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SUMMARY

This report describes the second phase of an investigation to develop a
small, high-pressure-ratio radial outflow compressor (ROC). The first
phase included aerodynamic and mechanical analyses, aerodynamic cascade
tests, low-speed compressor tests, mechanical bench tests, machining,
fabrication, and design studies which led to the configuration of a high-
speed compressor. The second phase consisted of developmental testing
of the high-speed compressor and further low-speed compressor testing to
guide the design of an improved compressor,

Significant improvements in zompressor performance and operating range
were achieved by (1) eliminating the inlet guide vane system, (2)
including a circular inlet turning vane, (3) enlarging the exit scroll,
(4) using new rotor blades, and (5) smploying the subsonic stator vanes.
In combination, these modifications resulted in compressor rotor per-
formance that provides strong encouragement that efficient higi-pressure-
ratio compressors of the radial outflow type can be developed.
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FOREWORD

Under United States Army Contract DA-177-AMC-180(T), the Flight Propul-
sion Division of the General Electric Company in Cincinnati, Ohio, is
conducting a program to advance and demonstrate high-pressure-ratio
compressor technology for small gas turbine engines., The investigation
concerning the analysis, design, construction, and testing of a Radial
Outflow Compressor (ROC) is presented in three volumes, each volume
generally describing one of the three phases of the program. Volume I
presents the ROC design philosophy, mechanical analysis and bench test
results, inlet system and rotating wall vaneless diffuser studies using
a low-speed compressor, the design and supersonic cascade tests of the
rotor blade sections, and high-'speed transoiiic and supersonic cascade
tests of single row and tandem row stator vanes. The design of the
high-speed compressor test vehicle used in the Phase II and III investiga-
tions was also presented in Volume I.

Volume II describes the Phase II investigation including the aerodynamic
and mechanical design of the high-speed rotor and the stator system. The
experiments conducte” consisted of testing 6 major buildups (A through F)
of the compressor. A number of aerodynamic, mechanical, and operation
problems were encountered during testing of the new compressor using a
new test vehicle. During Buildup F, encouraging rotor performance was
obtained at 70 percent speed, with a maximum rotor efficiency of 92,1
percent recorded at a rotor exit total pressure ratio of 3,97, and a

rotor exit static pressure ratio of 1.97. This performance was accom-
plished by elimination of the inlet guide vanes, the use of a circular
inlet vane, the Phase III rotor blades, and the subsonic stators. Analysis
of the rotating wall vaneless diffuser was described and further low-
speed compressor test results were presented. The rotating diffuser
configuration selected for the Phase III rotor was also presented in
Volume II.

Volume III describes the Phase III investigation of 3 major buildups (A
through C) of the high-speed compressor. Buildup A was intended to
provide direct comparison of the Phase III rotor performance with the
best performance obtained with the Phase II rotor during Buildup F. The
circular inlet vane was not used in Buildup A (Phase III) because the
rotor inlet curvature was more gradual and it was hoped that the assembly,
balancing, and installation difficulties inherent with the circular inlet
vane could be avoided. Operating problems with the bellmouth liner used
to form the air path into the new rotor were encountered. Fracture of
tae liner occurred at low speed. OContinued operation of the compressor
was obtained by machining the liner back to eliminate interference with
the rotor. Although an unsatisfactory rotor entrance condition existed,
some aerodynamic and mechanical data were obtained. A satisfactory inlet
was constructed by modifying the bellmouth with a liner composed of
pyrolytic graphite and glass fibers bonded with phenolic resin.



For the final test phases, the circular inlet vane was used, the rotor
strain gages and leads were removed, and the supersonic stator vanes
were installed upstream of the subsonic stators. An improved seal was
employed upstream of the rotor for Buildup B. Buildup C was similar to
Buildup B except that reduced seal clearance was established, reduced
rotor to casing offset (cold, nonrotating) was used, and greater capacity
to remove flow from the forward cavity was provided. A systematic series
of stator vane settings was tested during Buildup C at speeds up to 100
percent.

The manager of the Small Gas Turbine Engine Compressor Technology Pro-
gram is J. R. Erwin, and the principal contributing engineers are

N. G. vitale, R, G. Giffin, E. L. Timperman, C. H. Gay, and R. E. Troeger.
Volume I was compiled and edited by Mr. D. V. Robinett. The assistance
and consultations provided by Dr. D. C. Prince, Jr. and Dr. L. H. Smith,
both of the General Electric Company, are gratefully acknowledged, as are
the services of Dr. G. F. Wislicenus of Pennsylvania State University, who
served as consultant on the program. Mr. LeRoy H. Hubert is Project
Engineer for this program on behalf of the U.S. Army.
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angle between rac.ial line and absolute velocity, degrees
angle between radial line and relative velocity, degrees
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net wall slope
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Subscripts

o thru 9 refer to stations as defined in Figure 165
A aerodynamic

BL boundary layer

c compressible

cir circumferential
corr correction

d diffuser

des design

f flow restriction
FS free stream

lc enthalpy

i isentropic

inc incompressible
ind indicated

J element

L loss

1 leakage

M mechanical

m mass weighted

P pressure

p polytropic

Rel relative

r component in radial direction
S shroud

XXX



s static

sh shock

std standard

s. b, solid body

T temperature calibration

t total

u component in tangential direction
v venturi

X station

xxxi
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ANALYTICAL INVESTIGATIONS

INLETS FOR THE HIGH-SPEED COMPRESSOR

Because of the possibility of unsatisfactory inlet flow into the high-
speed rotor with the original design, further analysis of this design and
cf 2 modifications has been conducted; also, a new inlet bellmouth was
ordered without struts and centerbody so that the rotor could be tested
with a simple inlet if necessary,.

