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SUMMARY 

For many years, it has been recognized that the amplitude of the normal 
deformatlor at an appropriate point on a column or on a plate could be 
connected wjtjv the initial deformation at that point by a simple rela-
tionship betveen actual load and classic load for the structure. The 
appropriate exoi-ession is 

This formula is of considerable importance in the interpretation of test 
data. However, it applies only for small displacements and requires 
that, in many cases, the initial imperfection be small in relation to the 
relevant structure parameter. This is a restriction, since it implies 
the need for high-quality test vehicles. A large displacement formula 
which does not require this constraint can be developed as follows: 

This applies, of course, only when the deflections are large and when 
the load to produce them is in excess of IT classic critical load. A 
wide range of stability problems is dea?.t vith in this report, and criti-
cal load values are determined from the appropriate test result by both 
formulas. The results are in excellent agreement. 

P = P (1 + y62) cr v ' 
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INTRODUCTION 

but subsequent research has indicated its generality.'3^   According to 
this method,  the deflection at an appropriate point can be related to 
the classic and actual loads by the equation 

"    =  6o ^ 

This is the equation of a rectangular hyperbola; when plotted with 6/t 
and 6 as variables,   it gives a straight line (a Southwell Plot)    whose 
slope is the classic load.    The technique is restricted to the inter- 
pretation of observations made over a limited range of the load-dis- 
placement curve;   in particular,   it is  restricted to displacement corres- 
ponding to loads below the critical value.    Thus,  it is confined to 
behavior within the limitations of small displacement theories. 

In an attempt to describe instability behaviour more adequately,   analysts 
have developed large deflection theories.    This report is concerned with 
Interpretations made on the basis of such treatments.    It is found,  as 
will be demonstrated herein,   that there  is a general rolationship,  applica- 
ble in the postbuckling range,  associating deflection with critical and 
actual load parameters.    Because of the well-founded analysis of the 
buckling and postbuckling of a column,  the demonstration starts from this 
point. 

The interpretation of test data obtained from instability studies is 
frequently regarded as a difficult problem.    Actually,  a powerful method      , 
exists for its solution.    The method was first given for the strut,-^ 
but  subsenuent   research has   indicated   l-fcs  creneraHtv. J> ^    Accnvdlna to 



CQLUMK STRUCTURES 

1 
The load-displacement relationship for a centrally compressed column is 
shown in Figure 1.    In this diagram,   the actual and ideal motions are 
portrayed.    The theoretical large displacement curve is approximated by 
the actual load-displacement relationship when the deflections become 
large.    Now,  analytically,  the relation between the load and the normal 
displacement of the midpoint of the columns is expressed by the following 
equation* 

p   M: F(K)I2 B 
2 

L (2) 

L    "    FOCI (3) 

where K = sin |ß and F(K) is the appropriate elliptic integral of the 
first type - ß being the end slope.    However, provided ß is less than 25°, 
the complex relationship given by equations (2) and (3) can be well 
approximated by the following parabola:^ 

P = P_ (1 + Y62) (4) cr 

where n2 

This parabola can be plotted as a straight line if the variables are 
taken to be P and 62. This line then cuts the load axis at a point 

I which corresponds to the critical value. 

Mr. E. Way carried out a test on a slender column to verify this result . 
His data are given in Figures 2 through k. The critical load deter- 
mined from the slope of the f>/P - 6 line of Figure 3 is In excellent 
agreement with the critical value determined by the Intercept of the 
P - 6" line with the load axis seen in Figure k. Both values are in 
perfect accord with the classic value computed from the formula 

P - nfs 
cr ' L2 (6) 

A similar analysis made upon a more robust column of T cross section* 
gives an Identical result. This is shown in Figure 5* It is Interesting 
to note that this column experienced some local yielding, which is 
clearly evidenced in the Southwell Plot,^ Figure 6. Nevertheless, the 
agreement is still excellent - 7900 pounds from the Southwell Plot as 
opposed to 8050 pounds from the 6^ plot. Figure 7. 

The case of a single member in axial compression can readily be extended 

«Test data from Hill, Reference 6. 
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Figure 1.   Coluno Data with Elastica Superposed. 
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Reference 6. 



The double straight line obtained on this plot Is 
characteristic of an Inelastic behavior arising 
from local plastic flow.    (See Fisher, Reference ?•) 

t X 10'7 (in./lb) 
P 

Figure 6. Southwell Plot for Colunn Data of Figure 5' 
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to that of the structure composed of such members.   For the Southwell- o 
type Plots, this was established by the general analysis of Westergaard 
and by the more specific analysis and tests of Gregory?'^   Recently, 
Britvec and Chilver^- and Roordal2 have published papers which indicate 
the full applicability of the P - 6   process for this class of structure. 
Their demonstrations are based upon generalized analysis and experiment. 
Ihey give many examples and deal with a wide range of structural configu- 
rations.    Tte example we^have chosen to illustrate this point is taken 
from the work of Roorda   and is for the case of a two-bar frame.    The 
details of the loading aud the load-displacement relationships for clock- 
wise and counterclockwise instabilities are given in Figure 8.   When the 
appropriate 6/P versus 6 and P - 6    curves. Figures 9 and 10,  are con- 
structed,  it is seen that excellent agreement is reached. 
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PLATE STRUCTURES 

Although the elastics curve has heen well-known foremost of this century, 
it must he recorded that the first use of the P - 6 method was made "by 
Dunnl3 for plate studies. His analytical derivation was simplicity 
itself. 

