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Abstract

A random measure may be thought of as a random set function which

is almost surely a measure. The general objective of this investiga-

tion is to extend the theory of random measures and specifically to

characterize homogeneous random measures - roughly, random measures

whose behavior conform in a certain way to that of a fixed measure.

Some results obtained by Ryll-Nardzewski for point processes on the

real line are extended and the Laplace functional, a useful device

for characterizing random measures, is introduced. Completely random

measures, infinitely divisible random measures, and stationary random

measures are characterized. Homogeneous random measures are intro-

duced with examples and interpretations. A general characterization

theorem for homogeneous random measures is proved. Finally, several

applications of the theory of random measures are given.

iv
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Random Measures

I. Introduction

Historical Perspective

A random measure can be considered as a random function on a

sigma-algebra of subsets of some space which is almost surely a mea-

sure on that space. The earliest investigations of random measures

concerned themselves with point processes, an important class of ran-

dom measures taking on nonnegative Integer values. Ryll-Nardzewski

(Ref 28) established a measure theoretic framework for Khintchine's

results (Ref 16) in the area of stationary point processes on the real

line. Moyal (Ref 25) investigated random measures in the context of
i stochastic population processes laying down the foundations of a gen-

eral theory. Similarly, Harris (Ref 14) studied a particular class

of stochastic population processes known as branching processes - a

mathematical model of the development of a population whose members

reproduce and die, subject to laws of chance. Goldman (Ref 11) studied

various transformations of point processes on Rn such as clustering,

deleting points, superposition, and random translations. Emphasis was

placed on the asymptotic behavior of well-distributed point processes

under iterations of the operations. In a following paper, Goldman

(Ref 12) investigated the generalization of the concept of infinitely

divisible point processes on R in terms of superposition. Agnew

(Ref 2) characterized the behavior of uniform and stationary point

processes under transformations with particular emphasis on super-

14
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position and decomposition.

Bochner (Ref 3) and LeCam (Ref 19) each investigated finitely

additive set functions in the late 1940's and, in a later work,

Bochner (Ref 4:137-142) characterized a special class of random func-

tions in terms of their characteristic functionals. Harris (Ref 15)

also investigated random set functions having appropriately smooth

realizations. However, it was not until Kingman (Ref 17) introduced

a special class of random measures which he called completely random

that random measures were explicitly treated. Subsequently, Lee

(Ref 21) Investigated infintely divisible random measures (specifical-

ly point processes) characterizing them in terms of the Laplace trans-

forms of their finite dimensional distributions. In a later paper

Lee (Ref 22) presented several examples of these point processes, ob-

taining specialized results for certain types of point processes such

as the generalized Poisson process and the bulk Poisson process.

Finally, Mecke (Ref 23) elegantly treated stationary random measures

on a locally compact Abelian group, characterizing them in terms of

Palm measure.

Th e2 neOf the Investiatoon

The general objective of this Investigation is to extend the

theory of random measures and to indicate some applications of random

measures. A specific objective is to characterize homogeneous random

measures.

Overview

In Chapter II the notion of a random measure is formalized.

2
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Several results which clarify the properties of random measures are

obtained, and some results given by Ryll-Nardzewski (Ref 28) for point

processes on the real line are extended. Also, the Laplace functional

(a useful device for investigating random measures) is introduced.

Finally, some interesting classes of random measures which have pre-

viously been investigated are detailed.

Homogeneous random measures are introduced in Chapter III. EK-

amples of homogeneous random measures are given with interpretation

where appropriate and the relationship of homogeneous random measures

to the other classes of random measures is also discussed. Finally,

a general characterization theorem for homogeneous random measures is

proved.

In Chapter IV some examples which illustrate applications of the

theory of random measures are given.

I

..... L
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II. Random Measures

Random Set Functions

Let (X,. ) be a measurable space with 8 containing at least

every singleton set (i.e., 1(xl :x6X1C 8 ). Givvn an underlying

probability space (C, ., P), a real random set function on (X,iB)

can be defined as a stochastic process on lbXf (i.e., a real-valued

function on O xli whose S-sections are i-measurable). A real random

set function m induces a unique probability measure P on the product

space (R,R) * (R ,R ), where (R,P) is the extended real line and

its Borel sets, via the measurable transformation T defined by

T(w) - m(-,w) (1)

(i.e., P - p 1 ). By the Kolmogorov extension theorem (Ref 14:53),

P is characterized uniquely in terms of its finite-dimensional distri-

butions, In order to investigate distribution properties, it suffices

to characterize a real random set function as a probability measure on

(R,,) 0. Of course, this approach ignores the subtle aspects of

equivalent stochastic processes.

Attention in the literature has been focused on random set func-

tions which are almost surely measures primarily because a great body

of theory exists for measures which one might use to advantage. We

similarly restrict our attention to random measures, but we note that

more general random set functions, such as those which are almost

surely superadditive, have application and are worthy of study.

4
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Randoz Measures

Let M C R be the set of measures on (X,6), ard let %I - Hn

DE'--I,6:ITION 1. A random measure on (XO) is a probability mes-

sure cn (M, r).

