UNCLASSIFIED

AD NUMBER

AD854547

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; APR 1969. Other requests shall be referred to Air Force Rocket Propulsion Lab., Edwards AFB, CA.

AUTHORITY

AFRPL ltr, 29 Sep 1971

THIS PAGE IS UNCLASSIFIED

AFRPL-TR-69-61

AD854

NITROGEN TETROXIDE

L.P. BARCLAY, CAPT, USAF

TECHNICAL REPORT AFRPL-TR-69-61

APRIL 1969

THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO POREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF AFRPL (RPOR-STINFO), EDWARDS, CALIFORNIA 93523.

> AIR FORCE ROCKET PROPULSION LABORATORY DIRECTORATE OF LABORATORIES AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE EDWARDS, CALIFORNIA

Best Available Copy

ڈ

NOTICES

NICES CONTRACTOR STATES

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procuremet ' operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

ADENION 3	
CFSTI	
346	SHIT SECTION THE
EXAMPLES	2
102 H, 1827100	

* T	All Street, and a sub-
# 14 14 18 \$ (199)/	AMALARKITY COULS
BIST. AV	AH. 201/or SPEINIE
h	
I	

AFRPL-TR-69-61

EXPERIMENTAL EVALUATION OF INHIBITED NITROGEN TETROXIDE

CALCER AND D

Lewis P. Barclay, Capt, USAF

. *. • •

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RFOR-STINFO), Edwards, California 93523.

AIR FORCE ROCKET PROPULSION LABORATORY DIRECTORATE OF LABORATORIES AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE EDWARDS, CALIFORNIA

FOREWORD

** *** *

1 1 1 1 1

This report covers work done on Project 314803ACI, Inhibited Nitrogen Tetroxide (INTO) Evaluation, by the Exploratory Evaluation Branch in the Propellant Division of the Air Force Rocket Propulsion Laboratory from 1 July 1967 to 30 April 1968. The project engineer was Capt Lewis P. Barclay.

This report has been reviewed and approved.

pomuinasball

۶.

OHN W. MARSHALL, Chief Exploratory Evaluation Branch Propellant Division Air Force Rocket Propulsion Laboratory

ABSTRACT

Nitrogen tetroxide containing 3 percent FNO₂ by weight, inhibited nitrogen tetroxide, (INTO) was fired in a 1000-lb-thrust engine with hydrazine, MHF-3 and Aerozine-50. The INTO performed essentially the same as neat NTO, as predicted by the theoretical performance computer program.

Two 50-gallon batches of INTO were field-prepared. Severe tank corrosion and iron fluoride precipitation occurred, resulting in clogged feed lines and flowmeters.

Although performance is not degraded by the inhibitor, the corrosion problem and physical properties make the use of INTO impractical for future Air Force applications.

TIBLE OF CONTENTS

į

いいが

. ., #j

_

Śren				۔ پر میں ہے								
ti	markoduction.	6 n	, č. n		4 ⁻ 5	تو مرد اسر ≃ آ فرز سر م				-, k -		
п.	DISCUSSION : i	- x - x	è 🎍	ł	⊾∋	ت و ک		مرتب ۲۰۰۰ د ۵				
,	Å. ÖHNER	č.	ć,	- •	e 0	<u>-</u>	a á	¢	• •	2	6	
	8. Équipment ilit	(Fro	escu	řež	á í		د مور		.		o 9	3
-	C. Date Reflector	Ē i	0 *	٤.		1	tu Line y	* •	ō · 6	- <u>-</u>	* 5	، میں قریر میں
ÏI:	RESULTS AND INT	ERF	řet	ATI	ON			in fin	• •	: - بهر -	• • •	
	A. Propeliant Fo:	torn	io net	5 <u>5</u> -			, ,	• •	• •	3	6 ¢	7
	S. Bon Flionie	9255	14m	. • :	• •	•	• •	: 4	• •	* #	* *	้ชี
ter t	conclusions an	i fi	ليتى <u>ما</u>		ND A	tio	Ńð)" • £	\$ A	è	• •	12
Ř.		• *	÷ •	*	á e	ж .	• •	• •	•••	ð	• •	13
42	Pendix - Tabula	re;d	ŤĒŠ7	r Iv	4ta	۰.		• *		" •	••	15
DIS	TRIBUTION	¢ i ⁿ i	e á	•	¢ é	•		a 1	¢ >	ë ,	• •	19
FO	NM 1473	č ii	. ,	r		0	• ;	÷ •	。 。	•	• •	25

ç

ILLUSTRATIONS

٠.

