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Gradient Methods in Mathematical Programming 

Part 1 - Review of Previous Techniques1 

by 

A. MIELE , H.Y. HUANG3, ANDj.W. CANTRELL4 

Abstract. This report is the first of a series on gradient methods in mathematical 

programming. It considers the problem of minimizing a function f(x), where f is a 

scalar function and x is an n-vector whose components are unconstrained. For this 

problem, three previous methods are reviewed, namely, the ordinary gradient 

method, the conjugate-gradient method, and the variable-metric method. A 

new intuitive derivation of the last two algorithms is presented. 
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1. Definitions 

The following definitions are used throughout the paper: 

(a) The symbol x denotes the position vector 

whose scalar components are x\x^f.. ..x11. 

(b) The symbol f denotes a scalar function of the vector x, that is 
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(1) 

f = f(x) (2) 

<c) The symbol g denotes the column vector 

âf/òx 

g(x) = 

òf/dx 

?if/5x 

(3) 

whose components are the first partial derivatives of f with respect to the scalar variables 

12 n . 
x ,x ,. . ,x . This is the gradient of the function f. 

f 
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(d) The symbol H denotes the square matrix 

H(x) 

a2f/àxV ^/¾1¼2 aVaxSx“ 

ô2f/àx2àx2 ô2f/âx2dxD 

âV^àx1 <?f/*n*K2.aVsxV1 

(i) 

whose components are the second partial derivatives of the function f with respect to the 

scalar variables x*,x2,.. .,xn. 

(e) The symbol x denotes the nominal point. The symbol x denotes the point 

following x. The symbol x denotes the point preceding x. 

(f) The symbol ?>(...) denotes the displacement leading from a point to the next 

point. Therefore, the following relations hold: 

x = x + 6x 

x =x + 6x 
(5) 

(fl) The superscript T denotes the transpose of a matrix. 

■ 
»■i 



2. Introduction 

A basic problem oí mathematical programming is that of finding the minimum of 

a function 

f = f(x) (6) 

where f is a scalar function and x is an n-vector. If the n components of the vector x are 

unconstrained, the extremum of (6) occurs when the following necessary condition is 

satisfied: 

gW “ 0 (7) 

where g is the gradient of the function f with respect to the vector x. For a minimum, 

the matrix of the second derivatives (4) must be positive definite at the point x defined 

by (7). 

If the function (6) is quadratic, the gradient g(x) is linear with respect to x. Hence, 

Eq. (7) can be solved analytically. On the other hand, if (6) is nonquadratic, the gradient 

g(x) is nonlinear. This being the case, approximate methods must be employed to solve 

Eq. (7). One possible method consists of quasilinearizing (7) about a nominal point. 

Another method, the descent method, consists of constructing corrections fa leading 

from a nominal point x to a varied point x such that 

-,i 
f(x) < f(x) (8) 

Thus, by an iterative procedure (that is, through successive decreases in the value of 

the function f), it is hoped that the minimum of f is approached to any desired degree of 

accuracy. 



This report is the first oí a series on gradient methods in mathematical programming. 

II reviews three of the existing techniques, namely, the ordinary gradient method, the 

conjugate-gradient method (Refs. 1-3), and the variablewtric method (Refs. /,-5). For 

the last two methods, a new intuitive derivation is presented. 
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3. Ordinary Gradient Method 

To first-order terms, the values of the function (6) at the varied point and the 

nominal point are related by 
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f(x) ï f(x) + 6f(x) (9) 

where the first variation 6i(x) is given by 

6f(x) = (x)6x 

with 

fa = X- X 

(10) 

(11) 

Also to first-order terms, the greatest decrease in the value of the function is achieved 

if the first variation (10) is minimized. Here, we limit our analysis to those variations 

6x which satisfy the constraint 

K = faT6x 

where K is a prescribed quantity. 