A random measure is unicuely determined by Its finite dimensional

distributins and these distributions must satisfy certain consistency

conditions. Gt-ven 3., ... S- n E and CV .... Cr C8 disjoint such

that B3 - UkK" C for i, ... , n, let6. - { i: kI Ki . Then,

we must have

n r
eXP lt() - [ex { -M3 1 (2)

for all tilp ... , t O. It follows that all finite-dimensional distr!-

butions are specified once those corresponding to disjoint sets sre

specified. Furthermore, P r a() - -I so chat

r exp t - Mtr(B1  tm(?'j1 E Fexp { - M y(B) 1 (3)

for all B1 ... , . and t, .o., t, t >/ 0. Finallywe have the
BE ~ n

monotone continuity condition

E [ exp f = M(B 1t-(31-t13(cJ (4

whenever Bl, ... , B, CC 1, ... , , ... , t, t / 0 and

SCkt C.
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'Whether or not such a set of consistent finite-dimensional dis-
t

tributions always extends to a unique random measure seems to be an

umanswered question in general. Harris (Ref 14:55) has proved the

existence of a unique extension in a special case, and Bochner has

proved a generalized extension to (S,S ), where S is the set of

finitely additive set functions on 1 and A - S , vw henever (1)

holds. If P is the unique extension to (Rf ,6) and P*(H) - I

(P* is tte outer masure associated vith P), then P induces a unique

probability measure P on (M,%1) called the trace of P on H (Ref 27:19).

Thus, if the consistency conditions imply P*(H) - 1, then the unique

extension follows.

LE9A 2. If P is a rndom measure on (X,18), then the set func-

tion7. defined on by

- -[m(.)] -s(.)P(dm) (5)

is in H.

PROOF. We have that 71(0) - E [m(9)] - 0, and

It (UB l) - E [m(UB) - E L17[m(Bi) ] - EE Lm(B)i - EI(B 1) (6)

for disjoint {B1 C6 by monotone convergence or by Fubini's

theorem (Ref 13:148).

Let F be the set of nonnegative 6-measurable functions on X.

Let F C F be the subset of simple functions of the form f - tilB

where B, .. , B nC are disjoint and t,..., t n >0, and where B

6
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is the Indicator function of the set BI defined by

1 Bi) W if (7)
i- 0I x~B

If fE F, then there exists a nondecreasing sequence (fni C F such

nnthat fn ff and ff1 du f fd- for all mEMI (Ref 13:85).

LDM 3. If fEF, then y defined on M by

y(m) - ffdm (8)

is '7-mesurable.

PROOF, if f4EF, then

;ffdm fEn it Ildm n m((9II
which is clearly measurable. Now, if f J CF and f f, then

ffdm ffdm so that y is the limit of a nondecreasing sequence of

measurable functions and is thus measurable (Ref 13:84), which was

to be proved.

THEORE?. 4. If f EF and P is a random measure on (X,B), then

E [ffdml fffdmP(dm) ffdj (10)

7
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I If f F, ve have

E [1 fdml E

-n t E [m(B)

n t 1((B )  f fd 1

and the assertion follows by taking limits since {fnI C F and

f t f implies that f fdm t ffdm for mEM and since 1 6 M we have

If n dJ t ffdJ . E -[fn dm1 E [tfdm] from monotone convergence.

THIEOREY. 5. If P is a random measure on (X,6) and B, C E6

are disjoint, then

P f (BUC)> 0) P PI (B)> 01 + P{ m(C)> 0) (12)

PROOF.

P (m(BUC) >o - P{ m(B) + M(C) >o}

- f m(B) >o) U m(c) >oj

P {m(B) >0 + P{m(C) >0 (13)

-IL121A 6. E [exp f tm(B)} P I{M(B) - 0) as t 0

PROOF. As t co for each EMue have

exp f- tin(B)1 1 -(B) O (M) (14)

8
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hence

E expf tm(B) .E[I [.(B) 0) 1 ?m(B) -1 (15)

DEFINITION 7. If P1 and P2 are random measures, the superposi-

tion or convolution of P and P denoted by P P is the random
1 2f 1*P2 '

measure defined by

(P1*P2 )(A) f flA(ml+m2) P(dm1) P2(dm2) (16)

Ryll-Nardzewski's Function

In this section we extend some results given by Ryll-Nardzewski

(Ref 28) for point processes on the real line.

THEOREM 8. If is d-finite, then there exists a function Q

on IR XX such that for each AE 14 , Q(A, - ) ( F is uniquely determined

(except perhaps on a set of I-measure zero) by the equation

!BQ(A,x) 7 (dx) - fAm(B) P (dm) (17)

which holds for every BE8. Q has the following properties

(i) Q(0,) - 0 and Q(M,.) to 1 [ (18)

(2) AIC A 2 =>P Q(AI,. ) 4 Q(A2,. )  CA ' (19)

(3) {AIIC??1 disjoint == Q(UAi,') - .Q(Ai,.) [ (20)

• (Read almost everywhere 7J ) denotes that the statement immed-
lately preceeding it is true except perhaps on a set whose 1 -measure
is zero.

