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Preface 

This   thesis   reports   two  studies   concerned   with  the 

feasibility   of  plasma  containment   In toroidal   magnetic 

fields.     Lt.   Col.   R.   G.   Wlngerson of  the   Plasma  Physics 

Research Laboratory   of  the  Aerospace  Research Laboratories 

sponsored  this  research.     Dr.   Wlngerson's   Interest   In mag- 

netic   containment   schemes   Is   reflected   by  the   current 

experimental and  theoretical work  of the   Plasma   Physics 

Research  Laboratory,   to which  this  report   might   hopefully 

have   some   application.      Much  of   the  theoretical  work  upon 

which this   thesis   Is   based   Is   Dr.   Wlngerson's   own. 

The   first   part   of  the   study   Is  an  Investigation   of  the 

magnetic  field   of  an  Infinite   system  of  thin  loops   of   cur- 

rent.      The   second   part  develops   the  equations  describing 

an axlsymmetrlc   system  of   charged  particles   in   crossed 

electric  and  magnetic  fields. 

I   would  like   to thank  Dr.   Mlngerson :'or his   very 

generously  given time   and  effort.     I  am also  Indebted  to 

the  Applied   Mathematics  Research Laboratory and   the  Digital 

Computation  Division  of  the   Aeronautical  Systems   Division at 

Wright-Patterson Air Force   Base.      My wife   has   contributed  a 

great  deal   of encouragement  and   understanding. 

Richard  D.   Franklin 
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Abstract 

A toroidal magnetic  plasma containment   configuration 

Is   proposed  wherein colls  are   centered   on a closed  helix. 

It   Is   possible  to  optimize   the  qualities   of the  field  by ad- 

Justing the  coll  configuration.     The  equations describing 

an equilibrium plasma  in an axisymmetric  system are  derived 

in terms   of   the   particle  density distributions,   radial and 

azimuthal drift velocities,   and the electric and magnetic 

field   strengths  necessary  to maintain equilibrium. 
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CONTAINING  CONTROLLED FUSION  REACTIONS 

WITH  CROSSED ELECTRIC AND   MAGNETIC  FIELDS 

I.     Introduction 

Dating back to 194U  the  possibility   of   controlled 

fusion has  held   the   Interest   of  a  large   segment  of   the 

world  scientific  commun'.ty.     The   basic  principles  of  con- 

trolled thermonuclear reactions.   If  not already known,   were 

laid down  by   scientists  at  the  Los Alamos  Scientific Labo- 

ratory as  early  as   19ff6.     Among these  were   Permi, Teller, 

Tuck,  and  Wilson.     Since   that time,   however,   no controlled 

fusion reactions   of  extended duration  or energy have  been 

possible. 

Confinement 

One   of  the   major  obstacles  to  controlled   fusion  is 

still the   need  for a method  of  plasma confinement.     Almost 

all   currently   proposed  methods  can  be  divided   Into three 

types   of devicesi     the   pinch  (Ref     2i22),   the   magnetic 

mirror  (Ref     2i51).   and  the   torus   (Ref     2i33).     All   of  these 

utilize magnetic  fields   in attempting to trap the  charged 

particles   composing a  plasma  Into helical   orbits about 

field  lines.     The   objective   of all  methods   is   to contain 

the   colliding  particles  long enough for a copious number  of 

nuclear reactions  to  occur. 
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A  high-temperature   plasma   Is  much like  an   ordinary   gas 

In  that   It   tends  to diffuse   because   of   Interpartlcle   colli- 

sions.      Magnetic  containment  devices   are  designed  to exert 

containing  pressures   on  the  expanding  plasma  and   limit 

diffusion.      It   can be   shown   (Ref     5*275)  that   the   rate   of 

plasma diffusion across  a  straight,   uniform magnetic  field 

Is   Inversely  proportional  to the   square  of   the   magnetic 

field   strength.     This   Is   Important   because   It   shows   that   If 

stable   confinement  Is   possible  diffusion can  be   reduced  by 

raising field   strength.     Thus,   If  the   density   of   the   plasma 

can  be   raised  high enough,   thermonuclear reactions   can 

occur  at  a  self-sustaining  rate. 

The   toroidal magnetic  field  Is  attractive   for  plasma 

confinement   because   It   presumably does  away  with  the  end 

effects   of   the   pinch and   the   magnetic  mirror.     The  torold 

appears   to the   plasma as   an endless   tube.      In  this  type   of 

system the  field  Is generated  with current  windings  around 

a toroidal  shape.     The   field   lines   are   roughly   circles 

Inside   the   torus.     It   Is  easily  seen,   however,   that  the 

field  within the   torus  Is   stronger at  the   Inside   circum- 

ference  than at  the   outside   of  the   torus because   the 

windings  are   closer together. 

Several  toroidal devices  have  been proposed  and  built 

to correct  this  non-unlformlty.     Among them are   the  Scyllac 

(Ref     13«5^3)i   the  Wisconsin   (Raf     llilllS),  and  the   most 

famous,   the   Stellarator   (Ref     2i37). 



In 1951 Spitzer proposed a device   called the 

"Stellarator"  which  Introduced  a  rotation  of field   lines 

within a  twisted   torus.     This   phenomenon cancelled  charged 

particle  drifts  transverse  to the  field.     Later he   placed 

helical windings around an ordinary torus which accomplished 

the  sane   thing. 

Part   of  this  thesis  Is a  study   of  the  field   of  a 

toroidal device   proposed by Lt.   Col.   R,   C.   Vlngerson  of the 

Plasma Physics  Research Laboratory   of the  Aerospace   Research 

Laboratories.     This  device   Is  a series   of  solenoid  colls 

with centers roughly concentric  on a circle.    The centers  of 

the  colls   are  displaced  off the   major circumference   of a 

torus  by a  small distance   In such a way as  to leave  an equal 

angle   between the  directions   of displacement  of  successive 

colls.     Pig.   1  Is a schematic representation of this  system. 

The  parameters   of  the   configuration«   such as the  number  of 

colls,   the   spacing  between  colls,   the  displacements   off 

axis,  ani  the angle   between displacement,  are the  variables 

used to manipulate   the  field. 

If  only a short  segment  of  the  arc  of  this  torold  Is 

considered,   the   system can be  approximated  hy an  Inflnltely- 

long straight  system of  colls.     The   colls  are  then  plane- 

parallel. 

Chapter II  of  this  paper describes the  methods and 

procedures  for the  study  of  the  field  of this  Infinite 

straight   system,   and   It  reports   the  findings.     The  analysis 

of the  field   Is directed  mainly  towards determining the 
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Flg.   1.     Sohe mat lo   of Tor old  of Displaced  Colls 
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transverse  uniformity  of  the  field strength,  the   linearity 

of  the  field  lines and  the   stellarat or-type   rotations   of  the 

field  lines. 

The   purpose   of this   study  Is  to determine  the  feasibil- 

ity of designing a theoretically useful containment device 

by adjusting the   parameters   of  the   coll configuration.     If 

the   characteristics  of  the   field  can   be  controlled  by vary- 

ing the   spatial   parameters   of   the   coll  configuration,   we 

may have  a feasible way  of  designing magnetic fields with 

very specific  properties. 

Plasma  In Equilibrium 

The   second   part  of  this   study develops  the  hydro- 

dynamic equations   of a system  of  two types  of   particles, 

electrons   and  positive   Ions,   In equilibrium with an axlally 

directed  magnetic  field.     Only  the   time-Independent  case   Is 

dealt  with.     First  a generalized distribution function Is 

derived   in which  particle  energy  and  canonical angular 

momentum are  conserved.     The   resulting function Is  essen- 

tially  Maxwelllan,   but  an azlmuthally  symmetric  rotation  of 

the  single  distribution  is   predicted.      It  Is  necessary to 

derive  an average   volumetric  force  which arises  from colli- 

sions   between unlike  particles   In order to account  for the 

interaction of  the  superimposed distributions. 

Tha   steady-state  Boltzmann  equation is  relied   upon to 

provide   the   hydrodynamlo equations  for each distribution. 

Except  for  the   Inclusion  of   a  force  term describing  changes 
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In the  distributions  due  to  collisions,   the  distributions 

are  treated entirely   separately.     One   of   the   objectives   of 

the  study la   to test   theoretically the   effects   on the 

equilibrium situation  of  great differences   between the 

electron and   Ion kinetic temperatures. 

Another  prime   objective   of the   study   Is  to  Investigate 

the  feasibility   of   prescribing radial   particle   number 

density  profiles  by  the   Injection  of  charged  particles.     It 

Is  assumed that  electrons  and  Ions  can  be   separately depos- 

ited  In the   plasma at  any  rndlal  position and at  any time 

rate  desired. 

If  moments  of   the  Boltzmann equation are  taken In 

cylindrical  coordinates,   all  the  variables  describing each 

distribution become   averages  which are   functions   of  the 

only  Independent  variable,   radius.     The   two non-zero 

average  velocities  are   the  azlmuthal and  radial velocities. 

Density   Is a third  variable  describing each distribution. 

The  moments  of the  Boltzmann equation yield  one   continuity 

equation and  two momentum transfer equations  for each 

distribution.     These   six equations are   all first   order 

differential equations. 

Two of Maxwell's  equations apply  In  the   steady-state. 

Current  densities  and  charge  density are   finite   but are 

taken as  local averages.    The  magnetic field Is assumed 

axlally directed,  and  Its magnitude  on axis  Is to be  se- 

lected.     The electric field  is assumed entirely radial in 

direction,  and no external electric field   is  utilized.     In 
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the   cyllnirlcal geometry then Maxwell's equations   supply 

two first   order differential equations. 

Thus  a total  of eight   simultaneous  differential equa- 

tions  are  available.     They are   in terms   of  the   two densities, 

the   pairs   of   radial  and  azimuthal  average  velocities,   and 

the   electric  and magnetic  fields.     Thus  there  are   in  prin- 

ciple  enough differential equations to solve   simultaneously 

for the   radial profiles   of   the  distribution variables  and 

the   electric  and magnetic  fields.     Since   the  distribution 

function  is  based  on an equilibrium system,   these   profiles 

should  describe  an equilibrium plasma. 

Procedures are   to be  developed for studying the effects 

on  such an equilibrium  of  the   injection  of   particles,   and  of 

the   imposition of  temperatures,   and the  axial magnetic field. 

Involved   is  the  development   of  numerical  integration methods 

for  the   simultaneous  solution  of  the  equations.     A careful 

analysis   is  made   of  those   characteristics   of   the   hydro- 

dynamic equations which determine   the  applicability  of 

numerical  methods  to their  solution. 

The   type   of  plasma  of   interest  in this  study   is  the 

high-temperature,   high-density thermonuclear  ionized  gas. 

It   is   current   opinion that   temperatures   on the   order  of 

10     -   10  ^ and  particle  densities   on the   order   of   10 
-3 

cm       are   required to sustain fusion reactions   in  the   plasma 

environment.      In Chapter  IV  some   numerical examples  are 

carried   out  to examine   some   of  the   predicted velocities  and 

electric  fields which correspond  to this  type   of   plasma. 
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Much  of  the  theoretical work leading to the  derivation 

of  these  equations  was  done   by Dr.   Wlngerson  In unpublished 

papers.     He  and  the   scientists   of  the   Plasma  Physics 

Research Laboratory are  at this  time  actively engaged  In 

the  design and  testing  of sue 1symmetric  plasma systems.     It 

Is  hoped  that  the  efforts  reported  In this  paper can be 

applied to the  design of experimental  plasma containment 

devices. 
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II.     Magnetic Field   of  the   Dlsplaced-Coll  ConfIgurat1on 

Introduction 

This   chapter Is  a  report   of a study   on  the  applica- 

bility   of  a proposed   plasma  containment device,  dubbed the 

"dlsplaced-coll  configuration."    The  major  objective   of  the 

study was  to determine   how the  characteristics  of  the  field 

of   a device  similar to the  system of  colls  shown  In Pig.   1 

depend  on the  geometric   arrangement   of the   separate   colls. 

Some   of  these   Important   characteristics  are   mentioned  In 

Chapter  Ii   of  Interest  are  the  gradients   of  field   strength 

through the  field,   the  direction of  the  field,  and  the 

stellarator rotations   of  field  lines   In the  field.     It was 

not   the   objective   of  the   study  to determine   what  field 

characteristics  are  necessary   or desirable  for plasma con- 

tainment.     Nor was  the   objective  to design a   magnetic field 

using the   dlsplaced-coll   configuration.     This   study  was 

made  to ascertain the  feasibility  of  controlling the  major 

characteristics   of a  toroidal  magnetic field   by varying the 

geometric   parameters   of   the  dlsplaced-coll  configuration. 

First,  the  geometry   of a  straight  coll  configuration 

which approximates  the   configuration  of Pig.   1  Is  defined. 

Notation  of variables   Is  established.     An  orthogonal  coor- 

dinate  system Is  also defined   relative  to the   coll   system. 

The   equations for the  vector components   of  B are 

derived,   and computer programs   are described  which  calcu- 

late   the   magnitude  and  direction  of  B.     Procedures   are 
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developed  to  systematically   Investigate   field variables   as 

functions   of   field   position and   the   geometric  parameters. 

The  method  of  generating mathematically the   field   line: 

of the  magnetic field   Is explained.     Two  characteristics   of 

Interest   In the   pattern of  field  lines  are   Identified,   and 

the   procedures   for studying each are  explained. 

The  section covering results   reports   the  variations   of 

the  quantities   of  Interest   through  the  field,   and  their 

functional   relationships  to the   geometric   parameters.     The 

feasibility   of  designing fields  with very   particular 

characteristics   is  ascertained. 

Coil Conf igurat1 on 

Let us  consider as an approximation  to the   torus   of 

real multiple-turn colls an Infinite   straight  system  of 

thin,   single-loop coils.     The approximation is valid  If 

only a small segment   of arc  of  the  torus   of  solenoids   is 

considered. 

The  magnetic field  of  a single   loop  of current   is  very 

similar to that   of a  finite   solenoid.     The   strength  of  the 

B field varies   similarly in either as a function  of   posi- 

tion,   and the   shapes   of the  fields   of  the   two are 

characteristically the   same. 

The equations  of  the  transverse   and  axial components 

of B for an  infinitely-thin loop of   01 rvent  are   presented 

in Appendix A.     Techniques  are der* .   a there for computing 

numerioal values for these  components. 

10 
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Flg.   2   Is a schematic  representation   of  the  scheme 

for  constructing  the   Infinite  straight  system  of  colls.     The 

axial   Interval  between colls   Is  designated   "space."    The 

displacement   of  the   coll  centers   off  the   Z axis   Is  "dlsp." 

These  equal  displacements  are  made   such that  there   Is  a 

constant  angle   "alpha"   between the  directions   of  dlsp of 

neighboring colls.     The  arbitrary  convention Is  made  that 

the   sign  of  alpha  Is   positive as  measured  from  one  coll 

center to the  next  when proceeding from coll  to  coll  In the 

positive  axial direction.     The   radius   of  all colls  Is   "a." 

