (70) gives E/r in terms of /‘ and a
constant, Thus Eqs (65) and (66) can both be solved for
f in terms of n, Wes» ;s Ses and S3. Eq (65) 1s solved
for / below as an example.
—3 [5&] 2 + we_j'_ M we
ﬁ = Y n Zme

3 Se2 + mMmE
4y h3 Zme )

(83)

If the solutions for /0 are equated, a ninth degree poly-
nomial in n _can be written, .Table II 1s a 1list of the
coefficients of each power of n,.

There are methods of solving for the roots of poly-
nomials of any degree (Ref 10:16)., However, it is not
necessary to solve for all nine roots of the polynomial,
We are interested only in those positive roots which
correspond to an unnormalized density on the order of

102°m'3. It can be shown that these roots can be found

directly.
Approximate Solution. Instead of trying to solve the

entire ninth order polynomial for all nine roots .of n let
us seek an approximate solution fc;r the root, or roots, of
interest, Note that the coefficients in Table II are in

terms of Cf, £ , Se, and Si1. Cf and £ are the normalized
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coefficlents of the equations for Fc and 4(rE)/dr,
respectlvely, Se and S1 are thelnormalized source terms on
axis., It is very interesting to invent a numerical example
which demonstrates how the solutior for n depends on these
source terms,

Suppose that the unnormalized soﬁrce terms are on the
order of 1019m'3/sec. That 1is, if we begin with no density
at all and assume no diffusion away from the region of the
axls, in ten seconds the number densities of both electrons
and ions would be about 1020m'3. Sﬁppose also that Se and
S1 differ by one percent in magnitude, At this point we'
will not specify which is larger. Let B, equal one kilo-
gauss. If now the source terms are normalized, and put
into the expression for the coefficients in Table II, the

non-zero coefficients assume the following approximate

values:

Degree of Coefficient Value of Coefficient
9 -1012

1012

10-9 ‘

106

103

10-13

.10~15

10-37

o N W F v O
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Note that the ninth degree coefficient is the only
negative coeff;icient. An examination of Table II shows
that this coefficient must always be negative, The other
coefficients are all positive. Since only positive roots
of the polynomial interest us, the magnitude of the ninth
degree term of the polynomial must always equal the magni-
tude of the sum of the other nine terms if the polynomial
is to sum to zero., For the set of values Jjust computed 1it
is evident that the seventh and ninth degree terms are by
far the largest terms in the polynomial, To illustrate,

suppose we approximate the polynomial as follows:

10 4+ lOan1 -0 | (84)

The solution 1s obviously n equal to about one., Hence for
thls root the other terms of the polynomial are indeed
smali by comparison and can be neglected, This root trans-
lates to an unnormalized average density of about 1o"’°m‘3.
which is about the size of number densitles of interest.
Therefore the source terms chosen for this example at least
fall in the neighborhood of interesting cases.

he For specified conditions very different from’those of
the above example, the approximations made shculd be
checked for vallidity. Nevertheless, i1f the approximations
do hold nearly as well, an approximate expression for n2 is
then avallable from the ratio of the seventh to the ninth
degree coefficients in Table II, It is interesting to

examine this ratlio, using only the first term of the
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seventh degree coefficient since it 1s much larger than the

other term,

2

, 8[\-\—_&3]_&&

Zmel m (85)

Neglect terms of order me/mi compared to one,

nt~ 8 Se
ZCs [_&z%’ﬁ_]’“ (86)

Note that n ;s inversely proportional to the relative
difference between S, and ZS4 and proportional to the
square root of the source terms,

It is to be stressed that the above approximate °
expression for nZ may not be wvalid for all imposed 1initial
conditions. It willl be used only as a mesns to estimate
the root of interest. The complete polynomial, without
approxlmations, should be computed to insure that it is
near zero, If 1t 1s, the solution for n can be refined by
iterative correctlon schemes, The Newton—Raphsbﬁ method of
finding a root of a polynomial is quite useful and quick
when a good estimate of the root is avallable (Ref 10:630).
It is well suited to iterative computer techniques.

The Cg¢ used in Eq (86) to compute the first trial
value for n was computed with.ln(ne) equal to zero, Then

in every Aiteration of the Newton-Raphson method 1ln(n) should
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be used where 1ln(n,) appears in Cy. Ln(n,) 18 not one of
the larger terms in 1n(A), (Seg Appendix D.) Then the
very small difference between 1ln(n,) and 1ln(n) cannot have
a great effect on the accurate calculation of Cr. Hence

raplid convergence of the iterative solution for the root of

interest is reslized.

Origins of Error

It is prudent at this point to look at the physics of
the situation and search for any arithmetic operations in
the eight equations which might introduce error. Since the
intent 1s to use numerical integration techniques to solve
the equations in Table I, it 1s imperative that the differ-
entlals chosen in thls chapter be computed as accurately as
possible. Therefore it i1s interesting to study the offects
of the error assoclated with each term of the differentials
and to investigate how such errors might be induced.

In the electric field equation the derivative depends
on the difference between electron and ion charge densities;
both are integrated varlables and thus subjlect to error.

Any computer language has only a finite number of signifi-
cant digits 1; can assign to any single variable. In
Fortran IV, for example, the maximum number of digits avall-
able to any real variable 1s sixteen. (Ref 9:16) 'If Zn,

and n, are nearly equal on the average, their differerice

may not appear except in the last few significant figures

of eilther., The accuracy of rE can thus be severely

limited, It i1s expected, in fact, that the ret charge
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densitles in a plasma in equilibrium is nearly zero, The
only way of determining if it 1s feasible to calculate rE
by Eq (60) 1s to make some representative calculations of
the difference between Zn, and n,.

Recall the assumption that the axlal magnetic field 1is
to be imposed. The electric field can arise only from the
relative motion between the two oppositely charged distri-
butions. The average azimuthal rotation of a charged
distribution results in a radilal force on the distribution
in the presence of an axial magnetic field. Because the
electrons and ions are oppositely charged, the >adial
forces thus generated tend to drive the two distributions
in opposite radial directions. A radilal electric field
appears to prohibit this separation. Thus a cancellation
of force terms i1s involved 1n the terms (E + vgB) and’

(E + ugB)., The pctential for a prohiblting loss of accu-
racy 1n elther or both of these Lorentz force terms exists
Af E is nearly equal in magnitude to elther VB or ugB.

Three terms in the eight differential equations have
been identified as potential sources of error. It 1is
expected that the calculation of these terms might {equire
computing a relatively small difference tetween two nearly
equal numbers., The loss of significance amounts to a loss
of accuracy in these differences in computer calculations,

The severity of accuracy 1loss in the sensitive terms
cannot really be judged until accurate numeric values for

the variables involved in each term are avallable. Nor can
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the effects of the error in these terms on the accuracy of
the differentials be determined until the relative magni-
tudes of all the terms 1n each equation can be estimated.

