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ABSTRACT 

The important parameters and failure modes pertinent to ballis- 

tic impact are discussed in detail and a review of available theoretical 

penetration formulas is presented.    A method for a complete solution 

to the ballistic impact problem is outlined including the material model, 

numerical techniques,  application of failure criteria and description of 

both post-failure material behavior as well as the residual state.    Para- 

metric studies based on this outline should reveal the necessary   insight 

for developing predicitive relationships between the pre-impact and post- 

impact parameters. 

A complete solution is presented for the case of a steel cylinder 

impacting normally into a thin plate of like material.    It is shown that pre- 

dictions of stress wave propagation and reflections in the early stages of 

impact are in good agreement with one-dimensional theory.    The shear 

stress,   generalized plastic strain and plastic work distributions as well 

as the material flow pattern indicate that failure will be due to plugging, 

hence the employment of a maximum shear theory of failure.    The final 

shape of both the projectile and the plate plug are given and the velocity 

of the plate material beneath the projectile at the predicted time of failure 

is in good agreement with the value of 0. 382 km/sec predicted by the theory 

of Recht and Ipson.    This gives a residual kinetic energy for the projectile 
9 

plate-plug configuration of 3. 1 x 10    ergs or 47.4% of the total initial energy. 

It is believed that much of the remaining energy is retained in the projectile 

and plate-plug as internal energy.    It is predicted that both the projectile 

and plate-plug will remain intact but a region of contained failure in 

the projectile near the impacted surface is defined. 
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A second problem in which an aluminum plate was substituted 

was also solved.  Again the moce of failure was plugging and the pre- 

dicted residual state,  including the plate plug configuration and residual 

velocity,  was in good agreement with experimental results. 

This document is subject to special export controls and each transmittal to 
foreign governments or foreign nationals may be made only with prior ap- 
proval of the Air Force Armament Laboratory (ATBT),  Eglin AFB,   Florida 
32452.  
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SECTION I 

INTRODUCTION 

The ultimate solution to be derived from impact studies,  wheth- 

er experimental or theoretical in nature,   should provide a set of sim- 

ple mathematical formulas which relate the influencing pre-impact 

parameters,  both geometrical and material, with those of the post- 

impact state.    The derived relationships must be in reasonable agree- 

ment with available experimental data as well as provide reliable pre- 

dictions in the ranges of parameters for which experimental data are 

not available.    To meet this latter requirement a thorough understand- 

ing of the material flow occurring throughout the impact process as 

well as the associated material failure phenomena are necessitated. 

Hence,  mathematical solutions which describe the material behavior 

from the time of initial impact to the time at which residual effects 

can be predicted are desirable.    A study based on such solutions should 

provide the pre-requisite  insiabt necessary for the development of the 

required set of predictive relationships. 

The availability of large scale computer programs such as CRAM 

(Continuous Response of Anelastic Material), which has been developed 

at the General Electric Space Sciences Laboratory, provides a feasible 

means for such a study of the impact process. 

In this report parameters affecting penetration mechanics in the 

ballistic range of velocities are discussed and pertinent penetration for- 

mulas are reviewed.    The details of the numerical solution techniques 

to be employed including the material models used are next outlined in 

detail.    Since the total solution involves the use of failure criteria, various 

of these are discussed in general along with the special modes of failure 

pertinent to projectile-impacted plates and the resulting residual effects. 
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Finally,  solutions are obtained for two specific impact cases. 

These solutions include the numerical results as well as the prediction 

of plate failure and residual effects. 

The work on the high velocity portion of this contract was con- 

cluded at the end of the first six months and the results from that part 

of the study are included in the interim report of the same title dated 

August 1967 [l]. 
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SECTION n 

IMPORTANT PENETRATION     PARAMETERS 

The physical parameters which influence the flow and fracture 

of material subjected to impact loading in the ballistic range of ve- 

locities can be classified as either configurational or material.    Con- 

figurational parameters include initial impact speed,   obliquity and 

yaw as well as geometrical quantities defining the initial projectile 

and target shapes and the type of interaction,  as in the case of direct 

versus edge impact.    The residual configurational parameters of in- 

terest are those which describe the mass and velocity distribution of 

the primary fragments.    In addition certain parameters may be of in- 

terest which describe the final configuration of the damaged target such 

as hole diameter or extent of petalling cracks,  etc. 

