UNCLASSIFIED

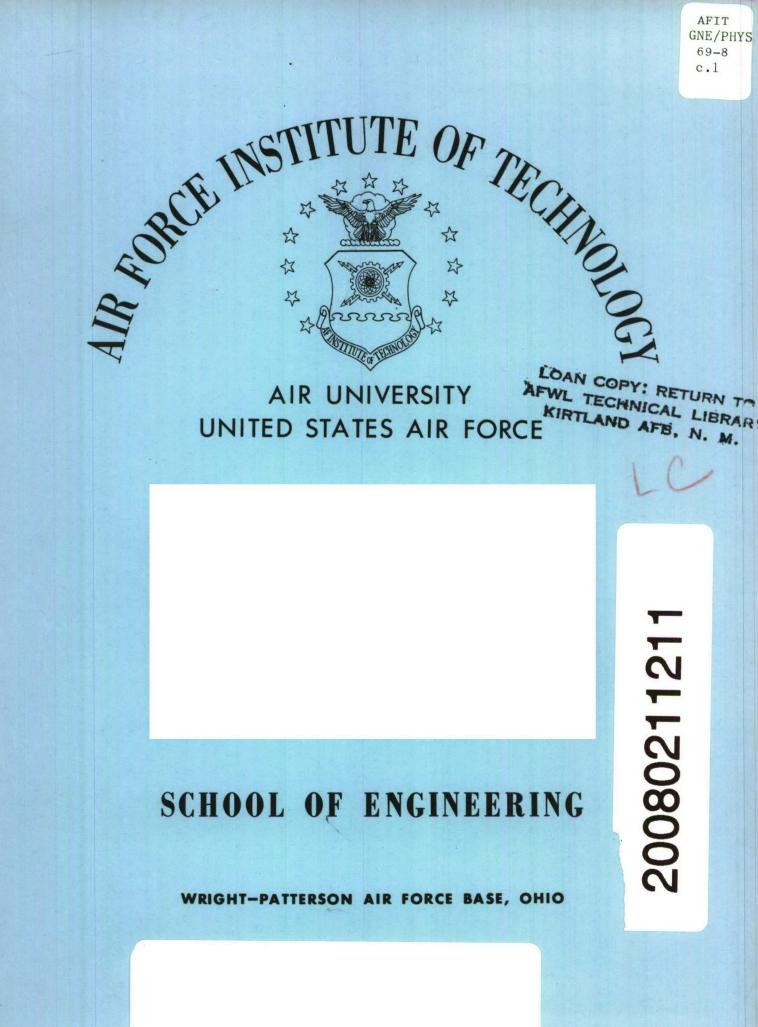
AD NUMBER

AD855850

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited


FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JUN 1969. Other requests shall be referred to Air Force Institue of Technology, Attn: AFIT-SE, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFIT ltr dtd 22 Jul 1971

THIS PAGE IS UNCLASSIFIED

AD-855850

NEW BARNYARD: A MULTIGROUP

NEUTRON CROSS SECTION CODE

THESIS

GNE/PHYS 69-8

BRUCE D. GREEN First Lieutenant USAF

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Dean of Engineering, Air Force Institute of Technology (AFIT-SE), Wright-Patterson AFB, Ohio 45433

AFLC-WPAFB-JUL 69 37

NEW BARNYARD: A MULTIGROUP NEUTRON CROSS SECTION CODE

THESIS

Presented to the Faculty of the School of Engineering of The Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Bruce D. Green, B.S.N.E.

First Lieutenant USAF

Graduate Nuclear Engineering

June 1969

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Dean of Engineering, Air Force Institute of Technology (AFIT-SE), Wright-Patterson AFB, Ohio 45433

PREFACE

Initially, my thesis project was to set up Gulf General Atomic's multigroup neutron cross section code, GGC-4, on an IBM 7094 digital computer. I was to understand the theory used in the code, be able to operate the code well enough to document its operation for others (produce a local user's manual) and compile a source book of neutron group cross sections for weapons problems.

I obtained the GGC-4 code and the GGC-4 cross section library (data for 45 nuclides) from the Air Force Weapons Laboratory where a CDC 6600 digital computer was used to copy the code and the cross section library onto magnetic tapes. I was unable to program the GGC-4 code on the IBM 7094 due to what appeared to be insufficient computer memory, but with the possibility of it being due to a"compatibility" problem with the CDC 6600 output tape being used on the IBM 7094. I was eventually successful in obtaining data for the 45 nuclides from the GGC-4 data tapes.

My thesis advisor, Dr. C. J. Bridgman, and I decided to write our own code for the IBM 7094. This code calculates the zero moment of the neutron flux which is used to flux weight the GGC-4 cross section data. This code was the bulk of my thesis work. In the course of this work, I was able to obtain two new ENDF/B neutron cross section data tapes from Oak Ridge National Laboratory. I was able to use these ENDF/B data tapes with minor modifications to my original

i

moments code.

A few words should be said about the title of my code, New Barnyard. The Resident School of Engineering at AFIT has a cross section code called Old Barnyard that calculates group cross sections for the energy range 10 MeV to thermal. Old Barnyard's cross section library was updated by using the cross section results from my code as the "new" input library to Old Barnyard. Thus, the idea occurred to me of calling my code New Barnyard.

I am indebted to several people in connection with this thesis: to my advisor, Dr. C. J. Bridgman, for guidance and counseling; to Lieutenant Robert Barry of the Air Force Weapons Laboratory, Kirtland, AFB, for help with the GGC-4 library tapes; to my classmates, Captains Jim Fisk and Robert Winchester, and Lieutenants Gary Knutson and Fred Damm, for many interesting discussions on transport theory, and to my typist, Mrs. Bobbie Thompson. Finally, I express special thanks to my wife, Cely, for her encouragement and good humor throughout my thesis study.

ii

CONTENTS

		Page
Preface	• • • • • • • • • • • • • • • • • • • •	i
List of	Symbols	v
List of	Tables	viii
Abstract	t	ix
I.	Introduction	1
	Purpose and Method	1
	Sequence of Development	1
II.	Theory	3
	Flux Weighting	3
	Zero Moment of the Neutron Flux	4
	Solution of the Zero Moment Equation	11
III.	The Code	14
	The Cross Section Data Tapes	15
	The Numerical Equations Used in the Code.	19
	Output Features of the Two Source Decks	24
IV.	Operating Instructions	25
	Preparation of Input Data, Source Deck Using GGC-4 Data Tape	26
	Preparation of Input Data, Source Deck Using ENDF/B Data Tapes	29
	Control Cards, GGC-4 Source Deck	36
	Control Cards, ENDF/B Source Deck	38
	Composite Deck Setup	38

CONTENTS (contd')

V.	Some	e Sample Results and Conclusions	40
		Zero Moment of the Neutron Flux Aluminum	40
	Seve	en Group Cross Sections for Carbon	41
	Six	Group Cross Section Set for Nitrogen	46
	Cond	clusions	53
Bibliogra	aphy		55
Appendix	A:	GGC-4 Source Deck of New Barnyard	56
Appendix	B:	ENDF/B Source Deck of New Barnyard	67
Appendix	C:	Glossary of Computer Program Symbols	76
Appendix	D:	The 99 Fine Group Structure	84
Appendix	E:	The Structure of the Data Tapes	87
Appendix	F:	99 Group Fission Source Spectrums	100
Appendix	G:	Sample Problems	106
Vita:			

LIST OF SYMBOLS

The following mathematical symbols and nomenclature are used in this study.

SYMBOL	MEANING
D	Diffusion Coefficient, cm
ev	Electron Volts
Е	Energy, ev
F [g(x)]	Fourier Transform of g(x)
Ν	Number density of the mixture, Atoms per barn-cm (atoms x $10^{-24}/\text{cm}^3$)
$P_n P_1$	Legendre Polynomials
R	Reaction rate, events/cm ³ -sec
S	Neutron source
х	Spatial dimension, cm
δ(x)	Dirac delta function
$ \theta_o^o $ $ \theta_{on}^P $	Zero moment of the neutron flux
Θ_{on}^{P}	Pth derivative of the zero mo- ment of the neutron flux in group n
μ	Cosine of the scalar scattering angle
б	Microscopic cross section, barn
dΩ	Differential solid angle

v

LIST OF SYMBOLS (Contd')

SYMBOL	MEANING
∑s (E'→E,µo)	Macroscopic differential scatter- ing transfer cross section, cm ⁻¹ /steradian
$\sum_{sn} (E' \rightarrow E)$	Macroscopic scattering transfer cross section coefficient for scattering from energy E' to energy E associated with the n-th Legendre polynomial term in the expansion of the differential scattering transfer cross sec- tion, cm ⁻¹
∑ _{sn} (i→j)	Macroscopic scattering transfer cross section coefficient for scattering from group i to group j for the n-th Legendre polyno- mial term
PN $(i \rightarrow j)$	PN scattering transfer cross sec- tion which is equal to $(2n + 1)*$ \sum_{sn} (i \rightarrow j) with N=n.
(o)	Zero moment
\sum_{tr}^{K}	Macroscopic transport cross sec- tion for the K-th broad group
\sum_{a}^{K}	Macroscopic absorption cross sec- tion for the K-th broad group
Σ_{t}^{K}	Macroscopic total cross section for the K-th broad group
Σ_{f}^{K}	Macroscopic fission cross section for the K-th broad group
ν	Average number of fission neu- trons per fission event
NNUK	Number of nuclides in the problem

vi

.

		LIST OF SYMBOLS (Contd')	
	SYMBOL	MEANING	
NBBG		Number of broad groups in the problem	
φ		Neutron flux, neutrons/cm ² -sec	
$\overline{\mu}$		Average cosine of the scattering angle	5
χ_n		Fraction of the neutron source emitted in the n-th group	

LIST OF TABLES

Tab1e		Page
I.	Data Tape A, GGC-4 Data	31
II.	Data Tape B, ENDF/B Data	33
III.	Data Tape C, ENDF/B Data	34
IV.	Flux Spectrum for Aluminum Calculated in New Barnyard and GGC-4	43
۷.	Broad Group Structure of the 7 Group Cross Section Set for Carbon	44
VI.	Total Cross Sections for Carbon Calc- ulated in New Barnyard and GGC-4	44
VII.	PO Scattering Transfer Cross Sections for Carbon Calculated in New Barnyard	45
VIII.	Broad Group Structure of the 6 Group Cross Section Set for Nitrogen	49
IX.	Comparison Between Absorption Cross Sect- ions Which Were Calculated in the GGC-4 Version and the ENDF/B Version of New Barnyard for Nitrogen	49
Χ.	Comparisons Between Total Cross Sections Which Were Calculated in the GGC-4 Version and the ENDF/B Version of New Barnyard for Nitrogen	50
XI.	Comparison Between PO and Between P1 Scat- tering Transfer Cross Sections Which Were Calculated in the GGC-4 Version and the ENDF/B Version of New Barnyard for Nitrogen.	51
XII.	Comparisons Between P2 and Between P3 Scattering Transfer Cross Sections Which Were Calculated in the GGC-4 Version and the ENDF/B Version of New Barnyard for Nitrogen	52
XIII.	Structure of the GGC-4 Data Tape	88
XIV.	Structure of the ENDF/B Data Tapes	92
XV.	Comments About the Data Tapes	95

ABSTRACT

New Barnyard, a moments code, was written to calculate multigroup neutron macroscopic cross sections. Total, absorption, fission, and scattering transfer (group to group) cross sections can be calculated. The transport cross section, diffusion coefficient, and the average cosine of the scattering angle can also be calculated for each group. The energy range of these cross sections extends from 14.918 MeV to .4139 ev. Two versions of the moments code were written so that two different data sources could be used. With one version PO, P1, P2, and P3 elastic scattering transfer cross sections can be calculated for 22 broad groups, and with the other version PO through P8 elastic scattering transfer cross sections can be calculated for 20 broad groups.

New Barnyard was written in the Fortran IV language for use on an IBM 7094 digital computer. The code calculates the zero moment of the neutron flux which is then used to flux weight basic neutron cross section data over the energy limits of each group. Unlike some other moments codes, no first and second moments of neutron flux are calculated, and no B_L , P_L , age, or resonance calculations are performed. These calculations were excluded to achieve simplicity and speed of calculation. New Barnyard uses the GGC-4 cross section library as well as the new ENDF/B data from ORNL (Oak Ridge National Laboratory).

Excellent agreement was found when the results of New Barnyard were compared with results from other cross

ix

ABSTRACT (Contd')

section codes. Results from the two versions of New Barnyard showed relative differences generally much less than 10% for comparisons between absorption and between total cross sections. Larger relative differences were found in the comparisons of the PN scattering transfer cross sections due mainly to the fact that the number of terms used in the Legendre polynomial expansion of the differential scattering cross sections for each set of data on the two data tape sources were different.

NEW BARNYARD: A MULTIGROUP NEUTRON CROSS SECTION CODE

I. Introduction

A need exists for multigroup neutron cross sections for weapons problems. Although many sets of group cross sections exist, most are based on reactor spectra and consequently are of limited use from about 2 to 15 MeV, the principle region of interest for weapon physics.

Purpose and Method

The purpose of this study is to produce a code that will calculate group neutron cross sections in this higher neutron energy range. The computer code described in this study calculates group neutron cross sections and related constants for the energy range .4139 ev to 14.918 MeV. It is written in Fortran IV and has been executed on an IBM 7094 computer. The cross sections are determined by first calculating the energy dependent flux in an infinite homogeneous mixture of the isotopes or compounds specified. This flux is then used to flux weight cross section data. The input cross section data is obtained from 99 group libraries of fast cross sections. The energy dependent flux is calculated by the method of moments.

Sequence of Development

The basic theory for the numerical equations used in New Barnyard is given in Chapter II. The cross section data tapes, the numerical equations, and the special output features of New Barnyard are presented in Chapter III. The

operating instructions for using New Barnyard on an IBM 7094 are given in Chapter IV. In Chapter V, results from other cross section codes are given and then the conclusions reached on the validity and accuracy of the code are stated.

II. Theory

In this chapter a brief review of the theory of flux weighting is given followed by a theoretical discussion of the calculation of the zero moment of the neutron flux which is used to flux weight cross sections in New Barnyard.

Flux Weighting

The reaction rate R (events/cm³ sec) in the pre-

$$R = \int_{O}^{\infty} \oint (E) \sum (E) dE$$
 (1)

where E is the energy,

 ϕ (E) is the energy dependent flux in o^{n^2/cm^2-sec} ,

 \sum (E) is the energy dependent macroscopic cross section in cm⁻¹.

The total flux is, by definition

$$\phi = \int_{O}^{\infty} \phi(E) dE$$
(2)

In terms of this total flux, ϕ , the reaction rate can be written

$$R = \overline{\sum} \phi$$
 (3)

where $\overline{\sum}$ is some average macroscopic cross section over the energy range of interest. It follows, by equating the reaction rates, i.e., the right hand sides of equations (1) and (3) and substituting from (2), that this average cross section must be given by

$$\overline{\sum} = \circ \frac{\int_{0}^{\infty} \sum(E) \phi(E) dE}{\int_{0}^{\infty} \phi(E) dE}$$
(4)

or, in other words, the average cross section is a flux weighted average of the energy dependent cross section.

Equation (4) can be generalized to any range (limits on the integral), say from E_1 to E_2 , in order to produce an average cross section applicable to that energy range. Such averages are called energy group cross sections, and may be expressed as

$$\sum_{n=1}^{n} \frac{\int_{E_{n}^{-}}^{E_{n}^{+}} \sum(E) \phi(E) dE}{\int_{E_{n}^{-}}^{E_{n}^{+}} \phi(E) dE}$$
(5)

where $\sum_{n=1}^{n}$ is the group cross section for the n-th energy group, E_{n}^{-} is the lower energy boundary of the n-th group, E_{n}^{+} is the upper energy boundary of the n-th group.

From inspection of equation (5) it is seen that the variation of neutron flux with energy must be known in order to determine group cross sections.

Zero Moment of the Neutron Flux

The flux calculations performed in this code are in solution to the energy dependent Boltzmann transport equation for an above-thermal energy region (14.918 MeV to

.4139 ev). The energy dependent flux for this energy range is calculated by the method of moments. A brief review of the zero moment of the neutron flux will be discussed here. A more detailed analysis of the method of moments can be found in AFIT Technical Report 67-17 (Ref 1).

The steady state Boltzmann equation written for an infinite, non-multiplying homogeneous medium which scatters and absorbs neutrons is

$$\mu \frac{\partial \Phi}{\partial x}(\mathbf{X}, \mathbf{E}, \mu) + \Sigma_{t}(\mathbf{E}) \phi(\mathbf{X}, \mathbf{E}, \mu) = \mathbf{S}(\mathbf{X}, \mathbf{E}, \mu) + \int d\Omega' \int_{0}^{\infty} d\mathbf{E} \sum_{s} (\mathbf{E}' \to \mathbf{E}, \mu_{o}) \phi(\mathbf{X}, \mathbf{E}', \mu')$$
(6)

Where X is the spatial positions of the neutrons

E is the neutron's energy,

 μ_{o} is the cosine of the scalar angle, cosine θ_{o} ,

through which a neutron is scattered,

 μ or μ ' is the cosine of the scalar angle, cosine θ ,(θ ')

between the neutron's direction and the X axis,

- \sum_{t} (E) is the energy dependent macroscopic total cross section in cm⁻¹,
- $\sum_{s} (E' \rightarrow E, \mu_{o})$ is the energy dependent macroscopic differential scattering transfer cross section

for a neutron with an initial energy E' and an initial direction μ ' that scatters into a unit energy interval about E and within a unit solid angle about μ in cm⁻¹/steradian.

In the above-thermal energy region the target nuclei motion may be neglected with respect to the neutron energies. The moments method assumes that an isotropic source consisting of a plane of infinite area is located at the coordinate position x = 0, i.e.,

$$S(X,E,\mathcal{U}) = \frac{S(E)}{4\pi} \delta(X)$$
(7)

Where $\mathcal{O}(X)$ is the Dirac data function at X = 0. The flux in equation (6) is expanded in terms of Legendre polynomial as

$$\phi(\mathbf{X},\mathbf{E},\mathcal{U}) = \sum_{\mathbf{m}=0}^{\infty} \frac{2\mathbf{m}+1}{4\pi} \phi_{\mathbf{m}}(\mathbf{X},\mathbf{E}) P_{\mathbf{m}}(\mathcal{U})$$
(8)

Similarily, the differential scattering transfer cross section is expressed as

$$\sum_{s} (E' \to E, \mu_{o}) = \sum_{n=0}^{\infty} \frac{2n+1}{4\pi} \sum_{sn} (E' \to E) P_{n}(\mu_{o})$$
(9)

The coefficients, $\sum_{sn} (E' \rightarrow E)$, in the polynomial expansion in equation (9) are referred to as PN scattering transfer cross sections where PN is given by

$$PN(E' \rightarrow E) = (2n + 1) \sum_{sn} (E' \rightarrow E)$$
(10)

where N = n.

The

The substitution of the source given by equation (7) and of the expansions (8) and (9) into equation (6) yields $\sum_{m=0}^{\infty} \begin{cases} \frac{2m+1}{4\pi} \partial \phi(x,E) \\ \frac{2m+1}{4\pi} \partial \phi(x,E) \\ \frac{2m+1}{4\pi} \nabla_{t}(E) \phi_{m}(x,E) P_{m}(\mu) = \frac{S(E)}{4\pi} \delta(x) + \int d\Omega' \int_{0}^{\infty} dE \sum_{n=0}^{\infty} \left[\frac{2n+1}{4\pi} \sum_{sn} (E' \to E) P_{n}(\mu) \right] \left[\frac{2m+1}{4\pi} \phi_{m}(x,E') P_{m}(\mu') \right] \end{cases}$ (11)

Equation (11) is simplified by using some of the special
properties of Legendre polynomials (Ref 2: 115) to obtain

$$\sum_{m=0}^{\infty} \left\{ \begin{array}{l} \phi_{m}(X,E) \\ \phi_{m}(X,E) \\ X \end{array} \right| \left((m+1)P_{m+1}(\mathcal{U}) + mP_{m-1}(\mathcal{U}) \\ + mP_{m-1}(\mathcal{U}) \\ + mP_{m-1}(\mathcal{U}) \\ (2m+1)\sum_{t}(E)\phi_{m}(X,E)P_{m}(\mathcal{U}) = S(E)\mathbf{d}(X) + (2m+1)P_{m}(\mathcal{U}) \\ \int_{0}^{\infty} dE' \sum_{sm}(E' \rightarrow E)\phi_{m}(X,E') \quad (12)$$

Equation (12), a single equation with an infinite number of terms, is transformed into an infinite number of coupled equations, each with a finite number of terms, by operating on equation (12), term by term, with

$$\int_{-1}^{+1} P_{\mu}(\mu) \langle eq.(12) \rangle d\mu \quad \ell=0,1,2,\ldots$$

results for $\ell=0$ are:

$$\frac{\partial \phi_{1}(X,E)}{\partial X} + \sum_{t} \phi_{0}(X,E) = \int_{0}^{\infty} \sum_{so}^{\infty} (E' \rightarrow E) \phi_{0}(X,E') dE' + S_{0}(E) \delta'(X)$$
(13)

Equation (13) is the basis for the calculation of the zero moment of the neutron flux.

The basic energy dependence of the flux is expressed as the volume-angle integral of the flux, i.e.,

or integrating over $d\Omega$ to give

$$\bigoplus_{n \to \infty}^{(o)} (E) = \int_{-\infty}^{+\infty} dX \, \phi_{o}(X, E)$$
(15)

where $\oint_{O}(X,E)$ is the all angle flux. Equation (15) is the zero moment of the spatial distribution of the total (all angle) flux. This "zero moment flux" can be calculated exactly by using some properties of the Fourier integral transform (Ref 3) on the spatial variable in equation (13), i.e.,

$$F\left\{\phi_{\mathcal{L}}(X,E)\right\} = \int_{-\infty}^{+\infty} \phi_{\mathcal{L}}(X,E) e^{-ipx} dx \equiv \Theta_{\mathcal{L}}(P,E)$$
(16)

It can be seen that if equation (16) is written for g = 0and the special case P = 0, then it is equivalent to the zero moment of equation (15), i.e.,

$$\widehat{\mathbf{H}}^{\mathsf{o}}(\mathbf{E}) = \left[\Theta_{\mathsf{o}}(\mathbf{P}, \mathbf{E}) \right]_{\mathsf{P}=\mathbf{0}}$$
 (17)

Therefore, equation (13) is Fourier transformed using the properties (Ref 3)

$$F\left\{\frac{\partial\phi_{O}(X,E)}{\partial X}\right\} = iP \ \theta_{O}(P,E)$$
(18)

and

$$F\left\{ \mathbf{0}^{\bullet}(\mathbf{X}) \right\} = 1$$

To obtain
$$iP \ \theta_{1} \ (P,E) = \sum_{t} (E) \ \theta_{o} \ (P,E) = S(E) + \int_{O}^{\infty} \sum_{so} (E' \rightarrow E) \ \theta_{o} \ (P,E') \ dE'$$
(19)

Equation (19) is valid for any arbitrary P but from equation (17) the zero moment flux is obtained for P=0; therefore, Maclaurin expansions for θ_{0} (P,E) and θ_{1} (P,E) are chosen as

$$\theta_{o}(P,E) = \theta_{o}^{o}(E) + (-iP)\theta_{o}^{1}(E) + (-iP)^{2}\theta_{o}^{2}(E) + \dots$$
 (20)

$$\theta_{1}(P,E) = \theta_{1}^{o}(E) + (-iP) \theta_{1}^{1}(E) + \frac{(-iP)^{2}}{2!} \theta_{1}^{2}(E) + \dots$$
(21)

Where the argument of the Maclaurin expansion is (-iP) rather than P. The primes denoting differentiation in the expansion have been replaced by superscripts. That is,

$$\theta_{O}^{"}(E) = \theta_{O}^{2}(E)$$
(22)

Under this notation the zero moment flux is symbolized

$$\bigoplus^{O}(E) = \theta^{O}_{O}(E)$$
(23)

Which is the energy dependent flux of interest.

Davison and Sykes, (Ref 4:343) show that the n-th moment of the neutron flux can only involve spherical harmonics of order n or less. Further they show that due to the odd-even nature of the functions involved

$$\int_{\infty}^{\infty} x^{n} \phi_{\ell} (X, E) dX \neq 0$$
(24)

only when both n and Lare both even or both odd. Thus the Maclaurin expansions become

$$\theta_{o}(P,E) = \theta_{o}^{o}(E) + (-iP)^{2} \theta_{o}^{2}(E) + \dots$$
 (25)

$$\theta_1(P,E) = (-iP)\theta_1^1(E) + (-iP)^3 \theta_1^3(E) + \dots$$
 (26)

By substituting equations (25) and (26) into equation (19) and equating like powers of $(-iP)^{\circ}$ the zero moment equation is obtained

$$\sum_{t} (E) \theta_{o}^{o}(E) = S(E) + \int_{o}^{\infty} \sum_{so} (E' \to E) \theta_{o}^{o}(E') dE'$$
(27)

where $\theta_0^{O}(E)$ is the zero moment of the neutron flux and is the energy dependent flux necessary to calculate the group cross sections.