Numerical Example. To ascertain whether the above

problems can arise it 1s again useful to go through a .
numerical example. Suppose that a cylindrical plasma
sustains a voltage as high as 10,000 volts across a radius
on the order of 10 cm. Suppose also that the electric
field strength 1s approximately linear with radius, Then
at 5 cm from the axis the electric fleld strength 1s about
1000 volts/cm. This is quite a high electric field for an
lonlzed gas to sustaln.

From Eq (29) the diffefence between the unnormalized
electron and ion densities corresponding to this electric
field is about 2,2 x 1015w=3, If we assur that the mean
varticle density is as high as 102°m'3, the relative dif-
ference between Zn, and ng is about 10~5., For smaller
electric filelds this difference 1s even smaller.

Note that by the equations chosen as solution:z for
the derlvatives of ny, and n, the densitles are solved for
separately. It then becomes necessary to compute tgeir
difference in the electric fleld equation. So in computer
calculations, where the densities can only be known to a
finite number of significant places, their difference is
known accurately to fewer slgnificant places than either
density because the first few significant places are can-

celled out. In the example above five significant figures
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are lost every time the difference 1s calculated, For
smaller electric fileids or higher average densitles the
relative differences between electron and lon densities 1is
even smaller.

It is possible from the initial conditlon equations
derived earlier to find an analytic expression for the
term (E + v3B) on axis, Immediately, since B on axis is
one, the terr is simply (E + rwe). Let us find an expres-
sion for this term on axis and find its size relative to
Vg. The conclusions can be quallitatlively extended for the
rest of the plasma and to the equlvalent term in the iorn
equation,

By Eqs (70) and (71), in terms of ncrmalized variables,
E- & V‘/ (87)
2

Then the term of interest rela-ive to Ve is

E+rwe - [z merwd-ruwe+ rwc.VrLUe_
rwe mi

(88)

Z e we

ma
Recall that @We has been rormalized to the i1on cyclotron
frequency, and that it 1s used here as an average frequency
of rotation for the entire electron distribution., - Hence
the @e above is less than one. Thus, since m, is much
less than my, E and r We are nearly equal in magnitude, and

there 18 a cancellation of thec first significant figures in
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taking their difference. Slimilar results hold for the
term (E + ugB). .

The significance of the abowve examples and arguments
1s that there can easlily be a severe loss of accuracy in
computing the first derivatives of n, and n,. Recall that
significant flguree were lost in the electric field equa-
tion, Now we find that additional significant figures can
be lost in the Lorentz force terms. Thus n, and n, cannot
be accurately computed to even the limited number of placeas
avallable in the computer,

It seems then that some means should be sough+* to
solve for the diff'erence between Zn; and n, directly rather
than subtracting them every time the derivative of rE 1s
computed., That 18./9 should be chosen as oné of the vari-
ables of the system such that it can be sc” -ed for difectly.

The riext section discusses such a change of variable.

Change of Varilable
It is suggested 1in the last section that instead of
integrating for n, and ny 1t would be wise to solve direct-
ly for the difference between them. It was shown that a
severe loss of accuracy could ersue from subtracting the
two densitiles., To solve for the first derivative of /9.
dP = Z dni _ dne ,
. dr dr dv ' (89)
By definition of n we could choose it as the other density

variable,
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.dL‘_ =1 | £ é‘.'_ 4+ .Ch&_ (90)

dr 2 dr dr
Thus, in principle, we need only add or subtract Eqs (56)
and (57) to make the ¢hange of variables., Howaver, uote
that therz 1s no cancellation of any equal terms accom~
plished by the subtraction of dng,/dr from Zdny/dr. Thus
nothing has been done to eliminate the large common factors
shared by Zny and Ng .

It has been shown then why an obvious change of vari-
ables does not remedy the basic prcblem with this set of
equations. The problem 1s the loss of accuracy incurred by
subtracting with the computer nearly equal terms, The next
section explains how this type of error makes impossible

the numerical integrstion of differertial equations.

Numerical Integration

Many approximate methods of numerically integrating
the general first order differential equation have teen in-
vented. The oldest and simplest are Euler's method and its
modification (Ref 15:310)., They both essentially make
linear extrapolations from one known value of a functlon to
a new value by multlplying the derivative of the function
by an increment of the independent varlable. More elegant
methods such as Approximating Polyriomials (Ref 15:358), and
Milne (Ref 15:353) employ the extrapolation method more
cleverly, but the use of them can also be limited by this

approximation.
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The Milne method is an example of.the general

predictor-corrector scheme., The two basic equations it uses
are

! 1 '
Preatotort Yooy = Yas * _L}éb. A A S (om)

_ ! ' ’
Corrector: yn-H - )’n-l e 'g_ Yn-l + q.Yn +'Yt\+l (92)

where y,,.; 18 the vaiue of the dependent variable being
sought, The subscripts denote the number of steps by which
the inderperdent varlable has been incremented. The primed
quantities are the first derivatives of the dependent vari-
able., The predictor equation provides an estimate of Yn+1
at the nert inciermented value of the independent variable
tased ¢n the behavior of the function at previous 1nc?e-
ments. The corrector equatlion calculates yn+1 over and

over until successive answers agree to within some accepted '
error.

Note that in the predictor equation the values of y at
four previous increments are required. Some starting solu-
tion 1s_usua11y required to calculate the first three values
oE every dependent variable, and, of course, the initial
conditions for all variables must be known. 'Runge-Kutta is
a very popular method of obtaining the three starting
values from a knowledge of the initial conditions. Qunge-
Kutta 1s essentially derived from a truncation of the
Newton series for forward * -erpolation (Ref 15:56), and

therefore imposes the approximation of linearity.
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The Runge-Kutta method was applied to the c¢ight
differential equatlons for several sets of imposed condi-
tions to'obtain the first three solutlons for all the
variables selected earlier, and the Milne method was applied
at the fourth step as explained above, Initial éonditions
were computed as described earlier in the chapter. As the
corrector -equation was applied rereatedly at the fourth
step, the values of the variables did not converge, but
rather incressed or decressed beyond ressonsble limits,
Within a few iterations the two densitlies decreased by
several orders of magnitude, and E and the four velocities
increased in a like manrer,

Apparently the sensitlive differences in tne density
eguations, gpd the electric fleld equation were computed
erroneously due to small errors in the terms involved in
the differerces., The derivatives of these terms were then
inaccurately calculated since the differences occurred in
the last significant figures of the variables. The
repeated application of the corrector equation served to
amplify the errors rather than improve the predicted values
of the variables,

Series Expansions. Suppose the exact initial values
of all non-zero varlables were available, It might ther be
possible to expand all variables about the axis 1p alge-
bralc series in terms of r. If the varlables could be
expanded to enough terms so that very acocurate values of

each a short distance off axis were availlable, the three
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starting solutions could be had by computing each series at
three different radii.