Material parameters are those which describe the state proper- 

ties as well as the flow and fracture characteristics of the projectile 

and target material.    These include equation of state constants,   shear 

modulus,  yield strength or Brinell hardness number, and strain rate 

and work hardening coefficients as well as any parameters associated 

with failure criteria. 

Many of the important impact parameters are well defined and 

have a physical basis while others are either poorly defined or are sim- 

ply constants appearing in an empirically fitted experimental curve. 

Still other parameters or combinations of parameters are yet to be de- 

fined through extensive theoretical and experimental parametric inves- 

tigations.    A thorough understanding of the parameters and how they affect 

material flow and fracture is a necessary pre-requisite to the develop- 

ment of any penetration theory relating pre- and post-impact parameters. 



In this study emphasis is placed on material parameters; however, 

the importance of the configurational parameters is recognized be- 

cause of their influence on stress states and hence the dynamic ma- 

terial behavior. 

Figures 1 through 4 are included to provide some insight   into the 

effects of varying certain important configurational and material para- 

meters. 

Figures 1 and 2 due to Recht and Ipson [2] show the typical re- 

sidual versus impact velocity curves for thin plate plugging by normal- 

ly and obliquely impacting projectiles respectively.    In addition,   the 

effect of varying the ratio of plate thickness to projectile length,   T/L 

is indicated. 

Figure 3,  due to K.  H.  Abbott [3],   shows the variation of nor- 

malized penetration depth versus impact velocity for the case of steel 

and aluminum alloys impacting 1/2 in.   steel armor plates of hardness 

30 RC.    The curves demonstrate the effect of projectile hardness on 

penetration. 

Figure 4,   due to Curtis [4] shows plots of ballistic limit velocity 

versus target Brinell hardness numbers for a standard 57 MM APC 

M86 projectile impacting a 1-1/2 in.  thick RH armor plate.   The curves 

indicate a shift in optimum hardness toward a higher BHN as impact 

obliquity increases. 

Figures 1 through 4 indicate certain qualitative relationships 

which exist   between a few of the important impact parameters such 

as residual velocity,  ratio of plate thickness to projectile length,  im-» 

pact obliquity,  penetration depth,  yield strength or Brinell hardness 

number and ballistic limit velocity.   Insight into relationships such as 

these are necessary for the development of meaningful penetration 

formulas. 
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SECTION m 

FAILURE MODES 

Although material behavior is quite complex when subjected to 

the extreme conditions of impact,   several definite failure modes can 

be delineated which depend on various configurational and geometric 

parameters.    The knowledge of this dependence is necessary in the 

formulation of specific failure criteria and in their later generaliza- 

tion for predicative purposes.    Fugelso ?nd Bloedow [s] have listed 

various types of failure modes which are observed and calculated cri- 

tical velocities lor which each type of failure would occur provided con- 

ditions are such that that type of failure is favored.    The various failure 

modes will be discussed qualitatively here in order to provide a better 

understanding of how the various parameters involved influence the 

mode of failure. 

3. 1      Fracture Due to Initial Stress Wave 

The initial stress wave which propagates through the plate after 

impact is compressive in nature.    If the compressive dynamic yield 

strength is significantly less than the peak compressive stress,  failure 

is likely to occur if the region subjected to the high stresses is not con- 

tained during the passage of the wave.    For the case of projectile-plate 

impact this situation could occur in the vicinity of the free surface of 

the plate and initiate fracture.    An increase in target density,  hardness 

or compressive yield strength,   or compressive ultimate strength would 

decrease the tendency toward this type of failure.    A cross sectional 

schematic diagram of this type of fracture is shown in Figure 5(a). 



,.  FRACTURE   DUE TO INITIAL STRESS   WAVE 

/ 

b. RADIAL  FRACTURE  BEHIND INITIAL WAVE 
FRONT IN A  PLATE OF  BRITTLE   MATERIAL. 