				P	age
Test System Schematic	•	•	•	•	4
Test System	•	•	٠	•	5
Theoretical and Actual Performance of Neat and Inhibited Nitrogen Tetroxide with Aerozine-50	•	٠	•	•	9
	•	•	•	•	10
	•	•	٠	•	11
	Test System Schematic				

TABLES

Table	-		Page
A-1	Aerozine-50 Test Data	• •	. 15
A-2	MHF-3 Test Data	• •	· 16
A-3	Hydrazine Test Data	• •	• 17
A-4	Instrumentation Specification Sheet	• •	• 18

vi

EXPERIMENTAL EVALUATION OF INHIBITED MITROGEN TETROXIDE

AND CONTRACTOR

I. INTRODUCTION

Systems using water-contaminated nitrogen tetroxide (NTO) have suffered severe corrosion due to the formation of nitric acid in the propellant. An inhibitor has been found which eliminates that corrosion (Reference 1). Since the proposed concentration of the inhibitor is 3 percent by weight, the possibility of an effect on propellant performance must be considered. Theoretical performance data indicates that the performance difference of inhibited nitrogen tetroxide (INTO) versus normal NTO is less than 1/2 sec of specific impulse with hydrazine family fuels, however, the properties of the inhibitor are such that kinetic effects are possible. Considering this and the value of experimental field handling of the propellant, the Air Force Rocket Propulsion Laboratory (AFRPL) undertook an evaluation program to field-prepare and performance-test INTO a 1000-poundthrust combustor.

II. DISCUSSION

A. General

The military specification for NTO allows a maximum of 0.1 percent by weight of water in the propellant. Unfortunately NTO absorbs water easily, and during transfer operation and in normal handling will do so to a considerable extent. The water reacts with NTO to form nitric acid as follows:

$$3N_20_4 + ... 0 - 4HN0_3 + 2N0$$

The acid in turn reacts with metal tankage thus:

Metal +
$$4HN0_3 \rightarrow Me(N0_3)_2 + 2H_20 + N_20_4$$

As can be seen, the same amount of water is released at the end of the cycle as is used in the boginning, so that a perpetual cycle is evolved. A solution to the problem can be considered from two standpoints, that the problem is one of nitric acid or that it is one of water. Solutions to nitric acid problems tend to concentrate on hardware. Because of the nature of technology used in existing systems, a component modification could easily affect other parts of the system so as to reduce mission capability. A solution to a water problem is apt to be chemical in nature, and this was the route chosen.

It was determined (Reference 1) that gaseous fluorine when added to NTO reacts as follows:

$$F_2 + N_2 O_4 \rightarrow 2FNO_2$$

The product in turn reacts with water:

×

$$2FNO_2 + H_2O - 2HF + N_2O_4 + 1/2O_2$$

The oxygen boils off while the hydrogen fluorine remains in solution. The addition of HF was not regarded as harmful since experience with it in inhibited red fuming nitric acid (IRFNA) indicates negligible effects. However, the effects of FNO₂, particularly considering 3 to 5 percent as useful quantities, were unknown. The properties of FNO₂ are not well known, as the only work done on it dates back to 1932. Values of heat of formation, both measured and calculated, differ drastically; none are encouraging. Nitryl fluoride boils at -63.5°C, and thus results in very high vapor pressure mixtures with NTO. In addition, the FNO₂ causes a fluoride passivation coat to form on metal tankage. This was regarded as a benefit in the attempt to inhibit tankage corrosion.

The mechanism of the inhibition process involves several steps. When gaseous fluorine is initially added, it begins a passivation coat in the ullage where the F_2/NTO reaction occurs in the vapor phase. After the coat is formed in the ullage, the FNO begins to dissolve into the NTO where it reacts with the water present. When the water is completely removed passivation of the tank below the liquid level occurs. At this point, a buildup of FNO₂ in the NTO occurs. For storage purpc_cs, it is desirable

to have 3 to 5 percent present to react with any incoming water.

Reference 1 is the final report on the development and physical properties of INTO.

B. Equipment and Procedures

A schematic of the test system is shown as Figure 1 and a photograph of the system is included as Figure 2. The tankage, pressurization lines, propellant feed lines and valve bodies were 347 stainless steel. The valve seats and flowmeter bearings were Teflon.

The engine was rated at 1000-lb thrust at a chamber pressure of 500 psia. Nine like-on-like doublets admitted the oxidizer while 12 were used for the fuel. Flow was controlled by cavitating venturis.

