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ABSTRACT

New developments on 1lifting surface theory for oscilla-
tory subsonic flow are given. Key concepts in the analysis
are the use of concentrated loads rather than distributed
pressure "mode" shapes, and the development of a modified
kernel function which gives average values of vertical velo-
clty over chosen intervals and which eliminates all singular-
1ty problems.

Features of the analysis are: Sl) loads are given directly
in terms of vertical velocities, (2) no pressure modes have to
be assumed, (3) singularities are obviated, (4) the locations
of control downwash polnts are specified systematically,

(5) control surfaces may he included, (6) treatment of non-
planar surfaces, such as I-tails, !s possible, and (7) appli-
cation is made through a simple quick routine procedure.
Examples are given throughout to illustrate the concepts.

This abstract 1s subject to speclal export controls, and
each transmittal to foreign governments or forelgn natlonals
may be made only with prlor approval of the Alr Force Flight
Dynamics Laboratory (FDTR), Wright-Patterson Air Force Base,
Ohio 45433.
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SECTION I
INTRODUCTION

This report 1s concerned with oscillatory airforces but
1s motivated by the problem of determining the frequency
response functlon of an airciaft. The frequency response
function, deflined in a general sense as the structura. response
due to a unlit sinusoidal input, is now an important ingredient
in the treatment of some of the majJor aeroelasiic problems of
an aircraft. Design for gusts by power spectra. techniques is
one area. Fiutter, representing a speclal situation of the
frequency response function, 1s another. Because of this prom-
inence, a deslre exists to establlish the function in a qulck
reliable way.

The establishment of the frequency response function 1is
convenliently broken down into two areas, one dealing with the
aircraft structure, the other with the nonsteady aerodynamics.
The structure 1s generally handled by either of two approaches,
one 1lnvolving the use of modal functions, the other the use of
lumped or discrete masses. The aerodynamics 1s usually handled
by modifled strip theory or by a 1lifting surface approach
involving the use of a kernel function.

In appralsing the problem of determining the frequency
response functlion, it appeared thect “mprovements in the handling
of the aerodynamics were needed. These possible improvements
are discussed here mainly with reference to the use of 1lifting
surface theory. In splte of the fact that this theory has been
applied successfully in various instances, some shortcomings
stilll exlist. The approach does not seem to be as computation-
ally economic as is strip theory (because of this fact, modified
strip 1s stlll used in the treatment of very large flexible air-
craft). Pressure "modes" have to be assumed from which the
downwash is computed; a desire 18 to be able %o determine the
pressure directly from a prescribed downwash condition. Uncer-
tainty still exists on how many collocation points should be
used, and where they should be located. The technique for
Including control surfaces 1s not clear; only recently have some
speclal studles of control surfaces been made. Finally, 1ifting
surface theory has been restricted mainly to planar surfaces.

The purpose of this report 1s to develop improvements in
the use of 1lifting surface theory; and, in turn, to ease the
problem of determining the frequency response function. Its
aims are to: (1) allow loads to be established directly in terms
of given downwash values, (2) eliminate the necessity of assuming
pressure modes, (3) make the choice ¢ downwash points less arbi-
trary, (4) include control surfaces, (5) include nonplanar sur-
faces, and (6) simplify the application. Key concepts in the
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development are the use of concentrated loads rather than dis-
tributed pressure mode shapes and the development of a modified
kernel function which gives average values of vertical velocity
over chosen lutervals and which eliminates the problem of deal-
ing wlth singularities.

The present treatment 1s confined to the subsonlc range,
but many of the ideas should apply equally well to the super-
sonic range and especially in the treatment of problems
involving mixed subsonic and supersonic flow.




SECTION II
GOVERNING DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS
Governin% Differential Equations.- The developments given
in this report could start directly with the well established and
generally accepted linear equations for 3-dimensional oscillatory

subsonic flow. For completeness, however, a brief review of their
derivations is given in this section.

We consider a lifting surface immersed in a flow from the
left as shown in the following sketch.

4
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The flow is considered to be isentropic. The governing
differential equations are:

Euler equations,

1

aul . aul 'y aul . aul 1 apl
3 "M I 13y 10z p13'f—
v ov v ov dp

1 ! 1 1__ 19 1
3 T *Yi1yy TYisr T3 > =)
ow ow ow ow. op

1 1 1 1_ 1%
3 tMsx tMiyy TYidr T 3 !

Equation of continuity,
d

d 3 d _ P1

X P tsypa 3z = -5 (2)




Isentropic gas law (from equation of state),

\
u =U +u
v1 =V
Wy =W ? (4)
p1=po+p
Py, =P, +P
1 o y

where u,v,w,p, and p are the perturbations which are small
relative to the steady state terms. The substitution of
equations (U4) into equations (1), (2) and (3) yields, after

discarding the second order terms, the following linearized
equations

b ) 1 9
3 tU i o 3% u
) ) 1 9
+U6-J—( B;Fy v
> > 1) e B
EE-*.UBE B;gz— w
d d d 1l (za P
3% 3 7 Fo\sEtUsx) (| P
o)

The speed of sound a appears in the last equation as a result
of using equation (3) to replace p in equation (2) by p ;
specifically equation (3) indicates

dpy P o

= Rt P 6
B, "~ Ve, 70 (6)




The treatment of equations (5) is simplified by introducing

 § the velocity potential ¢ such that
i )
1 1} LIS 5% (7a)
: _ 3
; v = g% (7o)

(7e)

=
I
&

With these equations all of the first three equations of equations
(5) reduce identically to the equation for pressure

p - - oV 32 +3¢) (®)

while the last equation becomes the governing differential
equation

> 1/ 3 .3V
Voo - ;?KU T3 +'5{> $ =0 (9)

Equations (8) and (9) are the basic well known equations that
are to be treated in this report. It is significant to note
that equations (5) show that equation (9) also applies when
any of the independent varisbles u,v,w, or p 1is written ir
place of ¢ .

Boundary conditions.- The prrblem to be solved is fixed
by stating the boundary conditions that must be used in con-
Junction with equation (9). In developing the boundary con-
ditions it i1s instructive first to examine the symmetry pro-
perties of the variables u,v,w,p and ¢ . We note that the
vertical velocities on the upper and lower surface of the wing
must be equal (wing considered thin) and therefore reason that
w must be a symmetrical function with respect to 2z ; equations
(5) and (8) indicate then, that u,v,p and ¢ must all be anti-
symmetrical with respect to 2z . These symmetry properties allow
the flow problem to be solved by considering the upper half
z-region only. Boundary conditions on the x - y plane thus
become of concern, It 1s convenient to specify these boundary
conditions in terms of the three different regions A, S, and W
shown in figure 1. 1In the region A ahead of the wing, the
only perturbations that can exist are those propagated forward;
no discontinuities can arise, and thus, because ¢ 1is anti-
symmetric, ¢ =0 on the x -~ y plane, For the region S ,
the wing supports a pressure discontinuity across its thickness




with p+ = -p , where + and - denote respectively the upper
and iower surfaces, The w 1in this region must be that given
by the wing. The region W 1s established by the Kutta condi-
tion which states that w must remain finite at the trailing
edge, or alternatively that p = 0 at this edge. From tnis
condition it 1s reasoned that the wing leaves hehind it a dis-
continuous wake sheet, which must be continuous in w , which
cannot support a pressure jump, and which therefore must be
discontinuous in u, v, and 4 ., Figure 1 specifies the
problem completely. The main difficulty is the problem of
dealing with mixed boundary conditions.

Throughout the remainder of the report we will be concerned
with the oscillatory case only, where the independent variables
¢ and p may be expressed in the form

¢ = ¢(x,y,z)eid)t

Lat
p(x,y,z)e

o]
Il

and similarly for u, v, wand p . Thus for the oscillatory
case, equations (9) and (8) become

2
v¢-1< +1iw) ¢ =0 (10)

p = - pO<U %% + i(-nqb> (11)

The harmonic term eiam will be suppressed for brevity in
writing in all equations to follow. As mentioned earlier,
equation (10) epplies not only for ¢ but for the other
independent variables as well; thus

2
v2p-—1§(ué%+iw p=0 (12)
a\

The integration of equation (11) gives a result which is
basic to all subsequent development; this integration yields

_dax X {f

P(X,¥,2) = - p—iv e U e -U._p(ﬁ,y,Z)dﬁ (13)




Of concern also is the result obtained from this equation as
z = 0 ; this result is

_lex X et
¢+(X,Y:O) =17 1 e el e < p+(€:Y:o)d€ (lu')

Po

where the + sign signifies values at the upper surface of the
discontinuous sheets. Equations (10) through (14) form the
basis for the developments in the subsequent sections. 1In a
general sense, solutions are made by means of equations (13) or
14), in terms of basic source solutions of either equations

10) or (12), and with due regard being given to the boundary
conditions.