Figure 5.     Cross-sectional Schematic Diagrams of Plate Failure Associated 
with the Initial Stress Wave 

3, 2     Radial Fracture Behind Initial Wave Front 

Although the normal stress behind the initial stress wave front 

remains compressive until interaction with rarefaction waves,  the ra- 

dial stress built up is tensile in nature.    If the target material behaves 

in a brittle manner and the tensile stresses built up are greater than 

the ultimate dynamic tensile strength,   radial and/or circumferential 

cracks are likely to occur.    This type of failure is shown in Figure 5(b). 
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3. 3     Spallation 

When the initial compressive stress wave reflects from the rear 

free surface of the plate a tensile wave develops in the region of nor- 

mal incidence.    If this rellected wave builds up to a tensile stress in 

the vicinity of the dynamic ultimate stress in tension for the material, 

spall fracture will occur.    The parameters governing spallation are the 

plate thickness to projectile diameter ratio and the dynamic ultimate ten- 

sile strength of the plate material.    For the case of rolled, homogeneous 

targets,  imperfections such as inclusions flattened by the rolling process 

might reduce the tensile strength of the material in the transverse direc- 

tion below its theoretical value and increase the tendency toward spall 

failure.    Figure 6 is a cross-sectional schematic diagram of this typ« 

of failure. 

3. 4     Petailing 

Petalling failure occurs when the stress condition is such that 

radial cracks form from the center outward and the plate material curls 

back to allow the projectile to proceed through.    This type of failure is 

due to the large circumferential and radial stresses which develop 

Figure 6.    Cross-Sectional Schematic Diagram of Spallation Failure 

9 



behind the initial shock wave.    The stress pattern is caused by either 

extensive radial plastic flow or by significant plate bending.    For this 

reason plates of a relatively ductile material subjected to impact by 

hard conical or ogive projectiles are likely to exhibit this type of 

failure.    Also,  thin plates which bend significantly exhibit petalling 

due to the large bending stresses imposed near the free surface of 

the plate.    The tendency toward this type of failure is enhanced at 

velocities very near the ballistic limit since at these relatively low 

velocities the momentum transfer is not restricted merely to the re- 

gion beneath the deforming projectile. 

Cross-sectional schematic diagrams for both front and rear 

petalling failure are shown in Figure 7. 

3.5     Plugging 

Plugging is defined as that type of failure which occurs when the 

projectile pushes a plate plug,  approximately equal in radius to that of 

the deformed projectile,  through the rear surface of the plate. 

The tendency for plugging failure increases with plate hardness 

as measured by the yield strength or the Brinell hardness number. 

The reason for this is that the harder the plate,  ehe more difficult it 

becomes for the plate material to be pushed radially outward.    Hence 

a narrow shear zone builds up ahead of the projectile in the vicinity of 

its periphery and the dominant plastic flow is confined to this region. 

Other parameters influencing the conditions favoring plugging type 

failure are relative plate thickness and projectile nose shape.    Thinner 

plates have a greater tendency to plug and will even allow softer plates 

to fail this way provided the velocity is not sufficiently close to the 

10 
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(a) FRONT PETALLING 

(b) REAR PETALLING 

Figure 7.     Cross-sectional Views of Plates Showing Both Front and Rear 
Petalling 

ballistic limit so that radial momentum transfer causes severe plate 

bending.   Similarly,  the blunter the projectile,  the more the tendency 

is toward plugging failure.    This can be seen by noting that a cylindri- 

cal projectile would establish a much higher shear stress gradient at 

its well defined periphery than would a conical or ogive shaped projec- 

tile.    This is not to say that plugging would not occur under the latter 

conditions because it has been observed for thin, relatively hard plates. 

For thicker, more ductile plates, however,  the pointed projectile nose 

shape,  provided it does not shatter or aeform severely, helps to pro- 

vide a radial component to the material flow. 

11 
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The process of plug formation is clearly due to a shearing failure 

of the plate material.    The shearing process is made more feasible,  how- 

ever, by an accompanying rise in temperature which lowers the material 

resistance to shear. 

The shape of the plug depends on the orientation of the maximum 

shear planes.    If pure shear at the projectile periphery is apparent, 

then the plug will be cylindrical.    Small amounts of plate bending or 

♦he influence of supports, however,  can cause tensile or compressive 

stress to be superimposed in the region of maximum shear.    Thus, 

cases exist for which truncated cone,  inverted truncated cone,  barrel, 

inverted barrel as well as cylindrically shaped plugs have been observed. 