9
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PROOF. A - Am(-)P(dm) defines a measure on which is

absolutely continuous with respect to . Hence, the Radon-Nikodym

theorem (Ref 13:128) assures the existence and uniqueness 'l 1 of

Q(A, .). (1) follows by uniqueness of Q(A, .) and (2) is easily

proved by contradiction.

UA = Z)QA so that

fBQ(UAI,x)'f (dx) -f BQ(A ,x)71(dx)

- BEQ(A ,x) (dx) (21)
B i jd)(1

for all BE. and (3) follows by uniqueness,

THEOREM 9. Q( {m(C) O0 on C

PROOF.

f BQ(( m(C) - 0} ,x)1 (dx) f- Om(B)P(dm)
{m(C) O 1

" J(m(C) - 03 m(BACc)P(dm)

(B)Cc)

f rlccd (22)

for all B C.S which implies that

Q({ rM(C) - O ' 1 CC [_viQ (23)

from which the theorem follows.

The following lema is computationally useful.

10
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LEMMA 10. Suppose that B, CE and Y((B) < 0 . Then,

Slir r - .. E [exp -ur.(B)-tn(C)j I
t-,00 U-.O 2

f (m (c)= 01 m(B)P(dm) (24)

PROOF.

- Fexp { -um(B)-tin(C)} 1 = -E [m(B)exp ( -um(B)-tm(C)) 1 (25)

Now, N(B) <Poam(B) < 00 almost surely which Implies that as u , 0

m(B)exp f -um(B)-tm(C) t m(B)exp t-tm(C)l (26)

almost surely so that

E Fm(B)exp -um(B)-tm(C))] E [m(B)exp -tm(C)} (27)

Furthermore, 4
m(B)exp {-tm(C)J l m(B)l 0](C) -1 (28)

almost surely as t tco and

E [m(B)exp f-tm(C)) < 71(B)< 0 (29)

It follows that

f [m(B)exp -tm(C)) 1 E [m(B)l [r(c) O] (30)

Laplace Functionals

In this section we introduce the natural analog for random

measures of the Laplace transform of a probability measure on

lI I
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(R+, + ) (R+ - Fo, m1 and O+- R+nA ). Harris (Ref 14:56) applies

the ilame moment generating functional to what we call the laplace

functional. Mecke (Ref 24) has also used the term Laplace functional.

DEFINITION 11. The functional f defined on F by

(f) - E [exp{ - ffdm] 1- fexp (- f dmI P(dm) (31)

is called the Laplace functional of the random measure P.

THEOREM 12. The Laplace functional of a random measure is uni-

quely determined and has the following properties

(1) 0 < (f)4 1 for all fE F (32)

(2) f f2 (f1) > (f (33)

(3) f n f 1E F  : (f n)  1 (f) (34)

n

(4) If f - 1 t IB F, §(f) Is the joint Laplace transform

of (m(Bl), ... , m(B )) evaluated at (tl, ..., t n).n

(5) J(tf) is the Laplace transform of the random variable

ffdm evaluated at t >/ 0.

(6) > exp f- fdN} (35)

PROOF. (1) and (2) are trivial. Now, fn t f implies

ffndm t ffdm for all m -M hence expl - ffndm} J expf - ffdm}

for all m E M which implies that

E [expf -ffndm) E [exp (-ffdml . (36)

12
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t

-' and (3) follows. To prove (4) it suffices to note that for fC-F we

have

(I

E [exp t -fEt IBi dm'1i

E [exp [ -Etim(B i ) 11 (37)

Since for fE F, ffdm is a random variable (5) is obvious. Uniqueness

follows from (3) and (4) and (6) is a consequence of Theorem 4 and

Jensents inequality (Ref 27:55).

THEOREM 13. If and 2 are the Laplace functionals of

P1 and P2 respectively, then the Laplace functional of P1*P 2 is.

J ~l 2 (38)

PROOF. The assertion follows from the fact that

fu(m)P1*P2(dm) - ffu(ml+m2)Pl(dml)P2(dm2 ) (39)

for any nonnegative 6/f-measurable function u, which can be proved

without difficulty by the usual procedure of employing simple functions

and then taking limits.

Completely Random Measures

In this section we present some results obtained by Kingman

(Ref 17). In particular a representation theorem is presented for

completely random measures satisfying a weak finiteness condition.

13
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DEFINITION 14. A random measure P is said to be completely

random if, for any finite collection B1, ..., B of disjoint members

of , the random variables m(B ), ,.., m(B ) are independent.