Basic source solutions of equations (10) and (12).- Some
solutions of equations (10) and (12) that form the base for the
solutions of various oscillatory flow cases are the following
(see reference 2):

Monopole (of unit strength),

1 _i“):ﬂégﬁ
¢y OF Pp = = Tox © ap (15)
Dipole (of unit strength),
2 "'i(l) ‘MJC+R
2
8q or py = - 22 (1 + 1% ap (16)

4yR3 ap

where

R = ? + Bg(y2 + z2)

o1 -

These two equations are related by the operation

3¢,
% = "%

W [}

A b A o il




Two other solutions that are used herein are the following
reduced casess

Line dipole for 2-dimensional incompressible flow,

¢orp=-§l,-rT'—z (17)

X + z

Dipole for 3-dimensional incompressible flow,

T B B <Fy R %)

Point function characteristics of Egs. (16), (17), (18).-
We remark here on the point function character of equations (16)
(17) and (18), especially with respect to the use of a factor 2;
some concern arises at times as to whether or not a factor 2
should be included, and these remarks are offered for possible
clarification, Consider a 2-dimensional pressure discontinuity
sheet extending from X =x3 to x =xp . The strength is
specified by the function Po(X) , which by the antisymmetric
nature of p implies a pressure of - 1/2p on the upper sur-
face of the sheet and + 1/2p, on the lower surface. The di-
pole strength in an elemental length dx 1s py(x)dx , and thus
from equation (17) the field pressure may be found as

zp (&)dﬁ
f - (19)
(x - £)°
LS

r\)||_n

p(x,2z) = -

In considering this equation in the limit =z — 0 , we note that
only the portion of the integrand in the immediate vicinity of
x can contribute to the integral. The equation may be reduced
therefore to

AESEY) Ens T_fTHT

Se NS +z

where the interval n = - € to 7n = € 1is small enough so thrat

i
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po(g) may be considered constant., This equation yields

€
+ - p (X) -1
P (%x,0) = lim 5~ tan B le
Z = 0
= - 5 p,(x) (20)

thus indicating the pressure to be the upper surface pressure,

as it should; the point function character of equation (17) 1s
thus also seen.,

If p_(x) given by equation (20) 1is substituted in
equation (39 » wWe have

e

f zp+(e,0)d€

x, (- 6)% 4 =)

pP(x,2) =

|
-

From equations (19) and (21), we thus make the following rule:
if the discontinuity strength is specified use equation (17)

as 1s to deduce the field pressure (equation (19)); if the upper
surface pressure 1s specified use equation (17) with the factor
- 1/2 suppressed to deduce the field pressure (equation 21)),
These observations may seem trivial, but trouble has occurred

in instances where they have not been fully understood.

A similar point function proof and rule may be shown to
hold in the application of equations (16) and (18).
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SECTION III
SOLUTION BY NUMERICAL GRIDWORK SCHEMES

The oscillatory problem under consideration here may be
stated as follows. Consider a wing to be oscillating sinusoid-
ally in the z-direction in some prescribed deflection shape; we
wish to find the particular solution of equations (10) or (12)
which gives the pressure distribution on the wing and for which
all the essential boundary conditions are satisfied. Such a
direct so’ution has been possible for only a few special cases,
such as 2-dimensional incompressible flow. For the more general
cases solution has had to proceed in an inverse sense; thus, a
pressure distribution is assumed and solution is made for the
vertical velocities that are induced. To be more specific let
us review the basic steps of the kernel-function approach that
has been used in the past. Equation (16) for py 1s sub-
stituted into equation (13), from which the vertlcal velocities
are found by equation (7c); formally the result appears as

lux

o
w = K(x,y,0) = - F];ﬁ e Y 1im gaz' f e Pd(ﬁ,y,z)di (22)
o

Z = O =00

This function is called the kernel function; it is analogous

to an influence coefficient development and specifically denotes
the vertical velocity that is developed at the point (x,y,0)

due to a unit pressure dipole at the origin. Its evaluation

and a discussion of the associated singularities are given in
reference 1, With this equation the vertical velocity that
results from a given loading distribution p, over the wing
follows as

W =£fpo(€,n) K (x - £,y - n,0)dndé (23)

To insure satisfaction of the Kutta condition, the distribution
is chosen so that p is zero at the trailing edge. To obtain
the solution for spegific 1ifting surfaces the technique
generally used is to introduce several pressure "modes" or
distributions and then by a collocation technique to find what
combination of these pressure modes leads to the desired vertical
velocities on the wing. In terms of the wing deflection Z , and
in terms of any gust velocities w, that also may be under con-
sideration, these vertical velocitges are given by

11

e T .~ Wi, ™ ) A~




w=1U %% +'%% - wg (2ka)

oZ

=USs+iaZ - w (2lb)

g

where the second relation is for the sinusoidal case. It is
noted that the evaluation of K and its use in equation (23)
is fraught with horrible singularities.

The treactment to follow has three objectives: (1) to make
5 direct soluvtion of the pressures in terms of the vertical
velocities, (2) to obviate the necessity for introducing
pressure "mode shapes", and (3) to greatly simplify or eliminate
the problem of dealing with the difficult singularities. Four
possible procedures are advanced.

Scheme I.- This scheme is based on equations (22) and (23),
but with notable changes so as to allow numerical evaluation to
proceed differently. The wing is divided into a gridwork
pattern as shown in figure 2, guidelines for laying out this
grid pattern will be brought out later. The loading on the
wing is considered to be given in terms of concentrated loads
rather than in terms of distributed pressure functions; this
is one of tlie key concepts of the approach. The concentrated
loads are located at the grid intersection points. Then by
means of a "modified" kernel function, downwash values are
derived at each mid-station point, illustrated by the point
labelled A in figure 2; the logic behind the choice of the mid-
station is also brought out subsequently. The result is a
matrix equation which relates the loads P 1in terms of the
downwash w . This matrix equation is then inverted, giving
the desired end result of P 1in terms of w .

The second key point in the development of this scheme is
the manner in wnich the kernel function is handled. The strong
singularities of the kernel function along the x-axis aft of the
unit load preclude its direct use in this scheme. An appreciuation
of the type of singularities involved can be obtained by picturing
the downwash that 1s associated with a very narrow horseshoe vor-
tex in incompressible flow, as shown in figure 3(a). The down-
wash pattern 1s singular in both the x and y directions at
the origin, and strongly so in the y-direction along the horse-
shoe, The picture becomes all the more dramatic if we envision
the situation as the width of the horseshoe becomes zero. To
remove the difficulty of dealing with these singularities we
modify the kernel function by averaging the velocities over
equally spaced intervals in the y-direction, specifically we
write

(25)

RTRR?




where A 1s the grid speacing in the y-direction. With this
simple modification, the downwash function changes to the type
illustrated in figure 3(b). Slice a typifies, for example,

the downwash in the y-direction ahead of the unit load; slice
b, a station x aft of the load. This averaging concept is based
on the idea that in any real situation, the wing nerely senses
an average effect. Thus, by this averaging technique, the
singularities in the y-direction are removed from further con-
sideration. Note, a singularity remains in the x-direction at
the unit load, but it does not concern us because we avoid any
downwash consideration at this point (if desired, however, we
can also consider an averaging out process in the x-direction
to eliminate this singularity).

In terms of equation (25), we summarize this scheme in
terms of a matrix equation as follows:

| Ky K Ky oot kil
w2 K1 Kpp I-(2j o ] P
e | 1
or
w| = [x]|P] (26)
where K denotes simply the "average'" value over the interval

A in the y-direction of the downwash at station m due to a
load at station n . Inversion of equation (26) gives the de-
sired end results.