Figure 8 is a cross-sectional schematic diagram showing typical 

plugging-type failure. 

iiiii 

Figure 8.    Cross-sectional Schematic Diagram Indicating Plugging-type 
Failure 
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SECTION IV 

REVIEW OF PENETRATION FORMULAS 

Numerous studies in the ballistic range of impact velocity have 

resulted in the formulation of various plate penetration theories. 

Due to the complexity of the material behavior,   these theories have 

either been empirical in nature,  thus lacking in physical insight as 

well as predictive capabilities,  or over-idealized theoretical approxi- 

mations.    Both types of formulations admittedly have been restricted. 

to definite ranges of parameters and to the description of definite 

failure modes but have served the useful purpose of defining impor- 

tant parameters or groups of parameters as well as their relation- 

ship to each other and their influences on material behavior.    In ad- 

dition,   these theories provide a basis for further refinements as ad- 

ditional   insight  into impact phenomena,  provided by either numeridal 

studies or through innovations in experimental techniques,  is gained. 

It is with this in mind that the following penetration   theories are dis- 

cussed in general together with the extent of their idealization.    More 

detail is given to those theories which are pertinent to the current 

study,  i.e.  ballistic impact into targets of finite thickness. 

Several review articles concerned with the problem of impact 

and penetration in the ballistic range of velocity are available.    These 

include the work of Goldsmith [6] and Cristescu L?].    In addition sev- 

eral studies of significance appear in the literature.    Bakhsiyan [s] 

studied the case of a rigid cylinder of infinite mass penetrating a visco- 

plastic plate.    He assumed that only frictional shearing stresses were 

acting between the cylinder and plate material so that the displacement 

field in the plate beneath the actual impact zones was not determined. 

Pytel and Davids [9] studied the problem of cylindrical impact into a 

I 



plate by assuming a circular velocity distribution on the plate surface. 

Like Bakhsiyan Cs] they assumed only frictional shearing stress to be 

acting but were able to consider plate displacements beneath the im- 

pact zone.    Only the case of linear viscosity was assumed.    The method 

of characteristics was employed by Kochetkov [lO] to solve the simpli- 

fied model of Bakhsiyan with the extension of the plate material model 

to provide a description of perfectly-plastic and linear strain hardening 

materials.    Chou Cll] retained the visco-plastic model but removed the 

assumption of infinite projectile mass.    His analysis emphasized the de- 

termination of hole size after complete perforation.    Both strains and 

strain-rate distributions were determined for the case of aluminum 

plates.    Minich and Davids [ 12] studied velocity loading of a plate using 

a viscous fluid model.    A threshold strain level below which the plate 

material was assumed to behave in an elastic or rigid manner was in- 

troduced and the analysis was concerned mainly with the case of trapp- 

ed plugs.    Kukudjanov [13] considered the added problem of projectile 

rotation about its axis,  the projectile being considered a rigid cylinder. 

Taylor Cl4] and Bethe C 15] based their theories on the assumption that 

the energy necessary for plate perforation is equal to the work done in 

expanding a hole in the plate from that of a very small diameter to the 

final hole size.    Thomson [ 16] developed an energy model for the pene- 

tration of thin plates of rigid,  perfectly plastic material.    He considered 

the energy due to plastic deformation and interface heating but attribut- 

ed most of the energy dissipation to the former.    Both conical and ogival 

projectiles were considered and the assumptions that neither plugging 

nor spallation occurs and that projectile velocity remains constant dur- 

ing impact were made. 

Although most of the theoretical studies of penetration were made 

feasible by assuming rigid projectiles,  some studies were conducted 
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specifically for determining projectile deformation.    Zener and 

Peterson [ 17] studied the effects of frictional,  plastic,  inertial and 

transverse forces on the projectile during impact.   Masket Cl8] and 

Bluhm [l9] also studied projectile deformation,  the latter summari- 

zing experimental studies of stress in the projectile during impact. 