The inhibited N_2O_4 was prepared in the run tank to simulate field preparation. Fluorine was added through a dip leg until the tank pressure was 50 psi below the K-bottle pressure. The mixture was then monitored while formation and dissolution of the inhibitor occurred. After a day or two a sufficient amount of the fluorine reacted to require another charge.

During the inhibiting process the vapor pressure of the propellant was checked periodically. The vapor pressure of $N_2O_4 - FNO_2$ mixtures is a strong enough function of FNO2 concentration to allow it to be used as a crude analytic tool. When the vapor pressure indicate1 the FNO2 concentration was within the desired range (3 to 5 percent), an analysis was made by infrared spectrometer.

Because of the extremely high vapor pressure of the FNO₂ as compared with NTO, the FNO₂ rapidly boiled off during venting procedures. Considerable effort was required to maintain the propellant within the desired inhibitor limits.

C. Data Reduction

An instrumentation specification sheet for these tests is included in the Appendix. The data was recorded by a Systems Engineering Laboratory

Se . 6

Figure 1. Test System Schematic

Analog to Digital unit (SEL 600). Data reduction was done by computer, by Computing and Software, Inc., under Air Force contract.

Because of variations in the chamber pressure from run to run and because a 30 degree cone nozzle was used, the reduction program employed two corrections for specific impulse.

Specific impulse is determined as follows:

thrust

Isp =
$$\frac{C_f C^*}{g} = \frac{F}{g P_c A_t} \times \frac{P_c A_g g}{\dot{w}} = \frac{F}{\dot{w}}$$

Where: F :

W	=	total propellant flow rate
C _f	=	thrust coefficient
C*	=	characteristic exhaust velocity
Pc	=	chamber pressure
A _t	=	nozzle throat area
g	8	32.176 ft/sec^2

While C_f is a strong function of pressure, C* is not, so that for small variations in pressure the following ratio may be written assuming that C* is constant:

$$\frac{(\text{Isp})\text{REF}}{(\text{Isp})\text{ACT}} = \frac{(C_f)\text{REF}}{(C_f)\text{ACT}}$$

(Isp)REF = corrected specific impulse at reference conditions ($P_c = 500psia$ $P_e = 13.2psia$) (Isp)ACT = actual specific impulse calculated as $\frac{F}{w}$ (C_f)ACT = actual thrust coefficient calculated as $\frac{F}{P_cA_t}$ (C_f)REF = theoretical thrust coefficient at reference conditions ($P_c = 500 psia$, $P_e = 13.2 psia$) The above correction is valid if the actual chamber pressure is within 10 percent of the reference pressure. A more complete discussion of the above can be found in Reference 2.

An added correction was made for nozzle divergence angle since the theoretical impulse calculations are made for a zero divergence angle.

$$(Isp)corr = \frac{(Isp)ACT}{\lambda}$$

Where: $\lambda = 1/2 (1 + \cos \beta)$ and $\beta = 15^{\circ}$ the nozzle divergence half angle. The above can be found in Reference 3.

Test data was recorded at a rate of 58 samples per second through a 3-second test at each mixture ratio. Five slices of 10 consecutive samples each were taken during steady operation at approximately equal time intervals. Calculations as described above were made from the average values obtained from each data slice. Data tables are included in the Appendix. The five slices were further averaged and curves plotted as specific impulse versus mixture ratio. These curves are displayed as Figures 3, 4 and 5 and follow the discussion of propellant performance.

The thrust measurement was accurate within 0.50 percent while the pressures were accurate to 0.25 percent. However, the turbine flowmeters can only be considered accurate to 3 percent.

III. RESULTS AND INTERPRETATION

A. Propeliant Performance

The impulse efficiencies achieved were 90 percent and above with all combinations tested. The impulse/mixture ratio curves for the hydrazine tests were shifted very slightly to lower mixture ratios as were the curves for the MHF-3 tests. The curve for the Aerozine-50/NTO baseline tests have positive curvature, that is, where the maximum Isp should occur there is a minimum. Several series of tests were made with the latter fuel and in all cases the curves were inverted. The explanation is probably related to flowmeter accuracy. The curves are offered only as a point of interest. Because of the 3 percent flowmeter accuracy, the curves can be said to be essentially the same. From a thermodynamic standpoint, this was to be expected. The theoretical performances are within 0.5 sec impulse of each other.

