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ABSTRACT 

New developments on lifting surface theory for oscilla- 
tory subsonic flow are given. Key concepts in the analysis 
are the use of concentrated loads rather than distributed 
pressure "mode" shapes, and the development of a modified 
kernel function which gives average values of vertical velo- 
city over chojen intervals and which eliminates all singular- 
ity problems. 

Features of the analysis are: (l)  loads are given directly 
in terms of vertical velocities, (2) no pressure modes have to 
be assumed, (3) singularities are obviated, (4) the locations 
of control downwash points are specified systematically, 
(5) control surfaces may be included, (6) treatment of non- 
planar surfaces, such as T-tails, is possible, and (7) appli- 
cation is made through a simple quick routine procedure. 
Examples are given throughout to illustrate the concepts. 

This abstract is subject to special export controls, and 
each transmittal to foreign governments or foreign nationals 
may be made only with prior approval of the Air Force Flight 
Dynamics Laboratory (FDTR), Wright-Patterson Air Force Base, 
Ohio 45433- 
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SYMBOLS   (Cont'd) 
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0 
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0+,    0" 

CD 

icue 
angle of attack;  also    a = e 

-/l  - M2 

Interval In the x-directlon 

alternate coordinate In the y-dlrectlon 

Interval In the y-directlon 

alternate coordinate In the x-dlrectlon 

densities 

velocity potential 

strength of potential sheet 

value of potential on upper and lower 
surfaces of potential sheet 
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I Notations: 
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1(X "• x

r) *    unit step function at    x ■ x^ 

V0) s    Dirac  function at    y = 0 
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SECTION I 

INTRODUCTION 

This report Is concerned with oscillatory alrforces but 
Is motivated by the problem of determining the frequency 
response function of an aircraft. The frequency response 
function, defined In a general sense as the structural response 
due to a unit sinusoidal Input, Is now an Important Ingredient 
In the treatment of some of the major aeroelasLlc problems of 
an aircraft. Design for gusts by power spectral techniques is 
one area. Flutter, representing a special situation of the 
frequency response function, is another. Because of this prom- 
inence, a desire exists to establish the function in a quick 
reliable way. 

The establishment of the frequency response function is 
conveniently broken down into two areas, one dealing with the 
aircraft structure, the other with the nonsteady aerodynamics. 
The structure is generally handled by either of two approaches, 
one involving the use of modal functions, the other the use of 
lumped or discrete masses. The aerodynamics is usually handled 
by modified strip theory or by a lifting surface approach 
involving the use of a kernel function. 

In appraising the problem of determining the frequency 
response function, it appeared thct 'jnprovements in the handling 
of the aerodynamics were needed. These possible improvements 
are discussed here mainly with reference to the use of lifting 
surface theory. In spite of the fact that this theory has been 
applied successfully in various instances, some shortcomings 
still exist. The approach does not seem to be as computation- 
ally economic as is strip theory (because of this fact, modified 
strip is still used in the treatment of very large flexible air- 
craft). Pressure "modes" have to be assumed from which the 
downwash is computed; a desire is to be able to determine the 
pressure directly from a prescribed downwash condition. Uncer- 
tainty still exists on how many collocation points should be 
used, and where they should be located. The technique for 
including control surfaces is not clear; only recently have some 
special studies of control surfaces been made. Finally, lifting 
surface theory has been restricted mainly to planar surfaces. 

The purpose of this report is to develop improvements in 
the use of lifting surface theory; and, in turn, to ease the 
problem of determining the frequency response function. Its 
aims are to: (l) allow loads to be established directly in terms 
of given downwash values, (2) eliminate the necessity of assuming 
pressure modes, (3) make the choice cf downwash points less arbi- 
trary, (4) include control surfaces, (5) include nonplanar sur- 
faces, and (6) simplify the application. Key concepts in the 

—•""- 



development are the use of concentrated loads rather than dis- 
tributed pressure mode shapes and the development of a modified 
kernel function which gives average values of vertical velocity 
over chosen intervals and which eliminates the problem of deal- 
ing with singularities. 

The present treatment is confined to the subsonic range, 
but many of the ideas should apply equally well to the super- 
sonic range and especially in the treatment of problems 
involving mixed subsonic and supersonic flow. 

i 
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SECTION II 

GOVERNING DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS 

Governing Differential Equations.- The developments given 
In this report could start directly with the well established and 
generally accepted linear equations for 3-dlinenslonal oscillatory 
subsonic flow. For completeness, however, a brief revlaw of their 
derivations is given In this section. 

We consider a lifting surface Immersed In a flow from the 
left as shown In the following sketch. 

The flow Is considered to be Isentroplc. The governing 
differential equations are: 

Euler equations. 

OU- ÖU. 
+ u 1 dx + v. i w 

du. 
+ w. 1 dz 

dv, dv., dv öv1 

3t- + ui 33r + vi 3jr + wi ^F" = - 

dw, öw, 
^TT 

+ ui 5^ + v 
dw öw. 

i w + wi ^r 

jLöpi 
p1 ^~ 

pi ^y~ 

i. aPi 
pi ?5~' 

>    (1) 

Equation of continuity. 

I? pi11! + IF PI
V
I 

+ ^r PI
W
I 

^pi 
'ST (2) 
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Isentroplc gas law  (from equation of state). 

= c (3) 
Pi 

We consider a small perturbation state by writing 

ul = u ¥ U 

vl = V 

wl 
= w 

Pi = Po + p 

Pi = Po + p 

CO 

where u,v,w,p, and p are the perturbations which are small 
relative to the steady state terms. The substitution of 
equations (4) into equations (1), (2) and (3) yields, after 
discarding the second order terms, the following linearized 
equations 

3S + u 37 

*r + u^ 

i_ 

Po 

1_ 

Po Sy 

3y 3? 

P0^ 

a Po 
"4) 

u 

w 
= 0 (5) 

The speed of sound a appears in the last equation as a result 
of using equation (3) to replace p in equation (2) by p ; 
specifically equation (3) indicates 

dPl  £   Pi   i - = *-- = 7-r- = a ^1 Pi 
(6) 

niitf-J-^"'i^-"-   -j ^ 
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The treatment of equations   (5)  is simplified by introducing 
the velocity potential    <f>    such that 

-H 
-n 
«=11 

(7a) 

(7b) 

(7o) 

With these equations all of the first three equations of equations 
(5)  reduce identically to the equation for pressure 

p-p^H^) (8) 

while the last equation becomes the governing differential 
equation 

_2A       l/TT  b        dV 
cl 

0    =    0 (9) 

Equations (8) and (9) are the basic well known equations that 
are to be treated in this report. It is significant to note 
that equations (5) show that equation (9) also applies when 
any of the independent variables u,v,w, or p is written ir 
place of 0 . 

Boundary conditions.- The problem to be solved is fixed 
by stating the boundary conditions that must be used in con- 
junction with equation (9). In developing the boundary con- 
ditions it is instructive first to examine the symmetry pro- 
perties of the variables u,v,w,p and 0 . We note that the 
vertical velocities on the upper and lower surface of the wing 
must be equal (wing considered thin) and therefore reason that 
w must be a symmetrical function with respect to z ; equations 
(5) and (8) indicate then, that u,v,p and 0 must all be anti- 
symmetrical with respect to z . These symmetry properties allow 
the flow problem to be solved by considering the upper half 
z-region only. Boundary conditions on the x - y plane thus 
become of concern. It is convenient to specify these boundary 
conditions in terms of the three different regions A, S, and W 
shown in figure 1. In the region A ahead of the wing, the 
only perturbations that can exist are those propagated forward; 
no discontinuities can arise, and thus, because 0 is anti- 
symmetric, 0=0 on the x - y plane. For the region S , 
the wing supports a pressure discontinuity across its thickness 
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with p'r = - p" >  where + and - denote respectively the upper 
and lower surfaces. The w In this region must be that given 
by the wing. The region W is established by the Kutta condi- 
tion which states that w must remain finite at the trailing 
edge, or alternatively that p = 0 at this edge. From tnis 
condition it is reasoned that the wing leaves behind it a dis- 
continuous wake sheet, which must be continuous in w , which 
cannot support a pressure Jump, and which therefore must be 
discontinuous in u , v , and 6  . Figure 1 specifies the 
problem completely. The main difficulty is the problem of 
dealing with mixed boundary conditions. 

Throughout the remainder of the report we will be concerned 
with the oscillatory case only, where the independent variables 
0 and p may be expressed in the form 

0 = 0(x,y,z)e lost 

P = p(x,y,z)e 
icot 

■i 

and similarly for      u,   v,  w and    p   .    Thus for the oscillatory 
case,  equations  (9)  and  (8) become 

V20  - \ (u ^ + ioo)    0 = 0 

P = -  Po(U If + la0 

(10) 

(11) 

A r4- 

The harmonic term   e will be suppressed for brevity in 
writing in all equations to follow.    As mentioned earlier, 
equation (10)  applies not only for    0    but for the other 
independent variables as well^ thus 

.2_    i,c a       ^ 
^p - ^u^+ H p= 0 

a   v 
(12) 

The integration of equation  (11)  gives a result which is 
basic to all subsequent development; this integration yields 

0(x,y,z) 

la« A. 