The Taylor Series method (Ref 15:1328) is often used to
begin from inltial conditions the numerical solution of any
order differential equation, It i1s based on the expansion
of the dependent variables into infinite series in powers

of the independent variable.
ViR = i) + Y [x-x )+ z_;'"(xo)[x-xo]lt.. $eB

where yi(xo) is the initial condition on ¥y at X, The
primary limitatlion on this method is usually the excessive
labor involved in solving algebralcally for the higher order
derivations. However, 1f (x-xo) is kept small, a variable
might be represented accurately by only two or three terms
of a Taylor seriles.,

The usual procedure of computing the coefficients of
the (x-x,) terms 1s to substitute the truncated seriles for
each variable into the set of differential equations and
solve simultaneously for the coefficients., Each differ-
ential equation reduces to an algebralc equation which can
be subdivided into equations of the coefficilents of like
powers (x—xO). There are always as many coefficlent equa-
tions as coefficlents Af there 1s a differential equation
for each varilable. In principle the set of simul?aneous
coefficlent equations can always be solved, often

numerically, for the numerical values of the coefficients.
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Assume then that 1t 1s possible to expand each of the
varlables, using n and /7 as density variables, into serles
which represent the variables a short distance from the
axis to greater accuracy than the digltal computer 1is
capable of carrying. Each variable could be computed
analytically to some distance Rl. Then another expansion
could be made about Rl' and a whole new set of coefficilents
for each variable simultaneousl& computed. The new expan-
sion could be checked by calculating the wvariable btack
toward the axis and comparing the radial profiles of the
varlables expressed by both series. This process could be
extended in short segments to any radius. A possible
limitation would pe a region where all the variables be-~
come rapidly changing functlons of r, in which case the
number of terms in the Taylor serles necessary to repre-
sent each variable accurately might be prohibitive.

Let us then investigate the possibility of applying
such a contrived method to the eight differential equa-
tions., Immedliately, the equatlons are non-linear; that is,
products of varlables appear in them. So the simultaneous
coefficient equations would be non-linear. Although the
methods of s0lving simultaneous linear equatlions are well
established, the gereralized methods pertaining to non-
linear equations become exceedingly complex for more than
Just two or three equations.

However, the identical problem arises which prevented

the change of variables to n and /9 in the last section.
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Note that the coefficients of the n and 4 series would
8till have to come from the slmu;taneous solution of

Eqs (56) and (57). It was found before when solving for
d/9/ar that no cancellation of terms in Eqs (56) and (57)
could be accomplished. Hence the large common factor
Between neg and n, could not be eliminated. This same
problem would appear in the simultaneous solution for the
series coefficilents of/a. Terms like (E + vyB) and

(E + ueB) would only be translated into terms involving
the coefficients of E, V45, up, and B, The difficulty of
computing relatively small differences between large num-
bers would remain, This dilemma was actually verified by
expansion of all varlables as described above.

In this section it has beer shown how even small
errors in the variables make the numerical integration of
the equatlions by such methods as Runge-Kutta and Milne
inmpossible., The Taylor method has been proposed and it has

been demonstrated not feasible also.

Summary
This chapter deals essentially with the failure to

Tind a method of accurately integrating the equations
derived in Chapter I;I. A set of variab;es is first chosen
from which the varlables of interest can be algebraically
computed. The sources of error are identified in the terms
of the differentials of these varlables so that the reader

can understand the purpose ol fhe subsequent arguments.,
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The differential equations are written for r=0, and
expressions for initial conditions on all varlables are
derived from them. Such solutions are required before
numerical integration methods can be appllied. The initial
condition equations are used, with some typical values of
fhe specifiéd constants, to i1llustrate the severity of a
major obstacle to tre solution of the equations away from
the axis. It 1s found that a property of the system of
equation is the very small relative difference on axis
between n, and 2Zn,.

The results of the application of several common inte-~
gration methods are reported., The behavior of the variables
under the Milne lterative integration scheme confirms that .
some of the differentlals are subject to a severe loss of
accuracy. The electric field equation is most immedisdtely .
affected by the loss of accuracy in the difference between
the particle densities. The error in E causes the differ-
entials of the density terms to be erroneously computed.
The most important reason for this 1s the equality of v B
with (=E), and u B with (~E). The effect of error in the
terms is amplified by the cancellation of their most
significant parts.

No rearrangement of the differential equations could
be found such that the cancellation of the common factors
between nearly equal terms can be performed analytically. .
The equations came originally from the separate application

of the Boltzmann equation to the electron and ion
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distributions. It 18 this separate consideration of the two
types of particles which causes the dilemma at hand., The
two distributions cannot be handled separately. The elec-
tric fleld equation and the force term Fc unavoidably tile

the two together,

67



GSP/PH/69=7

V. Conclusion

This chapter proposes recommendations for continued
study in the areas discussed in Chapters II through IV,
Plans have been already made at the Plasma Physics Research
Laboratory of the Aerospace Research Laboratories to formu-
late methods for overcoming the difficulties explained in

Chapter IV, and these plans are reported.

Displaced=Coll Configuration

The study of the magnetic fleld of the displaced-coil
configuration as reported in Chapter II could be greatly
expanded., It 1s limited in validity by the approximations
of infinitely-thin colls in an infinitely extended, stralght
arrangement, It would be useful to devise computer programs
similar to those described in Appendices B and C to map the
magnetic field of a system of real solenoids arranged as in
Fig. 1. The general solenoldal magnetic coill can be
treated mathematically Just as the single loop of current.
Accurate and convenient computer programs have been written
to compute the magnetic field of round coils anywhere out-
side the current windings (Refs 3 and 4),

Besides the additional parameters introduced in using
real coils, new varlables would arise due to the toroidal
arrangement, The curvature of the axis about which the
coils are placed would ob%lously destroy the azimuthal
symmetry of the magnetic field. The gradients in field
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strength transverse to the general direction of the mag-
netic field should increase, The most profound effect
would probably be on the cyclic rotation of the B lines,

In Chapter II it was demonstrated that such charao-
teristics as longitudinal and transverse gradients of
magnetic strength, the ratio of transverse to axial B
vector components, and the rotation of B lines are func-
tions of the spatial parameters of the coil configuration
of Fig. 2. Very broad conclusions were drawn about the
feasibllity of selecting specific field characteristics by
ad justing these spatial parameters. However, should a
toroidal device such as that depicted in Fig, 1 be found
promising for plasma containment, some procedure will be
needed to design magnetic flelds with specified charac-
teristics. ’

The choice of exact slzes and shapes of solenoids are
somewhat limited by what is commercially avallable., The
designer would then have to rely primarily on the spatial
arrangement of tre colls, Computer techniques probably
would be the best tools for finding directly what configu-
ration of avallable asolenoids would yield a magnetic field
most nearly like that desired. Many of the computation
techniques developed in Appendices A, B, and C would be
adaptable in such procedures, Another thesis done 1in
cooperation with the Plasma Physics Research Laboratory
reports the attempts of Capt. D. B. Taylor to design coil
configurations generating specific magnetic fields by
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using standard coils (Ref 17:il).