_ =1
|l = (K] |wl (27)

There are several noteworthy points to bring out with res-
pect to the use of equation (26):

(1) No load or pressure distributions have to be assumed.

13




-

(3)
(4)

(5)
(6)

(7)

(8)

I% 1s not necessary to force any load or pressure dis-
tribution to be zero at the trailing edge (the condi-
tion of zero pressure jump across the trailing wake
sheet will be satisfied automatically because this
condition is satisfied for each of the concentrated
loads).

The question of how many collocation points should be
used, and where to locate them does not enter.

Quite significantly, this procedure affords a way for
treating control surfaces as well; it is only necessary
to distribute concentrated loads on the control surfaces
in the same manner as on the wing, and to process these
simui taneously with the wing loads.

The averaging technique eliminates, as mentioned, any
difficulties with singularities.

The procedure is very routine and systematic; on

evaluation and tabulation, the K values become
universal; che establishment of the K matrix for

any case becomes simply a procedure of look up, as
in the use of trigonometry tables.

The K matrix has certaln symmetrical properties
and many elements are identical. For example,

= where p and q have the same position
relativeé 'td one another as do m and n ; also
Kpn = Kpn , where m and p denote stations of
equal dgstance to the right and to the left of n
(the y-direction).

The scheme appllies to any planform.

Scheme II.- In this scheme the essential building block

is the

pole source rather than the kernel function, and ex-

plicit consideration is given to the wake. Steps are illus-
trated in figure 4 and are basically as follows. First, we
divide the wing into a grid pattern as in Scheme I, and affix
a system of concentrated loads. Next we apply equation (14)
along each chordwise gridline to establish the strength of the
associated dipole line sources for velocity potential that lie
in the chord plane of the wing. These line sources are func-
tionally continuous between the concentrated loads, and jump at
each load location. We note here the reminder that with respect
to equation (14), ¢,(x,y) = - 2¢%(x,y,0) , and po(X,y)

= - 2p+ x,y,0). Essentially, envision that we derive a system

;f dipo

e line sources which when operated .upon by equation (11)

ylelds back the concentrated load system in the limit z — o .

14
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We then replace this line source distribution by a system of
"equivaient" discrete dipoles, located at the mid-station
points; the strength of each dipole is given by e¢0(x,y)
where ¢, 1is the strength of the line source at the mid-
station. Filnally, we find the total downwash at the mid-
station grid points on the wing due to alli the discrete di-
poles - those in the wake as well as in the wing planform.

A matrix equation similar to equation (26) results which
glves the downwash in terms of the concentrated loads; this
equation is then inverted, as in Scheme I. The application of
this sequence of thought may seem cumbersome, but in practice
is quite simple and systematic.

'ﬁ
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In using equation (14) to establish the line source dis-
tribution, we treat each concentrated load in the nature of
a Dirac function. For a single concentrated unit load, located
a distance x,. downstream from a reference origin, the line
source distrigutlon for potential, as established by equation

—

(14), is
io
(x, = x)
Fi ! ¢O(X’Y) == 2¢+(x,y,o) = - p_i'[]' eT r l(x - xr) (28)
{

Ll where 1(x - x,) denotes a unit step function at x = x,. .

The sequence of using this equation for a row of concen{rated
loads and the means for establishing the system of equivalent
;l % concentrated potential dipoles is illustrated in figure 5.

Two versions for treating the downwash from the individual
equivalent dipoles bear investigation. These are depicted in
figure 6. In the first version we average the downwash over
equally spaced intervals in the y-direction only, while in
the second version an averaging is made in both the x and y
direction. This averaging removes the singularity problem
associated with the dipoles. These two averaging techniques
ar2 given by the following equations in terms of the potential
for a dipole of unit strength.

E ) d¢
Wl(x,yo) =%’ B_Z'cl ] dy (29)
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Examples later on will bring out the effect of averaging or
not averaging in the x-direction.

It should be noted that the equation relating w and P
as obtained by this method should be essentially the same as
equation (26). The only difference might be that of a slight
variation in the individual values of the coefficients K, ,
due to the use of different numerical procedures.

All the points relative to the utility of Scheme I apply
to this scheme also, but some further points may be made. The
fact that the wake must be considered explicitly may at first
make the scheme appear unwieldy. This is really not so, how-
ever; the influence of downstream wake points decays very
rapidly, and thus from a practical point of view we can ignore
the wake beyond a certain number of chords distance; that is,
we simply terminate the wake. An example presented later will
bring out the effect of wake termination. With respect to
giving explicit consideration to the wake we note also that,
very significantly, we can turn this fact to our advantage.
Since we have effectively established the complete system of
potential dipoles for our wing system, we can calculate all
of the induced velocities wu,v,w , anywhere in the field as |
well as on the wing. This fact means that we are not res-
tricted to planar 1lifting surfaces, and that the interaction
effects of various other lifting surfaces in the vicinity of
the wing may be handled as well. The big additional advantage
that is offered by this scheme is therefore the fact that
various configurations such as planar wings, wings with Jjumps,
bi- or multi-wing configuration, T-tails, can be analyzed.

Scheme III.- This scheme represents a combination of

schemes I and II. The key idea in this scheme is the recogni-
tion that the effect of entire wake may be expressed in terms

of a concentrated load just off the wing at the trailing edge.
This concentrated load is not part of the load on the wing, but
the downwash. it creates on the wing is precisely that contributed
by the wake, It seems strange that this fact has not been re-
cognized or utilized in previous analyses. We will deal only A
with the wake treatment in this section, since otherwise the L
scheme 1s the same as in schemes II.

We consider the situation that develops along one of the
chord gridlines and especially the extension into the wake
region, If we denote by m the number of concentrated loads
that are chosen along a chord, then, by the process that is
i1lustrated in figure 5, we find that the intensity per unit
length of the wake line source is given by

iw

e x —x)
_ o 2 -4 P -2m+2) T (%
¢o—-50—ﬁ<P1+P2a +P3a HE 000 na
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With reference to equation (28), this equation may be written

)

il 7 (%e-x)
¢O = - W Pe e 1(x - Xe) (31)
where
2m om-2 2m-4 2

P, = Pja™ + P,a + P3a + ... B (32)
Xy = X, + me (33)

_ fae
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Equation (31% is, however, precisely the line source intensity
of the wake that would result from a concentrated load of
magnitude Py acting at station xg . This concentrated load
acting just off the trailing edge can therefore be used in place
of the wake to deduce the downwash velocities that are due to
the wake, For the case shown in figure 5, where m = 4 , the
concentrated load Py would be located midway between ¢,y and
¢o5 s and would replace all the wake to the right of this
logation. The -equivalent wake load 1s handled by use of the
kernel function as in scheme I. It 1s to be understood that an
equivalent concentrated wake load 1s located at the aft end of
each grid chord line, and tha% of course the superimposed down-
wash effect of all these loads must be considered.

In summary for this scheme, over the wing region we use the
equivalent concentrated dipole concept of scheme II, and in
place of the wake make use of the equivalent concentrated load
given by equation (32). It is significant to note that we deal
only with the downwash velocltlies ahead of this equivalent con-
centrated wake load in treating the wing. There are no singu-
larities in this region, as the kernel function so indicates
(except at the concentrated load, which reglon does not concern
us) and hence a singularity problem associated with the concen-
trated wake forces 1s not involved.

Scheme IV.- We present here only a brief discusslion of a
4th possible scheme. The basic idea of the scheme is to start
with the strength of the potential dipole sheet that 1s present
on the wing and in the wake, and to represent this strength




by convenient distributions, say in the form of continuous
functions, step functions, or concentrated sources. The down-
wash and the loading would follow from this distribution by

equations of the type

[wl = 18 1]e]

|7| = 1a,1]e]

The elimination of ¢ from these equations would in turn
establish a relation between P and Ww , similar to those
derived in the previous schemes.