The  result   of  these   manipulations   Is   a configuration 

of   plane-parallel  loops  whose  centers  lie   on a  uniform he- 

lix.     The  pitch length of   the  helix  Is  the   product  of  space 

and  alpha,   and  Its   radius   Is dlsp.     The  axis   of  the  helix   Is 

chosen as  the  Z axis   of an   orthogonal  coordinate   system. 

The  X  axis   of  the   system  Is  arbitrarily  located   through the 

center  of  one   of   the   colls. 

Let  the   radii   of  the   colls be  normalized  to unity,   and 

let  all distances  henceforth be  measured  In units   of  coll 

radius.     Choose  the   currents   In the  colls   to be   equal.   In 

the   same  direction,   and  of   magnitude  such  that 

This  concludes  the  definition  of   the   dlsplaced-coll 

configuration.     Its  geometric  parameters  are   space,  dlsp, 

and  alpha.     This  chapter  Is   primarily  concerned  with the 

dependence   of   the   magnetic  field   on these   three   variables. 

11 
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Flg.   2.     Schematic   of  Infinite  System of  Thin Loops 

12 
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Objectives   of  Study 

This  section describes  more   fully  the   areas   to be 

Investigated   in  this   study.     It  also attempts to supplement 

Chapter  I   In   Its   Justification  of   the   study. 

Charaoterlstlss   of  B.     Again,   the   properties   of  B most 

critical  to contalnmsni  feasibility  are   uniformity  of 

strength and  the   ratio  of  transverse   to axial component 

strengths.     This   study  attempts  first   to discover  in general 

the   orders   of  magnitude   of  these   properties.     Then relations 

between  ^hem and  the   three  configuration  parameters are 

sought.     The   variations   of  the  two properties,  as  functions 

of   both  the   radius   out   from the  axis  and  position along the 

axis,   are  also  investigated. 

Field  Line   Paths.     The   magnetic  field   lines   surround- 

ing a single   thin   loop are   closed   loops   in   planes 

perpenilsular to the   plane   of  the   loop.     Field strengths 

vary aloig the   paths   of   these   lines,   but  the   magnitudes  are 

synmetric  about   the   plane   of  the   loop. 

When many  single   loops  are  arranged with their centers 

on a helix  the  field   lines  of   the  field   san  no longer be 

planar.     The   field   Is  expected  to exhibit   a  helical  twist 

In  the   region   Inside   all  coils. 

Questions   immediately come  to mind. • Do the  field 

lines encircle   the   axis   of  the   system as does  the  helix 

describe!  by  the   coll  centers,   or do they  remain  In the 

same  quadrant   of   the  system?     Oo subharmonios   of  this  field 

line   twlst  exist   such  that  "he  entire   field   line   pattern 

13 
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rotates as a solid body? No matter how either of these 

rotations appear their frequencies and the radii of the 

resulting helices   should   be  determined. 

Methods  and   Procedures 

This   section  outlines   the   computational  methods  and 

procedures  employed  in  studying  the  magnetic  field. 

Appendices  are  used  to support  this explanation.     Appendix A 

is  the  derivation  of the   numerical approximations  for   the 

transverse   and axial vector  components   of  B.     Appendix  B 

describes  a  computer subroutine   called   "Field"  which   com- 

putes   the direction cosines  and  strength  of   B at   ^ny given 

point   in the   field.     The   program  "Tracer"   is  explained   in 

Appendix Ci   it   is designed   to  integrate   the   paths   of  the 

field   lines. 

Ranges   of Variables.     The  volume   of   interest   in the 

magnetic  field,   and  the   ranges   over which  the   geoBetrlc 

parameters  are   to be   studied  need   specification.     Because 

of   the   undesirable  behavior   of  the   field  variables   near   the 

conductors,   the volume   over which  the field  is  expected  to 

be  at  all well-behaved  is  limited   to be entirely  within all 

conductors.     The  size   of  disp obviously determines   the   size 

of  the   volume   satisfying this   condition. 

The   reuiges  of the  geometric   parameters  to  be   considered 

in this study are ae followsi 

space i     0.1 —   1.0 

dlspi       0.     —   0.2 

alphai     0      —  180 degrees 
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Limits  are   Imposed   on space  and dlsp  only for def Inlteness, 

and  are   not   meant   to be  exclusive.     They  can be  expanded   If 

they do not   seem to  Include  all  the   Interesting cases.     By 

symmetry  the   range   of  alpha  covers  also the  cases  for alpha 

greater  than  180 degrees.     The  above   Intervals  are  sub- 

divided   sufficiently to reveal the   Important  functional 

relationships. 

Bm and  RTA.     Let   ,,BmM   refer to the   magnitude   of   B. 

Appendix A  presents  the equations   for  the axial   (Bz)   compo- 

nent   and  the   total   component  transverse   to the  axis   (Br). 

Let   "RTA"   stand  for the  ratio  of  Br and  Bz.     Field  Is  a sub- 

routine   which can deliver Bm and  RTA at  any  location. 

The   procedure   Is  to compute   both  these  terms  for any 

given set   of  space,   dlsp,   and alpha at   several different 

radii  within all   loops  and also at   points   along the axis 

between any  two loops.     The   computations  for varying  radius 

are   conducted  halfway between two  coils  to minimize  anom- 

alies due  to nearby  conductors. 

The  analysis   of results  consists   first  of  finding how 

RTA varies  with  space,  dlsp,   alpha,   radius  from the   axis, 

and   position along the  axis.     Then the   rates   of  change   of 

Bm with radius  and  axial  position are   determined  as  gener- 

alized  functions.     Finally,   these   rates   of  change,  jBm/Jr 

and  dBm/iz,   are   investigated  as  functions  of  space,  dlsp, 

and  alpha.     Since   the  normalized  Bm is   a strong function  of 

space,   it   is   necessary to  calculate   i)Bm/<Jr and ^Bm/Jz  as 

relative   rates   of   change. 
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Field  Line   Pattern.      We   have   mentioned   that   the   toxlow- 

Ing two  phsnomena  are   probably   of  Interest»      the   helical 

twist   of   the   lines   caused   by   the   helical   coll  configuration, 

and   the   possible  slow rotations   of  the  entire  field   line 

pattern  about   the   axis.      Let   us   call  the   helical   twist  a 

first   order occurrence.     This  twist   Is  studied  as   a  functioi 

of   radial  position  in the   field and   of   the  coll  geometry. 

Field  lines  are   traced   over  one   repetition   or  cycle   of 

coll displacement.     The   tracings are   begun from  points  at 

various   radii  In the  plane   of  an arbitrary  coll. 

A  convenient  measure   of   the  resulting helices   is  the 

helical  radius.     It   Is expected that   the   pitch length of 

the   first   order  twist   Is   the   same  as  that   of   the   coll 

pattern.     Thpt   Is,   the   pitch length  of the  lines  should  be 

the   same  as that   of  the   coll  center helix.     This  must  be 

verified,   however. 

It   is necessary to determine   If  the  second  type   of 

rotation   Is  Important  to the   shape   of  the   field.     These 

rotational drifts  become   evident   only   over  several   cycles 

of  the  first  order twist.     Therefore,   a few lines   beginning 

at  different  radii  are   traced   over  one  hundred  first   order 

cycles  for several sets   of  space,  dlsp,  and alpha.      If the 

frequency  of the   rotation  of any  line  around  the  axis   is 

such that  the  axis  Is encircled  in less  than  one  hundred 

cycles,   the second  order rotation may  be  Important.     A more 

detailed analysis   of the  frequencies  of these   rotations  is 

then to be  undertaken. 
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The   field   lines  are   generated  by  successively   Integrat- 

ing,   point  ty   point,   the  direction  cosines   of  B  over 

incremental distances.     Appendix C describes  and  gives 

operating  Instructions  for a  program which  integrates   lines, 

beginning  at  selected X-Y  coordinates,   over selected dis- 

tances . 

The   program supplies  a record   of the  three  coordinates 

of  points   along the  field   line.     It   is  also written to  be 

amenable   to  plotting subroutines  so that  the   lines   can  be 

traced   in  machine  drawings. 

The   diameters   of  the   first   order helices  are  easily 

calculable   from the   printed  records   of  the  X and Y  coordi- 

nates   of  a line.     We  need  merely  subtract,   say,   the   minimum 

X  coordliate. from the   maximum.     Tracer supplies  these   coor- 

dinates   ;o four  places. 

The   pitch  length  of  the   lines   is  the   same   as  that   of 

the   coil-center  helix   if  the  field   lines   cross   the   planes 

of   concentric   colls  a"   the   same   X  and  Y coordinates. 

Appendix  C  details  the   maximum errors   In these   coordinates 

which  ca.i arise   cut   of  the   numerical  integration methods 

utilized 

To neasure   the  frequencies   of  the drifts,   the   numerical 

listing  of   point   coordinates   is   studied  to find  the   differ- 

ences   in both the  X and  Y  coordinates   of a line   as   it   passes 

through the   planes   of  colls   one   hundred  first   order  cycles 

apart.     The   resulting differences  give  a good average 

measure   cf  -ehe   magnitude  an;,  direction  of  the  drift   of  a 
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particular line. 

Results 

This section  Is  a report  of how the   characteristics   of 

the   field   of  the  displaced-coll   configuration vary  with 

space,  dlsp,   and  alpha.     The  dependence   of   RTA and  the 

uniformity   of Bm  on  these   parameters   Is   presented  graphical- 

ly   In Figs,   3 and I*.     These   curves  quantitatively  depict 

RTA and the   relative  gradient with radius   of  Bm on axis, 

halfway  hetween any  two  colls.     However,   curves  were   drawn 

for  other locations   In the  field,  and their shapes  are 

very  similar to the   curves   In Figs.   3 and ^.     The  general 

dependence   of  RTA and  Bm   on position  In the   field   Is   qual- 

itatively described   below.     Also,   sample   computations   of 

RTA  and dB/dr for values   of  space,   dlsp,   and  alpha not 

Included  In the   ranges   previously  set down  indicated  no 

unexpected  behavior. 

RTA.     Fig.   3  contains  graphs   of  RTA   on  axis  as  a 

function of each of  the   configuration parameters alone, 

holding the   other two  parameters  fixed.     RTA   is  a strong 

function  of   all  three   geometric   parameters  and   of   radial 

position in the  field.     The  almost   linear function of  RTA 

with dlsp is  predictable.     Increasing disp accentuates  the 

helical twist   of  the   field lines,  and hence   the  transverse 

components  of  B,   of  which RTA  is  a measure.     RTA  increases 

exponentially with  radius  from the   axis.     The  rate   of  in- 

crease  with radius depends  on the  specific  combination  of 

space,  disp,  and alpha. 
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Bm.     The   mean magnitude   B  Is   Inversely   proportional to 

space,   and   Is  not  strongly dependent   on dlsp and alpha. 

The  dependence   on space   Is  expected  since   In general  the 

magnetic  field   of a coll  varies   inversely  with distance 

from the   center  of  the   coll. 

Uniformity  of  Bm.     Consider first  the   relative  quantity 

dB/dr  on axis  as  a function  of  space,  dlsp,   and alpha as 

depicted   in Fig.   k.     Note   that  the   curves   of  dB/dr are   very 

much like  the   RTA curves.     Bm does  not  vary  azimuthally 

near  the   axis,   that   is,   well  within all  the   colls.     With 

increasing radius,   as  the   colls  themselves  are  approached, 

the   field   is  dominated  by  the   nearest  colls.      It   is  diffi- 

cult  to describe   in general  the   field near the  coils.     Bm 

is   quite   uniform along  the   axis.     As  a quantitative  exam- 

ple,   Bm varies  along the  axis  by  less than three   percent 

for   space   equal  to  unity. 

Field Lines.     Fig.   5 shows  the   paths   of  ten field 

lines   traced   over two cycles   of   coll displacement.     Fig.   6 

is  a  listing  of coordinates  along the  line   nearest  the  axis 

for  two  cycles.     The   coil  configuration for  these   lines   le 

defined  as  followsi 

s pace   »   .6 

dlsp    ■   .2 

alpha -  60° 

The   pitch length  of  the   line   twist   is  the   same  as  that 

of  the   coil  center helix.     The   radius  of  the   helical  line 

on axis   is   .07.     The   radii   of  the   helloes  described  by 
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PlS.   5.     Ten Magnetic Field  Lines  Traced   Over Two Cycles 
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lines  farther  off  the  axis   Increase  exponentially  from this 

value.     This  behavior explains   the  dependence   of  RTA   on 

radius  from the  axis.     The   pattern  of  the   first   order  twist 

shown  In Pig.   5  Is   synunotrlo  about  the   axis. 

From Fig.   5  It  appears  that   the  field  lines  do not 

tend  to rotate   about   the  Z axis   of  the   system.     Actually 

there   Is  a slight  drift  of  these   lines   about  the  axis. 

Selected   lines  were   Integx-ated   over  one   hundred  first   order 

cycles for various   combinations   of   space,   dlsp,   and  alpha. 

The  transverse   coordinates   of   the   lines  did not   return  to 

their starting values  after each first   order revolution. 

The  Indicated drifts   over  one   hundred  first  order cycles 

were  extrapolated  to compute  how many  first   order cycles 

would  be   required  to encircle   the  Z axis   and return  to the 

transverse   starting  coordinates.     On the   average   these 

extrapolations   indicated that   It   takes  about  100,000  first 

order cycles  for the   field  lines   to encircle  the  axis. 

Summary 

We  have   Investigated the  magnetic  field of  the 

dlsplaced-coll  configuration.     Two characteristics,   the 

uniformity  of field magnitude  and the   ratio of  transverse 

to axial  field  components,   have   been analyzed as  functions 

of  space,   disp,  alpha,  and  location within the  field.     The 

pattern  of  field   lines   has  been  ascertained. 

The  qualities   of  a magnetic  field  which are   Important 

to plasma   containment   seem to be   controllable  by  adjustment 

of  the   coll  configuration.     The   field  lines  are   helices. 
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and  the entire   field   seems  to  rotate  about   the  central 

axis. 

Note   that   the  displaced-coil   configuration does  not 

depend  on any   particular solenoidal  windings   as far as   shape 

or  size  are   concerned.     Standard  solenoids,   commsrcially 

available,   could  be   used  as  long as   the   minimum required 

field  strengths   could  be   attained.     Field  design is  accom- 

plished solely  through the  geometric  arrangement  of  the 

coils.    Thus   the  necessity  of  designing and  constructing 

special windings   is  eliminated.     Many different configura- 

tions  could  be   experimentally tested  cheaply  and 

conveniently. 

