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Abstract

A random measure may be thought of as a random set function which
is almost surely a measure. The general objective of this investiga-
tion is to extend the theory of random measures and specifically to
characterize homogeneous random measures - roughly, random measures
whose behavior conforms in a certain way to that of a fixed measure,
Some results obtalned by Ryll«Nardzewski for point processes on the
real line are extended and the Laplace functional, a useful device
for characterizing random measures, is introduced, Completely random
measures, infinitely divisible random measures, and stationary random
measures are characterized. Homogeneous random measures are intro-
duced with examples and interpretations. A general characterization
theorem for homogeneous random measures is proved, Finally, several

applications of the theory of random measures are given,
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Random }easures

I. Introduction

Historical Perspective

A random measure can be considered as a random function on a
sigma~algebra of subsets of some space which is &lmost surely a mes-
sure on that space. The earliest Investigations of random measures
concerned themselves with point processes, an important class of ren-
dom measures taking on nonnegative integer values. Ryll-Nardzewski
(Ref 28) established a measure theoretic framework for Khintchine's
results (Ref 16) in the area of stationary point processes on the real
line, Moyal (Ref 25) investigated random measures in the context of
stochastic population processes laying down the foundations of a gen-
eral theory. Similarly, Harris (Ref 14) studied a particular class
of stochastic population processes known as branching processes - a
mathematical model of the development of a population whose members
reproduce and die, subject to laws of chance, Goldman (Ref 11) studied
various transformations of point processes on R" such as clustering,
deleting points, superposition, and random translations. Emphasis was
placed on the asymptctic behavior of well-distributed point processes
under iterations of the operations. In a following paper, Goldman
(Ref 12) investigated the generalization of the concept of infinitely
divisible point processes on R" in terms of superposition., Agnew
(Ref 2) characterized the behavior of uniform and stationary point

processes under transformations with particular emphasis on super=-
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position and decomposition.

Bochner (Ref 3) and LeCam (Ref 19) each investigated flnitely
additive set functions in the late 1940's and, in a later work,
Bochner (Ref 4:137-142) characterized a special class of ‘random funce
tions in terms of their characteristic functionals. Harris (Ref 15)
also investigated random set functions having appropriately smooth
realizations, However, it was not until Kingmarn (Ref 17) introduced
a special class of random measures which he called completely randem
that random measures were explicitly treated. Subsequently, Lee
{Ref 21) investigated infintely divisible random measures (specificel-
1y point processes) characterizing them in terms of the Laplace trans-
forms of their finite dimensional distributions. In a later paper
lee (Ref 22) presented several examples of these point processes, ob=
taining speclialized results for certain types of point processes such
as the generalized Poisson process and the bulk Polsson process.
Finaliy, Mecke (Ref 23) elegantly treated statlonary random measures
on a locally compact Abelian group, characterizing them In terms of

Palm measure.

Scope of the Investigation

The general objective of this investigation is to extend the
theory of random measures and to indicate some applications of random
measures, A specific objective is to characterize homogeneous random

measures,

Overview

In Chapter II the notion of a random measure is formalized.

v e o n e e e
.
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Several results which clarify the properties of random measures are
obtained, and some results given by Ryll-Nardzewski (Ref 28} for point
processes on the real line are extended, Also, the laplace functional
(& useful device for investigating random measures) is introduced.
Finally, some interesting classes of random measures which have pre-
viously been investigated are detailed.

Homogeneous random measures are introduced in Chapter III, Exe
amples of homogeneous random measures are given with interpretation
where appropriate and the relationship of homogeneous random measures
to the other classes of random measures is also discussed. Finally,

& general characterization thecrem for homogeneous randorm measures is

proved,

In Chapter IV some examples which illustrate applications of the

theory of random measures are given.
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1I. Random Measures

Random Set Functions

R
of =

let (X, ®) be a measurable space with ® containing at least
every singleton set (i.e., {{x] :x€X}c 8 ). Given an underlying
probability space ({1, , P), a real random set function on (X,®)
can be defined as a stochastic process on DX (]l (i.e., a real-valued
function on B xfl whose B-sections are -measurable). A real random
set function m induces a unique probablility measure F on the preduct
space (R,ﬂ)‘b - (Re, ﬂB), where (R,& ) is the extended real line and

its Borel sete, via the measurable transformation T defined by
T(w) = n(-,w) (1)

(1.e., P = PT"l), By the Kolmogorov extension theorem (Ref 14:53),

P 1s characterized uniquely in terms of its finite-dimensional distri-
butions, 1In order to investigate distribution properties, 1t suffices
to characterize a real random set function a&s a probability measure on
(R,‘iﬁﬁ. Of course, this approach ignores the subtie aspects of
equivalent stochastic processes.

Attention in the literature has been focused on random set furc-
tions which are almost surely measures primarily because a great body
of theory exists for measures which one might use to advantage, We
similarly restrict our attention to random measures, but we note that
more general random set functlions, such as those which are almost

surely superadditive, have application and &re worthy of study.

Bl 1

m e o —. -




LR

1

A

T AT T

vl Sand e

SRR S or S

[

i ;i

GSA/SMN/69-6

Rando= Messures

let ¥ C Rs be the ser of measures on (X, &), and ler g = Hﬂﬁa

DEFINITION 1. A random measure on (X, £) is a probability mes-
sure cn (M,47).

