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SUMMARY

For many years, it has been recognized that the amplitude of the normal
deformatinr at an appropriate point on a column or on a plate could be
connected with the initial deformation at that point by a simple rela-
tionship betw=zcn actual load and classic load for the structure. The
appropriate exn:ession is

5 for _ 1] =58
P T o
|
This formula is of considerable importance in the interpretation of test
data. However, it applies only for small displacements and requires
that, in many cases, the initial imperfection be small in relation to the
relevant structure parameter. This is a restriction, since it implies
the need for high-quality test vehicles. A large displacement formula
which coes not require this constraint can be developed as follows:

2
P="P_  (1+v8)

This applies, of course, only when the deflections are large and when
the load to produce them is in excess of i1 classic critical load. A
wide range of stability problems is dea’t with in this report, and criti-
cal load values are determined from the appropriate test result by both
formulas. The results are in excellent agreement.
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B = angle
Y = constant dependent upon geometry and load process
6 = deflection at an appropriate point

60 = initial deviation

K1 = constant dependent on initial imperfection shape

K2 ~ constant dependent on deformation mode

A = wavelength in Dunn displacement function
¢ = Poisson's ratio
$=al stresa function
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INTRODUCTION

The interpretation of test data obtained from instability studies is
frequently regardec as a difficult problem. Actually, a powerful method |,
exists for its solution. The method was first given §0£ the s*t:ru’c.,l’2

but subsequent research has indicated its generality.-’ According to

this method, the deflection at an appropriate point can be related to

the classic and actual loads by the equation

PCI‘
a( = - 1) =6 (1)

0

This is the equation of a rectangular hyperbola; when plotted wéth 6/P
and 6 as variables, it gives a straight line (a Southwell Plot)< whose
slope is the classic load. The technique is restricted to the inter-
pretation of observations made over a limited range of the load-dis-
placement curve; in particular, it is restricted to displacement corres-
ponding to loads below the critical value. Thus, it is confined to
behavior within the limitations of small displacement theories. °

In an attempt to describe instability behaviour more adequately, analysts
have developed large deflection theories. This report is concermed with
interpretations made on the basis of such treatments. It is found, as
will be demonstrated herein, that there is a general relationship, applica-
ble in the postbuckling range, associating deflection with critical and
actual load parameters. Because of the well-founded analysis of the
buckling and postbuckling of a column, the demonstration starts from this
point.
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COLUMN STRUCTURES

The load-displacement relationship for a centrally compressed column is
shown in Figure 1. In this diagram, the actual and ideal motions are
portrayed. The theoretical large displacement curve is approximated by
the actual load-displacement relationship when the deflections become
large. Now, analytically, the relation between the load and the normal
displacegent of the midpoint of the colums is expressed by the following
equation

2
P=)+ FK2 B
L (2)
5 K
I - WK (3)

vhere K = sin 48 and F(K) is the appropriate elliptic integral of the
first type -P being the end slope. However, provided B is less than 25°,
the complex relationship given by equatgons (2) and (3) can be well
epproximated by the following parabola:

P-P,_ (1+%) (4)
where Tl2
A (5)

This parabola can bg plotted as a straight line if the variables are
taken to be P and 6. This line then cuts the load axis at a point

which corresponds to the critical value.

Mr. E. Way carried out a test on a slender column to verify this resu.ltao.
His data are given in Figures 2 through 4. The critical load deter-
mined from the slope of the 6/? = 6 1line of Figure 3 is in excellent
agreepent with the critical value determined by the intercept of the

P - 6 line with the load axis seen in Figure 4. Both values are in
perfect accord with the classic value computed from the formla

_Pu
12 (6)

A similar analysis mede upon & more robust column of T cross section*
gives an identical result. This is shown in Figure 5. It is interesting
to note that this colum experienced some local ylelding, vhich is
clearly evidenced in the Southwell Plot,7 Figure 6. Nevertheless, the
agreement is still excellent - pounds from the Southwell Plot as
opposed to 8050 pounds from the §< plot, Figure T.

Pcr

The case of & single member in axial compression can readily be extended

¥Test data from Hill, Reference 6.
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Figure 1. Colwm Data with Elastica Superposed.
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Figure 4. Plot of P versus 82¢or Column Data of Figure 2.
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The double straight line obtained on this plot is
characteristic of an inelastic behavior arising
from local plastic flow. (See¢ Fisher, Reference 7.)