It  is  mentioned  in Chapter I  that  stellarator-type 

revolutions  .of  the  field   lines   can  be   useful   in cancelling 

the  drifts   of   charged   particles   in  a toroidal  magnetic 

field.     Although this   study concentrates   on  an  infinite 

straight   coll   configuration,   it  was  demonstrated that   rota- 

tion  of  the  field  lines  does take   place.     The   toroidal  coil 

configuration from which the  straight   system  is derived 

would  also cause   the  field   lines  to  rotate.      Hence   the 

advantages   of   the   stellarator would   be  available  without 

the   additional   stellarator windings. 
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III.     Plasma   In Equilibrium 

In this  chapter the   steady-state   hydrodynamlc  equations 

of a  plasma  In equilibrium  In an axlsymmetrlc  system are 

derived.     The  distribution func+vion for a system  of   like 

particles   Is  first derived  from Liouvllle's  equation.     The 

distribution function Is  applied   separately  for   ions  and 

electrons.     The   hydrodynamlc  equations  for each distribution 

are  found as  moments  of   the   Boltzmann equation.     Two  of 

Maxwell's equations  can  be  applied  to the axlsymmetrlc 

system.     The   result  is  a system  of  eight  simultaneous,   first 

order differential equations   in terms   of eight  unknown 

variables. 

Distribution Function 

From Liouvllle's theorem   (Ref     7i56)  the  most  general 

equilibrium distribution for a  system  of  like   particles   is 

a  function  only  of  the  Hamlltor.lan constants   of   motion.      In 

an axlsymmetrlc  system two appropriate  dynamical   constants 

are  the  Hamlltonlan and  the   canonical angular momentum. 

H   =1 mv      -v-   qi> (2) 

P9 -   mru)   ■+■   qrAe (3) 
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Then a distribution function which Is  consistent  with the 

conservation  of  H and   1^   is 

where f0 ,     fi,   and   ß   are  arbitrary  constants.     In principle 

all variables   of  the   system  of  particles   obeying this 

distribution  can  be  found as  moments   of  the  function.     How- 

ever,   It  Is   convenient  to transform to another coordinate 

system before   taking moments. 

Let  a  coordinate   system be   chosen In which the   orthog- 

onal unit vectors  are  Ä,, ög»  and    »,   such that 

B » B^s . <5) 
and 

^-öxa. (6) 

The  new system Is   Illustrated  In Pig.   7. 

Let  us  make   the   convention that  the    ö   direction 

always  coincides  with the azlmuthal direction relative   to 

the  original  cylindrical coordinate   system.     Then the   prod- 

uct   (rCk>)   In Eq      (3)   is  azlmuthal  velocity,   and  Is   In the 

&    direction.     The   other two components  of  total  particle 

velocity  can be  called V-^ and  V2.     Thus 

v1" - v(
a-t- y^--»-  [rto]3" (7) 
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Fig.   7.     Cylindrical  Coordinate   System 

The  distribution  can now be   written 

-h-lim [v*-»- \£-»- [ruj]1] - r_n_TY\rijü] 
i 2 If  we  add and  subtract  the  quantity im(rXl)     In  the  expo- 

nent,   the  terms  of  f  can  be   rearranged i 

Pa-Pocxp -/ö[Q[(|)-r_n.Ae] + i mn [v?--v-y£] 

Certain moments  can  now be   conveniently  calculated. 

Particle  density  Is 

(Ö) 

(9) 

n » yPdv 
(10) 
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where  each component  of velocity  must  be  Integrated from 

minus   Infinity to  plus   Infinity. 

n.^^)«p-^[<<,-rilAe]-Jrm[rÄ]i] (11, 

(Ref     8i28/f).     Define  the  average  azlmuthal   particle  veloc- 

ity  as   W. 

VJ =-kl [rui] -fciv = m (i2) 

Average   particle   kinetic energy  Is 

X - i TT/V
1
^ = ^ -^ i ^M" (i3) 

These   last  three equations   suggest  the  following 

conclusions! 

1. The  density distribution  Is not necessarily 

constant  with radius  In the  azlmuthal system. 

2. The   plasma exhibits  rotation as a  solid at  an 

angular frequency JTX. 

3. Particle energy   Is   partitioned  between the 

kinetic energy associated  with  random velocities  and 

the   kinetic energy  of an average   rotation.      If 

ß m  1/KT,   the  distribution behaves  like  a  Maxwelllan 

distribution with a drift  velocity   of   IrSl)   super- 

imposed. 

The   distribution function derived  above  describes  a 

system  of   like   particles   In an axial  magnetic  field.     It 
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Implicitly accounts  for Interactions  between  like   particles. 

The derivation Is  not valid   If different  types   of  particles 

are  considered  together because  It  does  not  account  for 

collisions between  unlike   particles.     However,   a  real  plasma 

composed  of weakly   Interacting electrons and  Ions  can be 

described by applying Eq     (9)  separately  for each distribu- 

tion  If  the  interaction between them can  be  expressed.     The 

two distributions   can be  approximately   connected  via an 

Inter-particle  collision force.    Appendix D derives the 

expression for such a force.     The   Interaction force  can be 

expressed as  an average  force  arising from  collisions  be- 

tween electrons and   Ions.     The  force   is   proportional to the 

product   of the  two local densities  and  the  difference 

between the two average  rates   of rotation.     The  force  then 

can be   thought   of  as  an average drag between two distribu- 

tions  rotating at  different  frequencies. 

Hydrodynamlo Equations 

This  section  outlines the derivation  of  the  equations 

describing a system  of electrons and  Ions  nearly  In equi- 

librium.     The   relations  employed are  the   Boltzmann 

phase-space equation and  Maxwell's equations.     Mks  units  are 

used  throughout. 

Assumptions.     The  assumption of  an axlally directed 

magnetic  field  has  already  been made.     Assume   also a  purely 

radial electric field.     It was  mentioned   in Chapter  I that 

we-wish to Investigate  the effects  of artificially  inserting 

ions and electrons  into the  plasma.     Assume,   therefore,  that 
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particles  may  be   Inserted  anywhere  within the   plasma at  «my 

time   rate  desired.     For instance,   ions and electrons  may  be 

deposited  separately  or together,   according to  some   contin- 

uous   radial distribution  or  perhaps   only within a  cylindrical 

band   of   some   Ar  in the   system, 

Boltzmann's  Equation and  Moments.     The   steady-state 

Boltzmann relation for a system of  like  particles   obeying 

the  distribution function  of   f   is 

wf+ E -^f = äf| 
■ST S+lcd '1'" 

where 

-F- £(r,y) (i5) 

(Ref     161155).     F is used here  as  the  sum of all applied 

forces  which may   be described as  averages. dt/9t accounts 

for processes  such as  ionization  or recombination,   charge 

exchange,   or  creation  of  particles. 

P   is   composed  of  the   following 1 

£ = Q [E + y x B]   + FS  4- Ec/n (I?) 

The  first  term is   simply the   classical Lorentz  force   on a 

charged   particle   of velocity  v.     Po  is  the  average   volu- 

metric  force  due   to collisions   between unlike   particles. 

It   is divided  by density,   n,   in  order to reduce   it   to a 

particulate   term. 
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Fs   Is the  average   force  per particle  necessary to 

accelerate newly  creat«d particles  from their original  Input 

velocities to the   local average  velocity  of  like   particles 

in the   plasma.     The  process   of acceleration  Is assumed  to  be 

by elastic collisions  with like  particles   only.     This 

assumption is   Justified by the very small degree   of energy 

transfer in collisions   between electrons and  Ions.     Electron- 

ion collisions  tend mainly to randomize   the   electron 

velocitiesi   ion velocities  are   not  appreciably  changed   In 

such collisions. 

Define  S  as   the  time  rate   of   creation   of  particle 

density at any given point.     Consistent  with this definition 

£s   =   -rr\ [v -  yc]   ü. 

where v is  local velocity and v0   is  the   original velocity 

of  the new particle.     The minus  sign  on  the  force   conforms 

to  the  use   of Fs  as  a  force  applied  to  the   distribution. 

Let  us assume  henceforth that new particles  are  input at 

zero velocity.     This   is  not  a dangerous  assumption  in that 

we   must  assume   that   we   may  control  the   input   velocity any- 

way.     It will  be   seen that Vo   can te  reinstated at  a finite 

value at a later point  in the derivation with little 

difficulty. 

Macroscopic equations  of a plasma are derived as 

moments  of the  Boltzmann equation.     The   first  moment  In  the 

continuity relation. 
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S7- [yn]   =   S     ' (19) 

The   second  moment describes momentum transfer  per 

particle.      In steady-statei 

m[v-v]y    = ~v- P   -»-F (so) 
n 

(Ref     18jl6l),   where   P  Is   the   pressure   tensor. 

If a  Maxwelllan distribution Is  assumed  locally for 

each distribution,   the   pressure   tonsor Is  a diagonal with 

equal  terms   (Ref     19i24). 

P=nKT (21) 

The most Important assumption Implicit in the use of this 

term Is that the pressure on a single distribution Is'due 

only to random motion of particles and collisions between 

like   particles. 

Maxwell's Equations.      Under  the  assumptions   In  force 

two   of   Maxwell's  equations   supply  useful  relations. 

V  X    B   =    I (22) 

where A   is   charge density  and   J   Is current density. 

Veotor Component Equations.     In cylindrical coordi- 

nates  the   continuity relation is  simply a scalar equation. 
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r    dr 

where  v     Is  the  average  radial drift  velocity  of   particles 

out   of the  system.     Note  that   only   partial derivatives  with 

respect  to r are  non-zero  in an axisymmetrlc  system. 

The momentuni transfer vector equation supplies  two 

vector component equations.     The  radial vector component 

equation is 

m fVr C^Vr - Vel- -KT <Jn -\- Q   £->-\eB   "rr\Vr S (25) 
L   ^^       r J       n   dr       ^ J n 

(Hef     19i219)   where   v9   is  the  average  azimuthal  velocity   of 

particles  about   the   ax's   of  the   system.     The  azimuthal 

vector component equation is 

m Kd^" + -T-J= -c^B-rrwe—   ± f- (26) 

Pc appears   only   in this  equation  because   it   is  azimuthal   in 

direction  only.     Hence  we  write   it   as  a scalar in this  equa- 

tion.     The   sign   of Fc  depends   on whether Eq   (26)   is  written 

for electrons   or ions.     Let  the  electron distribution  te 

chosen as the   zero-subscripted distribution in Appendix D. 

Then Fc  should   appear as  a negative   term  In  the  electron 

equation and as  a positive  term  in  the   ion equation. 

In an axisymmetrlc system Eq   (22)  becomes 
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dB 

The   azlmuthal current density,   Je   ,   can Toe  written so that 

dB _ r 
dr    " ^<oeL^ve-2niUL.] <28) 

where  e  is the electronic  charge.     The  subscripts e and 1 

are   Introduced to differentiate  between the electron and 

Ion distributions.     Henceforth v will  be   used  to refer to 

electron velocities  and u  to refer to  Ion velocities. 

The  electric  field equation  is 

r  dr e0 

where   we  have   rewritten charge density  as   the   sum of  the 

electron and   Ion  charge  densities. 

We  have  then a set   of   simultaneous first   order differ- 

ential equations with r as  the  independent  variable.     There 

are   two momentum transfer equations  and   one   continuity  equa- 

tion  for each  particle   distribution,   In addition  to two 

Maxwell equations  for  B and  E,   for a total   of eight equa- 

tions.     The  equations   are   in terms   of  particle  densities, 

average  radial and azlmuthal velocities,   radial electric 

field  strength,  and axial magnetic field strength. 

These variables  are  the   unlcnowns  of  interest.     We 

wish eventually to study the   radial  profiles   of  each.     This 

does  not  necessarily  mean that we   must   solve  each  of  the 
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eight   equations   for  one   of  these   unknowns.     Several   possible 

changes   of   variables  are   considered   In  the   next   chapter. 

Normal1zat1 on.     Before  moving on to the  next   chapter, 

wherein attempts  are made  to solve  the eight equations   just 

derived,  WB   Introduce  normalization of  the  variables. 

Normalization eliminates dimensional  units and  provides very 

convenient   scaling of  our  partloular variables. 

For  instance,   let  all  velocities   be  normalized   in 

terms   of the  mean random velocity  of  the   positive   ion: 

where 1^ is temperature in degrees Kelvin. The object is to 

replace all velocities with corresponding primed, dimension- 

less numbers'.     For convenience  define 

-y    Ml. (3i) 

Let  time  be   normalized in terms   of  the   cyclotron period  of 

the   ion near the   axis. 

-t   =-t'T (32) 

T=zIE" (33) 

where   B0   is  the  social magnetic field  strength.     It  was 

assumed earlier that Bo  could  be   specified. 

Earlier  It  was  mentioned   that   one   of the  goals   of   this 

study is  to determine theoretically the  feasibility  of 
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attaining particle  number densities   on the   order of 

1020 m~^.     Let  densities  and the  density   source  terms  be 

normalized  to 

20    -3 

Consistent  with the   above  definitions are   the  follow- 

1ng  n ormal1zat1ons t 

Radius. r= r'VT (35) 

Magnetic  field. B a   B' B (36) 

o   S'n Rate   of   particle  creation.       ^  =    rr;— (37) 

Angular frequency. (jj =   UJ/^T (38) 

Electric field. E ^ El'^vT" Bu (39) 

Collision force, E  =   ^   ^-rTV; (^0) 

When  these  definitions   are   substituted   Into the  eight 

equations  all dimensions   cancel   out.     Let  us   then drop all 

primes,   remembering from the  above   definitions   how to 

recover the  real  variables.     Table   I   is   a compilation of  all 

eight  normalized equations,   plus Fc,   the   normalized 

collision force  from Appendix D,   after  the   primes  are 

dropped. 
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Table   I 

(^D 

(42) 

\    c/^     ^/        3   nj d a. W7 

d*. ZeB0        
K ' 

(^5) 

(46) 

Z<& 

^ = 

,0 [2 v&nr+frnü) 

(4?) 

(48; 

(49) 

(50) 
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Sunmi&ry 

This   chapter  Is  a derivation of  a set   of time- 

Independent differential equations  which describe  the 

macroscopic variables   of a system of   Ions  and electrons 

near equilibrium.     It   Is useful  to summarize  the  assumptions 

upon which the  derivation is  basedi 

1. The   system is  axisymmetrlc. 

2. Both ions and electrons   obey  Boltzmann-like 

distributions and a real  plasma  can be  accurately 

described  by applyins their respective  distribution 

functions  separately. 

3. The  magnetic field  Is  axially directed and 

Its  strength on axis  can be   specified. 

k.     The  electric field  is  radial  in direction. 

5. Ions and electrons  can be  inserted  into the 

plasma arbitrarily at any time  rate desired.     Decel- 

erating drag forces  on the  two separate distributions 

arise from collisions between like  particles   only,  and 

may  be   treated as  average  forces. 

6. The  drag force   between electron and   ion 

distributions  may be treated as an average volumetric 

force. 

7. Pressure   on a single  distribution Is due   only 

to random collisions between like   particles  in the 

distribution. 
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8.     The  electron and  ion temperatures  are   known 

and are uniform across  the  plasma. 
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IV.     Solving the  Differential Equations 

Introduction 

This   chapter describes   In detail attempts  to develop 

procedures  for the  numerical  Integration of  the   system  of 

differential equations  derived   In Chapter III.     The   objec- 

tive   of  these  attempts was  to select   In terms  of  accuracy 

and  efficiency  the   best   methods   for numerical  solution   of 

this   particular system of  equations.     Involved are  the 

choice   of variables  sought  as  solutions,   the  adaptation  of 

standard numerical  integration techniques  to the  specific 

problem,   and  the   writing  of   computer  programs  to  perform 

calculations   most  accurately  and  efficiently. 

