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FOREWORD

This document comprises the Final Technical Report specified
under Subcontract P.O. No. 287502, "Investigation of Scattering
Principles," which is the analytical phase of scattering
investigations performed for Rome Air Development Center under
Prime Contract F30602-67-C-0074 assigned to the Fort Worth
Division of General Dynamics, Fort Worth TX 76101. This sub-
contzdct was performed by Cornell Aeronautical Laboratories (CAL)
and this document was prepared by R. A. Ross of CAL. This
document is Volume III of four volumes produced under the prime
contract. Reference 22, 23, 24) It contains applications of
Keller's geometrical theory of diffraction to seven distinct
shapes: cylinder, frustum, cone, frustum-cylinder, cylinder-
flare, cone-cyl'inder, and hemisphere-cylinder.

Study of scattering by geometrical diffraction theory was
initiated at CAL in 1965 under Project DISTRACT, Contract
No. AF 30(602)-3289, an ARPA funded program monitored by Rome
Air Development Center. That effort yielded nonspecular solutions
for the cylinder and for the right conical frustum, for both
monostatic and bistatic radar geometry. This and the investigation C

of scattering by a cone were continued under the present contract
to General Dynamics/Fort Worth and Contract No. F33612-67-C-1713
from Wright-Patterson Air Force Base.

This investigation was performed under the direction of Dr. C.
C. Freeny, Dr. G. W. Gruver, and W. P. Cahill of the Fort Worth
Division of General Dynamics. The author wishes to thank these
personnel for their full cooperation throughout this program.
He is also pleased to acknowledge valuable discussions with
D. B. Larson of the CAL Computer Services Department.

The RADC project number is 6512, task 651207. Distribution
of this report is limited by the Mutual Security Acts of 1949.

This document has been reviewed and is approved.
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ABSTRACT

Among the most powerful technicues fo he calculation of radar

scattering from bodies more than sevezal waveleagths in ui2e are those

based up .n one form or another of asymp~otic analysib. By far the most

practical of the asymptotic techniques advanced to date is the geometrical

theory of diffraction developed principally by 3. D. X-21ler at New York Univer-

sity. The work reported here examined the utility of geometrical diffraction

theory for predicting the aspect-dependent scattering matrix of cylinders,

frustums, cones, and their derivable shapes. These analytical results were
evaluated in compariso, with measurement data obtained at General Dynamics/

Fort Worth.

This final report outlines the application of unmodified geometrical

diffraction theory to seven axially-symmetric targets. As part of the

analytical task, basic theory has been modified to predict scattering

1) at and near aspects which give rise to specular scattering, and 2) at and

near the nose-on aspect for a cone. Resultant analytical formulations were

programmed for the IBM-360 digital computer. Comparison of predictions

with scattering matrix measurements shows that theory is accurate for the

following shapes: cylinder, frustum, frustum-cylinder, cylinder-flare, and

hemisphere-cylinder. Further, bistatic predictions are at least as accurate

at corresponding monostatic calculations. Additional modification of

geometrical diffraction theory will be required to achieve similar capability*1 inthe case of a cone and a cone-cylinder.
A direction for future investigations of scattering by a cone has been

outlined within the context of geometrical diffraction theory. In addition,

more detailed study of the phase of the scattering interaction, both predicted

and measured, is advocated.

MAV
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I. INTRODUCTION

The objective of the effort reported here is to develop analytical

expressions which accurately describe electromagnetic scattering from con-

ducting bodies having the following basic generic surfaces and their derivable

shapes: finite, right-circular cylinders, frustums, and cones. Bodies of

interest are those whose overall dimensions are at least several wavelengths
in extent. It is required that the analysis treat the scattering matrix of each
target, and the theory be applicable to bistatic as well as monostatic situations.

The analytical results are evaluated by comparing quantitative theoretical

predictions generated at Cornell Aeronautical Laboratory (CAL) with scatter-

ing matrix measurements performed at the Fort Worth Division of Gener-.l

Dynamics (GD/FW).

Study of the scattering of electromagnetic waves from obstacles of

complex shape is a broad and comprehensive subject. The fundamental

problem is the determination of the total field in amplitude, phase, and

polarization in terms of the geometrical and material constants characteristic

of a given configuration of source and obstacle. In practice, accurate calcu-

lation of the radar scattering properties of any body is difficult at best.

Of course, the most satisfactory solution is an exact one. Here the

major mathematical methods are separation of variables and the integral-

H eruation formulation. The method of separation of variables has allowed

treatment of particularly simple shapes, the best known of which are the

'perfectly reflecting half -piane or wedge, the sphere, and the two-dimensional
I elliptic cylinder, While the wedge solution has a direct bearing on anaDyes

applied in Section 3, it is not possible to obtain an exact solution for any of

the finite targets of interest to this program via separation of variables.

Until recently, attempts to reduce the scattering problem to integral equations

had proved fruitful in providing a useful viewpoint on the mechanism of

scattering, but little use was made for practical solutions of particular problems.

Because there is a small numler of separable coordinate systems, eleven
in all, the method of separation of variables is severely restricted.

I 4 '
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With the advent of high-speed digital computers, numerical procedures for

evaluating integral equations have evolved and the approach now offers

exciting possibilities. Firstly, results may be obtained to any specified i
* I

accuracy. S..condly, the integral-equation formulation applies for obstacles II of arbitrary shape; this has greatly enlarged the class of scattering problems

for which numerical results may be obtained. Thirdly, the method accounts I
for all parametric dependencies observable by a radar. Results obtained by

Oshiro, 1 Andreason, and Harrington 3 indicate the power of the method. The

one great disadvantage of the integral-equation approach is experienced when
the obstacle is large compared to a wavelength. Both the required computer -

storage capability and the cost of computations become prohibitive. For

these reasons, application of the 'unmodified" **integral-equation formulation

is limited to obstacles lying in the Rayleigh and low resonance regions

(maximum dimension of the target less than several wavelengths). Since

targets of interest on this program have minimum dimension at least several

wavelengths in extent, the integral-equatiun approach is not applicable.

An important aspect of research in scattering theory is concerned with

the derivation of approximate formulas that are useful in restricted ranges

of the variables or parameters which characterize the particular problem. j
Due to the nature of radar scattering problems, we limit the following dis-

cussion to techniques based upon high frequency approximations. The two

earliest approximate theories had their historical origin in the study of optics.

They are Geometric Optics, which is treated by the method of rays, and

Physical Optics, which involves prirr-rily the theory of waves. In general,

geometric optics is used whenever possible because of its comparative

simplicity. However, this approximate theory is valid only in the limit of

*In practice, boundary conditions are not imposed at every point on the

obstacle, but rather at a finite number of points in a mesh covering the body.
By reducing mesh-point separation, accuracy is improved. It is this char-
acteristic which suggests discussion of this integral equation approach with
exact s olutions.

References 4 and 5 examine suitable means for modifying the integral-
equation approach to handle targets large compared to a wavelength. How-
ever, no satisfactory technique has yet evolved.



vanishing wavelength, i.e., exceptionally large targets where diffraction

effects may be ignored. Because most targets of interest are viewed at

wavelengths which are an appreciable fraction of target dimensions, physical

optics, a more difficult technique, has enjoyed wider application. For specularI scattering from doubly curved surfaces many wavelengths in extent, the

physical optics result is the same as the geometric optics result and both are

I very accurate, the accuracy tending to increase as the radii of curvature of

ii the surface increases. For a singly curved or flat surface with surface

normal parallel to the radar line of sight, the geometric optics prediction is

infinite; here, physical optics permits a finite (and accurate) result to be

obtained. Thus, specular scattering from flat plates, cylinders, frustums,

cones, etc., can be found accurately (generally within one dB) for surfaces

more than one or two wavelengths in extent,

Certain fundamental limitations are inherent in the physical-optics

method. First, physical optics when applied to bistatic situations (transmitter

and receiver in different locations) yields results that do not satisfy reciprocity
and are thus patently invalid. A second limitation of physical optics, when

applied to the backscattering case, is tha. the scattered wave is always found

to have the same polarization as the incident wave; no depolarization effects

can be predicted, and the cross-polarization radar cross section predicted by

physical optics always vanishes.* A third limitation is the assumption of a

sharp geometric shadow boundary, which introduces a false discontinuity in

the derivatives (especially higher-order derivatives) of the electromagnetic

field vectors at this assumed boundary with consequent false predictions of

scattering fzom the boundary. Still another limitation is the inability of

physical optics to account for effects occurring in the geometrical-shadow

region. In summary, it is apparent that geometric and physical optics are

poorly suited to the present investigation of polarization-dependent and

bistatic scatter, at least at nonspecular aspects.

The increased activity in scattering theory since World War II has

generated a new app.oximate theory called the geometrical theory o. diffraction.
6The method has been developed principally by J.B. Keller at New York

University and is largely dependent upon an extension of Fermat's principle

that takes into account diffracted, as well as reflected (geometric optics), rays.

At best, physical optics seems to give a rough average of the horizontal-
and vertical polarization radar cross sections.

1 3 ____ [ m3



An pointed out by Kline and Kay, 7 Keller's method is as yet without rigorous

mathematical foundation. However,, the geometrical theory of diffraction

retainA polarization dependence and satisfies reciprocity in bistatic situations.
Further, the most significant statement one can make about the theory is that

it produces remarkably jood results for many bodies. Results obtained by
8 9Bechtel and Rosa and Kluyoumjian are representativo' in illustrating the

utility of Keller's theory; they, and the preceding conmments form the basis

of our choice of g"-ometrical diffraction theory as the basis of analyses con-

tained in this report.

Section 2 presents the formalism of the polarization scattering matrix.

Simplification of the matrix for axially symmetric targets is noted. The

scattering center concept is discussed prior to presentation of the scattering

matrix in scattering center notation. Then the geometrical theory of

difiraction is reviewed and the limitations attendant upon a single-diffraction

analysis are discussed.

Section 3 details the scope of the present investigation and notes general

comments pertaining to evaluation of analytical data. In Section 4, we com-

pare results of theory and measurement. Section 5 contains conclusions

based upon investigations performed as part of this study. The bulk of the

detailed analysis is contained in Appendices A through D. In Appendix A,

we present a detailed analysis of scattering by a cylinder. Appendix B out-

lines the corresponding treatment of a frustum. Results of analyses of

scattering by a cone are reported in Appendices C and D.
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2. BACKGROUND

Before detailed discussion of the investigations which are the main

subject of this report, it may be helpful to review three technical concepts

on which this work has been based. These concepts are:

1. The Polarization Scattering Matrix

2. The Scattering Center Concept

3. Geometric Diffraction Theory

Each will be discussed in turn.

2.1 POLARIZATION SCATTERING MATRIX

Although it is common to speak of "the" radar cross section of an

object, it is well known that radar cross section depends upon the target

shape and material, the angle (or angles, in the case of a bistatic system)

at which the target is viewed, radar frequency, and polarization of the radar

transmitting and receiving antennas. In particular, if a target is viewed at a

cp',cific aspect angle with a single frequency, the radar cross section depends

r.pon the radar polarization. The polarization scattering matrix is introduced

in order to express target reradiation independent of radar polarization. In

the following discussion we show the relationship between the scattering

matrix of a rotationally symmetric target and the principal polarization radar
cross sections and scattering phases: a detailed treatment of the scattering

matrix may be found in Reference 10.

Sicat tering is expressed as an explicit function of radar polarization

when m.tric' ", are defined which describe the polarization properties of

antennae and target. Consider a transmitting antenna; this antenna can be

represented by the expression

S in% jjd • (1)

where 9 is a unit column matrix defining the polarization of the transmitted

wave; -I is an angle ( 0-Y s - j) which denotes the orientation of the

linear polarization that results if d is zero, referred to the horizontal

plane; 41 is a phase angle which can vary from 0 to 2 f". Any wave
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polarization is thus specified when r , S , and the direction of propagation

are kno-vn. Next consider a receiving antenna represented by a row matrix

N F .. [~Cosz sej']

It is assumed that "polarization" of a receiving antenna means the polarization

of that antenna when it is used as a transmitting antenna. The cross section

of a target r - for transmitting ante.na polarization j and receiving

antenna polarization is given by

FZ
A 2 (3)

where -S denotes the complex scattering matrix used to represent the

polarizationa properties of the target. The assumptions in this formulation are:

a. The distance between receiver and body is large compared to

the wavelength and to the dimensions of the scattering body, and

b. The material of the scatterer and intervening medium are such

that there are linear relationships between field quantities at

every pcint, whatever the incident field.

The scattering matrix of an arbitrary target may be expressed as a 2 x 2

matrix of the form

(4)
e~ e

Herem represents the real part of magnitude of the scattering matrix

elements, h , denotes the associated phase, and t is a phase angle which

may be ignored in tho present discussion since it is a function of the separation
between the radar and the target. The scattering matr-ix is symmetrical

(V 1/-# = ( ; P¢ '# ) in at least two important cases:

a. Bistatic scattering when the scattering body is a ?erfect

conductor, and

b. Backscattering from an arbitrary body, coasistent vith the

two assumptions stated previously.



Furthermore, a great simplification obtains when the target is a body of

revolution. It is then possible to orient the target to present a horizontal

plane of symmetry containing the line of sight, and the scattering matrix

is diagonalized: 0 0. Thus, for the targets considered in this report,

which are bodies of revolution, we m,y writ-t

e [ Cos 7 1

It is evident in Equation 5 that e a the complex contribution to

the radar cross section when transmitting and receiving antennas are

linearly polarized with horizontal orientation (i. e., 0 = 4 = 0, q "4 = 0).

Similarly, V 70-, v is the corresponding quantity for the vertical polariza-

tion case. It is common practice to refer to a, and vv-, as the principal

polarization radar cross sections; f/A and PMv are called the principal
polarization scattering phases.

In the remainder of this report we work with the principal polarization

radar cross sections and scattering phases. Scattering for arbitrary com-

binations of transmitting- and receiving-antenna polarizations may be deter-

mined from these four quantities according to Equation 5.

Z. Z SCATTERING CENTER CONCEPT

One of the most important concepts that has been applied in recent

investigations of short wavelength scattering is that the scattered fields

appear to have localized sources (scattering centers) on the target. In terms

of formal electromagnetic theory, each scattering center is identified with a

mathematical discontinuity in the Chu-Stratton radiation integral - that is to

say, with a corresponding physical location on tL.e target at the place where

the discontinuity occurs. Simplification of the scattering inteiraction in terms

of scattering centers rests largely upon the cancellation properties of an

integral with oscillating integrand and upon preservation of mathematical

continuity except at the recognized geometric dis continuities. rhus, although7t
__________ V



a surface remote from a discontinuity is assumed to produce a net contri-

bution of zero to the total scattered field, truncation of the surface could

introduce a pronounced discontinuity, and, so, generate a new scattering

center. A smooth surface, then, plays a very important, although largely

hidden, role in the description of the scattering interaction.

According to the scattering center concept, the field reradiated from

each center on the target depends primarily upon the local dimensions and

the surface conditions of the target. Secondary effects involve interactions

between the various centers on the target. The first step in the analysis is

to take a body of complex shape and find its individual scattering centers.

NsAi, an analytical theory which accounts for aspect, frequency, polarization,

and bistatic dependence is used to estimate the total field (primary and

secondary contributions) reradiated from individual scattering centers.

Finally, the vector and phasor sum of these contributions allows estimation

of radar observables.

To illustrate the nature of the localization of scattering centers, let

us consider monostatic scattering by a finite, right-circular cylinder. At

aspect angles which exclude specular contributions, the important scattering

cen. "s are formed by the three illuminated edges. Then target scattering

appears to arise from those three unshadowed points common to the extremities

of the cylinder and the plane containing the axis of symmetry of the target and

the radar line of sight. Such edge scattering centers behave in an extremely

localized manner: for example, the phase associated with each scattering

center behaves as if the contribution arises at a point. For aspects at which

specular scattering occurs, reradiating area which is associated with the

scattering center spreads laterally - because of the surface orientation

relative to radar line of sight - while preserving its localization along the

line of sight. Then the smooth surface which joins adjacent edge scattering

centers becomes important due to reduction (and eventually disappearance,

at the specular point) of the phase cancellation in the integrand of the radiation

integral. Thus, for scattering by a cylinder at the broadside aspect, the

singly-curved smooth cylindrical surface supports a scattering line the full

length of the cylinder. Finally, lateral localization is minimal in the case

A fourth point, which is in the shadowed region of the target, also exists.

It is usually much weaker than the other three.8 9



of specular scattering by a cylinder at the axial aspects; here each point on
the planar surface contributes equally to the scattered field.

According to the scattering center concept, the radar cross section
of the target is given by the square of the absolute value of the complex

scattering coefficient 1 /Te which in turn is given by:

/re ,P ~(6)

where V/ri e is the complex contribution from the ith scattering center,
and where there are N important scattering centers on the target. The radar
cross section r- is given by

N a
o- (7)

and the scattering phasef is given by

1P N ((8)
" I

As demonstrated in the previous subsection, the scattering matrix of a body
of revolution is known when we solve for the principal polarization values

of v- and p i

The major simplification attendant upon applications of the scattering
center concept is apparent in Equations 6 through 8; by treating only a small

number oi localized regions on the body (the discontinuities), target scattering A
can be estimated. Thus, the difficulty of the computation of high frequency4

-9
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scattering is unrelated to the actual size of the target and depends only upon

the number of important scattering centers N . Although large smooth 1
surfaces on the target cannot be ignored when they support specular scattering,

appropriate modification of scattering center formulations in these instances

does not appreciably complicate the computations.