THEOREM 15. Let P be a completely random measure. If

is nonatomic and if there exists a countable collection C

such that UBn - X and P m(Bn)<oo > 0 for all n, then there exist

i-finite measures ,r 1, r 2' *'" on (X,6) and probability measures

PV(x, .) (9-1,2,..; xGCX) on (R+, + ) with p,(-,E) 8-measurable for

each E E 6(+, such that the Laplace functional of P admits the repre.

sentation

V_ q(f). - xp {-fd r(lp(,) (d (40)

where

p (x,t) - f0exp(-tz)p,(x,dt) (41)

PROOF. Kingman showed that

E [exp{ -tm(B)] - exp I -t () V.('-P, X t) T(dx) (42)

I

but the complete randomness of P implies

1(iilti1B) - E [exp _ - tim(Bi))

,TTn lE [exp{ -tim(Bi) I

exp f r ~ti ( (B)}
Sn 0o

"I -Z! lf. ~rBi(14Pv(xlti))1T,(dx)) (43)

14
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Now,

n 0. 0x (1- t(Xt ))Irv (dx)
B -O .l til (x),

oo n* n ))T,)(dx)

Z,*.Jf(l-p,.(X,E.il ltIB))TVdx (44) ,

which proves the assertion for simple functions and the result follows

upon taking limits. We use here the convention p (x 0) 1, even when

p*(xO+) < 1.

COROLLARY.

~(B) + V . f Bfzpv (x, dz)T., (dx) (45)

The theorem implies that P - Q*A Q where Q has the Laplace

functional

}(f) - exp [ 1 f(l-p,(x,f))%TO (dx)) (46)

and

(A) if
0 otherwise (47)

DEFINITION 16. Let/(i'1 be if-finite and nonatomic and let h

be the Laplace transform of a probability measure on (0,o). A random

measure with Laplace functional

M) exp t-f(l-h(f))d/q (48)

15

tK



GSA/S 1/69-6

is called a Poisson process with intensity 8 .easure . and rtss dis-

tribution h.

in the simple Poisson point orocess, we hava h(t) - exn(-t), the

Laplace transform of a unit mass at one. it is clear that the Poisson

process corresponds to Kingman's representation with pj-(x,.) - h(.)

for all x, 1TI - , and I ,T 2 ,T" 3, ...all zero treasures.

':e shall have more to say about the Poisson process in the next

chapter.

infinitely Divisible Random l.easures

A random measure P is infinitely divisible if for any positive

Integer n,

n
P *n (49)

nn
for som random measure P n" An example of an Infinitely d!vislble

point process Is the Poisson process with intensity .easure /t which,

for any n, is the n-fold superposition of a Poisson process with the

same mass distribution and intensity measure /t/n.

Combining the results of Lee and Mecke, we have the following

theorem.

THEOR,2, 17. A random measure P is infinitely divisible if and

orely If ts laplace functional admits a representation.

§(M) - exp .-ffdp -. f I1-exp(-ffdm)1 A (dm)) (50)

where M and A is a measure on (Mln).

16
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COROLL RY.

(B (s) + im(B) A (dmn) (51~)

The theorem indicates that P - Q*, where Q has lAplace

functional

_f) -exp {-![-exp(-ffdm)1 A (dm)" (52)

In the cas e of a Poisson process, we have

fFl-exp(-ffd)I A (do) - f(1-h(f)!d)t

- ff(I-exp(-Xf)) . (dX)d/4 (53)

where

h(t) - 0 exp(- Xt) 3 (d )) (54)
10

which implies that A is concentrated on measures of the form X6x

where

xE B
6x(B) - f if0 otherwise 

(55)

and

AfX~ XE J,x EB1 - (I)f (B) (56)

Stationary Random Measures

Suppose that X Is a commutative group with respect to an opera-

tion conveniently denoted as addition; i.e., there exists an operation

17
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+ : X X X -*X such that x + y +x X whenever x, yE X; there

exists an Identity element 0 1 X such that x + 0 - x for all x C X;

and for each x C X, there exists a unique inverse element -x C X such

that x + (-x) - 0. LeI tU:xEX) be the group of translation

operators on X defined by U y - y + x. We assume that 8 is closed

under translation (i.e., BE =i UxB - ,V xEX). Let T :xE.Xl

X

be the group of translation operators on H defined by

(Txm)(B) - m(UxB) (57)

A measure C M Is translation invariant If T/ -/( for all

x X.

DEFINITION 18. A random measure P on (X,8) is stationary If

P(TxA) - P(A) (58)

for all A E I and xe X.

THEOREM 19. P is stationary if, and only if,

jU(Txm)P(dm) - fu(m)P(dm) (59)

for every nonnegative q -measurable function u.

PROOF. If P is stationary then

Ju(Txm)P(dm) - 'u(n)pT1l(dm)

- fu(m)PT x(dm )

- fu(m)P(dm) (60)

18
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Conversely, suppose that

ju(T m)P(dm) f u(m)P(dm) (61)
x

for all u. Then,

P(TxA) - fTxA (m)P(dm)

. fi A(T x m)P(dm)

- fl A(m)P(dm)

- P(A) (62)

so that P is stationary.

Let {V: xE X} be the group of translation operators defined

on F by

(Vf)(y) - f(U y) - f(y-x) (63)

THEOREM 20. P is stationary if, and only if,

I(Vxf) - (f) (64) 1
for all fSF and x EX where j is the Laplace functional of P.

PROOF. If P is stationary, then

S(Vf) - fexp { -f Vxfdm P(dm)

- fexp [-ffdT xm ) P(dm)

- fexp { -ffdm) P(dm)

- ~(f) (65)

by the previous theorem with u(m) - expt- f fdm.