A randcm seasure Is unicuely determined bty its finite dimensional
distritutisns and these distritucions must satisfy certain consistency
conditiens, Given 31., cesy EnEQ and Cl, ency crﬁa disjoint such
that 3, ~ ng_‘l C for i =1, ..., n, lec i

o~ {1:xex} . Then,

wve rust have

efexp (- %, t,2(3)] 3= £lexp { {i_l(zmk:i)u(ck)} 1 (@

for all t, ..., :nzo. It follows that all finite-dimensionsl distri-
butions are specified once those corresponding o disjolnt sszts sre

specified., Furthermore, P { n(P) = 0} = 1 50 that

£ [exp f- Z‘;‘lt!m('si) - tm(f}} T=zlexp { - Z‘;-Itim(ai)} 1@

for ail 8,, ..., Bncé and iy eeos tn' £ 2 0. Finally,ve have the

monotone continuity condition

{1 E [exp{-'z:‘;‘_l tim(si)-tm(c)} 1 4)

vhenever 8., ..., B, C, C

T n 1 ese EB Tys eoes tn’ t 20 and

ckf c.
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Ukether or not such a set of consistent finite-~dimensicnal dis-
tritutions always extends to a unique random measure seems to be an
unanswersd question in general. Earris (Ref 14:55) has proved the
existence of & unique extension in a speclal case, and Bochrer has
proved a generalized extensicn to (5,3 ), where S is the set of
finitely additive set functions on & and J = Sﬂﬂﬁ, whenever (1)
holds. If P is the unique sxtension tc (Rﬁ ,Rs) and P*(M) = 1
(P* is the cuter measure assocliated with P), then F fnduces a unigue
probability measure P on (¥,%l) called the trace cf P on M (Ref 27:19).
Thus, i the consistency conditions imply P*(4) = 1, then the unique

extension follows,

1EBMMA 2, If P is & random measure on (X, 6), then the set func-

tion 7] defined on 6 by
N() = E[nl)] = fa(-)p(em) (5
1s in M.
PROOF. Ve have that 7|(#) = £ [m($)] = 0, and
N(UBY) = E[mUB)] = E [En(8,)] = £E [m(8,)] = ZN(B,) (6)
for disjoint {B,}JC@ by monotone convergence or by Fubini‘s
theorem (Ref 13:148),

let F be the set of nonnegative B -measurable functions on X.

Let F C F be the subset of simple functions of the form £ = "3?-1%13
i

where B., ..., Bn€6 are disjoint and Eiseees t:n?O, and whers 1Bi

.- -
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is the indicator function of the set Bi defined by

IBg(x) = if (7)

If f€ F, then there exists a nondecreasing sequence {’ fn} CF such

that £ €, and Ifndu% [fdz for all m€M (Ref 12:85).

LEA 3. If £€F, then y defined on M by

y(m) = [fdm (8)
is M-=easurable.
PROOF. If £€F, then
n n
[fam !Ei_ltilaidm 81-1“1”‘(31) {9)

which is clearly measurable. Now, if {fn}CAF' and fnf £, then
Ifndm?ffdm so that v is the iimit of & nondecreasing sequence of
measurable functions and is thus measurable (Ref 13:84), which was

to be proved,
THEOREM 4. If fEF and P is a random measure on (X, #), then

E [[fdm] = [[fdmP(dm) = [£an (10)

S R ALY,

AP0 BB 2 e SIRRRES WO Ay Wt S W ARG TRATHA
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PROOF. If f€F, we have
£ [ftem) = E[E], t,n(8)]
t E [m(a 1

ili

i 1 l1{(1;) IRy an

and the assertion follows by taking limits since {fn} C ¥ and
fn1 f implies that Ifndm t ffdm for m€M and since 7] € M we have

I £ a7 t jeam . e[ fndm] % E[ffdm] from monotone convergence.

THEOREM 5. If P is a random measure on (X,$) and B, C €&

are disjoint, then
P {a(BUC)> 0} < P {n(B)> 0] + P{ m(c)> 0} (12)
PROOF.
p {=m(Bucy >0} = P{ m(3) + m(c) >0}
= p{{ n(B) >0} v {m(c) >0}}

¢ P{ni8) >0} + P {m(c) >0} (13)

LeA 6, Elexp{-tm(B)} ] {2 {mB) =0}ast ¢ w,

PROOF. As ¢ f o, for each m& M we have

exp {~ tn(B)} } 1 {m(8) = 0} ™ (14)

PO PP UV U I

RN
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hence

Elexp{~etm(®)} 1 {E[2 {n(B) = 0) 1 = 2{m(B) = 0} (15)

S Bkl .
.

DEFINITIOR 7. If Pl and P2

tion or convolution of Pl and P

are random measures, the superposi-

denoted by PI*P is the random

2, 2’

. measure defined by

(P *Py)(4) = IIIA(mlmz) Pl(dml) P,(dm,) (16)

Rvyll-Nardzewski's Function

In this section we extend some results given by Ryile-Nardrewski

(Ref 28} for point processes on the real line,

THEOREM 8. 1If 7| is ¢ -finite, then there exists a function Q
on M X X such that for each A€M, Q(A, * ) € F is uniquely determined

(except perhaps on a set of 7 -measure zero) by the equation

[5Qt8,%) M (&x) = / m(B) P (dm) an

which holds for every BéE®, Q has the following properties

(1) Q(f,) = 0 and Q(M,+) = 1 M7 as) {
s
5 (2) A CAy = QA;,°) € Ql4y,*) [(n7 (19) 3
'g (3 {A}CM daisjoint = q(ua,*) = Taa,) [ ] (20) '
i

"

- * (Read almost everywhere 7 )} denotes that the statement immed.
iately preceeding it is true except perhaps on a set whose N -measure
is zero.

s e -..-—-—--m*ummw
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PROOF . 'TIA(') - IAm(')P(dm) defines a measure on 8§ which is
abscolutely continuous with respect to 71 + Hence, the Radon~Nikodym
theorem (Ref 13:128) assures the existence and uniqueness [’Ilj of
Q(A, <). (1) follows by uniqueness of Q(A, ) and (2) is easily

proved by contradiction,
nUA! " EQAi so that
[0, ,x)7 (ax) = T Q(4,,%)7] (dx)

= JEQ(A ,x) 7] (ax) (21)

for all B€® and (3) follows by uniqueness,

THEOREM 9. Q({m(C) = 0} ,*) = 0 [N T on c€8.