I 
i<B| 

PU,y,z)^ (13) 
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Of concern also is the result obtained from this equation as 
z -♦ 0  ; this result is 

- 

0+(x,y,o) = TV 
log   x jcog. 

(14) 

where the + sign signifies values at the upper surface of the 
discontinuous sheets.    Equations  (10)  through  (14)  form the 
hasis for the developments in the subsequent sections.    In a 
general  sense,  solutions are made by means of equations  (13)  or 
14),  in terms of basic source solutions of either equations 
10)  or  (12), and with due regard being given to the boundary 

conditions. 

Basic  source  solutions of equations  (10)  and  (12).- Some 
solutions of"equations  (10)  and (12)  that form the base for the 
solutions of various oscillatory flow cases are the  following 
(see reference 2): 

Monopole   (of unit  strength). 

-la, =M*™ 

*m or Pm = " TO e aß (15) 

Dipole   (of unit strength). 

0d or pd = _^ 

4T7R
3
 ^ (>+ ^> 

aß (16) 

where 

R =Js7 ßZi/ * z2) 

2 2 ß^ = i - ir 

These two equations are related by the operation 

^d = - ^r 
m 
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Two other solutions that are used herein are the following 
reduced cases: 

Line dlgole for 2-dimensional Incompressible flow. 

<t> or $ = - ^- 1   z 
(17) 

Dipole for 3-dimensional incompressible flow. 

* or P = - ife ^ ,    R =yx2 + y2 + z2 (18) 

Point function characteristics of Eqs. (16). (17), (18).- 
We remark here on the point function character of equations (16) 
(17) and (18), especially with respect to the use of a factor 2; 
some concern arises at times as to whether or not a factor 2 
should be included, and these remarks are offered for possible 
clarification. Consider a 2-dimensional pressure discontinuity 
sheet extending from  x = x^^ to x = xg . The strength is 
specified by the function p0(x) , which by the antisymmetric 
nature of p implies a pressure of - l/2p0 on the upper sur- 
face of the sheet and + l/2p0 on the lower surface. The di- 
pole strength in an elemental length dx is p0(x)dx , and thus 
from equation (17) the field pressure may be found as 

p(x,z) = 
27r j 

zp0U)d(- 

(x - i)'c  -1- i 
(19) 

In considering this equation in the limit    z -* 0 , we note that 
only the portion of the  integrand in the immediate vicinity of 
x    can contribute to the integral.    The equation may be reduced 
therefore to 

,       , Po« 
P(*.z)  - - -57- / 

-e 

zdn 
2 S 

rp  + z 

where the Interval T] = - e    to T\ = e    is small enough so that 

8 
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po(0    may be considered constant.    This equation yields 

P+(x,o)   = lim    ' Pg^. 
z -♦ o 

tan -1 
z -e 

--7P0W (20) 

thus indicating the pressure to be the upper surface pressure, 
as it should; the point function character of equation (17) is 
thus also seen. 

If    p  (x)    given by equation  (20)  is substituted in 
equation  (19)J  we have 

p(x,z) -i/ SElUiOldg 
x. (x - 0   + 

(21) 

From equations (19) and (21), we thus make the following rule: 
if the discontinuity strength is specified use equation (17) 
as is to deduce the field pressure (equation (19) )i if the upper 
surface pressure is specified use equation (17) with the factor 
- 1/2 suppressed to deduce the field pressure (equation 21)). 
These observations may seem trivial, but trouble has occurred 
in instances where they have not been fully understood. 

A similar point function proof and rule may be shown to 
hold in the application of equations (16) and (18). 
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SECTION III 

30LUTION  BY NUMERICAL GRIDWORK SCHEMES 

The oscillatory problem under consideration here may be 
stated as follows.    Consider a wing to be oscillating sinusoid- 
ally in the z-direction in some prescribed deflection shape; we 
wish to find the particular solution of equations (10)  or  (12) 
which gives the pressure distribution on the wing and for which 
all the essential boundary conditions are  satisfied.    Such a 
direct solution has been possible for only a few special cases, 
such as 2-dimensional incompressible flow.    For the more general 
cases solution has had to proceed in an inverse sense; thus,  a 
pressure distribution is assumed and solution is made for the 
vertical velocities that are induced.    To be more specific let 
us review the basic  steps of the kernel-function approach that 
has been used in the past.    Equation  (16)   for    p^    is sub- 
stituted into equation  (13), from which the vertical velocities 
are found by equation  (7c); formally the result appears as 

w = K(x,y,o)   = - 
lax. 

U 
Po U 

z -» o 

igl 
Je ~%d(i;,y,z)d| (22) 

This function is called the kernel function; it is analogous 
to an influence coefficient development and specifically denotes 
the vertical velocity that is developed at the point  (x,y,o) 
due to a unit pressure dipole at the origin.    Its evaluation 
and a discussion of the associated singularities axe given in 
reference 1.    With this equation the vertical velocity that 
results from a given loading distribution    p0    over the wing 
follows as 

"-// P0(?»n) K  (x -  e,y -  r|,ö)dTid^ (23) 

To insure satisfaction of the Kutta condition, the distribution 
is chosen so that    pn    is zero at the trailing edge.    To obtain 
the solution for specific lifting surfaces the technique 
generally used is to introduce several pressure  "modes" or 
distributions and then by a collocation technique to find what 
combination of these pressure modes leads to the desired vertical 
velocities on the wing.    In terms of the wing deflection    Z ,  and 
in terms of any gust velocities    Wg    that also may be under con- 
sideration,  these vertical velocities are given by 

11 



w = u ^ + yt - wg 

u || + iCüZ . Wg (24b) 

where the second relation Is for the  sinusoidal case.     It is 
noted that the evaluation of    K    and its use in equation  (23) 
is fraught with horrible singularities. 

The treatment to follow has three objectives:   (1)  to make 
a direct solution of the pressures in terms of the vertical 
velocities,   (2)  to obviate the necessity for introducing 
pressure  "mode  shapes",  and (3)  to greatly simplify or eliminate 
the problem of dealing with the difficult singularities.     Pour 
possible procedures are advanced. 

Scheme I.- This scheme is based on equations  (22)  and  (23), 
but with notable changes so as to allow numerical evaluation to 
proceed differently.    The wing is divided into a gridwork 
pattern as shown in figure 2,  guidelines for laying out this 
grid pattern will be brought out later.    The loading on the 
wing is considered to be given in terms of concentrated loads 
rather than in terms of distributed pressure functions; this 
is one of the key concepts of the  approach.    The concentrated 
loads are located at the grid intersection points.    Then by 
means of a "modified" kernel function,  downwash values are 
derived at each mid-station point,  illustrated by the point 
labelled A in figure 2j the logic behind the choice of the mid- 
station is also brought out subsequently.    The result is a 
matrix equation which relates the loads    P    in terms of the 
downwash    w   .    This matrix equation is then inverted,  giving 
the desired end result of    P    in terms of    w  . 

The second key point in the development of this scheme is 
the manner in wnich the kernel function is handled.    The  strong 
singularities of the kernel function along the x-axis aft of the 
unit load preclude its direct use in this scheme.    An apprecitition 
of the type of singularities involved can be obtained by picturing 
the downwash that is associated with a very narrow horseshoe vor- 
tex in incompressible flow,  as shown in figure 3(a).    The down- 
wash pattern is singular in both the    x    and    y    directions at 
the origin,  and strongly so in the    y-direction along the horse- 
shoe.    The picture becomes all the more dramatic if we envision 
the situation as the width of the horseshoe becomes zero.    To 
remove the difficulty of dealing with these singularities we 
modify the kernel function by averaging the velocities over 
equally spaced intervals in the    y-direction,  specifically we 
write 

■ 

I 

yo+ ^ 

^yo) -x   L 'K(x^)dy (25) 
X 

yo- -^ 

ip 

—■—--—^ 
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where    X    is the grid spacing in the    y-direction.    With this 
simple modification,   the downwash function changes to the  type 
Illustrated in figure 3(b).    Slice a typifies, for example, 
the downwash in the    y-direction ahead of the unit loadj   slice 
b,  a station x aft of the load.    This averaging concept  is based 
on the idea that  in any real situation,   the wing merely senses 
an average effect.     Thus, by this averaging technique,   the 
singularities in the    y-direction are  removed from further con- 
sideration.    Note,   a singularity remains  in the    x-direction at 
the unit load,  but  it  does not concern us because we avoid any 
downwash consideration at this point   (if desired,  however,  we 
can also consider an averaging out process in the    x-direction 
to eliminate this  singularity). 