19
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Conversely, suppose that ( f) (f). Put f -nti1

and we have

V f En t 1(66)
-I- i UXB I

so that

El exp{-" .ttm(Bi) ] - Erexp{- .lim(UXBi)1 (67)

It follows that the finite dimensional distributions of P are trans-

lation Invariant and it follows by extension that P is stationary.

For a stationary random measure P we have the following ergodic

theorem.

THEOREM 21. Fix XE X, BG6j and letJ- { AE6: T A" A °

If P is stationary and 1q(3) < -, then

lir 1 [En  m(UkB)i - E rm(B)l1 (68)
n -"W n-l k-O x

almost surely and in LI.

PROOF. m(U k B) -(T km)(B) and P(T'x A) - P(T A) P(A) for all

A E%/ by stationarity. Hence, the assertion follows from Birkhoff's

ergodlc theorem (Ref 27:210).

THEOREM 22. If P is stationary, then is translation invariant.

20
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PROOF.

"1(U B) - fm(U B)P(dm)

- f(T m)(B)P(dm)-x

- fm(B)PT X(dm)

- fm(B)P(dm)

(B) (69)

by stationarity.

TIIOR, 23. Suppose that there exists a translation invariant

probability measure/EM. 7hen, if P is any random measure, the ran-

dom measure P2 defined by

P'(A) - fP(T A)/ (dx) (70)

is stationary.

PROGF. Using Fubini's theorem,

P'(T yA) - fP(Ty+xA)/4 (dx)

. fi A(m)P(dm)yJ(dx)

. fT A(m)/W (dx)P(dm)
Ty+xA

- fl A(m)Ty/(dx)P(dm)

f IxA(m)/ (dx)P(dm)
Tx

. IxA(m)P(dm)/4(dx)
Tx

- f P(TxA)11 (dx)

- P'(A) (71)

which was to be proved,

:i 21
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Finally, we give the following characterization for stationary

random measures on a locally compact Abelian topological group X with

Borel sets .

THEORFM 24. LetAFI14 be any probability .easure that is not

concentrated on any subgroup of X, and suppose that P(T A) is a

uniformly continuous function on X for each AEO7M. Then, P is

stationary if, and only if,

P(A) f rP(T A)/4(dx) (72)
w
x

for all ACeIM and xGX.

PROOF. The necessity is obvious. T- .ove the sufficiency,

fix A and put f(x) - P(T A). Then we have
-x

f(y) = ff(y-x)/4(dx) (73)

for all y E X and f must be constant on X by a theorem of Choquet and

Deny (Ref 5).

RE ARK 25. Mecke has obtained many beautiful characterizations

for stationary random measures particularly in terms of Palm measure,

which are not included here. The interested reader is referred to

Mecke's paper (Ref 23) for additional results.
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III. Homogeneous Random Measures

In this chapter we introduce the notion of a homogeneous random

measure.* Some results which indicate interesting properties of homo-

geneous random measures are obtained and several examples plus inter-

pretations are given. Characterizations are given for completely

random and stationary homogeneous random measures. Finally, a general

characterization theorem is proved.

Homogeneous Random Measures

DEFINITION 26. A random measure P is homogeneous with respect

to a nonatomic, 6-finite measure/iM EM if its Laplace functional admits

a representation

§(f- gfj(1-h(f ))d/4 (74)

where h is the Laplace transform of a probability distribution on

(0,0) and g is completely monotone on (O,/((X)) with g(O
+) - 1.

The following result is an immediate consequence of the defini-

tion.

E [exp { - tIi m(Bii ( n t 1 )

g~f(I-h~x t 1 )-' i- i I Bi  /A

* Nawrotzki (Ref 26) has written a paper on homogeneous random

point functions which w e have been unable to obtain.

23
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, ji=1(1-h(ti ) ) 1id/p]

0 F n i l~ -h(t l / ( ) .  
(75)

Using this result, we have the following lemma.

L0E4A 27. If P is a random measure which is homogeneous with

respect to 1A then

P [m(B) - O - g(/i(B)) (76)

PROOF. By lemma 6

P (m(B) - 0} - im c [exp I -tm(B)J 1 (77)
t .- *0,

Using the result just obtained we have

P Im(B) - 0, lim gf(l-h(t))/(B) I  (78)

and the desired result follows. Similarly we obtain another useful

result.

LEMMA 28. Let P be a/t -homogeneous random measure and let

BE E , then

7(B) - h'(O+)g'(O+)/I(B) (79)

PROOF. If /A(B) < m(B) is almost surely finite, so that

7(B) - 1i - k(-~)p(

W lm g'[(l-h(t))/f(B) h'(t)/j(B)

- g'(O+)h'(O+)/1 (B) (80)
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and the assertion follows from the 6-finiteness oft .

The following interpretation is possible. Since h(t) is the

Laplace transform of a probability distribution on (0,-), -h,(O +) may

be thought of as the expected ma&,s at a point, 'We may consider

- g'(O )/P (B) as the expected number of points in the set B. Hence,

' (B) - [-h'(O+)7 [-g,(O+)/(B)7 - hf(O+)g#(O+) (B) may be thought

of as the expected mass in the set B.