PROOF .
[ QC{ m(c) = 0} ,x)7 (ax) = | (n(c) = 0] m(B)P(dm)
- (m(C) = 0) m(BNC®)P(dm)
€ N(BNCS)
¢ Jpleedn (22)
for all B €8 which implies that
o({mc) = 0},)¢ 1. M1 (23)

from which the theorem follows,

The following lemma is computationally useful,

10

[ VORI
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LEMMA 10, Suppose that 3, C€H and 1((8) < , Then,
1lim lim - ?%: B [exp{ -um(B)-tm(C)} ]

t—so u-+{

- [ (n(c) = 0} 1(8)P(dm) (24)

PROOF,

% Z [exp { «um(B)=tn(C)} | = -£ [m(B)exp { -um(B)-tm(c)} 1 (25)

Now, MN(B) <*#m(B) < almost surely which implies that as u } 0
m(B)exp { -um(B)-tm(C)] 4 m(B)exp {-tm(c)) (26)

almost surely so that

€ [m(B)exp { -um(B)-tm(c)}] } € [m(B)exp [ -tm(c)} ] (27)

Furthermore,

m(B)exp { -tm(C)} | m(B)1 (n(c) = 0] (28)
almost surely as t $ o and
E [m(B)exp { ~tm(c)} 1 < N(B) < (29)
It follows that
E [m(B)exp { ~tm(c)} T § £ [m(B)1 (m(c) = o] 1 (30)

Jlaplace Functionals

In this section we introduce the natural analog for random

measures of the Laplace transform of a probability measure on

11

XTI
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@®R*YRY ) (Y - '_—_0, o] and Rt~ K*NR ). Harris (Ref 14:56) applies
the name moment generating functional to what we call the JTaplace

functional. Mecke (Ref 24) has also used the term laplace functional.
DEFINITION 11, The functional & defined on F by
$(£) = E[exp{ - [fdm] T = fexp {~ [tdm] P(dm) (31)
ls called the Laplace functional of the random measure P,

THEOREM 12. The Laplace functional of a random measure is uni-

quely determined and has the following properties

(1) 0<&(e)¢1 for all fEF (32)
(2) £,¢E, = é(fl) > @(fz) (33)
(3) fnf fFEF = §(fn) { &) (34)

(4) If £ = 2?_1 t:ilB € F, §(f) is the joint Laplace transform
i

of (m(Bl), veey m(Bn)) evaluated at (tl, ceey tn).

(5) @(tf) is the Laplace transform of the random variable

[fdm evaluated at t > 0.

() () > exp{- [ tan} (35)

PROOF. (1) and (2) are trivial. Now, fnt £ implies
ffndm t [fdm for all m € M hence exp{ - ffndm} ‘ exp{ - ffdm}

for all m € M which implies that

E [exp| -ffndm} 71§ E[exp(-ftam} ] (36)

12
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P

and (3) follows. To prove (4) it suffices to note that for fCF we

- xeste o

; have

" 1

- 80 - Bary)
= E [exp { -{Zt,1 dm}] ig
« E [exp | -Ztim(Bi)] ] 37 f

Since for £€F, [fdm is a random variable (5) is obvious. Uniqueness
follows from (3) and (4) and (6) is & consequence of Theorem 4 and

Jensen's inequality (Ref 27:55).

THEOREM 13. If @ 1 and @ o are the Laplace functionals of

P1 and P2 respectively, then the Laplace functional of PI*P2 is,

b= 0,8, (38)

PROOF. The assertion follows from the fact that
fu(m)Pl*Pz(dm) = ffu(ml"'mz)Pl(dml)Pz(dmz) (39)

for any nonnegative 4 ~measurable function u, which can be proved

~ g

without difficulty by the usual procedure of employing simple functions

and then teaking limits,

LD e R s

i
Completely Random Measures :
i
i In this section we present some results obtained by Kingman '
i ;j
; . (Ref 17). In particular a representation theorem is presented for ;
N " ;
i completely random measures gatisfying a weak finiteness condition, ?
RO 4
b
! %
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DEFINITION 14. A random measure P is said to be completely
rarndom if, for any finite collection B,, ..., B_of disjoint members
1 n

of 8 , the random variables m(Bl), veey m(Bn) are independent. .