Inelastic
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; x 1077 (in./1b)

Figure 6. Southwell Plot for Column Data of Figure 5.
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to that of the structure composed of such members. For the Southwell-
type Plots, this was established by the general analysis of Westergaard
and by the more specific analysis and tests of Gregory?)lo Recently,
Britvec and Chilverll and Roordal? have published papers which indicate
the full applicability of the P - § process for this class of structure.
Their demonstrations are based upon generalized analysis and experiment.
They give many examples and deal with a wide range of structural configu-
rations. Tke example wizhave chosen to illustrate this point is taken
from the work of Roorda  and is for the case of a two-bar frame. The
details of the loading aud the load-displacement relatlonships for clocke-
wise and counterclockwise instabilities are given in Figure 8. When the
appropriate §/P versus 6 and P - §° curves, Figures § and 10, are con-
structed, it is seen that excellent agreement is reached.

10
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PLATE STRUCTURES

Although the elastica curve has been well-known for,most of this century,
it must be recorded that the first use of the P - § method was made by
Dunnl3 for plate studies. His analyticel derivation was simplicity
itself.

He wrote a functional relationship for P, the applied load, and for the

displacement parameter o/ A. He argued that since P is independent of

}he direction in vhich the sheet buckles, P must be an even function of
o/A. Thus, we mey write a Taylor series:

| A 2 proes ll»
P=P +_ _ (f )+ (f )
oz oA Ty o/ (7)
f Pt prrue
Hence, if “o/\ is defined as u and the coefficients _ , , ete.,
are defined as A, B, C, etc., FLE
P=P +Au+Bu + (8)

Thus, for small values of u, the resulting curve is very nearly a
straight line and the intercept with the load axis should be the critical
load~

Dunn applied his method to the analysis of data which he had obtained from
compression tests on flat panels restrained by torsionally weak
stiffeners. An example of his results 1s shown in Figure 1ll. No
correlation vas made with the Southwell process. It was, in fact, common
contention at that time that the latter method is inapplicable.
Following the research of Dunn, 13 Farrarlh made use of the method for
interpreting test data on plates under axial compression. He vas
concerned with plates both simply supported and restrained. The next
applicatign appears to have been that of Munk, as referenced by Hemp and
Griffin. So far as we are aware, no other application of the method
was made until recently.
It is interesting to note, however, that Donnell,l6 in his classic paper
on the applicatian of the Southwell method performed an analysis from
which both the §~ and the 8/P versus 6 methods can be obtained. He
showed by the application of large displecement analysis to the square
plate in compression that the relationship between the displacement
functions is
6 2
P="P ——[1+3-(-1—’-15—)-(6+26)(5+6)] (9)
et (o} o

cr &6+ b
o}

If the stipulation is made that § and i)_ should be small, then this

equation reduces to t t

14
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P=P
cr5+5° (10)

Nov equation (10) is clearly identical to equation (1), the small dis-
placement equation. When the condition that & /6 be small is imposed,
equation (9) simplifies in a different fashion®to become

2
P'Pcr(l””

(11)
vhere
2
y = 3(l;u )
8t (12)

This 1s the large displacement formulation. It is 1dentical in character
to the parabolic approximation to the elastica.

The validity of the two relationships for the panel in axial compression
was demonstrated in a series of tests made on square fiber glass resin
panels. A typical load-dieplacenEDt curve is given in Figure 12. When
the aﬁpropriate 6/, - 6 and P - 6 curves are constructed, Figures 13

and 14, the linearP relationship is clearly seen for both cases. Moreover,
the values of P _ determined from the slope and intercept, respectively,
are in good agni&nent.

The influecce of initial imperfection is readily demonstrable for this
case. A panel similar to that previously described was tested with a
rormal force applied at its center. The several ].Qad-displacement curves
are portrayed in Figure 15. The 6/P - & and P - 8~ curves which corres-
pond to these load displacements are given in Figures 16 and 17. We note
that the Southwell lines are parallel, indicating that the crigica.l load
is not influenced by the imperfection. The lines on the P - § plot are
also seen to intersect on the P axis, indicating that the critical loads
determined by the large displacement method are the same. A comparison
of the values determined by the two methods indicates that they are in
excellent agreement.*

It has already beehahown experimentally that the Southwell Plot applies
to plates in shear.' The applicability of the large displacement process
will nov be demonstrated analytically and experimentally.

#In the experiments, bending strains were used instead of normal
displacements. In this class of problem, since the units of the
displacement measurement are irrelevant, the two parameters are in 1l:l
correspondence,

16
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Pcr' 2.95 X 51.6 - 152.2 16 1b
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Figure 13. Southwell Plot for Data of Figure 12.
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The analysis is based upon the Karman-Donnell finite deflection theory
for which the compatibility equation ie

1 l LA 2
Bt A = 1+2 T [(H'W) - Un'vn] (13)

for the imperfect plate. The assumptisn will be made that the elastic
lateral deflection due to load and the initial imperfection shape are giveo

by
W= }:ZAM sin = atn T (14)
- DLW otn TR etn O (15)

Thus, the internal strain energy U cen be expressed as
U= Jr& [D(Av)“—(a ) ]dxdy (16)

for *he simply supported plate.