The detalls of this scheme are left for further develop-
ment. A derivation of the loading that is associated with a
concentrated potential dipole is considered to be of interest
however, and will be given here. Assume a rectangular strength
distribution in the x-direction as shown in the following
sketch

)

_‘1
€
| m X
In the limit as € - o this distribution becomes a2 concentrated

dipole of unit strength. Application of equation (11) to this
distribution yields the following force diagrams

Y 3

S
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Thus we see that a potential dipole of unit strength is acted
upon by a force of magnitude -lap and a moment of magnitude
-poU - These results, although es%ablished here in a rather
efementary way, may also be derived by a more formal approach;
that is, apply equation (11% to equation (16), then determine
the pressures and the momen of the pressures about the origin

by integratibn along the entire x-axis, assuming 2z to be very
small. '
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SECTION IV

VERTICAL VELOCITIES FOR UNIT SOURCE ELEMENTS

Potential dipole.- The vertical velocities in the x - y
plane for unit potential dipoles, such as those given by
equations(16) through (18), can be established in a very
simple unconventional way by a technique described in this
section. We show the method here, not so much because it
eases the treatment of dipoles, but because it illustrates
the technique to be used in the next section for treating
unit loads, for which cases the method leads to a marked
simplification over conventional approaches.

The: formal way to determine the downwash due to a
source potential is to use equation (7c) and then to evaluate
the results for z = o. We can simplify the process by expressing
equation (7c) in difference form as follows

W = ¢(z) - ¢(o) (34)

In all the cases of concern to us in this paper, however,
¢(o) = o for x # 0 and y # o; thus, for all regions except
at the origin, w is given simply by the potential equation
with the z 1in the numerator removed, and with 2z set equal
to zero elsewhere in the equation. At a glance, equations
(16), (17) and (18) yield, for example:

For equation (16),
-Mx+R

-iw
2 -
B iR ap
W= = 1+ e 35
bR ( ;EE) (35)
where
For equation (17),
w=--2-3'-r-;%- (36)
19
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For equation (18),

1

1
W = - 37
Tr (<2 + 39 /2 (37)

These equations appliy to all points except the origin.
The flow through the origin, where a singularity is involved,
is handled conveniently by use of the finite grid concept;
specifically, we obviate the necessity for considering the
singularity in detail by establishing the average velocity
through a grid area which surrounds the origin. As an
example, the central "standpipe" of the velocity profiles
shown in figure 6 depicts this average velocity. In effect
we have replaced the point source dipole by an equivalent
dipole of finite size, very much like the propeller dipole
system shown in the following sketch

The magnitude of the average velocity through the central
grid area is simply the sum of velocities through all other
g:1d areas, a fact which follows from an overall continuity
condition; stated in a physical sense, we note that all the
' fluid that goes up must come down.

For application purposes we need to evaluate the velocity
profiles for the dipoles of interest. Two will be considered
here. For the case of a subsonic dipole, numerical integration
| of equation §35) is required. Specifically, patterned after

equation (30), we write the average value of velocity over a
grid area element as

v -Mx+R

8" gyax (28a)

e
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where R = X, + Yn > and where X, and ¥, denote the

coordinates of the center of the grid area. From this equation

we find the average velocity over the grid area surrounding
the origin to be

W, = -an (28b)

For the case of the line dipole for 2-4 incompressible
flow, velocity profiles may be found by the exact integration
of equation (36). The average value over an interval €
having a center coordinate designated by X, =ne , 1s

3
X
Bo= - ok ik L ax
n- " Zre . ;?
X7

2 1
€2 In2 1 (39a)

The center velocity ﬁo is then

o0
- 2 1 .
W, =2 - -
(o] E E
TE rg::l 4:1 -1
= -5 (39b)
e ’

where the factor 2 &ccounts for the intervals to the left as
well as to the right of the origin. The effect of not averaging
over any of the intervalg except the center interval can be
demonstrated quite easily by this case. If we simply choose the

velocity for an Interval to be the value at the interval center,
then we have '

i - 1 1
n Ewﬁﬁ ;E (40e)
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- _1%5 (40b)

A comparison between the use of equations (39) and equations (40)
will be made later.

Unit load.,- Three approaches may be advanced for determining
the downwash velocitles that are produced by a unit load:

1.) Direct formal evaluation by equation (22), as in
reference 1,

2.) An approach which is based on Scheme II, and which
makes use of equation (28); the line source distribution
of potential dipoles due to the unit load and given by
this equation is replaced by "equivalent" concentrated
dipoles. The velocities due to all these concentrated
potential dipoles are then superimposed to glve the
downwash due to the univ load,

3.) An approach which makes use of equation (13) and
equation (34). As in the determination of equations
(35), (36), and (37), this approach greatly simplified
the determination of the downwash values due to a unit
load, and 1in the course obviates any problem with
singularities. The remainder of thils section is devoted
mainly to the development of the basic notions of this
approach.

By means of figure 7 we give a quick and overall insight
to the basic concepts of the third approach. A detalled consid-
eration will then follow. Consider a unit load: by the anti-
symmetric property of p , we regard this load to be split
equally between the upper and lower half planes, sketch (b).
With respect to the assoclated pressure dlpole representation, we
take note of the explicit appearance, a "z" in equation (16) (ind
in equations (17) and (18)). The potential due to the unit load
is given by equation (13). In the region y # o , the potentiecl
is zero at 2z = o , and hence, from equation (34), the vertical

veloclty is glven by
w = $z) (41)

0, ¢ 1s a direct measure

Thus, near the x-y plane and for y #
(e). The limiting form as

of w , see sketches (c), (d), and

z -0 follows easily. We let the z of equation (41) cancel
the 2z 1n the dipole pressure equation, and let z = o
elsewhere; the vertical velocities are, thus, effectively given




as tue x-integration of equation (16) with the =z removed.

For y = o and behind the unit load (x > o), a ¢(o) exists,
as given by equation (14). The value is easy to establish,

belng related to a simple Dirac-type integration through the
upper load of 1/2, sketch (g). Application of equation (34)
yields w , sketch (h); effectively, _Pe right-hand branch of
¢(z) 1s sheared downward an amcunt ¢ (o). The magnitude of ¢¥(0)
is found through the evaluation of a rather simple indeterminant
form at x = » , The limiting value of w &as z = o for this
slice 1is also found easily, sketch (i). It is to be noted that
ahead of the unit load there 1s no ¢(o); the evaluation of w
for this region is, therefore, as simple as for y £ o .

Further, the value of ¢(z) for positive x can be shown to be
given in terms of ¢(z) for negative x . Thus, the determin-
ation of w Dbehind the unit load can be expressed simgly in
terms of the w ahead of the load and the constant )} The
development of the velocities by the concepts shown in 1gure i
i1s considered significant; thus, we can virtually form a visual
picture of hcw the velocities develop.

‘With this background, let us now consider a unit pressure
dipole 1in detall. We treat rirst the regions y # o . Substi-
tute equation (16) into equation (13), apply equation (34), and
let the remaining 2's = o , Since ¢(o§ = 0 1in this region of
concern, the result for w 1s immediate; thus,

iax 1.2 (ﬂ-ﬁ
o) - a2 \M
= BT T 3< 1aB ), o )de (42)
MvpoU R

=00

where R = v x§ + BﬁyE . The notation X has been introduced
because the expression 1s a form, here greatly simplified, of
the kernel function. With equation (18) and w = o , the result
i1s simply

X

1 dé
w
uvrpou[m (e2 + y2)3/2

et %(1+—-x—-> (43)
4WpoU y v xé + yE

For use in the grid system scremes advanced in this report,
we desire average values over equally spaced y-intervals, in
accordance with equation (25). We have, therefore, the following
expressions defining the modified kernel function for regions
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y #£o0:

For a subsonic point load, w # o ,

Y-(. = V-W(X,yo) =
A
1ax Yo*3  x iw R>
2 - 2 \M
L A Y T R ) L at ay  (44)
brp UX yo_% Y R ap

and for a point load with M=o, w= o0,

=1
[}
=1
"

Ay 2 2 A2 . 2
1 1 1/(3’0"2') t X 1ﬂyo+§) * X
Ty | 2a2 M X 2
Po Yo Yo 2 Yo 2
For our grid system, we use yo = n\ , with n =1,2,3,...

Numerical evaluation of equation (44) to give tabulated results
for universal application, therefore, is needed.