B. Iron Fluoride Problem

A rather severe problem was encountered with iron fluoride with the first 50-gallon batch of INTO that was made. Feed lines, flowmeters and injector manifold were coated with iron fluoride during the first test runs. Line pressure drops became excessive and the flowmeters were completely clogged within approximately 1 second of propellant flowing conditions. When the lines were drained and opened the coat dried rapidly but could be washed off with water easily. The coat was 1/16 inch thick over most of the feed lines which were 3/4 inch in diameter. The flowmeters received such a heavy coat as to sometimes completely stop propellant flow.

After several tests the problem cleared up of its own accord. Following the test series, when the run tank was to be drained, the dump line was found to be completely clogged. Visual inspection of the tank showed it to be severely corroded, especially at the top. Because of the construction of the tank, no pictures were possible, and no quantitative analysis of the corrosion could be made. The flowmeters were out of calibration although the portions of lines that were clogged were as good as new when cleaned; there was no evidence of corrosion.

It would appear that the GF₂/NTO reaction is of such a nature as to disrupt the normal passivation process. Apparently the passivation coat, especially in the tank ullage, flaked off repeatedly until finally a strong enough fluoride coat was formed.

A second batch of INTO was made in the same tank. After the batch was completed it was run through a 10-micron filter. No iron fluoride deposited on the filter element nor on the feed lines is subsequent tests.

This effect was also discovered at Rocketdyne and is reported in Reference 2.

Figure 3. Theoretical and Actual Performance of Neat and Inhibited Nitrogen Tetroxide with Aerozine-50 ($P_c = 500$ psia and $P_e = 13.2$ psia)

;

ATTAC AND

,د,

à

的教育

IV. CONCLUSIONS AND RECOMMENDATIONS

1. FNO₂ in 3 to 5 percent concentrations does not affect the performance of nitrogen tetroxide when combusted with hydrazine, Aerozine-50 or MHF-3.

2. Field preparation of INTO is impractical due to the increased corresive effects of GF_2 in a nitrogen tetroxide atmosphere. INTO preparation and tank passivation should proceed as separate steps with INTO being added to tankage after passivation.

3. INTO should be filtered between preparation and addition to storage tanks.

4. INTO should be stored in unvented systems and assayed after any vent process because of the high evaporation rate of FNO_2 .

5. Although performance is not degraded by the inhibitor, the corrosion problem and physical properties make the use of INTO impractical for future Air Force applications.

REFERENCES

 AFRPL-TR-66-320, "Inhibited N₂O₄"; Contract No. AF04(611)-10809 Rocketdyne, A Division of North American Aviation, Inc., Canoga Park, California, January 1967.

2. AFRPL-TR-69-4, "Research and Engineering Data on Inhibited N_2O_4 "; Contract No. F04611-67-C-0099, Rocketdyne, A Division of North American Rockwell Corporation, Canoga Park, California, January 1969.

3. R.C. Armstrong III; <u>"Experimental Performance Evaluation of</u> <u>Liquid Propellants</u>"; Paper presented to JANAF/ARPA/NASA Liquid Propellant Test Methods Panel; Astran Div., Spacecraft Inc., January 1964. APPENDIX

• •

TABULATED TEST DATA

ş

TABLE A.-1. AEROZINE-50 TEST DATA

Ļ

ŀ

l

			T	T	Ī	Ĩ	I				I	Ī							
	30		1,359	925.1	1.300	1.335	355.1		1.364	1.361	1.335	1.365	A.256	THENE	1.300	1.349	3.339	2.371	ajmunitariano.
	Ê	anny and a starting and a starting of the starting	5388	1641	5485	5412	805A	and the second	2355	5864	5360	. 3331	5408	5380	3356	3535	5373	3338	and the second
	Lapcorr		243.4	243.9	234.9	235.3	234.4		240.4	253.6	241.7	237.3	236.6	235.9	234.7	235.1	230.2	331.7	
	Mirture Ratio		1.676	1.674	1.674	1.674	1.677		2, 167	2.015	2.101	2,156	2.138	2.578	2,570	2.532	2.429	2.417	
		21420	441						422					164					
	ung M	ATN N							423					432					
	С _Е								1.429	1.405	1.402	1.419	1.448	1.434	1.4.1	1.413	1.406	.1.301	
	చ								5456	5292	5337	5269	5193	5432	5480	5452	5459	5313	
- 50 Test Data	Ispcorr		245.7	245.2	248,2	246.8			264.9	234.5	236.6	236. l	238.1	245.6	264.4	244.2	244.1	242.7	
	Bisture L Zatio	a second	1.90	1.90	1.90	1,90			2.226	2.101	2.099	560*,	2.095	2.459	2.357	2.379	2.370	2.366	

÷.