First   a' set   of variables   is   selected  and  the  equations 

in Table   I  are   solved  for the   first  derivative   of   one   of 

the   variables.     Equations  for  the   initial  conditions   on 

the  variables  are   derived  from the   equations  written   on 

axis.     Sample   calculations  are   made   of   non-zero  initial 

conditions.     These   representative   values  for the   initial 

conditions   serve   to point   out   potential   sources   of  error 

in the   computation  of  the  derivatives.     Various   changes   of 

variables are   studied  in attempting to eliminate  the 

scarces   of error.     The  chapter is   concluded with an anal- 

ysis   of the  application of numerical integration techniques 

to the   solution  of  the  differential equations. 
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Choloe  of Variables 

In Chapter III  montlon Is made   of which  of  the  vari- 

ables   Involved  in the   system of equations  are   of  Interest, 

but  equations are not  selected to be   solved for speolflc 

variables.     In this  section alternative  methods   of  solving 

the  equations are discussed. 

The following macroscopic quantities,   as  functions  of 

radius,  are  the   objects   of  this  study i     ne,   n^,   v  ,  ve ,   u&, 

B and  E.     (The equations  In Table  1 are   in terms   of  the 

corresponding normalized variables,  but the   conversions 

back  to the   real  quantities   are   simple.)     A  straightforward 

approach Is to solve   each equation for the   first  derivative 

with radius   of each  of  these  unknowns,   but   other arrange- 

ments   of the_ equations  are   possible  and may be  more  useful. 

This  chapter Is  primarily  concerned with evolving a set   of 

variables and  the   solutions  for their first  derivatives 

which are most amenable  to numerical  Integration,   keeping 

in  mind  the   limitations   Imposed by  the   available   numerical 

techniques and computer technology. 

Eq   (4?)  for magnetic field  In Table   I   is  apparently 

already  In its  most  useful form.     There  are   no  obvious 

rearrangements  which might   improve   it. 

Consider Eq   (4-5).     Move   the  second term  on the   left 

hand  side  to the   right   hand   side  and divide   through by 

m v  .     The  result   is a direct expression for dvd/dr. 
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i^fe.   = _  v^  _ v©  r^   -i-   mi_ r_Q  _    R    1 (51) 

■ 

However,  note that 

dv«    +    Va      =   _l_   <d[rvj 
dr r r    dr ^2) 

Sa    +   nr>;  [ B _ FL 
He me. L 2    IVVrJ 

Thus,   rearranging Eq   (^-5) 

The   Independent  variable,   r.   Is  always known exactly  In the 

step-wise  numerical  Integration techniques usually employed 

with first   order differential equations.     Therefore,   there 

should  be  no trouble  retrieving ve  from the  solution. 

Similarly Eq   (^6)  becomes 

d r-u.e   = — ruL< S.      -   ["R-     Fc     1 
n; L n;uLrJ 

Divide Eq (^1) by ri^v^  and expand the derivative. 

I       -I-     I     dne    -H      I      A\sr     =       ^g 
r ne dr Vr   dr neW« 

Note   that  this   equation  cou^.d   ^ie   solved for  the  first 

derivative   of  either ne   or vr.     For the  moment  use  Eq   (55) 

to eliminate  dvr/dr from Eq   (^3).     Then a solution for 

dne/dr is 
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r^Ä  4-   Vr f Vr. -  ^S&l   -     mi      fE + Ve Bf] 
drha  = n<° L r L r r>e.J      Z.me L iL     .   ,x 

dr r_L Ik mL - vr
x] (56) 

[3   Ti    me J 

Similarly for the   Ion equation 

fufiL -h  U-r (".yji^  ^-S. 1 + fE-V- UL©Bl 
in;   =  nt L r L r n.   J       L    J 
dr [t - -\ 

(57) 

Asstuning that   ne   is   a wise   choice   of   variable,   Eq   (55) 

could be  solved for dvr/dr and the  result   integrated for v 

directly.     However,   if   rnevr  is   chosen as   a  variable, 

d(rnevr)/dr  is   rSe,   a quantity which has   been  assumed  to be 

exactly  specified.     Therefore  the  differential   of  rnev    is 

known exactly,   and  for this   reason  it   seems   a wise   choice 

of variable.     Hence, 

rn&Vr vr =    rne (58) 

rn. u.r ,    . 
u-r =     rn. (59) 

Eq   (W)   can be   left   almost  as   is, 

(60) dlrEj =  _jnQir__   ^n, — He. 
dr Ze R^ L J 

-o'-'O 

The  equations   In Table   I  of  Chapter  III   have   been 

rearranged as  solutions   for  the  first  derivatives   of   the 

following variables i     rnev:r,   ir^Up,   rva ,   rue,   B,  and  rE. 
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The  next  logical  step Is  to find  the   Initial  conditions   on 

all variables  so that  the  differential equations  can be 

solved. 

Initial Conditions 

If the   numerical  Integration  of the  system  of differ- 

ential equations   Is to be  started from zero radius.   It   Is 

necessary to have  a means   of  computing the  numeric values 

of all variables   on axis.     Some   of the variables are   zero 

by symmetry»   those   others  which are  not arbitrarily con- 

trolled must  be  analytically derived.     Then standard 

numerical methods   of solving first   order simultaneous 

dlffez'entlal  equations   can be  used  to carry  on  the   Integra- 

tion away from the  axis. 

Some   of the   initial  conditions are  immediately evident 

from symmetry.     Recall that  the   radial and azimuthal veloc- 

ity terms are  averages,   or drift  velocities,   referenced to 

the  axis.     Then on axis  all  the  velocities are   zero.     The 

electric field must be  zero  on axis  by symmetry also. 

Although the  azimuthal velocities  at  r=0 must  be   zero, 

the   angular frequencies   of   rotation,   OJe   and OJ;  ,   can be 

finite.     Indeed  in Chapter III  It  was  suggested that  such 

frequencies  are  constant  across  the   plasma. 

Since   in Chapter III  the  magnetic field  Is  normalized 

to Its  axial  magnitude,  B is  unity  on axis.     Recall the 

assumption that the  real value   of  B on axis,  B«, ,   can be 

arbitrarily  Imposed.     It  was  also assumed that  the  two 

U5 



GSP/PH/69-7 

distribution temperatures,   Te   e.nd T. ,   are   known and are 

uniform  across   the   plasma. 

The  electron and   Ion number densities,   n    and  n   ,   are e 1 
the   remaining Initial   conditions.     Let   us   seek algebraic 

solutions for r     and n.   by  solving simultaneously  the 

differential equations   as   they   can  be   written   or.  axis. 

First  multiply Eq   (55)   by  r. 

P   +•   r    dn<s.   + jr_ dvr   =  jr^   Se. 

Take   the   limit   of   vr/r as   r goes  to  zero 

JLum   _Vr  =   dvrXar    =  civr 
•     r        dr/dr dr 

(6l) 

(62) 

(Ref  I^i262)..     Since  dne/nedr must   be   finite   on axis, 

second  term In Eq   (61)   Is   zero on axis.     Then 

3. Vr   =    Se- 
r He 

Reduce  Eq   (56)   to an algebraic equation with no v     or 

terms  by use   of Eqs   (6l),   (62),   (63),   and 

Ve 

the 

(63) 

VJUe. = 

The   result  is 

H-   Lne 
Se -ll 

=   Luc   -    m. 
r 

where  B has been set equal to one.     Similarly for the 

distribution 

(64) 

(65) 

ion 

^6 



GSP/PH/69-7 

4-    Ln; 
Si =   uüi    -i-   uü; + 

(66) 

At  this   point   It   Is   convenient   to make  a   change   of 

variable   for the   purposes   of  the   solution for   Initial  condi- 

tions.     Define  as the  difference   between densities 

Also define   an average   density 

(67) 

n =[2ni +■ nej/^. 

As   In Eq   (62)   when  r  goes   to  zero, 

JL^ _L = d_L 

(68) 

(69) 
r—»o   r 

Therefore  Eq   (60)   becomes   on axis 

r 
m; 

ZeB0" 
Define for subsequent  use 

£ = m, 
ZeBo^ 

z5 
(70) 

(71) 

Turn to Eqo   (53)   and   (54)   to see  If expressions  for 

(.Oe   and   LO\   can be  derived.     Using  the  definition  of   Cfe , 

Eq   (64),  and the  initial value   of  B,  Eq  (53)  becomes 
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me 
-    F< c 

Z HaV, 
(72) 

Assume   In  the   normalized   expression  for Pc   In Table   I  that 

the   first   power  of  the   difference   (UJe  - CO; )   Is  much 

greater than any  of  Its  higher powers.     This  assumption 

will be  verified when   Cue and   OJi  are   solved  for.     Then 

approximate ].y 

Fc =   Cf Znine   [vUe -U)i] (73) 

Cf   includes all  the   constants  in the   first  tez-m  of the 

series   of  the   normalized expression for Fc.     A  glance  at 

Appendix D  shows   that   in  a  strict   sense   an  unknown,   ln(n   ) , 

is   thus   included   in Cf,     However,   It   happens   that  the 

normalization   of  densities   causes   ln(ne)   on  axis  to t>e   very 

near  zero.     When the  actual method   of   computing the  axial 

rig   and n^   is described,   it  will   be   shown how the  value   of 

ln(ne)   is  corrected  in the   coefficient  Cf. 

Using the   change   of  variable   previously  defined. 

Assume   for the   moment  that   the  relative  difference  between 

Zn^   and  rig   is   so  small  that 

/* 
« n (75) 

This  approximation will  be  validated.     Therefore 
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Then using Eq   (63)   solve  Eq   (53)   for   C^e 

UÜ,»   = i- ^ [ Z. S.       Se. J     n 
8l££   4- H-Cf  r_!_ -4-   m^ _!_] n^ 

Similarly  from Eq   (S^)   ^O;   on axis   Is 

-H JGQt 
UJ, =  m. 

^   . f-J U   n3- 
. j: c-f Izs.    SJ 

[1 
2 jnt  4- 4-Cf r_J_ +• jns. _L_]    n2- 

m, LSe       m;  Si J 

The   assumption made   In Eq   (75)   also allows   the 

following 1 

Expand  this  result   In a  binomial  series 

=   1 4-    n    +   "i       n      +  • ■ • I 

Invoking Eq   (75)   again, 

r\t
A rv 

n 

+ ./£. 
p. 

Similarly for n^ 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 
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Table   II 

Desree   of  Term Coefficient 

9       „ f r* ZSLt fJ. ~ ' t 

8 0 

?       B£CEI\+ mi\Im* L+ L\ + i2fcz (&*+ + ^(s* +-2±-s* 

A     ,ir fm*Lti\fsl.MiSt] - ±rx(-L-Ltfs: +■ 5/) 6        30U5/5j{    ^   /     I^^SySji J 

Ö 
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_L_   ~    _L_ 
n.1        nx n ^ (82) 

2 2 These   approximations   can  "be  used   to  replace   n       and  n.      In 

Eqs   (65) and   (66).     Eq   (70)  gives E/r  In terms   of   /? and  a 

constant.     Thus  Eqs   (65)   and   (66)   can both be   solved  for 

P  In terms   of   n,   (jüe ,   CD;,  Se,   smd  S^,     Eq   (65)   la  solved 

for   J0 below as   an example. 

f - -.\LnJ. —   z-— 
4-    n3 Zme 

If the   solutions  for   O are  equated,   a ninth degree  poly- 

nomial  in ncan be  written.     Table  II   is  a list   of the 

coefficients   of  each power   of n. 

There   are   methods   of   solving for  the   roots   of  poly- 

nomials  of any degree   (Ref  IO1I6).     However,   it   is not 

necessary to solve   for all   nine   roots   of   the   polynomial. 

We  are   Interested  only  in those   positive  roots  which 

correspond  to an unnormalized density   on the   order of 

lO^Om-^.     it  can be   shown  that these   roots   can  be  found 

directly. 

Approximate   Solution.     Instead  of trying to solve  the 

entire  ninth order polynomial for all nine  roots   of n let 

us  seek an approximate  solution for the  root,   or roots,   of 

interest.     Note   that  the   coefficients   in Table   II are   in 

terms   of Cf, «f ,   Se,   and Si.     Cf  and   £   are  the   normalized 
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coefficients   of  the equations  for Fc  and d(rE)/dr, 

respectively,     Se and SI  are  the normalized  source  terms   on 

axis.     It  Is very Interesting to Invent a numerical example 

which demonstrates how the   solution  for n depends   on these 

source   terms. 

Suppose  that  the   unnormallzed  source  terms  are   on the 

order  of  10  °m"-vsec.     That   is,   if we   begin with no density 

at  all  and  assume  no diffusion away  from the   region  of  the 

axis,   in ten seconds the  number densities  of  both electrons 

and   ions   would  be  about   10     nT^.     Suppose  also that   Se   and 

Si differ by   one   percent  in magnitude.    At  this   point  we 

will not  specify  which is  larger.     Let B0 equal  one  kilo- 

gauss.     If now the  source  terms  are  normalised,   and  put 

into the  expression for the   coefficients in Table   II,  the 

non-zero  coefficients  assume   the  following approximate 

value si 

Degree   of Coefficient Value of Coefficient 

9 -1012 

7 1012 

6 10-9 

5 106 

4 10-3 

3 10-13 

2 -10-15    . 

0 10-37 
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Note   that   the   ninth degree   coefficient   Is  the   only 

negative   coefficient.     An examination  of  Table   II  shows 

that  this   coefficient  must  always   be  negative.     The   other 

coefficients  are  all  positive.     Since   only  positive  roots 

of  the   polynomial  interest  us,   the   magnitude   of   the  ninth 

degree   term  of   the   polynomial must  always  equal  the  magni- 

tude   of  the   sum  of   the   other nine   terms   if  the   polynomial 

is  to sum to  zero.     For the   set   of  values   Just  computed   It 

is evident  that   the   seventh and  ninth degree terms are   by 

far the   largest   terms   in the   polynomial.     To illustrate, 

suppose  we   approximate  the   polynomial as  follows i 

-lo'V-h IO'V-O ^ 
The  solution  is   obviously n equal  to about   on?.     Hence   for 

this  root  the   other terms   of  the   polynomial are   indeed 

small by  comparison and  can  be  neglected.     This   root  trans- 

lates to an unnormalized average  density  of  about  10 "m"-', 

which is  about  the   size   of number densities   of  interest. 

Therefore  the   source   terms  chosen for this  example  at   least 

fall  in the  neighborhood  of   interesting oases. 

For specified  conditions  very different  from those   of 

the above example,   the  approximations  made   should  be 

checked  for validity.     Nevertheless,   if  the   approximations 

do hold nearly  as  well,   an approximate   expression for n^   is 

then available   from the   ratio of  the   seventh to the  ninth 

degree  coefficients   In Table   II.      It   is   interesting to 

examine   this  ratio,   using  only the   first  term of   the 
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seventh degree   coefficient   since   it   is   much  larger than the 

other  term. 

sn + ^i 
n   =        L        zimeJ 

me. 