The scattering center concept is inherent in the geometrical theory of

diffraction, which will be discussed in subsection 2. 3. It has also proved
111useful as a guide to analysis: for example, Kell was led to a proof of a

bistatic-monostatic equivalence theorem based upon rigorous electromagnetic

theory rather than upon physical optics as was an earlier more approximate

relationship that has been frequently cited.

The scattering center concept incorporates a powerful tool for

synthesis: successful treatment of cne type of center allows prediction of

rer-tdiation from similar centers located on targets of quite different shapes.

Furthermore, unrelated analytical techniques may be combined to produce

the optimum descriptor of scattering by a particular target.

Finally, it should be noted that the scattering center concept is not

just a convenient mathematical fiction and that scattering actually does arise

at the scattering centers. Returns from scattering centers are observable

and coincide in position and magnitude with analytical predictions when the tar-
get is examined by a radar which transmits very short pulses.

2.3 GEOMETRICAL DIFFR %CTION THEORY

By far the most practical of the asymptotic techniques formulated so

far is the geometrical theory of diffraction developed by J. B. Keller and his

associates of New York University. It has been described in a long series of

papers treating various theoretical aspects of the method, the best general

introduction being Keller. 6 Helstrom 1 3 has added an important rederivation

of geometrical diffraction theory based upon Green's formulas. As stated

earlier, the theory is not yet related in any precise manner to the exact

asymptotic solution of Maxwell's equations, although it nevertheless gives

very good Iresults for many practical targets. Keller's approach provides
the logical tool for the study of scattering centers at high frequencies.

10
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In particular, geometrical diffraction theory provides estimates of the
principal polarization values of scattering center contributions V e
introduced in the previous subsection.

Starting with geometrical optics, Keller introduced an extension of

Fermat's principle that takes into account diffracted, as well as reflected,

rays. The theory assumes localization of the scattering interaction at points
defi ,ed by stationary phase arguments or by abrupt geometric discoutinuities.

It further assumes that the current distribution in the neighborhood of a

scattering center is obtainable from that of a known (or solvable) case of similar

geometry. A diffraction coefficient is assigned to each center based upon a

known solution to a similar two-dimensional problem, and this coefficient is

weighted by a divergence factor to allow treatment of three-dimensional

problems. Having thus assigned a magnitude to diffracted rays, a phasor is

introduced which is proportional to the distance along a ray projected from

the scattering center to the radar. Incident rays which are diffracted in the

direction of the receiver are termed "singly diffracted." Interaction between

scattering centers is described by the mechanism of doubly and higher-order

(multiply) diffracted rays. Once the complex vector fields reradiated from

important scattering centers on the target are formulated, the calculation of

scattering follows directly. The accuracy of results increases as the ratio

of body size to wavelength increases, but they are often useful for wave-

lengths as large as the body.

The literature on geometrical diffraction theory is devoted almost

entirely to analyses of scattering problems; experimental investigation of
its validity has not been extensive. For right-circular cones, Keller has

14provided the formulation for backscattering and has compared the results

with measurement for axial incidence.15 Of great interet is the ability of

the theory to predict the angular dependence of an objects radar cross section.
Behe16Bechtel has compared cone results with measurements over a wide range

of aspect angles and has found good agreement, except for a range of aspect

The present investigation is limited to use of the single-diffraction case.

Then scattering centers should be separated by at least a few wavelengths.

11 V
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angles around nose-on for vertical polarization, for which case further work
Ig 17

U has been done on this contract. Ross 7 has applied the method to rectangular

flat plates and has shown the results to be in very good agreement with
measurement data for all aspects except those within 10 degrees of grazing

incidence. Ross has investigated nonspecular scattering by a finite right-

circular c-ylinder and has reported very good agreement between theory and

monostatic measurements against aspect angle for four linear polarization

combinations.

This report extends the earlier analysis of scattering by cylinders.

Nonspecular scattering by cylinders, frustums, cones, and combinatorial
shapes is treated using unmodified geometrical diffraction theory. In all

cases, the edge scattering centers are analyzed using the diffraction

coefficient obtained from the asymptotic expansion of the exact solution for

the two-dimensional wedge. Modifications to geometrical diffraction theory

are introduced to extend capability for specular scattering and for scattering

by ring discontinuities at and near axial aspects. Formulas based upon

unmodified and modified theory are derived in Appendices A through C.

12
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3. OUTLINE OF TECHNICAL PROGRAM

In this section we detail the scope of the present investigation and

note general comments pertaining to evaluation of analytical data.

3.1 SCOPE OF INVESTIGATION

The technical program involved investigation of scattering from the

following basic generic surfaces and their derivable shapes: finite, right-

circular cylinders, frustums, and cones. Specific shapes, size conditions,

and the desired range of calculations are listed in Table 1 along with the

measured data supplied to CAL by GD/FW. The technical tasks listed in

Table I include monostatic scattering, bistatic scattering, short pulse

diagnostics, and measurements.

As part of the monostatic and bistatic scattering tasks we have

developed analytical expressions which describe scattering from all shapes

except the cone-cylinder-flare. These analytical expressions are used to

predict principal polarization radar cross sections and scattering phases.

Computer programs have been written for each of the shapes for which

expressions have been developed and, excluding the hemisphere-cylinder,

are such that computations are made every 0. 1 degree over 360 degrees of

aspect angle. In cases where bistatic predictions are required, the basic
monostatic formulations have been appropriately extended. '"1

Under short pulse diagnostics, short pulse measurement data supplied

by GD/FW have been analyzed in an effort to determine secondary phenomena

associated with scattering by a finite cone.

Under measurements, conventional scattering data were supplied to

CAL by GD/FW. These data comprised principal polarization radar cross

sections and scattering phases as functions of aspect angle for the various

shapes and conditions noted in Table 1. All data were contained on magnetic

tape in a format compatible with our computer requirements, and were

plotted at CAL using a CALCOMP plotter.

13



Table I

TECHNICAL TASKS

NO. OF CONDITIONS j
TYPE STUDY SHAPES SUCH AS Ka,Kh AND CALCULATIONS

CORE ANGLE

MONOSTATIC CYLINDER S COMPUTATION EVERY 0.1
SCATTERING CONE 3 DEGREES OF ROTATION,

COMPUTATIONS INCLUDE
FRUSTRUM 3 CR' , SECTION AND PHASE

CONE-CYLINDER 3 FOR BOTH VERTICAL AND

FRUSTRUM- HORIZONTAL POLARIZATIONS.

CYLINDER

CONE-CYLINDER- S
FLARE

HEMISPHERE- 3
CYLINDER

BISTATIC ANGLES VALUES
BISTATIC CYLINDER 10.25 30.0 2 COMPUTATIONS EVERY 01
SCATTERING FRUSTRUM 10.25 30.0 2 DEGREES FOR 360 DEGREES OF

ROTATION. COMPUTATIONS
CYLINDER- 10.25 30.0 2 INCLUDE CROSS SECTION AND
FLARE PHASE FOR BOTH POLARIZATIONS.

SHORT PULSE CONE A MINIMUM OF 5 MEASURED DATA USED TO AID. IN
DIAGNOSTICS MEASUREMENTS MADE BY DEVELOPMENT OF SCATTERING

eD/FW AND DATA CENTER EXPRESSIONS.
SUPPLIED TO CAL.

MEASUREMENTS ALL OF THE MEASUREMENTS MADE BY DATA USED AS AN AID IN
ABOVE SHAPES GD/FW AND DATA DEVELOPING ANALYTICAL

SUPPLIED TO CAL. EXPRESSIONS AND USED TO
COMPARE WITH ANALYTICAL
RESULTS.

14



Values of radar cross section and scattering phase calculatee' from

the analytical expressions derived at CAL were compared with scattering

matrix mea ements obtained at GD/FW. Designations and dimensions of

each of the basic generic shapes examined in this study are given in Table 2.

The nominal operating frequency was 6 GHz, which means that the minimum

dimension of any target was about 1.5 wavelengths. Scattering by the simple

shapes described in Table 2, and by various combinations of these shapes,

is examined in Section 4.

Table 2
DIMENSIONS OF GENERIC SHAPES

LENGTH LENGTH
MAX. DIA. WIN. DIA. MAX. MIN.

MODEL TYPE DESIGNATION (INCHES) (INCHES) (INCHES) (INCHES)

CYLINDER CyS 0.320 - 10.513 -

Cy11 4.892 - 8.000 -
Cy5 7.500 - 17.260 -
Cya 15.736 4,411.320 -

CONE CI 6.320 0 11.783 -

C2 6.320 0 1.811 r

CI 7.500 0 13.983 -

FRUSTRUM F3 7.500 6.320 3.258 -
F4 6.320 1.892 1.063 -
F5 7.500 4.892 7.421 -

HEMISPHERE H3 6.320 3.160 -

3.2 DATA COMPARISON PROCEDURE

Prior to comparing theory and measurement, it is instructive to

comment upon certain characteristics which are common to evaluation studies.

These comments are noted below in separate discussions of plots of radar

cross section and scattering phase. Problems encountered in plotting

measurement data from magnetic tapes are discussed at the end of this I
subsection.

I
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3. 2. 1 Radar Cross Section Data

Comparison of theoretical and experimental radar cross section data

is straightforward: all plots present radar cross section (dBsm) versus

aspect angle (degrees). The method of selecting the measurement data for

comparison with theory may be illustrated by the case of a cylinder target.

Theory predicts identi-.al dependence of a cylinder's radar cross section in

the aspect intervals 0 z5 9 90, 0 s 9 s -90 degrees, where 0 = 0 denotes

axial incidence. Similar data obtained experimentally exhibit a high degree

of correspondence but do not completely agree .due to measurement errors.

We have plotted measurement data for both aspect intervals and have utilized

that section of the experimental results which compares most favorably with

theory. Since the comparison plots show theory superimposed directly upon

computer plots of measured data, the particular choice of aspect interval

made in each case is apparent. Notice that agreement between theoretical

and measured depths of nulls may be influenced by measurement capability:

The minimum value of jxperimental results obtained from GD/FW is approxi-

mately -40 dBsm,

3. 2. 2 Scattering Phase Data

Although scattering phase is calculated and measured modulo 2 -ir

it was decided that plots of the cumulative value of scattering phase were

more desirable. The advantages of the latter format are clear representation

of the phenomenon and the ability to correct for that component of measured

phase associated with the separation between radar and target. Towards

this end, subroutines have been developed for accumulating scattering phase,

both from the theoretical calculations and from the measured data. The

resultant phase plots show the cumulative scattering phase (radians) versus

aspect angle (degrees). Sir,ce the absolute value of scattering phase is

unimportant, and since it determines the level of the phase progression with
aspect angle, theory and measurement are compared by appropriate shifting

of levels. As in the case of radar cross section plots, that section of the

This is the component phase #r extracted from the scattering matrix in

Equation 4 of subsection 2. 1.

16
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aspect angle plot of measured phase which agrees most favorably with theory

has been chosen for purposes of comparison.

Comparison of theoretical and experimental scattering phase data is

not straightforward due to two complications. One complication is associated

with the basic scattering mechanism: it is a characteristic of scattering

phenomena that the major changes in scattering phase occur simultaneous

with minima in the level of the scattered signal (i. e., when nulls occur in

the radar cross section record). Such behavior can be expected to perturb

experimental estimates of scattered phase, especially for the horizontal

polarization case where extremely deep cross section nulls are observed.

However, theoretical predictions appear to be sensitive to the same char-

acteristic. Mr. John C. Cleary of RADC has employed our formulation to

predict cylinder's scattering phase using 0. 01 degree increments in aspect

angle. When his values of scattering phase were compared with corresponding

results obtained at CAL (here using 0. 1 degree increments in aspect angle),

he observed thet the direction of accumulation of the horizontal polarization

scattering phase is opposed in at least one aspect region! Investigation of

this behavior lay outside the scope of the present investigation.

The association of rapid phase change -- generally by either + i-r or

0 radians -- with passage through a null in the radar cross section pattern

also stresses the importance of otherwise negligible gradients in electro-

magnetic field along the line of sight of the radar used for measurement.

The null arises by virtue of the more-or-less exact balance between two

oppositely phased field contributions from interfering scatte.ring centers; the

phase of each center is changing smoothly and continuously as te aspect

angle changes, and the rates of phase change for the two centers are different.

Whether there will be an abrupt change by i" radians or an abrupt change but

returning to the previous mean phase curve will depend solely upon which of

the two nearly equal centers is the stionger. Therefore, a small local anomaly

in field intensity can alter this phase progression very markedly.

An estimate of this effect can readily be made by observing that the

depth of null is an index of the relative strength of centers. Thus, a -40 dB

null is produced by two centers which differ by only 1/6 dB; a -30 dB null

17
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represents two centers differing by 1/2 dB; d a -20 dB null represents two

centers differing by 1. 8 dB. If there are t 1 differences - due to background

scattering, or even simply I/R field gradic. -- of 1/2 dB or more over the

test region occupied by the target, we may exp, t experimental phase errors

when 30 dB nulls occur.

A second complication in the comparison of predicted and meamured

scattering phases is related to the accuracy to which the ptase reference

chosen for measurement is positioned with respect to the center of rotation

of the target. Figure 1 illustrates the problem. The center of mass of the

cylinder has been chosen as the reference for phase measurements (Point B).

Thia phase reference is shown diqplaced a distance R from the center of

rotation of the target (Point A), and the line AB makes an angle s' with the

aspect angle corresponding to -180 degrees. If R is not zero, the phase

progressions measured in the asp-ct intervals 0 9 6 zs-180, 0 180

will not match except at the end points. The two sets of phase data will

follow different slopes, with the true value of the scattering phase being the

arithmetic mean between corresponding values in each set. Mr. W.P. Cahill
of GD/FW has supplied estimates of the two-way electrical path length ( Z42

in degrees and the initial angular parameter t, in degrees for each target

examined in this report. His data are tabulated in Table 3. No attempt to

remove the bias from phase measurements has been performed. We simply

note that large values of 2LP will result in cumulative displacement between

theoretical and measured values of scattering phase.

*Also, if / is not zero and 4 is not 0 or 180 degrees, there will exist a
sinusoidal discrepancy between cylinder's aspect angle and the aspect
registry assigned according to turntable rotation. Howe'er, this effect
is believei to be negligible for the £ values associated with present
measure-nent data.

18
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I" PHASE REF[EENCE
FOR WEAURENETS

CENTER OF ROTATION I

i It
-180 ° ASPECT ANGLE

Figure 1 TARGET PHASE REFERENCE -- CENTER OF
ROTATION GEOMETRY

Finally, in view of the complications attendant upon. the comparison of
phase data, we apply the following criterion. Theoretical and measured
values of vertical polarization phase are considered to agree if the fine
structures of phase variations coriespond, and if the curves overlay to within
a slope factor consistent with offset errors indicated by parameters intro-
duced in Table 3. The horizontal polarization case is more critical; here we
consider theory to be accurate if it agrees with measurements after vertical
displacements between the two sets of phase data have been ignored.
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Table 3
PARAMETERS DEFINING PHASE RESIDUALS

PIST4TIC
DESIGNATION FREQUENCY A40LE ZA R
_ _ _ _ Hz) (DEOREE,) (DEGREES) (DEGREES)

CY3 5.97 0 138.5 75

CYS 6.0 0 2914.5 2118

5.885 10.25 97.8 81

6.050 30 26.9 7

CY6 6.0 0 889.4 241
5.885 10.25 162.5 81

6.050 30 70.9 137

Cl 6.0 0 214.4 295

C2 6.0 0 2.14 593

C4 5.975 0 177.4 839

FS 6.0 0 116.5 185

F4 6.0 0 31.4 330

5.885 10.25 37.0 67

6.050 30 66.1 66

F5 6.0 0 20.3 336
5.685 10.25 163.9 176

6.050 30 216.4 18

F4CY3 6.976 0 07.3 83

CY4F4 5.886 10.26 0 1483

6.050 30 180 7

C2CY3 5.975 0 87.8 125

CUCYS 6.0 0 225.8 209

N3CY$ 5.975 0 90.0 90

3.2.3 Discussion of Magnetic Tapes

We note two limitations to the program specified in Table 1 due to
problems with tapes containing measurement data. Altogether, eight magnetic

tapes were received at CAL under this program. The designations of these

tapes are 062566, 062563, 062680, 064216, 064389, 065501, 065979, and

965979. Of these eight tapes, three were of no use. Tapes 062563 and 065979

were recalled due to errors in measurement data. Much of the data on

tape 062563 was repeated and made available in other tapes. Tape 965979 was

sent to replace tape 065979. However, the CAL computer system would not
allow extraction of measurement data from tape 965979 in the conventional

manner, and plots of data were not obtained in this case.

20
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Because of the recall of tape 062563, monostatic theory and measure-

ment can only be compared for one frustum-cylinder instead of three (see

Table I under monostatic study). However, bistatic measurement data were

available, and these additional data were examined in the comparison of

frustum -cylinder theory with experiment (see Table 7 of subsection 4.4.2).
The bistatic study of the cylinder-flare calls for investigations of two models.

However, measurement data 'were received for only one. Further, study of

monostatic scattering by the hemisphere-cylinder calls for measurement data

taken on three models; again, experimental results were received for one

target.