THEOREM 15. Llet P be a completely random measure, If 7Z
is nonatomic and if there exists a countable coilection {Bn} cH
such that UBn = X and P {m(Bn)< w} > 0 for all n, then there exist
¢ ~finite measures @,’n’l, 1']’2, eeo on (X,B ) and probability measures

pv(x, *) W=1,2,...; x€X) on (R+, 0("') with p,(*,E) @B-measurable for

each E€ R*, such that the Laplace functional of P admits the repres
sent&tion
(£) = exp { -[£dp -T. [ (1-pX(x,E))TT, (dx)} 40
@ exp - ? - v-l -pv x’ v b.d ( )
where

Py(x,t) = [qexp(-ta)p, (x,d2) 1)

PROCF. Kingman showed that

£ [exp { -tn(m)] T = exp{ -t p (B)Tom )l 4(1-py(x, N T ()} (42)

o,

PR

but the complete randommess of P implies

I AP

%i $Chartylp,) = E [oxp {-2i. e4m(ey)} ]

-TT ?_IE [exp | -tim(Bi)} ]

A i i a

= exp{ =Lyt 8 (B}

ST/ b, (1P (5, £0) Ty (e0)) 3)

N o e S s e S e

/——
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Now,

* .
1_1 v_,l! (l-p,D(X,ti))TTv(da)

B Y

Z:.IIE?_I(I-pi(x €01, ’IT‘, (dx)

Ja- pv(xgzi ~1%ils, ))T(v(dX) (46)

o e

T

.

which proves the assertion for simple functions and the result follows

upon taking limits., We use here the convention pj(x,O) = 1, even when

et e xR
Ll 2l iy 2R TN S gy S

Pl (x,0%) < 1.
COROLLARY.
NGB = BB + T [ [z (x,d2)T, (dx) (45)

The theorem implies that P = Q*z;@ where Q has the Laplace

functional

M.

§(e) = exp{ I, (1=p[(x,£))T, (dx)) (46)

v v dom TP AR ¥
RS TP R L R R T LR T e
kAl 2 e L o e e A e o

and

1 ptEA
A@(A) - if
0 otherwise 7

< B e JSaSAcS e ki - -
e d ot i

DEFINITION 16. Let/KeM be ¢ -finite and nonatomic and let h
be the Laplace transform of a probability measure on (0,©), A random

measure with Laplace functional ’

D) = exp | - (1-h(£))ax) (48)

15
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is called a Polsson process with intensity measure #¢ ond rass dis-
tribution h,

In the simple Polsson polnt process, we hava hit) = exnl(-t), the
Laplace transform of & unit mass at one. It is clear that the Peisson
process corresponds to Kingman's representation with gf(x,-) = h{.}
for all x, T, =p , and B ,TTZ,TT3, .».all zero measures.

‘e shall have more to say about the Poisson nrocess in the next

chapter,

Infinitely Divisible Random leasures

A random measure P is infinltely divisible if for any nositive

integer n,

n
» I Q
P Pn (49)

for some random measure Pn' An example of an infinitely divisible
point process 1is the Polsson process with intensity measure J¢ vhich,
for any n, Is the n-fold superposition of a Polsson process with the
same mass distribution and Intensity measure A/n.

Combining the results of Lee and Mecke, we have the following

theorem,

THEOREM 17, A random measure P is Infinitely divisibie if and

orrly If lts laplace functional admits a representation.
O£} = exp S»ffd@ -f[l-exp(-ffdm)W.A.(dm)} (50)

vhere (&M and A is a measure on (M,M),

16
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COROLLARY.
7(8) = B(B) + [a(3) A (4n) (51 1
The theorem indicates that P = Q*Aé vhere Q has lLaplace i
functionatl
&(£) = exp {-{[1-exp(-f£am) 1 A (dam)}] (52)

in the case of a Poisson process, we nave

/. G M wr g LA 1

fLi-exp(-f€am) T/ (am) = [(1-h(£)3dp
= [J(1-exp(-LE}) | (A\)dp (53)

TG WAV

where

h(t) = f:exp(- AE) 3(d 1) (56)

which impiles that A 1is concentrated on measures of the form A5,

n
sbbien i o) |

where i
1 x€ B
5,(8) = if ;-
| 0 otherwise {55)
and
¢
Ao : \eT,x €8} = FD p(®) (56) '

Stationary Random Measures

Wby Vel A

Suppose that X is a commutative group with respect to an opera-

i
{

tion convenlently denoted as addition; i.e., there exists an cperation

17
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+ 3 X X X —>Xsuch that x + ¥y = y + X € X whenever x, y € X; there
exists an identity element 0 € X such that x + 0 = x for all x € X3
&nd for each x € X, there exists a unique Inverse element -x € X such
that x + (=x) = 0, LeZ {Ux:xe X} be the group of translation
operators on X defined by ny =y + X, We assume that & 1is closed
under transiation (l.s., BEB = UBEB ,V x€X). Let {rx:xs.x}

be the group of translation coperators on M defined by
(T,=)(B) = m(U_,B) (57)

A Deasure /ue M is translation invariant if Tx/! -/( for ali

x € X,
DEFINITION 18. A rendom measure P on (X,8 ) is stationary if
P(T, A} = P(A) (58)
for ail A€ M and x€ X,
THECREM 19. P is stationary if, and only if,
ju(T,m)P{dm) = [u(m)P(dm) (59)
for every nonnegative 7] ~measurabie functlon u.
PROOF, If P is stationary then

fu(Txm)P(dm) - fu(rn)P‘E;l(dm)
= [u(m)?PT,, (dm)

= [u(m)P(dm) (60)

18
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Conversely, suppose that

fu(Txm)P(dm) = [u(m)P(dm) (61)
for aill u. Then,

P(TxA) - | ITxA(m)P(dm)
= 1 A(T-xm)P(dm)
- 1 A(m)P(dm)

= P(A) (62)

so that P is statlonery.