In terms of equation (25), we  summarize this scheme  in 
terms of a matrix equation as follows: 

w-. 

w^ 

w. 

Kll      K12      K13 

K21      K22      K23 

K 31 

or 

w =   [K]|P| (26) 

where    K-j,    denotes simply the  "average" value over the interval 
X    in the    y-direction of the downwash at  station    m    due  to a 
load at  station    n   .     Inversion of equation  (26)   gives the  de- 
sired enc1 results. 

Pi =  [K]     |w| (27) 

There are several noteworthy points to bring out with res- 
pect to the use of equation (26): 

(1) No load or pressure distributions have to be assumed. 
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(2) It is not necessary to force any load or pressure dis- 
tribution to be zero at the trailing edge (the condi- 
tion of zero pressure Jump across the trailing wake 
sheet will be satisfied automatically because this 
condition is satisfied for each of the concentrated 
loads). 

(3) The question of how many collocation points should be 
used, and where to locate them does not enter. 

(4) Quite significantly, this procedure affords a way for 
treating control surfaces as well; it is only necessary 
to distribute concentrated loads on the control surfaces 
in the same manner as on the wing, and to process these 
simultaneously with the wing loads. 

(5) The averaging technique eliminates, as mentioned, any 
difficulties with singularities. 

(6) 

(7) 

The procedure is very routine anä systematic; on 
evaluation and tabulation, the K values become 
universal; ehe establishment of the K matrix for 
any case becomes simply a procedure of look up, as 
in the use of trigonometry tables. 

The K matrix has certain symmetrical properties 
§nd majiy elements are identical. For example, 
KJUJJ = K^g  where p and q have the same position 
relative t6 one another as do m and n ; also 
Kjjn = Kpn  where m and p denote stations of 
equal distance to the right and to the left of n 
(the y-direction). 

(8) The scheme applies to any planform. 

Scheme II.- In this scheme the essential building block 
is the dipole source rather than the kernel function, and ex- 
plicit consideration is given to the wake. Steps are illus- 
trated in figure 4 and are basically as follows. First, we 
divide the wing into a grid pattern as in Scheme I, and affix 
a system of concentrated loads. Next we apply equation (14) 
along each chordwise gridline to establish the strength of the 
associated dipole line sources for velocity potential that lie 
in the chord plane of the wing. These line sources are func- 
tionally continuous between the concentrated loads, and jump at 
each load location. We note here the reminder that with respect 
to equation (14), 0o(x,y) ■ - 20+(x,y,o) , and Po(x,y) 
= - 2p+(x,y,o). Essentially, envision that we derive a system 
of dipole line sources which when operated-upon by equation (11) 
yields back the concentrated load system in the limit z -► o . 
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We then replace this line source distribution hy a system of 
"equivalent" discrete dipoles, located at the mid-station 
points; the strength of each dipole is given by e0o(x,yj 
where 0O is the strength of the line source at the mid- 
station. Finally, we find the total downwash at the mid- 
station grid points on the wing due to all the discrete di- 
pole s - those in the wake as well as in the wing planform. 
A matrix equation similar to equation (26) results which 
gives the downwash in terms of the concentrated loads; this 
equation is then inverted, as in Scheme I. The application of 
this sequence of thought may seem cumbersome, but in practice 
is quite simple and systematic. 

In using equation (14) to establish the line source dis- 
tribution, we treat each concentrated load in the nature of 
a Dirac function. For a single concentrated unit load, located 
a distance x» downstream from a reference origin, the line 
source distribution for potential, as established by equation 
(14), is 

+ i  Tr(xr " x) 
0o(x,y) = - 20+(x,y,o) » - —^ e        l(x - xr)   (28) 

where l(x - xE) denotes a unit step function at x = x- . 
The sequence or using this equation for a row of concentrated 
loads and the means for establishing the system of equivalent 
concentrated potential dipoles is Illustrated in figure 5. 

Two versions for treating the downwash from the individual 
equivalent dipoles bear investigation. These are depicted in 
figure 6. In the first version we average the downwash over 
equally spaced intervals in the y-direction only, while in 
the second version an averaging is made in both the x and y 
direction. This averaging removes the singularity problem 
associated with the dipoles. These two averaging techniques 
are given by the following equations in terms of the potential 
for a dipole of unit strength. 

yo- ?    z=0 

xo+ 5 yo+ 2  a*   1 

*2(Wo)=^  /    L ^  JdydX     W 
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Examples later on will bring out the effect of averaging or 
not averaging in the x-direction. 

It should be noted that the equation relating w and P 
as obtained by this method should be essentially the same as 
equation (26). The only difference might be that of a slight 
variation in the individual values of the coefficients K^ , 
due to the use of different numerical procedures. 

All the points relative to the utility of Scheme I apply 
to this scheme also, but some further points may be made. The 
fact that the wake must be considered explicitly may at first 
make the scheme appear unwieldy. This is really not so, how- 
ever; the influence of downstream wake points decays very 
rapidly, and thus from a practical point of view we can ignore 
the wake beyond a certain number of chords distance; that is, 
we simply terminate the wake. An example presented later will 
bring out the effect of wake termination. With respect to 
giving explicit consideration to the wake we note also that, 
very significantly, we can turn this fact to our advantage. 
Since we have effectively established the complete system of 
potential dipoles for our wing system, we can calculate all 
of the induced velocities u,v,w , anywhere in the field as 
well as on the wing. This fact means that we are not res- 
tricted to planar lifting surfaces, and that the interaction 
effects of various other lifting surfaces in the vicinity of 
the wing may be handled as well. The big additional advantage 
that is offered by this scheme is therefore the fact that 
various configurations such as planar wings, wings with jumps, 
bi- or multi-wing configuration, T-tails, can be analyzed. 

Scheme III.- This scheme represents a combination of 
schemes I and II. The key idea in this scheme is the recogni- 
tion that the effect of entire wake may be expressed in terms 
of a concentrated load just off the wing at the trailing edge. 
This concentrated load is not part of the load on the wing, but 
the downwash. it creates on the wing is precisely that contributed 
by the wake. It seems strange that this fact has not been re- 
cognized or utilized in previous analyses. We will deal only 
with the wake treatment in this section, since otherwise the 
scheme is the same as in scheme II. 

We consider the situation that develops along one of the 
chord gridlines and especially the extension into the wake 
region. If we denote by m the number of concentrated loads 
that axe chosen along a chord, then, by the process that is 
illustrated in figure 5, we find that the intensity per unit 
length of the wake line source is given by 

1    / -2      «    -4 r,    -2m+2Vu" (xr"x^ 
*o = - ]^nPl + P2a      +P3a      +"-Pna > 
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With reference to equation (28), this equation may be written 

0. 
1 u ^ e A/ ,     , 

-^r PQ e 
u     1 x - x) p U e v    e' Ho 

(31) 

where 

Pe = ^a2*  + P^
2111-2 + P3a

2m-1; + ... Pma
2 

xQ = x^ + me e   r 

(32) 

(33) 

a = e 2U 

Equation (31) is, however, precisely the line source intensity 
of the wake ■chat would result from a concentrated load of 
magnitude Pe acting at station xe , This concentrated load 
acting just off the trailing edge can therefore he used in place 
of the wake to deduce the downwash velocities that are due to 
the wake. For the case shown in figure 3»  where m = 4 , the 
concentrated load Pe would he located midway between (f>0^    and 
<P0c  , and would replace all the wake to the right of this 
location. The equivalent wake load is handled by use of the 
kernel function as in scheme I. It is to be understood that an 
equivalent concentrated wake load is located at the aft end of 
each grid chord line, and that of course the superimposed down- 
wash effect of all these loads must be considered. 

In summary for this scheme, over the wing region we use the 
equivalent concentrated dipole concept of scheme II, and in 
place of the wake make use of the equivalent concentrated load 
given by equation (32). It is significant to note that we deal 
only with the downwash velocities anead of this equivalent con- 
centrated wake load in treating the wing. There are no singu- 
larities in this region, as the kernel function so indicates 
(except at the concentrated load, which region does not concern 
us) and hence a singularity problem associated with the concen- 
trated wake forces is not involved. 

Scheme IV.- We present here only a brief discussion of a 
4th possible scheme. The basic idea of the scheme is to start 
with the strength of the potential dipole sheet that is present 
on the wing and in the wake, and to represent this strength 

17 

     ■'-- —--"j 



■.■HUI 

by convenient distributions, say in the form of continuous 
functions, step functions, or concentrated sources. The down- 
wash and the loading would follow from this distribution by 
equations of the type 

w = [A.  i (f> 

|P| = LA21|0| 

The elimination of 0 from these equations would in turn 
establish a relation between P and w , similar to those 
derived in the previous schemes. 