A second problem with magnetic tapes was encountered when plots of

these data were constructed. In a few isolated instances, the plotting pro-

gram generated an error message which indicated that measurement data

were not stored on the tape in the proper format. In these instances, we

simply present theoretical estimates of scattering matrix parameters.

Certain difficulties can be expected in any program which includes

experimental results. The overall consistency of measurement data received

from GD/FW by CAL is considered exceptional, and we feel that the problems

4discussed above do not limit the goal of the present program.
I

211



~4. ANALYTICAL RESULTS AND

~COMPARISON WITH EXPERIMENT

I This section contains the comparison of theory and measurement for

cylinders, frustums, cones, frustum -cylinders, cylinder -flares, cone-

cylinders, and the hemisphere -cylinder. The number of targets examined

in each case in as specified in Table 1, subject to limitations noted in sub-
section 3.1 and 3. 2. 3. All targets are constructed from the simple shapes

having designations and dimensions given in Table 2 of subsection 3. 1.

For each of the above targets we present analytical formulations,

compare predicted and measured values of principal polarization radar

cross sections and cumulative scattering phases, and comment an the agree-

ment obtained. To avoid repetition, we explain the polarization convention

and the angular limits on scattering center contributions in the discussion

of the cylinder only; these same observations apply for all other targets

examined in this section.
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4.1 CYLINDER

4. 1. 1 Analytical Formulation

According to theoretical considerations discussed in

Section 2, the radar cross section or and the scattering phase , of a

finite, right-circular cylinder are given by

V .j.ave"'j(9)
and

p ta&' (10)/ Zr COSA-

'A th
where V7 ej- is the complex contribution from the i scattering center

on the target, and there can be four important scattering centers on a

cylinder. Appendix A contains the detailed derivation of fields reradiated

from the four scattering centers (edges) on a cylinder based upon the

single-diffraction version of geometrical diffraction theory. These expres-

sions exhibit dependence upon cylinder's dimensions and aspect angle, and

radar's frequency, polarization and bistatic configuration. Thus, they are

suited to prediction of the bistatic scattering matrix of a cylinder.

Figure 2 shows the location of scattering centers ,S

through S'# , cylinder geometry, the aspect angle 9 , and the azimuth

component of the bistatic angle Ao, . Target symmetry permits restricting

treatment of aspect dependent scattering to the limited angular interval

o g f. Summarizing the analysis of nonspecular scattering presented

in subsections A. I through A.4 of Appendix A, we obtain scattering center
amplitudes:

y . ftw\ _A'os"rin# (11)

T 3 - .. 9
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and scattering center phases:it
II

a d, - os /c-att e.inegsct r h e

Z Y 4sp?1 AevV (16)

Z(, Cos [ e'n#-,4 slj (17)

where o is the radius of the cylinder

h is the half-height of the cylinder

# is an equivalent azimuth aspect angle defined to be the

angle between the axis of symmetry of the cylinder and

the bistatic angle A

/ is the bistatic angle between transmitting and receiving

directionsII
4 is the projection of /S in the plane containing the axis

of symmetry of the target and the direction of the angle

and A is the wavc number (w ZZA )

Numerical subscripts used in Equations 11 through 18 refer
to scattering centers illustrated in Figure 2. Dependence upon polarization

is contained in the choice of signs in Equations 11 through 14. The upper

signs are used for vertical polariz.tion ( £ vectors associated with

corresponding incident and scattered fields lie perpendicular to the azimuth

(z-y ) plane), and the lower signs are used for horizontal polarizatPn

( E vectors lie in the azimuth plane). The angular restrictions on

Equations 12 through 14 are a consequence of a single-diffraction analysis:

25

"A



individual scattering centers contribute to the total (singly-diffracted)

scattered field only when they are directly illuminated by the transmitter i
and directly observed by the receiver.

Notice the presence of singularities in Equations 11 4

through 14 at aspect angles which produce specular scattering ( 4# = 0, 1
/6

and in the forward scattering bistatic case (/d -/5 - ). Modification of

geometrical diffraction theory has been effected for specular scattering.
These analyses are detailed in subsection A. 5 of Appendix A; only the

results are given below.

At and near axial aspect3, the polarization-independent

contribution from scattering centers S, and $ accounts for the specular

return. We denote this component by the expression (/ e' pf A. /j e."/),)

According to the small angle analysis performed in subsection A. 5.3 of

Appendix A, we have

(ZkaL co s A/z in) (19)4

where JY is the first order Bessel function. Equation 19 has Xy(6)/x

dependence, as does the physical optics result. Further, evaluation

of the specular contribution at the axial aspect ( 6 = 0) gives

so, i~iz(20)

and the monostatic form of Equation 20 agrees with the physical optics

formula for scattering by a circular disc. 19 Thus, use of Equation 19 to

describe the specular contribution from centers 5, and 3 at and near
axial aspects eliminates two singularities contained in the scattering center

description of reradiation. We remove the remaining singularities in

Equations 11 through 17 by introducing the following constraint

csc C 64 ka4cos,'A/ (21)
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This constraint insures that the total contribution from scattering center 5

and the polarization-dependent contributions from centers S, and S are
Ffinite. It also results in a formulation that predicts polarization-dependent

scattering at the axial aspect, which behavior is known to be incorrect.

However, the inclusion of polarization-dependent terms is necessary to
achieve continuity in scattering predictions. The fact that the proper

polarization dependence is not incorporated In the formulation is of little

practical consequence; the specular contribution of Equation 19 is the major

scattering contribution at and near axial aspects and it completely masks the

secondary effects associated with polarization-dependent terms. It remains

to determine the range of aspects in which the modification to the theory

represented by Equation 19 is to be applied. Estimates of scattering by
cylinders are found to be continuous in aspect angle when we use Equation 19
in the angular interval 0- 4 -t

c4, where 0,, denotes the axial "crossover"

aspect angle given by the relation

zkc s..4 4 -2.44 (22)

For 9 9 ,, we employ the scattering center description based upon unmodified

geometrical diffraction theory (Equations 11 through 18).

At and near the broadside aspect, the polarization-independent

contribution from scattering centers .. and . should account for the

specular return. We denote this component by the expression
(g/ . According to small angle analyses performed

in subsection A. 5.2 of Appendix A, we have

~rm.1 /9 5,47SslP (23)j
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Again the "" 34/ dependence in Equation 23 is common with the physi,;al

optics solution of the corresponding problem. At the broadside aspect

(# . ),radar cross section predicted by Equation 23 is

2Ir - 44 C05 S

Setting /4 = 0 in Equation 24 we duplicate the well-known monostatic result

based upon physical optics. 1 9 Modification of geometrical diffraction theory

for the specular contribution alone is sufficient at and near broadside aspects.

Estimates of scattering are found to be continuous with aspect angle when we

employ Equation 23 in the aspect interval 16Sb - s f . Here 96, is the

broadside "crossover" aspect angle given by the relation

zkh 003 $6cS ef. zf (25)

In summary, Equations 11 through 18 describe cylinder's

scattering according to the single diffraction representation of unmodified

geometrical diffraction theory, They apply in the limited aspect interval

CAL "* where the crossover aspects are defined by Fquations 2Z and 25.

For scattering at and near the axial aspect (0 - 6 9 e ) we modify the theory

according to the specular formulation of Equation 19 and introduce the con-

straint of Equation 21. Similarly, for scattering at and near the broadside

aspect ( 6 :' Pz ) we modify the theory according to Equation 23. The

resultant description of cylinder's scattering was programmed for the

IBM 360 and GE 635 digital computers. Computations were performed in the

aspect interval O _ f6 6 at 0. 1 degree increments in aspect angle.

We next compare the analytical formulation with measure-

ment data.

4.1.2 Results

Table 4 lists the designations of three cylinders used in

the evaluation of cylinder theory. The table includes the dimensions of each

target, the operating frequency, and the bistatic angle. The number of

individual targets and bistatic situations listed are as specified in Table 1.
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Tabl e 4
PARAMETERS FOR CYLINDER STUDY

MODEL DIMENSIONS (INCHES) FRE Y A BLE / 6

DIAMETER (2.) LENGTH (2h) (OHz) (DEGREES)

CY3 6.320 10.513 5.975 0

6.000 0
CY5 7.500 17.260 5.885 10.25

6.050 30.0

6.000 0
CY6 15.736 44.320 5.885 10.26

6.050 30.0

A comprehensive discussion of results obtained for cylinder CY3 follows-

This is intended to serve as background for limited discussion of other

targets, where only major points are noted.

Figures 3 through 6 compare theoretical predictions with

experimental estimates of parameters which describe the scattering matrix

of cylinder CY3. Figure 3 shows the variation of radar cross section with

aspect angle when the transmitting- and receiving-antennas are vertically

polarized. The predicted lobe structure (dashed curve) faithfully duplicates

experimental results (solid curve). Although some disagreement in the

patterns is observed at intermediate aspect angles (40 -55 degrees),

it is known that vertical polarization measurement data are most seisitive in

the same aspect interval." Specular lobes are reasonably well predicted

both in magnitude and angular width. In general, measured nulls are deeper

than theoretical nulls, and measured peaks are somewhat lower than

,When vertical polarization measurement data obtained in the equivalent
aspect regions O: 6 :!-Tz , 0. 7Z are compared for consistency,
observed discrepancies are greatest at intermediate aspects.
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predictiois. Figure 4 shows corresponding data for the horizontal polar.zatis

case. Better agreement between theory and measurement is observed.

Notice that theoretical nulls may extend below the lowest measurable radar

cross section (approximately -42 dBsm). The three solid vertica'l lines which

terminate at the top of Figure 4 at aspect angles . - 68, 73, an&' 74 degrees

correspond to measurement errors. Such errors usually are. associated with

measurements obtained at low signal level. Figure 5 compares predicted

and measured estimates of the cumulative value of scattering phase.

Agreement is good out to 6 = 73 degrees, at which aspect the experimental

curve is abruptly displaced by about 5 radians. This discontinuity illustrates

the effect of a bad data point upon the logic employed in accumulating phase

data. In such instances, one should ignore the displacement and compare the

shapes of ensuing phase progressions. With this provision, agreement is good

over all aspects. Figure 6 compares corresponding data for the horizontal

polarization case. Analysis and experiment are in close agreement except at

the isolated aspect angle 0- 69 degrees, where the directions of phase accumu-

lation are opposed. As stated in subsection 3. 2. 2, either measurement or

theorttical calculation could be correct, since the difference between then is

2 7r radians, and both methods report data modulo 2 ir . If one ignores the

dicplacement between theorstical and measured scattering phases for

= 69 degrees, close co;-,-'spondence of aspect dependence is observed.

The very rapid phase change occurring near 9 = 69 degrees need to be

followed more closely to resolve this ambiguity.

Monostatic results for cylinder CY5 are presented in

Figures 7 through 10. In general, theoretical estimates of the principal

polarization radar cross section tend to be higher than corresponding

measurement data (see Figures 7 and 8). Vertical polarization phase

I..

The accuracy of geometrical diffraction theory should increase with an
increase in the -size of the target in wavelengths, so that better agreement
should be obtained for CY5 than for CY3. Since this is not the case, we
compared monostatic and bistatic measurements of the radar cross section
of CY5 (see Figure3 it, 12, .'5, and i4or these latter data). The major
effec' of bistatic operation should be a shift in lobe position, the lobe
amplitudes remaining essentially constant. In the case of CY5, comparison
of meaurements suggests that the monostatic experimental data are low in
the region of inr'crmediate aspect angles,
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data show good correspondence and, neglecting displacements, the same is

true for horizontal polari2 tion phase data. BiLtatic results for CY5 are given

in Figures 11 through 14 1 11 = 10. 25 degrees. It is seen that theory pro-

vides very good estimatf of parameters describing the scattering matrix.

The disagreement betwe predicted and measured phase slopes for vertical

polarization is probably due to the center-of-rotation offset error discussed

in subsection 3.2. 2. Figures 15 through 18 represent corresponding data for

CY5 with = 30. 0 degrees. Again, theory and measurement are in very

close agreement. I
Monostatic results for .ylinder CY6 are chown in Figures 19

through 22. Due to the complexity of radar cross section patterns for this

large a target, the comparison procedure A radar c-)ss section is changed

in favor of a vertical displacement format. Measured data constitute the upper

curve, with theoretical data presented below. We employ a uniform shift of

20 dB in all cases. The resulting comparison of radar cross sections indicates

gross agreement is good. Vertical polarization phases agree except for a slope

factor related to center-of-rotation offset error. The disagreement between

horizontal polarization phases reflects the complexity of the phase behavior;

however, the basic shapes of each pattern, when compared segment by segment,

show considerable similarity. Bistatic results for CY6 with 4 = 10. 25 degrees

are given in Figures 23 through 26, Good agreement between theory and I
measurement is evidenced. Corresponding data for 165, = 30.0 degrees are "

given in Figures 27 through ?0. Here predicted and measured radar cross

sections are in excellent b gzeernent based upon independent overlay of results.

Vertical polarization 1 hase data suggest the presence of offset error. Hori-

zontal polarization phase data agree very we:Ll for 0 c .- 40 degrees, at

*which aspect displacement is observed.

4.1.3 Remarks

Results presetted in Figures 3 through 30 establish confi-

dence in geometrical diffraction theory for predicting the bistatic scattering

matrix of a finite, right-circular cylinder. Modifications to the theory for

specular scattering have been performed satisfactorily, and the assigned values

of cross-over aspect angles appear to have general application. The very rapid

phase changes associated with horizontal polarization data need to be followed

more closely to resolve ambiguities between theory and measurement.
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4.2 FRUSTUM

4. 2. 1 Analytical Formulation

A frustum is a doubly truncated cone. Figure 31 illustrates

the bistatic radar-target relationship: the axis of symmetry of the target and

the bisector of the bistatic angle define an azimuth (x-y) plane. Two axially

symmetric edges located at the extremities of the frustum give rise to four

geometric discontinuities in the azimuth plane; these discontinuities, labelled

1 . 5z S* and S, , constitute the four scattering center on the target.

Scattering by a frustum is treated in Appendix B. Scattering

center contributions based upon unmodified geometrical diffraction theory

have amplitudes given by:

__Is___ , csc ) fir

f fn

• ,,-- -x

(27
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7'r~ # /641c.4 -A/

(29)

and phases given by:

Co - /? A,1 Cos# +] (30)

Zk 005U /%YZ [4, 09in i -cos 16(32)

C7 (33)

where 9 is an equivalent aspect angle, defined as the angle between

the axis of symmetry of the frustum and the bisector of the

bistatic angl. /A 4 = 0 for axial incidence and direct

illunination of the smaller end of the frustum);

/5 is the bistatic angle between the transmitting direction and

the receiving direction;

4 is the azimuth bistatic angle, which should be considered as

projecting into the plane containing both the axis of symmetry

of the frustum and the line defining the direction of yk
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a, is the smaller radius of the frustum;

4z is the larger radius of the frustum;

A is the half-height of the frustum; :

% s the frustum angle (x - t,,& "  ) in radian.

~1'r
(34)

h is the wa-,e number (k , -)*

Equations 26 through 29 may contain singularities at aspects

which produce specular scattering ( 0 0, ! -; , fr ). At and near the

nose-on axial aspect ( $ = 0), the polarization-independent contribution from

scattering centers .S and 4 accounts for the specular return. According
to the small angle analysis reported in subsection B. 3 of Appendix B, we

have

(F1P1~e~ A/fZ aca 4 ,,) (35)

We remove the remaining singularities in Equations 26 through Z9 by applying

the constraint 'se $ 4- -ka, eos /1 . Estimates of scattering by a frustum

are found to be continuous when we employ the axial cross-over angle

given by Zk, sil" =2.44. For 0 4 we use the modification of

Equation 35.

At and near the tail-on axial aspect (9 =17) the term

e P + e P . produces the specula- contribution, where
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and the remaining terms are constrainel by the bound Cc !-k, CoS 4
Here the cross-over aspect becomes 't6 with 96c now determined by

the relation zkat Sin 16, = 2.44.

At and near the broadside aspect ( # = - X), contributions

from scattering centers S, and _* should account for the specular return.

But the corresponding diffraction coefficients become singular for 1 6"

Although the small angle approximations do not allow removal of singularities

in this instance, we have observed that unmodified geomecrical diffraz-tion

theory fails gracefully at the broadside aspect (see Figure B-2 of Appendix B).

In subsection B.4 of Appendix B, we report an analysis of broadside scattering

by a frustum based upon physical optics. While the result obtained is valid,

the physical optics expression is relatively complex compared to other
expressions used throughout this program. For this reason a simple curve-

fitting tecludque has been employed as a temporary alternative. Specifically,

we curve fit the predictions based upon unmodified geometrical diffraction

theory througih the physical optics result

rZ=?-)=- err [ r CSj1/z1 (37)

Further analysis of small angle approximations to unmodified geometrical

diffraction theory in this aspect region is recommended to replace the curve-

fitting operation.