Solution of the Zero Moment Equation

Equation (27) is solved numerically by expressing it in multigroup notation. In group form it is

$$\int_{E_{n}}^{E_{n}^{+}} \sum_{t} (E) \theta_{0}^{0}(E) dE = \int_{E_{n}}^{E_{n}^{+}} S(E) dE + \int_{E_{n}}^{dE_{n}^{+}} \int_{0}^{\infty} \sum_{so}^{\infty} (E' \rightarrow E) \theta^{0}(E') dE'$$
(28)

From the definition of a flux weighted group cross section, equation (5), it is seen that the first term becomes

$$\int_{E_{n}}^{E_{n}} \sum_{t}^{e} (E) \theta_{0}^{o}(E) dE = \sum_{t}^{n} \theta_{0n}^{o}$$
(29)

Where $\sum_{t=1}^{n}$ is the macroscopic total cross section of the n-th energy group, and θ is the total group flux. Similarly the second term is

$$\int_{E_{n}}^{E_{n}} S(E) dE = \chi_{n}$$
(30)

Where χ_n is the fraction of the source emitted in the n-th group, providing S(E) is a normalized source. The last term

$$\int_{E_{n}}^{E_{n}} dE \int_{O}^{O} \sum_{so} (E' \rightarrow E) \theta_{O}^{O}(E') dE'$$
(31)

.

is considered as a group of n double integrals where the integral from 0 to ∞ on dE' has been broken into n finite intervals; $\Delta E'_1$, $\Delta E'_2$, $\Delta E'_3$, ... over the energy range .4139 ev to 14.918 MeV. It is important that the integration on the variable E be performed first since the limits of integration on E, i.e., E_n^- to E_n^+ , are actually functions of E' and the maximum ΔE of the scattering nucleus. The last term becomes

$$\int_{E_{n}^{-}}^{E_{n}^{+}} dE \int_{\Delta E_{1}^{+}} \sum_{so} (E' \rightarrow E) \theta_{o}^{o}(E') dE' + \int_{E_{n}^{-}}^{E_{n}^{+}} dE \int_{\Delta E_{2}^{+}} \sum_{so} (E' \rightarrow E) \theta_{o}^{o}(E') dE' \cdots \int_{E_{n}^{-}}^{E_{n}^{+}} dE \int_{\Delta E_{n}^{+}} \sum_{so} (E' \rightarrow E) \theta_{o}^{o}(E') dE' \cdots \int_{E_{n}^{-}}^{E_{n}^{+}} dE \int_{\Delta E_{n}^{+}} \sum_{so} (E' \rightarrow E) \theta_{o}^{o}(E') dE'$$
(32)

Each double integral, say the j-th, in equation (32) is a measure of the neutron scatter transport from the j-th to the n-th group. Recalling the definition of a flux weight-ed cross section in a slightly different form

$$\sum_{so} (j \rightarrow n) = \int_{E_{n}}^{E_{n}^{+}} dE \int_{E_{j}}^{E_{j}^{+}} \sum_{so} (E' \rightarrow E) \theta_{o}^{o}(E') dE'$$

$$\underbrace{\int_{E_{j}}^{E_{j}^{+}} \theta_{o}^{o}(E') dE'}_{j}$$
(33)

It is seen that equation (32) can be expressed as

$$\sum_{j=1}^{n} \sum_{so} (j \rightarrow n) \theta_{oj}^{o}$$
(34)

Substituting equations (29), (30), and (34) into question (28) and rearranging terms yields the numerical zero moment equation,

$$\left[\sum_{t}^{n} -\sum_{so}(n \rightarrow n)\right] \theta_{on}^{o} = \chi_{n}^{+} \sum_{j=1}^{n-1} \sum_{so}(j \rightarrow n) \theta_{oj}^{o}$$
(35)

The total group flux, θ_{on}^{o} , is determined by solving equation (35).

New Barnyard reads in a 99 group cross section set (or sets) from a cross section library tape, which is discussed in Chapter III, calculates a 99 group macroscopic cross section set, then flux calculation is begun with group one (highest energy group) where the scatter in term is zero. Calculation proceeds consecutively through all remaining groups down to .4139 ev. It is assumed that no "scatter up" in the neutron's energy occurs in this abovethermal energy region. Once the total flux has been calculated for each of the 99 groups, it is used to flux weight the 99 group macroscopic cross section set over each of the desired broad group limits.

III. The Code

In this chapter a few comments about New Barnyard are made followed by the contents and structure of the two data tape sources. Next, the numerical equations used to calculate the group cross sections and related constants are given and finally the special features of the output are mentioned.

New Barnyard is written in Fortran IV for an IEM 7094 digital computer. Two source decks are available in order to use the GGC-4 cross section data tape (Ref 5) and the two ENDF/B cross section data tapes (Ref 6). The GGC-4 source deck (i.e., the deck that uses the GGC-4 data tape) and the ENDF/B source deck are listed in appendices A and B. Extra comment cards have been positioned throughout the source decks to make them easier to read. Appendix C lists the variables and the meaning or use of each variable used in the two source decks. The code reads in cross section data and then determines the zero moment of the neutron flux which the code uses to calculate broad group cross sections and other related constants over the energy range .4139 ev to 14.918 MeV.

The Cross Section Data Tapes

As mentioned earlier, either the GGC-4 data tape or the ENDF/B data tapes can be used in New Barnyard. Both data tape sources have been compiled recently (1966-1967) and the results for absorption or total cross sections obtained from the two source decks for the same problem are within approximately 5 to 10% of each other. The ENDF/B data is updated from time to time by R.S.I.C. (The Radiation Shielding Information Center) at Oak Ridge National Laboratory. At this writing they are also preparing data for nuclides other than those that are contained on the ENDF/B data tapes described here. New data tapes can be obtained through R.S.I.C.*

Both data tape sources contain total, absorption, fission** and scattering transfer microscopic cross sections for 99 energy groups. The 99 "fine" group structure is shown in Appendix D. The PO transfer cross sections on the GGC-4 tape are listed separately as elastic, inelastic, n-2n, and total transfer. The ENDF/B tapes list only a PO transfer cross section which is the sum of the elastic, inelastic and 2(n-2n) transfer cross sections. The n-2n * ENDF/B data tapes are obtained from R.S.I.C, Oak Ridge National Laboratory, Post Office Box X, Oak Ridge,

Tennessee, 37830 ** The ENDF/B data tapes list \mathcal{VO}_{f} for 99 groups. The GGC-4 data tape list \mathcal{V} and \mathcal{O}_{f} separately.

transfer cross section is multiplied by 2 to conserve neutrons. It is assumed that both neutrons are emitted in the same energy group. The GGC-4 tape has P0 through P3 elastic scattering transfer cross sections. The ENDF/B tapes have P0 through P8 elastic scattering transfer cross sections; however, the P0, as mentioned above, also includes inelastic and n-2n transfer cross sections. Both data sources include only P0 transfer cross sections for the n-2n and inelastic reactions. The GGC-4 tape also contains other information such as the 99 energy group boundaries, fission source spectrums, one dimensional cross section arrays (for (n, α), (n, γ) and other similar reactions) and resonance data. The 99 group fission source spectrums for several nuclides are listed in Appendix F.

The GGC-4 tape has data for the following nuclides*:

1.	Hydrogen	7.	Boron (natural)
2.	Deuterium	8.	Boron-10
3.	Helium	9.	Carbon
4.	Lithium-6	10.	Nitrogen
5.	Lithium-7	11.	Oxygen
6.	Beryllium	12.	Sodium

* It was mentioned that data for 45 nuclides was on the GGC-4 data tape; this is true but data for some nuclides is repeated. This repeated data was obtained by Gulf General Atomic from other sources.

13.	Magnesium	26.	Cadmium
14.	Aluminum	27.	Tungsten (natural)
15.	Silicon	28.	Tungsten-180
16.	Sulfur	29.	Tungsten-182
17.		30.	Tungsten-183
18.		31.	Tungsten-184
19.		32.	Tungsten-186
20.	0	33.	Lead
21.		34.	Uranium-233
22.		35.	
23.			Uranium-238
24.		37.	Plutonium-241
25.	Molybdenum		
The	ENDF/B tapes have dat	ta for th	ne following nuclides:
1.	Hydrogen	16.	Iron
2.	Deuterium	17.	Nickel
3	Lithium=6	18	Tungsten-182

- Lithium-6 3. Lithium-7 4. 5. Beryllium 6. Boron-10 7. Carbon 8. Nitrogen 9. Oxygen 10. Sodium 11. Magnesium 12. Aluminum 13. Titanium 14. Chromium
- 15. Manganese

- 18. Tungsten-182 19. Tungsten-183 20. Tungsten-184 21. Tungsten-186 22. Vanadium 23. Uranium-235 24. Uranium-238 25. Plutonium-238 26. Plutonium-239 27. Plutonium-240 28. Plutonium-241
- 29. Plutonium-242

Tables XIII and XIV show the structures of the data tapes and Table XV lists comments about these tapes. Appendix E

contains these three tables.

Each of the 99 group cross section sets contained in the two data tape sources was calculated by flux weighting energy dependent cross sections with a 1/E flux dependence over the limits of each fine group. The specific

calculations of these 99 group cross section sets can be found in the description of the GGC-4 code (Ref 5).

Since repeated reference is made to PN (PO, P1, etc.) scattering transfer cross sections, a review of what is meant by the PN elastic scattering transfer cross sections is included here. The differential scattering transfer cross sections for elastic scattering of neutrons, $\mathcal{O}_{\rm S}$ (E' \rightarrow E, $\mu_{\rm o}$) are experimentally determined and are usually tabulated as a plot of $\mathcal{O}_{\rm S}$ (E' \rightarrow E, $\mu_{\rm o}$) versus $\mu_{\rm o}$ where $\mu_{\rm o}$ is the cosine of the scattering angle. BNL 400 (Ref 7) shows typical differential scattering transfer cross section curves for nuclides with Z numbers from 1 to 22. In order to cut down on the amount of data that would have to be retained for each of these curves, a Legendre polynomial expansion of the differential scattering transfer cross section is performed as follows:

$$\mathcal{O}_{S}(E' \to E, \mathcal{\mu}_{o}) = \sum_{k=0}^{K} \frac{2n+1}{4\pi} \mathcal{O}_{sk} (E' \to E) \mathcal{P}_{k}(\mathcal{\mu}_{o})$$
(36)

 $P_k(\mu_0)$ is the k-th Legendre polynomial and $\mathcal{O}_{sk}(E' \rightarrow E)$ is the k-th scattering transfer cross section coefficient. These coefficients, $\mathcal{O}_{sk}(E' \rightarrow E)$, can be calculated by equating equation (36) to the experimental values of $\mathcal{O}_{s}(E' \rightarrow E, \mu_0)$. The PN fine group scattering transfer cross sections are then calculated by weighting coefficients $\mathcal{O}_{sk}(E' \rightarrow E)$ with 1/E'over the limits of each fine group; that is,

$$PN(i \rightarrow j) = \frac{(2k+1)\int_{E_{i-1}}^{E_{i}} \int_{E_{j-1}}^{E_{j}} \mathcal{O}_{sk}(E' \rightarrow E) \frac{1}{E'} dE' dE}{\int_{E_{i-1}}^{E_{i-1}} \int_{E_{i-1}}^{E_{i-1}} \int_{E_{i-1}}^{E_{i-1}} (37)$$

$$k = 0, 1, 2, \dots K$$

$$i = 2, 3, \dots 99$$

$$j = 2, 3, \dots 100$$

where N = k. This polynomial expansion of $O_S(E' \rightarrow E, \mu_o)$ can lead to negative cross section values when the number of terms (K+1) used in the expansion is small. Thus, there is an advantage of having the ENDF/B data since it has P0 through P8 elastic scattering transfer cross section coefficients.

The Numerical Equations Used in the Code

NINITY

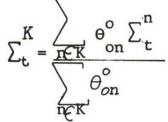
After the code reads the 99 group set (or sets) of microscopic cross sections specified for a particular problem, it calculates a 99 group set of macroscopic cross sections using the relation

$$\sum^{n} = \sum_{i=1}^{n} N_{i} \mathcal{O}_{i}^{n}$$
(36)

where O_i is the microscopic cross section in barns for the i-th nuclide and the n-th fine group, N_iis the number density in nuclei/cm-barn for the i-th nuclide, NNUK is the

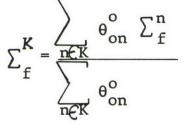
number of nuclides for the problem. The code then uses the fine group total macroscopic cross sections and the fine group P0 total transfer macroscopic cross sections and calculates the total flux for each of the 99 groups from the zero moment equation (eq. (35)) which is repeated here for convenience:

$$\theta_{on}^{o} = \frac{1}{\left(\sum_{t}^{n} - \sum_{so}(n \rightarrow n)\right)} \left[\chi_{n} + \sum_{j=1}^{n-1} \sum_{so}(j \rightarrow n)\theta_{j}^{o} \right] \quad (35)$$


$$n=1, 2, 3, \dots 99$$

Next, the code flux weights the 99 group macroscopic cross section set over the limits of each of the broad groups. The specific cross sections calculated along with the numerical equations used to calculate them are listed below: (In the following equations, the subscripts n and j denote fine groups (any one of the 99 groups) and K and L denote broad groups.)

1. Absorption cross section


$$\sum_{a}^{K} = \frac{\sum_{n \in K} \Theta_{on}^{o} \Sigma_{a}^{n}}{\sum_{n \in K} \Theta_{on}^{o}} \qquad K = 1, 2, 3, \dots \text{NBBG}$$

2. Total cross section

K=1, 2, 3, ...NBBG

3. Fission cross section

K=1, 2, 3, ...NBBG

4. Nu* (Fission cross section)

$$(\mathcal{V} \sum_{f})^{K} = \underbrace{\frac{n \in K}{n \in K}}_{n \in K} \theta_{on}^{o} \mathcal{V}^{n} \sum_{f}^{n}}_{n \in K} K=1, 2, 3, \dots \text{NBBG}$$

5. Scattering transfer cross section

$$PN(K \rightarrow L) = \frac{\int_{n \in K}^{0} \theta_{on}^{\circ} \int_{j \in L}^{0} PN(n \rightarrow j)}{\int_{n \in K}^{0} \theta_{on}^{\circ}} K = 1, 2, 3, \dots NBBG$$

Where NBBG is the number of broad groups,

 θ_{on}^{o} is the total flux for the n-th group, $\sum_{n \in K}$ is the summation symbol denoting that the sum is over all the fine groups in the broad group K,

- χ_n is the fraction of the source neutrons emitted in the n-th group (source normalized to 1),
- $\sum_{so} (j \rightarrow n)$ is the PO total scattering transfer macroscopic cross section for a neutron which scatters from group j to group n,
- \sum_{a}^{n} is the macroscopic absorption cross section for the n-th group,
- \sum_{t}^{n} is the macroscopic total cross section for the n-th group,
- \sum_{f}^{n} is the macroscopic fission cross section for the n-th group,
- \sqrt{n} is the average number of fission neutrons produced per fission event in the n-th group,
- PN(n \rightarrow j) is equal to (2N+1) \sum_{SN} (n \rightarrow j) where N=0, 1, 2, 3 for the GGC-4 data tape and N=0, 1, 2, ...8 for the ENDF/B data tapes,
- ∑_{SN} (n→j)is the scattering transfer macroscopic cross section coefficient for a neutron which scatters from group n to group j. The subscript N denotes the N-th scattering transfer cross section coefficient (term) in the Legendre polynomial expansion of the differential scattering transfer cross section. For N=0, this can be the elastic,

inelastic, n-2n, or the total scattering transfer cross section when using the GGC-4 data tape but only the total scattering transfer cross section when using the ENDF/B data tapes.

The code also calculates the macroscopic transport cross section, the diffusion coefficient, and the average cosine of the scattering angle for each broad group. These three constants are defined **as follows:**

transport cross section, $\sum_{tr} \equiv \sum_{t} - \sum_{si}$ diffusion coefficient, $D \equiv \frac{1}{3 \times \sum_{tr}}$ average cosine of the scattering angle, $\overline{\mu} \equiv \frac{\sum_{si}}{\sum_{so}}$

The multigroup calculations performed in New Barnyard for these constants to obtain broad group constants are:

1. Transport cross section

 $\sum_{tr}^{K} \sum_{t=0}^{K} \sum_{-P1(K \rightarrow K)/3}^{K} K=1, 2, 3, \dots NBBG$ (Recall that the PN coefficients, defined in both data tapes, include the factor 2n+1.)

2. Diffusion coefficient

$$D^{K} = \frac{1}{3 \times \sum_{tr}}$$
 K=1, 2, 3, ...NBBG

3. Average cosine of the scattering angle $\frac{-K}{\mu} = (P1(K \rightarrow K)/3) \quad K=1, 2, 3, \dots \text{NBBG}$ PO(K \rightarrow K)

Output Features of the Two Source Decks

Both source decks calculate total, absorption, and fission cross sections for each broad group as well as the transport cross section, diffusion coefficient, and the average cosine of the scattering angle for each broad group.

The ENDF/B source deck can also provide PO through P8 macroscopic elastic scattering transfer broad group cross sections; however, the PO transfer cross sections include inelastic and n-2n transfer cross sections as mentioned earlier. The order of the PN transfer cross sections desired is specified in the input data. The maximum number of broad groups is 20 due to the fact that insufficient core storage occurrs when more than 20 broad groups are used.

The GGC-4 source deck also provides a list of the nuclides on the data tape, the 99 fine group structure, the broad group structure, the PO elastic, inelastic, n-2n, and total transfer broad group cross sections, and it lists PO through P3 elastic scattering transfer broad group cross sections. This deck can calculate group cross sections for 22 broad groups.

IV. Operating Instructions

This chapter contains the information necessary to use New Barnyard (either source deck) on an IBM 7094 computer. The input data cards required for each source deck are given. Next, the control cards required by the IBM 7094 are shown, and finally the composite deck (control cards, source deck, data cards) is described.

The user should consider the following factors when selecting which source deck to use:

- The GGC-4 source deck (i.e., the deck that uses the GGC-4 data tape) runs approximately twice as fast on the computer as the ENDF/B source deck.
- Results for absorption or total cross sections from the two source decks for the same problem are approximately within 5 to 10% of each other.
- P0 through P3 elastic scattering transfer cross sections can be obtained from the GGC-4 source deck
 P0 through P8 elastic scattering transfer cross sections can be obtained from the ENDF/B source deck.
- 4. The PO output of the GGC-4 source deck lists separately the elastic, inelastic, 2(n-2n), and total transfer cross sections. The PO output of the ENDF/B source deck lists only the total transfer cross sections.

As a convenience to the user of New Barnyard, sample problems including input data cards and computer output from both source decks are presented in Appendix G.

Preparation of Input Data, Source Deck Using GGC-4 Data Tape

CARD NUMBER 1:	Format (18A4)		
Columns 1-72	Problem description - Anything can		
	be punched on this card. This in-		
	formation will appear at the top of		
	each page of results.		
Symbol*	BXCX(I), I=1, 18		
CARD NUMBER 2:	Format (313)		
Columns 1-3	The number of broad energy groups		
Symbol Symbol	NBBG, NBBG ≤ 22		
Columns 4-6	The number of nuclides in the pro-		
	blem		
Symbol	NNUK		
Columns 7-9	This value is either 1 or 0. If it		
	is 1, the code will calculate the		
	flux. If it is 0, the code will		
	have a flux input.		
Symbol	KKK		

* The symbol (variable) used in the code for this specified data.

CARD NUMBER 3:	Format (2213)
Columns 1-3	Lower broad group boundaries-The
Columns 4-6	boundaries are the numbers of the
:	lowest fine group in each of the
: etc.	selected broad groups. For example,
	if one of the lower energy bounaries
	was 10.00 MeV, the value 4 would be
	specified. The number of values
	punched on this card is equal to the
	number of broad groups, NBBG.
Symbol	LBGB (I), $I = 1$, NBBG

Each of the actual energy boundaries selected for a particular problem must correspond to one of the 99 energy groups; therefore, the broad group boundaries should be selected from the 99 fine group structure (Appendix D). Sometimes it is desirable to know the broad group scattering transfer cross section for scatter into a "thermal dump" group. This can be done in New Barnyard by specifying a broad group for the energy range .4139 ev to 0. The lower broad group boundary value that would be input for this group would be 100. This procedure is valid because both data sources give scattering transfer cross section values for scatter into this "100th" group; however, one should be aware of the fact that no 100th group total

or absorption cross section values are included on the data tapes.

CARD NUMBER 4:	Format (1F12.7, 1E13.6)
Columns 1-12	Identification number of the nuclide
	on the data tape - The I.D. number
	for the nuclides are shown in Table ${f I}_{f \bullet}$
Symbol Symbol	AID (IXL), IXL = 1, NNUK
Columns 13-25	The number density (nuclei/cm-barn)
	of the nuclide
	(nuclei/cm-barn) = $\underline{\text{nuclei}} * 10^{-24} \frac{\text{cm}^2}{\text{barm}}$
Symbol	DENT(IXL), IXL = 1, NNUK

Card 4 is repeated for each nuclide in the problem. All card 4's precede card 5. It is necessary to start with the card with the lowest I.D. number, followed by the cards with increasing I.D. numbers, since the nuclides on the data tape occur in the order of increasing I.D. numbers.

CARD NUMBER 5:	Format (6E12.6)
Columns 1-12	Either a flux spectrum or a source
Columns 13-24	spectrum is specified depending on
: etc.	the value on card number 1 for KKK
	(columns 7-9). 99 values (6 per
	card) must be specified.
Symbol	FLUX (I) or SSSS(I), I=1,99

If a flux spectrum is included as input data, none of the values can be zero. Appendix F contains 99 group source spectrums for fissionable nuclides. The source spectrum used must be normalized to 1 as is the case for the spectrums in Appendix F.

Preparation of Input Data, Source Deck for ENDF/B Data Tapes

The first three input data cards are the same as the data cards for the GGC-4 source deck with the exception that the maximum allowable number of broad groups is 20 (i.e., NBBG⁴20).

Card 4 is repeated for each nuclide. All Card 4's precede Card 5. It is necessary to start for the card with the lowest material number followed by the cards with increasing material numbers, since the nuclides on each of the two data tapes occur in the order of increasing material number. If both data tapes are being used for a particular problem it is only necessary to have the cards arranged such that the material number (nuclides) that are on the same tape be placed in increasing order.

CARD NUMBER 4: Format (1x, 1A4, 212, 116, 1E13.4)

Columns 2-5 Material number of the nuclide on the data tape-The material numbers for the nuclides are shown in Tables II and III.

Symbol	MATNO
Columns 6-7	Order of the PN scattering transfer
	cross sections desired-The values
	allowed are 0 through 8. This value
	must be the same for each nuclide
	used in the problem.
Symbol	LORDER
Columns 8-9	Logical unit number of the data tape-
	If using data tape B (Table II) the
	input value will be 1. If using
	data tape C (Table III) the input
	value will be 2. (No decimals are used with these values since I format)
Symbol	N
Columns 10-15	The number of data records before
	reaching the nuclide of interest.
Symbol	NOR
Columns 16-28	The number density (nuclei/cm-barn)
	of the nuclide
	$\left(\frac{\text{nuclei}}{\text{cm-barn}} = \frac{\text{nuclei}}{\text{cm}^3} * \frac{10^{-24} \text{cm}^2}{\text{barn}}\right)$

Symbol

The number of data records before reaching the nuclide of interest is obtained with the aid of the "No. of data Re-cords" columns in Tables II and III. For example, if C-12

TABLE I

	Data Tape A,	GGC-4 Data
	Master	Duplicate
Tape No.	2602	<u>0S122</u>
Block Size*	256	256
Track	_7	_7
Density	556BPI	556BPI

Nuclide		
Identification	Nuclide	
Number	Description	P-N
1.0000000	Hydrogen	3
1.2000000	Deuterium	3
2.000000	Helium	3
3.0062000	Lithium-6	3
3.0072000	Lithium-7	3
4.0000000	Beryllium	3
5.000000	Boron	3
5.0099999	Boron-10	3
6.0200000	Carbon	3
7.000000	Nitrogen	3
8.0200000	Oxygen	3
11.0000000	Sodium	3
12.000000	Magnesium	3
13.000000	Aluminum	3
14.000000	Silicon	3
16.000000	Sulfur	3
20.000000	Calcium	3
22.000000	Titanium	3
23.9999990	Chromium	3
25.000000	Manganese	3
26.000000	Iron	3
27.0000000	Cobalt	3
27.9999990	Nicke1	3
29.000000	Copper	3
41.9999990	Molybdenium	3
48.000000	Cadmium	3
73.9999990	Tungsten	3
74.1799990	Tungsten - 180	3
74.1820000	Tungsten - 182	P-N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	0	-

* Binary tape

Table I (Contd')

Nuclide		
Identification	Nuclide	
Number	Description	<u>P-N</u>
74.1821000	Tungsten-182 (Resonance data included)	3
74.1829990	Tungsten-183	3
74.1831000	Tungsten-183 (Resonance data included	3
74.1840000	Tungsten-184	3
74.1841000	Tungsten-184 (Resonance data included)	3
74.1859990	Tungsten-186	3
74.1861000	Tungsten-186 (Resonance data included)	3
82.0000000	Lead	3
92.2334990	Uranium-233	3
92.2350000	Uranium-235 (NASA Data)	3
92.2351990	Uranium-235	3
92.2379990	Uranium-238 (NASA Data)	3 3 3 3 3
92.2381000	Uranium-238 (Resonance data included)	3
92.2381990	Uranium-238 (ORNL data)	3
92.2382990	Uranium-238 (ORNL Reso- nance data included)	3
94.2411990	Plutonium-241	3

TABLE II

Data Tape B, ENDF/B Data

		Master	Duplicate	
Tape No.		1152	2601	
Block size	*	80	80	
Track		_7	7	
Density		800BPI	800BP1	
Material Number	<u>Material</u>	<u>P-N</u>	No.of Data Records	Total <u>Records</u>
1003 1005 1006 1007 1009 1010 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021	H-2 Li-6 Li-7 Be B-10 C-12 N-14 O-16 Mg A1-27 Ti V Cr Mn Fe Ni	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2892 1537 1531 1479 1447 1392 1072 991 1048 1079 1081 1136 963 1110 1079	2892 4429 5960 7439 8886 10278 11350 12341 13389 14468 15549 16685 17648 18758 19837
1044 1047	U-235 U-238	8 8	975 1197 1172	20812 22009 23181

*BCD Tape

TABLE III

Data Tape C, ENDF/B Data

	Master	Duplicate
Tape No.	1148	0 \$ 578
Block size*	80	80
Track	7	7
Density	800BP1	800BPI

Material Number	Material	<u>P-N</u>	No. of Data Records	Total Records
1001	H-1	8	8286	8286
1050	Pu-238	8	1133	9419
1051	Pu-239	8	1160	10579
1053	Pu-240	8	1157	11736
1054	Pu-241	8	1215	12951
1055	Pu-242	8	1151	14102
1059	Na-23	8	1073	15175
1060	W-182	8	1139	16314
1061	W-183	8	1148	17462
1062	W-184	8	1151	18613
1063	W-186	8	1173	19786

*BCD Tape

•

and N-14 were the nuclides needed for a particular problem, the value 8886 would be punched on the data card for C-12, and the value 0 would be punched on the data card for N-14. When the computer reads the value 8886 it "skips" 8886 data records; that is, the data tape is advanced until the nuclide of interest is reached and then the computer begins to read the data from the tape. When the computer reads 0, no data records are skipped. If two nuclides of interest are separated by other nuclides, the number of data records that have to be skipped is the sum of the records for the nuclides separating the two. For example, if H-2, and Be were the nuclides of interest, 3068 (1537+1531) would be specified on the data card for H-2 and 0 would be specified on the data card for Be.