Finally,   the theories most pertinent to the current study will 

be considered in detail.    These are the theory of Recht and Ipson C20], 

in which a blunt cylinder pushes a plug through a thin plate,  and the 

theories of Thomson Cl6j and Zaid and Paul [2l] in which conical or 

ogival projectiles cause petalling failure. 

4. 1      The Theory of Recht and Ipson 

Although Recht and Ipson [20] also consider plug formation of 

thick plates as well as the case of oblique impact,  only the simpler 

case of normal penetration of thin plates by blunt cylinders will be 

considered here.    The assumption is made that a plug will be formed 

in the plate and pushed out by the projectile as shown in Figure 9.    Re- 

duction in projectile velocity is attributed to the momentum transfer 

to the plate which accelerates the plate-plug mass as well as to the 

shear resistance at the plug periphery which acts to decelerate the 

combined projectile-plug combination.    Recht and Ipson express this 

mathematically by first writing the conservation of momentum equa- 

tion for a completely inelastic impact of a blunt projectile with a free 

plate plug 

M 
V     =    E     V (1) f        M    +M v V1' 

p sn 
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Figure 9.    Diagram of Plugging Failure Used in the Theory of Recht and Ipson 
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and expressing the energy converted to internal energy for this case 

as the difference between initial and final kinetic energy 

fn 

M 
sn 

M    + M p sn 
IM v2 
2 D 

(2) 

where the subscripts p and s refer to the projectile and plug respec- 

tively,   n stands for normal impact and f refers to the free-projectile- 

plug impact where the retarding shearing forces are neglected.    Hence 

an energy balance can be written for a projectile plate impact as 

iMV2    =   Er     +W+±MV2+iM      V2 

2       p fa nZprZsnr (3) 

where W    is the additional kinetic energy converted to internal energy 

by virtue of the presence of the peripherial shear zone and V    is the 

residual velocity of the plate-plug combination.    By incorporating a 

minimum perforation velocity,   V     ,   for which V    =0,  Recht and Ipson 

obtain the expression 

M 
W 

xn M    + M p sn 
!M v2 
2        p   xn (4) 

where W      is the value of W    at V = V     .    Next the assumption that xn n xn r 

the average dynamic shear stress remains constant allows the sub- 

stitution of the expression for W      of Equation (4) in place of W    in xn n 
Equation (3).    Then by using the expression for E     of Equation (2), 

the energy balance can be written as 

M 
V    - V xn M    + M p sn 

1/2 

(5) 
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Recht and Ipaon then rewrite Equation (5) in terms of geometry as 

1/2 

(6) V r 
1 + "(;) rJ 

where ß is the ratio of plate to projectile density,   D/d is the ratio of 

plug diameter to projectile diameter and T/L is the ratio of plate thick- 

ness to projectile length. 

Although much of the theory of Recht and Ipson is omitted here be- 

cause of its inapplicability to this study.   Equation (6) is representative 

of the type of end results desired from an impact study as well as an in- 

dication of the current state of the art represented by the various impact 

theories previously mentioned.    For example,  Equation (6) is simple and 

is in agreement with experimental evidence for the case of single plate 

impact and plugging-type failure.    In addition it relates pre-impact para- 

meters with those of the post-impact state.    The shortcomings, which 

should not be emphasized since they represent a compromise between 

the assumptions and the degree of complexity,  lie in the implicit nature 

of the parameters inherently involved in the minimum perforation velo- 

city.    It should be mentioned,  however,  that a partially successful analy- 

tical expression for V      has been developed [20] and forms the basis xn 
for a possible modified version having wider ranges of application,    in 

addition, an assumption must be made as to the value of the plug diameter, 

D, which somewhat prejudices the calculated residual effects.    With the 

use of an experimentally obtained minimum perforation velocity,  the 

theory of Recht and Ipson [20] is extremely useful in its current state 

and can be improved only by the incorporation of more explicit material 

parameters,  possibly through insight gained from more complete numeri- 

cal studies. 
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4. 2      Thompson's Model 

Thompson [16] calculated the work due to plastic deformation 

and inertial effects in expanding a hole in a thin plate to a size neces- 

sary for complete penetration by conical or ogival projectiles. 