Let {Vx: X € X} be the group of translation operators defined

on F by

(V.E)(y} = £(U_y) = £(y-x) (62)
THEOREM 20, P is stationary if, and only If,
oev, £) = 8(e) (64)
for 211 £€F and x € X where § is the Laplace functional of P.

PROOF, If P is stationary, then

§(vxf) = fexp {-J¥ _£dm} P(dm)
= [exp { -ffd'r-xm} P(dm)}
= fexp{ -ffdm ] P(cm)

- & (£) (65)

by the previous theorem with u(m) = exp{ «f fdm} .
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": Conversely, suppose that §(fo) - é(f). Put £ = 2?-4“113
i

and we have

1

]

. - TR

3 %" T fily s, (66)
g so that

3 E [exp{ 'Z?oltim(ai)} J = & [exp{ ey tym(u 3} ] (67)

It follows that the finite dimensional distributions of P are trans-

lation invariant and it follows by extension that P is stationary.

SRR &k It ACA Ay St ot
e st

X

For & stationsry random nmeasure P we have the following ergodic

theorem,

THEOREM 21. Fix Xx€¥, BE® and let B ~ { A€M : T A = A} .

VAR

If P is statlionary snd 71(3) < e, then

e 1 [20

K
(U B)Y = Em(B) | 81 (68)
; e L[5 ynC Lo(B) | &

almost surely and in Li.

PROOF. m(U)B) =(T_Xm(8) and P(171a) = B(T A) = B(4) for a1i

RAUR AL W L § eiy ol

A €T by stationarity. Hence, the assertion follows from Birkhoff's

ergodic theorem (Ref 27:210),

THEOREM 22, If P is stationary, then 7l is translation invariant.

20
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PROOF.
T (u_B) = [m(U BYP(dm)
t b 4 b'e
= [(T_ =) (B)P(dm)
= [a(B)PT, (dm)
= [m(B)P(dm)

= 7 (3) (69)
by stationarity.

THZOREM 23. Suppose that there exists a translation invariant
probebility measure/qebh Then, if P is any rendom measure, the ran~

dom measure P! defined by

P*(A) = IP(TXA)/k(dx) (70)
is stationary.

PROCF. Using Fubini's theorem,

P'(TyA) = fP(Ty+xA)/u(dx)
- flry+xA(m)P(dm)/H(dx)
- flTy+xA<m>/r(dx)P(dm)
- '“Tx AGMT, A (dx)P(dm)
- flTxA(m)/l(dx)P(dm)
- flTxAm)P(dm)//z(dx)
= [P(TA) jf(dx)

= P'(A) (71)

which was to be proved,
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N

Finally, we glive the following characterization for stationary

random measures on a locally compact Abelian topologlical group X with

Borel sets & .

THEOREM 24, Let/qe.M be any probability measure that is not

concentrated on any subgroup of X, and suppose that P(TxA) is a

uniformiy continuous function on X for each A€M. Then, P is

stationary if, and only if,

T TPy

P(A) = IP(T_XA)ﬂ {dx) (72)

for all ACY and XEX,

} PROOF. The necessity is obvious. T~ n-ove the sufficiency,

E; ' £ix A and put f(x) = P(T-XA). Then we have

E £(y) = [E(y=x) 4 (dx) (73)

for all ve X and £ must be constant on X by a theorem of Choquet and

Deny (Ref 5).

(M U i A

REMARK 25, Mecke has obtained many beautiful characterizations

for stationary random measures particularly in terms of Palm measure,
which are not included here. The interested reader is referred to

Mecke's paper (Ref 23) for additional results,
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I1I. Homogeneous Random Measures

In this chapter we intreduce the notion of & homogeneous random
measure.* Some results which indicate interesting properties of homo-
geneous random measures are obtained and several examples plus inter-
pretations are given. Characterizations are given for completely
random and stationary homogeneous random measures. Finally, a genersl

characterization theorem is proved.

Homogereous Random Measures

DEFINITION 26. A random measure P is homogeneous with respect
to a nonatomic, o=finite measure/He.M if its Laplace functional admits

a representation

O(e) = e f(1-n(£))dp ] (76)

where h is the Laplace transform of a probability distribution on
(0,) and g is completely monotone on (0,/%(X)) with g(0") = 1.
The following result is an immediate consequence of the defini-

tion.

n - .n
E [exp | .Zi-ltim(Bi)] ] Q(Li_ltilBi)

- g[f(l-h(z?_lti151))gﬂ]

* Nawrotzki (Ref 26) has written a paper on homogeneous randem
point functions which we have been unable to obtain,
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n
n
= g Z7, (1-h(t ) u(B))] (75)
Using this result, we have the following lemma,

LEMMA 27, If P is a random measure which is homogeneous with
respect to A then

P{m(B) = 0} = g(u (3)) (76)
PROOF., By lemma 6
p [m(B) - 0} - tli@” E [exp{_-tm(B)] L (77)

Using the result just obtained we have

P{m(B) = 0}= 1im g[(l-h(t))/{(s)'_l (78)

t —soo

and the desired result follows. Similarly we obtain another useful

result,

LEMMA 28, 1let P be a/n -homogeneous random measure and let

BeE ®, then
n(8) = h'<o+)g'(o+>/1(s) (79)
PROOF. If A(B) <, m(B) i{s almost surely finite, so that

NB) = um, - & (1-n(e))p (B)]
= Un 8 [(1-n(e)) 4 (B) ' (£) 4 (B)
= ' (0")n"(0") 4 (8) (80)
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and the assertion follows from the ¢ -finiteness of/t .
The following interpretation is possible. Since h{t) is the