4.2. Z Results

Table 5 lists parameters used in the examination of frustum

theory and experiment. The number of individual targets and bistatic situations

contained in the table satisfy specifications noted in Table . The phase refer-

ence chosen for measurements was the center of the base of the frustum. For

comparison purposes, the phase reference used in the analysis (see

Figure 31) was translated to the base by adcing the factor - tA cog Az Cos9

to theoretical estimates of scattering phase.
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Table 5
PARAMETERS FOR FRUSTRUM STUDY

MODEL DIMENSIONS (INCHES)
DESIGNATION NIN. DIA. MAX. DIA. LENGTH FREQUENCY SISTATIC ANGLE
____ 2aI  2a2 2h (8Hz) (DEGREES)

F3 6.320 7.500 3.358 6.000 0

6.000 0
F4 4.692 6.320 4.068 6.065 10.25

6.050 30.0

6.000 0
F5 4.897 7.500 7.1121 6.886 10.25

6.050 30.0

Figured 32 through 35 compare monostatic theory and

measurement for frustum F3. Notice that F3 does not satisfy the basic
assumption underlying single-diffraction analyses - the height of this target

is less than several wavelengths. When scattering centers S, and .I are

the major contributors to the radar cross section of the target, predictions

may be expected to be compromised. The effect observed in Figures 32

and 33 is that predictions tend to be larger than measurements. Vertical

polarization phases shown in Figure 34 agree except for a slope factor.
The basic shapes of the horizontal polarization phase curves agree except

for displacements.

Monostatic results for F4 show better agreement due to an

increase in the length of the target (see Figures 36 through 39). Furthermore,

the capability of the theory seems to improve with increasing bistatic angle

(see Figures 40 through 43 for /, = 10. 25 degrees; see Figures 44 through

47 for iA 30.0 degrees).
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Frustum F5 is made by combining frustums F3 and F4.
Monostatic results for F5 are given in Figures 48 through 51. Differences
between theoretically and experimentally derived radar cross sectiohs are

maximum when the predicted return is determined by those scattering centers

( S and S ) which hg.e minimum separation. As noted in the table, a

rather large offset errois present in monostatic measurements taken on

frustum FS. This is because the actual phase reference used for measure-
ments was the base of component F3, which is very close to the center of F5.

To achieve the agreement shown in Figures 50 and 51, the phase reference

for theoretical calculations was moved from the base of F5 to the center of

the target. Accuracy of predictions improves when the bistatic angle is

10. 25 degrees; the overall agreement between theory and measurement

shown in Figures 52 through 55 is quite good. Finally, results for F5 with I
/3 = 30. 0 degrees are depicted in Figures 56 through 59. Here the agree-

ment obtained between principal polarization radar cross sections is excellent.

In the light of comments on the difficulties in comparing theoretical and

experimental estimates of phase, the agreement obtained between principal I
polarization scattering phases is also excellent.

4.2.3 Remarks

The study of frustum F3 is actually an examination of the

low frequency capability of a high frequency technique. In this context, the
agreement obtained is remarkable. Accuracy increases as the larger

frustums (F4 and FS) are examined, and the results obtained for F5 with

/5A = 30. 0 degrees are considered excellent.

Further analysis of scattering by this target at the broad-

side aspect is required to eliminate the curve-fitting procedure presently

employed.
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4.3 CONE

Investigation of scattering by a cone is limited to preliminary

analyses. It was recogaized at the outset that the cone problem differed

from the previously discussed problems of scattering by cylindel B and'
• I frustums. The reason is that the creeping wave mechanism, which "'s of

secondary importance in the case of the latter targets, is of primary

importance for cones. For the cune, there exist no strong scattering centers

to mask this contribution near axial aspects. An attempt to empirically

upgrade the analysis using diagnostic short pulse data p-.oved unsuccessful;

no systematic creeping wave contribution was discovered (see subsection C.4

of Appendix: C for a discussion of the diagnostic investigation). However,

certain useful modifications to geometrical diffraction theory have been

performed, and the present status of the cone problem is reported below.

4.3. 1 Analytical Formulation

Figure 60 illustrates monostatic illumination of a finite,

right-circular cone of length Zh and base diameter Z4 . The scattering

_II

I4

HAERFERENCE

17-0

Figure 60 SCATTERING CENTERS ON CONE
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matrix of the cone is to be found. The two extremities of the target are

geometric discontinuities which form three scattering centers ( 4 ,

and S, in Figure 60). Previously reported applications of geometrical V

diffraction theory to a cone are reviewed in Appendix C. They provide

expressions for singly-diffracted contributions from centers $, and .sr:

, =s Ca5 o - -Cos gr  - Cosz - 1 )
H ' ______(38)

"V des -Cos

El 'J

=7 (39)

5i 7 i - f

C05 COS

4 (40)

-Z9 6 i7 (41)
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where n, = 3/2 + 1//r and angular, polarization, and parametric conventions

are those detailed in earlier discussions.

Singularities may arise in Equations 38 and 39 at axial aspects

( - 0, 1r) and at the broadside aspect ( -Z-A ). For incidence at and near

tail-on, we employ the small angle modification to obtain the specular contri-

bution

(V Te ~'~e I7 (42)

Equation 42 applies for s , -4 where the cross-over angle is given by

kh - , = 2.44. Again the constraint esc y6S ka.c s' is introduced to

limit the polarization-dependent terms in Equations 38 and 39. For incidence

in the limited region near nose-on ( AX . ), we modify the theory and

replace Equations 38 through 41 with the expression

y'e ai~T -V___- o~~o.! XEain,~i tin,,# -€(43 )

(ces Coss~C TZ

A detailed derivation of Equation 43 is presented in subsection C. Z. 2 of

. Appendix C.

In the aspect region X c 9S , the above description only

allows a contribution from scattering center . . This angular interval

includes the broadside aspect ( $ -X ), for which case Equation 38

contains a singularity in the diffraction coefficient. Thus the theory in its

present form predicts a smooth return throughout the interval 9 - 6 . I ,

with a cusp when incidence is broadside. However, measurements rev,-al
lobe structure in the same angular interval. In an attempt to extend the •

capability of geometrical diffraction theory, we introduce an approximate

expression for the contribution from the cone tip: the result is approximate

because the tip diffraction .jefficient is unknown. Now we have contributions
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from centers S, and St , and the interaction will produce lobe structure.

If the proper contribution from center 3. could be determined, we could

expect the modified theory to fail gracefully at the broadside aspect, and the

curve-fitting routine introduced in subsection 3. 3.2 . 1 could be employed.

Analysis has progressed to the point where an initial test function has been

assigned to scattering center 3, . From Equation C-3Z of Appendix C,

we have 4

4k V Li
(44)

e Equation 44 has negligible contribution to the total

where no . Eqato-44ha

retuvn from the cone for aspects near axial, as it should. The polariza-

tion dependent term associated with the contribution from center S. is

disregarded in keeping with the approximate nature of the present analysis.

4.3. 2 Preliminary Results

Table 6 lists designations, dimensions, and operating frequenc\

for three cones which meet the specification noted in Table 1. Due to the

preliminary nature of the cone investigation, only monostatic studies are

called for,

Table 6
PARAMETERS FOR CONE STUDY

MODEL DIMENSIONS (INCHES) FREQUENCY

DESIGNATION DIAMETER 2a LENGTH 2h (6Hz)

C1 6.320 11.783 6.000

C2 6.320 15.81 4 6.000

C4, 7.500 13.983 5.975
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Figures 61 through 72 compare theoretical and measured

estimates of scattering matrix parameters for the three cones. The agree-

ment obtained is considerably poorer than that achieved for other targets
examined in this program. We note the following general observations.

Modification to geometrical diffraction theory in the aspect region
according to Equation 43 is valid: The predicted polarization dependence of

t vertical and horizontal polarization radar cross sections agrees with measure-

ment data. Inclusion of a tip return according to Equation 44 broadens the

specular cusp predicted at the broadside aspect, but the tip magnitude is

insufficient to produce a specular which fails gracefully. For vertical

polarization, the theoretical radar cross section agrees with measurement

data in the angular region within 40 degrees of the tail-on aspect. For

P horizontal polarization, the corresponding interval is reduced to about

20 degrees due to the presence of finer structure in measured data. Better

agreement can be achieved in the horizontal polarization case by extending

the analysis to include interactions between centers -? and Sj in the interval
11, - 9& z! Ir. As discussed in Section 2, treatment of multiple -diffraction

lies outside the scope of this program. Finally, examination of scattering

phase data appears premature at this stage in the analysis. The gross

patterns of phase progression show little correspondence. This is partially

due to the large offset errors associated with cone measurements (see Table 3).

4.3.3 Remarks

Preliminary analyses of scattering by a cpne have been j.
performed. These analyses were directed toward extension of theoretical

capability at and near nose-on and tail-on axial aspects. Considerable

success has been achieved in these aspect regions. However, evaluation of

'cone results shows that geometrical diffraction theory, in its present form,

is severely limited in the aspect interval -5 16 s 1--x. , where x is the

cone half-angle. An attempt to empirically upgrade theory in this aspect

region was unsuccessful; reduction of short pulse data failed to reveal any

systematic secondary scattering mechanism.

A direction for future analysis has been outlined within

the context of geometrical diffraction theory (see Appendix C).
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4.4 FRUSTUM-CYLINDER

4.4. 1 Analytical Formulation

The frustum-cylinder is a combinatorial shape formed by

joining a frustum to a cylinder in the manner illustrated in Figure 73. The

discontinuities on the target, labelled S through S. , constitute the six

important scattering centers.

PAEREFERENCE

Figure 73 SCATTERINS CENTERS ON A FRUSTUN CYLINDEk

Notice that centers 5f and S4 , and Sand 6 were investigated in the

study of the frustum and the cylinder, respectively. Similarly, all the

speculars occurring for a frustum-cylinder have been treated by modified

geometrical diffraction theory in these two studies. We simply state the

analytical results below.
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17co- I~o-cs-~ O -CS

C o i__ 
_ 

-, , , Z y - Z I C o__ _ _C S 4 6

a,7 77c, Cos f, Cos
(47)

IA 'V~J(48)
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Stn -77S ," Co s - C 05

i n(, , '&V T I< 'J~ 0 s~,Zr Z/ p~ 5

72COS /5e 77Z Zn2Z

(49)

=06 x -

vr ssn.,C"'/n..) a2 csc [j ." .05° c -c i°" t". ; C 0° 2 - <°05t"

3 /cos/ C 3 5 151
(50)

, -zkos/-oa [ sn# - o (51)

, :,, ,, o -(5Z)

psu cos (53)

4 =Zkc o45[a, sn#-bcos#5T (54)

zr k%ea2 5 col s to-!/r (55)

*0 5 j' a ,16--,CS 7 (56)
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with

7,,

At and near the nose-on axial aspect (96 = ), we describe

specular scattering by the polarization independent terms in Equations 45

and 48 in the usual form

(y~~~'T et 'a 5ya4 e. r. iW cs

(Z t 1 Cos4' s5n*

- zk , Cos CC /*z'

Equation 58 is used for O . , where the cross-over aspect is defined

by the relation 2ka, -sn = 2z. 44. The remaining contributions are

well behaved when we apply the constraint cs c 5 f_, cos// . Similarly,
at and near the tail-on aspect, we modify contributions from centers S3

and 5 to obtain

(Cos'o/ ~nt

(59)
-j /7+y -4:1 c',4/z cost

Equation 59 is employed for Tf- #C4- 5A sr, with the cross-over aspect now

given by Ztka z s ,., = 2.44. Again the constraint on Czc 1 is introduced
(here Ose S 4a, Cos5 ) for the remaining contribution.
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At and near broadside on the cylindrical section j6 -,

the polarization-independent terms in Equations 46 and 47 are combined to

give

(VF,- j5;3: hesin (k A2cos! gco s 9)

(60)
a, xi n~.~ 0F. S /I5/ k k' c05., 0 1 Ale

Equaticn 60 is used for nr 7r - , with the cross-over aspect

angle e6 given by k4, cos 96= Z. 25. Al. other contributions are well

behaved. Finally, we employ the curve-fitting technique discussed in the

frustum study to suppress the singularities which arise in Equations 45 a-.d

46 when incidence is broadside to the frusturn segment ( ).

4.4.2 Results

Table 7 lists parameters used in th- study of the

frus.-rm- cylinder. The number of individual targets and bistatic situations
con-,ained in the table do not satisfy specifications noted in Table 1, the

program specifies evaluation of the monostatic capability of theory using

three models. Because measurement data on only one model was available

for monostatic study, we have added available bistatic cases to bolster this

investigation. Dimensions of each target may be obtained frxrm Table 2.

Table 7
PARAMETERS FOR FRUSTUM-LINDER STUDY

MODEL FREQUENCY BISTATIC ANGLEdA

DESIGNATION (Siz) (DEGREES)

F4CY3 5.975 0

5.865 10.25F5CY5
6.060 30.0
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The phase reference chosen for measurements lay on the axis of symmetry

of the target at the mid-point of the cylindrical section. Figure 73 shows
the analytical phase reference located at th3 junction of the frustum and the

cylinder. In order to compare theory and measurement then, a term of

magnitude -A h cos5z cos was added to analytical estimates of scattering

phase.

Figures 74 through 77 show monostatic results for frustum-

cylinder F4CY3. Very good agreement between theory and measurement is

evident for all parameters describing the scattering matrix of this target.

Figures 78 through 81 show similar agreement for F5CY5 with bistatic angle

13, = 10. 25 degrees. Finally, calculations from theory for F5CY5 with

/1 = 30. 0 degrees are given in Figures 8Z through 85 and horizontal polari-

zation experimental data are also presented in Figures 83 and 85. Notice

that, for vertical polarization rada : crosE section and scattering phase,

measurement data is not included in Figures 82 and 84. We were unable to

plot these data in this instance. The computer provided an error message

which indicates that the conventional format for recording measurement data

was not employed. Again, Figures 83 and 85 indicate excellent agreement,

when the caution about 2 rr slippage of phase is observed.

4.4.3 Remarks

Comparison of theory with measurement datta shows that

geometrical diffraction theory is an accurate description of scattering by a

frustum-cylinder. Although a small portion of measurement data was

unavailable for evaluation purposes, the overall agreement for the

combinatorial shape is every bit as good as earlier results obtained for

cylinders and frustums. Thus, the synthesis of combinatorial shapes in

terms of scattering centers is well founded.
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4.5 CYLINDER-FLARE

4.5. 1 Analytical Formulation

A cylinder-flare is also formed by combining a cylinder

and a frustum (see Figure 86). We use the term cylinder-flare to denote

the combined shape when the junction between simple shapes forms a concave

edge (see scattering center Sz in the figure). The presence of a concave

edge introduces the possibility of considerable interaction between scattering

centers even though they may be separated by many wavelengths. The

strength of such interaction will be determined by the degree of concavity

of the edge. Referring to Figure 86, if x is allowed to approach 90 degrees,

one can expecta reentrant scattering phenomenon much like the mechanism

associated with a dihedral corner reflector. In our case, x is small

(usually about 15 degrees), and interactions may be ignored.

IJ

Figure 86 SCATTERING CENTERS ON A f!'.INDER-FLARE
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Figure 86 shows the location of the six ir-portant scattering

centers on a cylinder-flare. In the light of previous analyses, we write by

- inspection

C0 = C059  ' __ (61)

r i~j.'.1A~~ (62)

,S, dr___ (63)

~/~zc~44 ' / '?

n., 3117
L

77 r74 (64)
-~ # ~L

'/'

03



r __r -Cos
k- - - , . -. j, - nf] (65)

A-4

e 4 C cc nt,~% (r

Pt~Co -do$~a sn

z ka,(67)

Pt /,-4~ sin$-6 0ucs$]6 (68)

96 -A Cos(69)

Alz C-s tkla'sinrt&--#](70)

where

= / -%/~.(71)
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When incidence is at and near the nose-on axial aspect

( -0), we modify the polarization-independent terms in Equations 61

and 64. The combined result is

(Zh 4 , L105AsiP,#) (73)
-d-j21A, ros/A evsO

e

Equation 73 is employed for O: : E . where zka, %in j,, 2 .44.

All other terms are modified by the constraint C'SC# !S k-x, 0,05/1 1

When incidence is at and near the tail-on axial aspect ( 1 =I ), we modify

the polarization-independent terms in Equations 63 and 65. The combined

result is

'.Equation 74 is used for ir-96_ !L- 0 _c ir where Zkgz sC, 2. =.44.

~The polarization -dependent terms in Equations 63 and 65 are modified by

the constraint esc k la. Cos/%Jz

When incidence is at and near broadside on the cylinder

section ( 6 -' ), we modify the polarization -independent terms in

Equations 61 and 62. The combined result is"

c,,

(74)%

,~~ 0. ,-k ro) s-,,,,, s,, jA( ' A, o"m /
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Equation 74 is employed for ek 16 -ir wich 0" given by

k, cos . 25. All other contributions are well behaved. We employ

the curve-fitting technique to eliminate singularities which arise in

Equations 62 and 63 when incidence is broadside to the flare section

4.5.2 Results

Table 8 lists parameters employed in the study of the

cylinder-flare. Whereas the study is limited to bistatic situations, the

number of targets listed does not satisfy specifications given in Table 1;

bistatic data on one additional target are called for. However, measurement

data taken on only one cylinder-flare has been supplied to CAL. Dimensions

of the target CY4F4 may be obtained from Table 2. Again, the phase refer-

ence chosen for measurements was the centroid of the cylindrical segment of

the target, A common phase reference is achieved by adding the term

k/7 -'.$s/ 1 co5 . to analytical estimates of scattering phase.