He assumed a rigid projectile and a rigid,   perfectly plastic 

plate.    In addition he assumed that the radial and axial stresses were 

insignificant compared to the circumferential stresses.    Finally,  it 

was assumed that plastic deformation takes place without a change of 

volume. 

Figure 10(a) shows the deformed plate configuration used by 

Thompson for the general  case.    The work required per unit volume 

for deformation from s to b    is given as 

b 
(      ^    =    Y ^   b 
is s 

d eo   =   Y     \      ^   =    Y -tn  ^ (7) 

so that the work done on the differential ring element is 

dW      =2nhSdS ln(~} (8) p o \s/ 

The expression for total work then becomes 

f
b 

W=2nhY\       8-tn-dS   =   ^TTb2hY (9) 
p 0        1 s 2 o 

•'o 

Next the dynamical work is written as 
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w d b dM db M   S_£ db   +         ^i SS    db 
.2 dt dt 
at 

(10) 

where 

M    =   rt   p   h  b 
o 

and 

<M=    2nph  b   db 
dt o      dt 

Hence Equation (10) becomes 

t 
0 2     rf2h 

W,,    =    n   p h       I b        ^-rr    db    +    2 n   p h 
d                       0    ' dt2 

o 'o I r -m' db      (11) 

For the conical head projectile of Figure 10(b) 

b   = 
RVt 

and 

db    ^    RV 
dt L 

so the total work done during the penetration process by a conical head 

projectile becomes 

(12) W    =   n   R      h I     Y    +   P :-JJ 
Figure 10(c) shows an ogival head projectile which can be described 

by 
?1 



b   =   R Sin HT) 

db TT    /RV\ n   /Vt\ 
dT  =  2   i—jC08 I VXJ (13) 

and 

dt2 "    V2L) 
am 

TTVt 
2L 

By substituting these expressions into Equation (11) and integrating 

from zero to L/R and finally adding the result to the plastic work, 

the expression for the total work required for penetration by an ogival 

head projectile can be written as 

2 
Y   +   1.86 p W   =   n R    h b m (14) 

From the expressions for total work expended the residual ve- 

locities can easily be calculated as 

1/2 

(15) 
2W 
M 

4. 3      The Theory of Zaid and Paul 

Zaid and Paul [2l]   consider the case of thin target petalling due 

to impact of a rigid ogive or conical tipped projectile.    Conservation of 

momentum is applied to the projectile-plate zone of action as shown in 

Figure 11(a).    The zone of action is defined by a radius sufficiently 

large to include a portion of the plate that is unaffected by the perform - 

tion process.    Conservation of axial momentum is written as 
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(a)  PETALLING FAILURE OF A THIN PLATE. 

I6INAL PLATE 

DEFORMED PLATE 

(b) GENERAL CONFIGURATION USED IN THE THEORY OF ZAIO 
AND PAUL 

PROJECTILE BODY 

(c) PETALLING FAILURE OF A THIN  PLATE    IMPACTED BY A 
PROJECTILE  HAVING A CONICAL NOSE. 

Figure 11.    Petalling Failure Diagrams, 
and Paul C2^ 
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M    V      =   M  V   +   M   (y) (16) 
p     o p t 

where M    is the projectile mass,   V is the instantaneous projectile p 
velocity and M (y) is the axial component of plate momentum.    The 

momentum of the increment of mass dm of Figure 11(b) can be written 

as 

dM     =2nphr      5dr     . (17) 
too 

The velocity can be expressed in terms of the independent variable y 

as 

^?7^=vt7 <18, 

and Equation (17) when integrated gives 

S 
lim ö ? (r   ,  yj 

M=2nph       \ Vr  ^    dr   . (19) 
t o      I o äy o 

r o mm 

The effective target mass is then defined by Zaid and Paul as the mo- 

>m M   divided by the instantaneous velocity 

Mt 
M (y)   = V =  2 " p ho 

/lim 

r o mm 

d? Co- y) r     ^ '-  dr   . (20) 
o Sy o 

Hence by combining Equations (16) and (19) the equation for change in 

velocity is obtained: 

24 



A V    =    V V    -    M{x)      V 
M (21) 