3.1. Derivation of the Algorithm. Standard methods of the theory of maxima and 

minima show that the fundamental function of this problem is the scalar function 

F = g^ (x)6x + (l/2a)fa^fa 

I 
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where l/2a is a constant Lagrange multiplier. The optimum system of variations must 

be such that 

G(fa) = 0 (14) 

where G is the gradient of the function F with respect to the scalar variables 6k\ fix 

n 
•.. In the light of (13), the explicit form of (14) is the following: 

fix = - og(x) (15) 

and shows that the optimum correction fix has the gradient direction. This is why the 

method is called the ordinary gradient method. Upon substituting (15) into (12), we see 

that 

K = a2gT(x)g(x) (16) 

Therefore, a one-to-one correspondence exists between the value of the constant K and 

the value of a. This being the case, one can bypass prescribing K and reason directly 

on a, as in the considerations which follow. 

Qgscent PrQperty. Upon combining Eqs„ (10) and (15), we see that the first 

variation becomes 

6f(x) = - ogT(x)g(x) (J7) 

and is negative for a > 0. Therefore, if a is sufficiently small, the function f decreases. 

This guaranteed decrease of f at every step is the most important property of the gradient 

method. 
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3 -3 Optimum Stepsize. The next step is to assign a value to the parameter a, 

the stepsize of the gradient method. There are two situations to be avoided: (a) if the 

stepsize a is exceeedingly small, the decrease of the function is guaranteed but very small; 

therefore, the number of iterations necessary for convergence is large; and (b) if the 

stepsize a is too large, the first variation may be only a small part of the total variation; 

therefore, the function f may actually increase. In order to prevent the occurrence of 

becomes 

1 
* 

I 
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Therefore, Eq. (20) becomes 
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gT(x)g(x) = 0 

and shows that the gradient g(x) is orthogonal to the gradient g(x). 

3.4. Summ^theA^^ Equations (15), (17), and (22) summarize the 

general properties of the ordinary gradient algorithm. They are valid regardless of the 

function f(x), as long as it is continuous and has continuous first derivatives. 

For any given iteration, the algorit. * can be summarized as follows: (a) for a 

given nominal point x, the gradient g(x) is known from Eq. (3); (b) the optimum value of 

the stepsize a must be determined by solving Eq. (20) with a one-dimensional search, 

as in Section 7; (c) the correction fix to the position vector x is determined using Eq. (15) 

and (d) the new position vector x is computed through Eq. (11). Next, the position vector 

x becomes the nominal point x for the subsequent iteration, and the procedure 

1« repeated until a predetermined stopping condition is satisfied (see Section 8). 
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4. Mo«Jifications of the Ordinary Gradient Method 

The ordinary gradient method is conceptually simple and stable in that the function 

f(x) is reduced at every iteration; however, it has the drawback of slow convergence. 

For this reason, methods have been developed to reduce the number of iterations 

required for convergence. In this connection, let the displacement vector fo be written 

in the form 

AAR-55 

6x = -ap 

where p is the search direction. The following are particular forms of the vector p: 

P = g<x) + q 

(23) 

(24) 

and 

P = Ag(x) (25) 

where q is an n-vector and A is an nx n symmetric matrix. In Section 5, the conjugate- 

gradient algorithm is derived by reasoning on (24); in Section 6, the variable-metric 

algorithm is derived by reasoning on (25). 

i 
I 
I 



5. Conjugate-Gradient Method 

In this section, we consider the algorithm 

X = X + 6x, 6x = -op , p = g(x) + q 

where q is an n-vector to be specified. The first variation of the function (6) is given 

by Eq. (10) which, in the light of (26), becomes 

6f(x) = -a[gT(x)g(x)+gT(x)q] 

We note that g (x)g(x) >0. Therefore, for a > o, the descent property of this algorithm 

is ensured if one chooses q so that 

gT(x)q = 0 (28) 

If Eqs. (26-1) and (26-2) are combined, the position vector at the end of any 

iteration becomes 

X = X -op (29) 

For a given point x and a given vector p, Eq. (29) defines a one-parameter family of 

points x for which the function f takes the form 

f(x) = f(x - op) = F(a) (30) 

The greatest decrease in the function F(tx) occurs if the parameter a satisfies the 

following necessary condition: 

F =0 
a (31) 

'■l;,;. tfStkí :1 



12 AAR-55 

On account of (30), the following relation holds: 

Fa * -gT<*)p 

Therefore, Eq. (31) becomes 

(32) 

gT(x)p = 0 (33) 

and show» that the gradient g(x) is orthogonal to the search direction p. 