CARD NUMBER 5:Format (6E12.6)Columns 1-12Either a flux or source spec. is specified. (Same as the GGC-4 source deck)SymbolFLUX(I) or SSSS(I), I=1,99

Control Cards for the IBM 7094

A brief explanation of the control cards used in the two source decks is given here to insure proper usage of these source decks on an IBM 7094 digital computer located at the Digital Computation Division (ASNCD), Wright-Patterson AFB, Ohio. As a convenience to the user, the only control card that will have to be prepared is the \$JOB card,

the first card of the composite deck; all other control cards have been prepared and positioned in the source decks. The user should be aware of the fact that control cards are subject to change and that each computer facility has its own characteristic control cards. The user should always have on hand the current literature for the computer being used.

Control_Cards, GGC-4 Source Deck

The control cards used with the GGC-4 source deck are as follows:

Columns	1	8	16	31
	\$JOB \$SETUP \$IBJOB \$IBMAP	1 FILES	Priority, Time, Lines OS122,NORING MAP,FIOCS	Job I.D.
	.UN01. .UNIT01	ENTRY PZE FILE ENTRY	.UN01. UNIT01 ,,READY,INPUT,BIN,BLK=2 .UN02.	256
	.UN02. UNITO2		UNITO2 ,,READY,INPUT,BIN,BLK=2 .UN03.	256
	.UN03. UNITO3	PZE FILE ENTRY	UNITO3 ,,READY,INOUT,BIN,BLK=2 .UN04.	256
	.UN04. UNIT04	PZE FILE ENTRY	UNITO4 ,,READY,INOUT,BIN,BLK=2 .UN07.	256
	.UN07. UNIT07	PZE FILE ENTRY	UNITO7 ,,READY,INOUT,BIN,BLK=2 .UN08.	256
	.UNO8 UNITO8	PZE FILE END	UNITO8 ,,READY,INOUT,BIN,BLK-2	256

Columns 1 8 \$IBFTC MAIN \$IBFTC REWE \$IBFTC ONEE \$IBFTC CSAVE \$DATA \$EOF

The \$JOB card is an orange card supplied by the computer facility. The <u>priority</u> number should always be 0 unless the user is authorized some other number. The <u>time</u> number is the estimated 7094 time* needed in minutes. The <u>line</u> number is the estimated number of lines** that will be output. This number should include all printing and card punching that will be done by the 7094. If either the time estimate or the line estimate is exceeded, the computer run will be terminated. The job identification should include the user's account number, office symbol, and name. After the user's name, there should appear a slash followed by the name <u>Bridgman</u>. The data tapes are filed under this name and it has to be present on the \$JOB card to use the GGC-4 data tape. An example of the \$JOB card is shown:

\$JOB 0,3,2000 68-564-00 AFIT-SE JONES/BRIDGMAN
* An estimate of 3 minutes is usually adequate when
using the GGC-4 source deck.
** An estimate of 2000 live

** An estimate of 2000 lines is adequate for the GGC-4 source deck.

Control Cards, ENDF/B Source Deck

The control cards for the ENDF/B source deck are almost the same as the control cards for the GGC-4 source deck. The exceptions are the following:

- (1) No file is defined for logical unit 7 (only 3 scratch tapes are used)
- (2) 2 \$SETUP cards are used for the two input data tapes.
- (3) Usually an adequate time estimate for the \$JOB card is 5 minutes.

Composite Deck Setup

The composite deck setup for either source deck is shown below. The user has to supply the \$JOB card and the input data cards.

```
$JOB
$SETUP (2 cards for the ENDF/B source deck)
$IBJOB
$IBMAP FILES
ENTRY .UN01.
:
END
$IBFTC MAIN
(Source Deck - includes all subroutines)
$DATA
(Input data cards)
$EOF
```

The \$SETUP Card is used to indicate the use of a data tape. The number 1 on this card refers to the logical number of the tape used in the program (GGC-4 Source deck). The number ()S122 is the number of the duplicate copy of the GGC-4 data tape. The word NORING that follows the tape number is used to indicate that the tape is not to be written on. The \$IBJOB card as used here is to have a print out (map) of the storage location of each variable used in the program. The word FIOCS is used to cut down on the core storage requirement of the program. The \$IBMAP card and all the cards that follow up to and including the END card are used to define files for the input data tape and the 5 scratch tapes used by the program. The \$IBFTC cards are required for the main program and the subroutines used. The \$IBFTC MAIN card precedes the GGC-4 source deck and each of the other \$IBFTC cards precede a subroutine in the source deck. The names REWE, ONEE, and CSAVE that appear on these cards are arbitrary; any name (6 letters or less) other than the actual name of the subroutine can be used. The \$DATA card is required when input data cards are used. The \$EOF card is the end-of-file card and it is the last card of the composite deck.

V. Some Sample Results and Conclusions

In this chapter results of the GGC-4 version of New Barnyard are compared with results from other cross section codes; also, group cross sections calculated from the ENDF/B version of New Barnyard are compared with group cross sections calculated from the GGC-4 version. Throughout this chapter repeated reference will be made to the zero moment of the neutron flux, zero moment flux, energy dependent flux, and flux. These terms all mean the same thing. The reader is reminded that the GGC-4 version of New Barnyard refers to the source deck that uses the GGC-4 data tape and, the ENDF/B version of New Barnyard refers to the source deck that uses the two ENDF/B data tapes. The Zero Moment of the Neutron Flux for Aluminum

It was pointed out in Chapter II that in order to calculate group cross sections, the energy dependent flux had to be known. This flux is obtained in New Barnyard by solving the zero moment equation (35). The validity of this flux calculation was checked by comparing New Barnyard's calculation of the zero moment flux for aluminum with Gulf General Atomic's GAM-1 (Ref 9) calculation of the zero moment flux for the same material. GAM-1 calculates group neutron cross sections and other related constants such as

age for the energy range 10 MeV to .4139 ev. GAM-1 uses a 68 group cross section library data tape. In order to have a better basis for comparison, the GGC-4 version of New Barnyard was modified slightly to use GAM-1's library data tape. Table IV shows the results of these two flux calculations. The ratio of the GAM-1 flux to the New Barnyard flux for each energy group is 4.000, as shown in Table IV . This indicates that the shape of the two flux spectrums are identical but with the GAM-1 flux having a magnitude 4 times larger than the New Barnyard flux. This factor of 4 is unimportant, however, since in the flux weighting process for the calculation of group cross sections this factor will always cancel and either flux will produce the same group cross sections.

Seven Group Cross sections for Carbon

The validity of the flux weighting process to calculate group cross sections was checked by comparing a 7 group macroscopic cross section set for carbon calculated by the GGC-4 version of New Barnyard with a 7 group macroscopic cross section set for carbon calculated by the GGC4 code. The GGC-4 code was run on a CDC 6600 computer at the A.F. Weapons Lab. The same flux spectrum was input to each of the codes. The group cross sections obtained from each of the codes were exactly identical. Table V shows

the broad group structure for this cross section set. Table VI shows the results from both codes for the total cross sections and Table VII lists the PO (total transfer) scattering cross sections from both codes.

TABLE IV

Flux Spectrum for Aluminum Calculated

in New Barnyard and GGC-4.

	New Barnyard Flux		tio of GAM-1
Group	(on ¹ /cm ² -group)	$(on^{1}/cm^{2} \text{ group})_{Ba}$	ux to New nıyard Flux
1	9.2397 x 10 ²	3.6959×10^{-1}	4.000
5	$2.4437 \times 10^{\circ}$	9.7748 x 10 ⁰	4.000
10	8.9699 x 10 ⁰	3.5880×10^{1}	4.000
15	1.8522×10^{1}	7.4089×10^{11}	4.000
20	1.3666×10^{1}	5.4664 x 10 ¹	4.000
25	$6,7206 \times 10^{1}$	2.6882×10^2	4.000
30	2.3125×10^{1}	9.2500 x 10 ¹	4.000
35	2.4929×10^{1}	9.9715 x 10 ¹	4.000
40	2.4753×10^{1}	9.9013 x 10 ¹	4.000
45	2.4753×10^{1}	9.9013 x 10 ¹	4.000
50	2.3750×10^{1}	9.4999 x 10 ¹	4.000
55	2.1040 x 10^{1}	8.4162×10^{1}	4.000
60	1.7247×10^{1}	6.8988×10^{1}	4.000
65	1.1993 x 10 ¹	4.7972 x 10 ¹	4.000

TABLE V

Broad Group Structure of the 7 Group Cross Section Set for Carbon.

Group	Energy (ev)	Interval			
1	$1.4918 \times 10^{7}_{7}$	to	$1.3498 \times 10^{7}_{7}$		
2	$1.3498 \times 10_{7}$	to	$1.2214 \times 10'_{7}$		
3	$1.2214 \times 10_{7}$	to	$1.1052 \times 10^{\prime}_{7}$		
4	$1.1052 \times 10^{\prime}_{7}$	to	$1.0000 \times 10'_{6}$		
5	$1.0000 \times 10_6'$	to	$6.0653 \times 10^{\circ}$		
6	$6.0653 \times 10_6$	to	$3.0119 \times 10^{\circ}_{6}$		
7	$3.0119 \times 10^{\circ}$	to	1.0026×10^{9}		

TABLE VI

Total Cross Sections for Carbon Calculated in New Barnyard and GGC-4

Group	New Barnyard Total Cross Section (cm ⁻¹)	GGC-4 Total Cross Section (cm ⁻¹)
1	1.0730×10^{-1}	1.0730×10^{-1}
2	1.1078×10^{-1}	1.1078×10^{-1}
3	1.1223×10^{-1}	1.1223×10^{-1}
4	9.8612×10^{-2}	9.8612×10^{-2}
5	1.0006×10^{-1}	1.0006×10^{-1}
6	1.4518×10^{-1}	1.4518×10^{-1}
7	1.6053×10^{-1}	1.6053×10^{-1}

TABLE VII

PO Scattering Transfer Cross Sections for Carbon Calculated in New Barnyard and GGC-4

the second s			
Group		Barnyard PO Total nsfer Cross Section (cm ⁻¹)	GGC-4 PO Total Transfer Cross Section (cm ⁻¹)
FROM 1 T	01	3.6984×10^{-2}	3.6084×10^{-2}
	0 2	1.3377×10^{-2}	$1 3377 \times 10^{-5}$
	03	6.6004×10^{-3}	6.6004×10^{-3}
	04	4.0538×10^{-3}	4.0538×10^{-5}
	0 5	1.6083×10^{-2}	1.6083×10^{-2}
	06	3.5487×10^{-5}	3.5487×10^{-3}
	07	1.0219×10^{-4}	1.0219×10^{-2}
	0 2	3.8940×10^{-2}	3.8940×10^{-2}
	0 3	$1 4444 \times 10^{-2}$	$1 4444 \times 10^{-2}$
	0 4	8.1390 x 10^{-3}	$8 1390 \times 10^{-3}$
	0 5	1.8409×10^{-2}	$1 8409 \times 10^{-2}$
	0 6	5.6734×10^{-3}	$5 6734 \times 10^{-3}$
	0 7	$7 8967 \times 10^{-3}$	7.8967×10^{-3}
	03	$3 8735 \times 10^{-2}$	3.8735×10^{-2}
FROM 3 T	0 4	1.5851×10^{-2}	1.5851×10^{-2}
FROM 3 T	0 5	2.3362×10^{-2}	2.3362×10^{-2}
FROM 3 T	06	1.1659×10^{-2}	1.1659×10^{-2}
FROM 3 T	07	4.9461×10^{-3}	4.9461×10^{-3}
FROM 4 T	04	$3 3846 \times 10^{-2}$	3.3846×10^{-2}
FROM 4 T	0 5	2.6936×10^{-2}	2.6936×10^{-2}
	06	2.6107×10^{-2}	2.6107×10^{-2}
	07	2.5326×10^{-3}	2.5326×10^{-3}
	05	4.2742×10^{-2}	4.2742×10^{-2}
	06	3.5086×10^{-2}	3.5086×10^{-2}
	07	1.9360×10^{-2}	1.9360×10^{-2}
	0 6	9.3408×10^{-2}	9.3408×10^{-2}
	07	5.0676×10^{-2}	5.0676×10^{-2} 1.3782 x 10 ⁻¹
FROM 7 T	07	1.3782×10^{-1}	1.3782×10^{-1}

GNE/69-8

Six Group Cross Section Set for Nitrogen

A comparison of cross sections calculated in the ENDF/B version of New Barnyard and the GGC-4 version of New Barnyard was made for several problems. The 6 group cross section set for nitrogen that is presented here for comparison is typical of the cross section comparisons obtained for other nuclides and mixtures. The cross sections calculated by the GGC-4 version of New Barnyard were used as the standard for the relative difference calculations between these two cross section sets. Table VIII shows the 6 group structure of the cross sections. The absorption cross sections obtained from the two versions of New Barnyard and the relative differences between these cross sections are shown in Table IX ; similarly, Table X shows the total cross sections and their relative differences. Table XI and XII show the comparisons for the PO, P1, P2, and P3 scattering transfer cross sections. The P0 cross section is the total transfer cross section which is the sum of the elastic inelastic, and 2 (n-2n) transfer cross section. The P1 through P3 cross sections are elastic scattering cross sections only.

By inspection of Tables IX and X it is seen that the largest relative differences are 13% and 14% which

occurred for the 3rd and 4th group absorption cross sections respectively. Even these relative differences aren't too great when one considers the following factors:

- The cross section data tapes are from two independent sources, namely GGA (Gulf General Atom) and ORNL (Oak Ridge National Lab.).
- (2) Each group flux is dependent on the total and PO fine group cross sections. If there exists a relative difference for each group cross section, then there exists a relative difference for each group flux. Since broad group cross sections are obtained by flux weighting fine group cross sections, it is logical to argue that the relative differences build up rapidly since when multiplying or adding variables that have relative differences (errors) associated with them these relative differences are added together.

The comparisons of the PO scattering transfer cross section are quite good. Table XI shows that most relative differences are less than 5%; however, the relative differences for the PO cross sections for transfer from 1 to 3, 1 to 4, 1 to 5, and 1 to 6, were 41, 99, 100, and 100%

respectively, but these four cross section values are very small in magnitude and most likely ORNL did not list cross section values as small as GGA's. The largest relative difference in the comparisons between the P1 cross sections was 21%. It is seen from Table XII that the relative differences in the comparisons between P2 cross sections are good except for cross section values for transfer from 1 to 1 and 1 to 2. Note that in the P3 cross section comparison, even larger relative differences than for P2 are common and that for 3 of the cross section comparisons (denoted by an asterisk) the algebraic signs differ between the cross sections. All of these large relative differences and alternating algebraic signs can be explained by the fact that ORNL used an 8th order Legendre polynomial expansion of the fine group differential scattering transfer cross sections and GGA used a 6th order *Legendre polynomial expansion.

* GGA only listed P0 through P3 cross sections on the GGC-4 data tape.

TABLE VIII

Broad Group Structure of the 6 Group Cross Section Set for Nitrogen

Group	Energy Interval (ev)				
1	1.4918×10^7 to 3.0119×10^6				
2	3.0119×10^6 to 6.0810×10^5				
3	6.0810 x 10^5 to 1.2277 x 10^5				
4	1.2277×10^5 to 2.6126×10^3				
5	2.6126 x 10^3 to 4.7851 x 10^1				
6	4.7851 x 10^3 to 3.9279				

TABLE IX

Comparison Between Absorption Cross Selections Which Were Calculated in the GGC-4 Version and the ENDF/B Version of New Barnyard for Nitrogen

Group	GGC-4 Absorption Cross Section (cm ⁻¹)	ENDF/B Absorption Cross Section (cm ⁻¹)	
1 2 3 4 5	1.8192×10^{-5} 3.9154×10^{-6} 5.3592×10^{-7} 1.2364×10^{-7} 9.2645×10^{-7} 4.3170×10^{-6}	1.7910×10^{-5} 3.6110×10^{-6} 4.6538×10^{-7} 1.4085×10^{-7} 9.8802×10^{-7} 4.5740×10^{-6}	2 8 13 14 7

TABLE X

41

Comparisons Between Total Cross Sections Which Were Calculated in the GGC-4 Version and the ENDF/B Version of New Barnyard for Nitrogen

Group	GGC-4 Total Cross Section (cm ⁻¹)	ENDF/B Total Cross Section (cm (cm ⁻¹)	Relative Difference (%)
1	8.7827 x 10 ⁻⁵	8.4124 x 10 ⁻⁵	4
2	9.9716 x 10 ⁻⁵	9.6426 x 10 ⁻⁵	3
3	1.7344×10^{-4}	1.5963×10^{-4}	8
4	3.4983×10^{-4}	3.4664×10^{-4}	1
5	4.9423×10^{-4}	4.9424×10^{-4}	0
6	5.3625×10^{-4}	5.3478 x 10 ⁻⁴	0

Comparison Between PO and Between Pl Scattering Transfer Cross Sections Which Were Calculated in the	GGC-4 Version and the ENDF/B Version of New Barnyard for Nitrogen	GGC-4 P0ENDF/B P0P0GGC-4 P1ENDF/B P1Transfer CrossTransfer CrossRelativeTransfer CrossTransfer CrossSectionSectionDifferenceSectionSection(CM ⁻ 1)(CM ⁻ 1)%(CM ⁻ 1)(CM ⁻ 1)	4.8938 x 1.7194 x	1 to 3 1.4876 x 10 ⁻ 1 to 4 2.1350 x 10 ⁻	5 1.0350 x 10 ⁻¹⁰ 0.0 100 0.0	5 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	x 10^{-5} 1.0760 x 10^{-5} 0 -9.4342 x 10^{-6} -9.6751 x	2 to 4 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0 0.0 0.0	480 x 10 ⁻⁴ 8 4.8841 x 10 ⁻⁵ 4.1714 76 × 10 ⁻⁵ 6 -1 3633 × 10 ⁻⁵ 1. 7710		0.0 0.0	$x 10^{-4}$ 3.3410 x 10 ⁻⁴ 1 6.2527 x 10 ⁻⁵ 6.2461 x	4 to 5 1.2409 x 10^{-5} 1.2403 x 10^{-5} 0 -1.1164 x 10^{-5} -1.1156 x 10^{-5} 0		5 to 5 4.7704 x 10 ⁻⁷ 4.7689 x 10 ⁻⁴ 0 8.5092 x 10 ⁻³ 8.5863 x 10 ⁻³ 0 5 to 6 1.6266 x 10 ⁻⁵ 1.6367 x 10 ⁻⁵ 0 -1.4655 x 10 ⁻⁵ -1.4750 x 10 ⁻⁵ 0	$6 5.0523 \times 10^{-4} 5.0350 \times 10^{-4} 0 1.0005 \times 10^{-4} 1.0049 \times 10^{-5}$
Comparisc	GGC-4 Ver	Group	From 1 to From 1 to	From 1 to From 1 to			2				n m			4	4	From 5 to	9

TABLE XI

LITE GGC-4 VEI	LUE GOU-4 VERSION AND THE ENDE	UF/B Version of New	New barnyard for Nitrogen	r NICrogen		
	GGC-4 P2	ENDF/B P2	P2	GGC-4 P3	ENDF/B P3	P3
	Transfer Cross	Transfer Cross	Relative	Transfer Cross	Transfer Cross R	Relative
Group	Section (CM ⁻¹)	Section (CM ⁻)	Difference (%)	e Section (CM ⁻)	Section Di (CM ⁻¹)	Difference (%)
From 1 to 1	4.1080 x 10-5	7.7636 x 10 ⁻⁵	89	3.3199 x 10 ⁻⁵	5.6592 x 10 ⁻⁵	70
From 1 to 2	3.3534 x 10-6	2.0285 x 10 ⁻⁶	40	-1.8488 x 10-7	.2627 x	32
From 1 to 3	0.0	0.0	0	0.0	0.0	0
From 1 to 4	0.0	0.0	0	0.0	0.0	0
From 1 to 5	0.0	0.0	0	0.0	0.0	0
From 1 to 6	0.0	0.0	0		0.0	0
From 2 to 2	×	2.2396 x 10 ⁻⁵	3	3.8061 x 10 ⁻⁶	5.3094 x 10 ⁻⁶	40
From 2 to 3	1.5530×10^{-6}	-1.8053 x 10 ⁻⁶	2	×	-5.0983 x 10 ^{-9*}	41
From 2 to 4	0.0	0.0	0	0.0	0.0	0
From 2 to 5	0.0	0.0	0	0.0	0.0	0
From 2 to 6	0.0	0.0	0	0.0	0.0	0
From 3 to 3	4.9520 x 10 ⁻⁶	3.9846 x 10 ⁻⁶	19	3.3335×10^7	-5.2558 x 10 ^{-8*}	84
From 3 to 4	-1.6490 x 10 ⁻⁶	-1.4656 x 10 ⁻⁶	11	-9.5588 x 10 ⁻⁸	-1.5059×10^{-7}	56
From 3 to 5	0.0	0.0	0	0.0	0.0	0
From 3 to 6	0.0	0.0	0	0.0	0.0	0
From 4 to 4	3.9850 x 10 ⁻⁶	3.3925 x 10 ⁻⁶	15	-5.5014 x 10 ⁻⁸	-5.1122 x 10 ⁻⁸	7
From 4 to 5	-1.1462 x 10 ⁻⁶	-1.2008 x 10 ⁻⁶	4	-7.8139 x 10 ⁻⁸	-5.3329 x 10 ⁻⁸	26
From 4 to 6	0.0	0.0	0	0.0	0.0	0
From 5 to 5	5.1923 x 10 ⁻⁶	4.1422 x 10 ⁻⁶	20	-7.7961 x 10 ⁻⁸	-2.3663 x 10 ⁻⁸	70
From 5 to 6	-1.4863 x 10 ⁻⁶	-1.5628 x 10 ⁻⁶	5	-9.0747 x 10 ⁻⁸	-6.4528 x 10 ⁻⁸	29
From 6 to 6	6.3895 x 10 ⁻⁶	5.2714 x 10 ⁻⁶	17	-1.2026 x 10 ⁻⁸	9.2380 x 10 ^{-8*}	250
11	absolute value was taken	n so that a comparison	ison could be	be made.		

TABLE XII

Comparisons Between P2 and Between P3 Scattering Transfer Cross Sections Which Were Calculated in

GNE/PHYS 69-8

Conclusions

The comparison of the flux calculated by New Barnyard with the flux calculated by GAM-1 and the comparison of the group cross sections calculated by New Barnyard with the group cross sections calculated by GGC-4 give confidence in the "correctness" or validity of the calculations performed by New Barnyard; that is, New Barnyard does what it is supposed to do, and does it right. Some thought, however, should now be given to the **usefulness** of the zero moment of the neutron flux for flux weighting cross sections.

Recall that the zero moment equation was based on an infinite medium and a plane source of infinite dimensions at the origin. Assumptions such as these are valid for reactor calculations where one at least crudely has a plane source (fission neutrons in the core) and an infinite medium (shielding around the core). When considering one dimensional thin shield transport calculations for neutrons with energies above thermal, where the mean free path of a neutron is larger than the thickness of the shield, the zero moment equation leads to an inaccurate flux spectrum. Thus, for a thin shield calculation a better approximation for the flux is one equal to the source spectrum for the problem since relatively few neutrons are slowed down when passing through the shield. It was for cases such as this that

New Barnyard was programmed with the option of inputting a flux spectrum.

One should also recall that no resonance calculations are performed in New Barnyard; however, resonances in general are negligible above a few kev and it is above this energy range that New Barnyard is primarily intended.

Finally, recall the zero moment flux was used to flux weight P0 through P8 scattering transfer cross sections. Cross section codes such as GAM-1 and GGC-4 usually flux weight the PN cross sections with a corresponding ϕ_N flux which comes from the expansion of the three dimensional flux, ϕ (X, E, μ), in a Legendre polynomial series followed by either a B_L (Ref 10) or a P_L (Ref 11) solution to the Boltzmann equation. In general, as N becomes large ϕ_N becomes small; thus, flux weighting the PN cross sections with ϕ_N fluxes produces PN group cross sections smaller than the corresponding PN group cross sections flux weighted by the zero moment flux.