States and the second second

-1) 11

35

s hi

15

770) C. S. M.

33

TABLE A-2. MHF-3 TEST DATA

•

1

A REAL PROPERTY AND A REAL

1

ALC: N

Proces.

make and the

3.8.2.5

4

i

• • • •

gament	-			ura Pali ya				, company, g					·· ••					
	c _f		1.412	1.407	1.411	1.411	1.441	1.4.2	1.438	1.446	1.456	1.465	1.474	1.454	1,454	1.471	1.469	
	さ		5550	5575	5559	5540	5446	5404	5384	5415	5357	5320	5160	5287	5180	5195	5181	
	Isp _{corr}		246.9	247.0	247.1	246.2	247.7	242.8	244.6	247.5	246.9	247.0	241.8	244.4	240.0	244.0	243.5	
	Mixture Ratio		1.673	1.669	1.677	1.679	1.678	1.950	1.941	1.942	1.940	1.942	2.219	2.151	2.196	2.195	2.196	
		OLNI	512					522					532		 			
	Run	NTO	511					 521					 531		•••••			
	c _f		1.423	1.412	1.441	1.425	1.423	1.413	1.420	1.399	1,413	1.409	 1.431	1.427	1.447	1.433	1.446	
	రి		5693	5554	5395	5463	5447	5609	5509	5602	5588	5591	5465	5422	5356	2509	5371	
st Deta	Ispcorr		253.9	246.0	244.7	244.8	244.0	248.4	245,9	246.4	248.6	248.5	246.8	244.8	246.1	246.6	247.8	
rMF-3 Test Data	Mixture Ratio		1.826	1.768	1.754	1.749	1.743	2.088	2.043	2.033	2,024	2.017	2.414	2.317	2.305	2.297	2.290	

.

...

•

.

TABLE A-3. HYDRAZINE TEST DATA

								Les			~		ن م نست	<u> </u>				-	NO THE O		ĩ.
	3 0		1.413	1.405	1.411	1.409	1.421		1.376	1.383.	1.391	1.399	1.409:		1.376	1.383	1.391	1.399%	1.409		
	ి	ft/sec	5431	5432	5643	5642	5592		5435	5489	5578	5586	5674		5552	5485	5480-	S470.	5428	500 F	1.
	Ispcorr	Seconds	244.4	244.0	244.8	244.5	244.9		243.6	242.0	244.1	246.5	247.5		240.7	238.9	240.3	241.1	261.3		
	Mixture Ratio		1.045	1.046	1.049	1.050	1.051		1.360	1.371	1.372	1.372	1.375		1.652	1,676	1.679	1.681	1.684		
		Tarto	612						622						632			,			
	Bur	N.CO							621						631			-			
	с _ғ		1.401	1.391	1.382	1.387	1.404		1.492	1.455	1.480	1.493	1.519		1.404	1.387	1.381	1.399	1.409		
	đ	ft/sec	5486	5752	2797	5835	5754		5289	9625	5353	5332	5294		5611	5673	5722	5608	5558		
Tast Nata	Ispectr	Seconds	241.8	250.9	251.8	254.3	254.1		249.7	248.9	252.2	254.6	258.5		246.9	246.5	247.8	246.8	266.9		
Sudrazine Test Note	Histore		1.091	1.077	1.025	1.041	1.059		1.478	1.475	1.470	1.462	1.447		1.762	1.754	1.764	1.740	1 740		1