Table 8
PARAMETERS FOR CYI INDER-FLARE STUDY

MODEL FREQUENCY BISTATIC ANGLE!A

L_ DESIGNATION (6Hz) (DEGREES)

5.885 10.25~~CY4F4,?
_ _ _ _6.050 30.0

Figures 87 through 90 show results for cylinder-flare

C.'4F4 for bistatic angle /, = 10.25 degrees. Agreement between theory

and measurement is considered very good. Differences in radar cross

section noted at and near the aspect which is broadside to the flare ( 96 -Y)

may be due to interacions between the cylinder and the frustum. As noted

in subsection 4, 5. 1, these interaction effects are neglected in the present

formulation. Figures 91 through 94 depict scattering matrix data for

Icylinder-fItre CY4F4 with bistatic angle /. 30.0 degrees. Horizontal

134



polarization results shown in Figures 92 and 94 exhibit very good correspond-

ence. Vertical polarization data given in Figures 91 and 93 are theoretical

predictions only; experimental values were contained on the magnetic tape in

a format which did not plot. Notice that Figure 91 reveals a discontinuity in
predicted radar cross section for 84 degrees. This discontinuity

arises due to the use of cross-over aspect angles originally developed for

use with simple shapes.

4.5.3 Remarks

On the basis of available comparisons between theory and

measurement, we can conclude that agreement between theory and experi-

ment for the cylinder-flare is comparable with that reported for the cylinder,

frustum, and frustum-cylinder.

pInteractions between cor -onent shapes should be negligible

provided the junction edge is no more slightly concave than the 15 degrees

used here.
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4.6 CONE-CYLINDER

4. 6.1 Analytical Formulation

The cone-cylinder is a combinatorial shape formed by
joining a cone to a cylinder in the manner depicted in Figure 95. The five
important scattering centers on the target are labelled in the figure. Each
scattering center has been subject to analysis in previous investigations.

Based upon work already discussed, we write by inspection

r7 Jf (76)

-r - -

PHASE CENTER

Figure 95 SCATTERING CENTERS ON A CONE-CYLINDER
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FTi

k hCc Cs 96(81)

A=- k &z$n C59 (82)

p -z/[a Si P -hc 0] (83)

" ZA /[a S,710, - Azt C0.5f (84)44 -

J?- = - -h~I~#- s ](4

=- Zk Hsi- 6 CO4 S 96 j (85)

where

'7r (86)

F 3,

When incidence is at and near the nose-on axial aspect

( C - - X), we replace Equations 77 and 79 by the expression

I(2ic2.s,7#) Cos 2 Cos h57~ ~7

, !46

e ia 96 -z .7



where Equation 87 is recognized as a varlant of The result obtained for the

flat-backed cone. The return from center S is well behaved when ve

apply the constraint csC 4 in Equation 78. When incidence is at and

near the tail-on axial aspect, we modify the polarization-independent terms

in Equations 78 and 80. The combined result is

(88) I
-J" i ., ,

e

where Equation 88 applies in the interval 7r- ?6,. 96 , with the cross-

over aspect given by k4 ,, = Z2.44. The polarization-dependent terms

in Equations 78 and 80, and the contribution from center 59 (Equation 77)

are subject to the constraint Csc9 ! k.a

At and near the broadside aspect ( 9 = 6 ) the polarization-

independent terms in Equations 77 and 78 are replaced by the combined

expression

~ - /akz 1 ssn~zAos#)1)(89)

Equation 89 applies in the aspect interval 96, -5 9 ' 7r-

where the cross-over aspect is given by the relation tkh o15 # 6 =2.25.

All other contributions to the total return from the target are well behaved

in this angular region. '1
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4.6.2 Results

Table 9 lists targets employed in the evaluation of mono-

static theory for the cone-cylinder. The number of models given in the table

agrp-s with specifications containied in Table 1. Dimensions of each target

1 may be obtained from Table 2.

Table 9

PARAMETERS FOR CONE-CYLINDER STUDY

MODEL FREQUENCY
DESIGNATION (0Hz)

CICY3 6.000

C2CY$ 5.975

C4CY5 6.000

Figures 96 through 99 show results for cone-cylinder

C1CY3. Consider first radar cross sections in the aspect region o:s 0 a 60 and

near the broadside aspect ( $ 6i -,e ). These are the ranges of viewing

angles where scattering by the combinatorial shape is determined by the cone

section. Then the same shortcomings noted in discussion of cone theory apply

here.

In remaining aspect intervals, theory and measurement

show close correspondence except for horizontal polarization results for

120 " -c 160 degrees, where experimental data exhibit finer lobe structure

than theory. Figures 98 and 99 show theoretical phase data only; corresponding

measurement data were not plotted.

Results for CZCY3 and C4CY5 confirm observations noted

above (see Figures 100 through 107). Here we may compare phase data.

The theory is useful for estimating the gross dependence of phase upon aspect

angle.
148



4.6.3 Remarks

Theory for the cone-cylinder exhibits the same failings as

theory for the simple cone. Until the latter analysis is upgraded, it is not

advisable to apply geometrical diffraction theory to predict scattering by

combinatorial shapes which include a pointed cone.
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4.7 HEMISPHERE -CYINDER

4. 7. 1 Analytical Formulation

A hemisphere-cylinder is formed by placing a spherical

cap on one end of a finite cylinder as shown in Figure 108. The discontinuities
on the target, labelled .5, , S, and S3 , constitute four scattering
centers required to describe reradiation in the aspect interval 0 s 96 2a 7r.

H-h

PHASE REFERENCE-"

Si

Figure 108 SCATTERING CENTERS ON A HB4ISPHERE-CYLINDER

The scattering center denoted by the symbol S5. gives

rise to a specular return from the hemispherical segment. The location of

is a function of aspect angle , its position being determined by the

normal to the surface which lies parallel to the direction of' incidence. Such

at center is termed a "slippery' center. Notice that a return from '5 is
present in the limited aspect interval 0 -!c Scattering center

is formed by the hemisphere-cylinder junction. Sinc- there exists no dis-

continuity in the shape of the target at this point, the return from S is

determined by discontinuities in the derivatives of shape. The return is

thus much less than the return from other centers on the body. However,

contributions from S can be important for 6 , where S. no longer

contributes to the total scattered field. Because the diffraction coefficient

assigned to center .', is presently unknown, we limit analysis to the aspect
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region 0 S -5 . Finally, contributions from centers 4 and S. are

known from the analysis of a cylinder.7

Geometrical optics, physical optics, and geemetrical

diffraction theory provide identical estimates of the contribution from

center 9 I
v' " eJzt#a (90)j

For scattering center S3 we have

es#!e

}k ; yS(asjin - 196) (91)

At and near the axial aspect ( 9 0), we limit the singularity in Equation 91

by the constraint c.sc ?6 . At and near the broadside aspect ( € =¢% I
we replace Equations 90 and 91 by the specular contribution

-/c.4~fA cnkco5 $) i4"'kssflt

V ( co(92)

i' 7 + .-j zks. st', #

Equation 92, is used for i S -4 , where h. is given by[ P4,z cl = =.25.
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4.7.2 Results

Table 10 indicates the designation, dimensions, and

operating frequency for the target employed in the examination of monostatic

theory for the hemisphere-cylinder. The number of targets listed does not

meet the specification of Table 1; measurement data were supplied to CAI,

for only one hemisphere-cylinder. Further, the aspect interval being studied

is restricted to the region 0 - due to analytical limitations.

Table 10
PARAMETERS FOR IEMISPHERE-CYLINDER STUDY

MODEL DIMENSIONS (INCHES FREQUENCY

DESIGNATION DIAMETER 2a LENGTH 2h (6Hz)

H3CY$ 6.320 10.513 5.97S

Figures 109 through 112 show results for hemisphere-

cylinder H3CY3. The overall agreement between theoretical and experi..

mental estimates of scattering matrix parameters is very good. Results
shown in Figure 109 show that predicted interference between scattering
centers is slightly less than that observed in measurement data at and near

the nose-on axial aspect (0 -s 56 z- 30). Notice that the measured lobe

structure in this region is not related to interference between the two major

scattering centers S5 and S introduced in Figure 108: the period of lobes

associated with this interference, shown in Figure 110, is about half that

observed in Figure 109. Thus, the measured lobe structure shown in

Figure 109 for 0 - 96 - 30 degrees is associated with two sources of

scattering that are separated by approximately half the total length of the

target. Didagreement between vertical polarization theory and measurement

apparent near the broadside aspect is due to the use of the cross-over aspect

generated for the cylinder. A new cross-over aspect 9,6 should be
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developed specifically for hemisphere-cylinders. Horizontal polarization

results shown in Figure 110 are very good: note that agreement between

theoretical and experimental radar cross sections at and very near the

nose-on axial aspect ( = 0) may be improved by replacing the

constraint with the proper form of the polarization-dependent return from

center St based upon analyses performed in Appendix C. Figures 111

and 112 show that principal polarization phases are smooth functions of

aspect angle: in this case comparison with theory is str' ightforward, and

excellent agreement is evidenced.

4.7.3 Remarks

Geometrical diffraction theory has been applied to predict

the scattering matrix of a hemisphere-cylinder in the limited aspect region

0 v V6 / . Very good agreement between theory and measurement is

reported. Theoretical capability may be improved by: 1) replacing the

ka constraint on the contribution from scattering center .5" with the
proper polarization dependent term, which has . (%) dependence; and

2) generating a cross -over aspect angle 0,1 for specific application with

hemisphere-cylinder targets.

The analysis may be extended to the aspect region ?P2

upon further examination of the return from the hemisphere-cylinder

junction (dencted by scattering center S in Figure 108).
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5. SUMMARY AND CONCLUSIONS

Coordination between CAL and GD/FW has led to the definition of

measurement models and parameter variations necessary to conduct

scattering formula investigations detailed in this report. The basic analyse.

involved application of unmodified geometrical diffraction theory to predict

scattering by cylinders, frustums, cones, and derivable shapes. Extensions

to theory performed under this contract involved modifications of basic analyses

for application at and near aspects which give rise to specular scattering, and

at and near nose-on aspects for a cone.

Resultant formulations were programmed for the IBM 360 digital

computer for the following shapes: cylinder, frustum, cone, frustum-

cylinder, cylinder-flare, cone-cylinder, and henisphere-cylinder. Theory

was evaluated by comparing predicted and experimental values of principal

polarization radar crc;-s section.' and cummulative scattering phases. Both

monostatic and bistatic sitnations were investigated.

Results obtained under this contract attest the validity of geometrical

diffraction theory for predicting the bistatic scattering matrix of cylinders,

frustums, frustum-cylinders and cylinder-flares. Very good agreement with

measurement data is generally observed when the minimur target dimension

is at least several wavelengths in extent. Further modification of geometrical

diffraction theory is required to generate equivalent capability for a cone and

a cone-cylinder.

A direction for additional analytical effort has been outlined within

the context of geometrical diffraction theory. Furthermore, the very rapid
phase changes occurring in plots of predicted and measured values of

horizontal polarization phase need to be followed mnore closel; to resolve

ambiguities.

Conputer time is not a limitation when calculations are based upon

geometrical diffraction theory; the complete scattering matrix of each target

was predicted at 1801 aspect angLes in less than two minutes on an IBM 360/65.
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AFnendix A

SCATTERING BY A CYLINDER

A. I INTRODUCTION

High-frequency scattering of an incident plane wave by a finite,

perfectly conducting, right-circular cylinder is treated by the geometrical

theory of diffraction. The analysis begins with Keller's formula for the field

singly diffracted at the edge of a perfectly conducting wedge. Here reradiation

is interpreted in terms of three distinct quantities: a diffraction coefficient,

a divergence factor, and an associated geometrical phase angle. Each

quantity is evaluated for the four scattering centers (edges) on a finite

cylinder, A single-diffraction expression for the amplitude and phase of the

complex far field scattered by the target is obtained as functions of

cylinder's dimensions and aspect angle, and the radar bistatic angle, frequency

and polarization. Next, the fields diffracted at scattering centers are inter-

preted in terms of radar cross sections and phases for convenience in des-

cribing scattering center contributions. The formulation is valid except:

1) at aspects which give rise to specular scattering, and 2) for the forward-

scattering bistatic situation.

Modification of geometrical diffraction theory for application

at and near specular aspects is effected using a small angle approximation

technique. These analyses extend the capability of the theory for application

at arbitrary aspect angles.

A-1
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A.Z FIELDS SINGLY DIFFRACTED AT CYLINDER EDGES

A 2. 1 General

I According to geometrical diffraction theory, the field/

[singly-diffracted at a scattering center is given by:

GDT (A-i)

where T denotes an incident plane wave, D is a coefficient of proportionality
called the diffraction coefficient, and G is a geometrical factor which accounts

for divergence of the diffracted field. Keller introduced an expanded state-

ment of Equation (A-1) for diffraction at the edge of a wedge (see Equation (12)

of Reference 20):

eht) (A -2)

where 4e 1- i is the incident plane field, D is that diffraction coefficient for

a two-dimensional wedge, and the term is a divergence

factor based upon the optical form of the principal of conservation of energy.

Divergence is seen to be a function of/4, the separation between the edge

and the receiving antenna, andf, , the radius of curvature of'the diffracted

wavefront.

In order that Equation (A-a) be complete for eventual applica-

tion within the scattaring matrix, we introduce the following modification at

this point:

[A'ae 70 [a (A-3)
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where the choice of signs in Equation (A-3) relates to polarization dependence;

use the upper sign for vertical polarization (E vectors associated with incident

and scattered fields parallel to edge of wedge at point of diffraction), and use

the lower sign for horizontal polarization (E vectors lie perpendicular to edge

of wedge at point of diffraction). The rationale behind the above modification

is discussed by Helstrorn on pages 37 and 38 of Reference 13.

Individual treatment of the diffraction coefficient, the divergence 4

factor, and the geometrical phase k(yoov4) precedes application of Equation

(A-3) in describing principal polarization contributions singly-diffracted at

the four scattering centers on a cylinder.

A-3



A. 2. Z Diffraction Coefficient

The diffraction coefficient appropriate for our problem is

determined from the first term in the asymptotic expansion of Oberhettinger's

exact solution for scattering by a two-dimensional wedge. Keller introduced

a general expression for this c iffraction coefficient as a footnote correction

in Reference 14.

V cs(/n) ... (t') -dos 1/ fOC C#5)Cos W4

(A -4)

where the subscript k on angular symbols denotes Keller's terminology and

oA is the angle of incidence

0 is the angle of diffraction

n is A (7j being the exterior wedge angle)

4 is the angle between the incident ray and the positive
tangent to the wedge

and k is the wave number (k =-x where A is the wavelength).

The angles c/ and S introduced in Equation (A-4) are defined

as follows: Project the incident and diffracted rays onto a plane normal to

the edge at the point of diffraction; the angles between these projections and

the normal to the wedge are #4 and oc respectively.

Figure A-i illustrates the coordinate convention employed

in describing diffraction at the edge of a two-dimensional wedge having interior

angle Zr- kj. An X-Y-Z coordinate system has been chosen such that the

Z -axis is coincident with the ddge of the wedge, the Y -axis is perpendicular

to one face of the wedge, and the X-Y plane is normal to the edge at the point

A-4
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of diffraction. The vector ,s represents the sense and arbitrary direction on

an incident ray. The angle between the incident ray and the positive tangent

to the edge (negative - Z-axis) is denoted by ld* . The angle between the

projection of the direction of incidence in the plane normal to the edge at the

point of diffraction (X-Y or azimuth plane), and the normal to the wedge (Y-

axis) is denoted by 8 . According to the law of edge diffraction, the family

of rays diffracted at the edge lie on the surface of a cone with apex located

at the point of diffraction (coordinate origin), and with half-cone angle equal

to04 . One member of this family of diffracted rays is illustrated by the

vector , Here the projection of A in the azimuth plane makes an angle x/

with the Y-axis.

Figure A -2 illustrates the angular relations employed through-

out our analysis. We definc the bistatic angle between the directions of

incidence and observation by the angle//. The projection of the bistatic

angle /S in the azimuth plane is denoted by A., where A - q

Similarly, the projection of/ in the elevation plane is denoted by1 : where

1 IT//Z - ."Having referenced bistatic characteristics to the azimuth

plane, we note that the law of edge diffraction requires that Ihe bisector of

the bistatic angle /S must iie in the azimuth plane: we interpret this bisector

as an equivalent azimuth aspect angle , where 9 - _____

Next we observe that cylinder edges are forned by right-angle

Aredges, so that 7 - and 77 = 3/2. Having defined bistatic and aspect angles

in the manner noted above, we rewrite Equation (A-4) as

A-6
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Notice that the diffraction coefficient satisfies reciprocity; i. e.. interchange

of the roles of transmitter and receiver does not alter bistatic dependencies

revealed in Equation (A-5).