Indirect Solution of Differential Equations
It became evident in Chapter IV that essentilally only

one difficulty prevents the direct numerical integration of
the differential equations derived in Chapter III. It is a
oharaoter;stlc of the nearly equilibrium plasma that the
relative difference between ilon and electron number densi-
ties 1is extremely small, No change of varlables could be
found to eliminate the necessity of subtracting the nearly
equal densities, The loss of accuracy in the differences
1s reflected in the erroneous calculation of important
differentials.

Lt., Col, Wingerson has proposed an alternative to
solving the equations simultaneously from initial conditions
only. It involves a mating of theoretical prediction and
experimental verificatlion. Instead of trying to compute
the difference between ion and electron densities, it is
proposed that the difference be imposed on the equations as
a radial function. This would be equivalent to specifying
the radial electric fleld. On the basis of this function
and the arbitrary injection of charged particles the
system of differential equations might be solved for the
variables of interest,

These variables can also be indirectly measured in
real plasmas. Plasma probe technology is such that perti-
cle densities and rotational velocities are measurable to

at least an order of magnitude (Ref 6:1). From a
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knowledge of the radial density profiles the continulty
equations can be used to compute the radlal drift velocl-
ties, Although the magnetic strength in a hot plasma cannot
be measured directly, the difference between the field due
to a set of magnetic colls in a vacuum and in the presence
of a plasma can be predicted (Ref 12:73). So the strength
of the magnetic fleld assoclated with a plasma can be cal-
culated indirectly. Temperatures for both electrons and
ions are also avallable by probe measurement.

Thus all the variables which appear in the differential
equations can be measured in a real plasma. Careful com-
rarison of the mathematical solutions and the measurements
could show whether the electric field imposed mathemati-
cally 1is cornsistent with reality. The most important
indication would be whether the shape of the radial electric
field profile is reasonable, rather than whether the abso-
lute value of the fleld at any point is exact. The coritour
of the electric field would indicate what type of series
expansion would represent the field most accurately. Then
as svggested in Chapter IV all other variables could be
expanded 1in seriles consistent with the slectric field
function, and the entire set of equations solved simultane-
ously for the coefficients of each variable's expansion.

The Plasma Physics Research Laboratory has constructed
an axisymmetric plasma contalnment device called the ELMAX.
ELMAX 18 equipped with Langmulr probes and the associated

electronics to measure radial profiles of plasma
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temperatures, numf:er densities, and rotational frequencies.
Lt. Col. Wingerson plans to use the ELMAX to obtailn the
measured variables, The configuration of the device 1is
similar to the system hypotheslzed in this paper; it has an

axial magnetic fleld, and gases can be added to the running

plasma along the axis of the system. Thus the equations of

Chapter III should describe macrosccpic phenomena in ELMAX

reasonably well.
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Appendix A

Equations of the Displaced-Coll Configuration

Thin Loop Equations
The radial and axlal components of the B field of an

infinitely-thin loop of current in cylindrical cbordinates

are

By = 4oL z |g1+r1+z ] E] _—

2w r[fa+r]?* +z]”‘{ [a-r]*+2*

Bz - 4L | [K+Q~1‘f'1 z2 ] (95)
2 [[o+r]*+22] " [a-r] T+ 22 .

(Ref 20:1155), where the axis of the loop is the Z axis of

the coordinate system, The azimuthal compcnent of the fileld

is zero by symmetry. "I" is the current; "a" is the radius
of the loop in meters; and K and E are the complete elliptic
integrals of the first and seccnd kind, respectively.

Normalization., Iet us normalize units such that

4 1/2fa is equal to unity. Then B is a dimensionless number.

All coordinates are measured as fractions of the radius of
the loop.

Elliptic Integrals. The elliptic integrals K and E
are defined by the relations

[[\—-k sin e] Y2

(96)
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2 . \
E - [[\—-91 sinfe] ™ de (97)
where k, called the modulus of the integral, i1s given by

& = [ Yar 1 "%

8
[O.+r]l+11J (98)
The complementary modulus ck 1s defined such that
2 .
ck? + kT =\ (99)

The elliptic integrals can be expanded into polynomial

approximations of wvarious numbers of terms, Two expansions

-8

which are within 2 x 10 of the true values of K and E for

any given k are given below (Ref 1:¢591).

Klek]= [do +a,cki4+aLcKt + o.sck“+o.4cke]
+ [Bo + bew® + bex*+ baext + \>4c\<8] ln[16k]

(100)

Elck] - [\ +cc K + ek +cqek® —\-Q*C.KB]

+[d.cx1 + dyex® +dex” + quKg] In[%¢x]

These approximations are useful because of the sbllity of

(101)

the digital domputer to handle such calculations with great
speed, “

Singularities. As mentioned above, k must be less
than one., The cylindrical coordinates corresponding to k
equal to one are r equal to one and z equal to zero, as can

be seen immediately from Eq (98 ). These are the
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coordinates of the conducting loop itself, This is
expected since any conductor is a singularity in the mag-
netic field, Otherwise the equations for Br and Bz are

valld for any coordinates r and z, r not equal to zero.

Superposition of Coil Flelds

The princlple of superposition 1s exercised to find
the magnetic field at any point due to the fields of a
number of separate colls. Filelds of several colls can be
considered together at a point by adding vectorally the B
vector from each. This is most conveniently accomplished
by adding parallel components., An orthogonal coordinate
system is defined in Chapter II relative to the coil con-
figuration.