BIBLIOGRAPHY

- Bridgman, C. J. et. al., Old Barnyard: A Cross Section Code for School Use, AFIT Technical Report 67-17, December 1967, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433.
- Jahnke, E., and F. Emde. <u>Table of Functions</u>. (Fourth Edition). New York: Dover Publications, 1945.
- Sneddon, I. N. Fourier Transforms. New York: McGraw-Hill Book Company, Inc., 1951
- Davison, B. and J. B. Sykes. <u>Neutron Transport Theory</u>. London: Oxford University Press, 1957.
- Lathrop, K. D. <u>et</u>. <u>al</u>., GGC-4. Gulf General Atomic, John Jay Hopkins Lab. Documents GA-7156, GA-7157, and GA-7158, San Diego, California 92112.
- Oak Ridge National Laboratory. <u>ENDF/B (Evaluated Nuclear Data File/B) Neutron Cross Section Data Tapes</u>. Radiation Shielding Information Center, Post Office Box X, Oak Ridge, Tennessee 37830.
- Goldberg, M. D., <u>et</u>. <u>al</u>., "Angular Distributions in Neutron-Induced Reactions" 2nd edition, Volume I, Brookhaven National Laboratory BNL400 October 1962.
- 8. Murray, R. L. <u>Nuclear Reactor Physics</u>. Englewood Cliffs New Jersey: Prentice-Hall, Inc., 1957.
- 9. Joanou, G. D., and J. S. Dudek. <u>GAM-1: A Consistent</u> <u>Pl Multigroup Code for the Calculation of Fast Neutron</u> <u>Spectrum and Multigroup Constants</u>, UAEC Document GA-1850. San Diego, California: John Jay Hopkins Laboratory for Pure and Applied Science, 1961.
- Hurwitz, J., and B. Zweifel, "Slowing Down of Neutrons by Hydrogenous Moderators". Journal of Applied Physics, V26, 8 (August 1955).
- 11. Meghreglian, R. V., and D. K. Holmes, <u>Reactor Analysis</u>. New York: McGraw-Hill Book Company, Inc., 1957.

APPENDIX A

GGC-4 Source Deck of New Barnyard

On the following pages is listed the source deck that uses the GGC-4 cross section library data tape. It is written in the Fortran IV language for use on the IBM 7094 digital computer. It consists of a main program and 3 separate subroutines.

Input data from data cards and from the GGC-4 cross section data tape are "read in" in the main program. Five scratch tapes are used to store PO, P1, P2, P3, inelastic, n-2n, and total PO cross section arrays until they are needed in the main program. The flux calculation and the broad group calculations of the transport cross section, diffusion coefficient, and the average cosine of the scattering angle are performed in the main program.

The subroutine named REW is used to rewind the scratch tapes and to set a double subscripted scattering transfer cross section symbol to zero. The subroutine named ONE is used to calculate 99 group macroscopic transfer cross section sets. The subroutine named CSAV is called in the main program to flux weight the cross sections.

Extra comment cards have been added to the listing that follows so that the program will be easier to read. A glossary of computer program symbols is given in Appendix C.

GNE/PHYS 69-8 C NEW BARNYARD

č	MULTIGROUP NEUTRON MACROSCOPIC CROSS SECTION CODE
C1	THIS SOURCE DECK USES THE COCK COSS SECTION CODE
CI	THIS SOURCE DECK USES THE CGC-4 CROSS SECTION DATA TAPE
	DIMENSION BXCX(18), NTID(3), AT(90), DAD(21), DD(3,45), LEN(4),
	1SIGQ(100), TRA(310), STH(110), ENG(103), UL(206), LLEGB(22),
	2SIGA(100), SIGT(100), SS(37), TOT(22), ABBS(22), SISO(22,22),
	3PO(22,22),XINELS(22,22),XN2N(22,22),ESS(40),FTOT(22),AID(31),
	4DENT(31), SSSS(99), P1(22,22), P2(22,22), P3(22,22)
	COMMON TTT(5050), TT(100,100), LDF, LD, LT, NBBG, LBCB(99), FLUX(100)
	EQUIVALENCE (ESS(7), SS(1))
	MG=1
	MSS=2
	MT=3
	MTT=4
	MMT = 7
	MMMT = 8
C2	MG, MSS, MT, MTT, MMT, MMMT ARE THE TAPE NUMBERS USED IN
C	THIS SOURCE DECK
	FPL=1.0
	FNBT=31568.00
C3	READ FIRST DATA CARD
	READ (5,2)(BXCX(!),I=1,19)
C4	READ SECOND DATA CARD
	READ(5,6)NBBG, NNUK, KKK
2	FORMAT(18A4)
6	FORMAT(313)
	REWIND MG
C5	THE FOLLOWING CARDS THROUGH CARD NO. 10 ARE FOR READING
C	THE GCC-4 DATA TAPE AND FOR PRINTING OUT IMPORTANT INFORMATION
C	FROM THE DATA TAPE
C	READ (MG) (NTID(I), I=1,3)
	NBT=NTID(1)
	NEP=NTID(2)
	NGT=NTID(3)
	NEV=NEP-1
	NES=NEP+1
	LNX=NEV+6
	NBTC=FNBT+0.1
	IF(FNBT .LT. O.) NBTC=FNBT-O.1
	IF(NBT-NBTC)4,5,4
	WRITE(6,931)NBT,NBTC
281	FORMAT(1H1//5X,22HFAST DATA TAPE NUMBER 16,35H WAS LOADED INSTEAD
	1 OF TAPE NUMBER 16,1X,22H WHICH WAS SPECIFIED. //
2	25X,20HPROBLEM TERMINATED.
	CALL EXIT
5	READ (MG)(AT(I),I=1,9C)
	WRITE(6,1002)(BXCX(I),I=1,18)
1002	FORMAT(1H1,18A4)
	WRITE(6,905)NBT,(AT(I),I=1,90)
205	FORMAT(26HOFAST DATA TAPE NUMBER = 15/
>	(23HOTAPE DESCRIPTION ····· //(1X,18A4))
,	READ (MG)NNOT
	ASSIGN 809 TO NPRI
	IF(FPL)808,808,750
303	ASSIGN 129 TO NPR1
0.0	GC TO 810
750	CONTINUE
1.0	

LRINK-0 804 WRITE(6,894)NBT 894 FORMAT(/35HOCONTENTS OF FAST DATA TAPE NUMBER 16// X5X,11HNUCLIDE NO. 5X,20HNUCLIDE DESCRIPTION /) 810 DO 129 IXL=1,NNCT READ(MG)(DAD(I), I=1, 21)DD(1,IXL)=DAD(19) DD(2,IXL)=DAD(20) DD(3,IXL)=DAD(21) C DAD(19)=NUCLIDE ID NO.\$DAD(20)=NO. OF RESOLVED RESONANCES C DAD(21)=NO. OF UNRESOLVED RESONANCES. IF(IXL.GT.16.AND.IXL.LE.30) GO TO 129 GO TO NPR1, (809,129) 209 LRINK=LRINK+1 IF(LRINK-46)805,807,805 807 WRITE(6,895)NBT 305 CONTINUE WRITE(6,897)DAD(19),(DAD(1),I=1,18) 295 FORMAT(35H1CONTENTS OF FAST DATA TAPE NUMBER 16// X5X,11HNUCLIDE NO. 5X,20HNUCLIDE DESCRIPTION /) 897 FORMAT(1X,F13.7,5X,18A4,/) 129 CONTINUE C READ FAST DATA TAPE --- RESONANCE TABLES READ(MG)(LEN(I), I=1, 4)LBS=LEN(4) READ(MG)(TTT(I), I=1, LBS) READ FAST DATA TAPE---ENERGIES, LETHARGIES, DELTA U C JMM=2*NES+NEP READ(MG)(TRA(I), I=1, JMM)READ(MG)(GTH(I), I=1, NGT) READ(MG)(NTID(I), I=1, 1)DO 84 I=1.NEP ENG(I) = TRA(I) IX=I+NES UL(I)=TRA(IX) 84 IZ=IX+NES ENG(NES) = TRA(NES) UL(NES) = TRA(2*NES) DO 8 I=1,99 8 LBGB(I) = 0C6 READ THIRD DATA CARD READ(5,7)(LLBGB(I), I=1,NBBG) DO 9 I=1,NBBG 9 L3GB(I)=LLBGB(I) 7 FORMAT(2413) WRITE(6,1002)(BXCX(I),I=1,18) WRITE(6,747) WRITE(6,748)(I,ENG(I),ENG(I+1),UL(I),UL(I+1),LBGB(I),I=1,50) 747 FORMAT(22HOFINE GROUP STRUCTURE /80HOGROUP ENERGY INTE 1RVAL(E.V.) LETHARGY INTERVAL ,39H LO 2WER BD. GRP BOUND. 748 FORMAT(I5,6X,1PE13.6,4H TO 1PE13.6,6X,1PE13.5,4H TO 1PE12.5, X1122) WRITE(6,1002)(BXCX(I),I=1,18) WRITE(6,747) WRITE(6,748)(I,ENG(I),ENG(I+1),UL(I),UL(I+1),LBGB(I),I=51,99) WRITE(6,1002)(BXCX(I),I=1,18)

1 6 18 GNE/PHYS 69-8 WRITE(6,1009) 1009 FORMAT(22HOBROAD GROUP STRUCTURE /46HOBROAD GROUP ENER XGY INTERVAL (E.V.) ENG(101)=0.0 DO 1008 I=1,NBBG IF(I .NE. 1) GO TO 1005 JNY = LBGB(I) + 1WRITE(6,1007) I, ENG(1), ENG(JNY) GO TO 1008 1005 K=I-1 JNYN=LBGB(K)+1JNYY = LBGB(I) + 1WRITE(6,1007) I, ENG(JNYN), ENG(JNYY) 1008 CONTINUE 1007 FORMAT(15,10X,1PE13.6,4H TO 1PE13.6) C SKIP FISSION SPECTRA SOURCE DATA ON TAPE NSP=NTID(1) DO 10 I=1,NSP 10 READ (MG) DUMMY DO 27 IXL=1,NNUK C7 READ FOURTH DATA CARD READ(5,11)AID(IXL), DENT(IXL) FORMAT(1F12.7,1E13.6) 11 DO 31 JZ=1,NNOT J2=JZ THE NEXT CARD CHECKS TO SEE IF THE ID NUMBERS THAT ARE INPUT **C8** MATCH AN ID NUMBER ON THE DATA TAPE C IF(ABS(AID(IXL)-DD(1,J2))-0.00001)27,27,31 31 CONTINUE WRITE(6,982)AID(IXL),NBT,(DD(1,1),I=1,NNOT) FORMAT(1H1//5X, 15H NUCLIDE NUMBER F9.4 ,31H NOT ON FAST DATA TA 9.82 I6//5X,27HNUCLIDES ON DATA TAPE ARE--//(30X,F9.4)) XPE NUMBER 27 CONTINUE READ(MG) (NTID(I), I=1,1) SKIP RESONANCE DATA C NMORE=2*NTID(1) DO 160 I=1,NMORE 160 READ (MG) DUMMY C ZERO OUT CROSS SECTION ARRAYS DO 15 I=1,100 SI-GQ(I)=0.0 SIGA(I)=0.0 ENG(I) = 0.015 SIGT(I)=0.0 DO 111 JSD=1,NNUK 777 READ(MG)(ESS(I), I=1,37) THE FOLLOWING CARDS THROUGH CARD NO. 66 ARE USED TO FIND THE C9 DATA FOR THE PROBLEM ON THE DATA TAPE C IF(ABS(AID(JSD)-SS(13))-0.00001)20,20,21 21 NRK=SS(30)+0.1 SKIP NRK RECORDS ON THE DATA TAPE C10 DO 666 I=1,NRK 666 READ (MG) DUMMY GO TO 777 THE NEXT 4 CARDS ARE FOR WRITING DATA ON THE SCRATCH TAPES C11 20 WRITE(MT)(ESS(I), I=1, 37)

```
WRITE(MTT)(ESS(I), I=1,37)
```

	GRE/ PHIS 69-6
	WRITE(MMT)(ESS(I), I=1,37)
	WRITE(MMMT)(ESS(I), I=1,37)
	SSS=SS(13)
	IF(SS(26))39,39,85
0	
85	WRITE(6,40) SSS
40	FORMAT(12HINUCLIDE NO. F10.7,1X,13HHAS 1-D ARRAY
	NX=SS(26)+0.1
C	SS(26)=NO. OF ONE-DIMENSIONAL ARRAYS
	LNX=6+NEV
	NT=NX*LNX
С	READ 1-D CROSS SECTIONS
	READ(MG)(TTT(I), I=1,NT)
C1-	THE NEXT TWO CARDS CALCULATES THE FINE GROUP MACROSCOPIC CROSS
C12	
C	SECTIONS
	DO 33 I=1,NEV
33	SIGA(I)=SIGA(I)+TTT(I+6)*DENT(JSD)
	IS1=LNX+6
	IF(SS(25))8997,8997,8996
C13	SS(25) INDICATES WHETHER A FISSION CROSS SECTION IS INCLUDED FOR
C	THIS NUCLIDE
8096	DO 8999 I=1,NEV
C14	THE NEXT 3 CARDS CALCULATE THE FINE GROUP MACRO. CROSS SECTION
C + +	
8000	SIGQ(I)=SIGQ(I)+TTT(IS)*DENT(JSD)
0533	IS1=IS+6
C1-	THE NEXT 3 CARDS ASSIGN THE FINE GROUP NU VALUES TO ENG(I)
C15	
	DO 9010 I=1,NEV
	IS=IS1+I
0	ENG(I) = ENG(I) + TTT(IS)
-	CONTINUE
	IF(SS(16))91,91,41
91	WRITE(6,50)SSS
50	FORMAT(12HONUCLIDE NO. F10.7.1X.37HDOES NOT HAVE P-0.P-1.P-2.P-3 A
	XRRAY
	GO TO 98
41	WRITE(6.42)SSS
42	FORMAT(12HONUCLIDE NO. F10.7,1X,29HHAS P-0,P-1,P-2,AND P-3 ARRAY)
4	$1 = 55(16) + C \cdot 1$
С	READ AND STORE P-0 ARRAY
C	READ(MG)(TTT(I),I=1.LT)
	DO 4000 I=1.LT
C1-	THE NEXT CARD CALCULAFES MACRO. CROSS SECTIONS
C17	
4000	TTT(I)=TTT(I)*DENT(JSD)
	WRITE(MT)SS(13),SS(17),SS(18),LT.(TTT(I),I=1,LT)
C16	READ AND STORE P1 ARRAY
	READ(MG)(TTT(I),I=1,LT)
	DO 4444 I=1,LT
4444	TTT(I)=TTT(I)*DENT(JSD)
	WRITE(MMMT)SS(13),SS(17),SS(18),LT,(TTT(I),I=1,LT)
C17	READ AND STORE P2 ARRAY
	READ(MG)(TTT(I),J=1,LT)
	DO 4445 I=1,LT
41.45	TTT(I)=TTT(I)*DENT(JSD)
· († + 2	WRITE(MMMT)SS(13),SS(17),SS(18),LT,(TTT(I),I=1,LT)
Clo	READ AND STORE P3 ARRAY
C + 3	READ (MG) (TTT(I), I=1,LT)
	DO 4446 I=1,LT

GNE/	PHYS 69-8	
	TTT(I)=TTT(I)*DENT(JSD)	
	WRITE(MMMT)SS(12),SS(17),SS(18),LT,(TTT(1),I=1,LT)	
C	READ AND STORE INELASTIC ARRAY	
	IF(SS(19))82,82,73	
	WRITE(3,53)SSS	
53	FORMAT(12HONUCLIDE NO. F10.7,1X,29HDOES NOT HAVE INELASTIC ARRAY)
7.0	GO TO 39	
	WRITE(6,43)SSS	
43	FORMAT(12HONUCLIDE NO. F10.7,1X,19HHAS INELASTIC ARRAY	;
	LT=SS(19)+C•1	
	READ(MG)(TTT(I),I=1,LT)	
	DO 4001 I=1,LT	
4001	TTT(I)=TTT(I)*DENT(JSD)	
	WRITE(MTT)SS(13),SS(20).SS(21),LT,(TTT(I),I=1,LT)	
0	READ AND STORE N-2N ARRAY	
89	IF(SS(22))92,92,82	
92	WRITE(6,54)838	
54	FORMAT(12HONUCLIDE NO. F10.7,1X.24HDOES NOT HAVE N-2N ARPAY)
	GO TO 74	
83	WRITE(6,44)SSS	
44	FORMAT(12HONUCLIDE NO. F10.7,1X,14HHAS N-2N ARRAY)
	LT=SS(22)+0.1	
	READ(MG)(TTT(I),I=1,LT)	
	DO 4002 I=1.LT	
4002	TTT(I)=TTT(I)*DENT(JSD)	
	WRITE(MMT)SS(13),SS(23),SS(24),LT,(TTT(I),I=1,LT)	
C	READ SIGMA TOTAL	
74	READ (MG)(TTT(I),I=1,NEV)	
C	CALCULATE TOTAL MACROSCOPIC CROSS SECTION	
	DO 45 I=1,NEV	
45	SIGT(I)=SIGT(I)+TTT(I)*DENT(JSD)	
C	READ TOTAL ISOTROPIC SCATTER ARRAY(P-0+INEL+2*N-2N)	
	IF(SS(27))105.105,94	
	WRITE(6,60)SSS	
60	FORMAT(12PONUCLIDE NO. F10.7,1X.29HDOES NOT HAVE TOTAL ISO.ARRAY)	
	CALL EXIT	
	WRITE(6,46)SSS	
46	FORMAT(12HONUCLIDE NO. F10.7,1X,28HHAS TOTAL ISO. SCATTER ARRAY	
	LT=SS(27)+0.1	
	READ(MG)(TTT(I),I=1,LT)	
	DO 4004 I=1,LT	
4004	TTT(I)=TTT(I)*DENT(JSD)	
	WRITE(MSS)SS(13),SS(28),SS(29),LT,(TTT(I),I=1,LT)	
C	READ SIGMA SCATTER TOTAL FOR P-0 ARRAY	
- 17	IF(SS(16))111,111,106	
106	READ(MG)(TTT(I), I=1, NEV)	
C	READ SIGMA SCATTER TOTAL FOR P-1 ARRAY	
	READ(MG)(TTT(I),I=1,NEV)	
111	CONTINUE	
	CALL REW(MSS)	
C21	SUBROUTINE REW REWINDS A TAPE AND SETS TT(K,KK) EQUAL TO 0.	
	DO 120 JJ=1,NNUK	
	READ(MSS)SS(13),SS(28),SS(29),LT,(TTT(I),I=1,LT)	
	LDF=SS(28) +0.1	
C22	LDF = THE NUMBER OF GROUPS SCATTERED FROM	
C2.	LD=SS(29) +0.1	
C23	LD= NUMBER OF GROUPS SCATTERED TO	

C23 LD= NUMBER OF GROUPS SCATTERED TO

	GNE/PHYS 69-8
	CALL ONE(1)
C24	SUBROUTINE ONE SETS UP THE FINE GROUP MACRO. SCATTERING
С	CROSS SECTIONS FOR A TWO ARRAY VARIABLE, TT(K,KK)
	CONTINUE
С	CALCULATE FLUX OR READ IN FLUX IF(KKK-1)125,126,126
125	READ(5,127)(FLUX(I),I=1,99)
-	FORMAT(6E12.6)
T = .	GO TO 315
126	READ(5,127)SSSS
C25	THE FOLLOWING CARDS THROUGH CARD NO. 29 ARE FOR CALCULATING
С	THE FLUX
	FLUX(1)=(1./(SIGT(1)-TT(1,1)))*SSSS(1)
	DO 29 LL=2,99
	SUM=0.0 KKKK=LL-1
	DO 30 $J=1$, KKKK
30	SUM=SUM+FLUX(J)*TT(J,LL)
29	<pre>FLUX(LL)=(1./(SIGT(LL)-TT(LL,LL)))*(SSSS(LL)+SUM)</pre>
315	MM=1
	TT(100,100)=0.0
c 2 .	FLUX(100)=FLUX(99)
C26	THE NEXT 8 CARDS ARE FOR PRINTING OUT THE FLUX WRITE(6,1002)(BXCX(I),I=1,18)
	WRITE(6,211)
211	FORMAT(1H0/7H GROUP,12H FLUX
-	WRITE(6,215)(I,FLUX(I),I=1,50)
215	FORMAT(116,1PE20.6)
	WRITE(6,1002)(BXCX(I),I=1,18)
	WRITE(6,211)
C	WRITE(6,215)(I,FLUX(I),I=51,99) CALCULATE BROAD GROUP MACRO. ABS. AND TOTAL CROSS SECTION
C C27	THE FOLLOWING CARDS THROUGH 9019 CALCULATE THE BROAD GROUP ABS.
C	TOTAL, FISSION, AND NU*FISSION CROSS SECTIONS
	DO 201 I=1,NBBG
	SUM=0.0
	BUM=0.0
	SUMM=0.0
	SUMMM=C • O
	TUM=C.O. III=LBGB(I)
	DO 200 II=MM,III
	BUM=BUM+ENG(II)*FLUX(II)*SIGQ(II)
	SUMMM=SUMMM+SIGQ(II)*FLUX(II)
	SUM=SUM+SIGT(II)*FLUX(II)
	SUMM=SUMM+FLUX(II)
200	TUM=TUM+SIGA(II)*FLUX(II) FTOT(I)=SUMMM/SUMM
	ABBS(I)=TUM/SUMM
	TRA(I)=BUM/SUMM
201	MM = LBGB(I) + 1
	WRITE(6,1002)(BXCX(I),I=1,18)
2.0	WRITE(6,312)
312	FORMAT(48H0BROAD GROUP AVERAGED MACROSCOPIC CROSS SECTIONS/1H0) WRITE(6,217)
2.7	WRITE(0)217) FORMAT/FUGDOUD.20H SIGMA ARSORDTION.20H SIGMA TOTAL 22

21	7	FORMAT(6HOGROUP,20H	SIGMA ABSORPTION, 20H	SIGMA TOTAL	,20
----	---	---------------------	-----------------------	-------------	-----

```
GNE/PHYS 69-8
              SIGMA FISSION
     XH
      WRITE(6,218)(I,ABBS(I),TOT(I),FTOT(I),I=1,NBBG)
 218
      FORMAT(114,1PE20.6,1PE18.6,1PE18.6)
      WRITE(6,1002)(BXCX(I),I=1,18)
      WRITE(6,9009)
 9009 FORMAT(6HOGROUP,28H
                                   NU*SIGMA FISSION
 9019 FORMAT(114,1PE28.6)
      WRITE(6,9019)(I,TRA(I),I=1,NBBG)
C
      CALCULATE TOTAL BROAD GROUP ISO. TRANSFER SCATTER CROSS SECTION
      CALL CSAV(SISO)
      THE SUBROUTINE CSAV FLUX WEIGHTS FINE GROUP SCATTERING TRANSFER
C28
C
      CROSS SECTIONS
C
      CALCULATE P-0 MACRO. CROSS SECTIONS
      CALL REW(MT)
      DO 2010 JM=1,NNUK
      READ(MT)(ESS(I), I=1, 37)
      IF(SS(16))2010,2010,3000
 3000 READ(MT)SS(13),SS(17),SS(18),LT,(TTT(I),I=1,LT)
      LDF = SS(17)
                    +0.1
      LD=SS(18)
                    +0.1
      CALL ONE(1)
 2010 CONTINUE
      CALL CSAV(PO)
      THE NEXT 10 CARDS ARE FOR CALCULATING THE BROAD GROUP INELLASTIC
C29
      SCATTERING TRANSFER CROSS SECTIONS
C
      CALL REW(MTT)
      DO 3021 JM=1,NNUK
      READ(MTT)(ESS(I), I=1, 37)
      IF(SS(19))3021,3021,3022
 3022 READ(MTT)SS(13),SS(20),SS(21),LT,(TTT(I),I=1,LT)
      LDF = SS(20)
                    +0.1
      LD=SS(21)
                    +0.1
      CALL ONE(1)
 3021 CONTINUE
      CALL CSAV(XINELS)
C30
      THE NEXT 10 CARDS ARE FOR CALCULATING THE BROAD GROUP N-2N
      SCATTERING TRANSFER CROSS SECTIONS
      CALL REW(MMT)
      DO 3027 JM=1, NNUK
      READ(MMT)(ESS(I), I=1, 37)
      IF(SS(22))3027,3027,3028
 3028 READ(MMT)SS(13),SS(23),SS(24),LT,(TTT(I),I=1,LT)
      LDF = SS(23)
                    +0.1
      LD=SS(24)
                    +0.1
      CALL ONE(2)
 3027 CONTINUE
      CALL CSAV(XN2N)
C31
      THE NEXT 10 CARDS ARE FOR CALCULATING THE P1 SCATTERING TRANSFER
C
      CROSS SECTIONS
      CALL REW (MMMT)
      DO 7330
               II=1,NNUK
      READ(MMMT)(ESS(I), I=1, 37)
      IF(SS(16))7330,7330,7331
 7331 READ(MMMT)SS(13),SS(17),SS(18),LT,(TTT(I),I=1,LT)
      READ (MMMT) DUMMY
      READ (MMMT) DUMMY
      LDF=SS(17)+0.1
```