It remains to evaluate the diffraction coefficient at the four

edges of a cylinder. Figure A-3 depicts a two-dimensional, rectangular

cylinder having generator coincident with the Z-axis of a cartesian

coordinate system. The four edges of the cylinder lying in the X-Y plane

are labelled Sit S2, S3 and S 4 . An equivalent azimuth aspect angle 0 is

referenced to the Y-axis. Angular transformations appropriate to each edge

are noted in the figure. Substituting these relations into Equation (A-5)

we have

C 
A -

je i (
4- 7 ~~ Ld t(S)" - - (A.6

= 1 -/ 7-+s,./-7)

=oin

Lin- A W*1 -9)

where the aspect angle transformation performed at the fourth edge required

a bistatic transformation 4 -zir-4.
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Figure A-3 ANGULAR TRAXNSOM4ATION: TW-DIMEKSICNAL
RECTANGULAR CYLINDER

Angular restrictions on Equationa (A-6) through (A-9) are a

consequence of a single diffraction anal)sis: individual scattering centers

contribute to the total sc attered field only when they are directly illuminated

by the transmitter and directly "observed" by the receiver.
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A. 2. 3 Divergence Factor

The diffraction coefficients listed above were derived from the

asymptotic solution for scattering at the edge of an infinite, r4ght-angle

wedge. Fields diffracted at such two-dimensional edges fall as 4-q

where 4 is the distance separating the edge and the receiver. In contrast,

edges on finite targets are three dimensional. Field diffracted at three-

dimensional edges drop as A

For far field diffraction, the separation between the edge and

receiver A is much greater than the radius of curvature of the diffracted

wavefront 9, • Then, for 4 %fl,. the divergence factor introduced in Equa-

tion (A-2) becomes

The divergence factor is known when we have solved for the radius of curvature

of the diffraced wavefront. One may choose two methods of solution for A

First, he may employ Keller's basic definition presented as Equation (11)

of Reference 20.

.,S( IiSh od*, (A-i)

where op 1 is the radius of curvature of the edge (i. e. , f = a for a
right-circular cylinder)

Ilk is the angle between the incident (diffracted) ray and the
positive (negative) tangent to the edge

4 is the derivative of A with respect to arc length along
the edge

and d is the angle between the diffracted ray and the normal to
the edge.

A- l0



(Here the normal to the edge, which lies in the X-Z plane, is supposed to

point toward the center of curvature of the edge.) Equation (A-11) is a

convenient geometrical interpretation of the quantity, ; however, it does

not ofier the simplicity of a formulation discussed by Helstrom. From

Equation (C-13) of Reference 13, we introduce the alternate formula

where p are as defined above, and

A. is a unit vector specifying a direction parallel to which
incident rays move

/d is a unit vector specifying a direction parallel to which

diffracted rays move, and

is a unit vector in the direction of the principal normal
to the edge.

The difference between Equations (A-12) and (A-1i) involves

the denominators: note that in the dl:nominator of Equation (A - Z) ,.A-(k)

i3 the cosine of the angle between the incidence (diffraction) vector and the

principal normal to the edge. Then Equation (A-12) is easily evaluated in

terms of/1 , / and/ 0using the appropriate modification to Figure A-Z.

Diffraction at the edge of a cylinder edge is illustrated in Figure A -4. The

angle between the incident vector/d and diffraction vector i a . The

bistatic angle/13 has angular projections A and /1e in the azimuth and ele-

vation planFs, Finally, the angle between the bisector of/9 and the Y-axis

is the equivalent azimuth aspect angle 1.

Thus for scattering center S1, the following relations obtain

IZ -W CS(:/ZCo(;' - )a-

(A -13)
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and the radius of curvature of the diffracted wavefront given by Equation (A-12)

becomes

og 1' /. ,,,€( 4)

Tht, appropriate divergence factors G ib GZ , G 3 and G 4 follow from Equati_,ns

(A -14), (A -10) and the angular trans formations noted at the end of Subsection

A.Z.Z. They are

Cog ./- 'I 1 (A- 15)

¢-/-* ' A :' e (,A-16)

'4 161

where the phase factor enters Equation (A-16) fom the factor ., !

hand enters Equation (A -17) from the factor or
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A. 2.4 Geometric Phase

According to Equati,n (A-3) of Subsectior A.2.1, each

* diffr.:cted field includes a geometric phase angle k(V,#s) where/2 is the

separation between the transmittiiig antenna and edge (at the pcint of

diffraction), S is the separation between the edge and the receiving antenna,

and k is the wave number. For convenience, we choose a phase reference

located at the center of the cylinder. Figure A-5 illustrates the geometry

where a is the radius of the cylinder, h is the half-length, and the

phase reference is takei. to be the origin of the coordinate system. 1, et

the separation between the phase reference and the radar antennas be

denoted by r. The radar transmitter and receiver are constrained to be

on a circle of radius r. This is a definite limitation for investigating a

bistatic array, however i.t reprea ents a realistic condition on a radar

scattering range. For the case where the bistatic angle is zero, this

conditior is not a limitation. Let the distance between the edge S1 and

the phase reference, projected along the direction of incidence (scatter'ng),

be denoted by di(ds). Then r - d i , s r-d s and the geometric

phase becomes

(A-18)

Priorto evaluating the general case, the planar case will be considered.

In thi. case, = 0 and -- . This case is illustrated in Figure A-5a.

A -14
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Figure A-Sa DEFINITION OF GEOMETRICAL PHASE TERMS
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The geometrical distances di and (d.) are shown as the distances measured

along the incident (scattered) ray between the edge S, and the line passing

through the phase reference which is perpendicular to the incident tscattered)

ray. Note, that if the bistatic angle is zero, d, = ds, // = sand the

geometrical phase becomes Zko = Zk(r-di). We now evaluate the distance

(di + ds) as functions of the equivalent azimuth aspect angle O(and the

unrestricted bistatic anglei4. Then the distances di(d.) are measured on

the surface of a cone with axis coincident with the aspect angle Oi, with

apex located in the X-Y plane at the edge, and with base defined by the

plane normal to the directions of incidence (observation) and passing through

the origin. According to Figure A-5, the edge lies in the X-Y plane a

distance d along a line oriented at an angle T to the X-axis. The equivalent

azimuth aspect direction intersects this line at an angle R, where R =#-IZTA.

The bictatic angle /4f is contained in a plane which rotates about the equivalent

azimuth aspect direction. This plane intersects the cone to generate lines

containing segments di and ds. In Figure A-5, the plane is shown rotated an

angler out of the X-Y plane. If we observe along the line OC, the spherical

geometry illustrated in Figure A-6 is obtained.

Then

WS W, .eos ar . Coo 40 (A-19)

j wha.re cox me. co ' S 4 'StP C-,4 oSs

Cos 4' ay Cos .0 S4~LI 4 c.(- (A-ZO)
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Figure A-6 SPHERICAL GEOMETRY: VIEW ALONG

LINE OC

Substituting Equation (A-20) into Equation (A-19) are simpifying, we have

! C. d .s.T,,) c°.4 (A-2l)

xwhere Ac. C- R C.i$ - r~t
" " '" '" €(A-22)

Finally, substituting Equation (A-21) and Equation (A-ZZ) into Equation (A-18),

we obtain the geometric phase for the edge S 1

o -4,.), - 2 (A, xi n.,, c. -s ti ,j.. . A
(A-23)

Employing the angular transformations noted at the end of Subsection A. 2.1,

we now write the geometric phase for the remaining three edges.

-(,- 2 - -, -(a -&as COS(A-24)

R 'rZ [a sn 96 -AheosI COS A/A) (A-25)fk441.A)4 (2 2c. r-,ttt n# v&j. 0 5 ,/a) thcs#) t4/a) {A-26)
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A.3 SINGLE DIFFRACTION EXPRESSIONS FOR SCATTERING

BY A FINTTE, RIGHT-CIRCULAR CYLINDER

The total field/A scattered by the cylinder is the vector and

phasor sum of the fields diffracted at edges SP, S 2 , S3 and S That is
3 4.

/xrr ." P,"/IL "/, "li4(A-Z7)

Each contribution A,. is determined according to Equation (A-3) using results

derived in Subsections A.2.2 through A.2.4. For cylinder edge S1, use

Equations (A-6), (A-15), and (A-23) to obtain

(2# Ao 5 0) wsM'J (A-Z8)

where / is approximated by r in the magnitude of the field. In the case of

cylinder edge SZ, use Equations (A-7), (A-15) and (A-24) to obtain

/[c 'Z ir (A-z9)

~%

-~~o; #, ./Iz

Similarly, cylinder edge S3 involves Equations (A-8), (A-16), and (A-Z5)

A si (JT

'/>4 -< e-4" ,4-)o C,4
Cc 5. e, >5'
!5-

-0;
A-19



Finally, for cylinder edge S4 , use Equations (A-9), (A-17), and (A-26)

f ,~ atn#hao1)cs 1 4
; C05(y-2-OB (Co e)j(~l

I(A-3 1)

Notice that the preceeding application of unmodified geometrical

diffraction theory lezds to singular results when specular scattering occurs

(&= 0 and 1r/Z) and for the forward-scattering bistatic situation (,6=7T).
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A. 4 SCATTERING CENTER NOTATION

Applications of geometrical diffraction in subsections A. 2 and A. 3

have led to expressions for the fieldy scattered at the various edges on a

cylinder. Here we interpret these field expressions in terms of radar cross

sections o/ and phases4 assigned to scattering centers. Once eachAasd'

is calculated for every edge on the body, an expression for/p, total can be

represented as such:

/ r j y A(A-3z)

where/-/total represents the sum of all the rays diffracted in the direction of

the body. According to geometrical diffraction theory, the total radar cross

section of a target is given by:

where //total represents the sum of all the rays diffracted in the direction of

the receiver. In scattering center notation the amplitude and phase of the 5ield

th
reradiated from the i scattering center can be writted as

e rt% " (A-33)

where i elamplitude of reradiated field from ith scattering center

/e i = relative phase of eradiated field from ith scattering center

r = distance to radar from geometrical center of the target

A = amplitude of incident plane wave

S = distance from the edge of the target to the receiver

A-21



Putting Equation A-10 in Equation A-30 and substituting the result

into Equation A-33 gives

ei (A-34)

where r z s. Thus

4

after discarding the phase terms contained in D and 4. Then according to j
scattering center notation, one obtains

and since the last term is equal to I the scattering center expression for the I
total radar cross section becomes

-V 4

where i and :9 are respectively the aspect and bistatic angles. Thus the Zkr i

phase term is not important in determining the total radar cross section, it j
is the relative phase of each scattering center that is important. The Zkr

phase term is only important when it is desired to determine the absolute
phase (Zkr +Oi) of the i th scattering center. Notice also that, in scattering

center notation, the phase /o of the signal reradiated from the target is given by

Eqain (-3,(A3) n (A-36)

Equattions (A-33), (A-35), and (A-36) are relations necessary in the trans-

formation of expressions of geometrical diffraction theory to corresponding

formulas discussed in Section 4 of this report.

A- 2



A. 5 SCATTERING BY CYLINDER AT AND NEAR

SPECULAR ASPECTS

A. 5. 1 Background

It is a characteristic of applications of unmodified geometrical

diffraction theory that singularities arise in formulas at aspects which pro-

duce specular scattering. These undesired singularities may arise in the

diffraction coefficient, in the divergence factor, or in both quantities used

in describing reradiation from scattering centers. In the case of the cylinder,

modification of theory at and near axial and broadside aspects is required to

obtain a description of :reradiatioz phenomena continuous in aspect angle.

14Keller has proposed modification of his theory by means of a caustic

correction. In brief, multiplication of unmodified formulas by the caustic

correctionactor removes undesired singularities in the case of an axially
symmetric edge. While his method has obvious application in the case of

axial incidence on the cylinder, we note two drawbacks. First, the predicted

scattering dependence will be of the form .('z) , whereas the actual
functional dependence is known to be . Second, his modification

allows prediction of scattering at but not near the axial aspect. For these
reasons, a search for an alternate modification technique was initiated. It
wan found that, in cases where the two scattering centers which contribute

to the specular return exhibit symmetrical geometry and identical dimensions,

small angle approximations allow cancellation of singularities. Then expres-

sions for specular scattering derived from geometrical diffraction theory in

Lhe manner noted are in essential agree rnent with well known physical optics

results. We now illustrate the method in the case of a cylinder target.

First, che small angle approximation is shown to be applicable for aspects at
and near broadside incidence. Then the same approximation is employed as

an alternative to the caustic correction for aspects at and near axial incidence.

A. 5.2 Cylinders Scattering At and Near Broadside Aspects

As illustrated in Figure A-3, subsection A. 2.Z, scattering

centers 5, and 9, should describe the specular return feF from a
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cylinder viewed at and near the broadside aspect ( j 6 ). That is

F 'q e , e" . e MR (A-37)

For convenience in discussion, we present expressions for the contributions

from these two scattering centers below (see Equations (A-28), (A-29), and

(A-35).

0 f(CA 3 8)

3 ~ " Ci/f 7f#~3 Y/J

i', t iI- ,c,4_C)$P? _ .hc#
Cs e -(A-39)

where the angular restrictions on Equation (A-29) have been deleted since we

limit present discussion to aspects near broadside. Observe the presence of

singularities in the polarization-independent components of the diffraction

coefficient assigned in Equationb (A-38) and (A-39) when $62 " nodrt

remove these undeired singularities, we introduce the aspect notatior.

- ,- where ,A is a small angle. Allowing co, -'-, s,,I I4...

the following simplification obtain.

Jr /Z, -s e (A-4 )

M3

coe (-ffc n a E i (A)3()-4er
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*We now consider only the polarization independent component of Equation (A-37),

and denote this contribution by G / e J?'b )£.td" Substituting Equation (A -40)

*into Equation (A-38) and Equation (A-41) into Equation (A-39), we have

,fj 4-jA.* OA a Sin~i
e A e A

(A-42)

*.Ike s lkgA -d**hCOS,4Si

The bracket in Equation (A-42) is of the form Sin/l and this simplifica-

tion is made to obtain

, ) (A-43)

s ,(zhcoA d)

Equation (A-43) is well behaved at and near broadside aspects. Evaluated

for 5 (d 0) it gives

For = 0, Equation (A -44) agrees with the well known physical optics result

for broadside scattering by a cylinder. 19

The modification to geometrical diffraction theory in this

instance involves substitution of Equation (A-43) in lieu of the polarization-

independent contributions from scattering centers S and Sg . Both the
polarization -dependent contributions from centers 5, and S. and the total

contribution from center 5 remain unaltered. A smooth transition between

scattering computations based upon unmodified and modified theory is

realized at a cross over aspect #h given by

ehA Cos 1#ej -2.25r (A -4 5)
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For we use the conventional scattering center formulation. For

?6 )I- 16,6 we employ the modification indicated in Equation (A-43).

A. 5.3 Cylinders Scattering At and Near Axial Aspects

According to Figure A-3 of subsection A. 2. 2, the combined

contribution from scattering centers 5, and 55 should account for the

specular observed at and near the axial aspect (1 = 0). Denoting the axial

specular by the symbol fr v e we have

e

where scattering center conzributions are obtained from Equations (A-28),

(A-30), and (A-35), and are presented below

Z ftffof

j k [a • (A -47)

Examination of Equations (A-47) and (A-48) at the axial aspect ( # = 0)

reveals the presence of singularities in the diverge-ce factors ( ,-) and

the polarization-independent components oi the diffraction coefficients

-2
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Modification of tMe cheory is begun by treating these

polarization-independent terms, again using the notation e

for their contribution.; .Introducing small angle approximations, allow

Cos / d~ Y ~. to obtain

(IC os ) - oF (A-49)

Equations (A-49) and (A-50) are substituted into Equations (A-47)

and (A-48) and the following contribution is extracted.

Zi Co-eV a (A-51)

At this point we introduct. the large argument approximation for the first

order fleszel function

Some justification for this rtep is offered in the following discussion, which
borrows freely from Keller.ZU In the region of axial incidence, an exact
solution of the reduced wa .,e equation is

This has the asymptotic expansion for k large

We will show that the above expression has the same form as unmodified
geormetrical diffraction theory (provided N = I) and that both representations
are singular for axial inLidence. From this we infer that the well behaved
parent function (of whicb the scattering center formulas are asymptotic
ex-.ansions) is related to J (9%).
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(A-5Z)

and recast it to show that the bracketed term in Equation (A-50) is

e r~.~~ 4(,2keo,_~ (A-51)

Finally, substituting Equation (A-53) into Equation (A-51), we have as our
result

.I (zkcs4 aj ) _'-Si ,ke.*4,.oo #
eZFk-'Cs X (A- 54)

Equation (A -54) agrees with the physical optics result for specular scattering
19

by a disc.

Equation (A -54) is well behaved at the axial aspect and predicts a radar cross

section

, W cos (A-5s)

1!
The monostatic form of Equation (A-55) agrees with the well known physical

optics result. Thus, .,e will use Equation (A-54) to replace polarization-
independent components of contributions from centers S, and S at and near

axial aspects.

Although the critical -ortion of the analysis is completed,
there still exist potential singularities in the polarization-dependent component

• Fq o e 'P#, ,and in the total contribution from scattering center Sz . In all
cases the trouble lies with the 5ip, dependence of the divergence factor.

A
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Our modification in these instances consists of placing an arbitrary upper

limit on the singularity, i.e.

77 6 Ay to&"A (A -56

The details of this criterion are not presented since the particular value of

the upper limit is not crucial provided that 1) , cp k e.s AYg prior to

the cross over aspect, and Z) the polarization dependent components of
( , / and V- being included to insure smooth transition do not

noticeably alter the specular return given by Equation (A-54).

The modification to geometrical diffraction theory at and near

axial aspects involves substitution of Equation (A -54) in lieu of the polarization-

independent contributions from scattering centers S, and S In addition,

the factor f/s&i # in the divergence factor of all remaining terms is given

the upper limit A.. sos 4/. A smooth transition between scattering computa-

tions based upon unmodified and modified theory is observed at the cross over

aspect given by

= Zk,, .,i,,o -Z. '0* (A-57)

For --s 1# we use modifications outlined above. For 96e, we employ

the conventional scattering center formulation.