The details of this scheme are left for further develop- 
ment. A derivation of the loading that is associated with a 
concentrated potential, dipole is considered to be of interest 
however, and will be given here. Assume a rectangular strength 
distribution in the x-direction as shown in the following 
sketch 

i 
c 

In the limit as e -► o this distribution becomes .a concentrated 
dipole of unit strength. Application of equation (11) to this 
distribution yields the following force diagrams 

i^ 

Ps 
JiUUJhj« lim«-0 ■a 

%u 

'»/s» 

Thus we see that a potential dipole of unit strength is acted 
upon by a force of magnitude -iü^pn an^ a n10111611* of magnitude 
-p0U . These results, although established here in a rather 
elementary way, may also be derived by a more formal approach; 
that is, apply equation (11] to equation (16), then determine 
the pressures and the moment of the pressures about the origin 
by integration along the entire x-axis, assuming z to be very 

small. 
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SECTION IV 

VERTICAL VELOCITIES FOR UNIT SOURCE ELEMENTS 

Potential dlpo.le.- The vertical velocities in the x - y 
plane for unit potential dipoles, such as those given by 
equations(l6) through (18), can be established in a very 
simple unconventional way by a technique described in this 
section. We show the method here, not so much because it 
eases the treatment of dipoles, but because it illustrates 
the technique to be used in the next section for treating 
unit loads, for which cases the method leads to a marked 
simplification over conventional approaches. 

The formal way to determine the downwash due to a 
source potential is to use equation (7c) and then to evaluate 
the results for z = o. We can simplify the process by expressing 
equation (7c) in difference form as follows 

<t>(z)  -  0(o) w = 

In all the cases of concern to us in this paper, however, 
0(0) = o for x ^ o and y ^ o; thus, for all regions except 
at the origin, w is given simply by the potential equation 
with the z in the numerator removed, and with z set equal 
to zero elsewhere in the equation. At a glance, equations 
(16), (17) and (18) yield, for example: 

(54) 

For equation  (16), 

w = - 
47rt? 

(l+^) 

-ice -Mx+R 
 2~ 
aß 

aß 
(55) 

where 

For equation (17), 

J 2 ♦ PV2 

w = - 1    1 

^ 7 (56) 
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For equation (18), 

1    1 

(x + y j J/ 

These equations apply to all points except the origin. 
The flow through the origin, where a singularity is involved, 
is handled conveniently by use of the finite grid concept; 
specifically, we obviate the necessity for considering the 
singularity in detail by establishing the average velocity 
through a grid area which surrounds the origin. As an 
example, the central "standpipe" of the velocity profiles 
shown in figure 6 depicts this average velocity. In effect 
we have replaced the point source dipole by an equivalent 
dipole of finite size, very much like the propeller dipole 
system shown in the following sketch 

U 

The magnitude of the average velocity through the central 
grid area is simply the sum of velocities through all other 
grid areas, a fact which follows from an overall continuity 
condition; stated in a physical sense, we note that all the 
fluid that goes up must come down. 

For application purposes we need to evaluate the velocity 
profiles for the dipoles of interest. Two will be considered 
here. For the case of a subsonic dipole, numerical integration 
of equation p5) is required. Specifically, patterned after 
equation (50), we write the average value of velocity over a 
grid area element as 
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^2 + y 2 n  'n where R =v/x ~ + y ^ , and where x  and y  denote the 

coordinates of the center of the grid area. From this equation 
we find the average velocity over the grid area surrounding the origin to be 

Äo- "IX 
n 

(38b) 

For the case of the line dipole foi 2-d incompressible 
flow, velocity profiles may be found by the exact integration 
of equation (36). The average value over an interval e , 
having a center coordinate designated by x = ne , is 

wn = 

Xn4 
dx 

Tre2 4n2 - 1 (39a) 

The center velocity wo is then 

w0-2 

2 
Tre (39b) 

where the factor 2 accounts for the intervals to the left as 
well as to the right of the origin. The effect of not averaging 
over any of the intervals except the center interval can be 
demonstrated quite easily by this case. If we simply choose the 
velocity for an interval to be the value at the interval center, then we have 

(40a) 
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w = 2 
2Tr6 n=l 

TT 

6e' 
(40b) 

A comparison between the use of equations (39) and equations (40) 
will be made later. 

Unit load.- Three approaches may be advanced for determining 
the downwash velocities that are produced by a unit load: 

1.) Direct formal evaluation by equation (22), as in 
reference 1. 

2.) An approach which is based on Scheme II, and which 
makes use of equation (28); the line source distribution 
of potential dipoles due to the unit load and given by 
this equation is replaced by "equivalent" concentrated 
dipoles. The velocities due to all these concentrated 
potential dipoles are then superimposed to give the 
downwash due to the unl\: load. 

3.) An approach which makes use of equation (13) and 
equation (3^).  As in the determination of equations 
(35)> (36), and (37), this approach greatly simplified 
the determination of the downwash values due to a unit 
load, and in the course obviates any problem with 
singularities. The remainder of this section is devoted 
mainly to the development of the basic notions of this 
approach. 

By means of figure 7 we give a quick and overall Insight 
to the basic concepts of the third approach. A detailed consid- 
eration will then follow. Consider a unit load: by the anti- 
symmetric property of p , we regard this load to be split 
equally between the upper and lower half planes, sketch (b). 
With respect to the associated pressure dlpole representation, we 
take note of the explicit appearance, a "z" in equation (l6)(and 
in equations (17) and (18)). The potential due to the unit load 
is given by equation (13). In the region y / o  ,  the potently 1 
is zero at z = o , and hence, from equation (34), the vertical 
velocity is given by 

w = z (41) 

Thus, near the x-y plane and for- y yt o  ,  <t>    is a direct measure 
of w , see sketches (c), {&),  and (e). The limiting form as 
z -► o follows easily. We let the z of equation (4l) cancel 
the z in the dlpole pressure equation, and let z = o 
elsewhere; the vertical velocities are, thus, effectively given 
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as the x-lntegratlon of equation (l6) with the z removed. 
For y = o and behind the unit load (x > o), a ^(o) exists, 
as given by equation (14). The value is easy to establish, 
being related to a simple Dirac-type integration through the 
upper load of 1/2, sketch (g). Application of equation (34) 
yields w , sketch (h); effectively, the right-hand branch of 
0(z) is sheared downward an amount 0 (o). The magnitude of «^(o) 
is found through the evaluation of a rather simple indeterminant 
form at x = <» . The limiting value of w as z -* o for this 
slice is also found easily, sketch (i). It is to be noted that 
ahead of the unit load there is no <p{o);  the evaluation of w 
for this region is, therefore, as simple as for y ^ o . 
Further, the value of 0(z) for positive x can be snown to be 
given in terms of 0(z) for negative x . Thus, the determin- 
ation of w behind the unit load can be expressed simply in 
terms of the w ahead of the load and the constant 0^(o) . The 
development of the velocities by the concepts shown in figure 7 
is considered significant; thus, we can virtually form a visual 
picture of hew the velocities develop. 

With this background, let us now consider a unit pressure 
dipole in detail. We treat first the regions y ^ o .' Substi- 
tute equation (l6) into equation (13), apply equation (34), and 
let the remaining z's = o . Since 0(o) = o in this region of 
concern, the result for w is immediate; thus, 

w = K = £ 
47rp0U 

Imx 
TT P   1   f.       icuR Y 

(X> 

aß a-) 
d^ (42) 

/""B 5-5- 
where R = • x + ß y    The notation K has been introduced 
because the expression is a form, here greatly simplified, of 
the kernel function. With equation (18) and CD = o , the result 
is simply 

w = 
47rp P_W 

_ da _ 

U2 + y
2)3/2 

1  1 
47rp U P5" 

1 + 
/~5 ? / x + y , 

(43) 

For use in the grid system scnemes advanced in this report, 
we desire average values over equally spaced y-intervals, in 
accordance with equation (25). We have, therefore, the following 
expressions defining the modified kernel function for regions 
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y ^ o  : 

For a subsonic  point load,    us ^ o   , 

K = w(x,y0)  = 

-t—— e 

lüiX 
yo+2 

47rp0UX 
J \     J       R3 ^        aßd X 

'oT 

lü) 

aß2 (I-) 
d| dy        (44) 

and for a point load with    M = o  ,    CD = o  , 

K = w = 

4TrpoU 

i y^o' ¥ ^2: x2 

yo    TT 

Xx X 
yo   "  2 

XX yo  + I 
(45) 

For our grid system, we use y0 = nX , with n = 1,2,3,... 
Numerical evaluation of equation (44) to give tabulated results 
for universal application, therefore, is needed. 