	GNE/PHYS 69-8			
	LD=SS(18)+0•1 CALL ONE(1)			
7230	CONTINUE			
1320	CALL CSAV(P1)			
C32		RING TRANSFER	CROSS SECTION CALC FC	ILOW
()2		KING TRANSFER	choos section checile	LLON
	CALL REW(MMMT) DO 7332 II=1.NNUK			
	READ(MMMT)(ESS(I), I=1,37)			
7-22	IF(SS(16))7332,7332,7333			
1333	READ(MMMT)DUMMY READ(MMMT)SS(13),SS(17),SS	/101.1T./TTT/I) I=1 T)	
		110/9/19/11/1	/ • 1 - 1 • [] /	
	READ (MMMT) DUMMY			
	LDF=SS(17)+0.1			
	LD=SS(18)+0.1			
-	CALL ONE(1)			
7332	CONTINUE			
	CALL CSAV(P2)	THE TRANSFER O	POSS SECT CALLS FOLLO	
C33	THE P3 BROAD GROUP SCATTER	ING TRANSFER C	RUSS SECT CALC FULLOW	
	CALL REW(MMMT)			
	DO 7334 II=1.NNUK			
	READ(MMMT)(ESS(I), $I=1,37$)			
	IF(SS(16))7334,7334,7335			
1335	READ (MMMT) DUMMY			
	READ (MMMT) DUMMY	/10) . I T . / TTT/ I	$\lambda = 1 = 1 + T^{(4)}$	
	READ(MMMT)SS(13),SS(17),SS	(10) (1) (1) (1)	/ 9 1 - 1 9 - 1 /	
	LDF=SS(17)+0.1			
	LD=SS(18)+0.1			
7 0 /	CALL ONE (1)			
1334	CONTINUE			
	CALL CSAV(P3)	101		
	WRITE(6,1002)(BXCX(I),I=1,		BOAD CROUP CROSS SECT	TON
C34.	THE NEXT 33 CARDS ARE FOR	PRINTING UUT B	RUAD GROUP CRUSS SECT	ION
	WRITE(6,312)			
5 - 1	WRITE(6,551)	P-0	INELASTIC	N-2N
551	FORMAT(100H0GROUP	P=0	INELASTIC	N-2N
7	K TOTAL SCATTER LPC=0			
	DO 4100 LL=1,NBBG			
	DO 3200 I=LL,NBBG			
	LPC=LPC+1			
	IF(LPC-25)3200,555,555			
555	WRITE(6,1002)(BXCX(N),N=1,	191		
252	WRITE(6,312)	107		
	WRITE(6,551) LPC=0			
2-00	WRITE(6,38)LL,I,PO(LL,I),X	THELCHILLT NO	20111.1.5150111.11	
		INCLOTLLIIIIINN	211121113130(22,11)	
-	CONTINUE FORMAT(5H0FROM,113,3H TO,1	13.10F15.6.10F	15.6.10F15.6.10F15.61	
38	WRITE(6,1002)(BXCX(I),I=1,		19.0, IFC19.0, IFC19.07	
	WRITE(6,312)	101		
	WRITE(6,5511)			
5 - 1 1	FORMAT(54H0	P-1	P-2	P-3)
2211	LPC=0		F 4	
	DO 1400 LL=1,NBBG			
	DO 2300 I=LL,NBBG			
	LPC=LPC+1 IF(LPC-25)2300,5555,5555			
	11 1 L F C - 2 J 7 2 J 0 0 9 J J J J J J J J J J J J J J J J			

```
GNE/PHYS 69-8
 5555 WRITE(6,1002)(BXCX(N),N=1,18)
      WRITE(6,312)
      WRITE(6,5511)
      LPC=0
 2300 WRITE(6,3888)LL,I,P1(LL,I),P2(LL,I),P3(LL,I)
 1400 CONTINUE
 3888 FORMAT(5H0FROM,113,3H T0,113,1PE15.6,1PE15.6)
      WRITE(6,1002)(BXCX(I),I=1,18)
      WRITE(6,1424)
 1424 FORMAT(65HOGROUP
                        AVERAGE COS(THETA) DIFF. COEFF.
                                                               SIGMA TRANS
     *PORT
      THE NEXT 5 CARDS ARE FOR CALCULATING THE TRANSPORT CROSS SECTION
C35
      THE DIFFUSION COEFF. AND THE AVG. COSINE OF THE SCATT. ANGLE
C
 1425 FORMAT(115,1PE17.4,1PE18.4,1PE17.4)
      DO 1431 LL=1,NBBG
      SIGTR=TOT(LL)-P1(LL,LL)/3.
      D=1./(3.*SIGTR)
      XMUBAR=(P1(LL,LL)/3.)/SISO(LL,LL)
 1431 WRITE(6,1425)LL,XMUBAR,D,SIGTR
      REWIND MG
      STOP
      END
SIBFIC REWE
      SUBROUTINE REW(N)
      SUBROUTINE REW REWINDS A DATA TAPE AND SETS TI(K,KK)=0.0
C36
      COMMON TTT(5050),TT(100,100),LDF,LD,LT,NBBG,LBGB(99),FLUX(100)
      REWIND N
      DO 3043 K=1,100
      DO 3043 KK=1,100
 3043 TT(K,KK)=0.0
      RETURN
      END
$IBFTC ONEE
      SUBROUTINE ONE(JJJ)
C37
      THIS SUBROUTINE SETS UP THE MACRO. SCATTERING TRANSFER CROSS
      SECTIONS IN TERMS OF TT(K.KK)
C
      COMMON TTT(5050), TT(100,100), LDF, LD, LT, NBBG, LBGB(99), FLUX(100)
      N=1
      KK=0
      NSN=LD
      BB=JJJ
      DO 122 K=1.LDF
      DO 123 L=N.LD
      KK=KK+1
      TT(K,KK)=BB*TTT(L)+TT(K,KK)
 123
      N=LD+1
      KK=K
      NNN=K+NSN
      IF(NNN-100)101,101,124
      NDIF=NNN-100
 124
      LD=NSN+LD-NDIF
      GO TO 122
      LD=NSN+LD
 101
 122
      CONTINUE
      RETURN
      END
```

```
SIBFTC CSAVE
```

SUBROUTINE CSAV(SIG) C38 THIS SUB. FLUX WEIGHTS THE FINE GROUP SCATTERING TRANSFR CROSS SEC COMMON TTT(5050), TT(100,100), LDF, LD, LT, NBBG, LBGB(99), FLUX(100) DIMENSION SIG(22,22) N=1NNNN=1DO 41 LL=1,NBBG DO 32 I=LL,NBBG X=0.0 FF=0.0 KK=LBGB(LL) DO 25 J=N.KK F=0.0 MMM=LBGB(I) DO 10 K=NNNN,MMM IF(J.GT.K) GO TO 10 F=FLUX(J)*TT(J,K)+FCONTINUE 10 FF=F+FF 25 X=X+FLUX(J)NNNN=LBGB(I)+1 SIG(LL,I)=FF/X 32 CONTINUE N=LBGB(LL)+1 NNNN=LBGB(LL)+1 41 CONTINUE RETURN END

APPENDIX B

ENDF/B Source Deck of New Barnyard

On the following pages is listed the source deck that uses the two ENDF/B data tapes. It is written in the Fortran IV language for use on the IBM 7094 digital computer. It consists of a main program and 4 separate subroutines.

Input data from data cards is "read in" in the main program. The cross section data required for the problem is obtained in the subroutine named FIB which reads the data from the data tape. Three scratch tapes are used to store the PN scattering transfer cross sections until they are needed in the main program. The flux calculation, and the broad group calculations of the transport cross section, diffusion coefficient, and the average cosine of the scattering angle are performed in the main program.

The subroutines named REW, ONE, and CSAV perform the same calculations as the subroutines with the same names in the GGC-4 source deck. These subroutines were discussed briefly in Appendix A.

Extra comment cards have been added to the listing that follows so that it will be easier to read. A glossary of computer program symbols is given in Appendix C.

67

GNE/PHYS 69-8 NEW BARNYARD C C MULTIGROUP NEUTRON MACROSCOPIC CROSS SECTION CODE C THIS SOURCE DECK USES THE ENDF/B CROSS SECTION DATA TAPES DIMENSION A(21), PO(20,20), P1(20,20), P2(20,20), P3(20,20), 1TOT(22), ABBS(22), SSSS(99), BXCX(18) COMMON DENT(29), NNUK, TT(103,100), B(10300), NBBG, FLUX(100), *LBGB(22) . ID . N DATA C1/4H/ SETUP SCRATCH TAPE NUMBERS AND READ IN DATA FROM DATA CARDS C1 NTCH1=3 NTCH2=4NGP=100 NGP3=NGP+3 N1 = 0ITSN=8 MODE=2 READ(5,1006)(BXCX(I),I=1,18) CARDS FROM CARD NUMBERS 1006 TO 34 ARE FOR READING IN DATA AND CO C01 FOR STORING THIS DATA ON A SCRATCH TAPE 1006 FORMAT(18A4) 1002 FORMAT(1H1,18A4) READ(5,9871) NBBG, NNUK, KKK READ(5,7)(LBGB(I),I=1,NBBG)7 FORMAT(2413) 9871 FORMAT(313) FORMAT(1X, A4, 212, 116, 1E13.4) DO 34 JKX=1,NNUK READ(5,2) MATNO, LORDER, N, NOR, DENT(JKX) 61 CONTINUE N1=N1+100 X=MATNO LOR1=9 IF (NOR . EQ. 0) GO TO 1001 C2 SKIP NOR RECORDS ON THE ENDF/B DATA TAPE DO 62 I=1,NOR 62 READ (N, 24) DUMMY 24 FORMAT(1A4) C3 READ AND CHECK DATA FROM ENDF/B DATA TAPE 1001 READ(N,20)(A(I),I=1,21) WRITE(6,20)(A(I),I=1,21) IF(A(1) • NE • C1 • AND • A(11) • NE • X) GO TO 67 GO TO 14 WRITE(6.63) 67 GO TO 33 FORMAT(37HO ERROR IN SKIPPING DATA --- CHECK NOR) 63 L=0 14 15 CONTINUE CALL FIB (NGP, NGP3) SUBROUTINE FIB IS FOR READING THE ENDF/B DATA TAPE C ID=N1+L IF(L.GT.LORDER) GO TO 166 WRITE CROSS SECTION DATA FOR THIS PROBLEM ON ITSN SCRATCH TAPE C4 WRITE(ITSN)(B(K),K=1,10300) C5 WRITE CROSS SECTION DATA INFO. THAT WILL BE USED FOR THIS PROBLEM WRITE(6,23) MATNO,L,ID IF(L.EQ.8) GO TO 34 166 READ(N,20)(A(I),I=1,21)

GNE/PHYS 69-8 WRITE(6,20)(A(I),I=1,21) IF(A(1) .EQ. C1) GO TO 16 WRITE(6,64) FORMAT(27HOA(1) IS NOT EQUAL TO 64 GO TO 33 16 CONTINUE L=L+1IF(L.EQ.LOR1) GO TO 300 IF (MODE . NE. 0) GO TO 15 300 CONTINUE 34 CONTINUE 20 FORMAT(9A4, A1, 10A4, A3) FORMAT(5X, A4, 4X, 1HP, I1, 3X, I5, 2X, 8H RECORDS) 21 FORMAT(1H1,26X,23H **** MATERIAL NUMBER ,A4,6X,13,8H GROUPS. 22 5X,1HP,11,6H **** /) ¥ FORMAT(1H ,28H THE ID NUMBER FOR MATERIAL ,A4,4H P,11,4H IS,16) 23 CALL REW(ITSN) READ P-O DATA FROM THE BINARY SCRATCH TAPE C DO 73 I=1,NNUK READ(ITSN)(B(K),K=1,10300) DO 75 K=1.NGP DO 75 J=1,NGP3 KK=NGP3*(K-1)+J CARD 75 SETS UP A 2 ARRAY VARIABLE FOR THE SCATTERING TRANSFER C6 CROSS SECTIONS AND IT CALCULATES THE MACROSCOPIC CROSS SECTION C60 TT(J,K) = B(KK) * DENT(I) + TT(J,K)75 JY=LORDER DO 74 JI=1, JY SKIP JYN RECORDS ON THE BINARY SCRATCH TAPE C7. READ(ITSN)DUMMY 74 73 CONTINUE C CALCULATE FLUX OR READ IN FLUX IF(KKK-1)125,126,126 CB READ IN FLUX VALUES 125 READ(5,127)(FLUX(I), I=1,99) 127 FORMAT(6E12.6) GO TO 315 C9 READ IN: SOURCE VALUES READ(5,127)5555 126 C10 THE FOLLOWING CARDS THROUGH CARD NO. 29 ARE FOR CALCULATING THE C100 FLUX FLUX(1)=(1./(TT(3,1)-TT(4,1)))*(SSSS(1)+SUM) DO 29 "LL=2,99 SUM=0.0 KKKK=LL-1 DO 30 J=1,KKKK NYN=LL-J+4 SUM=SUM+FLUX(J)*TT(NYN,LL) 30 FLUX(LL) = (1./(TT(3,LL)-TT(4,LL)))*(SSSS(LL)+SUN) 29 315 MM=1 FLUX(100)=FLUX(99) PRINT OUT THE FLUX SPECTRUM C11 WRITE(6,1002)(BXCX(I),I=1,18) WRITE(6,211) FORMAT(1H0/7% GROUF,12H FLUX 211 WRITE(6,215)(I,FLUX(I),I=1,50) 215 FORMAT(16,1PE20.6)

GNE/PHYS 69-8 WRITE(6,1002)(BXCX(I),I=1,18) WRITE(6,211) WRITE(6,215)(I,FLUX(I),I=51,99) CALCULATE BROAD GROUP MACRO. ABS. AND TOTAL CROSS SECTION C THE FOLLOWING CARDS THROUGH CARD NO. 218 ARE FOR CALCULATING THE C12 C120 TOTAL, ABSORPTION, AND NU*FISSION CROSS SECTIONS DO 201 I=1,NBBG SUM=0.0 BUM=0.0 SUMM=0.0 TUM=0.0 III=LBGB(I) DC 200 II=MM,III SUM=SUM+TT(3,II)*FLUX(II) BUM=BUM+TT(2,II)*FLUX(II) SUMM=SUMM+FLUX(II) TUM=TUM+TT(1,II)*FLUX(II) 200 TOT(I) = SUM/SUMM ABBS(I) = TUM/SUMM SSSS(I)=BUM/SUMM 201 MM=LBGB(I)+1 WRITE(6,1002)(BXCX(I),I=1,18) WRITE(6;312) FORMAT (48HOBROAD GROUP AVERAGED MACROSCOPIC CROSS SECTIONS/1HD) 312 WRITE(6,217) FORMAT(6HOGROUP,20H SIGMA ABSORPTION, 20H SIGMA TOTAL ,20 217 *H NU*SIGMA FISSION WRITE(6,218)(I,ABBS(I),TOT(I),SSSS(I),I=1,NBBG) FORMAT(114,1PE20.6,1PE18.6,1PE20.6) 218 CALL CSAV(PO) C13 SUBROUTINE CSAV IS FOR FLUX WEIGHTING THE SCATTERING TRANSFER C130 CROSS SECTIONS DO 94 LL=1,NBBG DO 95 I=LL,NBBG P1(LL,I)=0.0 P2(LL,I)=0.0 95 P3(LL,I)=0.0 94 CONTINUE THE NEXT CARD IS A CHECK TO SEE IF P1 CROSS SECTIONS ARE WANTED C IF(LORDER.GE.1) GO TO 78 GO TO 86 CALL REW(ITSN) 78 SUBROUTINE REW IS FOR REWINDING THE BINARY SCRATCH TAPE AND FOR C14 SETTING T(KK,K) EQUAL TO O. C140 READ P-1 DATA FROM THE BINARY SCRATCH TAPE C P-1 SCATTERING TRANSFER MACROSCOPIC CROSS SECTIONS C OBTAIN FOR THE 99 GROUPS C JY=LORDER-1 CALL ONE (ITSN, 1, JY) C15 SUBROUTINE ONE IS FOR READING THE DATA FROM THE SGRATCH TAPE AND AND FOR ASSIGNING THE CROSS SECTION DATA TO A VARIABLE C150 C1500 THAT HAS TWO DIMENSIONS AND FOR CALCULATING MACRO. CROSS.SECTS CALL CSAV(P1) IF(LORDER.GE.2) GO TO 83 GO TO 86 CALL REW(ITSN) 83

C READ P-2 DATA FROM THE BINARY SCRATCH TAPE

GNE/PH	YS 69-8
C	OBTAIN P-2 SCATTERING TRANSFER MACROSCOPIC CROSS SECTIONS
C	FOR THE 99 GROUPS
	JY=LORDER-2
	CALL ONE(ITSN,2,JY)
	CALL CSAV(P2)
	IF(LORDER.GE.3) GO TO 84
	GO TO 86
84	CALL REW(ITSN)
C	READ P-3 DATA FROM THE BINARY SCRATCH TAPE
c	OBTAIN P-3 SCATTERING TRANSFER M/CROSCOPIC CROSS SECTIONS
C	FOR THE 99 GROUPS
-	JY=LORDER-3
	CALL ONE (ITSN, 3, JY)
	CALL CSAV(P3)
0.	
86	
C 1.	DO 7870 I=LL,NBBG
C16	WRITE OUT THE BROAD GROUP SCATTERING TRANSFER CROSS SECTIONS
C160	ON A SCRATCH TAPE FOR TEMPORARY STORAGE WRITE(NTCH1)PO(LL,I),P1(LL,I),P2(LL,I),P3(LL,I)
-	CONTINUE
1877	IF(LORDER.LT.4) GO TO 500
85	DO 51 LL=1,NBBG
05	DO 52 I = LL NBBG
	PO(LL, I) = 0.0
	$P1(LL_{J}I)=0.0$
	$P2(LL_{j}I)=0.0$
52	$P3(LL_9I)=0.0$
51	CONTINUE
-1	CALL REW(ITSN)
C	READ P-4 DATA FROM THE BINARY SCRATCH TAPE
C	OBTAIN P-4 SCATTERING TRANSFER MACROSCOPIC CROSS SECTIONS
C	FOR THE 99 GROUPS
	JY=LORDER-4
	CALL ONE(ITSN,4,JY)
	CALL CSAV(PO)
	IF(LORDER.GE.5) GO TO 87
	GO TO 50
87	CALL REW(ITSN)
C	READ P-5 DATA FROM THE BINARY SCRATCH TAPE
C	OBTAIN P-5 SCATTERING TRANSFER MACROSCOPIC CROSS SECTIONS
C	FOR THE 99 GROUPS
	JY=LORDER-5
	CALL ONE (ITSN, 5, JY)
	CALL CSAV(P1)
	IF(LORDER.GE.6) GO TO 88
	GO TO 50
88	CALL REW(ITSN)
C	READ P-6 DATA FROM THE BINARY SCRATCH TAPE
C	OBTAIN P-6 SCATTERING TRANSFER M/ CROSCOPIC CROSS SECTIONS
C	FOR THE 99 GROUPS
	JY=LORDER-6
	CALL ONE (ITSN, 6, JY)
	CALL CSAV(P2)
	IF(LORDER.GE.7) GO TO 89
	GO TO 50
89	CALL REW(ITSN)
C	READ P-7 DATA FROM THE BINARY SCRATCH TAPE
	Conserved. Co. Yes (52 and 24) for the R. C. Ser, and an ending the Registration for R. References and

GNE/PH	HYS 69-8 OBTAIN P-7 SCATTERING TRANSFER MACROSCOPIC CROSS SECTIONS	
C	FOR THE 99 GROUPS	
	JY=LORDER-7	
	CALL ONE (ITSN, 7, JY)	
120-00	CALL CSAV(P3)	
50	DO 789 LL=1,NBBG	
C1-	DO 787 I=LL\$NBBG WRITE OUT THE BROAD GROUP SCATTERING TRANSFER CROSS SECTIONS	
C17 C	FOR P4 THROUGH P7	
787	WRITE(NTCH2)PO(LL,I),P1(LL,I),P2(LL,I),P3(LL,I)	
789	CONTINUE	
500	REWIND NTCH1	
	IF(LORDER.LT.4) GO TO 501	
	REWIND NTCH2	
C18	CARDS FROM CARD NO. 501 TO 551 ARE FOR PRINTING OUT CROSS SECT.	ION
C	VALUES	
501	WRITE(6,1002)(BXCX(I),I=1,18) WRITE(6,312)	
	WRITE(6,551)	
	LPC=0	
	DO 4100 LL=1,NBBG	
	DO 3200 I=LL,NBBG	
	READ(NTCH1)PO(LL,I),P1(LL,I),P2(LL,I),P3(LL,I)	
	LPC=LPC+1 IF(LPC-25)3200,555,555	
555	WRITE(6,1002)(BXCX(NZ),NZ=1,18)	
-)-	WRITE(6,312)	
	WRITE(6,551)	
	LPC=0	
	<pre>D WRITE(6,38)LL,I,PO(LL,I),P1(LL,I),P2(LL,I),P3(LL,I)</pre>	
	D CONTINUE	
38	FORMAT(5H0FROM,1I3,3H TO,1I3,1PE15.6,1PE15.6,1PE15.6,1PE15.6) B FORMAT(5H0FROM,1I3,3H TO,1I3,1P4E15.6)	
-		-6
-	* P-7)
551	FORMAT(100HOGROUP P-0 P-1 F	2-2
	* P-3)
	WRITE(6,1424)	
	+ FORMAT(1H1,65H GROUP AVERAGE COS(THETA) DIFF. COEFF. SIGN	1A T
	*RANSPORT 5 FORMAT(115,1PE17.4,1PE18.4,1PE17.4)	
C19	BEGIN CALCULATION OF THE TRANSPORT CROSS SECTION, DIFFUSION	
C	COEFFICIENT AND THEAVG. COSINE OF THE SCATTERING ANGLE	
	DO 1431 LL=1,NBBG	
	SIGTR=TOT(LL)-P1(LL,LL)/3.	
	D=1•/(3•*SIGTR)	
1,21	XMUBAR=(P1(LL,LL)/3.)/P0(LL,LL)	
1451	L WRITE(6,1425)LL,XMUBAR,D,SIGTR IF(LORDER,LT,4) GO TO 33	
C20	READ THE SCRATCH TAPE AND PRINT OUT THE BROAD GROUP SCATTERING	
C	TRANSFER CROSS SECTIONS	
	WRITE(6,1002)(BXCX(I),I=1,18)	
	WRITE(6,312)	
	WRITE(6,5511)	
	LPC-0 Do 1400 LL=1,NBBG	
	DO 2300 I=LL,NBBG	

```
GNE/PHYS 69-8
      READ(NTCH2)PO(LL,I),P1(LL,I),P2(LL,I),P3(LL,I)
      LPC=LPC+1
      IF(LPC-25)2300,5555,5555
 5555 WRITE(6,1002)(BXCX(NZ),NZ=1,18)
      WRITE(6,312)
      WRITE(6,5511)
      LPC=0
 2300 WRITE(6,3888)LL,I,PO(LL,I),P1(LL,I),P2(LL,I),P3(LL,I)
 1400 CONTINUE
      IF(LORDER.EQ.8) GO TO 90
      GO TO 33
 90
      CALL REW(ITSN)
      READ P-8 DATA FROM THE BINARY SCRATCH TAPE
С
                P-8 SCATTERING TRANSFER MACROSCOPIC CROSS SECTIONS
C
      OBTAIN
      FOR THE 99 GROUPS
C
      JY=LORDER-8
      CALL ONE (ITSN, 8, JY)
      CALL CSAV(PO)
      WRITE(6,1002)(BXCX(I),I=1,18)
      WRITE(6,312)
      WRITE(6,5595)
 5595 FORMAT(25HCGROUP
                                       P-8
      LPC=0
               LL=1,NBBG
      DO 5678
      DO 5679
               I=LL,NBBG
      LPC=LPC+1
      IF(LPC-25)5679,4568,4568
 4568 WRITE(6,1002)(BXCX(NZ),NZ=1,18)
      WRITE(6,312)
      WRITE(6,5595)
      LPC=0
 5679 WRITE(6,4569)LL, I, PO(LL, I)
 4569 FORMAT(5H0FROM, 113, 3H TO, 113, 1PE15.6)
 5678 CONTINUE
      STOP
 33
      END
$IBFTC FIBB
      SUBROUTINE FIB(NGP, NGP3)
      THIS SUBROUTINE IS FOR READING THE ENDF/B DATA TAPE AND FOR
C22
      ASSIGNING THE CROSS SECTION VALUES TO THE VARIABLE B(K)
C
      DIMENSION M(6), TEMP(6), WORD(6,1)
      COMMON DENT(29), NNUK, TT(103,100), B(10300), NBBG, FLUX(100),
     *LBGB(22), ID, N
      FORMAT(6(12,1X,E9.0))
 5
      JT=NGP*NGP3
      J=0
      READ(N,5)(M(K),TEMP(K),K=1,6)
 10
      DC 7 K=1,6
      WORD(K,1)=TEMP(K)
  7
      DO 15 K=1,5
      IF (WORD (K, 1) . EQ. 0.0 . AND. WORD (K+1, 1) . EQ. 0.0) GC TO 20
      NA=K+1
      GO TO 15
      NA=K
 20
      GO TO 21
      CONTINUE
 15
      DO 35 K=1.NA
 21
```

GNE/PHYS 69-8 IF(M(K).GT.1) GO TO 30 J=J+1B(J) = TEMP(K) IF(J.GE.JT) GO TO 40 GO TO 35 IF(M(K).EQ.0) GO TO 35 30 M(K) = M(K) - 1J=J+1B(J) = TEMP(K)IF(J.GE.JT) GO TO 40 GO TO 30 CONTINUE 35 IF(J.LT.JT) GO TO 10 CONTINUE 40 RETURN END SIBFIC REWE SUBROUTINE REW(NN) THIS SUBROUTINE IS FOR REWINDING TAPES AND FOR SETTING C23 TT(KK,K) EQUAL TO 0. C COMMON DENT(29), NNUK, TT(103,100), B(10300), NBBG, FLUX(100), *LBGB(22),ID,N REWIND NN DC 3043 K=1,100 DO 3043 KK=1,103 3043 TT(KK,K)=0.0 RETURN END SIBFTC ONEE SUBROUTINE ONE (ITSN, JN, JY) THIS SUBROUTINE IS FOR READING THE CROSS SECTIONDATA FROM A 224 BINARY SCRATCH TAPE AND ASSIGNING THE DATA TO A TWO ARRAY C VARIABLE, TT(J,K) C COMMON DENT(29), NNUK, TT(103,100), B(10300), NBBG, FLUX(100), *L3GB(22), ID, N DO 80 JM=1,NNUK I=1, JN DO 79 READ (ITSN) DUMMY 79 READ(ITSN)(B(K),K=1,10300) DO 81 K=1,100 DO 81 J=1,103 KK=103*(K-1)+J TT(J,K) = B(KK) * DENT(JM) + TT(J,K)81 IF(JY.EQ.0) GO TO 80 DO 82 J=1, JY 82 READ (ITSN) DUMMY 80 CONTINUE RETURN END \$IBFTC CSAVE SUBROUTINE CSAV(SIG) THIS SUBROUTINE FLUX WEIGHTS THE FINE GROUP CROSS SECTIONS TO C25 TO OBTAIN BROAD GROUP CROSS SECTIONS C DIMENSION SIG(20,20) COMMON DENT(29), NNUK, TT(103,100), S(10300), NBBG, FLUX(100), *LBGB(22), ID, N NE=1

```
GNE/PHYS 69-8
     NNNN=1
     DO 41 LL=1,NBBG
     DO 32 I=LL,NBBG
     X=0.0
     FF=0.0
     KK=LBGB(LL)
     DO 25 J=NB KK
     F=0.0
     MMM=LBGB(I)
     DO 10 K=NNNN,MMM
     IF(J.GT.K) GO TO 10
     NNY=K-J+4
     F=FLUX(J)*TT(NNY,K)+F
   CONTINUE
10
     FF=F+FF
  25 X=X+FLUX(J)
     NNNN=LBGB(I)+1
     SIG(LL,I)=FF/X
  32 CONTINUE
     NB=LBGB(LL)+1
     NNNN=LBGB(LL)+1
  41 CONTINUE
     RETURN
     END
```

APPENDIX C

Glossary of Computer Program Symbols

The following Fortran IV nomenclature is used in both source decks of New Barnyard. The program themselves are listed in Appendices A and B. Symbol Meaning or Use A(I): Alphameric variable* for temporary storage of information concerning cross section data for a nuclide ABBS(I) Absorption cross section for the : I-th broad group Nuclide I.D. number for the AID(IXL) : IXL-th nuclide AT(I) Alphameric variable used for : data tape description B(K) Single array variable used for : the temporary storage of cross section data BUM Summing Variable : BXCX(I) Alphameric variable used for : problem description C1 Alphameric variable used to check alphameric data from the data tapes CSAV Subroutine that flux weights fine group cross sections Alphameric variable refers to a variable which is ×

"read in" under an A format.