The original inlet passage contour (1) is shown in Figure 1. Two modifi-
cations to the inner contour (2 and U) are also shown. The first modifi-
cation (2) is confined to the rotating centerbody. The second modifi-
cation is somewhat more extensive and requires a contour change on the
stationary inner housing upstream of the rotor.

Original Inlet Contour

The Mach number distribution over the original design contours without
inlet swirl as a function of axial distance is presented in Figure 2. A
raplid deceleration of the flow on the inner surface is calculated between
stations 2,5 and 4.0, A pressure coefficient of 0.59 is predicted to
occur, These calculations employed a compressible flow flux ploiting
program which has been used in early inlet system calculations presented
in the Phase I report (Reference 1), This program does not include the
effects of tangential flow velocities. Another program, Compressor
Axisymmetric Flow Determination (CAFD), capable of accepting tangential
fluid velocities waz used to calculate the inlet system flow velocities
and directions with inlet guide vanes imparting swirl to the air. The
information required as input to this latter program is somewhat dif-
ferent from that required for the flux plot program, and some minor dif-
ferences in results were obtained for the zero swirl conditions which
either program can calculate, For example, the static pressure rise coef-
ficient calculated for the flow over the inner contour for zero swirl
shown in Figure 3 is 0,656 using the CAFD program,

The effect of 15 and 30 degrees inlet swirl angle on the Mach number
distribution over the inner contour is shown in Figure 3. For 15 degrees
swirl angle, the decrease in Mach number between axial stations 3 and 4
is significantly reduced. For 30 degrees inlet swirl angle, an accelera-
tion of the flow downstream of station 3 is calculated. Due to the low
value of the minimum radius on the inner contour of the high-speed inlet,
the flow attains a very high swirl angle in this region over the inner
surface. As shown in Figure 4, for only 15 degrees of inlet swirl angle,
the flow angle reaches a value of 54.4 degrees at the 5.25 station., For
higher inlet swirl angles, the local value reached at this station is
correspondingly higher,
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The CAFD program also calculates the axial velocity component, and these
results are presented in Figure 5. This figure indicates that a signif-
icant decrease in the axial component of velocity occurs for all inlet
swirl angles even though the total component of velocity does not decrease
as much for 15 degrees of swirl as for zero swirl; it may increase, as in
the case of 30 degrees of swirl shown in Figure 3. The axial component of
velocity decreases for 15 degrees of inlet swirl angle from a maximum of
317 feet per second (fps) at station 1.6 to a minimum of 179 fps at station
4.0, The significance of this reduction in axial velocity is not clear,
but it may account for the high losses observed in the high-speed ROC. For
higher swirl angles, an even larger decrease in axial velocity is calcu-
lated. In fact, for the 45-degree inlet angle case, the program broke
down, since an axial velocity value approaching zero apparently resulted.

The validity of using an artificial static pressure rise coefficient based
on the axial component of velocity (particularly in a case where a static
pressure drop actually occurs) is of course questionable and is not pre-
sented herein, although high adverse values can be calculated on this basis,
For positive swirl angles, the centerbody surface is rotating in the same
direction as the tangential component velocity, and beyond the 5.,5-inch
station, the effect of centrifugal force on the boundary layer particles
will be to propel them in the downstream direction. These latter 2 facts
give reason to think that the high-speed inlet may be satisfactory; but at
the same time, the decrease in the axial component of velocity provides an
explanation of why the inlet may show unsatisfactory inlet velocity profiles
even though the actual static pressure distribution may have only a moderate
static pressure rise, or in the case of the 30 degrees and greater swirl,

a falling static pressure,

Inlet Contour Number 2

The Mach number distribution over both the inner and outer contours of the
modified high-speed inlet Profile Number 2 calculated by the flux plot pro-
gram is shown in Figure 6, The reduction in Mach number over the inner
contour which occurs between stations 2.5 and 4.0 results in a static pres-
sure rise coefficient of 0.51 which is somewhat reduced below the compara-
tive value (0.59) for the original design of this high-speed inlet. Some
improvement of the inlet flow profile entering the rotor blades would be
expected if Modification Number 2 is employed in the high-speed inlet
system,

Inlet Contour Number 3

The somewhat more extensive modification to the high-speed inlet described
as Profile Number 3 is used in the calculated results shown in Figures 7,
8, and 9. In Figure 7, the Mach number distribution calculated using the
flux plot program indicates only a small amount of diffusion between sta-
tions 2,5 and 4 for this modification to the inlet. The static pressure
rise coefficient calculated for the flow up to this point is 0,222,
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Further diffusion occurs between stations 5.5 and 7.5; however, the value
calculated between stations 2.5 and 7.5 is 0.49. Although this static pres-
sure coefficient is of significant magnitude, it will be noted that most of
this diffusion occurs in the outward turn portion of the inner profile;

over this portion, the centrifugal force effects on the boundary layer are
beneficial,