Next, we apply Eq. (33) to the previous iteration and obtain 

gT(x)P=0 

By comparing (28) and (34), we conclude that one possible choice of the vector q is the 

following: 

q =YP 

where Y is a constant. As a consequence, the algorithm (26) can be rewritten as 
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The greatest decrease in the function F(a, Y) occurs if the parameters a, Y satisfy the 

following necessary conditions: 

F = 0 , F = 0 
a y 

On account of (36-3) and (38), the following relations hold: 

' V-agT(x)p 

Therefore, Eqs. (39) become 

gT(3p =0 , gT(x)p = o 

and show that the gradient g(x) is orthogonal to the search directions p and p. A 

mathematical consequence of Eqs. (36-3) and (41) is that 

gT(x)g(x) = 0 

(39) 

m 

(41) 

(42) 

showing that the gradients g(x) and g(x) are orthogonal. 

5 *1 ' j&gdratic Function. Now, consider the particular case of a quadratic function, 

that is, a function of the form 

f(x) = a + bTx + jx^Hx (43) 

where a is a constant scalar, b is a constant n-vector. and H is a constt t, symmetric 

n X n matrix. For this function, the gradient is a linear function of x, that is, 

g(x) = b + Hx (44) 
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Since 

g(x) = b + Hx (45) 

relations (44) and (45) imply that 

g^) = g(x) + H6x = g(x) -oHp (46) 

Next, we introduce Eqs. (46) into (41) and, after laborious manipulations, obtain e 

solutions (Ref. 1) 

a = . Y = (47) 
p‘hp g S)g(í) 

where p is given by (36-3). 

For a quadratic function, Hestenes and Stiefel (Ref. 1) proved that, if the first 

step of the descent process is a gradient step, the following relations hold: 

gT(x)g(xJ=0 . gT(x)p* = 0 , pTHp, =0 (48) 

where x„ denotes any state preceeding x. Equation (48-1) states that the gradient at each 

iteration is orthogonal to the gradient at every previous iteration. Equation (48-2) states 

that the gradient at each iteration is orthogonal to the search direction at every previous 

iteration. Finally, Eq. (48-3) states that the search direction at each iteration and the 

search direction at every previous iteration are conjugate with respect to the constant 

matrix H; this is why the algorithm is called the conjugue-gradient method. The algorithm 

(36) with a and y defined by (47) reduces the gradient to zero in no more than a steps; 

therefore, the minimum of f(x) is reached in no more than n steps. 



... 
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5'2‘ ~9UadratíC Functi0”- For a nonquadratic function, solving Eqs. (41) for 

a and Y requires a nvo-dimensional search (Ref. 6). The difficulty of this process can 

be avoided if one optimizes a exactly aud uses an approximate value for Y. namely, that 

given by Eq. (47-2). This leads to the algorithm (Ref. 3) 

X - X + 6x, 5x = -op , p = g(x)+I_iïteL^ 

g (x)g(x) 
(49) 

in which T is optimized by searching for the minimum of f along the direction defined by 

(49). Theoretically, therefore, the optimization of a requires that the relation (41-1) 

be satisfied. 

For any iteration except the first, the complete algorithm can be stated as follows- 

(a) lor a given nominal point x, the gradient g(x) is known; since the gradient g(x) and the 

search direction p are known from the previous iteration, the search direction p can be 

determined with Eq. (49-3); (b, the optimum stepsize o must he determined by minimizing 

the function f along the search direction p. as in Section 7; (c) tee correction iw to the 

position vector x is determined using Eq. (49-2); and (d) tee new position vector xis computed 

through Eq. (49-1). Next, the position vector x becomes tee nominal point for the 

subsequent iteration, and the procedure is repeated until a predetermined stopping 

condition is satisfied (see Section 8). To start the algorithm, one bypasses (49-3) and 

sots p = gfx), equivalent to stating that the first step is a gradient step. 