	Appendix C (Contd')
Symbol	Meaning or use
D(I)	: Diffusion coefficient for the I-th broad group
DAD(I)	: Alphameric variable used for nuclide description
DD(1, IXL)	: Nuclide I.D. number of the IXL-th nuclide
DD(2, IXL)	: Resonance parameter of the IXL-th nuclide
DD(3,IXL)	: Resonance parameter of the IXL-th nuclide
DENT (IXL)	: Number density of IXL-th nuclide
DUMMY	: The first variable of a data record
ENG(I)	: Convenience variable for tempor- ary storage of the i-th fine group boundary and also the i-th fine group average number of neutrons emitted per fission event
ESS(I)	: Alphameric variable used for nuclide description
F, FF	: Summing variables
FIB	: Subroutine used to read the ENDF/B data tapes
FLUX(I)	: Neutron flux for the I-th fine group
FNBT	: Data tape number on the GGC-4 data tape
FTOT(I)	: Fission cross section for the I-th broad group

*

A	ppendix C (Contd')
Symbol	Meaning or Use
FPL	: Convenience variable for problem constant
GTH(I)	: Energy boundary of the I-th ther- mal fine group
ID	: Convenience variable used as an identification number for a particu-lar set of data
III	: Fine group number
IS, IX, I	: Summing variables
ISI	: Convenience variable for a pro- blem constant
ITSN	: Logical unit number of scratch tape
J2	: Convenience variable for a pro- blem constant
JNVN, JNY, JNYY	: Broad group numbers
JY, JT	: Convenience variable for problem constant
KK	: Convenience variable for desig- nating the KK-th dimension of a di- mensioned variable and also used for a fine group number
KKK	: Indicator for performing a flux calculation or inputting a flux spectrum
KKKK	: Convenience variable for tempor- ary storage of a fine group number
LBS	: Convenience variable for problem constant

Apper	ndix C (Contd')
Symbol	Meaning or Use
LD	: Number of fine groups scattered to
LDF	: Number of fine groups scattered from
LEN(I)	: I-th resonance parameter
LLBBG(I),LBGB(I)	: Lower broad group boundaries of the I-th group
LNX	: Length of I-D cross section array
LORDER	: Order of the PN scattering trans- fer cross section
LORI	: Convenience variable for problem constant
LPC, LRINK	: Summing variables
LT	: Length of cross section array
M(K)	: Convenience variable used for temporary storage of cross section data
MATNO	: Material number of a nuclide
MODE	: Convenience variable for problem constant
MG	: Logical unit number of GGC-4 data tape
MM	: Convenience variable for tempor- ary storage of a fine group number
MMMT, MMT, MSS, MT, MTT	: Logical unit numbers of scratch tapes

А	ppendix C (Contd')
Symbol	Meaning or Use
Ν	: Logical unit number of ENDF/B data tape
NA	: Summing variable
NB	: Convenience variable used for temporary storage of a fine group number
NBBG	: Number of broad groups for a particular problem
NBT	: Data tape number on the GGC-4 data tape
NBTC	: Data tape number on the GGC-4 data tape
NEP	: Number of fine group energy boundaries
NES	: Convenience variable for pro- blem constant
NEV	: Number of fine groups
NGP, NGP3	: Convenience variable for pro- blem constant
NGT	: Number of thermal energy boun- daries
NMORE	: Number of records that contain resonance data
NNOT	: Number of nuclides for which data is listed on the GGC-4 data tape
NNNN	: Convenience variable used for temporary storage of a fine group number

Ap	pendix C (Contd')
Symbol	Meaning or Use
NNUK	: Number of nuclides for a parti- cular problem
NOR	: Number of data records
NP R 1	: Convenience variable for problem constant
NRK	: Number of data records for a nuclide
NSP	: Number of fission sources on the GGC-4 data tape
NT	: Convenience variable for problem constant
NTCH1, NTCH2	: Logical unit number of scratch tapes
NTID(I)	: Convenience variable used for temporary storage of miscellaneous data from the GGC-4 data tape
NX	: Number of I-D cross section arrays for a nuclide
ONE	: Subroutine for calculating mac- roscopic scattering transfer cross sections
P0(LL,I) P1(LL,I), P2(LL,I), P3(LL,I)	: Convenience variables used for temporary storage of PN scattering transfer cross section for scatter- ing transfer cross section for scattering from broad group LL to broad group I
REW	: Subroutine used for rewinding scratch tapes and setting a two dimensional scattering transfer cross section variable to zero

Appendix C (Contd')			
Symbol .	Meaning or Use		
SIGA (I)	: Absorption cross section for the I-th fine group		
SIGT (I)	: Total cross section for the I-th fine group		
SIGQ (I)	: Fission cross section for the I-th fine group		
SIGTR (I)	: Transport cross section for the I-th broad group		
SISO(LL,I)	: Total PO scattering transfer cross section for scattering from broad group LL to broad group I		
SS(I)	: Convenience variable used for temporary storage of specific data for a nuclide		
SSS	: Nuclide I.D. number		
SSSS(I)	: Convenience variable used for temporary storage of the source spectrum and also the fission cross section times Nu.		
SUM, SUMM, SUMMM	: Summing variables		
TEMP (K)	: Convenience variable used for the temporary storage of cross sec-tion data		
TTT(I)	: Total cross section for the I-th broad group		
TRA(I)	: Convenience variable for tempor- ary storage of energies and lethar- gies		

	Appendix C (Contd')
Symbol	Meaning or Use
TT(K,KK)	: Scattering transfer cross section for scatter from fine group K to fine group KK (GGC-4 source deck)
TT(K,KK)	: Scattering transfer cross section for scatter from fine group J to fine group KK where K is equal to KK+4-J (ENDF/B deck)
TT(3,1)	: Total cross section for the I-th fine group (ENDF/B deck)
TT(2,I)	: Fission cross section times Nu for the I-th fine group (ENDF/B deck)
TT(1,I)	: Absorption cross section for the I-th fine group (ENDF/B deck)
TTT(I)	: Convenience variable used for temporary storage of cross section data and resonance data
XINELAS(LL,I)	: Inelastic scattering transfer for cross section for scatter from broad group LL to broad group I
XMUBAR(I)	: Average cosine of the scattering angle for broad group I
XN2N(LL,I)	: N-2N scattering transfer cross section for scatter from broad group LL to broad group I

APPENDIX D

The 99 Fine Group Structure

On the following pages are listed the 99 fine group boundaries and the corresponding 99 group lethargies used in both versions of New Barnyard. The 99 group structure is calculated as follows:

Let E_5 , the fifth energy point, be equal to 10 MeV and let it be the reference energy. Therefore,

$$E_5 = 10^7 \text{ ev}$$
 (D1)
 $U_5 = 0$

The first energy point is taken to be $E_1 = E_5 e^{-(-.4)}$. The next 49 points are determined with a uniform lethargy mesh U = 0.1 i.e.,

$$U_1 = -.4$$

 $U_i = U_{i-1} + 0.1$ $i = 2, 3, ...50$
(D2)

and the next 50 points are given by

$$U_i = U_{i-1} + 0.25$$
 $i = 51, 52, ... 100$ (D3)

Energies associated with these lethargies are given by

$$E_i = E_5 e^{-U_i}$$
.

GROUP	ENERGY 1	INTERVAL (E.V.)	LETHARGY INTERVAL
<u>i</u>	1.491825E 07 1		-4.00000E-01 TO -3.00000E-01
2	1.349859E 07 1		-3.000CCE-01 TO -2.00000E-01
3	1.221403E 07 1		-2.000CCE-01 TO -1.00000E-01
4	1.105171E 07 T		-1.0000CE-01 TO 0.
5	1.000000E 07 1		0. TO 1.00000E-01
6	9.048374E 06 1		1.000CCE-01 TO 2.00000E-01
7	8.187308E 06 T		2.000CCE-01 TO 3.00000E-01
8	7.408182E 06 T		3.000CCE-01 TO 4.00000E-01
9	6.703200E 06 T		4.000CCE-01 TO 5.00000E-01
10	6.065307E 06 T		5.0000CE-01 TO 6.00000E-01
11	5.488116E 06 T		6.000CCE-01 TO 7.00000E-01
12	4.965853E 06 T		7.000CCE-01 TO 8.00000E-01
13	4.493290E 06 T		8.000CCE-01 TO 9.00000E-01
14	4.065697E 06 T		9.0000CE-01 TO 1.00000E 00
15	3.678794E 06 T	The second	1.000CCE 00 TO 1.10000E 00
16	3.328711E 06 T		1.100CCE 00 TO 1.20000E 00
17	3.011942E 06 T		1.200CCE 00 TO 1.30000E 00
18	2.725318E 06 T		1.3000CE 00 TO 1.40000E 00
19	2.465970E 06 T		1.400CCE 00 TO 1.50000E 00
20	2.231302E 06 T		1.500CCE 00 TO 1.60000E 00
21	2.018965E 06 T		1.600CCE 00 TO 1.70000E 00
22	1.826835E 06 T		1.700CCE 00 TO 1.80000E 00
23	1.652989E 06 T		1.800CCE 00 TO 1.90000E 00
24	1.495686E 06 T		1.900CCE 00 TO 2.CO000E 00
25	1.353353E 06 T		2.0000CE 00 TO 2.10000E 00
26	1.224564E 06 T		2.1000CE 00 TO 2.20000E 00
27	1.108032E 06 T		2.200CCE 00 TO 2.30000E 00
28 29	1.002589E 06 T		2.300CCE 00 TO 2.40000E 00
30	9.071796E 05 T		2.400CCE 00 TO 2.50000E 00
31	8.208501E 05 T		2.500CCE 00 TO 2.60000E 00
32	7.427359E 05 T	The state of the second s	2.600CCE 00 TO 2.70000E 00
33	6.720552E 05 T 6.081007E 05 T		2.700CCE 00 TO 2.80000E 00
34	5.502323E 05 T		2.80000E 00 TO 2.90000E 00
35	4.978708E 05 T		2.900CCE 00 TO 3.00000E 00
36	4.504921E 05 T		3.000CCE 00 TO 3.10000E 00
37	4.076221E 05 T		3.100CCE 00 TO 3.20000E 00
38	3.688317E 05 T		3.200CCE 00 TO 3.30000E 00
39	3.337327E 05 T		3.300CCE 00 TO 3.40000E 00
40	3.019739E 05 T	the same boundary of the set of t	3.400CCE 00 TD 3.50000E 00
41	2.732373E 05 T		3.5000CE 00 TO 3.60000E 00
42	2.472353E 05 T	 a statistic statistic structure structure statistics and statistis and statistics and statistics and statistics and statistics a	3.6000CE 00 TO 3.70000E 00
43	2.237078E 05 T		3.700CCE 00 TO 3.80000E 00
44	2.024192E 05 T		3.800CCE 00 TO 3.90000E 00
45	1.831564E 05 T		3.90000E 00 TO 4.00000E 00
46	1.657268E 05 T		4.000CCE 00 TO 4.10000E 00 4.100CCE 00 TO 4.20000E 00
47	1.499558E 05 T		
48	1.356856E 05 T		4.3000CE 00 TO 4.30000E 00 4.3000CE 00 TO 4.40000E 00
49	1.227734E 05 T		
50	1.110900E 05 T		
	1.110,000 03 10	0.0010902 04	4.500CCE 00 TD 4.75000E 00

85

RCUP		INTERVAL(E.V.)			LETHA	RGY INTERN	VAL
51	8.651698E 04	TO 6.737949E	04	4.75000E		5.00000E	
52	6.737949E 04	TO 5.247520E	04	5.000CCE	00 TO	5.25000E	
53	5.247520E 04	TO 4.086773E	04	5.250 COE	00 TO	5.50000E	
54	4.086773E 04	TO 3.182782E	04	5.500CCE	00 TO	5.75000E	00
55	3.182782E 04	TO 2.478753E	04	5.750CCE		6.00000E	
56	2.478753E 04	TO 1.930455E	04	6.000COE		6.25000E	
57	1.930455E 04			6.2500CE		6.50000E	
58	1.503440E 04	the test of the second second with a rest of the second second second second second second second second second	04	6.50000E		6.75000E	
59		TO 9.118823E		6.7500CE		7.00000E	
60	9.118823E 03			7.00000E		7.25000E	
61	7.101746E 03			7.2500CE		7.50000E	
62			03		00 TO		
63	4.307427E 03	TO 3.354627E			00 TO	8.00000E	
64	3.354627E 03	TO 2.612587E	and the second sec	8.000CCE	00 TO	8.25000E	
65	2.612587E 03	TO 2.034684E		8.250COE			
66		TO 1.584614E		8.500CCE	00 TO	8.50000E 8.75000E	
67		TO 1.234098E		8.750CCE			00
68	1.234098E 03	TO 9.611169E		9.000COE	and in our lines where the second sec	9.00000E	-
69		TO 7.485186E		9.250CCE		9.25000E	00
70		TO 5.829468E	the second design of the second		00 TO		
71				9.500CCE	00 TO	9.75000E	00
72		TO 4.539995E TO 3.535751E	02	9.750CCE	00 TO	1.00000E	
73	4.539995E 02 3.535751E 02			1.000CCE	01 TO		01
74			CONTRACTOR DESCRIPTION AND ADDRESS OF THE OWNER ADDRESS OF THE	1.025CCE	01 TO	1.05000E	
75	2.753646E 02			1.050CCE	01 TO	1.07500E	
	2.144542E 02			1.075CCE	01 TO	The second second is a president to preside the second second second second second second second second second	
76		TO 1.300730E		1.100CCE	01 TO		01
77	1.300730E 02		the state of the s	1.125CCE	01 TO	1.15000E	
78		TO 7.889328E		1.1500CE	01 TO		01
79		TO 6.144214E		1.175CCE		and the second s	
80	6.144214E 01			1.200CCE	01 TO		01
81		TO 3.726654E		1.2250CE	01 TO	1.25000E	
82		TO 2.902321E			01 TO		
83		TO 2.260330E		1.2750CE	01 TO	the second se	
84		TO 1.760347E		1.300CCE	01 TO		
85		TO 1.370960E		1.325COE	and the second se		
86		TO 1.067704E			01 TO	1.37500E	
87		TO 8.315290E		1.375CCE		1.40000E	
88		TO 6.475955E			01 TO	1.42500E	01
89		TO 5.043478E			01 T O	1.45000E	01
90		TO 3.927865E		1.450CCE	01 TO	1.47500E	01
91		TO 3.059024E	A DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER'S DESCRIPTION	1.475CCE	01 TO	1.50000E	01
92		TO 2.382370E	00		01 TO	1.52500E	01
93	2.382370E 00			1.5250CE		1.55000E	
94	1.855392E 00			1.5500CE	01 TO	1.57500E	
95	1.444981E 00	the second se		1.575CCE		1.60000E	
96	1.125352E 00			1.600CCE	01 TO	1.62500E	
97	8.764252E-01		01	1.6250CE	01 TO	1.65000E	
58	6.825607E-01		01	1.650 CCE		1.67500E	
99	5.315788E-01			1.675CCE		1.70000E	

APPENDIX E

Structure of the Data Tapes

Tables XIII and XIV of this appendix show the structure of the two data tapes used in New Barnyard. Table XV lists explanations for some parts shown in Tables XIII and XIV. If one desires to use either of these data tapes in a new computer code, he should study these tables carefully.

TABLE XIII

Structure of the GGC-4 Data Tape

Record	Number of Words	Variable*	Description
1	3	NTID(1) = NBT	Tape identification number.
		NTID(2) = NEP	Number of fast energy bound- aries (groups + 1). (Note #1)
		NTID(3) = NGT	Number of thermal energy points. (Note # 2)
2	90	AT(1-90)	Tape description (5 lines of 72 characters each).
3	1	LAD = NNOT	Number of nuclides on tape.
	Record 4 is records 4 =	-	ch nuclide (number of
4	21	ESS(1-18)= DAD (1-18)	Nuclide description.
		ESS(19-21)= DAD (19-21)	Nuclide I.D. number, number of resolved resonances, number of unresolved resonances.
5	4	LEN(1)	Resonance data. (Note #3)
		LEN(2)	Resonance data. (Note #3)
		LEN(3)	Resonance data. (Note #3)
		LBS = LEN(4)	Resonance data. (Note #3)
6	LBS (max. = 5101)		Resonance data. (Note #3)
7	NELT = NEP + 2 NEP + 1)	TTT(1-NELT)	Fast energy group boundaries (NEP+1 values), fast leth- argy boundaries (NEP+1 val- ues), fast lethargy inter- vals (NEP values).
8	NGT	TTT (1-NGT)	Thermal energy points. (Note #2)

* The variable names that appear in the GGC-4 Source deck are listed in this column. This tape is written in binary and no Format statements are required when "reading in" these variables.

TableXIII(Contd')

Record	Number of Words	Variable	Description
9	1	NSP	Number of fission spectra
		s repeated for e ords 10 = NSP).	on tape. each fission spectrum (num-
10	LNR=17+NEP	ESS (1-18)	Description of fission source spectrum.
		ESS (19-LNR)	Fission source spectrum for each fast energy group. (Note #4)
11	1	MRESN	Number of nuclides with resonance data.
			ated for each resonance 12 and $13 = MRESN$).
12	3	SS(13)	Nuclide I.D. number. (Note #5)
		SS(14)	Resonance data. (Note #3)
		SS(15)	Resonance data. (Note #3)
13	LT=6*SS(14)+ SS(15) + 9	TT(1-LT)	Resonance data for nuclide.
	Records 14	through 25 are r	repeated for each nuclide.
14	37	ESS(1-18)	Nuclide description.
		SS(13)	Nuclide I.D. number
		SS(14)	Resonance data. (Note #3)
		SS(15)	Resonance data. (Note #3)
		SS(16)	Length of PO array (same length for P1, P2, and P3 arrays). (Note #5)
		SS(17)	Number of groups scattered from PO scattering. (Note #6)
		SS(18)	Number of groups scattered into PO scattering. (Note #7)

89

Record	Number of Words	Variable	Description
		SS(19-21)	For inelastic array, same as SS(16-18).
		SS(22-24)	For n, 2n array, same as SS(16-18). (Note #8)
		SS(25)	Fission index: non-zero= fissionable nuclide.
		SS(26)=NX	Number of 1-D arrays (absorption, fission, etc.)
		SS(27-29)	For total scatter array, same as SS(16-18).
		SS(30)	Number of records for this nuclide.
		SS(31)	Mass number of nuclides.
	If number of 1-D present.	arrays [SS(26)]	is zero, record 15 not
15	IMX=(6+NEP)NX	TTT(1-IMX)	One-dimensional cross- section arrays in form: type number (l=absorption, 2=fission, etc.), descrip- tion (5 words), cross-sec- tion for each energy group. (Note #9)
	Records 16 throug SS(16) is zero.		if length of PO array
16	IDK=SS(16)	TTT(1-IDK)	PO scattering array in form: $\sigma_1 \rightarrow 1, \sigma_1 \rightarrow 2, \sigma_1 \rightarrow 3, \sigma_2 \rightarrow 2, \sigma_2 \rightarrow 3,, \sigma_3 \rightarrow 3, \sigma_3 \rightarrow 4,$ (Note #10)
17	IDK	TT(1-IDK)	Pl scattering array (same form as PO. (Note #11)
18	IDK	TT(1-IDK)	P2 scattering array (same form as P0). (Note #11)
19	IDK	TT(1-IDK)	P3 scattering array (same form as P0). (Note #11)

Table**XIII**(Contd')

Table XII Contd')

Record	Number of Words	Variable	Description
	Record 20 not pr is zero.	esent if leng	gth of inelastic array SS(19)
20	LIT=SS(19)	TTT(1-LIT)	Inelastic scattering array (same form as PO). (Note #12)
	Record 21 not pr zero.	esent if leng	gth of n, 2n array $\left[SS(22)\right]$ is
21	LIT=SS(22)	TTT(1-LIT)	n, 2n scattering array (same form as PO). (Note #12)
22	NEV=Number of groups	BST (1-NEV)	
	Record 23 not pro [SS(27)] is zero	esent if leng o.	th of total scatter array
23	LAT=SS(27)	TTT (1-LAT)	Total scattering array (same form as PO). (Note #14 and 15)
	Records 24 and 25 [SS(16)=0.]	5 not present	if PO and P1 arrays omitted
24	NEV	SCT (1-NEV)	• Scatter for each group. (Note 15)
25	NEV	SPP (1-NEV)	•P1 scatter for each group. (Note 17)
26			End-of-file mark.

91

TABLE XIV

Structure of the ENDF/B Data Tapes

Record	Number of Words	Variable*	Description
1	21	A(I),I=1,21 Format (9A4,A1, 10A4,A3)	Description of the PO data that follows (Note #18)
2	12	M(K),TEMP(K), K=1,6 Format (6(I2,IX,E9.0))	The absorption, fission, total, and PO scattering transfer microscopic cross sections (Note #19)
	Record 2 is reestablished.	peated until the	entire PO array is
3	21	A(I),I=1,21 Format (9A4,A1, 10A4, A3)	Description of the P1 data that follows.
4	12	M(K),TEMP(K) K=1,6 Format (6(I2,(IX,E9.0))	
	Record 4 is re lished.	peated until the	entire Pl array is estab-
5	21	A(I),I=1,21 Format (9A4,A1, 10A4,A3)	
6	12	M(K),TEMP(K) K=1,6 Format (6(I2, 1X,E9.0))	The P2 elastic scattering transfer microscopic cross section (Note #11)
	Record 6 is re established.	peated until the	entire P2 array is
7	21	A(I),I=1,21 Format (9A4,A1, 10A4, A3)	Description of the P3 data that follows
8	12	M(K),TEMP(K), K=1,6 Format (6(I2,1X,E9.0))	The P3 elastic scattering transfer microscopic cross sections.
	he variable names isted in this colu		e ENDF/B source deck are written in BCD and re-

quires format statements when "reading in" these variables.

92

TABLE XIV (Contd')

Record	Number of Words	Variable	Description
9	21	A(I), I=1,21 Format (9A4, A1, 10A4, A3)	Description of the P4 data that follows
10	12	M(K),TEMP(X), K = 1, 6 Format (6 (12 , 1X, E9.0))	
	Record 10 is established.	repeated until the	entire P4 array is
11	21	A(I), I=1, 21 Format (9A4, A1, 10A4, A3)	Description of the P5 data that follows
12	12		The P5 elastic scattering transfer microscopic cross)sections
	Record 12 is established.	repeated until the	entire P5 array is
13	21	A(I),I=1,21 Format (9A4,A1,10A4,A3)	Description of the P6 data that follows
14	12	M(K),TEMP(K), K=1,6 Format (6(I2, 1X, E9.0))	transfer microscopic cross
	Record 14 is established.	repeated until the	entire P6 array is
15	21	A(I),I=1,21 Format (9A4,A1,10A4,A3)	Description of the P7 data that follows
16	12	M(K), TEMP(K) K=1,6 Format (6(I2,1X,E9.0))	The P7 elastic scattering transfer microscopic cross section
	Record 16 is established.	repeated until the	entire P7 array is
17	21	A(I),I=1,21 Format (9A4,A1,10A4,A3)	Description of the P8 data that follows

TABLE XIV(Contd')

Record	Number of Words	Variable	Description
18	12	M(K),TEMP(K), K=1,6 Format (6(I2,1X,E9.0))	The P8 elastic scattering transfer microscopic cross sections
	Record 18 is established.	repeated until the	entire P8 array is

Records 1 through 18 are repeated for each nuclide.