Comparative calculations for the inlet swirl angles of 0, 15, 30, 45, and
60 degrees are shown in Figure 8 over the inner contour of the flowpath and
in Figure 9 over the outer contour of the flowpath. The effect of the tan-
gential velocity imparted by the inlet guide vanes is to reduce the dif-
fusion which occurred over the inner contour for the condition without
inlet swirl, Therefore, the effect of swirl is to increase the Mach number
over the inner surface and, as is seen in Figure 9, to decrease the Mach
number that occurs over the outer contour of the inlet flow passage.
Another important effect of inlet Profile Number 3 is to reduce the maxi-
mum value of swirl angle that occurs over the inner inlet flowpath as
illustrated in Figure 10, For example, with 15 degrees of inlet guide vane
turning, the maximum value that occurs at station 5.0 is 33 degrees compared
to the maximum value of 54.4 degrees which was calculated at station 5.25
for the original design (Contour Number 1) high-speed inlet flowpath,
Unfortunately, the CAFD program cannot accept radial flow or nearly radial
flow. This condition occurs with these inlet systems as the flow approaches
the rotor blades. It was necessary to end the calculations at a station
significantly upstream of the rotor blades, and station 5.75 was chosen as
the end point of this calculation, There is little question but that the
low Mach number calculated for Profile Number 3 at station 7,5 would be
increased when a swirl velocity is imposed on the flow in the inlet, and
that the overall static pressure rise coefficient would be significantly
reduced.

A tentative explanation for the differences observed in the performance of
the radial inflow and axial flow inlet guiae vane system can now be postu-
lated.

Although the radial inflow and the axial flow inlet guide vane systems
are quite different in physical arrangement, the flow conditions for a
given inlet swirl angle are probably similar. A significant difference
is the increase in the axial velocity that occurs in the axial flow sys-
tem downstream of the inlet guide vanes as the flow passes over the
convex inner contour. The radial inflow system does not have convex
curvature on the inner surface contour and therefore should exhibit lower
maximum values of axial velocity and a significantly lower static pres-
sure rise coefficient (or ratio of maximum to minimum axial velocity, if
this ratio is a critical parameter,

10
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ROC ROTOR BLADE DESIGN

A basic difference between radial flow and axial flow turbomachinery is
that in axial flow design it is generally possible to make direct use of
cascade data, whereas in radial flow design such is not the case., The
reason for this is that in radial flow turbomachinery, the Coriolis and
centripetal accelerations predominate over the flow deflection effects,
A major design intent of the ROC is to employ low radius ratio, high
turning impulse blade sections to make cascade experience at least
indirectly applicable.

Preliminary investigations indicated that the rotational effects are
still strong enough to require some method of transformation between the
cascade and the compressor. Fortunately, the blades are fully supersonic
at the design point and have an axial span, so that the method of char-
acteristics is applicable. The characteristic equations were modified

to account for the fact that the blade coordinate system rotates, and
the resulting equations were programmed in the Method of Characteristics
Program (MOC). The equation and program represent a transformation tool;
unfortunately, they do not represent a transformation technique., For
this purpose, 2 design models wsre available,

1) The one-dimensional compressor analysis which accounted for
blade losses and blockage effects.

2) The two-dimensional cascade blade analysis which had neither
losses nor blockage.

One possible approach to the design problem would be to eliminate the
losses from the one-dimensional analysis and to obtain from this calcu-
lation the lossless work input (force) per blade. Using the ideal two-
dimensional cascade calculation of Mach number versus chord as a guide,
2n ideal Mach number versus chord specification should, when converted
to surface pressures and integrated, yield a force per blade consistent
with the lossless one-dimensional calculation. This distribution could
tl on be run through MOC to provide a blade passage contour. It should
be expected that this contour, when converted into a blade, would close
properly at the trailing edge. However, after sufficient trial and
error, the modification necessary to close the blade should not be
large. This approach is relatively simple and straightforward, and
since the design model is lossless, it is completely consistent with
the blade analysis method, However, the blade so designed way not be
acceptable in the real flow case because of excessively thin leading
and trailing edges. In addition, this method does not allow more than
an indirect control er the blade surface Mach number distribution,

An alternate method intended to alleviate the above defects would be

to calculate the force per blade required from the one-dimensional per-
formance calculation with losses. Then, again using the two-dimensional

14



blade as a guide, a Mach number versus chord distribution could be gen-
erated which is equivalent to this force per blade. This distribution
would then be used to generate a blade contour in the MOC program, How-
ever, in this instance, the program input and output would be modified
to include loss and blockage effects., This input modification might
consist of a simple increase in the rate of spanwise wall contraction
(to account for wall boundary layer blockage) and a modified value of

Y (to account for any distributed wave losses). In this case, the
computed profile shape should be sufficiently open at the trailing
edge to allow the actual profile to be constructed by subtraction of
the estimated wall boundary layers. Since this approach strains the
analysis capability by includirng lumped real flow effects, it wo'id not
be a straightforward technique,

In both design methods described above, the final specification of the
blade trailing edge can be made by hand. There are basically two methods
of doing this:

1) Simply bring the blade to a close with the proper mean metal
angle (corrected for blockage effects).

2) Fair the trailing edge into a best-guess trailing edge stream-
line (similarly corrected),

The latter method should give a more lightly loaded trailing edge.

i+ .. lack of time, neither method was used in the actual ROC blade
design. Instead, the cascade blade Mach number distribution was simply
reproduced in the rotor design (no losses) and the trailing edge was
closed as per item 1 above. Although the work input is of proper magni-
tude, the Mach number distribution is not closed at the trailing edge.
In general, this has two adverse effects:

1) A violent adjustment in the form of shocks and expansion waves
is called for at the trailing edge to match suction and pres-
sure surface discharge pressures (in the real flow cases, such
as adjustment would be modified by the boundary layer).