The limit is not completely arbitrary. It was obtained in the following
manner:

I. determine the contribution from the rear of the cylinder at axial
incidence using small angle approximations on *IF, e , #% .

The result has dependence upon .r,
2. expand 3 and compare with unmodified geometrical diffraction

theory.

3. comparison in 2. indicates that the divergence factor should not
exceed L , from which k/i, o.% A :
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A, 5.4 Remarks

The analysis reported in this appendix wab directed toward

extension of the excellent capabilities of unmodified geometrical diffraction
theory in predicting scattering by large cylinders at nonspecular aspects.
Although modification of the theory proved straightforward at and near

broadside aspects, certain heuristic arguments were found necessary at

axial aspects. For this reason, engineering considerations such as the

limit on the divergence factor found their way into the analysis. They need

not have. Later analyses based upon a Green's function approach have since

validated results obtained using small angle approximations (see Appendix C).

In particular, if one keeps his head, the small angle approximation approach

offers a short cut. For example, further examination of small angle results

shows that the polarization dependent contribution from centers S, and S3

at and near axial incidence can be related to either T_ (x) or r ( ) .

Realizing that this contribution disappears at the axial aspect, one should

choose J (z) dependence. Fortunately, the strong specular from the face

of the cylinder completuly overrides the polarization dependence left in our

expressions.
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Appendix B

SCATTERING BY A FRUSTUM

B. 1 IN IRODUCTION

A frustum is a doubly truncated cone. It is convenient to obtain

expressions ior the complex contributions from the scattering centers on

a frustum by reexamining the detailed analysis of the cylinder presented

in Appendix A. Indeed, it is only required that the geometrical differences

between a frustum and a cylinder be observed in order to generate the

required formulation by inspection. Modification of geometrical diffraction

theory fcr axial aspects may also be effected in the same manner employed

in the cylinder investigation. However, the use of small angle approximations

does not produce cancellation of singularities when incidence is at and near

the broadside aspect. Here we report results of analyses based upon physical

optics and an alternate scheme of curve-fitting.

One purpose of this appendix is to illustrate the manner in which the

detailed analyses of Appendix A may be generalized for other targets of

interest to this program. Although we show the procedure for a frustum,

similar considerations lie behind formulations which are simply presented

for the frustum-cylinder and the cylinder-flare.

B. 2 SCATTERING AT NONSPECULAR ASPECTS

Figure B-i shows the bistatic radar-target relationship. Two axially

symmetric edges located at the extremities of the frustum give rise to four

geometric discontinuities in the azimuth (x-y) plane; these discontinuities,

labelled -, , 8, , S and S4, constitute the four scattering centers on the

target. The fundamental difference between the geometry of a frustum and a

cylinder is that the former target requires two radii of curvature to describe

shape. We denote the smaller radius of the frustum by a. and the larger

radius by az . Further, there are now two va/ue7 of the wedge parameter - ,

where '1 is eclual to " ,r and '4 is the exterior wedge angle. If the

J3-1
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Figure 8-1 SCATTERING CENTERS ON FRUSTUM4

half angle of the frustum is Z ( % z where ZAk is the height

of the frustum, then the following definitions of the parameter n7 apply:

=31z at the narrow end of the target; n7z a 31z + v-/lr at the

broad end. By inserting the appropriate values of .and k into Equation A -Z8
through A-31 of Appendix A, we obtain the field relations

(B-1)
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oa - -[c,- (B-2)o,( )- .- x + a
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C5 j (B-3)

A4 4 fr r7z k. cos(r2

t =0 A4' 0a 3I
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Scattering center amplitudes 41/j and phases . follow from Equations B-I

through B-4 above. They are presented as Equations 26 through 34 in sub-
section 4. 2. 1 of this report.

B. 3 SCATTERING AT AND NEAR AXIAL ASPECTS

According to Figure B-i, the combined contributions from scattering

centers 3, and S3 should account for the specular observed at and near
the nose-on axial aspect ( 4 = 0). Denoting the axial specular by the

symbol 1  e , we have

-'/AV' F B e-5)

where scattering center contributions are obtained from Equations B-1, B-3,
and A-35 are are presented below.

V0F- 7fr- d, -Cos __

-+oso- -- _o_

(B-6)

2e 4. n h O1)el'
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Examination of Equations B-6 and B-7 at the nose-on axial aspect ) =

reveals singularities in the divergence factor and in the polarization-

independent component of the diffraction coefficient. Modification of theory

is effected by introducing small angle approximations in the manner of

subsection A. 5.3 of Appendix A. Allowing cos-f .. ,

we have

fCos (j) -osf -B -8)

Substitutirt. Equations B-8 and B-9 into Equations B-6 and B-7, respectively,

we recognize the large argument approximation for a first order Bessel

function (see subsection A. 5. 3 of Appendix A). Then the polarization-

independent term in Equation B-5 becomes

pot~~~' (AC.sA/ n$

-s% -.jhcv /% cosi (B-O)

All other contributions are well behaved when we apply the constraint

Ce 0- A, Cos /1/2 . We employ Equation B-10 for 0 "  -

and assume that 6,. is the same cross-over aspect angle as that determined
in the cylinder study: i.e., 2k'c, n, -2 9tZ.44.

From Figure B-1, the combined contributions from scattering centers

S and S4 should describe the specular observed at and near the tail-on

axial aspect ( $ =vr ), These contributions are defined by the field
Equations B-2 and B-4, and the conversion relation given by Equation A-35

of Appendix A. The results are
B-5
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S/ % C °SA) -af Cos

e

;r C05.~ (B-12)

Applying sinall angle approximations ( cao7r, 77a --- 72)z

in the polarization-independent terms in Equation B-Il and B-lZ, we note the

relinations

Cos 6;-Cos,

(B -14)

where Equations B-13 and B-14 correspond with similar results obtained for

aspects near the nose-on value (see Equations B-8 and B-9). The polarization-

independent terms in Equations B-11 and B-12 reduce to
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6 # j z' . c. ose ep (B -15)

with Equation B-15 employed in the aspect region ir-fe. A 9r where

24 a- Si 96eL ' 2. 44. Again we introduce the constraint cs, k C1 / oA/2
to remove all remaining singularities.

B.4 SCATTERING AT AND NEAR THE BROADSIDE ASPECT

At and near the broadside aspect ( 6_ r, -Y ), scattering centers
S, and St contribute to the specular return. All scattering center contri-

V butions are well behaved except the polarization-independent terms in

expressions for /--e j  and Vi 6'pl . From Equations B-6 and B-10
we have

1A Sin&41f)

~~j~h~a,5&n( -h 16)ee4/
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Introducing the relation . z -4 , where 4 is small, small angle I
approximations give

/ ,, *J, -ee" -e jjg- to s~ [(,qo " haA t A(tp i t

(B-17)

-1"AA C.*OS -'.)t Al

Notice that singularities in Equation B-17 do not combine, since cz # e,
Thus, the small angle approximation technique appears to fail when scattering

centers have different dimensions.

We have noticed that Equation B-17 agrees with the corresponding
physical optics result. (To see this expand the stationary phase expressiongiven by Equation 4.3.9 of Reference 21, for aspects near broadside). This i

suggests that a smooth transition between geometrical diffraction theory and

physical optics may be achieved in the angular region under investigLtion. I
Then physical optics may be employed to accurately predict the specular lobe.

A physical optics results may be obtained under the following

assumption: areal elements of the frustum are considered to contribute

specularly for . small, and the phase between elements is taken into

account. ' Then we have

-Th4 e.7 Xechtel. h (B-18)
II

#This approximation procedure was suggested by M. E. Bechtel, and he ".
obtained r esults given by Equations B -18 and B -19.
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F where

)

/(Z-19)

~tf4

4 k.Sin " ai - "/ ,k/ /) k a c
______ ~a,

46k(ta 4 -4 g d # a
+J 3 (=2 ,,4) 84..

4k 7 t' ' -"9<= ,, y, ,,

It was found that the above approximation to the quantity M allowed a srmooth

transition between the physical optic and geometric diffraction theory results;

i. e., less than 0. 2 dB discontinuity in predicted values of radar cross soction

at the cross-over aspects. While Equation B-19 does not present computa-

tional problems, the physical optics result is too lengthy compared with

simple formulations based upon geometrical diffraction theory.

It was decided to terminate the investigation of the broadside specular

at this point, with the hope that the parent function associated with Equation B-17

may eventually be recognized. In the meanwhile, a curve-fitting r:dtine has

been incorporated in the computer program. Figure B-Z shows the behavior

of unmodified geometrical diffraction theory in the vicinity of the broadside

aspect. Because the theory fails gracefully at the broadside value ( - -,f ),
it is feasible to fit a smooth curve which bridges the valid geometrical-

diffraction-theory. estimates, and which passes through the specular value

predicted by physical optics.

B-9
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A curve fitting technique, Subroutine SPLN46 was incorporated into the

jcomputer programs for the frustum, frustum-cylinder, and the cylinder-

flare. This subroutine utilizes as input the four values of computed cross

section on either side of the specular point and the cross section at the specular

point computed by use of the physical optics approximation. A parabolic curve
is then fitted through these nine points with the specular aspect as the symmetry

axis of the curve.

In actual operation, the printed output of the computer programs is that

computed via unmodified theory. Tht curve obtained by use of SPLN46 is

used to produce values for the plotting routine only.

'i I

SPLN46 is part of the computer library at CAL. A description of thei

routine is contained in CAL internal memo No. DDL-ZAL, "Spline Interpolation"
17 July 1968, by D. D. Larson.
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Appendix C

SCATTERING BY A CONE

In this appendix we present results of preliminary analyses of

scattering by a finite, right-circular cone. We start with a review of14
Keller's analisis of the two scattering centers located at the base of the

cone. He presents formulas for radar cross section when the cone is

viewed at the nose-on axial aspect, the tail-on axial aspect, and at aspects

intermediate angles which exclude the broadside aspect. Both Keller and

Bechtel 1 6 have evaluated geometrical diffraction theory by comparing pre-

dictions with measurement data. Ia summary, the theory fails near axial
aspects, and at and near the broadside aspect. Modifications to geometrical
diffraction theory are sought in these three aspect regions.

First we modify the theory for application at and near tail-oa aspect.

Then we generate expressions which apply when incidence is at and near the
axial aspect. Then an approximation for scattering by the cone tip is intro-

duced as a preliminary step in the eventual generation of a specular lobe

when incidence is broadside to the cone. Finally, results of short pulse

measurements are discussed.

C. 1. SUMMARY OF PREVIOUS ANALYSES

The utility of geometrical diffraction theory for predicting high-

frequency scattering by a finite, right-circular cone has been examined by

Keller and by Bechtel. 1 6 Figure C-i illustrates the backscattering

problem; a pointed cone having base radius A and half angle X is illuminated

by an incident plane wave at an angle 0 to the axis of symmetry of the

target. Keller noted that small wavelength scattering from the tip is negligible

compared with contributions arising at the two scattering centers (labelled S,

and Sz in Figure C-i) located at the base of the cone. He obtained the

following expressions for the fields singly-diffracted at these two centers.

Equations C-1 and C-2 agree with Keller's result (Equation 70 of Refereiice 14)
if we allow fgr differences in notation, a correction of magnitude V/V/" noted
by Bechtel," and the transition from the acoustical to the electromagnetic
problem discussed in Appendix A.

C-I
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r ~crs - Cos i
_A ii__

Le

~(c-a)

where

laet is the field singly diffracted at S,

/Ae  is the field singly diffracted at S,

4e represents the incident plane wave

n * where x is the half angle of the cone

the wave number

r is the separation between the radar and the phase reference

indicated in Figure C-I

and the choice of signs in Equations C-1 and C-2 relates to polarization

dependence: use the upper signs for vertical polarization ( E vectors

associated with incident and scattered fields lie perpendicular to the plane

containing Figure C-i); use the lower signs for horizontal polarization

Z- vectors lie in the plane of Figure C-I). The angular restriction on

Equation C-2 is a consequence of the single-diffraction analysis; individual

centers contribute to the total scattered field only when they are directly

illuminated by the transmitter and observed by the receiver.
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Notice that Equations C-i and C-2 contain singularities in the

divergence factor when incidence is axial ( 96- 0, ir ). Keller removed

these singularities by introducing a caustic correction factor. This

multiplicative correction factor contains the reciprocal of these singularitiesI
and a besse. function of zero order. By further invoking a theorem relating

scalar solutions at the axial aspect to achieve suppression of the polarization-

dependent contribution, he obtained the results (see Equations 22 and 23 of

Reference 14).

- V~ C-3)

c-(r) Trk'a* (C-4)

Also, if the cone is viewed along a radar line of sight normal to the generator

of the cone, i. e. if 9 - -x, , then the geometrical-diffraction-theory

Equation B-i fails and another method must be used. In this case, a con-

venient, and quite accurate, formula can be obtained by means of an

asymptotic expansion of the conventional physical optics expression; this

formala, valid only when 9 6 -'1 , is

Equation C-5 above is Equation 3 of Reference 16.

When incidence is axial ( A = 0), Keller and Bechtel have shown that

radar cross section predictions based upon Equation C-3 are accurate for

cones having large hi . For the broadside case ( 96 = Tz -'X ), Equation C-5

gives a good estimate of the specular peak since it is based upon physical
optics. For axial illumination of the base ( 0 - 7r ), Equation C-4 is valid

and agrees with the coriesponding physical optics result. Bechtel has

evaluated the ability of geometrical diffraction theory (Equations B-i and B-2)

in predicting the principal polarization radar cross sections of cones at

intermediate aspect angles. Based upon gross comparison of theory with

C-4



available measurement data, he reported good agreement for large cones

a 8 ) except where the target is observed within about 30 degrees of

nose-on with vertical polarization. In this aspect region he noted that large

errors occur for some as yet unknown reason. For smaller cones ( ka

around 3), the computed radar cross section is generally predicted within
5 dB, but the form of the pattern is not predicted very accurately.

In the following subsections we present results of analyses directed

toward extension of theoretical capability in the angular regicns near specular

r* aspects.

4 C.a SCATTERING AT AND NEAR AXIAL ASPECTS

Direct extension of Keller's approach (i. e., the caustic correction

factor) for near-axial aspects does not appear to be straightforward; the

scalar theorem mentioned above is limited to interpretation at axial aspects

only. In this subsection we show that the small angle approximation technique

introduced in Appendix A is applicable. Although the method is easy to apply,

the treatment of near nose-on aspects involves certain heuristic arguments

which may be objectionable. For this reason, a more satisfying approach

based upon a geometrical-diffraction-theory interpretation of the Green's

function is applied in this aspect region to obtain the same result.

C. 2. 1 At and Near Tail-On Aspects

At and near tail-on aspects we apply the small angle approximation

technique in the same fashion detailed in subsection A. 5. 3 of Appendix A:

Only the critical steps are presented below. Modification of geometrical-

diffraction theory is begun by treating the polarization-independent terms in

Equations C-I and C-2. Introducing the angular convention 9 =ir- ,
where 4 is small, and allowing coo - , -,

we have

These measurement data were reported by Keys and Primich and had a
stated accuracy of t 2 dB.
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-r 7 --- S,, (C-7)

Employing the large argument approximation for the first order Bessel

function, and expressing the polarization-independent contribution from

centers S, and 5, as radar cross section, we have

(et"_Ir ., 4 (i,*.,,) (C-8)

Comparing the specular contribution from the base of the cone with that fr:-rn

the end of the cylinder (Equation A-54), we see complete agreement. This

is due to the absence of dependence of specular scattering upon the wedge

angle. The polarization-dependent terms in Equations C-1 and C-2 retain

dependence upon the wedge parameter n . They are made well behaved

by invoking the constraint introduced as Equation A -57 of Appendix A.

C.2.Z At and Near Nose-On Aspects

C. Z. Z. I Small Angle Approximation

We now consider the return from the base of the cone in

the limited aspect interval where centers Y, and 5 contribute, i.e.,

0 :a 0 . For narrow-angle cones, K is small (say less than 15 degrees)

so that the aspect angle 16 is small in the region of investigation. Let us

examine the polarization-independent terms in Equations C-1 and C-2 when
6 . Allowing Cos - / , $"2 - - The following

relations obtain

Cos Co-Ttco O

C-6
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9r 2977. @c , - o ~ (C-10)

Substituting approximations C-9 and C-10 into Equations C-I and C-2,

respectively, and rearranging, the combined result is

IrIAtt

i / f */e z  = C' COS C
(COS(C-il)

where
.( e t s i n .0 - ) - ' A m t s , , , -y'

Cf ,k ,$ , Z (C -12)

,,.C

. ;Ik. 4'4 2i] (C13)

But C, can be recognized as the large argument expansion of the Bessel
functions r (2k.,. 1 ), where n = 0, 1, 2... Similarly C. is the large

argument expansion of k ( ik.ino")if we neglect signs. Consider first

the polarization-independent terms in Equation C-Il. We expect a large

return from the ring discontinuity for axial incidence (# . o ). Since this
cannot arise due to the factor associated with 4r , we assign C, .- (Zk&.&,7n).
We arbitrarily choose Ct to have the lowest allowable order indicated above,

i. e., c -J,, (zkt ,' ) • Finally, we examine the polarization-dependent

terms in Equation C-11. In the light of known scattering behavior, we know

that this term must vanish at axial incidence and we assign C. ,/ (2kasin#).