TABLE XV

Comments About the Data Tapes

Note Number		Comments
1		al to one more than the number of s. This number is 100 for a 99 tape.
2		mation is for a thermal spectrum on and is not used in the GGC-4 k.
3		nce data included on this tape is therefore, no effort is made to t.
4	given as t	on spectrum for each fine group is the fractional number of fission forn in that group, _i . Thus,
		$\sum_{i=1}^{99} X_i = 1.000.$
5	transfer a	the total length of the PO elastic erray. The Pl, P2, and P3 arrays me length as that for PO.
6		the number of incident energy d is equal to 99.
7	energy gro cross sect	the maximum number of secondary oups for which elastic transfer cions are given. This number in- in-group term.
8	those give no P1, P2,	rough SS(24) are values similar to en for elastic scattering. Note: or P3 arrays are given for in- r (n,2n) scattering.

Note Number		Comments
9	The I - D arra identificatio	ys have been given a numeric n:
	I.D. Number	Description of Reaction
	1	Absorption (the fission cross section plus any other neutron removing reaction).
	2	Fission cross section.
	3	Nu, \mathcal{V} , the average number of fission neutrons produced per fission event (includes delayed neutrons).
	4	(n, χ) radiative capture
	5	(n, p)
	6	(n,Q)
	7	(n, d)
	8	(n, t)
	9	(n, n)p
	10	(n, n)d
	11	(n, n)t

10

(The I-**0** arrays are given in sequential order) The elastic PO scattering cross sections are given as a continuous array. The order of giving the cross sections is $\mathcal{O}_{1\to1}^{\text{elas}}$, $\mathcal{O}_{1\to2}^{\text{elas}}$, $\mathcal{O}_{1\to1}^{\text{elas}}$, $\mathcal{O}_{2\to2}^{\text{elas}}$, $\mathcal{O}_{2\to3}^{\text{elas}}$, $\mathcal{O}_{2\to2}^{\text{elas}}$, $\mathcal{O}_{2\to3}^{\text{elas}}$, $\mathcal{O}_{2\to2}^{\text{elas}}$, $\mathcal{O}_{2\to3}^{\text{elas}}$, $\mathcal{O}_{3\to1}^{\text{elas}}$, $\mathcal{O}_{3\to3}^{\text{elas}}$, $\mathcal{O}_{3\to4}^{\text{elas}}$, ..., $\mathcal{O}_{3\to1}^{\text{elas}}$, $\mathcal{O}_{3\to1}^{\text{elas}}$, ..., $\mathcal{O}_{3\to1}^{\text{elas}}$, ..

Note Number

12

Comments

 $\mathcal{O}_{N \to N}^{\text{elas}}, \mathcal{O}_{N \to N+1}^{\text{elas}}, \dots, \mathcal{O}_{N \to [N + SS(18)-1]}^{\text{elas}},$

These cross sections are given in units of barns. There are SS(16) total terms in this array. The elastic P1, P2, P3 arrays are given in exactly the same manner.

11 Recall PN = $(2N+1)*OSN(i\rightarrow j)$; therefore, P1 = $3*Osl(i\rightarrow j)$, P2 = $5*Os2(i\rightarrow j)$, etc. The values listed on the tape are the PN values and not the $O_{sn}(i\rightarrow j)$ values.

> The inelastic and (n, 2n) scattering arrays are given in the same manner as the PO elastic arrays. However, the number of groups scattered is generally taken to be 100 for these reactions, thus for the inelastic scattering array, the cross sections are given as:

inelas inelas inelas inelas inelas inelas inelas $(1 \rightarrow 1, 0 \rightarrow 2, \dots 0 \rightarrow 1 \rightarrow 100, 0 \rightarrow 2 \rightarrow 2, 0 \rightarrow 2 \rightarrow 3, 0 \rightarrow 100, 0 \rightarrow 3 \rightarrow 3, 0 \rightarrow 4, \dots, 0 \rightarrow 100, 0 \rightarrow 1$

For a 99 group library tape there is a low energy "dump" group (#100). This group represents the cross sections scattered to all energies below the low energy boundary of group 99 (0.414 ev).

BST(I),
$$\mathcal{O}$$
 total for group i is calculated by
 $\mathcal{O}_{i}^{\text{total}} = \mathcal{O}_{i}^{\text{abs}} + \underbrace{j=[i + SS(18)-1]}_{j=1} PO(\text{elastic})$
 $+ \underbrace{j=1}^{j=100} \mathcal{O}_{j(i \rightarrow j)}^{\text{inelas}} + 2* \underbrace{j=1}^{j=100} \mathcal{O}_{j(i \rightarrow j)}^{n, 2n}$

Note Number	Comments
14	SS(27) is the total size of the total trans- fer array. Since the data tape has 99 fine groups, this number will generally be 5049.
15	The total scattering array for scattering from $i \longrightarrow j$ is obtained by
	total scattering PO (elas) inelas n,2n
16	${\cal O}$ Scatter for group i is calculated by
	scatter \mathcal{O}_{i} = $\sum_{j=i}^{j=[i+SS(18)-1]} \mathcal{O}_{j(i\rightarrow j)}$
17	\mathcal{O}^{Pl} scatter for group i is calculated by
	P1 scatter $j=[i+SS(18)-1]$
18	An example of this description is MATERIAL NUMBER 1012 100 GROUPS PO
19	These 99 group cross sections are given as $\mathcal{O}_1^{ABS}, \mathcal{VO}_1^{fission}, \mathcal{O}_1^{total}, \mathcal{O}_1 \rightarrow 1, 99R$
	$\mathcal{O}_{2}^{\text{ABS}}, \mathcal{VO}_{2}^{\text{fission}}, \mathcal{O}_{2}^{\text{total}}, \mathcal{O}_{2} \rightarrow 2, \mathcal{O}_{1} \rightarrow 2, 98R$ $\mathcal{O}_{g}^{\text{ABS}}, \mathcal{VO}_{g}^{\text{fission}}, \mathcal{O}_{g}^{\text{total}}, \mathcal{O}_{g} \rightarrow g, \mathcal{O}_{g} - 1 \rightarrow g,$
	Øg-2→g····

Note Number

Comments

$$\mathcal{O}_{99}^{\text{ABS}}, \mathcal{VO}_{99}^{\text{Fission}}, \mathcal{O}_{99}^{\text{Total}}, \mathcal{O}_{99 \rightarrow 99},$$

$$\mathcal{O}_{98 \rightarrow 99} \cdots 3R, 0., \mathcal{O}_{99 \rightarrow 100}, \mathcal{O}_{98 \rightarrow 100, \cdots}$$

The R denotes zero and the number in front of the R indicates the number of cross section values that are equal to zero.

These cross sections are given as

3R,
$$3O_{1}\rightarrow 1$$
, 99R
...
3R, $3O_{g}\rightarrow g$, $3O_{g}-1\rightarrow g$, $3O_{g}-2\rightarrow g$, ...
...
3R, $3O_{99}\rightarrow 99$, $3O_{98}\rightarrow 99$, ...
3R, 0. , $3O_{99\rightarrow 100}$, $3O_{98\rightarrow 100}$, ...

APPENDIX F

99 Group Fission Source Spectrums

99 group fission source spectrums are presented here for the following nuclides:

- (1) U-233
- (2) U-235
- (3) PU-239
- (4) PU-241
- (5) CF-252

This data was taken from pages 42-46 of GA-4265, "GAM-11, A B₃ code for the calculation of Fast-Neutron Spectra and Associated Multi Group Constants" by G. D. Joanou and J. S. Rudek. Each source spectrum has been normalized to 1.

GROUP	SOURCE	GROUP	SOURCE	GROUP	SOURCE	GROUP	SOURCE
-	3.51793996-5	26	3.92637998-2	51	3.54065996-3	76	
2	9.84442985-5	27		52	2.46145996-3	77	.0
ē	2.44521996-4	28	٠	53	1.70685999-3	78	0.
t	5.45474994-4	29	3.10797998-2	54	1.18125999-3	79	•0
Ś	1.10456999-3	30	•	55	8.16252995-4	80	0.
9	2.04995999-3	31		56	5.63359994-4	81	0.
2	3.51742998-3	32	2.32045999-2	57		82	0.
80	5.62406993-3	33	2.03402997-2	58		83	.0
6	8.43932986-3	34	1.86385998-2	59	0.	84	0.
10	1.19615999-2	35	1.66066998-2	60	•0	85	.0
11	1.61063998-2	36	1.47461998-2	61	0.	86	0.
12	2.07130998-2	37	1.30542000-2	62	•0	87	•0
13	2-55585998-2	38	1.15246999-2	63	0.	88	0.
14	3.03897998-2	39	1.01492000-2	64	•0	89	•0
15	3.49524999-2	40	8.91796982-3	65	0.	60	0.
16	3.90193996-2	41	7.82039994-3	66	•0	16	•0
17	4.24106991-2	42		67	0.	92	0.
18	4.50054997-2	43	5.98236996-3	68	.0	66	0
19	4.67448997-2	44	•	69	0.	46	0.
20	4.76267993-2	45	4.54939991-3	70	0.	95	•0
21	4.76962996-2	46	3.95991996-3	71	0.	96	0.
22	4.70342994-2	47	3.44308996-3	72	•0	79	.0
23	4.57442999-2	48		73	0.	98	.0.
24	4.39418995-2	64	2.59561998-3	74	•0	66	•0
25	4-17442 995-2	50	5 07637005-2	75			

GROUP	SOURCE	GROUP	SOURCE	GROUP	SOURCE	GROUP	SOURCE
	.121659	26	.886	S	-45782998-	76	•0
2	.13	27	- 96698219.	52	-40337995-	77	0.
	77032998-	28	.341	53		78	•0
4	.09151	29	-06469998-	54	.15305997-	62	0.
	-21751998-	30	-79301000-	55	-96686995-	80	•••
9	.2331099	31	-66666065.	56		81	0.
	79103997-	32	-28181997-	57		82	0.
	-9997994-	33	-96687790.	56	0.	83	•0
6	-799035997-	34	-93020997-	59	0.	84	•0
0	.2558299	35	-62968998-	60	0.	95	0.
	-1905997-	36	-44630999-	61	0.	86	•0
0	-14540997-	37	-86611672.	62	0.	87	c .
0	.631959	38	.12925999-	63	0.	88	•0
4	-11312997-	39	-68667046.	64	0.	89	•0
5	56363	40		65	0.	06	•0
9	-96132994-	41	-65444994-	66	0.	16	0.
1	12	42	.69822997-	67	0.	92	•0
8	.53565	43	-85206997-	68	0.	66	•0
6	6961	44	.1054099	69	0.	. 46	•0
0	7124	45	.44821995	10	0.	66	0.
-	7660099	46		71	0.	96	•0
2	4.68901992-2	47		72	0.	26	0.
9	55092996-	48	-92266998-	73	0.	98	•0
4	.3633	49	2.53611997-3	74	0.	66	•0
25	4 13814997-7	50	4.05803007-3	75	0-		

GROUP	SOURCE	GROUP	SOURCE	GROUP	SOURCE	GROUP	SOURCE
1	5.06228995-5	26	1	51	3.45138997-3	76	0.
2	1.35049999-4	27	3.59134993-2	52	2.39935997-3	17	•0
e	3.21494997-4	28	-	53	1.66377999-3	78	0.
4	6.90658998-4	29	•	54	1.15143999-3	61	.0
2	1.35262997-3	30	2.77418998-2	55	-	80	0.
9	2.43729997-3	31		56	5.49133992-4	81	•0
1	4.07442993-3	32		57		82	0.
8	1	33		58	0.	83	•0
6	9.36279988-3	34	1.82001998-2	5.9	0.	84	0.
10	1.30374999-2	35	1-62110999-2	60	•0	85	.0
11	1.72354999-2	36	1.43911998-2	61	0.	86	0.
12	2.19297996-2	37	1.27372998-2	62	•0	87	.0.
13	2.67424998-2	38	1.12428999-2	63	0.	88	0.
14	3.14731997-2	39	9.89958990-3	64	•0	89	•0
15	-58783996-	40	8.69761980-3	65	0.	06	0.
16	3.97464994-2	41		66	0.	16	•0•
17	4.29155995-2	42	-	67	0.	92	0.
18	4.52825995-2	43	5.83310992-3	68	•0	66	•0
19	4.68035996-2	44		59	0.	94	0.
20	4.74875993-2	45	4.43543989-3	70	•0	95	•••
21	4.73975999-2	46		11	0.	96	0.
22	4.65880990-2	47	-	72	•0	16	•0
23	4.51937997-2	48		73	0.	98	0.
24	4.33182991-2	49	2.53030998-3	74	•0	66	•0
25	4 10750007-2						

103

GN

1 5.9481499 2 1.56710999 3 3.6864499 4 7.83022999 5 1.51705999 6 2.70567999 8 6.93450999 9 1.01081999 9 1.01081999 10 1.39581999 11 1.83597999 12 2.31180999 13 2.77991499	266	GROUP	SOURCE	GROUP	SOURCE	GROUP	5	SOURCE
1.56 3.68 3.68 3.68 1.51 1.51 1.51 1.51 1.51 1.51 1.31 1.31	66	26	-79503995-	51	-799229997-	76		
3.68 7.93 6.93 1.01 1.01 1.35 1.01 1.35 1.01 1.35 1.01 1.35 1.01 1.35 1.01 1.35 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	-	27	-52316996-		-28679997-	77	•0	
2 • 4 7 9 3 1 • • • • • • • • • • • • • • • • • •		28	-8661.0		.58502999	78	•0	
2.70 2.70 2.70 2.70 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1	4-466	53	-97050998-		-09656999-	62	0.	
2.70 4.47 1.0.1 1.0.1 1.0.2 1.	-	30	-70178998-		-57524997-	80	•0	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6-566	31	-44393995-		.22716993-	81	•0	
6.93 1.01 1.01 1.35 1.35 2.75 2.75	1	32	-19984999-		.60373995	82	•0	
1.01 1.39 1.83 1.83 2.31 2.75 2.75	-	33	-66666 126.		0.	83	0	
2.31 2.31 2.75 2.75	-	34	-75965993-		0.	84	•0	
1.83 2.31 2.75 2.75	-	35	-56505999-		0.	85	•0	
2.31	1	36	-99996-		0.	86	0.	
2.79	-	37	2653998-		0.	87	•0	
C. C	-	38	8142999-		0.	88	•0	
13.0	1	39	1253986-		•0	89	•0	
3.70	-	40	.34978986-		0.	06	•0	
4.08	1	41	.31521994-		0.	16	.0	
4.36	-	42	-39783996-		0.	92	•0	
4.59	995-2	43	5.58634999-3	68	0.	93	•0	
4.73	1	44	-96658178-		0.	94	•0	
0 4.77	1	45	-1666625		0.	96	•0	
1 4.74	-50	46	661116		0.	96	•0	
2 4.64675	-66	47	07		0.	61.6	•0	
4.	-66	44	.7850		0.	98	0.	
4 4.28889	-966	49	2.41606999-3		•0	66	•0	

GNE/PHYS 69-8

APPENDIX G

Sample Problems

This appendix is devoted to exhibiting New Barnyard output for selected problems. Further explanation of some of the problems is given below. The following is a list of the sample problems included in this appendix:

(1) Water: 5 group set using GGC-4 source deck

(PO to P3 cross sections included)

(2) Magnesium: 4 group set using ENDF/B source

deck. (PO to P4 cross sections included.) For both of these problems a U-235 source spectrum was used. Each problem has a printout of the input data followed by the cross section output. The output cross section values are identified and they need no explanation here. The printout of the imput data is followed by the cross section output. The output cross section values are identified and they need no explanation here. The printout of the input data is included only for convenience of the user. The actual source decks do not print out the data used.

GNE/PHYS 69-8
THE INPUT DATA FOR THIS PROBLEM IS
WATER5 GROUP SET USING GGC-4 SOURCE DECK
5 2 1
10 22 47 75 99
1.0000000 0.668000E-01
8.0200000 0.334000E-01
0.412166E-040.113325E-030.277033E-030.609152E-030.121752E-020.223311E-02
0.379104E-020.600338E-020.893037E-020.125583E-010.167906E-010.214541E-01
Q.263197E-010.311313E-010.356364E-010.396133E-010.428906E-010.453567E-01
0.469620E-010.477125E-010.476601E-010.468902E-010.455093E-010.436340E-01
0.413815E-010.388629E-010.361787E-010.334159E-010.306470E-010.279301E-01
0.253096E-010.228182E-010.204779E-010.183021E-010.162969E-010.144631E-01
0.127972E-010.112926E-010.994080E-020.873164E-020.765445E-020.669823E-02
0.585207E-020.510541E-020.444822E-020.387106E-020.336522E-020.292267E-02

0.253612E-020.495894E-020.345783E-020.240338E-020.166632E-020.115306E-02

0.79668	37E-030.54981	4E-030.37909	5E-030.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.			

FAST DATA TAPE NUMBER = 31568

TAPE DESCRIPTION

TAPE I.D. IS 31568.0 THIS TAPE IS GGC4 VERSION OF GGC2 304.0

CONTENTS OF FAST DATA TAPE NUMBER 31568

NUCLIDE NO.	NUCLIDE DE	SCRIPTION
1.0000000	HYDROGEN	
1.2000000	DEUTERIUM	
2.0000000	HELIUM	
3.0062000	LITHIUM-6	ENDF/B DATA AUGUST 1967
3.0072000	LITHIUM-7	ENDF/B DATA AUGUST 1967
4.0000000	BERYLLIUM	GA-5905
5.0000000	BORON NATUR	
5.0100000	BORON	10
6.0200000	CARBON	ENDF/B DATA JULY 1967
7.0000000	NITROGEN	
8.0200000	OXYGEN	ENDF/B OCTOBER 1967
11.0000000	SODIUM	ENDING GOTOBER THOT
12.0000000	MAGNESIUM	
13.0000000	ALUMINUM	GA-5884
14.0000000	SILICON	UM JUUT
16.0000000	SULFUR	
20.0000000	CALCIUM	
22.0000000	TITANIUM	
24.0000000	CHROMIUM	
25.0000000	MANGANESE	
26.0000000	IRON	
27.0000000	COBALT	
28.0000000	NICKEL	
29.0000000	COPPER	
42.0000000	MOLYBDENUM	
48.0000000	CADMIUM	
74.0000000		CA-5005
74.1799994	TUNGSTEN	GA-5885
74.1819992	TUNGSTEN	180
74.1820993	TUNGSTEN	182 GA-5885
the second se	TUNGSTEN	182 RESONANCE GA-5885
74.1829996	TUNGSTEN	183 GA-5885
74.1830997	TUNGSTEN	183 RESONANCE GA-5885
74.1839991	TUNGSTEN	184 GA-5885
74.1840992	TUNGSTEN	184 RESONANCE GA-5885
74.1859999	TUNGSTEN	186 GA-5885
74.1860991	TUNGSTEN	186 RESUNANCE GA-5885
82.0000000	LEAD	
92.2334995	URANIUM	233 ENDF/B JANUARY 1 1968
92.2349997	URANIUM	235 NASA REPORT
92.2351999	URANIUM	235 KAPL ENDF/B DATA FEB 1967
92.2379999	URANIUM	238 NASA REPORT JAN 1965
92.2380991	URANIUM	238 RESONANCE NASA REPORT JAN 1965
92.2381992	URANIUM	238 ENDF/B DATA JULY 1967
92.2382994 94.2411995	URANIUM PLUTONIUM	238 RESONANCE ENDF/B DATA JULY 1967

FINE GROUP STRUCTURE

ROUP	ENERGY	INTE	RVAL(E.V.)		L	THARGY INTERVAL
1		TO	1.349859E			TO -3.00000E-01
2	1.349859E 07	TO	1.221403E		-3.00000E-01	
3	1.221403E 07	TO	1.105171E	07	-2.00000E-01	TO -1.00000E-01
4	1.105171E 07	TO	1.00000E		-1.00000E-01	TO 0.
5	1.000000E 07	TO		06	0.	TO 1.00000E-01
6		TO	8.187308E	06	1.00000E-01	TO 2.00000E-01
7	8.187308E 06	TO	7.408182E	06	2.00000E-01	TO 3.00000E-01
8	7.408182E 06	TO		06	3.00000E-01	TO 4.00000E-01
9		TO		06	4.00000E-01	TO 5.00000E-01
10	6.065307E 06	TO	5.488116E	06	5.00000E-01	TO 6.00000E-01
11	5.488116E 06	TO	4.965853E	06	6.00000E-01	TO 7.00000E-01
12	4.965853E 06	TO		06	7.00000E-01	TO 8.00000E-01
13	4.493290E 06	TO	4.065697E	06	8.00000E-01	TO 9.00000E-01
14	4.065697E 06	TO	3.678794E	06	9.00000E-01	TO 1.00000E 00
15	3.678794E 06	TO	3.328711E	06	1.00000E 00	TO 1.10000E 00
16	3.328711E 06	TO	3.011942E	06	1.10000E 00	TO 1.20000E 00
17	3.011942E 06	TO	2.725318E	06	1.20000E 00	TO 1.30000E 00
18	2.725318E 06	TO	2.465970E	06	1.30000E 00	TO 1.40000E 00
19	2.465970E 06	TO	2.231302E	06	1.40000E 00	TO- 1.50000E 00
20	2.231302E 06	TO	2.018965E	06	1.50000E 00	TO 1.60000E 00
21	2.018965E 06	TO	1.826835E	06	1.60000E 00	TO 1.70000E 00
22	1.826835E 06	TO	1.652989E	06	1.70000E 00	TO 1.80000E 00
23	1.652989E 06	TO	1.495686E	06	1.80000E 00	TO 1.90000E 00
24	1.495686E 06	TO	1.353353E	06	1.90000E 00	TO 2.00000E 00
25	1.353353E 06	TO	1.224564E	06	2.00000E 00	TO 2.10000E 00
26	1.224564E 06	TO	1.108032E	06	2.10000E 00	TO 2.20000E 00
27		TO	1.002589E	06	2.20000E 00	TO 2.30000E 00
28	1.002589E 06	TO	9.071796E	05	2.30000E 00	TO 2.40000E 00
29	9.071796E 05	TO	8.208501E	05	2.40000E 00	TO 2.50000E 00
30	8.208501E 05	TO	7.427359E	05	2.50000E 00	TO 2.60000E 00
31	7.427359E 05	TO	6.720552E	05	2.60000E Q0	TO 2.70000E 00
32	6.720552E 05	TO		05	2.70000E 00	TO 2.80000E 00
33	6.081007E 05	TO	5.502323E	05	2.80000E 00	TO 2.90000E 00
34	5.502323E 05		4.978708E			TO 3.00000E 00
35				05	3.00000E 00	TO 3.10000E 00
36	4.504921E 05			05	3.10000E 00	TO 3.20000E 00
37	4.076221E 05			05	3.20000E 00	TO. 3.30000E 00
38	3.688317E 05			05	3.30000E 00	TO 3.40000E 00
39		TO		05	3.40000E 00	TO 3.50000E 00
40	3.019739E 05			05	3.50000E 00	
41	2.732373E 05			05		TO 3.70000E 00
42	2.472353E 05		2.237078E	05		TO 3.80000E 00
43	2.237078E 05		2.024192E		3.80000E 00	
44	2.024192E 05		1.831564E		3.90000E 00	
45	1.831564E 05		1.657268E		4.00000E 00	
46	1.657268E 05		1.499558E		4.10000E 00	
47	1.499558E 05		1.356856E		4.20000E 00	
48	1.356856E 05		1.227734E		4.30000E 00	
49	1.227734E 05		1.110900E		4.40000E 00	
50	1.110900E 05	TO	8.651698E	04	4.50000E 00	TO 4.75000E 00

FINE GROUP STRUCTURE

GROUP	ENERGY	INT	ERVAL (E.V.)		LE	THA	RGY INTERVAL
51	8.651698E 04		6.737949E 04	4.75000E	00	TO	5.00000E 00
52	6.737949E 04	TO	5.247520E 04	5.00000E	00	TO	5.25000E 00
53	5.247520E 04	TO	4.086773E 04	5.25000E	00	TO	5.50000E 00
54	4.086773E 04	TO	3.182782E 04	5.50000E	00	TO	5.75000E 00
55	3.182782E 04	TO	2.478753E 04	5.75000E	00	TO	6.00000E 00
56	2.478753E 04		1.930455E 04	6.00000E	00	TO	6.25000E 00
57	1.930455E 04	TO	1.503440E 04	6.25000E	00	TO	6.50000E 00
58	1.503440E 04	TO	1.170880E 04	6.50000E	00	TO	6.75000E 00
59	1.170880E 04	TO	9.118823E 03	6.75000E		TO	7.00000E 00
60	9.118823E 03		7.101746E 03	7.00000E		TO	7.25000E 00
61	7.101746E 03		5.530846E 03	7.25000E		TO	7.50000E 00
62	5.530846E 03		4.307427E 03	7.50000E			7.75000E 00
63	4.307427E 03		3.354627E 03	7.75000E		TO	8.00000E 00
64	3.354627E 03		2.612587E 03	8.00000E			8.25000E 00
65	2.612587E 03		2.034684E 03	8.25000E		TO	8.50000E 00
66	2.034684E 03		1.584614E 03	8.50000E	00	TO	8.75000E 00
67	1.584614E 03		1.234098E 03	8.75000E		TO	9.00000E 00
68	1.234098E 03		9.611169E 02	9.00000E			9.25000E 00
69	9.611169E 02		7.485186E 02	9.25000E		TO	9.50000E 00
70	7.485186E 02		5.829468E 02	9.50000E		TO	9.75000E 00
	5.829468E 02		4.539995E 02		00		1.00000E 01
71				1.00000E		TO	1.02500E 01
72	4.539995E 02						
73	3.535751E 02	TO	2.753646E 02	1.02500E		TO	
74	2.753646E 02		2.144542E 02	1.05000E		TO	1.07500E 01
75	2.144542E 02		1.670171E 02	1.07500E		TO	1.10000E 01
76	1.670171E 02		1.300730E 02	1.10000E		TO	1.12500E 01
77	1.300730E 02	TO	1.013010E 02	1.12500E		TO	1.15000E 01
78	1.013010E 02	10.02	7.889328E 01	1.15000E		TO	1.17500E 0
79	7.889328E 01	TO	6.144214E 01	1.17500E		TO	1.20000E 01
80	6.144214E 01	TO	4.785119E 01	1.20000E	01	TO	1.22500E 0
81	4.785119E 01		3.726654E 01	1.22500E		TO	1.25000E 0
82	3.726654E 01	TO	2.902321E 01	1.25000E		TO	1.27500E 0
83	2.902321E 01	TO	2.260330E 01	1.27500E		TO	1.30000E 01
84	2.260330E 01		1.760347E 01	1.30000E		TO	1.32500E 01
85	1.760347E 01		1.370960E 01	1.32500E		TO	1.35000E 0
86	1.370960E 01		1.067704E 01	1.35000E	01	TO	1.37500E 0
87	1.067704E 01	TO	8.315290E 00	1.37500E		TO	1.40000E 0.
88	8.315290E 00		6.475955E 00	1.40000E		TO	1.42500E 0
89	6.475955E 00		5.043478E 00	1.42500E	01	TO	1.45000E 0
90	5.043478E 00		3.927865E 00	1.45000E	01	TO	1.47500E 0
91	3.927865E 00		3.059024E 00	1.47500E		TO	1.50000E 0
92	3.059024E 00	TO	2.382370E 00	1.50000E			1.52500E 01
93	2.382370E 00		1.855392E 00	1.52500E			1.55000E 0
94	1.855392E 00		1.444981E 00	1.55000E			1.57500E 0
95	1.444981E 00		1.125352E 00	1.57500E			1.60000E 0
96	1.125352E 00		8.764252E-01	1.60000E			1.62500E 01
97	8.764252E-01		6.825607E-01	1.62500E			1.65000E 0
98	6.825607E-01	TO	5.315788E-01	1.65000E			1.67500E 0
99	5.315788E-01	TO	4.139940E-01	1.67500E	01	TO	1.70000E 0