THEOREM 29. Let P be /-homogeneous and 0 < - gf(O+),

- ht(O+) < then

0 xEB

Q( t m(B) -0) 'x) -if [7f

g'(/U (B))/g'(O+) xCB (81)

PROOF. By theorem 8 we have

fcQ( m(B) - 01 ,x) (dx) 1m(B) 0 m(C)P(dm) (82)

Applying lemma 10 we obtain for (C)<, BIC - 0,

fCQ( {m(B)-O x)N (dx) -tlim rnm gr(l-h(u))A(C)
U -40 0 U -

(l-h(t))/ (B)1
-lim lim g'F(l-h(u))/4(C)
t -0 u0-0

S( l-h (t))/q (B)lh '(u).u (C) :

g'(/(B))h'(0+)/k4(C) (83)

Using if-finiteness, the equality holds whenever BA C - 0.
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Using lemma 10, theorem 9, and uniqueness, the assertion follows.

Examp1es of Homogeneous Random Measures

In this section we present several examples of homogeneous random

measures.

EXAMPLE 30. Let /((X) - 1, and put g(u) ( - u)k and

h(t) - exp(-t) so that

()-g(f(l-h(t))d/p

- [-f(l-exp(-f))dp Ik (84)

For f -E t 1 this yields
IB1

(f) - E [exp { -Et m(Bi)

[1-z/((B )+E// (B,)exp(-t 1)k (85)

which corresponds to picking k points independently from a space X,

each according to the probability measure/i .

To generalize this result we substitute a general h obtaining

(f) - [l-f(l-h(f))d/jk (86)

which yields for f C F

E [exp I -Et lm(B) - [1-E/ (BI)+E/P (Bi)h(t 1 )jk (87)

As before, we select k points Independently from X according to

the probability measure/r , but we then assign to each point a random

mass via the distribution whose Laplace transform is h.
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EXAMPLE 31. Let g(u) - exp(-Au) and h(t) exp(-t). Then,

- expf -Xf(l-exp(-f))dfj (88)

so that for f Fwe have

(f) - exp { -X y p(B,)(l-exp(-t1 ))} (89)

This is the familiar Poisson point process. Again we can gen-

eralize by substituting an arbitrary h to obtain

(f) - exp f-Xf(l-h(f))d(} (90)

which is a compound or bulk Poisson process with random masses assigned

independently according to h.

The integer valued compound Poisson process puts h(t) - f(exp(-t))

where f is a probability generating function on the positive integers.

The final example we present is the Mixed Poisson process.

EXAMPLE 32. If {PX is any family of random measures indexed

over an index set A then the set function given by

P - f (dX)Pk (91)

is again a random measure whose Laplace functional Is

f- X (f) (92)
A

where i Is the laplace functional of the random measure P

If

(f) "expf -Xf(-h(f))d (93)
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and 10 is a distribution on [0,o), then

(f) - g(f(l-h(f))di) (94)

where

g(u) f fexp(-XuY ) (dX) (95)

is the Laplace transform of ) . For example, if

g(u) - /( +u) (96)

then

+f -0 +(1-h(f))d (97)

Clearly, If /f(X) -0 any homogeneous randcm measure is mixed Poisson

since g is necessarily the Laplaco transform of a probability distri-

bution on [0,W).

ZNTERPRETATION 33. The following interpretation is possible.

Let 0 </q (B)<0 and put

(C) - ( ( B)/ (B) (98)

Then, for all f with f > 0) C B,

(f) " g[f(l-h(f)dl -

B (1-h(f))d/l

- g/f (B)(-jfh(f)d-)'l

0i nE Fh(f)di)

o%[ 1-f 1-h(f ))d V In(99)

28
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where pn is the probability distribution on the nonnegative integers

whose generating function is g(/(g)(1-:)). The interpretation is

that n points are assigned to the set B with probability pn and thei-

these points are selected Independently from B according to the nor-

malized neasure -) with masses assigned via h. For example: If

g(u) - P/ AP+u) , (100)

then

_ (1(-z)7 o /f +.4 (B) (1--z)7

- U + 1 t(B)),lI- {,1(B)(e +/I(B))'lz) 1 (101)

which is the generating function of the geometric distribution with

P~n m lI"/(B)(O +/(B))'IT (B)( +U(B)) 1-n  (102)

If tl(X)< , we can put B - X in the above. In this case, g

need not be a Laplace transform.

A generalization of picking k points at random when /A is a

probability measure would put

g(u)- (l-pu)k (103)

which yields

g(l-z) (q+pz)k (104)

I
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where q - 1-p and

- (k) n 0n4 k (105)

in the following section we give a necessary and suffic!ent con-

dition for a /A -homogeneous random w-asure to be comoletely random,

Con-letely Random .lomoseneous Random Measures

THEORal 34. A /-homogeneous random measure with /I(X) - " Is

completely random if, and only if, It is a Po!sson process.

PROOF. The sufficiency is obvious. To prove the necessity we

note that/( 4f-finite and nonatomic imolies that

!(Ul+u 2 ) - g(ul)g(u 2) (106)

for all ul, u2>0 (Ref 13:174) which implies that

g(u) - exp(.-Xu) (107)

for som X 0 (Ref 1:183) and the necessity follows.