Laplace transform of a probability distribution on (0,0), =h'(0*) may

be thought of as the expected mass at a point. We may consider

- g'(O”’)/"f (B) as the expected number of points in the set B. Hence,

7((3) = [<h1(0*)] [-g'(o+)/<(a)1 - h'(O"')g'(O"’)/%(B) may be thought

of as the expected mass in the set B.
THEOREM 29, Let P be /44—homogeneous and 0 < ~ g*(0%),
- h'(0*) < o, then

0 X€3
Q( {m(B) = 0} ,x) = if i

g' (M (B)) /g (07) X¢3 (81)
PROOF, By theorem 8 we have

[eQC{m(B) = 0} ,x)7) (dx) = f{m(s) = o} M(C)P(dm) (82)

Applying lemma 10 we obtain for 7((0) <o, BNAC = @,

feaC{m(3)=0} ;)N (ex) =  Lim dm - 2 g (1-h(u)) A(C)
+(1-h(£)) 4 (8)]
= Lln 1in g'[(l-h(u))/«(C)
+(1=h(t)) M (B) h? (u) m (C)

- g'(/d(n))h'(O")/H(c) (83)

Using g -finiteness, the equality holds whenever B3N C = §,
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Using lemma 10, theorem 9, and uniqueness, the assertion follows,

Examples of llomogeneous Random Measures

In this section we present several examples of homogeneous random

measures.

EXAMPLE 30. let A(X) = 1, and put g{u) = (1 - u)¥ and

h(t) = exp(-t) so that

() = g(f(1-n(e))dp)
= [1-f(1-e><p(-f))d/< Tk (84)

For £ =3 til this ylieids

By

$(£) = E [exp { -Etim(Bi)ﬂ
k
= [1-2 4(B )48 M (B, Jexp(-t )] (85)

which corresponds to picking k points independently from a space X,
each according to the probability measure A .

To generalize this result we substitute a general h obtalning
By = L1/ (1-h(£))a a1 (86)

which ylelds for £€ F
ELexp { -t;m(8)} T = [1-8 f (8048 s (8 n(e,) T* (87)

As before, we select k points independently from X according to
the probability measure/( , but we then assign to each point a random

mass via the distribution whose Laplace transform is h,
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EXAMPLE 31i. let g{u) = exp{(~- Au) and h(t) = exp(-t)., Then,

\ , B(£) = exp| -\ (1-exp(~£))dA) (88)

‘ so that for f¢F we have

This is the familiar Poisson point process. Again we can gen=

\ B(£) = exp { AT x(B,)(1-exp(~t,))} (89)
] eralize by substituting an arbitrary h £o obtain

B(e) = exp { -Af(1-n(£))du] (90)

which Is a compound or bulk Poisson process with random masses assignad

independently according to h.

The integer valued compound Poisson process puts h(t) ~ f(exp(-t))

wvhere f is a probability generating function on the positive integers,

over an index set /\ then the set function glven by

) The final example we present is the Mixed Poisson process,

\

|

\ EXAMPLE 32, 1If {PX] is any family of random measures indexed

P = {\v(dx)px (91)

b(e) = ﬁ\wdm&x(f) (92)

\ is again a random measure whose laplace functional is

where § X is the laplace functional of the random measure PX'

If

® () = exp{ A[(1-h(£))du] (93)
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and V is a distribution on [0,«0, then

§u)-unbmn%ﬂ)
where
g(u) = fexp(-Au) v {d\)
is the Laplace transform of V¥ . For example, If
g{u) = B/(g +u)

then

$eey = p/Le +(1-n(zNep]

(96)

(95}

{96)

97

Ciearly, if /H(X) = o g0y homogeneous randcm messure is mixed Polsson

since z is necessarily the laplace transform of & probability distri-

bution on [ 0,).

INTERPRETATION 33. The following interpretation is possible,

let O </{(B)<~ endé put

v (C) -/4 (an)//u (B)

Then, for uil f with [f > o} C B,

$() = g f1-n(E)dp
- g[fB(x-h(f))c/q'l
- g[/»f(s)(x-fh(f)do )1
- ¥ plin(e)av

=0 ),

- < ™ n
Zn_epntl [{i=h(£))dv ]

28

(98)

(99)
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where Py is the probability distribution on the nonnegative integers
whosz generating function is g(/&(B)(I-z)). The interpretation is
that n points are assigned to the set B with probability Ppe and then
these points are selected indepsndently from B according te the nor-

mxlized measure Vv with masses assigned via h., For example: if

glu) = g/(p+u), {100)

then
g A (B (1-2)1 = BB +H(B)(1-2)]

- B(p +/u(5))°1,'£_'1~ {/((B)(@ +/l(3))'lz} T (101)
which 1s the generating function of the geaometric distribution with
Py = [1-H(BY(B+ 43N L p (BB + p(a) T (102)

1£ /ﬂ(x)< © | we can put B = ¥ in the above. In this cese, g

need not be a Laplace transform,

A generalization of picking k points &t random when 4 is a
4

probability measure would put

_ g(u) = (1-pu)¥ (103)
fi which yields

g(1=z) = (q+pz)* (104)
¥ é

— e YRR, e
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where q = l-p and

p, = {K) o" ™ ; 0¢nck (105)

In the following section we give & necessary and sufficlent con-

dition for & /I( ~horogeneous randcm measure to be completely random,

Corcleteiy Random Homozeneous Randon Measures

THEOREM 34. A M -homogzeneous random measure with /((X) =~ ig

completely random if, and only if, 1t Is a Pcisson process.