2) An increase in downstream losses occurs due to mixing,

A comparison between the one-dimensional calculations with and without
losses is given below:

15



Losses No Losses

P/P, atm 2.45 2.75
P4, atm 0.571 0.464
Myp 1.61 1,82
T, deg 646 722

Fg, 1b 5.27 5.89

The Mach number distribution which was used to define the initial 85-90
percent of the ROC rotor blade had a total calculated ideal work input
of 5.80 pounds per blade.

Despite the fact that the trailing edge was slightly modified in closing
the blade profile and that the real flow effects will have a pronounced
effect on the actual blade behavior, it was felt that the open Mach number
distribution could be a source of trouble, In addition, due to manu-
facturing limitation, both the leading and trailing edges of the blade
were cut back, hence reducing the physical chord. In order to allow the
trailing edge flow more opportunity to adiu:i and at the same time to
reestablish the physical chord length of th. fhase III rotor blade, the
trailing edges have been extended. These extended chord blades have
been used in Buildup F of the Phase ]I investigation (see section on
High-Speed Compressar).

ANALYSIS OF VANELESS DIFFUSER HAVING ROTATING WALLS

The purpose of the vaneless diffuser is to raise the static pressure of
the flow from a subatmospheric value at the rotor blade exit to several
atmospheres at the rotor exit. Since the pressure rise takes place in

a short radial distance, 2.2 inches, the radial static pressure gradient
is expected to be quite large, Figure 11 is a plot of the calculated
static pressure gradient as a function of radius for the free stream and
for the boundary layer at corrected speeds of from 30 to 80 percent,
Maximum values of static pressure gradient greater than 1 atmosphere

per inch are calculated to occur at the rotor blade trailing edge radius
of 4.3 inches, The gradient decreases rapidly toward the rotor exit,
and at 80 percent speed is 0.55 at the rotor exit radius of 6,5 inches,

The static pressure gradient that is experienced by air particles in the
boundary layer rotating at the speed of the wheel is a beneficial effect.
Calculated values for the various rotational speeds from 30 to 80 percent
are shown in Figure 11 (subsonic rotor blade exit Mach number) and in
Figure 12 (supersonic rotor blade exit Mach number) as dashed lines. The
static pressure gradient of the boundary layer is small at the rotor blade

16
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trailing edge, about 0.15 atmosphere per inch. At larger radii this
gradient is significant, reaching a value of 0.68 at the rotor exit, which
is larger than the calculated free stream static pressure gradient at
that radius. The difference between the free stream and the boundary
layer static pressure gradient, normalized by a suitable local dynamic
pressure, is believed to be a measure of the aerodynamic loading. It
ils not yet clear, however, what the most significant normalizing param-
eter should be nor what the limiting value of the normalized static
pressure gradient (or its integral) will be. Further discussion of
this problem is presented in '"General Analysis of Low-Speed Rotating
Diffuser Research" on page 116,

Only the radial component of the dynamic pressure is believed to be
effective in resisting the tendency of the radial static pressure
gradient to drive the boundary layer inward, Figure 13 is a plot of
the free stream and boundary layer static pressurz g.radient divided by
the classical dynamic pressure times the Cos of ae angle § between the
relative velocity and the radial direction, Values are given for 30
percent and 100 percent speeds., Since the difference between the free
stream and boundary layer static pressure gradients is important, this
difference is plotted in Figure 14 using the same normalizing parameter
used in Figure 13, This figure indicates that aerodynamic loading is
much more severe for the 100 percent speed case than for the 30 percent
speed case, and that the loading is severe over the inner half of the
rotating wall vaneless diffuser at full speed.

If the radial velocity is the significant parameter, then the effective
radial static pressure gradient should be divided by a dynamic pressure
times Cos2 f. This relationship is plotted in Figure 15, and the dif-
ference between the free stream and the boundary layer values is plotted
in Figure 16. Using this aerodynamic loading coefficient, the most
severe condition occurs at a radius of about 4.85 inches. Although the
value of the loading coefficient decreases rapidly with increasing radius
from this point, the value corresponding to the maximum calculated at 60
percent speed is not reached until a radius of 5.5 inches has been reached.
In tests of Buildup A through E, serious departure of ROC rotor perform-
ance from calculated values did not occur until speeds greater than 60
percent were tested (see High-Speed Compressor section).

Similar values for the radial pressure gradients in free stream and
boundary layer and their differences have been calculated using the
difference between relative total pressure and static pressure as the
normalizing parameter, The effects of employing Cos 8 and Cos? A in
the denominator are generally similar to those using 1/2 p V Rel 28 the
normalizing factor,
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ANALYSIS OF MODIFIED ROTATING VANELESS DIFFUSERS

Major progress has been made in the analysis of the effective pressure
coefficients calculated to exist within the rotating vaneless diffuser,
Although sufficient information for selecting the best parameter to use
as a load limit guide is not available, the parameter used on the accom-
panying figures exhibits the trends expected. The parameter plotted has
the difference between the static pressure gradient in the free stream
minus that in the boundary layer as the numerator, and the relative
dynamic pressure times the Cos of the relative flow angle A measured
from the radial direction as the denominator., The seargh for improved
parameters will continue and will include using the Cos® § in the denom-
inator. This parameter will show the sam~ general trends but will
indicate that the loading is concentrated in the inboard section of the
diffuser. This appears to be more in line with observations of high-speed
rotors (see section on High-Speed Compressor).