C-7



Then Equation C- Il becomes

, "/,Ae, Cs

wjr

!- (i, Sn ) Cos f Jr (2-14)

From Equation C-14 the backscattering radar cross section cr'() is given

by

4ro - 44r ,eA

IrI

•~ ~~ 0 Cos,. ,,. L- (zkx .,i,,,,

(C-15)

77Co 
r

where it is understood that Equation C-15 applies in the limited aspect

interval O#AC% . At the axial aspect (6-o ) agrees with Keller's result

(see Equation C-3). Because the small angle method involves certain

arbitrary choices in the assigning of Bessel functions, we now rederive

Equation C-15 using a more rigorous technique.

C. Z. 2. 2 Green's Function Approach

Let us reconsider the problem of diffraction at the base of a

flat-backed cone in the aspect region os a 16 For the aspect interval chosen

for study, the entire ring discontinuity at the cone base is directly illuminated.

Indeed, at the axial aspect ( -0 ), each point on the ring contributes

to the backscattered field. It is only as aspect angle increases that this

uniform distribution of scattering tends towards localization at the two

scattering centers S, and s depicted in Figure C-1. One can express

C-8



the same idea by introducing Green's theorem to represent the field scattered
by the ring discontinuity in the integral form1 2 ' 21

-f ,. e (1., .64 (c-16)

where A is the scattered field in the three-dimensional problem, M,. is
the incident plane wave, p is the distance along the propagation direction.

A is the area of projection of the part of the ring to one side of a plane of
constant phase, and f(, a") is a function which represents the scattering

properties of the edge. Since Equation C-16 is the general description of
the scattering phenomenon, it is clear that scattering center formulations

(such as Equations C-I and C-2) arise from stationary phase evaluation of

the integral under the assumption Z£& si ,, Our present problem

concerns evaluation of the same integral under the small angle assumption

6 m o. Either evaluation of Equation C-16 requires knowledge of the

function f (#, 9"). The Green's function approach becomes practical when

it is shown that geometrical diffraction theory can be used to estimate the

unknown function, i. e.,
.(, ) - g' T D( " (C-17)

where D(9, 0') is the general form of the diffraction coefficient used in

three-dimensional problems. The coefficient D(,4') is derived as a

function of aspect angle 06 and position on the rotationally symmetric edge

in Appendix D. The result is substituted into Equation C-17 to obtain

Cos Cosr)- Z tar? - ,J $.a[cJ 7

TCos (-18)

C-9 j
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I The remaining parameters in the Green's integral are evaluated below I
j A Aef

- r-ktsin 0 cos) (-19)

dA- ,orC-

Substituting Equations C-18 and C-19 into Equation C-16, we have

7- Zf,,L'O .itj.9')€0, ,-

t45C.e# .1, t0-20

If one evaluates Equation C0ZO by stationary phase, the scattering center

contributions given by Equations C-1 and C-2 are obtained. This serves as
a check on our result above. We now wish to derive an approximate repre-

sentation for 4 assuming ,mO . Allowing - . - --s....we write Equation C-20 in the form

j cAe __Mr [it ri

where

-j (c-2)

- - _ _- C_-,



Evaluation of the integral .4 is straightforward and gives the result

ir VCsJ Wk (C-Z4)

The integral r, is evaluated following expansion of the integrand for 6 small,

i. e. ,

Cos ________ eam $in~ (C-25)

so that

o z tr, f. s a-,-P-- ewo,

ov--

Substituting Equation C-16 into Equation C-ZZ, we expre[ r, an

5y - . ) (C-27)
"" -f Co s ja-- 0)

~--0 -COSa r # a~a - , )

The first integral on the right hand side of Equation C-Z7 gives

coa j 2g.o (C-28)

C-11
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The second integral gives

11 77

(cos~- s r , J(tka oin#0) (C-29) -(C- i

The derivation of the Green's integral result is completed when we collect

Equations C-24, C-Z8, and C-29 and substitute into Equation C-21.
" " "" Cos- - cos- J. (Zk. ,ssn

ac4e fin O- L

- , '(c ,. _,.n,,( et sin ) (C -30)

t COS~ t '7 (Z-4aSint9j

Again the expression for radar cross section is crc6) ffrrf

so that

4~a* S~n cOO - Ca5l'J4~sn6

Xin AM& 1 4ksn)±cs6t~zsn (G-31)

In summary, Equation C-31 is the result of evaluation of the Green's integral

for scattering from the ring discontinuity at the base of a cone. It is valid

for 0 at and near the axial aspect. The result agrees with that obtained

using the small angle approximation method on scattering center contributions

(compare Equations C-15 and C-31).

Predictions based upon the ring formulation have been compared

with measurement data taken on a pointed cone. Principal polarization radar

cross sections were obtained at 6. 00 GHz for a cone with 'iase radius

3. 16 inches and height 11. 783 inches (which results in a cone half angle
%- 15 degrees). Figure C-Z and C-3 compare theory and measurement 4

C-1
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in the limited aspect interval 0 S6 . It is seen that agreement between
amplitudes is good, and that the measured polarization dependence is

accurately predicted by modified geometrical diffraction theory. N

C. 3 SCATTERING AT AND NEAR THE BROADSIDE ASPECT

When incidence is at and near the broadside aspect ( 6 - X % ),
the total return from the cone arises at scattering center S according to

our model (see Figure C-l). Thus, the predicted radar cross section is

cusp-like due to the lone singularity contained in the diffraction coeffient

of Equation C-i. What we now seek is a method of producing a specular

lobe instead of the cusp. We wish to accomplish this within the context of

geometrical diffraction theory; i. e. , retaining Equation C- 1 in the modified

formulation. One possibility is to assign a contribution to the cone-tip.

While the aspect-dependent diffraction coeff'.cient for a tip is presently

unknown, certain desired characteristics of the assigned contribution are

evident. First, the contribution should agree with the physical optics
solution for scattering at axial incidence on a semi-infinite cone, which is

exact. Second, the contribution should have aspect dependence such that a

singularity arises at the broadside aspect. Then there exists a possibility

of generating a specular lobe which fails gracefully as in the case of broad-

side incidence on a frustum. If this behavior is realized, a curve can be

fit through the invalid portion of the aspect registry as before.

One way of assigning a cointribution to the scattering center formed

by the tip of a cone is to consider the related two-dimensional wedge. The

desi.ed aspect dependence is contained in the resulting three -dimensional

solution

- if S 7 4 z F Or zOX-- .0)

$1 e 4@W no(C-32)

C1
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where . e' represents an approximation to the contribution from

scattering center S, formed by the coiie t,.p, and 4=2-

Deletion of poiarization-dependen. terms is in keeping with the generality

of the present discussion. F-om Equations C-i and C-32, we have, for

aspects near broadside

I

C. 4 DIAGNOSTIC MEASUREMENTS TAKFN ON A CONE

Preliminary analyses of scattering by a cone were performed in the

aspect interval 4 _g 6 _r ' . In this aspect region poor correspondence is

obtained between predicted and measured values of radar cross section:

for vertical polarization, the theoretical estimate is uniformly low; for

horizontal polarization it is uniformly high. It was recognized at the outset

that cone theory would require upgrading in this aspect region, and a

diagnostic program involving short pulse measurements was initiated. In

this subsection we discuss results based upon reduction of these short pulse

data.

C.4. I Scope of Experiment

Figure C-4 depicts the sphere-tipped cone employed in the diagnostic

investigation of scattering by a finite cone. The aspects and polarization at

which C-band (5. 9 GHz) short pulse data were obtained are contained in

Table C-i; these data include all aspect angle ranges where GD/FW personnel

observed a secondary scattering phenomenon. Notice that Table C-I presents

two independent sets of data according to attenuation: The -20 dB attenuation

data are useful for gross reduction of data; the 0 dB attenuation data provide

detailed information concerning secondary scattering phenomena.

In a short pulse investigation, the experimental observables are the

radar cross section o2 and phase A. associated with each scattering center

on the t-rget. Whereas a direct measure of ,. is obtained, the estimate

C-16 4
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Table C-I C-band Short Pulse Data

OdB -20 dB

Attenuation Attenuation
H v H...

359.2 359.4 359.4 359.00.2 0.4 0.4 360.0
1.2 1.4 1.4 1.1
2.3 2.5 2.4 2.2
3.3 3.5 3.3 3.3
4.4 4.5 4.4 4.436.2 36.5 36.8 S6.7
37.2 37.5 37.8 37.7.7.9 38.6 38.8 38.838.9 39.6 39.8 39.9
39.9 40.7 40.7 40.9S40.9 41.7 41.7 41.9

42.8 46.6 47.3
43.8 47.6 48.3

49.1 50.1 48.6 49.550.1 51.1 49.6 50.651.2 52.2 50.6 51.752.2 53.3 51.5 52.753.2 54.3 52.5 53.854.3 55.4 53.5 54.9
54.5
55.555.3 56.4 56.0

56.3 57.5 57.4 57.1
57.4 179 .0 179.558.4 180.0 180.6181.8 181.7

182.8 182.8
188.6 188.0
189.4 189.1

t
j C--'
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{i Figure C-4. SHORT PULSE TARGET

of )0, is contained in the time history of the short pulse return. It is

common to reduce the short pulse return to obtain the radial depth of each

center. Figure C-5 shows the location of the three known scattering centers

on a sphere-tipped cone. Scattering center o gives rise to the specular

return from the spherical segment of the target, and centers S and 5.

are the usual contributions associated with the return from the base of a

flat-backed cone. Consider the form of the short pulse response from this

target when contributions from centers 5. , S and 5, are dominant and

resolvable. The time history begins with a return of magnitude I,, arising

i from the sphere tip. At a time i , seconds later, a return of magnitude
i is observed, where tl= / x 2 , R , c is the vielocity oi light and

A7of is the radial depth between S. and 5, (see Figure C-5). Finally, a

• third contribution having magnitude a- will be seen a time t' after the

time history begins, where e'z =  x ZA &*.r . If any adiditional contri-

butions are apparent in the tirhe history, we associate them with scattering

phenomena which are neglected in the present description.

C-18
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Figure C-5 SPHERE-TIPPED CONE USED FOR SHORT PULSE MEASURB4NTS

The aspect region of interest in this study involves use of data

measured in the interval 37.2 icE t6 58.4 degrees. The single diffraction

model predicts strong returns from centers , and S , with no contri-

bution from center S, due to shadowing. Processing of the largest return

in the -Z0 dB attenuation data measured with horizontal polarization provided

experimental results for center S . Figure C-6a compares theory and

measurement for the radial depth ZR., ; good agreement is observed over

a wide region of aspects. Figure C-6b shows that theoretical and experi-

mental radar cross sections of center .5 correspond to within 3 dB. The

agreement observed in Figure C-6a and C-6b confirmed the validity of

measurement data, and a search of corresponding 0 dB attenuation data for

new scattering phenomena was initiated. While new and significa;it contri-

butions were observed at isolated aspects, these effects persisted over

extremely short aspect intervals (several degrees). In summary, the

search for secondary scattering phenomena was unsuccessful; no systematic

return was observed in the short pulse data. The single well-defined return

was again associated with center $4 . Figure C-6c shows the resultant

C-19F S~ i
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estimates of radial depth related values of measured cross section
were unavailable due to saturation of the return from Sf when no attenuation
is employed.

C-21IC-2
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Appendix D

GENERAL EDGE DIFFRACTION COEFFICIENT

Here we derive the general form for the edge diffraction coefficient

D(#, ) to be used in a Green's function evaluation of the field scattered at

the ring discontinuity formed by the base of a flat-backed cone. First we

introduce the expression for the diffraction coefficient given by Keller. Then

the base of the cone is considered to consist locally of infinite wedges and we

obtain D( 99) as a function of position on the cone base. Finally, the

polarization reference is translated from the source to the edge to obtain

the general expression for D(0,0).

D. I DIFFRACTION COEFFICIENT FOR TWO-DIMENSIONAL WEDGE

To determine the diffraction coefficient for an edge, the expression

for D applied to a two-dimensional (infinite) wedge is taken from

Equation A-4 of Appendix A.

.1 - nis kf n , (D-1)

where xk is the angle of incidence

Sk is the angle of diffraction

n = Ykl/yr (7t, being the exterior wedge angle)

4 is the angle between the incident ray and the positive

tangent to the wedge

k is where A is the wavelength.

and the angles x and 6P introduced in Equation D-1 are defined by Keller

as described in subsection A. Z. 2 of Appendix A.

D-14
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Figure D-1 illustrates the coordinate convention employed in des-

cribing diffraction at the edge of a two-dimensional wedge having interior

angle *. An x-y-z coordinate system has been chosen such that the

x-axis is coincident with the edge of the wedge, the z-axis is perpendicular

to the rear face of the wedge, and the y-z plane is normt1 to the edge at the

point of diffraction. The angle between the incident ray and the pos'tive

tangent to the edge in denoted by 1A . The angle between the projection of

the direction of incidence in the plane normal to the edge at the point of

diffraction (y-z or azimuth plane), and the normal to the wedge (negative

x-axis) is denoted by 9 k . From Figure D-1 vie note the following relations

r - 1 (D-Z)

According to the law of edge diffraction, the family of rays diffracted at the

edge lie on the surface of a cone with apex located at the point of diffraction

(coordinate origin), and with half-cone angle / . One member of this family

of diffracted rays is illustrated in Figure D -1.

In order to proceed, we must modify the law of edge diffraction. We

assume that the diffracted ray which scatters in the direction k = Si contrib-

utes to the monostatic return despite the presence of the finite bistatic angle

2150 . This assumption is necessary to overcome the following discrepancy

in the law of edge diffraction; as aspect angle increases from the axial value,

the contribution from the ring discontinuity changes discontinuously from

equal contribution from each point on the ring to two isolated contributions

from the scattering centers. Substituting Equation D-Z into Equation D-1

and observing the above assumption, we have

CO C /o -€os .-FCos f (D -3)

where Eqation D-3 has been modified for application to the electromagnetic

case.
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Figure D-1 DIFFRACTION AT THE EDGE OF A TWO-DIMENSIONAL WEDGE
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D. ?. DIFFRACTION COEFFICIENT FOR RING DISCONTINUITY

AT BASE OF CONE

We next consider diffraction at each point P on the ring discontinuity

to arise due to an infinitesimal segment of an infinite wedge tangent to the cone

batse at that point. The geometry is illustrated in Figure D-2. Ary point

on the ring is defined by the angular parameter 0 : as 9 swings thi augh

the angular interval O -1 9 - Z1 , the corresponding points on the edge develop

the ring discontinuity in the x-y plane. We wish to determine the parameters

and 4, of Equation D-3 in terms of the generatorS. We do this by

relating Figures D-1 and D-Z in the manner shown in Figure D-3.{9

EDGE OF
INFINITE
WEDGE RING

DISCONTINU ITY

PF

Figure D-2 LOCAL INTERPRETATION OF RING DISCONTINUIT IN TERMS

OF INFINITE WEDGE

Here the edge of the wedge is visualized coincident with the x-axis as shown

in Figure D-3. For any point P lying on the ring discontinuity, the aspect

angle 0 will appear to traverse the arc AD ,where the line PD makes an

angle 9 with the v-axis.

D-4



Figure 0-3 ANGULAR RELATIONS AS A ~ET~O ~i 1  HRING DI SsCN I NU 1 y

D-5



For a particular aspect coincident with the line OP , it is seen .nat the

spherical triangle ABC in Figure D-3 relates the four parameters of interest:

9 , 4 , and 6, . The angle OLBA is a right angle, so that
CO 0 )7€. tt fc,- os€•ean&€

5si~e inG ~(D-4)

Substituting the relations above into Equation D-3, we have

VIZ Wfrk snsiZ CP w19 j &7 (D-5)CO f-'
.*,; ens -

Notice that Equation D-5 exhibits polarization dependence referred to the

plane containing the arc A0. We now must transfer this polarization
dependence to the y-z or azimuth plane. This operation is simplified by

the fact that, for an edge with circular symmetry, the polarization trans-

formation is independent of aspect angle . We choose the case of axial

incidence in Figure D-4 to illustrate the transformation of the polarization

conventions. In Figure D-4, the polarization reference for Equation D-5

is denoted by the orthogonal unit vectors i., and 4 , where the subscripts

refer to vertical and horizontal polarization cases, respectively. The

second set of vectors ( 4 * i ) shown at an or'ientation 0 to the first set

I • I

Figure D-4 POLPRIZAVION TRANSFOtMATION
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illustrate the polarization convention for the radar. Let us represent

Equation D-5 by the short-hand notation
Dv (.0, 9) -P614- - P

D (# ,)wP.i . POtd (D-6)

where DV (0, 9) [Dw (6, $)] denote the vertical (horizontal) polarization

expressions for the diffraction coefficient, and Pol,'(Pd) stand for the

polarization -independent (-dependent) components, respectively. The field

s scattering in the 1 , fy frame is proportional to

To obtain the desired principal polarization solutions to Equation D-7, we

set the incident field E,,,c equal to I4 and F . From Figure D-4, the

following relations obtain

sin eno -P(D-8)

Substituting the above relations into Equation D-7 and introducing the notation

defined in Equation D-1e find that

S cc(o, C-Os Z#PRjd)
/X = (9[,' cose P'd)(D-9)

_' _rorn the resuits of Equation D-9, we now write the gera2 diffraction

coefficient given by Equation D-5 in the proper polarization reierence.

C05 f C0.5
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Equation D- 10 is used in the definition of the scattering function *I, )
Equation C- 17 of Appendix C.
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