Zaid and Paul [2l] apply the theory to the case of the conical tipped 

projectile shown in Figure 11(c). It is seen that ? can be expressed 

as 

=   (x tan a. - r   j   cos a (22) 

so that Equation (20) becomes 

y tan a 

M(x)    =    2 n p h r    dr 
o      o 

tan o. cos a 

or 

M(x)   =   TT p h     (y tan a )      sin a 
o 

(23) 

Hence Equation (21) becomes 

AV   = 
TT p h    (y tana)    V sin a 
___ _       ____ (24) 

If it is then assumed as is done by Zaid and Paul that the total 

drop in velocity is attained when the projectile body intersects the tar' 

get plane,  i.e.  when y tan a becomes equal to r   ,  the projectile body p 
radius 

AV w 
TOTAL 

TT p h   r 
0   P 

M 
V    sin a 

o 
(25) 

where the instantaneous velocity is approximated by the initial impact 

velocity. 
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One can not extend the conical case solved by Zaid and Paul di- 

rectly to the case of cylindrical impact by assuming a = 90    because 

the flow is kinematically specified.    However,   for very large cone 

angles (aapproaching 90  ) the upper limit on the total velocity drop 

is 

2 n p h    r 
AV«,__,4T\tt   T      «      °    P      V (26) /AV \ «    2_ 

V      TOTAL) U.L. M x ' P 
o 

and the actual value is probably quite close to that value since sin a » 1, 

Equation (26) could then be expressed as 

(' 
avTOTALVL.  - U:   17   vo '27' 

It should be noted,  however,  that strength effects do not appear 

in this formulation and for a given velocity this omission would cause 

a greater error for large values of a.    For the case of a cylinder im- 

pacting a plate which fails by petailing,  it might be possible to incor- 

porate strength effects implicitly through use of a reduced velocity in 

Equation (27).    The value to be used would be the velocity at which petal- 

ling failure begins assuming a reduction in velocity caused by kinetic 

energy lost in initial bending of the plate.    Another possibility,  how- 

ever,  is to develop the theory for cylindrical impacts along lines paral- 

lel to the theory of Zaid and Paul assuming a different form for the 

kinematic flow constraints.    This is done in the following Section. 
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4. 4      Petalllng Failure Caused by Cylindrical Impact 

Petalling type failure usually occurs when the plate material is 

pushed axially and radially outward as in the case ox thick plates or 

impact by conical or ogive projectiles.    For thin plates subjected to 

impact by a blunt cylinder,  petalling failure can occur provided the 

material does not behave in a brittle manner and significant plate bend- 

ing occurs to provide the necessary stress pattern.    These conditions 

are met in thin ductile plates when the impact velocity is very near the 

ballistic limit.    The model used in this section assumes that a rigid 

projectile impacting into a thin aluminum plate causes the necessary 

amount of bending to initiate petalling failure.    Figure 12 indicates the 

stages of this type of penetration.    The projectile velocity is decreased 

from its initial impact velocity V   ,   to the value V,  shown in Figure 12(b) o 1 
at which time the plate has bent sufficiently for radial fracture to occur. 

This velocity will be used as the initial velocity in a modified Zaid and 

Paul theory. 

In order to apply the theory a feasible kinematic flow pattern for 

petalling must be assumed.    One such possibility is shown in Figure 13. 

It is assumed that 

sin 6    =   -i-     y (28) 
P 

so that 

9 cos 9    =   -i-     V  . (29) r 
P 

Hence the expression for § is 



i 

(a)   INITIAL CONFIGURATION 
^-f= 
(c) PETALS   BEND DOWN   AND RADIALLY 

OUTWARD. 

(b)  PLATE   BENDING HAS  REDUCED  VELOCITY 
TO  V| AND FRACTURE  OCCURS. FORMING 
PETALS. 