For the region along and including y = o , it 1is convenient
to proceed in terms of a general notation. Let equation (13) be
represented by

_lox
T 1(x,y,2) (46)

o(x,3,2) = 5y e
(o]
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where

1wt /U
I-= -f e p(€,y,z) d¢ (47)

=00
4

L

An examination of the integral I 1in conjunction with the
pressure dipole expressions given by equations (16) through
(18) reveals that the integrand may be expressed in terms of
even and odd functions of x as follows:

1wk
e Y p(t,y,z) = £(&) + g(€)

where f 1s an even function and g 1s odd., The integral I
thus may be written

I(ny}Z) = F(x’y)z) + G(x:y,z) (48)
where X

P(v.2) = £(8) at (192)

atx,v,2) = [ () at (49b)

=00

Because f 1s even and g 1s odd,xthe folloving properties
exist: i

I(w) = F(w) )
F( = Flw) - F(-
S S ARl S e (50)
G(Xl) = G(-xl)
F(-o) = G(-») = G(w) = 0

-

in which the argument refers to the x values. With equation
(34) in mind, we also establish the function ¢(x,y,0) , the
intensity of the dipole line source on the + side of the x-y plane
aft of the unit load. This function, as obtained from equation
(14), or as given by - 1/2 the value indicated by equation (28)
with X, = o , may be written

25
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1ax

o(uv,0) = g U Bylo)lx - o (51)

where 1l(x - o) denotes a unit step at the origin 1n the x-
direction, and 6y(o) denotes a Dirac function in the y-directlon
at y = o . With'equations (34), (u6), (48), and (51), the
vertical veloczity may be written as

Tax 1
= 7 - L .
g o lxayez) - o(x,y,0) _ 1 o U + G - 5 6 (0)L(x o)
2 PoU z

We integrate thils equation so as to glve the average vertical
velocities that exist in a band of width A centered over the
x-axis; thus

tox
xa) = phype U B[ Foom) + Blom) - gxie - SIS
o}
where )\/2
Fxz) =L [ oy ay (5ka)
-1/2
A/2
Sxz) =2 [ olxye) o (55b)
-)/2

We note that the éy(o) functio. has been absorbed. For negative
x values, say x = - X, , equation (52) becomes

1wx1
y—](-xl,z) = 5(1;.0- e 0 -;—[-F-‘(—xl,z) : 5(-}{1,2)] (55)

For positive x , say X = X1 equations (50) and (54) can be
used to rewrite equation (53) in the form

_iox

ixp8) = gipe ;};[’f(«») - F(-xy,2) + 0(-xy,2) - 51;] (56)
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thus expressing w for plus x 1in terms of w for negative x .
We 10w consider the limiting value of these expressions as

z =0 ., By_the process 1indlicated earller in this section, the
functions F/z and G/z reduce easily to the following

A(~x) = 1m E2)

Z=0
1wR
2 /;/2 O ( 1oR Y ap
p wME
- EE_ =1 % e cos dy dé¢ (57a)
T 5 s »{; R3 agé) agg
B(-x) = 1lim ﬂ"—’z‘ﬂ =
; Z=0
| , iR
2 2 =X 2
o1 -i<1+@->e 38" gy WME 4o q¢ 57b
7*_% /\ f R3 ap® ap® K2

-\/2 -

It 1s noted that these equations are contained in equation (44)
&8s demonstrated by the following steps: suppress the factor

B%ﬁ ¢ ~1ax/U » let y_ = o, and split the integral into a cosine

and a sine part,

The remaining terms of equation (56) are combined to form
the constant

-

- 15 - A | (58)

Z

By equations (47) and (16), and with a y-integration, the defin-
ition of I(e) is

-ME +R
Hleo) = 1 ‘/A/2k/pm l%i éez 1 4+ 1R - aBa dt d
"’ B -x )\/2 © L|"ITR3 * ;B—g © v

where R = J/xz + Ba(y2 + 22) . The -integration can be made by
means of transform 917.8 in reference (3), ylelding the result

7
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I(w) = § : 1 k (2/5% + 2° )ay (59)
x 22 or ,-T-——gy . 1<U )

For small values of %. y2 + 2z , as will be the case in practice,

this expression reduces to
/2
2z

(=) = % e
e S+ zZ

=t
cle

T(w) = -,-}-1; tan~1 ,35 (60)

With this equation, C Dbecomes

1 -1 A ™
C = m(tan ﬁ- = §> (618.)
or in the 1imit as 2z =0
C=--25 (61b)
A

e find the following equations apply for the average
g the grid pand that is centered over ¥ = O :

1wxl

In summary, w
velocity alon

K = ﬁ(-xl,o) = Elﬁ e 0 [A(—xl) + B(-xl)] , X = =X (62a)
)
1wx1
- - 1 U 2]
K = w(x,,0) = e -A(-x B(-x,) - , X = X 62b
(x10) = 5o | -A(-x)) + B(-x)) - =3 . (620)

thus define the complete

These equations and equatlon (L44)
t report and are for use

modified kernel function of the presen
in equation (26) of Scheme I.

It is noted that equatlons analogous to equations (62)
apply also for the case of 2-d flow; they are gsomewhat simpler
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and differ in the following three specific ways: (1)
y-integration leading to equaticn (53) 1is of course,
involved; (2) the factor 1/2 would appear in place
factor 1/2x in e?uation (53); and (3) the constant

given by equation

will iilustrate these points.

6la) would be different.

A later

the
not
of the
c, as
example
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SECTION V

EXAMPLE SPECIFIC CASES FOR K

Case l: 2-dimensional incompressible steady flow (w = o).-
To bring out some Interesting and Instructive facts, determination
of the vertical velocity produced by a unit load will be illus-
trated by five different techniques mentioned in this paper.

Solution 1:

Use is made here of equations analogous to equations (57) and
(62). For this case we find

b
Ax) = - 7%
B(x) =0

C=0

From equations (62), these lead to a single expression for w
given by

W = T Uk (63)

which agiees with the known exact solution to the problem.
Solution 2:

This solution is based on Scheme II, and is presented with the
aid of figure 8. For the unit load the wake potential is given
simply by (see equation (28))

¢ = - 51 1(x - o)

o

The strength of the equivalent concentrated potential dipoles
spaced at equal intervals € 1is thus

The w's from each of these dipoles are given by equations (39);
the values are tabulated on respective lines below the dipoles.
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The superimposed total w 1is shown near the bottom of figure 8;
it 1s noted that the results are the same as given by equation
(63), thus showing that this method also leads to the exact
answer,

Solution S8

This solution ﬁroceeds as in the second solution, but makes use
of equations (40) instead of equations (39). The results ob-
tained by this method are shown in figure 9, curve (b), along
with the exact results just derived, curve (a). We see from
this comparison the effect of not using average va’ues of velo-
cities nver each interval in the representation of w for each
concentrated dipole.

Solution L4s

In this solution we determine w by equation (34), and keep =z
finite to show the influence of not passing to the limit z — o .
Equations analogous to equations (55) and (56) are involved.

With equations (13), (14) and (17) the result can be shown to be

X
i zd
s tmy |

5 - X,0) _ 1 1 -1x T _ _
w = 2(%2) = o(x,0) _ ol [ta,n =+ 5 - m(x 0)]
= -1% [tan'l-g +-g - m(x - o)]we (64)

where Wwe i1s the exact result given by equation (63). The re-
sults are shown in figure 10 for positive x only, since the
results for negative x would be the same, We note the in-

‘teresting fact that as long as a%.> 3 , the approximate solution
e

(z finite) 1s essentlally the s as the exact solution,
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Solution 5:

In this solution we show the effect of wake termination. The
wake strength is given by

L

1(x - o
5.0 Lx - 0)

6o(x) = -

With equation (17) we find the field potential for a finite
length wake to be

b
il zdé
¢(x,z) = TTTP—OU f T 5_.)2 gt
o

where Db represents the point downstream of wake cutoff. This
equation yields

p(x,2) = ——E—-<tan-l % - tan”t 5—%—2>
o

The vertical velocity as determined from this equation is

1
w = lim %% = - TR (1 + x) (65)

Z =0

This eguation s..ows that w will be essentially the exact value
if 7% is kept small. A useful gulde is afforded by this

equation; thus, the term Trl&.. shows that if x 1is kept to
within .05 b, for example, theft errors in w due to wake
termination will be less than 5 percent. Thils observation, of
course, applies to the 2-dimensional steady flow problem., For
the oscillalory case, the errors in w due to wake termination
should be e¢ven less,

Case 2: 2-dimensional incompressible flow, w # o .- For
this case equations corresponding to equations (57) are

£

=00

O A = TRk SR ) P
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sin-Qg sin K

-X
i
B(-x) =2 [ Z %=t i A§) (o)

Because 2-dimensional flow is involved, the constant C for
this case is different than that given by equations (58) and (61).
Here, in place of the I in equation (56), we have

I(=) = 3=

1
and in place of the factor -y we have simply 1/2; the constant
C 1is thus given by

()
-2
8l

1
-2

Using equations (66) and this value of C in place of the - —25
term in equations (62), we find ™

w(x) = th:ﬁ %{-1 TS e T [01(9-1}"-> +30 41 Si(%‘)]} (67)

which agrees with the known solution of this problem as de-
termined by other exact means; it is interesting to note that
this equation applies for both negative and positive x .