C-f s. 
Z.inne.J    m. 

I: 
(85) 

Neglect  terms   of  order nie/m^   compared to  one. 

nx~  8 oe 
zCf r S&-ZS\ i3- (86) 

L zs-.    J 

Note that n is inversely proportional to the relative 

difference between Se and ZS^ and proportional to the 

square   root   of  the   source   terms. 

It   is  to be   stressed  that  the   above   approximate  ' 

expression for n2  may not  be   valid  for all  Imposed   initial 

conditions.     It  will  be   used   only  as  a means   to estimate 

the   root   of   interest.     The   complete   polynomial,   without 

approximations,   should be  computed  to insure  that   it  is 

near  zero.     If   It  is,   the   solution for n can be   refined   by 

iterative   correction schemes.     The  Newton-Raphsön method  of 

finding  a  root   of  a  polynomial   is   quite  useful  and  quick 

when a good estimate   of  the   root   is   available   (Ref   10:630). 

It  is well suited to Iterative   computer techniques. 

The   Cf used in Eq   (86)  to compute  the first  trial 

value  for n was  computed with ln(ne)  equal to zero.     Then 

in every   Iteration of the  Newton-Raphson method  ln(n)   should 
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be  used   where  ln(ne)  appears   In Cf.     Lndi^)   Is  not   one   of 

the   larger  terms   In ln(.A.).      (See  Appendix D. )     Then the 

very small difference  between ln(ne)   and ln(n)   cannot  have 

a great  effect   on  the  accurate   calculation of  C^,     Hence 

rapid  convergence   of the   Iterative  solution for the  root   of 

Interest   Is   realized. 

Origins   of  Error 

It   Is   prudent  at this  point   to look at the   physics  of 

the   situation and   search for any  arithmetic  operations   in 

the  eight equations which might  Introduce error.     Since  the 

Intent   Is  to use   numerical  Integration  techniques  to solve 

the  equations   In Table  I,   It   Is   imperative  that the differ- 

entials   chosen In this  chapter be   computed as  accurately as 

possible.     Therefore  It  is  Interesting to study the «ffeots 

of  the  error associated with each  term  of  the  differentials 

and  to Investigate   how such errors  might  be   Induced. 

In the  electric field equation the  derivative  depends 

on the difference   between electron and   ion charge  densitiest 

both are   Integrated  variables  and   thus   subject  to error. 

Any  computer  language  has   only a finite   number  of  signifi- 

cant  digits   it  can assign to any  single  variable.     Tn 

Fortran  IV,   for example,   the  maximum number of  digits  avail- 

able  to any real variable   is  sixteen.      (Hef   9i6)     If  Zn. 

and Hg  are  nearly equal  on the  average,   their difference 

may not appear except  In the   last  few significant figures 

of either.     The  accuracy  of   rE  can thus   be  severely 

limited.     It   is expected.   In fact,   that   the  net   charge 
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densities In a plasma in equilibrium is nearly zero. The 

only way of determining if it is feasible to calculate rE 

by Eq (60) is to make some representative calculations of 

the difference   between Zn,   and ne. 

Recall  the   assumption  that   the   axial  magnetic  field   is 

to be   imposed.     The   electric  field   can  arise   only  from the 

relative   motion between the   two  oppositely   charged  distri- 

butions.     The  average  azimuthal rotation  of  a charged 

distribution results   in a  radial force   on  the  distribution 

In the   presence   of  an  axial  magnetic  field.     Because   the 

electrons  and   Ions   are   oppositely  charged,   the   radial 

forces   thus  generated  tend   to drive   the   two distributions 

In  opposite   radial  directions.     A radial  electric  field 

appears   to prohibit   this   separation.     Thus   a  cancellation 

of  force   terms   is   involved   in  the  terms   (E  + vffB)   and 

(E   + u^B).     The   potential  for a  prohibiting  loss   of  accu- 

racy  in either  or  both  of  these  Lorentz  force  terms  exists 

If  E  is  nearly equal   In magnltvde  to either v^ B  or u^B. 

Three  terms   in the   eight  differential equations  have 

been identified as  potential sources   of error.     It   is 

expected  that the   calculation  of  these   terms   might   require 

computing a relatively small difference  between two nearly 

equal numbers.     The  loss  of  significance  amounts   to a loss 

of  accuracy in these  differences  in computer calculations. 

The severity of accuracy loss in the sensitive terms 

cannot really be Judged until accurate numeric values for 

the  variables   involved   in each term are  available.     Nor can 
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the  effects   of  the  error  In these   terms   on the   accuracy   of 

the   differentials  be  determined  until the   relative   magni- 

tudes   of   all the  terms   in each equation can be  estimated. 

Numerical Example.     To ascertain whether the   above 

problems   can arise   it   is  again useful to go through a 

numerical example.     Suppose   that  a  cylindrical  plasma 

sustains   a voltage   as  high as   10,000 volts   across   a  radius 

on the   order  of  10  cm.     Suppose  also that  the  electric 

field  strength  Is  approximately  linear with radius.     Then 

at   5  cm from the   axis  the  electric  field  strength   is  about 

1000 volts/cm.     This   Is  quite   a high electric field for an 

ionized  gas   to sustain. 

From Eq (29) the difference between the unnormallzed 

electron and ion densities corresponding to this electric 

field is about 2.2 x lO^nr^. If we assuir that the mean 

particle density is as high as 1020m~3, the relative dif- 

ference between Zn. and rig is about 10~5. For smaller 

electric  fields  this  difference   is  even smaller. 

Note   that  by the  equations   chosen as  solutions  for 

the  derivatives   of  rig   and  n*   the  densities  are   solved for 

separately.      It  then becomes   necessary  to compute   their 

difference   in the  electric field equation.     So  In computer 

calculations,   where  the  densities  can  only  be  known to a 

finite  number  of  significant   places,   their difference   is 

known accurately to fewer significant   places  than either 

density  because   the  first  few significant  places  are   can- 

celled  out.     In the  example   above  five  significant  figures 
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are   lost  every  time   the   difference   Is   calculated.     For 

smaller electric fields   or higher average  densities  the 

relative  differences  between electron and   Ion densities   Is 

even smaller. 

It   Is  possible  from the   Initial  condition equations 

derived earlier to find an analytic expression for the 

term   (E + v^B)   on axis.      Immediately,   since   B  on axis   Is 

one,   the   term   Is   simply   (E  +  Tcoe),     Let  us   find an expres- 

sion for this  term on axis and find  its  size   relative  to 

ve.     The   conclusions  can be  qualitatively extended for the 

rest   of  the   plasma and  to the  equivalent  term  in the   ion 

equation. 

By Eqs   (70)   and   (71),   in terms   of  normalized variables. 

a / 

Then the  term  of   Interest   relative  to Vg   is 

E ± ruüe    = fz JUs^riue2-ruu« + ru3e.]/ruue. 

(87) 

ruue 
(88) 

mi 

Recall that   We.   has  been r.ormallzed to the   Ion cyclotron 

frequency,  and  that   It   Is used here as  an average frequency 

of   rotation for the  entire electron distribution.     Hence 

the   ^e   above  is  less  than one.     Thus,   since  me   is much 

less  than m^,  E and  r Oj» are nearly equal  in magnitude,  and 

there   is a cancellation of  the first  significant figures  In 
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taking their difference.     Similar results  hold for the 

term   (E  + u^B). 

The   significance   of  the  above examples  and arguments 

Is   that  there   can easily  be   a severe  loss   of  accuracy  in 

computing  the  first  derivatives   of  r^   and n^.     Recall that 

significant  figures  were   lost   In the electric field   equa- 

tion.     Now we  find that  additional significant  figures  can 

be   lost   In the  Lorentz force   terms.     Thus  ne   and n.   cannot 

be   accurately  computed  to even the   limited number  of   places 

available   In the   computer. 

It   seems then that   some  means  should be   sough*,  to 

solve  for the  difference  between Zn^  and  rig  directly  rather 

than  subtracting- them every  time   the derivative   of   rE  Is 

computed.     That   Is,  P should  be   chosen as   one   of  the  vari- 

ables   of   the   system such that   It   can be   sc'   ed for dltectly. 

The   next   section discusses   such a  change   of   variable. 

Change   of  Variable 

It   is   suggested   In the   last   section that   instead  of 

Integrating for rig  and  n.   It  would  be  wise   to solve   direct- 

ly  for the  difference   between them.     It  was  shown  that a 

severe   loss   of accuracy  could ensue  from subtracting the 

two densities.     To solve   for the  first  derivative   of   0, 

d/3 . z .dni.- ins» 
dr dr dv- ^89> 

By definition of n we   could  choose   It  as  the   other density 

variable. 
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dr.   -     I 
dr X 

Z.   aHi   4-   one. 
dr d r 

(90) 

Thus,   In  principle,   we   need   only  add   or subtract  Eqs   (56) 

and   (57)   to malce   the   change   of  variables.     Howavar,   note 

that   fchers   Is  no  cancellation  of  any  equal  terms  accom- 

plished by the  subtraction of dne/dr from Zdnj/dr,     Thus 

nothing has  been done  to eliminate   the   large   common factors 

shared   by  Zn^  and  ne. 

It   has   been  shown  then  why  an  obvious   change   of  vari- 

ables does  not   remedy  the   basic  prcblen with this  set   of 

equations.     The   problem  is  the   loss   of  accuracy  incurred   by 

subtracting with the  computer nearly equal terms.     The  ney.t 

section explains   how this  type   of  error  makes   impossible 

the   numerical   Integration  of differential  equations. 

Numerical  Integration 

Many approximate   methods   of  numerically   Integrating 

the  general first   order differential equation have been  In- 

vented.     The   oldest  and  simplest  are  Euler's   method  and   its 

modification   (Ref   15i310).     They both essentially make 

linear extrapolations  from one  known value   of  a function to 

a new value  by multiplying the derivative   of  the function 

by an increment  of  the   independent variable.     More elegant 

methods such as Approximating Polynomials   (Hef  15058),   and 

Milne   (Ref  15*353)  employ the extrapolation method more 

cleverly,  but  the   use   of  them can also be   limited by this 

approximation. 
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The   Milne   method   Is   an example   of  the   general 

predictor-corrector scheme.     The   two basic equations   it  uses 

are 

Predictor.        yn + , =   ^  + ^     ^.^/^ ^ ^       (91) 

Corrector! M+i ~   /n-l T       /n-l /n /r>*-l     (92) 

where   yn+i  is  the  value   of   the  dependent  variable   being 

sought.     The  subscripts  denote  the  number  of   steps  by which 

the   indeper.dpnt variable   has  been  incremented.     The  primed 

quantities are  the   first  derivatives   of  the   dependent vari- 

able.     The   predictor equation provides  an estimate   of yn+i 

at  the  next  inoi«»rented value   of  the   Independent  variable 

based   en the' behavior  of   the  function at  previous   incre- 

ments.     The   corrector equation calculates  y   .,   over and n+x 
over until successive  answers  agree   to within some  accepted 

error. 

Note  that   in the   predictor equation the   values  of y at 

four  previous   Increments   are   required.     Some   starting solu- 

tion  is  usually required  to calculate   the  first  three values 

of  every dependent  variable,   and,   of  course,   the   initial 

conditions for all variables  must be  known.     Runge-Kutta  is 

a very  popular method  of   obtaining the   three   starting 

values  from a knowledge   of  the   initial  conditions:     Runge- 

Kutta is essentially derived from a truncation of  the 

Newton series for forward  ?    ^erpolatlon   (Ref  15<56),   and 

therefore   Imposes  the   approximation of  linearity. 
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The   Hunge-Kutta method  was   applied  to the   eight 

differential  equations  for several  sets   of   Imposed   condi- 

tions to  obtain the  first  three   solutions  for all  the 

variables   selected  earllert   and   the   Kline   method  was  applied 

at  the  fourth  step as  explained  above.      Initial   conditions 

were   computed  as   described  earlier  In  the   chapter.     As   the 

corrector equation  was  applied  repeatedly  at  the   fourth 

step,   the   values   of   the  variables  did  not   converge,   but 

rather  Increased   or decreased   beyond   reasonable   Zlmlts. 

Within a few  Iterations  the  two densities   decreased   by 

several  orders   of  magnitude,  and  E and  the  four velocities 

Increased  In a like  manrur. 

Apparently the   sensitive  differences   in  the  density 

equations,   and  the   electric  field  equation were   computed 

erroneously  due  to  small errors   in the   terms   Involved   in 

the  differences.     The  derivatives   of   these   terms  were   then 

inaccurately  calculated since  the  differences  occurred  in 

the  last  significant  figures  of  the  variables.     The 

repeated  application   of  the   corrector equation  served  to 

amplify the  errors   rather than  Improve   the   predicted  values 

of  the  variables. 

Series Ex pernsions.     Suppose  the  exact  initial values 

of all non-zero variables were   available.      It  might   then   be 

possible  to expand   all variables  about  the  axis   in alge- 

braic series  in terms   of r.     If  the  variables  could  be 

expanded to enough terms so that very accurate  values   of 

each a short distance   off axis  were  available,  the  three 
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starting solutions   could  be  had by   computing each series at 

three  different  radii. 

The Taylor Series   method   (Ref   15i328)   is   often used to 

begin from Initial   conditions  the   numerical  solution  of  any 

order differential  equation.     It   Is  based  on  the  expansion 

of   the  dependent  variables   Into  Infinite   series   in  powers 

of   the   Independent   variable. 

y; (*) « yi (Xo) + yi,cxd)[x-x0]+ .VLCXO^X-XJV ..     (93) 

where y^{x0)   Is  the   Initial condition  on y.   at x   .     The 

primary limitation   on this  method   is  usually  the  excessive 

labor  Involved   in  solving algebraically  for  the  higher  order 

derivations.     However,   if   (x-x0)   is  kept  small,  a variable 

might  be  represented accurately by   only  two   or three  terms 

of  a Taylor series. 

The  usual   procedure   of  computing the   coefficients   of 

the   (x-x0)   terms   is  to substitute  the  truncated series  for 

each variable   into the   set  of differential equations  and. 

solve  simultaneously for the  coefficients.     Each differ- 

ential equation reduces   to an algebraic  equation which  can 

be   subdivided  into equations   of  the   coefficients   of   like 

powers   (x-x0J.     There  are  always  as  many  coefficient  equa- 

tions  as   coefficients   if   there   is  a differential equation 

for each variable.      In  principle   the  set   of   simultaneous 

coefficient  equations  can always  be   solved,   often 

numerically,  for the  numerical values  of  the   coefficients. 
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Assume   then that   It   Is   possible   to expand each  of   the 

variables,   using n and ^  as   density variables.   Into  series 

which represent the  variables  a short distance  from the 

axis   to greater accuracy  than  the   digital   computer   is 

capable   of   carrying.     Each variable   could  be   computed 

analytically  to some  distance   R,,     Then another expansion 

could be   made   about  R, ,  and a whole   new set   of   coefficients 

for each variable  simultaneously computed.     The  new expan- 

sion  could be   checked  by  calculating the   variable   back 

toward the  axis and  comparing the  radial  profiles   of  the 

variables  expressed  by both series.     This   process   could   be 

extended   In  short   segments   to any  radius.     A  possible 

limitation would be  a region where  all the  variables  be- 

come  rapidly changing functions   of   r,   in which case  the 

number of  terms  in the Taylor  series necessary to repl«- 

sent  each variable  accurately  might   be   prohibitive. 