Position Relative to a Coil. The axial distance from

any point to the plane of each coill 1s easily found, It 1s
simply the Z coordinate o‘f the point relative to the system
axes plus or minus an integral multiple of the distance
between the planes of the colls, The X and Y coordinates
relative to an individual coll depend on the position of the
center of that coil with respect' to the system axes, If

the transverse coordinates of a polnt are X and ¥, the
coordinates felative to a coil whose center lies at "disp"

off the axls, and at an a.ngle "alpha" from the X axis are

Xe = X- disP CoSs
Ve

(102)

Y- disp sin o

rdsd
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Hence, the radial distance from the center of the coil to

the polnt 1s )
: Re = [Xcl + YCl] > (103)

Thus the R and 2 distances can be found for calculetion of

the magnitudes Br and Bz of the field of any coll at a given

point,

Summatlon of Components. The Bz components from each

c0ll are added since they are parallel. The Br components
must be divided into Bx an& By components which are parallel
in direction to the system axes.

The directions of the Br from the coils are radial
outward from the centers of the colls to the point under

consideration. The Br are divided via multiplication by

direction cosines:

Re

Bx= Br Xe (a0

B\/= Bl" —YCr_ ’ (105)
* Re
In summary, approximate expressions for the axial and
transverse components of B for a single thin loop have been
derived., A coordinate system 1s used as the basis for
dividing these components into Bx, By, and Bz components,

Thus the flelds of separate colls are added vectorally at a

point.
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Appendix B

The Subroutine Field

This appendix describes a subroutine called “Fileld"”
which is designed to provide the magnitude and the direc-
tion of the magnetic strength vector B at any point in thre
field of the displaced-coll configuration. The origins of
the requirement for the subroutine are detalled in. Chap-
ter II. The objJectives and criteria for design are stated
here. The method of computation 1s explained, and operat-
ing instructions are provided. Flnally, the effectiveness
of the subroutine 1s evaluated.

Fig. 8 i1s a flow dlagram of Fileld, and Fig, 9 18 a
listing of the computer code. Table III defines the

Fortran variable names used in Field,

Objectives and Criteria

Bm and Direction Cosines. In Chapter II it is
determined that RTA, the ratio of transverse to axial
vector components, and the uniformity of Bm, the magnitude
of B, should be studied. AlsQ., the integration of field
lines requires the.direction cosines of B, It is the objeo-
tive of Field to supply Bm and the three direction cosines
of B at any point 1n the generalized displaced-coil
configuration,

RTA is the square root of the sum of the squares of

the transverse direction cosines. The uniformity of Bm can
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SUBROUTINE
F1ELD
CYCLE=SPACE LD
GAMMA=O «
COMPUTE
BM, DCO

- ©)

FIND CENTERS
OF BRACKETING

COILS
[ FIND CENTERS
OF NEXT TWO
o COILS OUT
FIND POINT
RELATIVE TO
THE TWO COILS
COMPUTE BX,
CALL CEIPA BY, BZ FROM
RIGHT CCIL
COMPUTE BX, CALL CEIPA
BY, BZ FROM
LEFT COIL
l o

Fig. 8. Flow Diagram of Field
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$IBFTC FIELDe. DECK
SUBROUTINE FIELD(COsDCO9sBMsSPACEIDISPsALPHA)
DIMENSION CO(3)DCOC(3)
ALPHAR=ALPHA/S5743
TOL=,001
GAMMA=0,
CYCLE=SPACE
ENTRY FUN(N2S+CO¢DCO)
C TEST AXIAL COORDINATE OF POINT
IF (CO(3)=-CYCLE) 24353
C IF ANOTHER LOOP HAS BEEN PASSEDeeece
3 CYCLE =CYCLE+SPACE
GAMMA = GAMMA+ALPHAR
2 CHI=GAMMA
PSI=GAMMA+ALPHAR
C FIND Z COORDINATES RELATIVE TO NEAREST LOOPS
ZLEF=CO(3)-CYCLE
ZRIT=ZLEF-SPACE
BX=0e
BY=0.
BZ=0,
C FIND X-Y COORDINATES RELATIVE TO TWO LOOPS
10 X =CO(1)-DISP#COS(CHI)
Y =CO(2)=-DISP#SIN(CHI)
R2=X%X+YRY
R=SQRT(R2)
Z22=ZLEF#*ZLEF
TOP1l=]l,+R2+22
TOP2=(1s-R2-22)
BOT1=SQRT((le+R)#{1e+R)+Z22)
BOT2=(le-RI#(le—=R)+22
AK=4 o #R/((1e+R)*# (1 e+R)I+22)
CALL CEIPA(AKIFEISSEL)
BR1=(ZLEF/RL/BOT1 )% (~FEI+TOP1/BOT2#SE)
BZ1=(FEI+TOP2/BOTR2*SEI)/BOT1
X =CO(1)=-DISP®COS(PSI)
Y 'CO(Z)-D!SP’SIN(PSI)
R2=X&X4+YRY
R=SQRT(R2)
22=ZRITH#ZRIT
TOPl=1,+R2+22
TOP2=(1.-R2~22)
BOT1=SQRT((le+*R)*(1e+R)+22)
BOT2=(l1e~RI#({1le~R)+22
AK=4 o BR/{(1e+RIB(L1+R)I+22)
CALL CEIPA(AKIFEI»SEI)
BR2=(ZRIT/RR/BOT1)#* (~FE]l+TOP1/BOT2#SE!)
BZ2=(FEI+TOP2/8B0T2%SE11/BOT1

Fig. 9. Listing of Field
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BX=BX+X1/RL#BR1+X2/RR#BR2
BY=BY+Y1/RL*BR1+Y2/RR#BR2
8Z=8Z+B8Z1+BZ2
C TEST SIZES OF AXIAL CONTRIBUTIONS
IF(BZ1~-TOL#*BZ) 21921429
IF(BZ2=-TOL®#BZ) 22+22,29
C IF MORE COILS NEED TO BE COMSIDEREDeses
29 ZLEF=ZLEF+SPACE
ZRIT=2RI T-SPACE
CHI=CHI-~ALPHAR
- PSI=PSI+ALPHAR
GO 70O 10
22 CONTINUE
BM=SORT(BX*#Bx+B8Y*BY+BZz#B2Z)
DCO(1)=BX/BM
DCO(2)=BY/BM
DCO(3)=8Z/8M
RETURN
END

Pig. 9. Listing of Field, (cont.)
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Table III

Definitions of Fortran Variables in Field

Fortran Name Definitions

AK Modulus of elliptic integrals

ALPHAR Alpha in radians '

BX, BY, BZ Vector components of B

BR1, BR2 Transverse terms of B from a coil
pair

BZ1, B2Z2 Axlal terms of B from a coil palr

CH1, PSI Azimuthal coordinates relative to a
coll pair

CK Complementary modulus of elliptic
integrals

co ’ 3-matrix of position coordinates

CYCLE Integral multiple of sSpace

DCO 3=-matrix of direction cosines

FEI, SEI Elliptic integrals, first and
second kind

GAMMA Integral multiple of ALPHAR

N Number of dimensions (3)

R2, Z2 Squared radial and axial distances

RL, RR : Radilal distances from point to coil
centers

S Integral length of B line

TOL Parameter of accuracy required of
Bz term

TOPl, TOP2, Terms in the equations for Br, Bz

BOT1, BOT2
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Table III (cont,)

Definitions of Fortran Variables in Field

Fortran Name Definitions

X, ¥, ZLEF, ZRIT Fleld point coordinates relative to
a coll pair

84



GSP/PH/69-7

be studied by computing Bm as a function of changing radial
and axial position., For convenience and generality, there-
fore, Fileld is written as a subroutine to be called by any
program which requires the magnitude and direction of B,
F1eld is designed to provide for the control of errors
of avproximation., The necesslity for error control arlses
primarily from the possibility that in an integration
process using the output of Fleld errors may be cumulative.
For this reason the maximum errors in the direction cosines

are firmly under control.