Figure 17 shows diffuser width variations (as a function of radius of

the rotating vaneless ditfuser) which have been studied and the original
contour. To some extent, the contours shown represent the full range of
possible width variations. The original contour was probably too heavily
loaded in the inner regions, and Contour Number 4 was calculated to choke
at the 4,9-inch radius at 60 percent sneed and zero inlet guide vane
turning.

High speed compressor tests (see section on High-Speed Compressor) have
indicated relatively good correlation between predicted and experimental
results at speeds up to 60 percent., Figure 18 indicates that at 60
percent speed, a value of the effective static pressure coefficient of
about 3.0 is calculated to exist for either subsonic or supersonic flow
leaving the rotor blades, This value can therefore be considered as a
loading limit for the rotating vaneless diffuser.

At full speed and with inlet guide vanes set for zero turning (Figure 19),
the original contour shows values of this coefficient above 4.0 for both
subsonic and supersonic solutions. Contour Number 2 shows reduced values
but exceeds 3.0 for supersonic rotor blade exit flow in the mid-region of
the diffuser, Contour Number 3 indicates values below 3.0 at all radii,
with the exception of the very beginning of the diffuser, An intermediate
contour between numbers 2 and 3 will prohably be the optimum shape on the
basis of the loading parameter presented herein,

‘the original rotating vaneless diffuser pressure gradients have been cal-
«ulated using the relative dynamic pressure times Cos2 g, Results for
30, 60, 80, and 100 percent speed are presented in Figure 16 for zero
inlet guide vane turning. As anticipated, the use of this parameter
indicates that the aerodynamic loading is concentrated in the inner
region of the diffuser. Again assuming that 60 percent speed was the
dividing line between acceptable and unacceptable rotor performance, a
value of this parameter of 6.4 can be considered limiting.
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The contour intermediate between numbers 2 and 3, noted above, has been
designated number 5 and is compared to the original contour in Figure 20,
This passage shape reduces to a minimum width of 0,30 inch about midway
between the rotor blade trailing edge radius of 4.3 inches and the rotor
exit radius of 6.5 inches., Calculated values of the effective pressure
coefficient using Cos A in the denominator are presented in Figures 21
and 22 for 60 and 100 percent speed. The values calculated for both
subsonic and supersonic rotor blade exit flow remain below the nominal
limiting value of 3.0 at 30, 60, and 80 percent speed. At 100 percent
speed, the nominal limiting value is exceeded over the first 0.2 inch

of radius outboard of the rotor blade trailing edge. The limiting value
is closely approached at a radius of 5,6 inches for supersonic exit
flow,

Values of effective pressure coefficient using 0052 6 in the denominator
have been calculated for Contour Number 5. These results have been pre-
sented in Figures 23 and 24 for 60 and 100 percent speed, For speeds up
to 80 percent, the values calculated do not exceed the nominal limiting
value of this parameter of 6.4. At 100 percent speed, the limiting value
is exceeded in the region 0.15 inch outboard of the rotor blade trailing
edge. This is the only zone where the values approach or exceed the
nominal limiting value of the effective pressure coefficient. Contour
Number 5 is therefore believed to be generally satisfactory.

PREDICTED COMPRESSOR OPERATION

Analysis of the aerodynamic characteristics of the ROC has producea the
compressor operating maps included herein. Calculations were nade .[nr
inlet guide vane settings of -29.5, 0, and 40 degrees. The -29.5- degree
inlet guide vane setting is estimated to produce the design inlet angle
of -18.4 degrees entering the rotor blades. Inlet swirl of 31.1 degrees
is calculated to be produced by the 40-degree inlet guide vane setting,
The first 3 figures (Figures 25, 26, and 27) show rotor total pressure
ratio versus mass flow at various percent speeds for the 3 inlet guide
vane settings. The vertical portion of each curve represents choked
flow,

Figures 28, 29, and 30 show rotor exit static pressure ratio versus mass
flow for the 3 inlet swirl angles, The methods used in calculating
these compressor maps are presented in Appendix 1I.

The last 3 figures (Figures 31, 32, and 33) show compressor rotor
efficiency versus mass flow, Losses were included in the analysis in
the form of total pressure loss coefficients estimated for the inlet
system and the rotor blades with a friction coefficient obtained from
standard data assumed for the walls of the vaneless rotating diffuser,
The computer program has not yet been extended to include the stator and
exit system losses,
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These calculations require that the friction coefficient applied to the
rotating vaneless diffuser be estimated. The value used in these computa-
tions was 0.03 and is probably excessively conservative, since large reduc-
tions of total pressure in the vaneless diffuser are calculated. Little

or no total pressure loss in this zone has been measured in low speed ROC
tests, and the measured total pressure ratio at 65 percent speed (see
section on High Speed Compressor) was greater than that predicted at 70
percent using a friction coefficient of 0.03. Comparison of these calcu-
lations with test results will provide useful correlations for future
analyses,
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MECHANICAL INVESTIGATIONS

STRESS ANALYSIS

All major ROC rotor components (disc, shroud, and blades) and the super-
sonic stators were analyzed for stresses and deflections.

Disc

The disc was analyzed through the use of the GE wheel and shell computer
programs, Effects of wheel speed, thermal growth, blade load, and shaft
attachment forces were taken into account. Simplification of the actual
disc geometry into a computer model was straightforward, since the disc
is essentially symmetric with the centroid of each segment lying on the
disc radial centerline.