It can be shown from equations (13) through (15) tha squilibrium in the
place of the pla.te 1s satisfied when
2 2

ZZmnAm(Am+2A' (%caﬁobcmz—ms!
n L n
(17)
Thus, from equations (14) throug,h (17), 1t followvs that

U= ZZ% Am) [ + nnaJLTb; (?KES)I‘ Lo

4 A
] g
(18)

2

The potential energy V of the shear lﬂ is
b
= & NJW l IL(" + U'),X(U + "'))yw’ (19)

By substituting equations (14) and (15) into equation (19) and carrying
out the integrations, we get

vm@iii(ﬂm A (g + M) zs,( = o

vhere m,n, p, and q are integers such that m « p and o ¢ Q are odd uumberu.

23
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When the normal variational principle is applied, we deduce after appro-
priate algebraic manipulation that

2 b b
= L"[ H 1L 3‘—% (L2:2 3 b{é ] (Agg + 28" ) (A +Apy)
. N n +n
Xy
mnpq
8 ZZ(qu F AR (2 - 0d) (0% D)
Pa -
From equation (21), 1t can be shown thaﬁ Lo bk
A legan +bm ( * 2A)( +'}
N,=—7— N e
Xy Am*l\;m ("Y)" 8t° (nv° + n°L%)°
(22)

The experi ﬁntal work to verify this theory is taken from & study made

by Gerrards The shear stress versus bending strain diagram is shown in
Figure 18. The corresponding small and large displacement plots are

given in Figures 19 and 20. ‘The critical stresses derived from these
curves are in the ratio of 1:0.988, being 4.66 ksi and 4.55 ksi, res-
pectively. This experimental value is 93 percent of the theoretical value.

24
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THERMAL. BUCKLING OF PLATES

The method can also be applied in the case of thermal buckling of a
circular plate with a central hot spot. This question was first discussed
by queinec19.whose analytical results and confirmatory test data are given
here. In the analytical study, Queinec assumed the temperature distri-
bution and the edge conditions were perfectly axis-symmetric. In the
initial condition, the plate was considered at uniform temperature and free
from initial stress. The effects of gravity were ignored as was the
variation in temperature through the thickness of the plate.

He concluded from his analysis that if the displacements were small and
the initial imperfection shape and the final deformation mode were similar,
the displacement at the center could be related to the initial imperfection
amplitude by the equation
wlo
crit - 1

%o

This expression is very similar to the Southwell equation for the strut.
On the other hand, if the initial and buckled shapes were different, then
the relationship 1s

Tc rit ﬁg
W

TS T (21)

where Kl is a coefficient whose values depend on the initial shape.

The analysis for large deflections showed that in this case the deflection
at the center of the plate and the temperature at that point are related
to the critical temperature and a constant, Xp, (vhich is associated with
the deformation mode) by the expression

2
T, = Tertt . "o
Terit c (25)

It is seen from this formula that since the Tcrit is independent of Young's
modulus the plate deflections are also independent of Young's modulus and
depend only on the Poisson ratio, p, of the material.

Clearly, when the experimental data glving W, as ¢ function of T, are
available, these equations can be used to determine Topit. .

28
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LATERAL INSTABILITY OF DEEP BEAMS

In recent research, Way20 has demonstrated the applicability of both
large and small displacement methods to the problem of lateral instabi-
lity of a deep beam loaded by concentrated force lying in the plane of
the web and passing through the centroid. He obtained excellent agree-
ment between the two methods. The load displacement which he determined
is giveg in Figure 21. The §/P versus 6 plot is shown in Figure 22, and
the P-6 1s shown in Figure 23. The critical load levels determined
from these curves are 261 grams and 253 grams which compare well with
the theoretical value of 260 grams.
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CONCLUSION

This technique gives identical results to those obtained from the well-
established Southwell process but is easier to apply in many cases. Both
methods have their own peculiar restrictions. In the large deflection
case, the load levels must be in excess of the theoretical critical value;
but it is clear from the data available that small amounts of local yield~
ing do not seriously influence the problewn. For the Southwell method to
apply, the motions must be small and the initial imperfection likewise
restricted for many cases. Thus, for the small displacement approach,
there is an implied requirement for a relatively good yuality test vehicle,
a requirement of considerable less importance for large displacement
considerations. However, in all cases, the user must be cautioned against
the application of either method when the data are such that curve fitting

techniques would be needed.
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