For the region along and including y = o , it is convenient 
to proceed in terms of a general notation. Let equation (13) be 
represented by 

0(x,y,z) = 
^ 

icijx 

e I(x,y,2) (46) 
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where 

= -/ 
e     p(|,y,z) di (^7) 

An examination of the Integral I in conjunction with the 
pressure dipole expressions given by equations (l6) through 
(18) reveals that the integrand may be expressed in terms of 
even and odd functions of x as follows: 

-e u pU,y,z) = fU) + zii) 

where f is an even function and g is odd, 
thus may be written 

The integral I 

I(x,y,z) = F(x,y,z) + G(x,y,z) (48) 

where 

P(x,y,z) = / f(0 d^ (49a) 

G(x,y,z) = J   sU) di (49b) 

Because f is even and g is odd, the following properties 
exist: 

K«) = F(oo) 
^ 

P(x1) = P(co)    - P(-x1) 

G(x1) = G(-x1) 

F(-oo) = G(-oo)    = B    G(oc)    = 0 

(50) 

in which the argument refers to the x values. With equation 
(34) in mind, we also establish the function 0(x,y,o) , the 
intensity of the dipole line source on the + side of the x-y plane 
aft of the unit load. This function, as obtained from equation 
(14), or a.s given by - 1/2 the value indicated by equation (28) 
with xr = o ,. may be written 
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*(x(y,o)-A6'^ K(0)1(x-0) (51) 

where l(x - o) denotes a unit step at the origin In the x- 
dlrectlon, and ö (o) denotes a Dlrac function In the y-dlrectlon 
at y = o . Wlth^equatlons (34), (46), (48), and (51), the 
vertical velocity may be written as 

,,(x,y,z)-^,y,o)   1 ^-"-H^-"'  (52) w = 

We Integrate this equation so as to give the average vertical 
velocities that exist in a band of width \    centered over the 
x-axisj thus 

lüOX 

w(x,z) = -r^e    - 
f(x,z) + G(x,z) - ^c l(x - 0) (53) 

where X/2 

F(X,Z) = x /  F(x'y'z) dy 

-X/2 

(54a) 

X/2 

(54b) 

For negative 

(55) 

ä(x,z) = x /   G(x'y'z)  dy 

-X/2 

iaÄ1 _ 

lor  positive x , say x . x, , equations (50) and (5*) can be 
use.! to rewrite equation (537 In the form 

ICSX   r       _ _ 1 1  , ,» 

,(,,,.) - ^ e"^ I [!(-) ' i(-»l'«) * "(-l'«' - 5XJ (56) 
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thus expressing w for plus x In terms of w for negative x . 

We .low consider the limiting value of these expressions as 
z -*■ o  .    By_the process Indicated earlier In this section, the 
functions F/z and U/z reduce easily to the following 

A(-x) = llm?(-^z) = 
Z-K) 

32 
1/2 -x ia)R 

^i  / M1+^>aeoo8fdyd5       (57a) 

B(-x) = llm G(-^z) = 
Z-tO 

IcüR 
ißS  ^/2 -x   /   ,yrtn \ " 

- /    /X^(1^>ae3inlpdy^       (57b) 
-\/2    -o 

It Is noted that these equations are contained In equation (44) 
as demonstrated by the following steps: suppress the factor 

—_. e" 
ÜÄ/ f  let y = o , and split the Integral Into a cosine 

and a sine part. 

The remaining terms of equation (56) are combined to form 
the constant 

c - k [iw - ar ] (58) 
By equations (47) and (16), and with a y-lntegratlon, the defin- 
ition of  l(oo)  is 

i/2 -co       ^R3 V   ^J 

.2/2  _2. where R = v x + ß£(y':: + z^) . The f-lntegratlon can be made by 
means of transform 917.8 In reference (3), yielding the result 
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-x/2   / y + z 

(59) 

^ oo /v2 . 12    wlll be the case in practice, For small values of ^/ y + z > as w:L1J- 
this expression reduces to 

X/2 

-X/2 

I(co) = ^ tan"1 ^ 
(60) 

With this equation,    C    becomes 

C = iraX (tan"1 4" ' 5 / 

or in the limit as    z -•• o 

C -  - 
TTX4 

(6la) 

(6lb) 

m sundry, we find the follow^ equations apply for the average 
teloc^ aiolTg iheVid band that is centered over    y 

iOÄ-j^ 

k--5(-V°)-piTTe~ir[A(-xl) + B(-Xl)]       'X = "Xl     ( 62a) 

r0 

62b) 

These equations and equation (44) thus define the complete 
modified kernel function of the present report and are for use 
in equation (26) of Scheme I. 

It is noted that equations analogous to equations (62) 
apply also for the case of 2-d flow; they are somewhat simpler 
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and differ In the following three specific ways:   (l) the 
y-lntegratlon leading to equation (53) 1^ of course, not 
Involved;   (2) the factor    1/2    would appear In place of the 
factor    1/2X.    In equation (53); and (3) the constant    C , as 
given by equation (6la) would be different, 
will Illustrate these points. 

A later example 
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SECTION V 

EXAMPLE  SPECIFIC CASES FOR K 

Case 1;  2"dlmenslonal Incompressible steady flow (Cü = o).- 
To bring out some Interesting ana Instructive facts, determination 
of the vertical velocity produced by a unit load will be illus- 
trated by five different techniques mentioned in this paper. 

Solution 1; 

Use is made here of equations analogous to equations  (57) and 
(62).    For this case we find 

1 
2lrx A(x)   = - 

B(x)   = 0 

C = 0 

From equations (62),  these lead to a single expression for    w 
given by 

w = -1 
27rp0Ux (63) 

which agrees with the known exact solution to the problem. 

Solution 2; 

This solution is based on Scheme II, and is presented with the 
aid of figure 8. For the unit load the wake potential is given 
simply by (see equation (28)) 

*o = - TTiT M* - o) 

The strength of the equivalent concentrated potential dipoles 
spaced at equal intervals    e    is thus 

0 = 
PoU 

The w's from each of these dipoles are given by equations (39); 
the values are tabulated on respective lines below the dipoles. 
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The superimposed total w Is shown near the bottom of figure 8; 
It Is noted that the results are the same as given by equation 
(63), thus showing that this method also leads to the exact 
answer. 

Solution 3! 

This solution proceeds as In the second solution, but makes use 
of equations (40) instead of equations (39). The results ob- 
tained by this method are shown In figure 9, curve (b), along 
with the exact results Just derived, curve (a). We see from 
this comparison the effect of not using average values of velo- 
cities over each Interval In the representation of w for each 
concentrated dlpole. 

Solution 4: 

In this solution we determine    w   by equation (3^)*  and keep    z 
finite to show the  Influence of not passing to the limit    z -* o 
Equations analogous to equations  (55)  and  (56) are Involved. 
With equations  (13),   (14) and (17)  the result can be shovm to be 

I 

0(x,z)  = 
^ I i 

zdi 2T7 
i l 

*(*.0)      = Jfyj 1(X   -   O) 
^O 

w = 4(x^lx^ = ^ 1 [tan-l l + f . rl(x . o)- 

x 
z tan -1 1 + TT 

2 -    TTl (X -  o)   we (64) 

1 

where   we    is the exact result given by equation (63),    The re- 
sults are shown in figure 10 for positive    x    only,  since the 
results for negative    x   would be the same.    We note the in- 
teresting fact that as long as   £ > 3 ,  the approximate solution 
(z finite)  is essentially the saffle as the exact solution. 
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Solution 5: 

In this solution we show the effect of wake termination, 
wake  strength Is given by 

The 

Mx) = - "TiJ 1(x " 0) 

With equation (1?) we find the field potential for a finite 
length wake to be 

0(x'z) =^fcu / 
zcU 

(x -  0    + z 

where    b    represents the point downstream of wake cutoff.    This 
equation yields 

^x'z) ■ 2#^J O^'1 f - ^^ H^) 

The vertical velocity as determined from this equation Is 

* = "»   If = - ^D* 0 + irhr) (65) 
z -♦ o 

This equation sliOws that w will be essentially the exact value 
if 3t is kept small.    A useful guide Is afforded by this 
equation; thus,  the term   --—£—   shows that If    x    is kept to 
within  ,05 b, for example,  tEeft errors in   w    due to wake 
termination will be less than 5 percent.    This observation,  of 
course,  applies to the 2-dimensional steady flow problem.    For 
the oscillatory case,  the errors In   w    due to wake termination 
should be tven less. 

Case 2;  2--dlmenslonal incompressible flow,     a» ^ o  .-    For 
this case equations corresponding to equations  (57)  are 

A(- •x) 1 
-X 

/ 

COS ■—>■ 
di* = 

— 00 
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-X 

B(-x) = h I 2iÜ C\iry' (66b) 

Because 2-dimensional flow is involved,  the constant    C    for 
this case is different than that given by equations (58)  and (6l) 
Here, in place of the    I    in equation  (56), we have 

iH = 1 
/ 

leaf. 