He wrote a functional relationship for P, the applied load, and for the 
displacement parameter fo/ \. He argued that since P is independent of 
the direction in which the sheet huckles, P must he an even function of 
o/\. Thus, we may write a Taylor'series: 

pi i 2     P''''  /        \k p = p + ^   (f Ar+ r    (f A) 
o  jT   0/A    v.      o/^ (7) 

f  / pi I    pi f 11 
Hence,  if   o/\ is defined as u and the coefficients _   , , etc., 
are defined as A, B, C, etc., 2'      ¥' 

P = P   + Au + Bu2 + (8) 

Thus, for small values of u, the resulting curve is very nearly a 
straight line and the intercept with the load axis should be the critical 
loadt3 

Dunn applied his method to the analysis of data which he had obtained from 
compression tests on flat panels restrained by torsionally weak 
stiffeners.   An example of his results is shewn In Figure 11.   No 
correlation was made with the Southwell process.    It was,  in fact, common 
contention at that time that the latter method is inapplicable. 

13 Ik Following the research of Dunn,  "' Farrar     made use of the method for 
interpreting test data on plates under axial compression.   He was 
concerned with plates both simply supported and restrained.    The next 
application appears to have been that of Monk, as referenced by Hemp and 
Griffin.       So far as we are aware, no other application of the method 
was made until recently. 

It is interesting to note, however, that Donnell,      In his classic paper 
on the application of the Southwell method performed an analysis from 
which both the 6   and the t/P versus 6 methods can be obtained.   He 
showed by the application of large displacement analysis to the square 
plate in compression that the relationship between the displacement 
functions is 

P cr    6+6 o 
1+ia^!i(6 + 260)(6+ 6o)| (9) ■>] 

If the stipulation is made that Ji and _o   should be small, then this 
equation reduces to t t 

14 
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Figure 11. Dunn's Experimental Curves for Deter- 
mining the Buckling Stress of the Sheet. 
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p ■ Pcr FTT 
6 

(10) 

How equation (10) is clearly Identical to equation (l), the small dis- 
placement equation. When the condition that 6 /6 be small Is Imposed, 
equation (9) simplifies In a different fashlon0to hecome 

F ' Pcr (1 * ^ (U) 

where 

3(l-n2) 

8t2 (12) 
V-       L2 

This Is the large displacement formulation.    It Is identical in character 
to the parabolic approximation to the elastics. 

The validity of the two relationships for the panel in axial compression 
was demonstrated in a series of tests made on square fiber glass resin 
panels.    A typical load-displacement curve is given in Figure 12.   When 
the appropriate 6/- -  ft and P - ft   curves are constructed, Figures 13 
and Ik,  the linear relationship is clearly seen for both cases.    Moreover, 
the values of P     determined from the slope and intercept, respectively, 
are in good agreement. 

The influence of initial imperfection is readily demonstrable for this 
case.    A panel similar to that previously described was tested with a 
normal force applied at its center.    The several load-displacement curves 
are portrayed in Figure 15.    The ft^ - 6 and P - ft    curves which corres- 
pond to these load displacements are given in Figures l6 and 17.   We note 
that the Southwell lines are parallel,  indicating that the critical load 
is not influenced by the Imperfection.    The lines on the P - 6   plot are 
also seen to intersect on the P axis,  Indicating that the critical loads 
determined by the large displacement methou are the same.   A comparison 
of the values determined by the two methods indicates that they axe In 
excellent agreement.* 

It has already been^hown experimentally that the Southwell Plot applies 
to plates in shear.      The applicability of the large displacement process 
will now be demonstrated analytically and experimentally. 

*In the experiments, bending strains were used instead of normal 
displacements.    In this class of problem,  since the units of the 
displacement measurement are irrelevant, the two parameters are in 1:1 
correspondence. 

16 
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The analyali Is baaed upon the Kanaan-Dome 11  finite daflectlon theory 
for which the compatibility equation la 

Et    ü 1 + 251 (w,     )2.w    wl 
(13) 

for the imperfect plate.    The assunptlxi vlll be aade that the elaatlc 
lateral deflection due to load and the Initial la^erfectiao abape art glveo 

V = YT A'     .in 5? .U ??£ 
£_, t_j    nni L 0 

Thus, the internal strain energy U can be expreaaed aa 

ü=Jbfl[D(42v)2^-(62l)2)^ 
OO^ ' 

(Ik) 

(15) 

(16) 

for toe singly supported plate. 