The disc section at the blade bolt circ.e was simulated in 2 separate
cases:

1) A circumferential notch was substituted for the bolt holes to
better estimate stresses,

2) A solid section of reduced material modulus was substituted
for the bolt holes to better estimate disc radial growth,

Blade load on the disc was obtained by assuming that the blade mass on
the disc side half of the blade acts on the disc. The remaining blade
mass on the shroud side of the blade was placed on the shroud,

The stress and deflection distributions in the disc are shown in Figures
34 and 35. Average tangential stress for the main disc cross section was
calculated from the above stress distribution to be 97,430 psi. All
stresses were within design limits.

Shroud

Stress analysis of the shroud was made much the same as the disc analysis.
The main exception was the more difficult computer modeling of the complex
shroud geometry. Two separate models were set up. The shroud was broken
down into (1) shell elements with radial centerlines and (2) shell elements
with centerlines on the shroud mid-thickness line. Results from these 2
types of analysis were very similar, giving confidence in the results
obtained. The stres: and deflection distributions in the shroud are
shown in Figures 36 and 37, Average tangential stress in the shroud cross
section was calculated from the above stress distribution to be 81,650

psi on the blade side and 66,380 psi on the seal side. All stresses were
within design limits,
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Figure 34. Stress Distribution on ROC Disc at 100

Percent Speed.
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Station Radial Hoop Effective
Identi~- Radius Stress Or Stress 05 Stress Gt“
fication (Inches) (xs1) (xs1) (XS1)
A 6.425 0 30.82 .12
B 4,300 67.98 87.68 86,34
K c 4,045 78.96 94,84 93,47
D 3.950 143.03 117.40 139,40
E 3.855 93,60 101.40 100. 20
F 3.600 108.50 108.70 111,90
[ 3.160 132.10 119.60 131,00
H 2,320 114,70 117.90 118,10
1 2.000 114.50 118.20 126,40
J 0 123,60 123.60 133,80
K o 65.17 85.16
L © 77.89 77.89
B 4 M 2 71,95 71.99
. N © .21 n.2
0 o 73,48 82.61
L P © 67.09 80,70
Q Q 13,08 15.84
C— R 0 11.39 17.39
s -0.765 15.38 19.13
T 11.35 16. 60 30.65
o u 0.75 19.88 23.87
v 20.73 20,09 38.30
T)—2@ M N W 21.08 19.06 26.87
X 6.75 8.10 22.38
E — — Y 9.94 9.94 24,22
. —
e T
H s —%
-
[ — — v
0 P u
W
J Y
. .
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Station Radial Hoop Effective
Identi- Radiue Deflection O Deflection 04 Deflection UE”
fication (Inches) (Inches) (Inches) (Inche.) ™"

A 6,425 0.0289 0.0035 0.012

B 4.200 0.0234 0.039 0.015

3 4.045 0.0224 0.0040 0.009

D 3.950 0.0219 0.0040 0.003

E 3.855 0.0212 0.0040 -0,003

F 3.600 0.019% 0.0040 =0.014

G 3.160 0.0172 0.0037 =0.041

H 2.320 0.0124 0,0027 -0.098

I 2.000 0.0107 n.oo21 =0.120

J 0 0 ¢ 0

K - 0.0235 0.003) 0.015

L - L o2 { o) 0.467

M - 0.u198 J40 =0.014

N - 0.019% .0035 -0.014

0 - 0.0099 v.0021 ~0.120

P - 0.0087 0.0018 -0.368

Q - 0.0028 0.0047 ~0.253

R - 0.0017 0.0047 -0.254

s - 0.0028 0.00130 -0.268

T - 0.0016 0.0030 ~0.268

v - 0.0028 0.0012 -0.285

v - 0.0013 0.0013 =0,400

W - 0.0006 0.0002 -0.023

X - 0.0004 0.0002 -0.023

Y - 0 0 4

Deflection Distribution on ROC

Speed.
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Station Radial Hoop Effective

Identi- Strese Op Stress 04 Stress O
o B fication (xs1) (xs1) wsy
A 0 26.1 26.3
B 0 36.0 36.5
J ' c 37.9 81.0 1.1
D 40.2 88.0 77.2
E 8.9 80.9 84.9
F 8.4 50.8 97.1
4 0 137.7 139.4
H 5.0 112.9 ' 26,4
1 9.0 97.9 17,5
J 9.7 105.2 107.3
K 11.0 94.3 97.2
L 2.5 103.1 99.3
M 24.5 97.8 95.0
N 23.5 41,9 48.6
[} 10.5 86.1 87.2
P 16.5 87.5 86.3
Q 10.1 83.1 84.4
R 32.2 90.0 81.0

Figure 36. Stress Distribution on ROC Shroud at
100 Percent Speed.
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Station Radial Hoop Effective
A B Identf- Deflection O Deflection %4 Deflection '-7!”
fication {Inches) (Inches) {Inches)
J A 0.0268 -0.0060 0.144
. B 0.0312 0.0261 0.522
c 0.0216 0.0008 0.179
D 0.0212 0.0016 0.185
E 0.0220 0.0016 0.185
F 0.0221 0.0250 0.228
G 0.0247 0.0055 0.244
H 0.0240 0.0039 0.234
1 0.0236 0.0025 0.228
J 1.0252 0.0025 0.228
K 0.0250 0.0014 0.271
L 0.0260 0.0014 0.271
M 0.0261 0.0006 0.332
N 0.0262 0 0.391
] 0.0262 0.0067 0.448
P 0.0268 -0.0015 0.483
Q 0.0262 ~0.0015 0.483
R 0.0274 ~0.0030 0.622
R
(5]
C [
"\.\ o
e —N
D EE— H
--....._h“
L
2 J

v

Figure 37. Deflection Distribution on ROC Shroud

at 100 Percent Speed.
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Rotor Blade

The ROC rotor blade is subjected to centrifugal loading, as are all
"ordinary" axial compressor blades. In addition, the threaded ROC rotor
blades must take all unbalance and transient loads from the shroud which
they support. The blade attachment differs greatly from the "usual" dove-
tail design and requires a new analysis approach,

The unthreaded blades (type P02 of Ti-6A1~4V or type P04 of Ti-6A1-6V-2Sn)
were analyzed as pinned-pinned cantilevers under centrifugal loading only.
The resultant maximum stresses are shown in Table I where all stresses are
within design limits.