Case 3; 3-dimensional incompressible flow, w = o .- The
solutIon desired in this case 1s for the average w over
equally spaced y-intervals, as would be used in equation (26).
The equation for w for this case applyling in the region
y # o has already been derived, equation {45). For y =o ,
we find
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Equations (62) therefore yields
§2+7>_;_2
- A ( )
w (x,0) = 1+ : 68
(x50) ;;;a;g = (68)

an equation that holds for both positive and negative x . It
should be noticed that for negative x s this equation yields
the same value of W as does equation (45), as it should., A
rather significant observation may be made at this point. It
1s noted that equations (63), (67§ and (68) apply over the
complete range of x , due to the fact that x appears in an
explicit way outside of certain terms. Thus, in a remarkable
way, the solution for w for negative x , for which no con-
sideration of g singularity has to be glven, appears also to
apply for positive x if exact integration can be made. In
such cases, then, solution appears to be possible without
having to give any consideration whatsoever to singularities.

Case 4: 2-dimensional incompressible flow =0, as
derived from discrete e ual Ioags.- In this case we make use
of the results of Case % to derive results for 2-dimensional
flow by considering an infinite array of concentrated loads
equally snaced in the y-direction, rather than using a uni-
form line source, see figure 11, To give the resul’s in
terms of an effective loading of unity per unit length in
the y-direction we let each of the concentrated loads have a
magnitude X , The Superposed w due to all the loads

follows from equations (45) and (68) as
T -
e Uz Ry

62 A
+Tr-)
X o =t Hin© -1

2 , 4 x° 2 ., x°
(2!1-1) +L|-—E' /2!1'!‘1) +4—§
+ A A _ A X (69)
X 2n - 1 X 2n + 1

1 4

TPo

W=

1+
Ux2(

35

sl g

————— L S . . C L T R




This equation may be investigated quite readily for x very
small and x very large; the known infinite summation

1-) 2

n=1 &

provides an ald., The results are found to be simply

|
W = 2 Ux , X small
;f =0 y X =

These results indicate a rather remarkable fact; thus, in
spite of the fact that we have represented the uniform line
source by an infinite array of concentrated loads, we find
the solution to be the exact solution for small and large

x . The use of average values of w over each interval
evidently retains all the essentilal intelligence of the flow-
field. Equation (69) has not been investigated here for in-
termediate x values, but it is expected to yield exact re-
sults in this range also.
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SECTION VI

EXAMPLE TREATMENT OF WINGS

Illustrations of the application of the numerical grid
Schemes of this baper are shown in this section; for brevity,
and because exact solutions are known, the éxamples are given
in terms of a 2-dimensional airfoil in steady flow.

Example 1:

In this example we uge only a single concentrated load. The
grid spacing € becomes the chord, ¢ . vye Place the load
at the quarter-chord boint and consider w at 3/4c as shown
in figure 12(a) (our insight on these locations 1s based on

prior knowledge of airfoil behavior characteristics). By equa-
tion (63) we find that

leading to the inverted form
L=« Tp Ucw

For a constant angle of attack « > We have w = .ya s and
thus

L= WpoUzca

This 1s the known exact solution to the problem. The pitching
moment will also be correct because the load was placed at the
quarter-chord. Thus we See the rather remarkable fact that the
correct 1ift and moment were obtained using only a single load
and a single downwash point. We have treated this seemlingly

absurd case because it provides a key guide on how to handle
the next examples.

Examgle 23

In this example we use 2 loads and 2 downwash points as shown
in figure 12(b). With example 1 as a gulde, we have located

these loads and w points in the particular locations shown;
note the locations with care. From equation (63) the appro-

pPria‘e equations for this case are found to be -

wl -1 1 L1
_ 2
Wy TP 0C |_ -15 -1 |1,
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Inverted, these equations appear

L SR B
TTpOUc
8
L2 1 =3 w2
For a constant angle of attack, for which w., = w, = =-UQ , we
find 1 2

_ 2
L, = ¢ mp Uca

L2 = % WpoUzca

These values yield a total 1ift and a moment arm referred to the

leeding edge as follows

L = Tp_U%ca
ETIET
Fer

These values also correspond to the exact solution.

Example 3:

Thia example conslders loads and 3 downwash polnts, located
as shown in figure 12(c). The guldeline being evolved, and
which appears to be remarkably successful, 1s as follows:
divide the crord Into as many equal lntervals as there are
lceds; locate a load at each l/h point of an 1interval, a down-
wash polnt at each 3/ﬂ point. The equations that result for
thils case are:

1
Wl -1 1 § Ll
- 1
W2 = ﬁso-UE = '3— -1 1§ L2
1 1
W3 "5 -3 1] {3
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For a constant angle of attack, with W, =W, = w3 = -Ua , we
find

I. = g Tp U%ca

[. =2 7p Usca
-2—§Trpo (¢]

1
L3 =g wpoUeca

which yield a total 1ift and a moment arm relative to the leading
edge of

2

L = mp U ca
c
€=E

Again the exact results are obtalned. By induction, we may expect
an exact solution for all smaller intervals, 1f the loads and
downwash points are located by the guldeline stated at the begin-
ning of this example. From these three examples we wish also to
make the following observation thought significant. In all the
three cases, downwash points have been chosen midway between the
concentrated loads and 1in an aft direction, with surprisingly
successful end results. No consideration has had to be made about
flow or loading in the leading edge region. Essentlially, we are
saying that with this technique, we care not a wit about the math-
ematical character of the loading at the leading edge, nor whether
w 1s satisfied in this region. Apparently flow 1s controlled pre-
dominantly by the aft regions of the airfoll. Perhaps this is a
reflection of the Kutta condition at the tralling edge, which
governs the strength of the entire flow.

Example 4:

For this example, Scheme II was applled to the alrfoil case
treated in Example 3. A detalled listing of the solution is




not considered necessary, but solution proceeds in the manner
depicted by figures 5 and 8. Again considering tre constant
angle of attack case, 1t was found that exact results for 1ift
and moment were also obtained by this approach. A main point
of the example 1s the reminder that, since the complete poten=-
tial system 1s constructed by this approach, 1t is posslble

to establish all components of flow velocity anywhere 1n the
field, such as in the vicinity of a tall.
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SECTION VII

REMARKS

ON GRID LAYOUT

The concepts advanced in this paper have not been

exercised sufflciently to

permit definite guldelines to be

stated on wing grid layout. Some suggestions on how to lay

out the grid system can be made, however. It 1s felt that

a matrix somewhere between a 4 x 4 matrix (four chordwise

intervals by four semispan intervals) and a 10 x 10 matrix
should adequately handle most 1lifting surfaces. The thought

that the matrix should be
these numbers. Suggested
For untapered stralght or
straight trailing edge, a
can be used, figure 13(a)

square is not to be inferred from
layouts are shown in figure 13.
swept wings and for deltas with a
simple rectangular grid pattern
and 13(b). For deltas with a

swept forward tralling edge, an array consistling of rec-
tangular blocks of one size in the leadling edge megion and
rectangular blocks of another slze in the trailling edge
region might be employed, figure 13(b); these smaller trail-
ing edge blocks represent the type that might also be used
in the treatment of control surfeces. An interesting ques-
tion arises at this point. Can intervals of different
lengths be mixed? As a means for shedding some light on
this question, the wing system shown 1n the following sketch
was analyzed.