Stationary Homogeneous Random Measures

In this section we obtain necessary and sufficient conditions for

a P -homogeneous random measure to be stationary.

THEOREM 35. A / -homogeneous random measure 0< -h (0+ )

-g'(O + ) < - Is stationary if, and only if, /( is translation invariant.

PROOF. Suppose that/,( is translation invariant then,

(Vxf) - exp{ -f(l-h(Vxf))d/(}

- exp ( -f(l-h(f)dT/,(]

30
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- e(f) (0115) j
and the sufficiency follows from a previous result.

Conversely, If P is stationary, then 1) is translation invariant

which Implies that P Is translation Invariant.

'4e conclud- 'his chapter with a general characterization theore.

for homogeneous random measures.

A Characterization Theorem

T1O.. 36. Let (X, i, 1 ) be a 6-finite, nonatomic measure

snace with I (X) Let P be a random measure on (X,8). sup-pose

that all finite dimensional distributions of P for disjoint sets

B!,...,BnE 0 with finite measure have the "homogeneity" property

- n

Put

g(u) - lm gm (u,t) (110)
t -- W I

and suppose that g is the Laplace transform of a nontrivial (not

concentrated at zero) probability distribution on [0, o) with

q( (u) - 0(g'(u)) as u 4 0 for k 2. Put fn - gin and suppose

that

n
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Then, P Is /(-hompeneous.

PROOF. From Halmos (Ref 13:174), we have the continuity pro-

perty 0 4 </((B) implies that there exists a CC B such that

R(C) c< and f(i)( inplies that there exists a C DB such that

/((C) - O , Now, g(O+) - I implies that
i

P {m(Bn) > 011 0 (112)

as /4(B n ) 4 0 and hence m(Bn ) - 0 in probability as /IA(Bn) 0. This

implies that there is a subsequence [an I such that m(B n)--0

almost surely (Ref 27:47). If t{ BnI is monotone decreasing and

/4(Bn) 4 0, it follows that m(Bn )-'0 almost surely. From this and

the continuity property from Halmos, It foll(ws that gn is continuous

in each u ,, Furthermore, gn has the additivity property (resulting

from the additivity of/i )

,n
( t) (113)

for t> O. It foll ws that gn maps into the domain of g-l so that

fn " gg is -ell defined. Using (111) and the additivity property,

we have

t it)MTn lfl( u it (114)

which for each t> 0 is a Cauchy equation with solution

f1(u,t) - up(t) (115)

for sone continuous, strictly increasing function p (Ref 1:34). Ntow
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f1(u,t) 4 0 implies that p(t) 0 as t 0 and fi(u,t) u implies

that p(t) f I as t , and we have

gn(ul ... Un~tl .... tn )  - g(E'j U i/ o(t i) )  (116)

The composition g -up is the Laplace transform of a nontrivial pro-

bility distribution on [0,-) for each u >0. We need to show that

o has derivatives of all orders and that o' is completely monotone.

For t > 0

g(,0(t+T ))-g(p(t))
lim '0(t+ T)- A(t) - lim TT-0 T T-0 gCO~t+ r ))-S(,o (t))

P(t+ r )- p(t)

S(g ) > 0 (117)

g'(t)

Since g' < 0 on (0,-) and both the numerator and denominator have

derivatives of all orders, it follows that o has derivatives of all

orders. We now invoke a theorem of Bochner (Ref 4:83) to prove that

the derivatives of oo oscillate in sign and hence that p - 1-h where

h is the Laplace transform of a probability distribution on (0,-).

REMARK. The condition g(k)(u) _ 0(gl(u)) is satisfied if

(k)( <- for all k, I.e., all moments are finite. We have

included (111) as a hypothesis, however, it may be a necessary con-

sequence of the Invariance of gn under permutations of (u1 ,ti) pairs.
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V. Applications

In this chapter we present several examples which illustrate areas

in which the application of the theory of random measures might be

useful.

An Appliction to Telephone Engineering

The following example is due to Fortet (Ref 10:84-85). As a

telephone exchange has only a finite number of links, if too many peo-

ple try to put in calls at the same time, there will be congestion;

some calls will either be delayed or lost. In order to provide ade-

quate customer service, the telephone engineer recuires information

such as the probability that a call arising at some specific time will

find the exchange in a state such that the call is lost. Other infor-

mation that might be required is the distribution (on the time axis)

of the calls that are not lost, or the number of conversations held at

some specific time t as a function of t.

One method of obtaining such information is to construct a mathe-

matical model utilizing the theory of random measures that explicitly

describes the processing of a call through the exchange. Formally, we

assume that subscribers make calls at instants T, which are considered

as random instants and that the number of calls in the interval

[O, t) is N(-t). Let

m(tl,t 2 ) - N(tI) - Nrh2 ). (109)
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Then, clearly, the random set function m induced on the Borel sets of

the time axis is a random measure. By assuming that this measure is

stationary or completely random one is able to obtain additional in-

formation about the process. For example, by assuming that the random

measure tn is the sum of n independent random measures m (such as the

number of out-of-town calls in a given time interval) and that each

m is a stationary Poisson Process with parameter ;,, Fortet obtained

that the probability PI(t), that a call made at time t belonging to

the i-th class of calls will be lost, is a constant P I Fortet was

also able to obtain results which are quite difficult to obtain using

classical procedures. For example, the expected number of calls be-

longing to a particular class and held at time t was quite easily ob-

tained.