The threaded blades (type POl of Ti-6A1-4V or type P03 of Ti-6AL-6V-2Sn)
are stem bolted on the shroud side and stem bolted with platform location
on the disc side. The boundary conditions can probably range from pinned-
fixed to fixed-fixed depending on the assembly fit-up and amount of stem
preload. Since the pinned-fixed condition gives more conservative
centrifugal stresses, this condition was assumed for the detailed stress
analysis,

Applied tension on the blade stems was set in conjunction with preload
tests of Belleville spring washers (see section on Belleville Washer Tests)
and blade stress limits. POl blades were assembled with 15 inch-pounds of
stem torque, and PO3 blades were to be assembled with 18 inch-pounds of
stem torque,.

Some disc-to-shroud mismatch was expected due to dimensional tolerances
and analys;. ‘'naccuracy in sizing both disc and shroud to centrifugally
grow the sime amount., This mismatch adds bending loads to the threaded
blades. A r.smatch of 0.005 inch between disc and shroud was assumed.

Allowance for some shroud unbalance was made, The total rotor was to be
balanced to 0.7 gram-inch, so any additional unbalance acquired during
running was assumed to be 0.3 gram-inch, If the worse case of rotor
unbalance acting on the shroud is assumed, the total shroud unbalance
would be 1 gram-inch,

Consideration was also made for peak rotor deflection during transient
operation at rotor critical speeds. Analysis of the rotor system showed
that this peak deflection could be 0.009 inch at the shroud.

Thus, two blade design conditions were analyzed:

1) Steady-State Loading a) Centrifugal blade load
b) Stem preload
¢c) 1,0-gram-inch shroud unbalance

2) Maximum Unbalance Loading a) Steady-state loading above
b) 0,009-inch shroud deflection
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TABLE I. MAXIMUM BLADE STRESSES

A. P02 and P04 Blades - Steady-State Loading

80% Speed 100% Speed

Stress % of Allow. Stress % of Allow.

(KSI) 702 P04 (KSI) P02 P04
Airfoil 15.35 16.3 27.8 24.0 11.4 19.0
Shank 23.80 44,2 30.9 37.2 75.5 51.5

B. POl and P03 Blades - Maximum Unbalance Loading

80% Speed

100% Speed

Vibratory Stress on
Airfoil

Stress Stress
(KSI) % of Allow. (KSI1) % of Allow.
PO1 PO3 PO1 P03 PO1 P03 PO1 P03
Airfoil 101.45 108.2 107.5 80.3 104.9 110.1 121.0 87.0
Shank 87.40 83.8 92.5 62.1 91.2 94.0 105.5 74,6
80% Speed 100% Speed
Stress Stress Stress Stress
(KSI) (KSI) (KSI) (KSI)
PO1 PO3 P01 P03
Allow. Single Amplitude 4.0 26.0 0 25.0
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The analysis results are shown in Table I. Note that P02 and P04 blade
stresses are well below allowable values. PO3 is safe up to maximum
compressor speeds, since there is an adequate allowance for possible
vibratory stress. A check of POl blade stress shows why it wss limited
to compressor speeds of 80 percent. The POl shank stress is 105.5 percent
of allowable, indicating relaxation and possible failure of this attach-
ment point. Furthermore, there is no margin for vibratory stress above
80 percent design speed. Although local airfoil stress was calculated

to exceed the yield strength of the Ti-6AL-4V alloy, the main bulk of

the airfoil will support these areas, and this conditio. can be tolerated
in moderation, Displacement of the rotor is presented in Appendix II.

Supersonic Stator Vane

The primary mechanical design objective of the supersonic stator vane was
to insure good aerodynamic geometry by limiting maximum vane deflection to
0.004 inch, Air loading at maximum pressure conditions (see Figure 38)
was the design condition assumed. Analysis was made using a GE plate-
section computer program, By adjustment in location of the vane support
pins, vane deflections were limited to the desired value, The deflection
curve for the final vane configuration is shown in Figure 39,

Local bending of the vane support pins was aunalyzed by hand calculation.
The spanwise vane section through the pins was assumed to be a fixed-
fixed cantilever beam. Maximum bending stress as well as maximum shear
support stress occurs at the pin, Maximum stresses for the pin are:

Il

Ogend 13,300 psi (or 21 percent of allowable)

TShear 786 psi (or 2 percent of allowable)
Allowable vibratory stress in the pin (taken from 403 stainless steel
stress range diagram for 700°F and 108 cycles) is 44,000 psi single
amplitude., This is more than triple the steady-state stress and appears
to be more than satisfactory.