PROOF. The sufficiency is ebvious. To prove the necessity we

note t:hat/( g -finite and nonatomic irmlies that

g(u1+u2) - g(ul)g(uz) (106)
for all U, u2>0 (Ref 13:174) which implies that

g(u) = exp(=Au) (167)

for some A >0 (Ref 1:183) and the necessity follows,

Stationary Homogeneous Random Measures

In this section we obtain necessary and sufficient conditions for

a /( ~homogeneous random measure to be stationary.

THEQREM 35. A /( ~homogeneous random measure 0< -h'(0+),

? -g'(0*) < o is stationary if, and only if, M is translation invariant,

PROOF. Suppose that/« is translation invariant then,
@(fo) = exp [ -J’(l»h(vxf))d/(}

m exp { =f (1-h(£)dT_, u}

30
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- e:<p{ -f(l-h(f))d/'.}
- &(5) (10:)

and the suificiency follows from a nrevicus result,

Conversely, if P is stationary, then 'JZ i{s translation invariant
which implies that:/( is translation invariant,

“Ye conclud~ -his chanter with a general characterization theorem

for homozeneocus random measures.

A Characterization Theorem

TH.02 % 36, let (X,B,/k) be a ¢-finite, nonatomic measure
snace with /‘((X) = ©, let P be a random measure on {¥,8). sSurpose
that all finite dimensional distributions of P for disjoint sets

51 soovy Bné. B wich finite measure have the "homogeneity" property

£ fexpc-z?_lcim(si>)]- B CHB Y ooy M(B)LE oyt ) (109)
Put
a(u) = lim g {(u,t) (110)
t—eon 1}

and suppose that g is the laplace transform of a nontrivial (not
concentrated at zero) probability distribution on EO,w) with
g(k)(u) w O(g'(u)) as u ¢ O for k> 2, Put fn - g“lgn and suppose

that

n
EalUjeeeesti By 0ea,t)) '-Ei_lfl(ui,ti) (111)
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‘Then, ? is /(-homogeneous.

PROOF. TFrom Haimos (Ref 13:174), we have the continuity pro-
perty 0 ¢ & ~</4(3) implies that there exists a C< B such that
H{C) =X and /l(‘_*)ﬁv'. implies that there exists a C D2 such that

MC) » & . Now, g(0%) = 1 implies that
P {m(By) > 0} § 0 (112)

as /4(Bn)$0 and hence m(Bn) ~» 0 in probability as /«(Bn) lo. This
impiles that there is a subsequence {ani such that m(Bn y—0
almost surely (Ref 27:47), If { Bn)l is monotone decreasingz and
/‘((Bn) } 0, it follows that m(Bn) —» (0 almost surely. from this and
the continuity property from Halmos, it follows that &n is continuous
in e&ch Uy Furthermore, g, has the additivity pronerty {resulting

from the additivity of/‘( )

n

Rn(ul9'°"un’t"°-yt) = gl(zi"lui’t) (113)

for £t> 0, It follows that L maps into the domain of g"l so that

£ ™ g'lgn is well defined. Using (111) and the additivity property,

we have
£, (2 ) = N £ U, t)
18 1mgUys®) = 2yay By (114)
which for each t> 0 1s a Cauchy equation with solution
£,(u,t) = up(r) (115)

for some continuous, strictly lncreasing function L (Ref 1:34), MNow
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€,(u,t) } O tmplies that po(t) ¢ 0 &s t § O and £,(u,t) 4 u implies

that 2(t) $ 1 as ¢t ¢ © and we have

gn(ul, eee ’un'tl’ . o.,tn) - 8(2?.,1'.1’ p(ti)) (116)

The compositicn geupo 1is the Laplace transform of a nontrivial pro-
bility distribution on [O,w) for each u >0, We need to show that
£ hes derivatives of all orders and that ! is completely monotone,

For t> 0

g{o(t+1))-g( (L))
T

1im p(t+T)- o(t) = 1im
=0 T T=0 s (o(t+ T))-g (o (1))
A{t+ T )= p(t)

= (gop) (£) >0 (117)

g'(t)

Since g' < 0 on (0,) and both the numerator and denominator have

derivatives of all orders, it follows that ,0 has derivatives of all
orders. We now invoke a theorem of Bochner (Ref 4:83) to prove that
the derivatives of o oscillate in sign and hence that © = 1-h where

h is the Laplace transform of a probability distribution on (0,=).

REMARK., The condition g(k)(u) = 0(gt(u)) is satisfied if

g(k)(o*) <o for all k, f.e., all moments are finite. We have
included (111) as a hypothesis, however, it may be a necessary cone

sequence of the invariance of 8n under permutations of (ui'ti) pairs,
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Iv. Applications

In this chapter we present seversl examples which illustrate areas
in which the application of the theory of random measures might be

useful,

én Application to Telephone Engineering

The following example is due to Fortet (Ref 10:84-85). As a
telephone exchange has only a finite number of links, if too many peo-
ple try to put in calls at the same time, there will be congestion;
some calls will elther be delayed or lost, In order to provide ade=~
quate customer service, the telephone engineer requires information
such &s the probability that & call arising at some specific time will
find the exchange in a state such that the call is lost. Other infor-
mation that might be required is the distribution (on the time axis)
of the calls that are not lost, or the number of conversations held at
some specific time t as a function of t.