BROAD GROUP STRUCTURE

			and the second se
BROAD GROUP	ENERCY	INTERVAL(E.V.)	
1	1.491825E 07 TO	5.488116E 06	
2	5.488116E 06 TO	1.652989E 06	
3	1.652989E 06 TO	1.356856E 05	
4	1.356856E 05 TO	1.670171E 02	· · · ·
5	1.670171E 02 TO	4.139940E-01	
		101377102 01	
			the sea to be supported to be a
	9		
			a season and a season of the
	4		
	-		and the second
	-		
			and the Property of the State

111 -

GNE/PHYS NUCLIDE	69-	81.0000000	HAS 1-D ARRAY
NUCLIDE	.0	1.0000000	HAS P-0, P-1, P-2, AND P-3 ARRAY
NUCLIDE	۰0.	1.0000000	DOES NOT HAVE INELASTIC ARRAY
NUCLIDE N	•0•	1.0000000	DOES NOT HAVE N-2N ARRAY
NUCLIDE N	١0.	1.0000000	HAS TOTAL ISO. SCATTER ARRAY
2			112

					+
GNE/PHYS NUCLIDE	69-	8 .0200000	HAS	1-D	ARRAY

NUCLIDE NO. 8.0200000 HAS P-0,P-1,P-2,AND P-3 ARRAY

NUCLIDE NO. 8.0200000 HAS INELASTIC ARRAY

NUCLIDE NO. 8.0200000 DDES NOT HAVE N-2N ARRAY

NUCLIDE NO. 8.0200000 HAS TOTAL ISO. SCATTER ARRAY

ATER5	GROUP SET USING GGC-4 SOURCE DECK
GROUP	FLUX
1	5.232288E-04
2	1.462861E-03
3	3.336402E-03
4	7.471954E-03
5	1.472939E-02
6	2.565449E-02
7	4.339071E-02
8	6.701126E-02
9	1.016520E-01
10	1.316190E-01
11	1.797270E-01
12	2.133987E-01
13	2.608718E-01
13	2.672685E-01
15	3.020317E-01
16	3.786525E-01
17	4.193974E-01
18	4.496019E-01
19	4.579706E-01
20	4.147970E-01
21	3.911531E-01
22	4.168634E-01
23	4.063766E-01
24	4.044704E-01
25	3.698691E-01
26	3.695762E-01
27	2.976449E-01
28	2.994022E-01
29	3.531688E-01
30	3.666530E-01
31	3.153495E-01
32	2.894981E-01
33	2.707462E-01
34	2.501992E-01
35	2.040345E-01
36	1.881376E-01
37	2.065525E-01
38	2.201407E-01
39	2.071412E-01
40	1.930225E-01
41	1.811432E-01
42	1.707197E-01
43	1.622364E-01
44	1.553621E-01
45	1.495198E-01
46	1.452956E-01
47	1.361418E-01
48	1.304334E-01
49	1.252771E-01

ATER5	GROUP SET USING GGC-4 SOURCE DECK	
GROUP	FLUX	
51	2.709523E-01	
52	2.519898E-01	
53	2.367955E-01	
54	2.252021E-01	
55	2.151739E-01	
56	2.083026E-01	
57	2.031521E-01	
58	1.984380E-01	
59	1.947144E-01	
60	1.922773E-01	
61	1.905074E-01	
62	1.892594E-01	
63	1.886703E-01	
64	1.882078E-01	
65	1.876260E-01	
66	1.869519E-01	
67	1.862143E-01	
68	1.856203E-01	
69	1.849905E-01	
70	1.844139E-01	
71	1.839628E-01	
72	1.836022E-01	
73	1.833264E-01	
74	1.831110E-01	
75	1.829322E-01	
76	1.827969E-01	
77	1.826802E-01	
78	1.824064E-01	
79	1.820083E-01	
80	1.816798E-01	
81	1.814170E-01	
82	1.812050E-01	
83	1.810321E-01	
84	1.808792E-01	
85	1.807562E-01	
86	1.806410E-01	
87	1.801672E-01	
88	1.789832E-01	
89	1.779842E-01	
90	1.771898E-01	
91	1.765532E-01	
92	1.760275E-01	
93	1.755907E-01	
94	1.752122E-01	
95	1.748724E-01	
96	1.742999E-01	
97	1.719690E-01	
98	1.684121E-01	
99	1.658085E-01	

BROAD GROUP AVERAGED MACROSCOPIC CROSS SECTIONS

GROUP	SIGMA ABSORPTION	SIGMA TOTAL		SIGMA	FISSION
1	2.167554E-03	1.250808E-01	0.		
2	3.959128E-04	2.155311E-01	0.		
3	0.	5.218956E-01	0.		
4	6.715012E-05	1.317152E 00	0.		
5	1.691048E-03	1.508743E 00	0.		-

GROUP	9-8 ROUP SET USI				
1	NU+SIGMA	1133101		 	
2	0.				
3 4	0.				
5	0.				
-					
×.		4			
	x.			 	
			1	 	
	i i				
		•	-		

BROAD GROUP AVERAGED MACROSCOPIC CROSS SECTIONS

GROUP	,			P-0	INELASTIC	N-2N	TOTAL SCATTER
FROM	1	TO	1	3.491491E-02	2.022698E-05	0.	3.493514E-02
FROM	1	то	2	6.291986E-02	1.346142E-03	0.	6.426600E-02
FROM	1	TO	3	2.011283E-02	1.779472E-03	0.	2.189231E-02
FROM	1	TO	4	1.796387E-03	2.125040E-05	0.	1.817637E-03
FROM	1	το	5	2.208431E-06	4.846245E-10	0.	2.208916E-06
FROM	2	TO	2	1.013809E-01	0.	0.	1.013809E-01
FROM	2	тс	3	1.050091E-01	0.	0.	1.050091E-01
FROM	2	TO	4	8.734505E-03	0.	0.	8.734505E-03
FROM	2	то	5	1.073797E-05	0.	0.	1.073797E-05
FROM	3	то	3	3.730391E-01	0.	0.	3.730391E-01
FROM	3	то	4	1.486773E-01	0.	0.	1.486773E-01
FROM	3	тс	5	1.788487E-04	0.	0.	1.788487E-04
FROM	4	TO	4	1.137157E 00	0.	0.	1.137157E 00
FROM	4	TC	5	1.794877E-01	0.	0.	1.794877E-01
FROM	5	TO	5	1.275828E 00	0.	0.	1.275828E 00

55.				P-1	P-2	P-3
ROM	1	TO	1	6.652408E-02	8.839789E-02	9.911263E-02
ROM	1	TO	2	1.029138E-01	8.854647E-02	-5.693567E-03
ROM	1	TO	3	2.168826E-02	-2.922178E-02	-5.571292E-02
ROM	1	TO	4	5.223204E-04	-4.348100E-03	-1.789059E-03
ROM	1	TO	5	2.255498E-08	-5.520861E-06	-7.894038E-08
ROM	2	TO	2	1.802595E-01	2.221573E-01	1.886510E-01
ROM	2	TO	3	1.669813E-01	4.189492E-02	-1.495191E-01
ROM	2	TO	4	4.203339E-03	-1.990882E-02	-1.381823E-02
ROM	2	TO	5	1.815097E-07	-2.684201E-05	-6.352366E-07
ROM	3	TO	3	6.211619E-01	6.275355E-01	2.882293E-01
ROM	3	TO	4	2.037582E-01	-6.702652E-02	-2.798133E-01
ROM	3	TO	5	8.942934E-06	-4.466725E-04	-3.127661E-05
ROM	4	то	4	2.166618E 00	1.604800E 00	3.325324E-01
ROM	4	то	5	2.356694E-01	-1.098725E-01	-3.323999E-01
ROM	5	TO	5	2.474773E 00	1.869701E 00	4.282221E-01

119_____

GROUP	AVERAGE COS(THETA)	DIFF. COEFF.	SIGMA TRANSPORT
1	6.3474E-01	3.2392E 00	1.0291E-01
2	5.9268E-01	2.1444E 00	1.5544E-01
3	5.5505E-01	1.0587E 00	3.1484E-01
4	6.3510E-01	5.6027E-01	5.9495E-01
5	6.4658E-01	4.8746E-01	6.8382E-01

0.127972E-010.112926E-010.99408 0.585207E-020.510541E-020.44482 0.253612E-020.495894E-020.34578 0.796687E-030.549814E-030.37909 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	7E-020.1255 4E-010.3961 1E-010.4689 7E-010.3341 9E-010.1830 0E-020.8731 2E-020.38710 3E-020.2403	83E-010.1679 33E-010.4289 02E-010.4550 59E-010.3064 21E-010.1629 64E-020.76544 06E-020.33652 38E-020.16663 0. 0. 0. 0. 0. 0.	06E-010.214541E 06E-010.453567E 93E-010.436340E 70E-010.279301E 69E-010.144631E 45E-020.669823E
0. 379104E-020.600338E-020.89303 0. 263197E-010.311313E-010.35636 0. 469620E-010.477125E-010.47660 0. 413815E-010.388629E-010.3617E 0. 253096E-010.228182E-010.20477 0. 127972E-010.112926E-010.99408 0. 585207E-020.510541E-020.44482 0. 253612E-020.495894E-020.34578 0. 796687E-030.549814E-030.37909 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	7E-020.1255 4E-010.3961 1E-010.4689 7E-010.3341 9E-010.1830 0E-020.8731 2E-020.38710 3E-020.2403 5E-030. 0. 0. 0. 0.	83E-010.1679 33E-010.4289 02E-010.4550 59E-010.3064 21E-010.1629 64E-020.76544 06E-020.33652 38E-020.16663 0. 0. 0. 0. 0. 0.	06E-010.214541E 06E-010.453567E 93E-010.436340E 70E-010.279301E 69E-010.144631E 45E-020.669823E 22E-020.292267E 32E-020.115306E 0. 0. 0. 0. 0.
0. 263197E-010. 311313E-010. 35636 0. 469620E-010. 477125E-010. 47660 0. 413815E-010. 388629E-010. 36176 0. 253096E-010. 228182E-010. 20477 0. 127972E-010. 112926E-010. 99408 0. 585207E-020. 510541E-020. 44482 0. 253612E-020. 495894E-020. 34578 0. 796687E-030. 549814E-030. 37909 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	4E-010.3961 1E-010.4689 7E-010.3341 9E-010.1830 0E-020.8731 2E-020.38710 3E-020.2403 5E-030. 0. 0. 0. 0. 0. 0.	33E-010.4289 02E-010.4550 59E-010.3064 21E-010.16296 64E-020.76544 06E-020.33652 38E-020.16663 0. 0. 0. 0. 0.	06E-010.453567E4 93E-010.436340E4 70E-010.279301E4 69E-010.144631E4 45E-020.669823E4 22E-020.292267E4 32E-020.115306E4 0. 0. 0. 0.
0.469620E-010.477125E-010.47660 0.413815E-010.388629E-010.3617E 0.253096E-010.228182E-010.20477 0.127972E-010.112926E-010.99408 0.585207E-020.510541E-020.44482 0.253612E-020.495894E-020.34578 0.796687E-030.549814E-030.37909 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	PIE-010.4689 7E-010.3341 9E-010.1830 0E-020.8731 2E-020.38710 3E-020.2403 5E-030. 0. 0. 0. 0.	02E-010.4550 59E-010.3064 21E-010.16296 64E-020.76544 06E-020.33652 38E-020.16663 0. 0. 0. 0. 0.	93E-010.436340E 70E-010.279301E 69E-010.144631E 45E-020.669823E 22E-020.292267E 32E-020.115306E 0. 0. 0. 0.
0.413815E-010.388629E-010.36178 0.253096E-010.228182E-010.20477 0.127972E-010.112926E-010.99408 0.585207E-020.510541E-020.44482 0.253612E-020.495894E-020.34578 0.796687E-030.549814E-030.37909 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	7E-010.3341 9E-010.1830 0E-020.87310 2E-020.38710 3E-020.2403 5E-030. 0. 0. 0. 0.	59E-010.3064 21E-010.16296 64E-020.76544 06E-020.33652 38E-020.16663 0. 0. 0. 0. 0.	70E-010.279301E- 69E-010.144631E- 45E-020.669823E- 22E-020.292267E- 32E-020.115306E- 0. 0. 0. 0.
0.253096E-010.228182E-010.20477 0.127972E-010.112926E-010.99408 0.585207E-020.510541E-020.44482 0.253612E-020.495894E-020.34578 0.796687E-030.549814E-030.37909 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9E-010.1830 0E-020.87310 2E-020.38710 3E-020.2403 5E-030. 0. 0. 0. 0.	21E-010.16296 64E-020.76544 06E-020.33652 38E-020.16663 0. 0. 0. 0. 0.	69E-010.144631E- 45E-020.669823E- 22E-020.292267E- 32E-020.115306E- 0. 0. 0. 0.
0.127972E-010.112926E-010.99408 0.585207E-020.510541E-020.44482 0.253612E-020.495894E-020.34578 0.796687E-030.549814E-030.37909 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0E-020.87310 2E-020.38710 3E-020.24033 5E-030. 0. 0. 0. 0.	64E-020.76544 06E-020.33652 38E-020.16663 0. 0. 0. 0. 0.	45E-020.669823E- 22E-020.292267E- 32E-020.115306E- 0. 0. 0. 0.
0.585207E-020.510541E-020.44482 0.253612E-020.495894E-020.34578 0.796687E-030.549814E-030.37909 0.00000000000000000000000000000000000	2E-020.38710 3E-020.24033 5E-030. 0. 0. 0.	06E-020.33652 38E-020.16663 0. 0. 0. 0. 0.	22E-020.292267E- 32E-020.115306E- 0. 0. 0. 0.
0.253612E-020.495894E-020.34578 0.796687E-030.549814E-030.37909 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	3E-020.24033 5E-030. 0. 0. 0.	38E-020.16663 0. 0. 0. 0. 0.	32E-020.115306E- 0. 0. 0. 0.
0.253612E-020.495894E-020.34578 0.796687E-030.549814E-030.37909 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	3E-020.24033 5E-030. 0. 0. 0.	38E-020.16663 0. 0. 0. 0. 0.	32E-020.115306E- 0. 0. 0. 0.
0. 796687E-030.549814E-030.37909 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	5E-030. 0. 0. 0.	0. 0. 0. 0.	0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.	0.	0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.	0.	0.
0. 0. 0. 0. 0. 0. 0. 0. 0.	0.	0.	0.
0. 0. 0. 0. 0. 0. 0. 0. 0.	0.	0.	
0. 0. 0. 0. 0. 0.			0.
0. 0. 0.		•	
		0.	0.
0. 0.	0.	0.	0.

GNE/PHYS 69-	-8	
--------------	----	--

_

-

_

FOLLOWING INFO.							THE DATA		
	m	ATERIAL	NUMBER	10	114	100	GROUPS	PO	NUCLIDES
THE ID NUMBER	FOR M	ATERIAL	1014	PO	IS	100			
	M	ATERIAL	NUMBER	10	014	100	GROUPS	P1	
THE ID NUMBER	FOR M	ATERIAL	1014	P1	IS	101			
	M	ATERIAL	NUMBER	10	014	100	GROUPS	P2	
THE ID NUMBER	FOR M	ATERIAL	1014	P2	IS	102			
	M	ATERIAL	NUMBER	10	014	100	GROUPS	P3	
THE ID NUMBER	FOR M	ATERIAL	1014	P3	IS	103			
	M	ATERIAL	NUMBER	10	014	100	GROUPS	P4	
THE ID NUMBER	FOR M	ATERIAL	1014	P4	IS	104			
	M	ATERIAL	NUMBER	10	014	100	GROUPS	P5	
	M	ATERIAL	NUMBER	10	014	100	GROUPS	P6	
	M	ATERIAL	NUMBER	10	014	100	GROUPS	P7	
	M	ATERIAL	NUMBER	10	014	100	GROUPS	P8	

.

GNE/PHYS 69-	3			÷ .	× 1	
MAGNESIUM4	GROUP	SET	USING	ENDF/B	SOURCE	DECK

GROUP	FLUX
1	9.556081E-05
2	2.715339E-04
3	6.604603E-04
4	1.462057E-03
5	2.962775E-03
6	5.448673E-03
7	1.000503E-02
8	1.650977E-02
9	2.829213E-02
10	3.612760E-02
11	4.907892E-02
12	6.523898E-02
13	9.182791E-02
14	1.420293E-01
15	1.433325E-01
16	1.865966E-01
17	2.042672E-01
18	2.262544E-01
19	2.943707E-01
20	2.939286E-01
21	3.973576E-01
22	4.364193E-01
23	7.150182E-01
24	5.582233E-01
25	6.289372E-01
26	8.627642E-01
27	1.048663E 00
28	1.053914E 00
29	6.233043E-01
30	8.198278E-01
31	7.346589E-01
32	9.804919E-01 8.603694E-01
34	8.654983E-01
36	5.711158E-01
30	4.032375E-01
38	6.436866E-01
39	5.168559E-01 3.627552E-01
40	
	2.668761E-01
41	2.763459E-01
42	3.789079E-01
43	4.893963E-01
44	5-830240E-01
45	6.528828E-01
46	6.925256E-01
47	7.096412E-C1
48	6.885358E-01
49	6.048491E-01
50	3.642916E-01

GNE/PHYS 69-8	5					
MAGNESIUM4	GROUP	SET	USING	ENDF/B	SOURCE	DECK

-01 00 00 00 -01 00			
00 00 -01 00			
00 00 -01 00			
00 -01 00			
-01 00			
-01 00			
~~			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00		2	
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
00			
	00 00	00	00

GNE/PHYS 69-8 MAGNESIUM--4 GROUP SET USING ENDF/B SOURCE DECK

		COPIC CROSS SECTIO	
GROUP	SIGMA ABSORPTION	SIGMA TOTAL	NU*SIGMA FISS10
1	1.389300E-02	7.408909E-01	
2	3.125178E-03	1.061269E 00	0.
3	4.178245E-03	2.170218E 00	0.
4	8.041124E-04	1.405475E 00	0.

GNE/PHYS 69-8	3						
MAGNESIUM4	GROUP	SET	USING	ENDF/B	SOURCE	DECK	

BROAD GROUP AVERAGED MACROSCOPIC CROSS SECTIONS

GROUP				P - 0	P-1	P-2	P+3
FROM	1	TO	1	4.150959E-01	6.905661E-01	7.391705E-01	5.947326E-01
FROM	1	то	2	2.912752E-01	-4.153767E-02	2.015781E-02	-3.518052E-02
FROM	1	то	3	2.062810E-02	0.	0.	0.
FROM	1	TO	4	0.	0.	0.	0.
FROM	2	TO	2	9.5062948-01	9.948039E-01	7.249279E-01	2.160423E-01
FROM	2	TO	3	1.075208E-01	-2.140035E-02	-1.247154E-02	-5.033118E-02
FROM	2	TO	4	2.8903278-05	0.	0.	0.
FROM	3	TO	3	2.123368E 00	9.266635E-01	9.475510E-01	1.486644E-01
FROM	3	TO	4	4.249124E-02	-4.851247E-02	7.776200E-03	-1.838741E-03
FROM	4	TO	4	1.377493E 00	4.843637E-02	8.710037E-03	9.448551E-04
FROM	4	TO	4	1.377493E 00	4.843637E-02	8.710037E-03	9.44855

GN	E/	PH	VS.	69-	.8

	UM4 GROUP SET USING		
GROUP	AVERAGE COS(THETA)	DIFF. COEFF.	SIGMA TRANSPORT
1	5.5454E-01	6.5270E-01	5.1070E-01
2	3.4882E-01	4.5683E-01	7.2967E-01
3	1.4547E-01	1.7908E-01	1.8613E 00
4	1.1721E-02	2.3992E-01	1.3893E 00
	I TILL OF		
			· · · · · · · · · · · · · · · · · · ·
		2	
	ж. 1		
	-4 -		
	an a		
			·····

GNE/PHYS 69-8 MAGNESIUM--4 GROUP SET USING ENDF/B SOURCE DECK

BROAD GROUP AVERAGED MACROSCOPIC CROSS SECTIONS

GROUP				P-4	P-5	P-6	P-7
FROM	1	TO	1	4-238755E-01	0.	0.	0.
FROM	1	TO	2	4.189399E-03	0.	0.	0.
FROM	1	то	3	0.	0.	0.	0.
FROM	1	TO	4	0.	0.	0.	0.
FROM	2	TO	2	6.132632E-02	0.	0.	0.
FROM	2	TO	3	-1.042430E-02	0.	0.	0.
FROM	2	то	4	0.	0.	0.	0.
FROM	3	TO	3	1.382124E-02	0.	0.	0.
FROM	3	то	4	7.583821E-05	0.	0.	0.
FROM	4	TO	4	3-7944915-04	0.	0.	0.

VITA

Bruce D. Green, was born on 16 August 1942, in Portland, Oregon, the son of Sammuel L. Green and Mary J. Green. He graduated from Blackfoot High School, Blackfoot, Idaho, in May 1960 and attended Seattle University, Idaho State University, and then Kansas State University, from which he received the degree of Bachelor of Science in Nuclear Engineering on 15 June 1967. After attending Officer Training School he was commissioned a Second Lieutenant in the USAF on 21 August 1967, and was then assigned to the Air Force Institute of Technology, Resident School of Engineering.

Permanent address: 525 Willard Street Pocatello, Idaho

This thesis was typed by Mrs. Bobbie Thompson.

Unclassified		
Security Classification		2.34 (minute)
DOCUMENT CO (Security classification of title, body of abstract and indexi	NTROL DATA - R8	
1. ORIGINATING ACTIVITY (Corporate author)		24. REPORT SECURITY CLASSIFICATION
Air Force Institute of Technology (AFIT-SE) Wright-Patterson AFB, Ohio: 45433		Unclassified
		2 b. GROUP
3. REPORT TITLE New Barnyard: A Multigroup Neutr	ron Cross Se	ction Code
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) AFIT Thesis		
5. AUTHOR(S) (Last name, first name, initial) Bruce D. Green		
First Lieutenant USAF		
6. REPORT DATE	74. TOTAL NO. OF	
June 1969	129	11
DE. CONTRACT OR GRANT NO.	94. ORIGINATOR'S R	
b. PROJECT NO.	GNE/PHYS,	/69-8
c. N/A	95. OTHER REPORT	NO(S) (Any other numbers that may be assigned
4	this report)	-
10. AVAILABILITY/LIMITATION NOTICES THIS COCUM	ent is subj	ect to special export con
trols and each transmittal to for	reign govern	ments or foreign national.
may be made only with prior appro	val of the	Dean of Engineering, Air
Force Institute of Technology, Wr	right-Patter	son AFB, Ohio 45433.
11. SUPPL EMENTARY NOTES	12. SPONSORING MIL	ITARY ACTIVITY
New Barnyard, a moments code, was neutron macroscopic cross section scattering transfer (group to gro The transport cross section, diff cosine of the scattering angle ca The energy range of these cross a	ns. Total, a oup) cross so fusion coeffi an also be ca sections extended	absorption, fission, and ections can be calculated icient, and the average alculated for each group. ends from 14.918 MeV to
.4139 eV. Two versions of the mo different data sources could be u ing transfer cross sections can be	used. PO thi	rough P8 elastic scatter-
DD FORM 1473		

Unclassified Security Classification

Unclassified

Security Classification

ROLE WT ROLE WT ROLE WT ROLE WT Neutron Cross Section Code I	14.	LIN	LINK A		LINK B		LINK C	
Neutron Cross Section Code	KEY WORDS		WT	ROLE	WT	ROLE	wт	
		ROLE	WT	NOLE	WT	NOLE	W T	

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal withor is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, &c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through

_ ."

. . , , ,

- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSO: ING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Unclassified

AFLC-WPAFB-OCT 66 6M

Security Classification