L

~4¢4

124 1 |
IE.| a | 4“

The alrfoll was arbltrarily divided into two intervals - the
front interval being 4/5 ¢ long, the aft 1/5 ¢ long. A load
and a downwash point were located in each interval according
to the rule of thumb used in the example alrfoll cases; spec-
ifically, the load 1s placed at the 1/4 point of the interval,
the downwash at the 3/4 point. The system was analyzed, as
in the example cases, with the following results:

_ 2
L1 = ,923 vpoU ca

_ 2
L, = .077 Tp U ca
L = Tp Ucca
e =c/l
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Amazingly, the exact answer is found again. (There appears
to be some magic associated with the 1/U4 and 3/4 points.)
Evidently, then, mixed lnterval slze can be used to good
advantage.

Figure 13(c) shows thoughts on tapered wings. We note
that the blocks are of varylng aspect ratios in thls constant
y-interval treatment. A varlation of thls scheme 1is shown 1in
figure 13(d) wherein the y-interval is also varied to yleld
blocks of constant aspect ratio. The possible disadvantage
of the layouts of figures 13(c) and 13(d) is that unequal
intervals and a sheared grid system are 1lnvolved, thereby
Increasing the task of evaluating the kernel function; this
point, of course, does not become of too great a concern if
the kernel function values are tabulated at frequent x and
¥y Iintervals. 1In splte of the fact that the load and down-
wash polnts are not located in a rectangular array fashion,
thhe layout scheme of figure 13(d) may turn out to be the pre-
ferred scheme. Of all the schemes, it 1s the least arbitrary,
and 1t applies to all wings regardless of planform. The
scheme also tends to dlstribute and group the loads more
towards the tip sections, which probably are the most lmportant
in controlling aeroelastic behavior.

Figure 13(e) shows a possible gridwork for a trapezoidal-
type wing; here, a falrly fine rectangular gridwork is used.
Two additlonal points may be brought out in dlscussing this
arrangement. One pertalns to gridwork size 1ln the 1nboard
region. If small blocks are used throughout, then many chord-
wlse blocks are found in this reglon. It, thus, may be worth-
while to increase the size of these inboard blocks as a means
for decreasing the total number. In the example shown, 58
blocks would be Involved if the same small slze were used
throughout. By only doubling the length of the inboard blocks,
the number has been reduced to 38. This 1dea should especially
apply if the wing is a cantilever, since the 1nboard region
probably has little influence on determining the flow, and
therefore should not require as detalled a treatment as for
the tip region. A second point is that wlth the use of small
blocks 1t probably 1sn't necessary to average the velocity in
the y-direction for blocks remote to a load (as in equation
(44)). The use of the w at the center of such blocks is
probably accurate enough, thus lessening the chore of deter-
mining the kernel functlon. The effect of averaging or not
averaging can be 1llustrated by equation (39a); the -1 in
the denominator 1s a result of the averaging process, and
wlthout the -1 the equation would yleld the veloclty at the
center of the Interval. It can be seen that for n as small
as 4 , referring to a point just 4 intervals away, the neglect
of the -1 gqRchanges the w-value by not even 2 percent.
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How large should the intervals € and A be? The

steady state example cases indicate that the interval may be
quite large (even equal to the chord in one case). For oscil-
latory flow, however, definite wavelength patterns exist in
the flow field, and these can be expected to have a bearing
] on interval size. We conslder these wavelengths in the following

, as a means for establishing an upper limit to interval size.

‘ An examination of equation (16) indicates that three frequency
components in the x-direction must be considered if evaluation

is made by numerical techniques; namely,

W
Y =7
{ _wl-M
1 o, - 2051
l = o i £ 1 R =
_ =TT+ ¢ or x posltive, =X
E |
' Q:gi_l_%ﬂz
| > “
1 = — s or x negative, = |x : _ 
| Wrow o AL R N
1 The smallest wavelengths are assoclated with Ql and 93 :
and are given by
. = ar _ 21y
10T To
1
- 2WU§1 - M)
305 '
To malntalin a reasonably accurate numerical procedure, we = o
reason that the interval € should be something in the order |
of 1/12 or less of the shortest wavelength; (effectively, b T Ly
we are saying that 12 equally spaced values or more should \
define one cycle of a sine wave reasonably well). Thus
2y
€< T
or Toapee
< < 2WU§1 - Ml f &
4 whichever 18 the shorter. Written in terms of the chord and 4
1 reduced frequency, we have : .
| -
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€ ™

T STk
§_<1T1-M
C - M

The “irss of these equations governs for O <M< 1/2 ; the
second for M > 1/2 ; values of ¢/c as obtained from these
expressions are given in the following tabulation.

k M=0-.5 -6 -8

.05 e/fc = 5.23 3.48 1.31

S 2.62 1.74 654
.2 1.31 .882 .327
.3 .882 .582 .196
A 654 436 164
.5 .523 .348 .131

A similar treatment for the y-direction indicates only
a single frequency and the following results:

Qy = %'%
A T 1-M
. ¢ Tk — ™
k W= .2 k63
.05 Afec = 52.1 05.6 12.0 7.0  3.93
| 06.1 12.8 6.0 3.5 1.96
.2 13.0 6.4 3.0 1.Th .98

8.8 4,32 2.02 1.18 .66
6.52 3.2 1.50 .87 49
5.22 2.56 1.20 .70 .39
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the flow are not of prime concern in establishing interval size,
except in the range of high k and high subsonic Mach number
values. For the lcwer k and M values, other considerations,
such as the geometry of motion of the airfoll, would govern.
With respect to a plunging, pitching, and possibly deforming
alrfoil, for example, the following question is of concern.

How many downward polnts should be used to represent the motion?
From a curve-fitting point of view, 1t 1s reasoned that a min-
imum of 4 to 5 points should be used to give adequate represen-
tation of motion across the chord. Thus a minimum of 4 chord-

\ wlse intervals is suggested; by similar consideration, at least
f' k 4 spanwise stations should be used. Taking into account these

: various thoughts on 1nterval size, and until more experience on
the practlical application of the grid scheme 1is avallable, we
might state the following rule of thumb: for low k and low M
values, use 5 or 6 chordwise and 5 or 6 spanwise intervals, and
for the high k and M ranges, use intervals as indicated by
i the e/c and XA/c tabulations given earlier in this section.

E These results indicate that the wavelerngth components of '

o e .
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SECTION VIII
FREQUENCY RESPONSE AND FLUTTER DETERMINATION

One of the features of the schemes of this paper 1s that
the equation relating P to w 1s ideally sulited for both
of the basic types of aeroelastic formulations that are
normally employed, specifically, for either the approach which
is in terms of discrete masses and influence coefficients or
the approach which uses modal functions and a Lagrangian treat-
ment. By way of exampla, we show in the following how the
frequency response functions of an airplane due to sinusoidal
gust encounter may be derived; the equations for flutter are
in turn automatically derived.

In reading this section the reader should be aware that,
to simplify the writing, considerable liberty has been taken
with the matrix notation; it is abreviated or inconsistent in

places, and matrix elements are presented In a general sense
only.

By discrete masses and influence coefficients.~ Let the
dynamical equations for sinusoidal motion of the complete air-
plane system be represented by the matrix equation.

[D]lzsl = “?Imllzsl + IPsl (70)

where Z is the column matrix denoting the deflection at each
of the discrete mass points (which may include the fuselage and
tail as well as the wing), D is the operator which leads to
total loading, m a diagonal mass matrix, and Pg the applied
loading matrix. In the form presented, the equation applies
either to a free-free system or to a restralned sistem such as

a cantilever. For a sinusoidal gust, equation (24b) may te
written
-~ ;
'1—ﬁ ;

w=1U %% + iwZ - e (71)

where x 1s the location of the downwash point relative to
some convenient reference point such as the leading edge of
the root chord of the wing. In general, the load and de-
flection points used for the dynamical treatment of the system
may not be the same is those used for establishing the aero-
dynamic loads. By suitable interpolation formulae, however,
these two load and deflection systems may be easily related,

and we suppose that the transformations from one system to the
other are given by
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LAREA (72a)

bl
"

LT, |2 (72b)

where T3 and T are in general rectangular matrices,
Combining equations (26), (70), (71) and (72), we find

- X
8 Tl(D - a?m)Tzz = (U g% +‘ié) Z -e v (73)

where, for simplicity in writing, the matrix notation has been
dropped. Equation (73) in turn may be written

[K T, (D - &m)T, - <U g% + 14) ] .- e-i T

or

i WX

Dz=-0 O (74)

Inverted, we find the desired result for the frequency response
function 2Z , thus

1 e (75)

From Z we may determine the frequency response function for '
other quantities of interest, such as acceleration or load at
given points.