VIBRATION ANALYSIS OF SHROUD

Compromises between aerodynamic requirements and mechanical design limita-
tions resulted in the final design of a shroud with thin, extended tips.
Since these tips could be susceptible to vibration, analysis and bench
tests to investigate shroud vibration characteristics were made prior to
high-speed compressor operation,

Analysis was directed toward calculation of shroud natural frequencies.
The shroud has the basic shape of a thin wheel which will have natural
frequencies of 2 basic mode shapes (diametral and circumferential). Dia-
metral modes consist of cosine type deflection of the wheel rim with nodes
along diameter lines, as seen in Figure 40(a). The particular diametral
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Figure 40, Diametral and Circumferential Vibration
Modes of a Thin Disc.
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mode of vibration is denoted by the number of full cosine waves developed.
For example, the vibration mode shown in Figure 40(a) is a Cos 2A or 28
mode since there are 4 node lines or 2 full cosine waves present.

Circumferential, or umbrella, modes consist of symmetric deflection of

all wheel elements at the same radius, and nodes are circles at a particular
radius, as seen in Figure 40(b), The particular circumferential mode of
vibration is denoted by the number of circumferential nodes, As an

example, the mode shown in Figure 40(b) is a first mode vibration since

it has only 1 node line,

To make a frequency search, the shroud geometry was simplified to model
form and an existing GE computer program was modified to accept this
shroud model, as shown in Figure 41, The frequency search was made for
zero rotational speed and also for various operating speeds. The fre-
quencies at operating speeds were calculated by adding the centrifugal
stiffening effect of speed to the frequency for zero speed according to
the formula:

f = rfsz + sz] (1)
where f = shroud natural frequency at operating speed, cps
fs = shroud natural frequency at zero rotational speed, cps
W = compressor rotational speed, radians/second
B = shroud centrifugal stiffening factor

Thus, the shroud frequency for any mode shape will increase as speed
increases,

The results of the blade side frequency search up to 1,800 cps are
shown in Table II. As will be noted, all shroud modes are found to
be diametral. The circumferential modes are more difficult to excite
and will be found at higher frequencies well out of the operating
range of the ROC.

This analytical approach gives close estimates for zero speed fre-
quencies and the best available calculation for the added effects of
rotational speed. However, to obtain an improved understanding of
shroud vibration, a bench test of the shroud was made (see section on
Shroud Test) to verify the zero speed frequencies. As seen from
Table II, the calculated values at zero speed are within 10 percent
of the test data.

Combining the best results of test data (the zero speed frequencies)
and of the analysis (the B factor stiffening effect) gave the most

accurate overall picture of shroud vibration, as shown in Table III.
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TABLE II. BLADE SIDE SHROUD VIBRATION - NATURAL FREQUENCIES
m —— —— —
Frequency (CPS)

ModoREM 0 17,000 34,500

Calculated 28 750 948 1,391
36 780 987 1,443

49 825 1,047 1,518

Test Data 26 700 = -
30 732 = =

49 752 = =

TABLE T1{. FINAL SHROUD VIBRATION - NATURAL FREQUENCIES
m
Frequency (CPS)

Modohen 0 17,000 34,500

Blade Side 29 700 910 1,369
39 732 548 1,420

49 752 987 1,500

Seal Side 20 830 1,000 1,390
39 952 1,120 1,520

40 1,040 1,210 1,600
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Figure 41. Representation of the Rotating Shroud and the
Models Used to Synthesize Rotating Shroud
Computer Program.
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The tendency of the shroud natural frequencies to be excited can be
found from a Campbell plot of frequency versus compressor speed, The
theory of the Campbell plot as outlined in References 2 and 3 is as fol-
lows. Any of the diametral modes in a rotating wheel pass a stationary
point at a certain frequency according to the wheel rpm and the mode
frequency. At zero speed, the passing frequency equals the mode fre-
quency. As speed increases, the passing frequency is the difference
between the mode frequency and the wheel speed. Thus, when mode fre-
quency equals wheel speed, the wheel mode shape appears stationary to
an observer and is susceptible to excitation by any stationary static
pressure gradient in the compressor.

The Campbell plot shows these dangerous areas as cross points of a
wheel mode line with a node per revolution (or simply, per rev) line.
Thus, cross points or critical speed points are noted for 26 with 2 per
rev, 38 with 3 per rev, etc, in Figures 42 and 43. These plots show
that the shroud has been designed to meet the design objective of 'no
critical speed points between 80 percent and 100 percent design speed".

BENCH TESTS

The ROC components identified as needing empirical fnvestigation were:
(1) the rotor blade, (2) the shroud, (3) the supersonic stator vane, and
(4) the blude Belleville spring washers. Also tested for calibration
and sensitivity were the shroud strain gages and blade strain gages.

Rotor Blade Tests

A preliminary check for possible blade resonant frequencies gave:

Hand cCalculation: fsixed-free = 1,744 cps

ffixed--pinned 7,650 cps

and Computer Analysis: no resonance; 0-6,000 cps
at search intervals of 30 cps

The preliminary conclusion from these analyses was that the blade was
so stiff that its resonant frequencies were very high, A recommendation
was made to bench test the blades, primarily to check local blade-edge

vibrations which cannot be easily found by analysis and also to double
check the vibration analysis for total blade resonance,

Test objectives were:
1) Identify fundamental resonant frequencies

2) Determine the mode configurations of the fundamental
resonant frequencies,
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Figure 42. ROC Shroud Campbell Diagram (Blade Side).
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3) Investigate stress distributions of the principal modes,.

4) Recommend blade strain<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>