FT7 d? - 
-z ^ 

and in place of the factor   -^   we have  simply 1/2; the constant 
C    is thus given by 

C = lim 1 
2 

e_ 
■ZITTI 

=1 
z 

z -*■ 0 

1 
- 2 

CD 

U 

Using equations  (66)  and this value of    C    in place of the ^ 
term in equations  (62), we find irX 

w(x)  = 
2Trp 

1 1 .' l+^e 
iusc 
T- ^™) +U + i s^]| (67) 

which agrees with the known solution of this problem as de- 
termined by other exact means; it is interesting to note that 
this equation applies for both negative and positive    x  . 

Case 3i  3-dimensional incompressible flow,    co = o  .- The 
solution desired in this case is for the average    w   over 
equally spaced    y-intervals,  as would be used in equation (26) 
The equation for    w    for this case applying in the region 
y / o    has already been derived, equation (45).    For    y = o , 
we find 
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A(-x)  = 
TTX (-^S 

B(-x)   = o 

C  = - 
wX 

Equations  (62)  therefore yields 

.   jr. 
w  (x5o)   =      "1  , (1  +*-  

TTpUV -) (68) 

an equation that holds for both positive and negative x . It 
should he noticed that for negative x , this equation yields 
the same value of w as does equation (45), as It should. A 
rather significant observation may be made at this point. It 
Is noted that equations (63), (67) and (68) apply over the 
complete range of x , due to the fact that x appears In an 
explicit way outside of certain terms. Thus, In a remarkable 
way, the solution for w for negative x , for which no con- 
sideration of a singularity has to be given, appears also to 
apply for positive x If exact Integration can be made. In 
such cases, then, solution appears to be possible without 
having to give any consideration whatsoever to singularities. 

Case 4; 2--dlmenslonal Incompressible flow, m = o , as 
derived from discrete equal loads.- In this case we make use 
of the results of Case 3 "to derive results for 2-dlmenslonal 
flow by considering an Infinite array of concentrated loads 
equally pnaced In the y-dlrectlon, rather than using a uni- 
form line source, see figure 11. To give the results In 
terms of an effective loading of unity per unit length In 
the y-dlrectlon we let each of the concentrated loads have a 
magnitude X . The superposed w due to all the loads 
follows from equations (45) and (68) as 

w " -X 

TTOUX' ( 
1 +^  

7 
) 4n^ - 1 

'(2n - I)2 +42^ 

2n - 1 

(2n + I)2 + 4^ 

—"sm  (69) 
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This equation may be investigated quite readily for    x 
small and    x    very large; the known infinite summation 

very 

1=1 
n=l 

4n2 - 1 

provides an aid.    The results are found to be simply 

w = -1 
2TIP0UX ,    x small 

w = o X   =   oo 

These results indicate a rather remarkable fact; thus,   in 
spite of the fact that we have represented the uniform line 
source by an infinite array of concentrated loads, we find 
the solution to be the exact solution for small and large 
x .    The use of average values of    w   over each interval 
evidently retains all the essential intelligence of the flow- 
field.    Equation (69) has not been investigated here for in- 
termediate    x    values, but it is expected to yield exact re- 
sults in this range also. 
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SECTION VI 

EXAMPLE TREATMENT OF WINGS 

Illustrations of the application of the numerical grid 
schemes of this paper are shown In this section; for brevity, 
and because exact solutions are known, the examples are given 
In terms of a 2-dlmenslonal airfoil In steady flow. 

Example 1: 

In this example we use only a single concentrated load. The 
grid spacing e becomes the chord, c . V'e place the load 
at the quarter-chord point and consider w at 3/4c as shown 
In figure 12(a) (our Insight on these locations Is based on 
prior knowledge of airfoil behavior characteristics). By equa- 
tion (63) we find that 

w = -L 
?p^Tc 

leading to the Inverted form 

L « - TrpoUcw 

thusa C0nstant anßle ^ attack a , we have w = -Ua , and 

" "Po"' ca 

This Is the known exact solution to the problem. The pitching 
moment will also be correct because the load was placed at the 
quarter-chord. Thus we see the rather remarkable fact that the 
correct lift and moment were obtained using only a single load 
and a single downwash point. We have treated this seemingly 
absurd case because it provides a key guide on how to handle 
the next examples. 

Example 2; 

In this example we use 2 loads and 2 downwash points as shown 
In figure 12(b).    With example 1 as a guide, we have located 
these loads and    w    points In the particular locations shown; 
note the locations with care.    From equation  (63) the appro- 
priate equations for this case are found to be 

.   f 

W- 

w 2    I 

-1 1 
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Inverted,  these equations appear 

•"•p0
Uc 

8 

-3        -3 

1        -3 

w 

w. 

For a constant angDe of attack, for which w, = wQ = -Ua , we 
find x        d 

Ll = ^ ^f-^ 

L2 = "I ^Po"200 

These values yield a total lift and a moment arm referred to the 
lerdlng edge as follows 

L = Trpou
2ca 

e = c 

These values also correspond to the exact solution. 

Example 3; 

This example considers 3 loads and 3 downwash points, located 
as shown In figure 12(c). The guideline being evolved, and 
which appears to be remarkably successful, is as follows: 
divide the clord into as many equal intervals as there are 
lotdsj locate a load at each 1/4 point of an interval, a down- 
wash point at each 3/4 point. The equations that result for 
this case are: 

k 1 
k 
k 

-1 i i 
3 Ll 

TrpoUc 
1 

' 3 
-i 1 L

2 

1 
'5 

i 
"I -1 L3 
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7rpoUc 

-15   -10   -15 

-12   -10 

-15 

wl 

W2 

W3 

For a constant angle of attack, with w-, =«« = «- = -Ua , we 
find J.   ^   3 

U  = § TrpoU
2ca 

L2  = f ^Po^00 

L
3 = H ^Po^001 

which yield a total lift and a moment arm relative to the leading 
edge of 

L = TrpoU
2ca 

Again the exact results are obtained. By induction, we may expect 
an exact solution for all smaller intervals, if the loads and 
downwash points are located by the guideline stated at the begin- 
ning of this example. From these three examples we wish also to 
make the following observation thought significant. In all the 
three cases, downwash points have been chosen midway between the 
concentrated loads and in an aft direction, with surprisingly 
successful end results. No consideration has had to be made about 
flow or loading in the leading edge region. Essentially, we are 
saying that with this technique, we care not a wit about the math- 
ematical character of the loading at the leading edge, nor whether 
w is satisfied in this region. Apparently flow is controlled pre- 
dominantly by the aft regions of the airfoil. Perhaps this is a 
reflection of the Kutta condition at the trailing edge, which 
governs the strength of the entire flow. 

Example 4; 

For this example. Scheme II was applied to the airfoil case 
treated in Example 3. A detailed listing of the solution is 
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not considered necessary, but solution proceeds In the manner 
depicted by figures 5 and 8. Again considering the constant 
angle of attack case. It was found that exact results for lift 
and moment were also obtained by this approach. A main point 
of the example Is the reminder that, since the complete poten- 
tial system Is constructed by this approach. It Is possible 
to establish all components of flow velocity anywhere In the 
field, such as In the vicinity of a tall. 
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SECTION VII 

REMARKS ON GRID LAYOUT 

The concepts advanced in this paper have not been 
exercised sufficiently to permit definite guidelines to be 
stated on wing grid layout. Some suggestions on how to lay 
out the grid system can be made, however. It is felt that 
a matrix somewhere between a 4x4 matrix (four chordwise 
intervals by four semispan intervals) and a 10 x 10 matrix 
should adequately handle most lifting surfaces. The thought 
that the matrix should be square is not to be inferred from 
these numbers. Suggested layouts are shown in figure 13. 
For untapered straight or swept wings and for deltas with a 
straight trailing edge, a simple rectangular grid pattern 
can be used, figure 13(a) and 13(b)» For deltas with a 
swept forward trailing edge, an array consisting of rec- 
tangular blocks of one size in the leading edge region and 
rectangular blocks of another size in the trailing edge 
region might be employed, figure 13(b); these smaller trail- 
ing edge blocks represent the type that might also be used 
in the treatment of control surfaces. An interesting ques- 
tion arises at this point. Can intervals of different 
lengths be mixed? As a means for shedding some light on 
this question, the wing system shown in the following sketch 
was analyzed. 

U 

vfc 

The airfoil was arbitrarily divided into two intervals - the 
front interval being 4/5 c long, the aft 1/5 c long. A load 
and a downwash point were located in each interval according 
to the rule of thumb used in the example airfoil cases; spec- 
ifically, the load is placed at the 1/4 point of the interval, 
the downwash at the 3/4 point. The system was analyzed, as 
in the example cases, with the following results: 

L-L = .923 7rpoU
2ca 

L2 = .077 Trpoü
2co 

L =    irp0U
2ca 

e = c/4 
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Amazingly, the exact answer is found again.  (There appears 
to be some magic associated with the 1/4 and 3/4 points.) 
Evidently, then, mixed interval size can be used to good 
advantage. 