It is to be noted that this development was made in a way
s0 as to make the inversion of the K matrix unnecessary, see
equation (TU4); thus the developments in this report appear all
the more attractive, The Dy matrix of equation (T4) is ob-
tained by matrix multiplication and addition of various matrices,
each one of which is established in a straightforward way.
Solution for the fraquency response is thus reduced to a single
inversion of the end result matrix D; , as shown by equation

(75).




The equation describing flutter of the system follows

directly from equation (T4), being simply this equation with
the right hand side set equal to zero.

By a modal function approach.- We assume that the response
due to a sinusoidal gust input Is expressed in terms of the
natural modes Zn of the airplane system according to the
equation

Z = a2y +ayZ, + 8323 + ... (76)

where the agés are generalized coordinates. It is well
established at a Lagrangian formulation in terms of equation
(76) leads to the following basic response equation for a,

- 5
M3 +aMa =prndS (77)

where M, 1s the generalized mass and a, 1is the natural
frequency of the nth mode, and where p 1s the applied
loading over the surface S . If equation (77) is applied to
each of the modes considered, and if the loading v 1is ex-
pressed in terms of equivalent concentrated loads at various
grid points, then, for the sinusoidal case of a, , we can
write the following matrix equation

(42 - @, iyl = 12,12 (78)

where [<a%2 - w?>MnJ is a simple diagonal matrix, a, &

column matrix, Z_ 1s a rectangular matrix built up from row

matrices which express the deflection at each grid point for
each mode Z, , and P 1is a column matrix cf the applied con-
centrated loads at each grid point. The simple matrix form of
the generalized forces on the right hand side of equation (78)
follows from equation (77) because of the Dirac function nature
of each concentrated load, We now show two ways for proceeding
with the solution. One method involves the inversion of the K
matrix and leads to & solution in terms of the a, values. The
other represents a very interesting different version, which
avoids having to invert the K matrix and which leads to a
soluticn directly in terms of the P values. For both versions
we make use of the matrix representation of equation (76) to ex-
press the deflection at each of the chosen grid points, namely

i

/
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12| =12 1|8l (79)

where [Z,.] 1is a rectangular matrix is which each column re-
presents %he deflection at the various grid points in a given
mode .

In the first versionwe combine equations (27) and (71),
and (79) to obtain the loading as

WX

I'd - -1 T
ol = (7o + 1]z ja | - R1Ye T (80)

The substitution of this equation into equation (78) leads to
the result

[(ahz - w?)Mn] - [Zn][K]-l[U g% + 1w][2éj Ianl ?
g S
= - 1z K17 e U |
or |
SR e
(E]la | = - 1z, 1[R1 e U (81)

Solution for a, yields the frequency response functions for

an . With the a,'s established, various other frequency

regponse functions, such as acceleration or load at a given '
point, follow readily.

Tn the second version we proceed by solving equation (78)
for an| , or

9

1

|
A B |
Ian - (ahQ a?)M len] i

n




where solution follows simply because the square matrix on
the left hand side of equation (78) is diagonal. The combina-
tion of this equation and equation (79) yilelds

. 1
z| = [z z. 1|p
F <l nj[(w»n2 - a:'Q)Mn]l 17|

With this equation and equation (71), we find

-1.%§
| (82)

= [v 3%+ seie ot ztiel - 1

n

We now combine this equation with equation (26) by eliminating
w , and find the following equation in terms of the F values

only

-1 &
> ) . 1 U
(181 - [ & + sore;f —2——]iz1]iel = - 17 T (83
(0 = - w™)M
n n
or
-1 W
e = - Je " P
Inverted, we find the frequency response values for P
directly as
-1 %%
-1
|p| = - )" e 7| (84)

It is to be noted that the matrices leading to H are all
very easy to establish, and thus this version appears

especially attractive.

For flutter considerations by this modal approach we
consider the homogeneous part of either equation (81) or (83);
that is, we consider these equations with the right hand sides

set equal to zero,
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SECTION IX

CONCLUDING REMARKS

Most of the sections in this paper contalin some discussion
of the possible merits or advantages of the concepts developed,
We therefore conclude with only a few additional remarks.

In this paper, we have advanced the concept of using
concentrated loads to represent the aerodynamic loading on a
1ifting surface. Many variations of this idea may be conceived,
For example, the distributed loading may be expresged in terms
of various approximations, such as straight line or parabolic
segments, with unknown values at various grid points., Equlvalent
concentrated loads can, in turn, be deduced from this represent-
ation. These concentrated loads can then be handled by the
procedures developed in the paper, with the result that the
downwash values are thus given in terms of the distributed load
values, Whether this ‘"apparent" refinement would represent an
improvement or not, however, 1is not known. Another 1dea that
may be of good practical use in application is the following.
Consider a slice cut out of the wing in the x-direction and of
width X 1in the y-direction. Assume a pressure distribution on
this slice that is uniform in the y-direction and represented
by varicus pressure mode functions in the x-direction. For each
of the pressure mode assumptions, establish the downwash for a
number of points along the center line of the silice and along
lines in the x-direction which are spaced at equal y-intervals
A ; these downwash values are then used for universal application
thereafter, The appllication to any wing, for example, would be
to consider a series of such slices placed side by side 1n such
a way as to cover the planform; essentially, by this representa-
tion, we envision that the pressure distribution over the wing
is given by smcoth functions in the x-direction and by a
succession of steps in the y-direction, Solutlion by this
approach becomes z3imply a matter of determining by an equation
analogous to equation {27) the magnitude of the x-pressure modes
at each y station 80 as to yleld the prescribed or desiresd
downwash distribution,

With respect to 1limits on matrix size in the practical
application of the schemes of this paper, we may find that there
is no great concern over how large the matrices may be because
of the capability of modern computing machines, Matrices as

large as 10 x 10 or 10 x 2C may present no difficulty, for example;

this point has a bearing on whether average values of w within an
interval are used or not. Thus, 1f large matrices can be handled
without difficulty, it may be as good or better to use a large
matrix and no averaging of w as contrasted:-to the use of small
matrices and average w values, A point of uncertainty on

E
:
E
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matrix size should be mentioned, however, Because experience

with the schemes has not yet been obtained on a broad basis, we

_ don't know whether difficulties with numerics will be eincountered.
s We don't know, for example, whether the large matrices may be
1ll-conditioned, thereby making inversion difficult. The evidence
provided by the example cases of this paper indicates the

matrices are not ill-conditioned, but whether this 1s also so for i
very large matrices has to be established, In spite of these 1
questions on inverslion, 1t is to be noted that the developments {
given in the preceding section show that aeroelastic problems may i
be solved without inversion of the K matrix; thus, the question
of matrix inversion may, in reality, not be of concern.

We conclude by 1dentifying in summary the pertinent equations
for w which require numerical integration. These are equations X
(38), giving w for a subsonic dipole, and equations (44), (57), i
and (62) which represent the kernel function. These equations,
expressed in a convenient, nondimensional form, should be evaluated ' q
for various K = wc/2U0 and M values, A tabulation of results
would provide a universal set of rnumbers and would obviate the
necesgslty of evaluating the expressions 1ln each new problem
treated. Application of the techniques advanced in this paper
to solve various oscillating flow problems would be a rather simple
routine task.
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Figure 8. Downwash Due to a Unit Load as Obtained from Wake Dipoles
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Figure 9, Downwash Values for Solution 3
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Figure 11. 1Infinite Array of Equally Spaced Concentrated Loads
Replacing a Continuous Line Source
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Figure 12. Example Airfoil Cases Trgated
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Ideas on Possible Grid Layouts
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(c) Equal spanwige intervals

(d) Spanwise intervals vary proportional

to chord intervals
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Figure 13,
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Figure 13, Concluded
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