The next example, due to LeCam ('ef 20), is similar to the pre-

vious one in that the idea of a random measure - specifically, a point

process - is central to the model utilized.

An Apolication to Conservation Studies

In order to assess the effects of constructing dam on the sur-

rounding countryside a description of the random structure of stream

flow is desirable. Such a description is possible only if one first

starts with an adequate description of the random structure of rainfall.

The model oroposed by LeCam is essentially a random measure of the type

known as a cluster process (Ref 12:19).

The process describing rainfall can be interpreted in the follow-

ing manner. Points in the atmosphere are selected to be centers of
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storms according to a Poisson process whose expectation is given by

a "climatic" measure. A random rass is assigned to each point select-

ed which determines the strength of the storm centered at that point.

Continuing in this fashion centers of fronts are selected and given

extent and velocity. Finally, centers of convective cells are chosen

via another Poisson process and the amount of water precipitated by

each cell is determined by a random mass assigned to each cell.

In this model the number of points chosen to be -- centers of

storrs, centers of fronts, and centers of convective cells are random

measures.

The following example, due to Whittle (Ref 30) illustrates an

advantage of working with random measures.

An Application to Agricultural Studies

Whittle formulated an agricultural model in terms of a random

measure in order to evaluate the spatial covariance function of yield

density. To accomplish the same objective using the classical approach

would have been impractical if not Impossible. By considering the

yield of a plot of ground as a random measure and by empirically de-

termining its variance he was able to determine the spatial covarlance

function in terms of the variance of the yield density.

Another area in which the application of the theory of random

measures might be useful is illustrated by the fcllowing example.

An Application to Military Systems Analysis

A decision-maker is faced with the problem of defending an area

consisting of a finite number of targets from ballistic missile
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attack. Were his resources unlimited, the decision-maker's problem

would be solved. It )uld only be necessary for him to allocate

sufficient defensive systems to each target to ensure complete success

against any attack. Typically, however, resources are limited to the

extent that it is not feasible to defend every target. Hence, the

decision-maker must choose the targets to be defended. To make this

choice the decision-maker requires knewledge of the value placed on

the targets by the enemy (i.e., the enemy's utility for the targets).

However, since the enemy is not a single entity, there is no

"enemy utility function" per se. Instead, the enemy is a group of

decision-makers which is constantly changing both in its composition

and its objectives. The decision-maker is thus faced with the problem

of "hitting a moving target."

One approach to this problem might be to use a point estimate of

the enemy's utility for a set of targets. This method is unsatis-

factory from the standpoint that it fails to convey to the decision-

maker the uncertainty implicit in the estimate. Another approach

might utilize an interval estimate rather than a point estimate. This

approach has the advantage that it does convey some impression of the

uncertainty involved; however, like the point estimate approach, it

fails to fully utilize all the information available to the decision-

maker.

An approach which does utilize available information and, at the

same time, conveys the fundamental idea of uncertainty is to treat

the enemy's utility function as a random variable - more specifically,

as a random measure.
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This assumption is not as heroic as it may first seem. It is

similar to the assumption implicit in the approach of the statistician

who utilizes the Bayes Principle (Ref 8:30-31) as a means of "making

explicit" a decision-maker's uncertainty.

Another assumption, implicit in the definition, is that the

enemy's utility function is a measure. This involves two other

assumptions. First, we are assuming that the utility function is

additive. Second, we are assuming the existence of an origin for

measuring value. Both of these assumptions are subject to consider-

able criticism (Ref 9, 29) and should be viewed accordingly. We note

that if this assumption is completely unacceptable one might investi-

gate other random set functions such as those which are almost surely

super-additive.

To see how such a construction benefits the decision-maker it

suffices to note that by considering the enemy's utility function as

a random measure the decision-maker is able to appeal to the theory

of random measures for techniques that can assist him in modeling.

For example, in the context of a counter-force engagement, it might

be reasonable to assume that the enemy's random utility measure is -

homogeneous with respect to the measure which counts the number of

troops in a target area (i.e., the value of a target depends only on

the number of troops it contains). Similarly the enemy's random

utility measure might be assumed to be stationary with respedt to

target location (i.e., the value of a target is independent of its

location).

There are numerous other applications of the theory of random
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measures. The point process is particularly useful. Agnew (Ref 2)

and Goldman (Ref 12) indicate several other applications of this

class of random measures.

I-
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A random measure may be thought of as a random set function which is almost
surely a measure. Some results obtained by Ryll-Nardzewski for point processes on the
real line are extended and the Laplace functional is introduced. Completely random
measures, infinitely divisible random measures, and stationary random measures are
characterized. Homogeneous random measures are introduced with examples and inter-
pretations. A general characterization theorem for homogeneous random measures is
proved. Finally, several applications of the theory of random measures are given.
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