In closing, tee following comments are pertinent; (a) in the conjugate-gradient method, 

it is important that tee stepsize o be determined accurately, while this is not tee case with 

tee ordinary gradient method; (W theoretical considerations and numerical experience 

show the desirability of restarting the process every n or „ + 1 iterations, that is, resetting 

P ~ g(x) every n or n + 1 iterations (Ref. 3). 
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6. Variable-Metric Algorithm 

In this section, we consider the algorithm 

x^x + fac, 6x = -op, p = Ag(x) (5°) 

wi ;re A is a symmetric n x n matrix to x specified. The first variation of the function 

(6) is given by Eq. (10) which, in the light of (50), becomes 

1 
I 
I 

i 
li 
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in which the only unknown is M. Equation (55) admits the solution 

aà - ^yT ÄflgaF 
T T 

y Ag 2 

where y and z denote arbitrary n-vectors. Therefore, the matrix A must he updated 

according to the relation 

(56) 

A = A + 
6x/_ 

y ûg 

Â A- T 
. A^2_ 

Ta- z Ag 
(57) 

In particular, if one chooses 

y = 6* , z = AAg (58) 

Eq » (57) becomes 

a=í+««I.âm!â_ 
i^T . , #>T^ . a 
6x Ag Ag A£g 

(59) 

Note that the second and third matrices on the right-hand side erf (59) are symmetric; 

therefore, if A is symmetric, A is also symmetric . 

6.1. Quadratic Function. Now, consider the particular case of a function having the 

form (43). For this quadratic function, the following properties can be shown to hold 

(Refs. 4-5 and 7-8): 

(a) If the initial matrix A is chosen to be the inverse of the second derivative matrix 

H, that is, if 
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at the initial point, the variable-metric algorithm exhibits one-step convergence. This 

is due to the fact that the variable-metric algorithm becomes identical with quasilinearization. 

(b) If ti*e initial matrix A is chosen to be positive definite, ?.ny subsequent matrix A 

is also positive definite. With this understanding, the following relations hold: 

gT(x)p. = o, pTHp, =0 (61) 

Equation (61-1) states that the gradient at each iteration is orthogonal to the search 

direction at every previous iteration. Equation (61-2) states that the search direction at 

each iteration and the search direction at every previous iteration are conjugate with 

respect to the constant matrix H. As the algorithm progresses, the matrix A tends to the 

inverse of the second derivative matrix H, and relation (60) becomes satisfied exactly 

when convergence is achieved. The algorithm (50), with A updated according to (59), 

reduces the gradient to zero in no more than n steps; therefore, the minimum of f(x) is 

reached in no more than n steps. 

(c) As a particular case of (b), the initial matrix can be chosen to be 

I 
! 



Tlie stepsize a is to be optimized by searching for the minimum of f along the direction 

defined by (63). 

For any iteration except the first, the complete algorithm can be stated as follows : 

(a) for a given nominal point x, the gradient g(x) is known; since g(x), 6x, Â are known 

from the previous iteration, the matrix A can be computed with (64) and the search direction 

p with (63-3); (b) the optimum stepsize a must be determined by minimizing the function f 

along the search direction p, as in Section 7; (c) the correction 6x to the position vector x 

is determined using Eq, (63-2); and (d) the new position vector xis computed through 

Eq. (63-1). Next, the new position vector x becomes the nominal point for the subsequent 

iteration and the procedure is repeated until a predetermined stopping condition is 

satisfied (see Section 8). To start the algorithm, one bypasses (64) and sets A equal to 

any symmetric, positive-definite matrix (for instance, the identity matrix). 

In closing, the following comments are pertinent, (a) in the variable-metric method. 
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7* Search Technique 

In each of the previous methods, the stepsize a must be optimized. In this section, 

we present techniques to solve the equation 

F (a) = 0 (65) 
a 

that is, to find the minimum of the function F(a) given by Eq. (19) for the ordinary gradient 

algorithm or Eq. (30) for the conjugate-gradient and variable-metric algorithms. Since 

the techniques in question involve the consideration of the first derivative F^ and perhaps 

the second derivative F , we summarize these derivatives below. aa 

For all of the previous methods, we have 

F (a)= -gT(x)p , F (a)=pTH(x)p (66) 
a, cm 

where 

£ = a - op (67) 

The search direction is given by p = g(x) for the ordinary gradient method, Eq. (49-3) 

for the conjugate-gradient method, and Eq. (63-3) for the variable-metric method. Of 

course, Eq, (6C-2) requires that the second-derivative matrix H(x) be explicitly available. 

If this is not the case, one can use the difference scheme 

Foa(a) = (1/2e)[Fa(a + 0) " Fa(a ' 0)1 <68) 

= (l/29)[g(K + 9p) - g(x - 0p)JTp 

In practice, one may chooee 

e = |p| 

where is a small number. 