One method of obtaining such informetion is to construct a methe=
matical model utilizing the theory of random measures that explicitly
describes the processing of a call through the exchange. Formally, we
assume that subscribers make calls at instants Ty which are considered
as random Iinstants and that the number of calls in the interval

[0, t) 1s N(t). Let

m(ty,ty) = N(t)) = Niep). (109)
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Then, clearly, the random set function m induced on the 3orel sets of

the time axis is a random measure. By assuming that this measure is i

stationary or completely random one is able to obtain additional in-
formation about the process. For example, by assuming that the random

measure m is the sum of n independent random measures m, (such as the f

number of out-of~town calls in a given time interval) and that each

m Fortet obtained ﬁ

i g
that the probability Pi(t), that a call made at time t belonging to

is a stationary Poisson Process with parameter A

the i-th class of calls will be lost, is a constant Pi' Fortet was
also able to obtain results which are quite difficult to obtain using
classical procedures. For example, the expected number of calls be~
longing to a particular class and held at time t was quite easily ob-

tained.

The next example, due to LeCam (Ref 20), is similar to the pre-

vious one in that the idea of & random measure =~ specifically, a point

process - is central to the model utilized. ;

An Application to Conservation Studies

In order to assess the effects of constructing dams on the sur-
rounding countryside a description of the random structure of stream
flow is desirable, Such a description is possible only {f one first
starts with an adequate description of the random structure of rainfall.

The model orovosed by LeCam is essentially a random measure of the type

b
known as a cluster process (Ref 12:19), ;
The process describing rainfall can be interpreted in the feollow-

ing manner. Points in the atmosphere are selected to be centers of
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storms according to a Poisson process whose expectation is given by

a “climatic" measure, A random mass is assigned to each point select- '
ed which determines the strength of the storm centered at that point.
Continuing in this fashion centers of fronts are selected and glven

extent and velocity. Finally, centers of convective cells are chosen

via another Polsson process and the amount of water precipitated by

each cell is determined by a random mass assigned to each cell,

In this model the number of points chosen to be -~ centers of
storms, centers of fronts, and centers of convective cells are random
measures,

The following example, due to Whittle (Ref 30) illustrates an

advantage of working with random measures,

An Application to Agricuitural Studies

Whittle formilated an agricultural model in terms of a random
measure in order to evaluate the spatial covariance function of yield
density., To accomplish the same objective using the classical approach
would have been impractical if not impossible, By considering the
yield of a plot of ground as a random measure and by empiricelly de-
termining its variance he was able to determine the spatiai covariance
function in terms of the variance of the yleld density.,

Another area in which the application of the theory of random

measures might be useful is illustrated by the fcllowing example,

An Application to Military Systems Analysis

A decision~maker is faced with the problem of defending an area

consisting of a finite number of targets from ballistic missile
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attack, Were his resources uniimited, the decision~maker?s problem
would be soived, It »>uld only be necessary for him to allocate
sufficlent defensive systems to each target to ensure complete success
against any attack., Typically, however, resources are limited to the
extent that it is not feasible to defend every target, Hence, the
decision~maker must choose the targets to be defended, To make this
choice the decision-maker requires knewledsge of the value placed on
the targets by the enemy (l.e.,, the enemy's utility for the targets),.

However, since the enemy is not & single entity, there is no
"enemy utility function" per se. Instead, the enemy is a group of
decision~makers which is constantly changing both in its composition
and its objectives, The decisionemaker is thus faced with the oroblem
of "hitting a moving target."

One approach to this problem might be to use a point estimate of
the enemy's utility for a sét of targets, This method is unsatis=
factory from the standpoint that it fails to convey to the decision-
maker the uncertainty implicit in the estimate. Another approach
might utilize an interval estimate rather than a point estimate. This
approach has the advantage that it does convey some impression of the
uncertainty involved; however, like the point estimate approach, it
fails to fully utilize all the information available to the decision-
maker.

An approach which does utilize available information and, at the
same time, conveys the fundamental idea of uncertainty is to treat
the enemy's utility function as a random variable - more specifically,

as a random measure.
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This assumption 1s not as herolc as it may first seem, It is
simiiar to the assumption implicit in the approach of the statisticlan
who utilizes the Bayes Principle (Ref 8:30-31) as a means of 'making .
explicit" a decision-maker’s uncertainty.

Another assumptlion, implicit in the definition, is that the
enemy's utility function is a2 measure, This involves two other
assumptions. First, we are assuming that the utility function is
additive, Second, we are assuming the existence of an origin fo:
measuring value, Both of these assumptions are subject to consider=
able criticism (Ref 9, 29) and should be viewed accordingly. We note
that {f this assumption is completely unacceptable one might investi-
gate other random set functlons such as these which are almost surely
super-additive,

To see how such a construction benefits the decision-maker {t -
suffices to note that by considering the enemy!s utirity function as
a random measure the decision-maker is able to appeal to the theory
of random measures for techniques that can assist him in modeling,

For example, in the context of a counter-force engagement, it might
be reasonable to assume that the enemy's random utility measure is
homogeneous with respect to the measure which counts the number of
troops in a target area (i.e,, the value of a target depends only on

the number of troops it contains)., Similarly the enemy's random

utility measure might be assumed to be stationary with respeét to
target location (i.,e., the value of a target is independent of its
location),

‘3 There are numerous other applications of the theory of random

14 Elihen ik acins Lo e
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measures. The point process is particularly useful,

Agnew (Ref 2)

and Goldman (Ref 12) indicate several other applications of this

class of random measures.
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