Let   us  then  investigate   the   possibility   of  applying 

such a contrived method to the  eight  differential equa- 

tions.     Immediately,  the  equations  are  non-llneart   that   is, 

products   of  variables  appear  in  them.     So the   simultaneous 

coefficient equations would be   non-linear.     Although the 

methods  of  solving simultaneous  linear equations are  wall 

established, .the  generalized methods   pertaining to non- 

linear equations  become exceedingly  complex for more  than 

Just two or three equations. 

However,   the   identical problem arises which prevented 

the   change   of  variables  to n and   /9 In the   last  section. 

6^ 



GSP/PH/69-7 

Note  that  the  coefficients  of  the n and JP series would 

still have  to come   from the  simultaneous  solution  of 

Eqs   (56)  and   (57).     It was  found before  when solving for 

d/Vdr that  no cancellation of  terms   In Eqs   (56)  and   (57) 

could be  accomplished.     Hence   the   large   common factor 

between r^  and n.   could not be  eliminated.     This same 

problem would  appear in the  simultaneous  solution for the 

series  coefficients   of /? .     Terms  like   (E + TfeB)  and 

(E + u0B)   would  only be translated  into terms  Involving 

the  coefficients  of E,  Vg ,  u^,   and B.     The difficulty of 

computing relatively  small differences   between large  num- 

bers would  remain.     This dilemma was actually verified by 

expansion   of  all  variables  as  described  above. 

In this, section it has  been shown how even small 

errors  in the  variables make the  numerical integration of 

the equations  by such methods  as Runge-Kvtta and Milne 

Impossible.     The Taylor method has been proposed and  It  has 

been demonstrated not  feasible   also. 

Summary 

This  chapter deals essentially with the failure  to 

find a method  of  accurately  integrating the equations 

derived  in Chapter III.     A set   of variables  is first  chosen 

from which the  variables  of   Interest  can be  algebraically 

computed.     The   sources  of error are   identified  in the  terms 

of the  differentials   of these  variables  so that  the  reader 

can understand the  purpose   of  the  subsequent arguments. 
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The   differential equations   are   written for  r=0,   and 

expressions  for  Initial  conditions   on all variables  are 

derived  from them.     Such solutions  are   required  before 

numerical  integration methods  can be  applied.     The   initial 

condition equations  are   used,   with some   typical  values   of 

the   specified  constants,   to  Illustrate   the  severity  of  a 

major   obstacle  to th«»  solution  of  the  equations  away  from 

the axis.     It  Is found that a property  of the  system of 

equation  is  the  very small  relative  difference     on axis 

between ne   and Zn^. 

The   results   of  the  application  of   several  common  inte- 

gration methods  are   reported.     The  behavior  of  the   variables 

under the  Milne  iterative   integration scheme   confirms  that 

some   of  the  differentials   are   subject  to a severe   loss   of 

accuracy.     The  electric field equation is most   immediately 

affected  by the  loss   of accuracy  in the  difference  between 

the   particle  densities.     The  error  in E  causes  the  differ- 

entials   of  the  density terms  to be  erroneously computed. 

The  most   important  reason for this   is  the  equality  of  v B 

with   (-E),   and u B with  (-E).     The  effect  of error  in the 

terms   is  amplified by the   cancellation  of their most 

significant   parts. 

No rearrangement  of  the  differential equations  could 

be found such that  the  cancellation of the common factors 

between nearly equal terms  can be  performed analytically. 

The equations  came   originally from the  separate application 

of the Boltzmann equation to the  electron and  ion 
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distributions.     It  Is  this  separate   consideration  of   the   two 

types  of  particles which causes  the dilemma at hand.     The 

two distributions  cannot  be   handled  separately.     The  elec- 

tric field equation and the  force  term Fc  unavoidably tie 

the  two together. 
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V.     Conclusion 

This   chapter  proposes  1*6commendations   for continued 

study  In the  areas  discussed   In Chapters   II   through  IV. 

Plans  have  been already  made   at  the   Plasma  Physics  Research 

Laboratory  of  the Aerospace   Research Laboratories   to formu- 

late  methods  for overcoming the  difficulties  explained   In 

Chapter  IV,   and these   plans  are  reported. 

Dlsplaoed-Coll Conf1gurat1on 

The   study  of the  magnetic field  of  the  dlsplaced-ooll 

configuration as  reported  In Chapter  II  could  be   greatly 

expanded.     It   Is limited  In validity by the  approximations 

of   Infinitely-thin colls   In an  Infinitely extended,   straight 

arrangement.     It would  be  useful  to devise   computer programs 

similar to those described  In Appendices  B  and  C  to map the 

magnetic  field   of a  system of   real  solenoids  arranged  as   In 

Pig.   1.     The   general  solenoldal  magnetic  coll  can be 

treated mathematically   Just  as   the  single   loop of   current. 

Accurate  and  convenient   computer programs  have  been written 

to compute  the  magnetic  field   of  round colls  anywhere   out- 

side  the   current windings   (Refs  3 and ^). 

Besides   the additional  parameters   introduced   in  using 

real  coils,   new variables  would  arise  due  to the   toroidal 

arrangement.     The curvature   of the axis about  which the 

coils  are   placed would  obviously destroy the   azimuthal 

symmetry  of  the  magnetic field.     The  gradients   in field 
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strength transverse  to the  general direction  of  the  mag- 

netic field  should  Increase.     The   most   profound effect 

would   probably be   on the   cyclic  rotation of  the B  lines. 

In Chapter II   It was  demonstrated  that  such charac- 

teristics  as   longitudinal and   transverse  gradients   of 

magnetic  strength,   the  ratio  of  transverse to axial B 

vector components,   and the  rotation  of  B lines are  func- 

tions   of   the   spatial parameters   of  the   coll  configuration 

of  Fig.   2.     Very broad  conclusions  were drawn about  the 

feasibility  of  selecting specific field  characteristics  by 

adjusting these  spatial   parameters.     However,   should a 

toroidal device   such as  that  depicted  In Fig.   1 be  found 

promising for  plasma containment,   some   procedure   will  be 

needed  to design magnetic fields  with specified  charac- 

teristics. 

The   choice   of  exact   sizes  and  shapes  of   solenoids  are 

somewhat   limited by what   Is  commercially available.     The 

designer would  then have   to rely  primarily on the   spatial 

arrangement   of  the   colls.     Computer techniques   probably 

would  be   the  best  tools  for finding directly what   configu- 

ration  of  available  solenoids  would yield a magnetic  field 

most  nearly  like  that desired.     Many  of  the  computation 

techniques developed  In Appendices A,   B,   and C would be 

adaptable   In such procedures.     Another thesis  done   In 

cooperation with the  Plasma Physics  Research Laboratory 

reports  the  attempts   of Capt.   D.   B.   Taylor to design coll 

configurations  generating  specific  magnetic fields  by 
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using standard  colls   (Ref   17il). 

Indirect  Solution  of Differential Equations 

It became  evident   In Chapter  IV that essentially   only 

one   difficulty  prevents   the  direct  numerical  Integration  of 

the  differential equations  derived  In Chapter  III.     It   Is  a 

characteristic  of  the  nearly equilibrium plasma that the 

relative difference  between  Ion and electron number densi- 

ties   Is extremely  small.     No change   of  variables   could  be 

found  to eliminate   the  necessity  of  subtracting the  nearly 

equal densities.     The  loss   of accuracy  In the  differences 

Is  reflected  In the  erroneous  calculation of   Important 

differentials, 

Lt.   Col.   Wlngerson has   proposed an alternative  to 

solving the equations  simultaneously from Initial  conditions 

only.     It  Involves  a mating  of  theoretical  prediction and 

experimental verification.     Instead   of   trying to compute 

the  difference   between Ion and electron densities.   It  Is 

proposed  that  the  difference   be   Imposed   on the  equations  as 

a radial function.     This  would be equivalent  to specifying 

the  radial electric  field.     On the  basis   of  this  function 

and  the  arbitrary  Injection  of  charged  particles  the 

system  of differential equations might  be   solved  for the 

variables  of Interest. 

These variables  can also be  Indirectly measured In 

real plasmas.     Plasma probe  technology Is  such that  parti- 

cle densities and rotational velocities are measurable to 

at least an order of magnitude   (Ref 6il).     From a 
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knowledge   of  the  radial  density  profiles   the   continuity 

equations   oan be  used  to  compute   the  radial  drift  veloci- 

ties.     Although the  magnetic  strength in a hot   plasma  cannot 

be   measured directly,   the  difference  between the  field due 

to a  set   of   magnetic   colls   In a vacuum and  In the   presence 

of  a  plasma can be  predicted   (Ref   12i73),     So the   strength 

of  the  magnetic field associated  with a plasma can be   cal- 

culated   Indirectly,     Temperatures   for both electrons  and 

Ions  are  also available   by  probe   measurement. 

Thus  all  the  variables  which appear  In the  differential 

equations   can be  measured  In a real   plasma.     Careful  com- 

parison  of   the   mathematical  solutions and  the   measurements 

could  show whether the  electric field Imposed  mathemati- 

cally   Is  consistent with reality.     The most  Important 

Indication would be  whether the   shape   of  the   radial electric 

field   profile   Is  reasonable,   rather than whether the   abso- 

lute   value   of   the field  at  any  point   is exact.     The   contour 

of  the  electric field  would  Indicate  what   type   of  series 

expansion would  represent   the  field  most  accurately.     Then 

as   suggested   In Chapter  IV  all   other variables   could   be 

expanded  In series  consistent  with the electric field 

function,   and  the  entire   set   of  equations   solved  simultane- 

ously  for the   coefficients   of  each variable's  expansion. 

The   Plasma  Physics Research Laboratory  has   constructed 

an axisymmetric  plasma containment  device   called  the  ELMAX. 

ELMAX  Is  equipped with Langmuir  probes and  the   associated 

electronics  to measure   radial  profiles  of   plasma 
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temperatures,   number densities,   and rotational frequencies. 

Lt.   Col.   Wlngerson  plans  to use   the ELMAX  to obtain the 

measured  variables.     The  configuration  of  the  device   Is 

similar  to the   system hypothesized   In this   paper;   It   has  an 

axial magnetic field,   and gases  can be  added  to the  running 

plasma along the  axis   of  the  system.     Thus   the equations   of 

Chapter III   should describe  macroscopic  phenomena  In ELMAX 

reasonably well. 
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Appendix A 

Equations   of the  Dlsplaoed-Coll ConfIgurat 1 on 

Thin Loop Equations 

The  radial  and axial  components   of  the   B field  of an 

Infinitely-thin  loop of  current   In cylindrical  coordinates 

are 

Br = /£oX "-k-JoL^r-N-z^F" 

a 

(9^) 

(95) 
a.Tr    [[a+r^ + z.1] "4       [cL-r]2"-*-^ 

(Hef  20«155),.   where   the  axis  of  the   loop  Is the  Z axis  of 

the   coordinate   system.     The  azlmuthal  component   of the  field 

Is   zero by  symmetry.      "I"   Is the   current i   "a"   is  the  radius 

of  the   loop In meters i  and  K and E are  the   complete elliptic 

Integrals  of the   first and  second kind,   respectively. 

Normal 1 zat 1 on.     Let   us normalize   units  such that 

-4^l/277a Is equal  to unity.     Then B Is  a dlmenslonless  number. 

All  coordinates  are   measured as  fractions   of the   radius   of 

the   loop. 

Elliptic  Integrals.     The elliptic  Integrals  K and E 

are  defined  by the   relations 

k = de (96) 
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E =   /[l-^s.^e] ,/ade (97) 

where   k,   called  the  modulus   of  the   Integral,   Is  given by 

•h   = M-O-r '/a. 
(98) _ [a+ r] ^ + z0- 

The   oomplementary  modulus   ok   Is  defined  such  that 

CK1   H-    K"1" =   \ (99) 

The  elliptic   integrals   can be  expanded  into polynomial 

approximations   of various  numbers   of  terms.     Two expansions 
Q 

which are  within 2 x 10"     of   the   true  values   of K and E  for 

any given k are  given below  (Ref  1»591). 

(100) 

E[c-K| = [l -fC.CK"1 -1-CjCK1* +C3CKfc -VC^Ck8! 
(101) 

These  approximations are   useful  because   of  the   ability   of 

the  digital  computer to handle   such  calculations with great 

spaed. 

Singularities.     As mentioned above,   k must  be   less 

than one.     The   cylindrical  coordinates   corresponding  to k 

equal to  one  are  r equal  to one   and  z equal to  zero,   as   can 

be  seen  immediately  from Eq   ( 98 ).     These  are   the 
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coordinates   of  the  conducting loop Itself.     This  Is 

expected  since   any  conductor Is a singularity  In the  mag- 

netic field.     Otherwise  the equations  for Br and Bz are 

valid  for any   coordinates  r and  z,   r  not  equal to  zero. 

Superposition  of Coll Fields 

The   principle   of   superposition   is  exercised to find 

the  magnetic field at  any  point due   to the  fields   of a 

number  of   separate   coils.     Fields   of   several  colls   can  bo 

considered  together at   a  point  by  adding vectorally the   B 

vector from each.     This   Is most  conveniently accomplished 

by  adding parallel  components.     An  orthogonal coordinate 

system is  defined   in Chapter  II  relative  to the  coll con- 

figuration. 

Position Relative  to a Coll.     The   axial distance  from 

any  point  to the   plane   of each coil  Is  easily found.     It   Is 

simply the  Z coordinate   of the  point  relative  to the  system 

axes  plus   or minus an integral multiple   of  the distance 

between the   planes   of  the  colls.     The  X and  Y coordinates 

relative  to an individual coil depend  on the   position  of the 

center of  that   coil with respect  to the   system axes.     If 

the  transverse   coordinates  of  a point  are  X and Y,   the 

coordinates  relative  to a coll whose   center  lies at   "disp" 

off the axis«   and at  an angle   "alpha"   from the X axis are 

Xc = X - disp Cos aL 
(102) 

P )c =   /- disp  sin oc 
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Hence, the radial distance from the center of the col] to 

the point Is 

Thus the R and 2 distances can be found for calculation of 

the magnitudes Br and Bz of the field of any coll at a given 

point. 

Summation of Components.  The Bz components from each 

coll are added since they are parallel.  The Br components 

must be divided Into Bx and By components which are parallel 

In direction to the system axes. 

The directions cf the Br from the coils are radial 

outward from the centers of the colls to the point under 

consideration.  The Br are divided via multiplication by 

direction cosinest 

Kc. 

By = Br JL (105) 
Kc 

In summary, approximate expressions for the axial and 

transverse components of B for a single thin loop have been 

derived.  A coordinate system Is used as the basis for 

dividing these components into Bx, By, and Bz components. 