Method of Calculation

This section explains the application of previously
derived equations to the objectives outlined above, It
also describes the mechanism of error control,

Vector Component Computation. Equations are developed

in Appendix A for the normalized components of B in the
fileld of a single loop of current. The coordinates of both
the fleld point and the coll center must be known in order
to apply these equations,

Adding Components. Fileld initially determines from

the coordinates of the specified point the coordinates of
the centers af the two coils which bracket the point.
Calculations of vector components are carried out on one
palr of coils at a time, beginning with the palr closest to
the point., Pairs successively farther out from the point

in both axial directions are considered in turn. The pairs
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of vector components are added to the subtotals of Bx, By,
and Bz as they are calculated.
Testing Axial Components. The individual axial com- B
ponents are expected to decrease with increasing distance
between the point and the coill, Fileld tests each axial - .
contribution against a value called "tol," Tol is an error
parameter defined as the minimum relative size of axial
contribution to be considered. It 1s approximately equal'
to the difference between the total axlal strength at a
point in an infinite system of coils and the total of
contiibutions from a finite number of coils,
If both axial terms from a pair of coils are not
smaller than tol, Fleld considers the outer next pair of
colls, If the test 1s met, however, the additive process
is termipated. The absolute vector magnitude and the- .

direction cosines are computed. Control is returned to the

calling program,

Operating Instructions

The following control statement must be placed in any

program calling Field:
DIMENSION CO(3),DC0(3)
where CO 18 the array of point coordinates, and DCO is the

array of direoction cosines, Space, disp, and alpha must
be defined, and N should be set equal to the integer three

in the calling program,
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The first timé Field 1is called for a new comhination
of geometric parameters the follqwing statement is appro-
priate:

CALL PIELD(CO,DCO,BM,SPACE,DISP,ALPHA)
Bm and the direction cosines are avallable in the argument
iist upon return from Fleld. This statement must be used
Af Bm is required at each point. '

If Field is serving a line integration routins, the
following statement should be used for each integration
step after the above statement has been used once:

CALL FUN(N,S,CO0,DCO)

Error Control. Tol 1s set within Fleld to a value

which insures a maximum error in Bm -of_ one tenth of one

percent. If a lesser error 1s desired, tol can be reset

within Fileld.

Evaluation of Effectiveness

This section is an evaluation of how well Field can be
expected to meet the objectives and criteria previously set
down. Any stated observations are based on experience in
using Fleld. '

Limitations on accuracy of results from Field will be
consildered first. The absolute limitation upon accuracy
arises from the approximate method of computing the
complete elliptic integrals. It is noted in Appendix A
that the method chosen has a maximum error of 2 x 10~9 in

each integral calculation. It 1s therefore concluded from
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a study of the component equations of Appendix A that the
minimum meaningful tol that should be considered is 10™7,

The specification of tol should be a compromise
between desires for accuracy and economy of computer time,
;t is advised that a reduction of tol by one order of
magnitude roughly doubles the number of colls that con-
tribute at the field point relative axial components
greater than tol. Note that with the method used by Field
the calculations of the contributions of a single coil
require the same number of operations wherever the coil is
located relative to the specified point.

It was mentlioned earlier that tol has been preset
within Field such that only colls which contribute at least
0.1 percent of the total field strength at a point are con-
sidered.. This does not mean that the three direction’
cosines can be in error by this amount. It was found that
the consideration of a coll far enough away axially from a
point to contribute less than C.l1 percent of the field due
to all coils changed any s8lngle direction cosine by 1less
than 10~% percent. The reason for this is that the fields
due to coils far from a point are nearly perfectly axial in
direction., The transyerse component from a single coil far
away is very small so that it adds very little to Bx and
By. Also since the fleld from a distant coll 1s nearly
exial in direction, its total contributed magnitude is
almost entirely due to the axial component. Note that the
axial direction cosine is Bz/Bm, and that the fleld of the
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entire displaced-coll configuration at any radius is very
nearly axial. Then Bz/Bm is nearly equal to one, and add-
ing nearly equal amounts to Bz and Ba changes the ratio

very little.

Summary
Fleld is capavie of providing to a calling program the

magnitude and direction cosines of B at any non-singular
point in the magnetic field of the dilsplaced-coil configu-
ration. Error control 1s accomplished by bringing the
axlal component of B to within a certaln percentage of the

axlal strength expected in an infinite system of colls,

89



GSP/PH/69=-7

Appendix C
The Program Tracer

Thlis appendlx descrlibes a program called "Tracer”
which 1= desligned to compute the paths through space of
field lines 1n the magnetic field of the displaced-coil
configuration. The appendix relterates the objectives of
the study for which Tracer 1s desligned, and it describes
the methods by which Tracer meets those objlectives,
Operating instrucvilions ere provided for using Tracer. The
appendlx is concluded with‘an analysis of the control of
errors of integration. Fig,., 10 1s a flow diagram of Tracer,

anid Filg. 11 1s a 1listing of the compuﬁer code,

Objectives of Tracer

It 1s very useful to investligate two properties of the
magnetic fileld of the displéced-coil configuration, First
the fleld lines are expected to exhiblt a pronounced helical
twist similar to the helix on which the coll centers 1lie.
This characteristic 1s called the first order twist. Also
secondary rotations of the entire pattern of lines about
the axis may éxist.