It can be shown from equations (13) through (13) the   equlllbrlua In the 
place of the plate is satisfied when 

A2*       Et" A 9 = 
ai/r,2 

m n \ a Ln / 
X (It) 

Thus, from equations (lU) through (17),  It foil owe that 

* %\ 

The potential energy V of the shear H      la 

v = *N      r Rw ♦ W'),x(W ♦ W),yd«ly 

(Ifl) 

(19) 

By substituting equations (lit) ana (15)  Into equation (19) art carrying 
out the Integrations, we get 

v - ""Jin (v ^ <v * »'^ T? r?8 5> B n p q ^ ^*    (P - ■ )  (n - q ) (20) 

where m,n, p,  and q are Integers such that nap and n t q art odd uoabrr.i. 

^3 



When the normal varlatlonal principle Is applied, we deduce after appro- 
priate algebraic manipulation that 

k 
DrrLb 

N 
xy 

m 1 + 3(l-u )   LV * *>* 
8t (m t)   + n L ) (\n + ^'mnXV^' 

«LI' 
P   <1 

smpcL 

pq pq7  (P    - m ) (n - q ) 

From equation (21),  It can be shown that 
2 

N     = 
xy 

(N    ) ♦ ^ 
L n   + b m 

Zi!    /"2"§        2^x2 8t      (m b   + n L ) 

(21) 

uDÜ TTtn       ywyi JDD 

(22) 

The experimental work to verify this theory Is taken from a study made 
by Gerrardi-"     The shear stress versus bending strain diagram is shown in 
Figure 18.    The corresponding small and large displacement plots are 
given In Figures 19 and 20.    The critical stresses derived from these 
curves are In the ratio of 1:0.988, being 4.66 ksl and U.55 ksl,  res- 
pectively.    Hils experimental value is 93 percent of the theoretical value. 
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Figure 16.    Shear Stress Versus Bending Strain for a 
Rectangular Plate,  Reference 18. 
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THERMAL BUCKLING OF PLATES 

The method can also be applied In the case of thermal buckling of a 
circular plate with a central hot spot.    This question was first discussed 
by y^uelnec^.vhose analytical results and confirmatory test data are given 
here.    In the analytical study,   >juelnec assumed the temperature distri- 
bution and the edge conditions were perfectly axls-synmetrlc.    In the 
Initial condition,  the plate was considered at uniform temperature and free 
from initial stress.    The effects of gravity were Ignored as was the 
variation in temperature through the thickness of the plate. 

He concluded from his analysis that if the displacements were small and 
the initial imperfection shape and the final deformation mode were similar, 
the displacement at the center could he related to the initial imperfection 
amplitude by the equation 

wo = T    Wl0 (23) 
0        crit - 1 

To 

This expression is very similar to the Southwell equation for the strut. 
On the other hand,  if the initial and "buckled shapes were different, then 
the relationship is 

-^- 1 + KL      ^ 

where IC, is a coefficient whose values depend on the initial shape. 

The analysis for large deflections showed that in this case the deflection 
at the center of the plate and the temperature at that point are related 
to the critical temperature and a constant. Kg, (which is associated with 

\ the deformation mode) by the expression 

T    - T ^o     1crlt 

■$ Tcrlt Vy (25) 
It is seen from this formula that since the Tcrlt i8 independent of Young's 
modulus the plate deflections are also Independent of Young's modulus and 
depend only on the Foisson ratio,  \x. of the material. 

Clearly, when the experimental data giving W0 as e function of T0 are 
available,  these equations can be used to determine Tcrlt» 

28 
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LATERAL INSTABILITY OF DEEP BEAMS 

20 
In recent research, Way     has demonstrated the applicahility of both 
large and small displacement methods to the problem of lateral instabi- 
lity of a deep beam loaded by concentrated force lying in the plane of 
the web and passing through the centroid.   He obtained excellent agree- 
ment between the two methods.    The load displacement which he determined 
is given In Figure 21.    The 6/p versus 6 plot is shown in Figure 22,  and 
the P-6    is shown in Figure 23.    The critical load levels determined 
from these curves are 26l gramF and 253 grams which compare well with 
the theoretical value of 260 grams. 
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CONCLUSION 

This technique gives identical results to those obtained from the well- 
established Southwell process but is easier to apply in many cases. Both 
methods have their own peculiar restrictions. In the large deflection 
case, the load levels must be in excess of the theoretical critical value; 
but it is clear from the data available that small amounts of local yield- 
ing do not seriously influence the probleu.. For the Southwell method to 
apply, the motions must be small and the initial imperfection likewise 
restricted for many cases. Thus, for the small displacement approach, 
there is an implied requirement for a relatively good quality test vehicle, 
a requirement of considerable less importance for large displacement 
considerations. However, in all cases, the user must be cautioned against 
the application of either method when the data are such that curve fitting 
techniques would be needed. 
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