Figure 13(c) shows thoughts on tapered wings. We note 
that the blocks are of varying aspect ratios in this constant 
y-interval treatment. A variation of this scheme is shown in 
figure 13(d) wherein the y-interval is also varied to yield 
blocks of constant aspect ratio. The possible disadvantage 
of the layouts of figures 13(c) and 13(d) is that unequal 
intervals and a sheared grid system are involved, thereby 
increasing the task of evaluating the kernel function; this 
point, of course, does not become of too great a concern if 
the kernel function values are tabulated at frequent x and 
y intervals. In spite of the fact that the load and down- 
wash points are not located in a rectangular array fashion, 
the layout scheme of figure 13 (d) may turn out to be the pre- 
ferred scheme. Of all the schemes, it is the least arbitrary, 
and it applies to all wings regardless of planform. The 
scheme also tends to distribute and group the loads more 
towards the tip sections, which probably are the most important 
in controlling aeroelastlc behavior. 

Figure 13(e) shows a possible grldwork for a trapezoidal- 
type wing; here, a fairly fine rectangular gridwork is used. 
Two additional points may be brought out in discussing this 
arrangement. One pertains to gridwork size in the inboard 
region. If small blocks are used throughout, then many chord- 
wise blocks are found in this region. It, thus, may be worth- 
while to increase the size of these inboard blocks as a means 
for decreasing the total number. In the example shown, 58 
blocks would be involved if the same small size were used 
throughout. By only doubling the length of the inboard blocks, 
the number has been reduced to 38. This idea should especially 
apply if the wing is a cantilever, since the inboard region 
probably has little influence on determining the flow, and 
therefore should not require as detailed a treatment as for 
the tip region. A second point is that with the use of small 
blocks it probably isn't necessary to average the velocity in 
the y-direction for blocks remote to a load (as in equation 
(44);. The use of the w at the center of such blocks is 
probably accurate enough, thus lessening the chore of deter- 
mining the kernel function. The effect of averaging or not 
averaging can be illustrated by equation (39a); the -1 in 
the denominator is a result of the averaging process, and 
without the -1 the equation would yield the velocity at the 
center of the interval. It can be seen that for n as small 
as 4 , referring to a point Just 4 intervals away, the neglect 
of the -1 changes the w-value by not even 2 percent. 

42 



—— 

How large should the Intervals € and X be? The 
steady state example cases Indicate that the interval may be 
quite large (even equal to the chord in one case). For oscil- 
latory flow, however, definite wavelength patterns exist in 
the flow field, and these can be expected to have a bearing 
on interval size. We consider these wavelengths in the following 
as a means for establishing an upper limit to interval size. 
An examination of equation (16) indicates that three frequency 
components in the x-direction must be considered if evaluation 
is made by numerical techniques; namely, 

"l " IT 

a 

a, 

ü)(l - M) 

= U(l +M) 

(üjl ± M) 
aß* 

m 
- U(l - M) 

for x positive, R = x 

for x negative, R 

The smallest wavelengths are associated with 
and are given by 

ß. and    0. 

X,  = 2Tr 

.         2Tr      2TrU(l - M) X3 = ^ =  W 

To maintain a reasonably accurate numerical procedure, we 
reason that the interval € should be something in the order 
of 1/12 or less of the shortest wavelength; (effectively, 
we are saying that 12 equally spaced values or more should 
define one cycle of a sine wave reasonably well). Thus 

. 2irU € .ST2ü> 
or 

i^^ 
whichever is the shorter.    Written in terms of the chord and 
reduced frequency, we have 
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Sessions arl gWlS the following tabulation. 

6/c = 

- . 1 

5.?3 

2.62 

3.48 

1.74 

1.31 

.654 

1.31 

.882 

.882 

.582 

.327 

.196 

.654 .436 .164 

.523 .348 .131 

k 

.05 

.1 

.2 

^3 

.4 

• 5 

A similar treatment for the y-directlon indicates only 
a single ?reqSency and the following results: 

> 1 

CD  M 
"y = !!•? 

c   'TIE       M 
z 

k 

.05 

.1 

M =             .1^2 ^4 

12.0 

6.0 

3.0 

7.0 

3-5 

1.74 

j8 

3.93 

1.96 

.98 

X/c = 52.1      25.6 

26.1      12.8 

13.0       6.4 
■ 

.3 
,4 

8.8       4.32 

6.52     3.2 

2.02 

1.50 

1.18 

.87 

.66 

.49 

• 5 
5.22     2.56 1.20 .70 .39 
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These results indicate that the wavelei^th components of 
the flow are not of prime concern in establishing interval size, 
except in the range of high k and high subsonic Mach number 
values. For the lower k and M values, other considerations, 
such as the geometry of motion of the airfoil, would govern. 
With respect to a plunging, pitching, and possibly deforming 
airfoil, for example, the following question is of concern. 
How many downward points should be used to represent the motion? 
From a curve-fitting point of view, it is reasoned that a min- 
imum of 4 to 5 points should be used to give adequate represen- 
tation of motion across the chord. Thus a minimum of 4 chord- 
wise intervals is suggested; by similar consideration, at least 
4 spanwise stations should be used. Taking into account these 
various thoughts on interval size, and until more experience on 
the practical application of the grid scheme is available, we 
might state the following rule of thumb: for low k and low M 
values, use 5 or 6 chordwise and 5 or 6 spanwise intervals, and 
for the high k and M ranges, use intervals as indicated by 
the e/c and X/c tabulations given earlier in this section. 

• 
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SECTION VIII 

FREQUENCY RESPONSE AND FLUTTER DETERMINATION 

One of the features of the schemes of this paper is that 
the equation relating P to w is ideally suited for both 
of the basic types of aeroelastic formulations that are 
normally employed, specifically, for either the approach which 
is in terms of discrete masses and influence coefficients or 
the approach which uses modal functions and a Lagrangian treat- 
ment. By way of exampla, we show in the following how the 
frequency response functions of an airplane due to sinusoidal 
gust encounter may be derived; the equations for flutter are 
in turn automatically derived. 

In reading this section the reader should be aware that, 
to simplify the writing, considerable liberty has been taken 
with the matrix notation; it is abreviated or inconsistent in 
places, and matrix elements are presented in a general sense 
only. 

By discrete masses and influence coefficients.- Let the 
dynamical equations for sinusoidal motion of the complete air- 
plane system be represented by the matrix equation. 

[D]|Z 2 
= a) im + P (70) 

where Za is the column matrix denoting the deflection at each 
of the discrete mass points (which may include the fuselage and 
tail as well as the wing), D is the operator which leads to 
total loading, m a diagonal mass matrix, and Po the applied 
loading matrix. In the form presented, the equation applies 
either to a free-free system or to a restrained system such as 
a cantilever. For a sinusoidal gust, equation (24b) may be 
written 

w = U dZ + icuZ - e '
1 U 

(71) 

where x is the location of the downwash point relative to 
some convenient reference point such as the leading edge of 
the root chord of the wing. In general, the load and de- 
flection points use^ for the dynamical treatment of the system 
may not be the same is those used for establishing the aero- 
dynamic loads. By suitable interpolation formula«, however, 
these two load and deflection systems may be easily related, 
and we suppose that the transformations from one system to the 
other are given by 
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|P| - LTil IP (72a) 

Zj   - ITpl   |Z| (72b) 

where    T^    and    T2    are in general rectangular matrices, 
Combining equations  (26),   (70),   (71) and (72), we find 

K T^D - CD2m)T2Z = (u J^ +, io») Z - 
U 

(73) 

where, for simplicity in writing, the matrix notation has been 
dropped. Equation (73) in turn may be written 

[ft T^D - ei&OT,, " (u |E + i«) J Z - 
i ^ 

."  U 

or 

D-LZ = - n 

•1 ü»c 
Ü" (74) 

Inverted, we find the desired result for the frequency response 
function Z , thus 

Z = - D:L"
1 e 

i !**£. 
U (75) 

Prom Z we may determine the frequency response function for ' 
other quantities of interest, such as acceleration or load at 
given points. 

It is to be noted that this development was made in a way 
so as to make the inversion of the K matrix unnecessary, see 
equation (74); thus the developments in this report appear all 
the more attractive. The Dn matrix of equation (74) is ob- 
tained by matrix multiplication and addition of various matrices, 
each one of which is established in a straightforward way. 
Solution for the fraquency response is thus reduced to a single 
inversion of the end result matrix 
(75). 

as shown by equation 

. 
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The equation describing flutter of the system follows 
directly from equation (74), being simply this equation with 
the right hand side set equal to zero. 