Thus the fields of separate colls are added veotorally at a 

point. 
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Appendix  B 

The  Subroutine  Field 

This  appendix  describes  a subroutine  called   "Field" 

which Is designed  to provide  the   magnitude and the direc- 

tion  of  the   magnetic strength vector B at any  point  in the 

field  of  the   dlsplaced-coll configuration.     The   origins   of 

the  requirement  for the  subroutine  are  detailed  In Chap- 

ter II.     The   objectives and criteria for design are stated 

here.     The  method   of  computation  Is explained,   and  operat- 

ing Instructions  are  provided.     Finally,   the effectiveness 

of  the  subroutine   Is evaluated. 

Pig.   8   is  a flow diagram of  Field,   and Pig.   9  Is  a 

listing  of the   computer code.     Table   III defines the 

Fortran variable  names  used  In Field, 

Objectives  and  Criteria 

Bm and Direction Cosines,     In Chapter II   It   Is 

determined that RTA,   the  ratio of  transverse  to axial 

vector components,   and the   uniformity   of  Bm,   the  magnitude 

of  B,   should  be   studied.     A^sA*  the   Integration  of  field 

lines  requires  the  direction cosines   of  B.     It   Is the   objec- 

tive   of Field  to supply Bm and the   three  direction cosines 

of  B at  any point   In the  generalized dlsplaced-coll 

c onf 1 gurat 1 on'. 

RTA Is the  square  root   of the   sum of  the squares  of 

the   transverse   direction cosines.     The   uniformity  of  Bm  can 
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(SUBROUTINE ^\ 
FIELD   J 

CYCLE-SPACE 
GAMM-O- 

FIND CENTERS 
Or BRACKETING 

COILS 

FIND POINT 
RELATIVE TO 
THE TWO COILS 

\CALL CEIPA  > 

COMPUTE BX. 
BY, BZ FROM 
LCTT COIL 

NO 

{     RETURN   J 

COMPUTE 
BM, DCO 

0 
FIND CENTERS 
Of NEXT TWO 
COILS OUT 

COMPUTE BX, 
BY. BZ FROM 
RIGHT COIL 

CALL CEIPA 

) 

Pig.  8.     Floir Diagram of Field 
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»IBFTC   FIELD.      DECK 
.    SUBROUTINE   FI ELD(CO.DCO.BMtSPACE.DlSP»ALPHA) 

DIMENSION   CO«3).DCO(3) 
ALPHAR«ALPHA/57«3 
TOL-.OOl 
GAMMABO« 
CYCLE-SPACE 
ENTRY   FUNCN.S.COtDCO) 

C   TEST   AXIAL   COORDINATE   OF   POINT 
IF    <CO(3)-CYCLE)    2»3.3 

C    IF   ANOTHER   LOOP   HAS   BEEN   PASSED.... 
3   CYCLE   «CYCLE+SPACE 

GAMMA-GAMMA+ALPHA9 
2   CHI«GAMMA 

PSI»GAMMA+ALPHAR 
C   FIND   Z   COORDINATES   RELATIVE   TO   NEAREST   LOOPS 

ZLEF«C0(3)-CYCLE 
ZRIT-ZLEF-SPACE 
BX«0. 
BY=0. 
BZ-O. 

C   FIND   X-Y   COORDINATES   RELATIVE   TO TWO LOOPS 
10   X   -CO<l)-DISP«COS<CHI» 

Y   «CO(2)-DISP»SIN(CHI1 
R2*X«X*Y»Y 
R»^QRTtR2) 
Z2-ZLEF»ZLEF 
T0P1-1,+R2+Z2 
T0P2-I1.-R2-Z2) 
BOT 1.SORT« (l, + R»»(l.+R»-fZ2» 
B0T2-Cl.-R)»(l.-R)+Z2 
A<«4.»R/« (l.+R)»<l.-»-R»-t-Z2) 
CALL   CEIPAiAtC.FEI.SEll 
BRl-(ZLEF/RL/B0Tl)«(-FEH-TOPl/B0T2«SEI» 
BZ1«(FEI+TOP2/BOT2»SEI)/BOTl 
x »co( n-oisp»cos(?sn 
Y   -CO(2)-0ISP*SIN(PSI) 
R2»X*X+Y»Y 
R«SQRT(R2) 
Z2-ZRIT»ZRIT 
TOPl-l.+R2t-Z2 
T0P2-«1.-R2-Z2) 
BOT 1-SORT ( (l.»-R)»(i,+R»+Z2> 
B0T2-(l.-R)»(X.-RI+Z2 
A<»4,»R/< (l.-fR»«(l.-»-R»-fZ2) 
CALL   CEIPA(AIC,FEI.SEI ) 
BR2-JZRIT/RR/B0T1)»    (-FEI ••TOPX/BOT2»SE I ) 
BZ2-(FEI*TOP2/BOT2»SEI>/BOTl 

Fig.   9.     Listing  of Field 
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eX»BX + Xl/RL»8Rl-»-X2/RR«BR2 
BY«By-«-Yl/RL»BRl + y2/RR«BR2 
BZ*BZ*BZl+BZ2 

C   TEST   SIZES   OF   AXIAL   CONTRIBUTIONS 
IF<B21-TOL*ÖZ)    2i.21t29 
IP(B22-TOL»e2J    22,22.29 

C   IF   MORE   COILS   NEED   TO   BE   CONSIDERED.... 
29   ZLEF-2LEF+SPACE 

2RIT-2RIT-SPACE 
CHI-CHI-ALPHAR 
PSI-PSI+ALPHAR 
00   TO   10 

22   CONTINUE 
BM-SORT<BX»BX+BY»BY*B2*BZ) 
DCOd )»BX/eM 
DC0<2)-BY/BM 
0C0(3)-BZ/BM 
RETURN 
END 

Fig.  9.     Listing of Field,   (oont.) 

82 



GSP/PH/69-7 

Table   III 

Definitions  of Fortran Variables  In Field 

Fortran Nan» Definitions 

AK 

ALPHAR 

BX,   BY,   BZ 

BR1,   BR2 

BZ1,   BZ2 

CHI,   PSI 

CK 

CO 

CYCLE 

DCO 

FEI,   SEI 

GAMMA 

N 

R2,   Z2 

HL,   RR 

S 

TOL 

TOPI,   TOP2, 
B0T1,   BOT2 

Modulus  of  elliptic  Integrals 

Alpha  In radians 

Vector components   of  B 

Transverse   terms   of  B from a coll 
pair 

Axial  terms   of B from a coll  pair 

Azlmuthal   coordinates  relative   to a 
coll  pair 

Complementary modulus   of elliptic 
integrals 

3-matrlx  of   position coordinates 

Integral multiple   of  space 

3-niatrlx  of direction cosines 

Elliptic  Integrals,  first  and 
second  kind 

Integral multiple   of ALPHAR 

Number  of  dimensions   (3) 

Squared  radial and axial distances 

Radial  distances  from  point  to  coll 
centers 

Integral length of B line 

Parameter  of  accuracy  required   of 
Bz term 

Terms   In the  equations  for Br,   Bz 
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Table   III   (cont. ) 

Definitions   of Fortran Variables   In Field 

Fortran Name Definitions 

X,  Y,  ZLEF,   ZRIT Field  point  coordinates  relative   to 
a  coll  pair 
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be   studied by  computing Bm as  a function  of   changing  radial 

and axial  position.     For  convenience   and  generality,   there- 

fore.  Field  Is  written as  a subroutine  to be   called by  any 

program which requires  the   magnitude   and direction  of  B. 

Field  is  designed  to provide  for the   control of errors 

of   approximation.     The   necessity for error  control arises 

primarily from the   possibility that   in an  integration 

process  using the   output   of Field errors   may be   cumulative. 

For this  reason the   maximum errors  in the  direction cosines 

are  firmly under  control. 

Method   of Calculation 

This  section explains   the  application  of   previously 

derived equations  to the   objectives   outlined  above.     It 

also describes  the  mechanism of error control. 

Vector Component  Computation.     Equations  are  developed 

in Appendix A for the   normalized  components   of  B  in the 

field   of a single   loop  of   current.     The  coordinates  of both 

the   field  point  and  the   coil  center must   be   known  in order 

to apply  these  equations. 

Adding Components.     Field  initially determines  from 

the   coordinates   of  the   specified  point   the   coordinates   of 

the   centers   of  the  two  coils  which bracket  the   point. 

Calculations   of  vector  components  are   carried   out   on  one 

pair  of   coils  at  a time,   beginning with the   pair  closest  to 

the   point.     Pairs  successively farther  out  from the   point 

in both axial directions  are   considered  in  turn.     The   pairs 
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of vector components  are added to the  subtotals   of  Bx,   By, 

and Bz as  they are   calculated. i: 

Testing Axial Components.     The   individual  axial  com- 

ponents are expected  to decrease  with increasing distance 

between the   point  and the   coll.     Field  tests each axial   - 

contribution against  a value   called   "tol. "     Tol  is an error 

parameter defined as  the minimum relative   size   of axial 

contribution to be   considered.     It   is  approximately equal 

to the  difference  between the  total  axial  strength at  a 

point  in an infinite   system  of  colls   and  the  total  of 

contiibutions  from a finite  number  of   coils. 

If both axial terms from a pair   of coils are not 

smaller than tol.  Field considers  the   outer next  pair  of 

coils.     If  the   test   is  met,   however,   the additive   process 

is  terminated.     The  absolute  vector magnitude  and the 

direction cosines  are   computed.     Control  is   returned  to the 

calling program. 

Operating Instructions 

The following control statement   must  be   placed -in any 

program calling Field i 

DIMENSION GO(3),DCO(3) 

where  CO is  the   array   of  point  coordinates,   and DCO is  the 

array  of direction cosines.     Space,  dlsp,   and alpha must 

be  defined,   and N should be  set equal  to the   integer three 

In the calling program. 
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The first time Field Is called for a new comMnatlon 

of geometric parameters the following statement Is appro- 

priate t 

CALL PIELD(CO,DCO,BM,SPACE,DISP.ALPHA) 

Bm and the  direction cosines are  available   In  the  argument 

list  upon return from Field.     This   statement   must be  used 

If  Bm Is  required  at  each  point. 

If Field  Is  serving a line   Integration routine,   the 

following statement   should  be  used for each integration 

step after the   above   statement  has  been used   once t 

CALL FUN(N,S,CO,DC0) 

Error Control.     Tol  Is  set  within Field  to a value 

which Insures  a maximum error In Bm of   one  tenth  of   one 

percent.     If  a  lesser error Is desired,   tol  can be  reset 

within Field. 

Evaluat1 on  of Effectiveness 

This  section is  an evaluation  of  how well Field  can be 

expected to meet  the   objectives  and  criteria previously  set 

down.     Any  stated  observations are  based   on experience   In 

using Field. 

Limitations   on accuracy  of   results  from Field will be 

considered first.     The  absolute   limitation upon accuracy 

arises  from the   approximate  method  of  computing the 

complete  elliptic   Integrals.     It   Is  noted   in Appendix A 

that  the  method   chosen has  a maximum error  of   2 x 10~°  In 

each  Integral  calculation.     It  is  therefore  concluded  from 
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a  study   of   the   component  equations   of Appendix  A that   the 

minimum meaningful tol  that  should  be   considered  Is   10~   . 

The   specification  of   tol   should  be  a  compromise 

between desires   for accuracy and economy  of   computer time. 

It   Is  advised  that a reduction  of   tol by  one   order  of 

magnitude   roughly doubles   the   number  of  colls  that   con- 

tribute  at  the   field  point   relative   axial  components 

greater than tol.     Note  that  with the  method  used  by Field 

the   calculations   of  the   contributions   of a single   coll 

require  the   same  number  of   operations  wherever the   coll  Is 

located  relative  to the   specified  point. 

It  was  mentioned earlier  that  tol has  been  preset 

within Field  such that   only  colls  which contribute  at   least 

0,1  percent   of  the  total field  strength at  a point  are   con- 

sidered.     This  does  not  mean that  the   three  direction 

cosines  can be   In error by  this  amount.     It  was  found  that 

the   consideration  of a  coll far enough away axlally from a 

point  to contribute  less  than  C.l  percent   of  the  field due 

to all colls   changed any single   direction cosine  by   less 

than 10       percent.     The   reason for this  Is  that   the   fields 

due  to colls far from a  point  are  nearly  perfectly axial  In 

direction.     The  transverse   component  from a single   coll far 

away  Is very small so that   It  adds very little  to Bx  and 

By.     Also since  the field from a distant  coll Is  nearly 

pjclal In direction,  Its  total contributed magnitude   Is 

almost entirely due  to the  axial  component.     Note  that  the 

axial direction cosine  is Bz/Bm,   and  that the  field   of  the 
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entire  displaced-coll  configuration at any radius Is  very 

nearly axial.     Then Bz/Bm Is nearly equal to one, and add- 

ing nearly equal amounts  to Bz and  BJa changes  the ratio 

very little. 

Summary 

Field  Is  capaole   of  providing to a calling program the 

magnitude  and direction cosines   of  B at  any non-singular 

point   In the   magnetic  field  of  the   dlsplaced-coll  configu- 

ration.     Error  control  Is accomplished by bringing the 

axial component   of B to within a certain percentage   of the 

axial strength expected  In an Infinite  system of  colls. 
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Appendix C 

The   Program Tracer 

This  appendix describes  a  program  called   "Tracer" 

which  Is   designed  to compute   the   paths   through  space   of 

field  lines  In the  magnetic field   of  the dlsplaoed-coll 

configuration.     The  appendix  reiterates  the   objectives   of 

the   study  for which Tracer  Is  designed,  and   It  describes 

the   methods  by which Tracer meets  those   objectives. 

Operating  Instructions  ere   provided for using Tracer.     The 

appendix  is   concluded with an analysis   of  the   control   of 

errors   of   integration.     Fig.   10  Is  a flow diagram  of Tracer, 

and  Fig.   11   Is  a  listing  of  the   computer code, 

Ob.ieotives   of Tracer 

It   is   very  useful  to  investigate   two properties   of  the 

magnetic  field   of  the displaced-coil  configuration.     First 

the   field  lines  are  expected  to exhibit  a pronounced  helical 

twist   similar to the  helix  on which the   coil  centers   lie. 

This   characteristic   Is  called  the   first   order twist.     Also 

secondary  rotations   of the  entire   pattern of lines about 

the  axis  may exist. 