There then 18 a need for a computer program to numer-
jcally integrate the paths of the magnetic field lines of
the coll system., It is the objectlive of Tracer to inte-
grate the paths of field lines which begin at selected

coordinates in the zero plane of a parametrically
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"CO(1)=XSTRT
CO(2)=YSTRT

STEP

Fig. 10. Flow Diagram of Tracer
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$IBFTC TRACER

o DIMENSION XSTRT(LIC) oYSTRT(1ID)eCO(2)
EXTERNAL FUN
LOGICAL MCDL
REAL LIVIT
E 1 READ(5981) SPACE DI =P Al N gl 37 s
L LIXSTRTCI) o VSTRTII)eI=101n)
8l FORMATI(6X92F5e29FC el o!thalEqen/
15X910F5e2/5Xe1NFEGT
WRITE(6992) SPACE, D Lol
92 FCRMAT(1H1,12 V’l"-“':— o
IIOXO THDISPLACEM. ML CL:TeNgb £ o
210Xe21HANCLC ’ETJH. CENT s _el

310Xy 1 BHNUMBER OF L1' €yt //)

ALPHAR=ALP ‘A/Z7e2

DIS=.000C1
DSMIN=.05
DSMAX=1e2

N=3

DO 1200 Il=1,sL
WRITE(6+99)

S=0e

DS=e20
CO(1)=XS’PT(IX
CO(2)=YSTRTI(!I])
CO(3)=Ce

CALL FIELDLICO

20 WRITE(6991)C4D5,
91 FORMATISXsF1044)

LIMIT=CN®EPACE®260,

19X 9 HLENGT He X gl

C CALL STEPeeeoIMTLCRATLE

Be/ LM

DCLe e SPAL

COL1)eCOLYY

-2 Nt

,

12Co10Y ol X e XolilY oY

L Y .- e
C CALL SETeseeINITIATES INTCCRATION
CALL SET(MsSsCOsDSH  ‘NeDI%ger L Eqenc
C A SAMPLE OUTPUT FORMAT, o el hrT!,

3! CALL STEP
21 TF(CO(3)=LIMIT) doeacnas
AT SSTNNY T
. WRITE(6+90)
.|~ ooFoRMATtIHD)
: GO TO 20
4 100 m T INUE
| e sTOP— -
AR o
L0 B
R . g
iy - 4
.

Pig. 11.

o AR
e

[i.

Listing of Tracer

92




GSP/PH/69=7

Table IV

Definitions of Fortran Variables in Iracer

Fortran Name

Definitions

CN

DCo

DIS

DSMAX (DSMIN)
DS

J

L

LIMIT

MODE

N
S
XSTRT, YSTRT

Number of first-order cycles covered
J=matrix of direction cosines
Parameter specifying accuracy in STEP
Maximum (minimum) size of DS

Increment of indeperdent variable
Number of integrating steps

Number of field lines to be integrated
Maximum axial distance of integration

Logical constant specifying variable
(fixed) DS if .False. (.Trus.)

Number of differential equations (three)
Size of independent varlable

X=Y coordinates of starting point of
field line '
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ad justable coll configuration. It is intended that the
user be able to control both the lengths of the lines and
the maximum computational error that can arise in the

coordinates of points on the 1lines,

-Method
A magnetic field line is by definition in the same

direction as the local magnetic strength vector, Field
l1ines may be gererated mathematically by successively inte-
grating over an incremental distance the direction cosines
of the local B vector.

The Subroutine DFEQ. Tracer calls upon a subroutine

called "DFEQ" written by Mr. Paul J. Nikolal of the Aero-
space Research Laboratories at Wright-Patterson Air Force
Base, Ohio. The subroutine is written for the Fortrap Iv
computer language.

DFEQ is designed to integrate in a step-wise manner a
set of simultaneous first-order differential equations, It
requires a subroutine written by the user to supply the
differentials of the dependent variables., Field is the
necessary subroutine for this study. Consult Appendix B
for a description of Field.

DFEQ 1nfegrates the first three steps of a series using
a classical Runge-Kutta method (Ref 15156). A four-point
Adams-Bashforth-Adams-Moulton predictor-corrector scheme is
applied to the fourth and succeeding points,

DFEQ can be used in a very useful mode to vary the

size of the integrating increment in order to meet a
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certain tolerance for accuracy. Denote by Yf and Yg the

rredicted and corrected values, respectively, of the ith
dependent variable at any given point, "Dis" is a parameter

specified in the program calling DFEQ. Define

(106)

If err i1s greater than dis for any °*i°* thé step size
currently used by DFEQ is halved, and the test 18 applied
agaln over the same region. If 100 x err is less than dis,
tte step size 1s doubled for succeeding integrations. Hence,
DFEQ incorporates a mechanism for control of the error
inherent in the approximate integration method 1t employs.

Dis is preset for the convenience of the user to a
value which guarantees an agreement of ,001 percent between
the predicted and.corrected values of any position coordi-
nate, Thils tolerance 1s.more than adequate to prevent
cumulative error great enough to obscure the actual paths

of the lines,

Operating Instructions

This section gives instructions necessary to the use
of Tracer. Field must be compiled in the computer along
witk Tracer. The read statement in Fig. 11 relates how the
data cards must be prepared. "L" 1s the number of lines to
be integrated; up to ten lines, starting at the coordinates
(XSTRT,YSTRT) in a zero plane, may be traced. The distance
over which the l1lines are to be traced is specified by

95




GSP/PH/69=7

selectin, a multiple number ‘CN) of cycles of coil dis-

placement.,

Fig. 6 1s an example cf the cutput listing provided by
Tracer. It is a simple tabulatlion of the rrogress of the

integration for a single 1l1line,

Comments on Accuracy

The section on method explains that dis 1is specified
within Tracer to provide for a maximum relative error per
step of 16=5 in the coordinates of pcints on the field
lines. On the basis of statistlcal random error «fter say
N steps the relative error in any field lire coordinate

should be less than

0> VN

From studies of the average drifts of field lines over one
rundred cycles of first order =-wist fcr variouvs cocll cor-
figuratiors 1t was determined that the error given above
amounts to less than ,CCl of the average magnitude cf the
drifts., Since only & qualitative understanding of thre slow
drifts was sought, dis was not reduced to attain greater
accuracy in the integration of field lines, For the study
of first order field line twist a relative accuracy of 10-5

per step was judged more than satisfactory.
Summary

In summary, Tracer 1s a program which integrates the

paths of field lines in the dlsplaced-coll configuration.
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The method of calculation provides for the control of error.
The configuration of colls, the number of lines, their

lengths, and starting points are selected by the user,
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Arpendix D

Collision Force Between Distributions

Mention is made in Chapter III of a term which in the
m equatioris can be used to account for interactions
tetween particle distributions, The nature of this inter-
action i1s that of a drag force arising from collisions
between different particles. Treated as an average the
force betweer. distributions can be found as a moment of

either distritution functior.. Define
F. 4t
cC = m |y dv , (107)

(Ref 16:157), whexre df/dt is the change due to collisions,
and the integration must be over all pcssitle values of

particle velocity. Thilis appendix deals with the evaluation

of this integral.