By a modal function approach.- We assume that the response 
due to a sinusoidal gust input is expressed in terms of the 
natural modes Zn of the airplane system according to the 
equation n 

Z — a.. Z, + apZp + a3Z3 + (76) 

where the ^n,s    are generalized coordinates. It is well 
established that a Lagrangian formulation in terms of equation 
(76) leads to the following basic response equation for a_ n 

(77) 

(78) 

where a„ n 

M an + u> 2Ma    = /pZ dS nn        nnn     Jc rx 

where Mn is the generalized mass and a^ is the natural 
frequency of the nth mode, and where p is the applied 
loading over the surface S . If equation (77) is applied to 
each of the modes considered, and if the loading p is ex- 
pressed in terms of equivalent concentrated loads at various 
grid points, then, for the sinusoidal case of a^ , we can 
write the following matrix equation 

f co  - CD JNL  is a simple diagonal matrix, 

column matrix, Z  is a rectangular matrix built up from row 
matrices which express the deflection at each grid point for 
each mode Zn , and P is a column matrix cf the applied con- 
centrated loads at each grid point. The simple matrix form of 
the generalized forces on the right hand side of equation (78) 
follows from equation (77) because of the Dirac function nature 
of each concentrated load. We now show two ways for proceeding 
with the solution. One method involves the inversion of the K 
matrix and leads to a solution in terms of the a^    values. The 
other represents a very interesting different version, which 
avoids having to invert the K matrix and which leads to a 
solution directly in terms of the P values. For both versions 
we make use of the matrix representation of equation (76) to ex- 
press the deflection at each of the chosen grid points, namely 

/ 
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zl = rz^JlaJ (79) 

where fZ'j is a rectangular matrix Is which each column re- 
presents the deflection at the various grid points in a given 
mode. 

In the first version we combine equations (27) and (71), 
and (79) to obtain the loading as 

P| - [K]-1^ + io) FZ la 1 nJ' n' - [RfV u I (80) 

The substitution of this equation into equation (78) leads to 
the result 

,(%2 - ^x. 
'-  iZjCR^Ie"^ 

+ io 

OK 

Ki n1 

or 

_1 Ü2L 
[E]|an|   = -   [Zn1[K]-1|e       U | (81) 

Solution for a^ yields the frequency response functions for 
a^ . With the a^s established, various other frequency 
response functions, such as acceleration or load at a given 
point, follow readily. 

In the second version we proceed by solving equation (78) 
for janl , or 

a„ n1 = f ^—5 KZnll 
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where solution follows simply because the square matrix on 
the left hand side of equation ^78) is diagonal. The combina- 
tion of this equation and equation (79) yields 

z| ■ ^L^-^MK^I K    - ^ )Mn- 

With this equation and equation (71)* we find 

w ° ["!? HrZn((%^ mg)MnK
l|P|   '  ^ 

4    OQX 

(82) 

We now combine this equation with equation (26) by eliminating 
w , and find the following equation in terms of the P values 
only 

[K] " U 37 + ice WTT^TKI^I - -1 
-1 

(V5 - ^'V 

UK 

(83) 

or 

[H] P    = -   |e 

.    UBC 

U 1 

Inverted, we find the frequency response values for    P 
directly as 

.  use 
-li   '1 TTi 

-  [H] 1 e       u (84) 

It is to be noted that the matrices leading to H are all 
very easy to establish, and thus this version appears 
especially attractive. 

For flutter considerations by this modal approach we 
consider the homogeneous part of either equation (8l) or (83); 
that is, we consider these equations with the right hand sides 
set equal to zero. 
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SECTION IX 

CONCLUDING REMARKS 

Most of the sections In this paper contain some discussion 
of the possible merits or advantages of the concepts developed. 
We therefore conclude with only a few additional remarks. 

In this paper, we have advanced the concept of using 
concentrated loads to represent the aerodynamic loading on a 
lifting surface.  Many variations of this Idea may be conceived. 
For example, the distributed loading may be expressed In terms 
of various approximations, such as straight line or parabolic 
segments, with unknown values at various grid points.  Equivalent 
concentrated loads can. In turn, be deduced from this represent- 
ation.  These concentrated loads can then be handled by the 
procedures developed In the paper, with the result that the 
downwash values are thus given In terms of the distributed load 
values.  Whether this "apparent" refinement would represent an 
Improvement or not, however. Is not known.  Another Idea that 
may be of good practical use In application Is the following. 
Consider a slice cut out of the wing In the x-dlrectlon and of 
width \ In the y-dlrectlon.  Assume a pressure distribution on 
this slice that Is uniform In the y-dlrectlon and represented 
by various pressure mode functions In the x-dlrectlon.  For each 
of the pressure mode assumptions, establish the downwash for a 
number of points along the center line of the slice and along 
lines In the x-dlrectlon which are spaced at equal y-lntervals 
\ ; these downwash values are then used for universal application 
thereafter. The application to any wing, for example, would be 
to consider a series of such slices placed side by side in such 
a way as to cover the planform; essentially, by this representa- 
tion, wa envision that the pressure distribution over the wing 
is given by smooth functions in the x-dlrectlon and by a 
succession of steps in the y-direction.  Solution by this 
approach becomes nimply a matter of determining by an equation 
analogous to equation (27) the magnitude of the x-pressure modes 
at each y station so as to yield the prescribed or desired 
downwash distribution. 

With respect to limits on matrix size in the practical 
application of the schemes of this paper, we may find that there 
is no great concern over how large the matrices may be because 
of the capability of modern computing machines. Matrices as 
large as 10 x 10 or 10 * 20 may present no difficulty, for example; 
this point has a bearing on whether average values of w within an 
interval are used or not. Thus, if large matrices can be handled 
without difficulty, it may be as good or better to use a large 
matrix and no averaging of w as contrasted-to the use of small 
matrices and average w values. A point of uncertainty on 
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matrix size should be mentioned, however.  Because experience 
with the schemes has not yet been obtained on a broad basis, we 
don't know whether difficulties with numerics will be encountered. 
We don't know, for example, whether the large matrices may be 
ill-conditioned, thereby making inversion difficult. The evidence 
provided by the example cases of this paper Indicates the 
matrices are not ill-conditioned, but whether this is also so for 
very large matrices has to be established.  In spite of these 
questions on inversion, it  is to be noted that the developments 
given in the preceding section show i,hat aeroelastic problems may 
be solved without inversion of the K matrix; thus, the question 
of matrix inversion may, in reality, not be of concern. 

We conclude by identifying in summary the pertinent equations 
for w which require numerical integration. These are equations 
(38)> giving w for a subsonic dipole, and equations (4^), (57), 
and (62) which represent the kernel function.  These equations, 
expressed in a convenient, nondlmenslonal form, should be evaluated 
for various K = üOC/2U and M values. A tabulation of results 
would provide a universal set of numbers and would obviate the 
necessity of evaluating the expressions In each new problem 
treated. Application of the techniques advanced in this paper 
to solve various oscillating flow problems would be a rather simple 
routine task. 
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0 = 0 ,30 H 

w ^ 37 ' as Prescribed 

In the field: 
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Figure 1.  Regions of Concern and Boundary Condition! 

Concentrated load 
Downwash point 

Figure 2. Grid Pattern Locating Concentrated Loads and 
Downwash Points 
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(a) Horseshoe vortex 

Slice a, "averaged" 
Slice b, 
"averaged" 

(b) Averaged velocities 

Figure 3. Vertical Velocity Field for a Narrow Horseshoe Vortex 
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Figure 4. Basic Notions of Scheme II 
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"Averaged" w, slice a-a      "Averaged" w, y-z slice 

Figure 6. Dipole Representation and "Averaged" Vertical Velocities 
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(a) 

(b)  x-z plane 

(c) Along d 

(d) Along c 

(e) w along c 

(f) Along h 

(g) Along a 

(h) w along a 

(1) w lim 
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] 
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Figure 7.    Determination of w by Finite Difference Technique 
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Figure 8.    Dovmwash Due to a Unit Load as Obtained from Wake Dipoles 
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(b)   Using eqs.   (40) 

Figure 9.    Downwash Values for Solution 3 
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Figure 10. Downwash Solution for Unit Load by Finite 

Difference Technique with z Finite 
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Figure 11,    Infinite Array of Equally Spaced Concentrated Loads 

Replacing a Continuous Line Source 

u 
Downwash point 
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(a) € = c 

(b)  «-§ 

(C)  €.' 

Figure 12. Example Airfoil Cases Treated 
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e A with straight 
trailing edge 

Figure 13.  ideas on Possible Grid Layouts 
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(c)  Equal  spanwise inte rvals 

(d) Spanwise intervals vary proportional 
to chord intervals 

Figure 13.    Cont. 
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