TABLE A-4. INSTRUMENTATION SPECIFICATION SHEET

١,

									.T
					INTO CELL 34	ell 34	~~~~~~	3/13/68	
PT-1	Pres.	Fuel Line	s.G.	0-2000	D.SC	20			m
PT-2	=	Fuel Tank	5°0	0-2000	D.SC	12			
5-14		Ox Tank	s. G.	0-2000	D.SC	22			
\$-1d	=	Ox Line	S.G.	0-2000	D.SC				
PP-1	=	Furge Line	s.G.	0-500	ည္တ				
<u>PC-1</u>	=	Chamber	s.G.	P-750	D.SC	23			
PC-2	2	Chamt Ir	ຮ. ຕ.	0-750	D.	- 24			
1-14	=	Fuel In	s. G.	0-1500	D.	25			
PT-2	Pres.	म x0 म	s. G.	0-1500	D.	26			
1-71	Temp	Fuel Line	1/C T. C.	30-150 ⁰ F	o.	28		-	
5-76	:	Fucl Line	I/C T. C.	30-150 [°] F	ġ	29			
TĽ-3	=	NTO Line	1/C T.C.	30-150 ⁰ F	D.	30		Ť	
7L-4	=	NTO Line	I/C T.C.	30-150°F	D.	31			
TL-5	=	INTO Line	1/C T.C.	30-150 ⁰ F	D.	32		ۍ ۱	
TL-6	Temp	INTO Line	I/C T.C.	 30-150 ⁰ F	D.	33			<u> </u>
								:	
	Thrust	Engine	S. G.	0-1500 lbs	D. SC				
						للبينية والمترجع والمتعالية والمتعا			

ĩ

	and a second		
	ENT CONTROL DATA - R &		
Gecurity classification of title, body of obstract. ORIGINATING ACTIVITY (Corporate suffice)	and indezing annotation must be en	tered when th	CURITY CLASSIFICATION
Air Force Rocket Propulsion La Edwards, California 93523	boratory		assified
-		N/A	
Experimental Evaluation of Inhib	bited Nitrogen Tetrox	ide	
DESCRIPTIVE NOTES (Type of report and inclusive data 1 July 1967 to 30 April 1968 Fir			
AUTHOR(S) (First name, middle initial, fast name)			
Lewis P. Barclay, Capt, USAF			
REPORT DATE April 1969	74. YOTAL NO. OF	PAGES	70. NO. OF NEFS
CONTRACT OR GRANT NO.	SA. ORIGINATOR'S P	REPORT NUM	(DER(S)
. PROJECT NO. 3148	AFRPL-T	R-69-61	
•	S. OTHER REPORT	NO(5) (Any c	other numbers that may be assigned
	this report)		in the second second second second second
DISTRIBUTION STATEMENT This document is subject to spec foreign governments or foreign a of AFRPL (RPOR-STINFO), Edv SUPPLEMENTARY NOTES	tial export controls a nationals may be mad	le only v 523.	transmittal to with prior approval
This document is subject to spec foreign governments or foreign of AFRPL (RPOR-STINFO), Edu	tais report tial export controls a nationals may be mad vards, California 93	le only v 523, LITARY ACT Rocket F	transmittal to with prior approval wity Propulsion Laborator
This document is subject to spec foreign governments or foreign a of AFRPL (RPOR-STINFO), Edv • SUPPLEMENTARY NOTES	tais report tial export controls a mationals may be mad vards, California 93 12. SPONSORING MIC Air Force F Edwards, C	le only v 523. LITARY ACT Rocket F Californi	transmittal to with prior approval Propulsion Laborator a 93523
This document is subject to spec foreign governments or foreign a of AFRPL (RPOR-STINFO), Edv • SUPPLEMENTARY NOTES	g 3 percent FNO2 by ired in a 1000-lb-thr -50. The INTO perfo tred by the theoretica	le only v 523. LITARY ACT Rocket F Californi weight, ust engi ormed e il perfor red. Se	transmittal to with prior approval Propulsion Laborator a 93523 inhibited ne with ssentially rmance vere tank

Unclassified Beculy Class			- LIH	1.1		X 8	Lini	n de la compañía de Compañía de la compañía
	KEY WORDS	. 13	ROLE	<u>я</u> т	ROLS	WT	ROLS	*7
and a second	ng na ana ana ana ana ana ana ana ana an	ݥݥݺݳݜݱݑݷݯݹݷݵݛݓݜݱݴݑݑݴ ݜݘݛݚݞݕݠݸݪݹݽݚݕ						
Oxidizer Addit	iver			¥.,	: •			
Nitrogen Tetro	xide		i					
Nitrogen Tetro Water Inhibitor	······································					,		
×								
		۰ پ						
-			l .					
	•		·					
			ļ		[
					ŀ			
			İ					
]	Ì				
•				l				
				1				
]		1		
					ļ	ł		
					}			
				.	l		ļ	l
			I .		ļ			
							1	
				l		1	·	ļ
•					ľ	1		
								l
					1			l
	,						1	
							1	
				[l
							1	
				1				
							1	
							1	
							[l
			1			1	1	
							1	
				1	1]]	
					Į.	1	1	
			1				1	
						1		
			1	1	1	1	1	1

نه د د مع د مع

• 4 • 4

1

ำ

Unclassified Security Classification

.