(69) 
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7.1. ÇuhuMnterjiolation. Lut the values of the function F(a) and its derivative 

Pa(a) he computed for two different values of a, namely, aJ and n with a > a ^0. 
* 2 1 

If a.j and are such that 

F (ol ) < 0 , F 
a i a(a2> > 0 (70) 

then the minimum of the function F(a) occurs for some value a in the range 

a1<a<o2 (71) 

In this range, we represent the function F(a) with the cubic 

F(a) = A + B(a- ap + C(a - a^2 + D(a- )3 

whose first and second derivatives are given by 

(72) 

Fa(a) - B + 2C(a -0^) + 3D(a - aJ )2 , F^a) = 2C + 6D(a - ttj ) (73 ) 

The scalar coefficients A, B, C, D are determined by requiring (72) to match the ordinate 

and the slope of the curve F(a) at a] and cy Therefore, one has to solve the linear 

equations 

Ffap = A , F^) = A + 8(^ - ap + Cfo, - - a/ 

Fa(ai) = B’ Fa(a2) = B + 2C<a2 ' ai) + ^ 

(74) 

Once the coefficients of the cubic (72) are known, the optimum value of a is determined by 

the condition (65) Therefore, in the light of (73), one arrives at the solution 

n =o1 +(1/3D)[-C+,/(C -3BD)] (751 
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At this point, one recomputes the function F(a) ami the derivative F (a). Then, the 
a 

process is iterated until a predetermined stopping condition is satisfied. For instance, 

one may require that 

|Fa(a)l se2 (76) 

or that 

|F (a)|se |F (0)1 
a o a (77) 

where e2 and are prescribed small numbers. 

7.2. Quasilinearization. An alternate technique for computing the optimum stepsize, 

that of quasilinearization with built-in safeguards to ensure that the function decreases at 

every step of the iterative search, is now presented. Let 

6a = a - a (78) 

denote the correction to a starting from an arbitrary nominal value a . If cmsilinearization 
o 

is applied to Eq. (65), one obtains the linear algebraic equation 

F (a )6a + F (a ) = 0 aa o a o' 

Next, we imbed Eq. (79) in the more general equation 

where u denotes a scaling factor and p a direction factor such that 

0 u < 1 , 0=+1 

(79) 

(80) 

(81) 

I 
i 
I 
I 
I 
I 
( 
ï 
I 
I 
I 
I 
I 
I 
I 
.. 

a 
a 
a 
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liquation (HO) admits the solution 

60 = •“» WFaa(oo> <82> 

Flic direction factor p is determined in such a way that the first variation 

6F(a„) = Fa(a0)«a (83) 

is negative. From (82)-(83), we obtain 

6F(ao) = -UOF^/F^ (a0) (84) 

Therefore, 6F(aQ) is negative if the direction factor p is chosen as follows: 

° = sign (85) 

Because of this choice, the correction (82) becomes 

^ ■uFa<0«,/,Faa(lo)' <*6) 

To perform the search, a nominal value must be given to aQ. Then, one sets u = 1, 

computes 6a from Eq. (86) and a from Eq. (78). If F(a) < F(ao), the scaling factor u= 1 is 

acceptable. If F(a) > F(ao), the previous value of »j must be replaced by some smaller 

value in the range 0 ■ u < 1 until the condition F(a) < F(ctQ) is met; this can be obtained 

through bisection, that is, by successively dividing the value of a by 2. At this point, the 

search step is completed. The value obtained for a becomes the nominal value a for 
o 

the next search step, and the procedure is repeated until a desired degree of accuracy is 

obtained, that is, until Ineq. (76) or (77) is satisfied. In the absence of better information, 

the first step of the search procedure can be made with a =0. 



8. Termination of the Algorithm 

One way to terminate the gradient algorithm is to impose a condition on the modulus 

of the gradient, for example, 

gT(x)g(x) « e4 (87) 

where is a prescribed small number. If the function f(x) is rather Hat in the neighborhood 

of the minimum, then Eq. (87) may not yield precise coordinates. In this case, the 

following additional condition is suggested: 

öxT6x s e5 (88) 

where is a prescribed small number. 
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