There   then is  a need for a  computer program to numer- 

ically  integrate  the  paths   of  the  magnetic field  lines   of 

the  coll  system.     It  is the   objective   of Tracer to Inte- 

grate  the   paths  of field  lines which begin at  selected 

coordinates   iri the   zero plane   of a parametrlcally 
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C$IBrTC^ 
TRACE»     J 

READ 
DATA 

00  100 
II-l,L 

C0<1)-XSTRT 
C0(2)-YSTRT 

CALL 
FIELD 

CALL 
SET 

CALL 
STEP 

Fig.   10.     Flow Diagram  of Traoer 
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^ ' ■

i - ■ ^ :i

Ip:i;

_ *i/

»IBFTC TRACER
DIMENSION XSTRTdC! »YST:<TM?)*CO(2)
EXTERNAL FvN

- - logical MCDL
REAL LIvit

1 READ(5»81) SPACE,OI.--P,AI.P'm* ,L.C*:*
KXSTRTI I ) ,'^STRT» : J . I--:.:-'!

81 FORMAT(6X,2F?.2,F‘.l,I'».F5 ,?/
15X,lCFs.r/!=X,l''Ff 

WR IT E ( 6,92 ) SPACE ,'• I ,L
92 FORMAT! IKI,ICY,1"

■llOX,27HDISPLArt:M^vr o'" C : : V C!
210X,21HANGLE 2ETWE:‘, C: NT ' ..1,G ' .
310X, l5HNUr*5ER OF L ! *!' S , f A///t 
ALPHAR»ALP A/57.3 
LI''IT*CN*Sf'ACE*360./‘LPM4
Dis».oooc:
DSMIN-.05
DSMAX»1.C
N»3
DO 10^ I 1*1,L 
WRITE(6,99J

19X,6HLENGTH,4X,4HS!?C,ir'y ,r'Y,- X.lilY,'’^. IHZ/J 
5*0.
DS*.20
COm»XSTRT! I I )
C0(2)*YSTRTt: I )
COI3)*0.
CALL FIELO (:r,PC'j,: ■', *pcs,' r f ♦ A' ja ?

C CALL SET....IMT!-*tes ! V^ECP *• ’ I ON
CALL SETC;,S,CC,0:,f N, 01E. • ^.-'-I •

C A SAMPLE OUTPU'^ FORMAT, ,,L Crr T'•, '‘TC*' "''’E, '"''I’:''':.
20 WRITE(6»915 S,05,C'J( 1) ,CC(2} ,C.'{ ^ ?
9-1 -FORMATCSX.EFIC.A)

C call STEP....1MTCCRATCS wAO. .r 
CALL STEP

21 IF(C0(3)-LIM;T)
* 22-T3*J+l

. WRITE(6*9C1 
90-rORWATtlHl)

GO TO 20
- 2T COWT TWUE- 

100 CONTINUE

END

i -%■

““?■ - r
Pig. 11, Listing of Tracer

♦ :
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Table   IV 

Definitions   of Fortran Variables  In Tracer 

Fortran Name Definitions 

CN 

DCO 

DIS 

DSMAX   (DSMIN) 

DS 

J 

L 

LIMIT 

MODE 

N 

S 

XSTHT,   ySTRT 

Number  of  first-order cycles  covered 

3-niatrlx  of  direction cosines 

Parameter specifying accuracy In STEP 

Maximum   (minimum)   size   of DS 

Increment   of  Independent variable 

Number of  Integrating steps 

Number  of field  lines  to be   Integrated 

Maximum axial distance   of Integration 

Logical  constant   specifying variable 
(fixed)  DS  If   .False.   (.True.) 

Number  of differential equations   (three) 

Size   of   Independent variable 

X-Y coordinates  of starting point   of 
field  line 
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adjustable   coll   configuration.     It   Is   Intended   that   the 

user  be   able  to control   both  the   lengths   of   the   lines  and 

the   maximum computational error that  can arise   In  the 

coordinates  of  points  on  the   lines. 

Method 

A magnetic  field  line   Is   by definition  In  the   sane 

direction as the   local  magnetic  strength vector.     Field 

lines  may be generated mathematically  by  successively  Inte- 

grating  over an  Inoremencal distance   the   direction  cosines 

of  the   local B vector. 

The Subroutine DFEQ. Tracer calls upon a subroutine 

called -DFEQ" written by Mr. Paul J. Nikolai of the Aero- 

space Research Laboratories at Wright-Patterson Air Force 

Base, Ohio. The subroutine is written for the Fortran IV 

computer language. 

DFEQ  is designed  to integrate  in a  step-wise   manner a 

set   of  simultaneous   first-order differential equations.     It 

requires  a subroutine   written by the   user  to supply  the 

differentials  of  the  dependent  variables.     Field  is  the 

necessary  subroutine  for this  study.     Consult Appendix B 

for a description  of Field. 

DFEQ Integrates  the   first  three   steps   of  a  series  using 

a  classical Runge-Kutta method   (Ref  15156),     A four-point 

Adams-Bashforth-Adams-Moulton  predictor-corrector scheme  is 

applied  to the fourth and succeeding points. 

DFEQ can be  used  in a very useful mode  to vary  the 

size   of  the   Integrating  increment  in order to meet  a 
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certain tolerance for accuracy.  Denote by YP and Yj the 

predicted and corrected values, respectively, of the 1th 

dependent variable at any given point.  "Dls" Is a parameter 

specified In the program calling DFEQ.  Define 

err -    mo-x LY  - ViJ 
If moLx[l, 

(106) 

If  err  Is  greater than dls for any   * 1*   the   step size 

currently  used  by DFEQ Is  halved,   and the   test   Is applied 

again   over the   same  region.      If  100 x err  Is   less  than dls, 

the step size   Is  doubled  for  succeeding Integrations.     Hence, 

DFEQ  Incorporates a mechanism for  control   of  the  error 

Inherent   In the  approximate   Integration method   It  employs. 

Dls   Is   preset for the   convenience  of   the   user to a 

value  which guarantees  an agreement   of  .001  percent  between 

the   predicted  and corrected  values   of any   position coordi- 

nate.     This  tolerance   Is  more   than adequate  to  prevent 

cumulative  error great enough to  obscure  the  actual  paths 

of  the   lines. 

Operating  Instructions 

This section gives Instructions necessary to the use 

of Tracer. Field must be compiled In the computer along 

with Tracer. The read statement In Fig. 11 relates how the 

data cards must be prepared. "L" Is the number of lines to 

be Integrated! up to ten lines, starting at the coordinates 

(XSTRT.YSTBT) In a zero plane, may be traced. The distance 

over  which the   lines  are   to tie  traced  Is  specified  by 
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selectliib  * multiple   nuitbei'   'CN)   of   cycles   of   coll   dis- 

placement . 

Fig.   6  Is  an example   of  the   output   listing   provided   by 

Tracer,     It   is  a  simple   tabulation   of  the   progress   of  the 

Integration for a single   line. 

Comments  on Accuracy 

The  section  on method explains  that dls   Is  specified 

within Tracer to provide  for s maximum relative  error per 

step  of  10~5  in  the   coordinates   of   points   on  the   field 

lines.     On  the   basis   of  statistical  random error after say 

N  steps  the   relative   error  In any   field   llr.e   coordinate 

should be  less  than 

io"5 YN~ 

From  studies   of   the   average  drifts   of  field  lines   over  one 

hundred  cycles   of  first   order   iwlst  for  various   coll  con- 

flguratlors   It was  determined that  the   error given above 

amounts  to less   than   .CC1   of  the  average   magnitude   of  the 

drifts.     Since   only  a qualitative   understanding   of the   slow 

drifts  was  sought,   dls   was   not  reduced   to attain  greater 

accuracy  in the   Integration  of field   lines.     For the study 

of first   order field line  twist a relative  accuracy of   10~5 

per step was   Judged more  than satisfactory. 

Summary 

In summary,  Tracer is a program which integrates the 

paths   of field  lines   in the  dlsplaced-coil configuration. 
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The   method   of calculation provides for the   control   of error. 

The   configuration  of   coils,   the  number of  lines,   their 

lengths,   and starting  points  are   selected  by the  user. 
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Appendix  D 

Collision Force   Between Distributions 

Mention  Is  made   In Chapter  III   of  a term which   In  the 

MHD equations  can  be  used  to account  for  interactions 

between  particle  distributions.     The  nature   of  this   Inter- 

action   is that   of a drag force  arising from  collisions 

between different   particles.     Treated as  an average  the 

force  between distributions   can  be  found as  a moment   of 

either distribution function.     Define 

Fc /* f ^ no    /v. ^fx* d^ do?) 

(Ref  l6«157),   where  df/dt  is  the   change due   to collisions, 

and the   integration must be   over all  possible  values   of 

particle  velocity.     This appendix deals  with the evaluation 

of this   integral. 

Collision Cross  Section 

Define   Ö" (v v*)   as  the  geometric  cross   section for a 

change  in particle  velocity from v to v*  due   to an encounter 

with a different  kind   of particle.     Assuming a simple 

Coulomb collision between the   particle  and another  of 

velocity  u,   the   cross  section in cent er-of-mass  coordinates 

is 
-H- ^ = fey [r- 2 

(108), 
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(Ref  I81I50),        01s   the   scatter angle  measured between v 

and v',   and 

Q    =    [LL-V] 0.09) 

q and q0   are the  charges   of  the  struck and  striking parti- 

cles,   respectively,   and  K  is  the  reduced  mass   of  the  system 

of  the   two particles. 

Force   Per  Part 1 ole 

Call f (v)   and  F(u)   the   local distribution functions   of 

the   struck and  striking  particles,  respectively.     The flux 

of  bombarding particles   relative  to a system of  particles 

traveling at v  is  then fj'PCu).     Using these  definitions the 

probability per unit  time   of  v changing to v'   due   to a col- 

lision  is 

P[y-^V']    =    g     F(uJ   6(0,0) (110) 

Define  the   change   in momentum  per unit  time. 

d N3C,>   =   m [y'-y]   P(y—»yj (in) 

It is necessary in the Integration of Eq (111) to 

account for all cases, represented by the possible values 

of v*.  Assume for a moment that v and u are known before 

a collision. The magnitude of v' is restricted by the con- 

servation of energy and momentumt it Is In principle known 

from v and u.  Consideration of all possible directions of 

v', or equlvalently, all possible &   would therefore 1» 

tantamount to consideration of all v'.  We therefore 
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Integrate   over the  possible   scatter angles    0  to evaluate 

It   Is   convenient  to transform to a center-of-mass 

coordinate   system.     Define   the  followingi 

m    >■ mass  of  the   target  particle 

m0 » mass   of  Impending particle 

V  ,««   (mv + m0u)/(m + m0) 

M    » m m0/(m + m0 ) 

Then ^o^/ becomes     , 

<^>= ymgFfiJp-^-J^'-q] <5(a©!  de      (112) 

Define  also an orthogonal,   spherical polar coordinate 

system with £ as   one   of  the   orthogonal axes  such that 

3' =3r?Cose ■f^5inecoS^ + ^ .sine sin q?]- (113) 

This definition merely puts   (g'   - .g)   In a more   useful form. 

(114) 

+• ? das iä- Cos (f -h ft cos-^ sin Cpl 

Now define^P(£,vp as  the  average  force   per particle 

due  to collisions.     It can be  evaluated as the  volume 

Integral  of ^^5^>« 

'   <f(q.y)>=/d<!i>cln (H5) 
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where 

dn = 2 sin ^. cos -g- de dcp cii6) 

is  the differential  solid angle   In a spherical coordinate 

system.     Only  the $ integral  is non-zero. 

where d-m;n  is  the   scatter angle   corresponding to the  so- 

called cut-off  distance  for collisions.     Define 

_/V =   sin" -g-min (ue) 

Spitzer discusses  the  arguments  concerning the  choice   of  the 

cut-off  distance.     His   resulting equation for-/A_in mks 

019» 

units   is 

-A.= 12v rÄ.3k3T3 

aia n 
(Ref  16i127). 

Volumetric Force 

Eq   (11?)   then gives the  time-averaged force  per parti- 

cle due  to Coulomb collisions  between unlike   particles. 

Define Fc as  the  volumetrio average   force.     It  can be 

evaluated as  the  moment   of the  target   particle  distribution. 
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In order to calculate  the  components  of this force   In 

cylindrical  coordinates  the   integral  is dotted with the 

unit vector In in the  direction  of the desired force  compo- 

nent. 

- F^ =p^? TT in A r-%) rfü.) i^ d y do   c 121) 

Before attempting any integrations It Is use  "" to 

choose V In cartesian coordinates and £  In spherical coor- 

dinates.  Then the respective differential volumes are 

dV =  dVr dVe dVz (122) 

da  = a^sm ^de d^ da (123) 

The limits on the integration of these differentials are 

- 00 \ Vr, Ve, Vz <C + 00 • 

o^g<   00 

In cylindrical  coordinates the   three  dot  products  w^ih g are 

8-B = sin <^ sine (125) 

O'Z.  = cos y> (126) 
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The  generalized  form of  the  distribution functions 

which apply under the   assumptions   in force  has  been derived 

in Chapter  III.     The   target   particle   distribution  is  given 

as  an example. 

■^(^J   =   nL^ncL       exp-J^ /5>m[^ + rx lü]0"     (127 
Lair J      r  2 

Recall  the   definitions   of  the   center-of-mass velocity V and 

the  relative   velocity £.     The   product   f (v)F(u)   In terms   of 

these   is 

L    H-TT^      J 11. 

[\L- [ß-m Mg -f [/^cum + ^cWvv] r g ] ^       (128, 

Integration  of  Pc     over the  three   components   of V yields  a 

factor of 

a* ^ 
/^m +/o0m0 

(Ref 8,284). 

To simplify the remaining integral In £ define the 

following! 

J- ££, onnnrvo 

_Q. yom + /Sorr\c 
(129) 
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ri = r[uj0-uü] J£J& o m rr\o 

JX   Pm + Oorrk0 _ 

%. 
(130) 

Then the   second exponential term In the   product  f(v)F(u) 

can be  rewritten. 

- JL   _^^-DQJDQa_    q - r-ruJb-uul el 

= -  [J - 2 /% J s>\r\ 0 S in ^i + /2 ^J 

= - [x/-/^sine Sin ^?]a4- /?   [1- sinP'e Sin2C|)] 

(131) 

(132) 

The   Integral for Pcm Is  then 

J 

[/Onn-V /Öomoj 

/de /ciqj[6-m] sintp /d</[L/-/^>.sines»ncp] ^   (133) 

-^ /o     [l - Sin2"©   Sin1 
9- 

Consider separately  the   three   Integrals   corresponding 

to the  three  different  terms  of ^ • 1?.     The "r" and "? dot 

products  Integrate  to  zero by properties   of  odd  functions 

of   &   and p> .     The   ©   component   Integral  is 

I© =   Me   /d^psi^cpsine (13M 

Wdi    exp-[  i   + ^[l-sin^esln1^]    (135) 
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-^?a 

^ 1 
10 can be  written  in terms   of the  error function,   (S . 

/o 

(Ret IO1696). Although m Is not analytic, series expan- 

sions can be used to approximate It If the argument /£, Is 

less than one. 

(136) 

(137) 

& 
O-n+J. 

[inTTr (138) 

Therefore   the   complete  expression  for  the   only finite   com- 

ponent   of Fc   Is 

Fc= S 1^ 
L ^o J 

In-A-nno /^^olm-V-rnoJ 

2 n + J-   ypa.n-a. 
(139) 

On+ll [n-i] I 

In  summary a  volumetric  average  force   has   been derived 

which can be   used  to account  for  the   Inter-dlstrlbutloti 

force  arising from Coulomb collisions.     This force  turns 

out  to be   In the  azlmuthal direction only,  and from the 

definition   & It depends  on the  difference  between the 

azlmuthal drift velocities  of  the   two particle distributions. 
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