Collision Cross Section

Define G (v v') as the geometric cross section for a
change in particle velocity from v to ¥v* due to an encounter
with a different kind of particle. Assuming a simple
Coulomb collision between the particle and another of

velocity u, the cross section in center-of-mass coordinates'

S (g, o) = [% [3 sin 2] - , (1o§).
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(Ref 18:150), O is the scatter angle measured between v

and v*', and
q = [u-v] (L09)

q and q, are the charges of the struck and striking parti-
cles, respectively, and M is the reduced mass of the system

of the two partlcles.

Force Per Particle

Call f(v) and F(u) the Llccal distribution functions of
the struck and striking particles, respectively. The flux
of bombarding particles relative to a system of particles
traveling at v is then g-F(u). Using these definitions the
probablility per unit time of v changing to ¥v' due to a col-

lision is )
p[!—»vr] = g F(\_LJ 6(8_; = (110).
Define the change in momentum per unit time. |

d<Fe? = m[v-v] Ply—y] (111)

It i8 necessary in the inteération of Eq (111) to
account for all cases, represented by the possible values
of v*. Assun;e for a moment that ¥ and u are known before
a collision, The magnitude of ¥*' 18 restricted by the con-
servation of energy and momentim: it is in principle known
from v and u, Consideration of all possible directions of
¥', or equivalently, all possible & would therefore be

tantamount to consideration of all ¥'. We therefore
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integrate over the possible scatter angles @ to evaluate

<F-

It is convenlent to transform to a center-of-mass
coordinate system, Define the followlng:
m = mass of the target particle
me, = mass of ilmpending particle
'V = (my + mu)/(m + m,)
M =mmn,/(m +'m°)

Then <Jc> bef:émés . | |
' <_5_{Q>= [MSF(L&J ['%—][_3.'-3] 6{3,9] de (u2)

Define also an orthogonal, spherical polar coordinate

system with g as one of the crthogonal axes such that
] - Pa) " . ~ o .
q - g[gcose +Asinecos ¢ + A sine sin ¢ a5
This d;finifim merely puts (E' - &) in a more useful form.
‘_ - . ) N O
[3 3] 2q S\n%[ §Sm 5
1 (114)
. A . .
"+ 2cos8 cosY +Acose sin
| G o EE G S S

Now define(_lf(g.‘_/)> as the average force per particle

due to collisions. It can be evaluated as the volume

.integral of <3c>.

<Elgy>- [d<&>da @)

100




GSP/PH/69-7

da = 2 S'\n-% Cos—g— de dgﬂ (116)

13 the differential =0lid angle in a spherical coordinate

system. Only the € integral is non-zero,

<Hq.V]>- W@Mglma]lﬂg) In[sin'g min] @)

where Om;n 1s the scatter angle corresponding to the so-

called cut-off distance for collisilons., Define

.- )
A\ = sin” %mm | (118)

Spitzer disqusses the arguments concerning the choice of the
cut-off distance. His resulting equation for /\_in mks
units is
A= 1w [é:ksz-%]”%
94l
(Ref 16:127).

Volumetric Force

Eq (117) then glves the time-averaged force per parti-
cle due to Céulomb collisions between unlike particles.
Define Fc as the volumetric average force. It can be

evaluated as the moment of the target particle distribution.

Fe =f?(y) F(g,\_/) a3V d33‘ (120)
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In order to calculate the components of thils force in
cylindrical coordinates the integral is dotted with the

unit vector M in the direction of the desired force compo~

nent,

Fom = Q] Tv ln_/\_f-P(y_)F(g) d \_/ Ci_a (121)

[Lm

Before attempting any integrations it 1is use 1 to
choose _\[ in cartesian coordinates and g in spherical coor-

dirates, Then the respective differentlal volumes are

d\_/ ClVr d\/e de (122)
dﬂ S"S\n(pded({pds ' (123)

The 1limits on the integration of these differentials are
—eo < Vr, Vo, Vz < +oo.
-w{el ™
o(wgﬂ
o \< 3( fo'e)

In cylindrical coordinates the three dot products wi:h /g\ are

PAS .
g-¥ = singcose (124)
Pal . a

8 = S\h(pS\Y\e (125)

.2 = Cos ¢ (126)
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The generalized form of the distribution functions
which apply under the assumptions in force has been derived
in Chapter II1I. The target particle distribution is given

as an example,

fly = n[g_g_;h_]%exp-% Braly+rxwl]* ez

Recall the definitions of the center-of-mass velocity V and
the relative velocity g. The product f(v)F(u) in terms of

these 1is

ﬂy.) Hs&) = nno[ﬁémﬂ :yl-exp{— .%[ﬁm + £

(V-[8-8] Mg +[Bum + Basn r8]% (125,
B} Lomme g - [we-w] r8]?
1 Ehanme s (37 [womv] I}

Integration of ch over the three components o

Yields a

factor of

] -

(Ref 8:284),
To simplify the remaining integral in g define the-

followings

4-9 [3%% (129)
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(130)

~- r[wo-w][l gfi"éf;o ]1/1

. Then the second exponential term in the product f(v)F(u)

can be rewritten,

-1 [ fhmpe ][5 il 8]

=-[J-2/€Jsinesiv_\<,o+/€1] (131)
=- [[,é’- A sinesin @]*+ £*[1- sin*e Sinl(P]J (132)

The integral for ch is ther

\-‘Qm=[%g]1 nAA nn, LB [mtmd
e, | 2w [ B+ Lomd

: dee[dq;[g-m] sinq;[dé’[[é’—@sinesmcp] 2 o)
4+ A?[1- sin?e s'm’cp]]

Consilder separately the three integrals correspornding
to the three different terms of & + @. The T and Z dot
products integrate to zero by properties of odd functions

of & and ¢¢ . The @ component integral is

Te = fc\e fdcp sint @ sine (134)
fesinesing

=[d4 CXP-[ Xn-\- /g-l[l- sirne sinlLP]] (135)
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/ei

I9 can be written in terms of the error function, f o

To-xX[$R - 2RI oo

[-]

/% a 1
] % 1 e
= D fe dx — 1 73 e
/ .

(Ref 10:1696). Although @ is not analytic, series expan-
slons can be used to approximate it if the argument Po is

less than one. 0
o0

2 - 21 np1n+1
PO -2 )BT a3
R=o

Therefore the complete expression for the only finite com-
ponent of Fc is

o 83

€Eo

n={"

In summary a volumetric average force has been derived
which can be used to account for the ilnter-distribution
force arising from Coulomb collisions. This force turns
out to 'be in the azimuthal directlon only, and from the
definition /% 1t depends on the difference between the
azimuthal drift velocitles of the two particle distributions.
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