^ur 
(d) PROJECTILE   ATTAINS    ITS  RESIDUAL 

VELOCITY 

Figure 12.    Stages of Petalling Failure due to Cylindrical Impact.    Velocity 
Must be Near the Ballistic Limit Velocity for this Type of Failure 

Figure 13,    Diagram Indicating an Assumed Kinematic Flow Pattern for 
Petalling Failure due to Cylindrical Impact at Velocities near the Ballistic 
Limit 
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A 

§    =    y   +   (rp " 'o " y)   8in e 

or 

- , o 12 ?    =     2y-—     y.—    y 
P P 

and 

(30) 

Ü  =   2       — -2- 
öy r r 

P P 
(31) 

Substituting this expression into Equation (20) and integrating over the 

interval r      =0tor      =r-y civei 
o o p      7 B 

M(y)    =    2 TT p h 

and from Equation (21) 

K)M' -^ (■-•')" (32) 

AV   = 
2 n p h    V 
 o 

M (■-%)('.-')'^('.-y (33) 

To get the total velocity change the value of y = o is used in the above 

expressions which amounts to calculating the equivalent momentum 

change for the reverse process.    The value obtained is 

AV . ■ (i) © G?) -■ (34) 
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This velocity change is of the same order of magnitude as that obtain- 

ed by taking the limit of the cone as its half angle approaches WZ. 

This however,   is not the total velocity change since it was assumed 

that plate bending sufficient for petalling has occurred previous to 

the applications of the modified Zaid and Paul theory.    Hence the total 

velocity change is given as 

ÄV =    AV      +   AV (35) 
TOTAL o 1 y     ' 

where AV      =   V      -   V,,   and is the initial loss in projectile velocity 
o o 1 ' 

up to the point of fracture.    The value to be used for V    must be ob- 

tained from either an approximate solution of a plate impulse loading 

problem or from the interface velocity calculated numerically as in 

CRAM at the time of predicted fracture.    It should be noted that this 

theory applies only for thin ductile plates at velocities near the baliib 

tic limit. 
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SECTION V 

NUMERICAL SOLUTION OF IMPACT PROBLEMS 

As was mentioned earlier,   numerical studies of the impact pro- 

cess form an important and necessary link in the development of sim- 

ple,   meaningful penetration formulas which relate pre- and post-im- 

pact parameters.    In addition numerical solutions provide detailed 

answers to questions relating either to parameters which are impli- 

citly handled by the penetration formulas or to specific impact cases 

for which satisfactory penetration formulas are non-existent. 

It is important then to understand the numerical model complete- 

ly,   including the constitutive relations used as well as the numerical 

techniques employed. 

5. 1      Mathematical Models 

The mathematical model used in the numerical solution of the 

ballistic impact problem involves the necessary equations for express- 

ing the dynamic material behavior.    Of these equations,  the equation 

of state,  which,  in general,  relates pressure to internal energy and 

volume change and the constitutive relation involving the deviatoric 

stresses and strains are of utmost importance. 

The equations governing the ballistic impact process are given 

in Appendix I.     These include the equations of motion,   continuity and 

energy conservation together with expressions for the strain rates and 

artificial viscosity.    To complete the mathematical model, a constitu- 

tive relation including an equation of state must be chosen.    The equa- 

tion of state to be used here is of the form 
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p   =   (ao + a^ + a2/ + a/)  (l - a^) 

+   fb    +bu + bu    +bM^     E 
V   o ') 

(36) 

where p is pressure, u is the reciprocal of relative volume minus one 

or current density divided by initial density minus one,  the a. and b., 
11 

i = 0, I, 2, 3 are constants for a given material,   and E is total internal energy 

per unit volume.     Figure  14 is a one-dimensional schematic  showing the 

typical behavior of one form of Equation (36).    It is assumed that the material 

is able to withstand very high hydrostatic compressive stresses but that it 

will fail in hydrostatic tension at a value of stress equal to  1/3 of the dynamic 

yield stress unless values for minimum allowable pressure are known for 

specific materials. 

p 

p«p (/i) 

SLOPE «KMX + Z/J/i) 

M-l 

Eiguro  14.    Schematic Representation of Hugoniot Equation of State 
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The strength dependent portion of the constitutive relation is 

given in terms of the deviatoric stresses and strains.    The equations 

for this description are: 

s =   2u fe       - 4 V/V) xx V xx      3 / 

e   = ^ (ee6 -1 v/v) 

S 
yy 

(37) 
80 

T =   yx (€     \ 
xy V xy,/ 

where the terms on the left of the equations represent time rates of 

change of the deviatoric stress tensor, M is the shear modulus and 

the terms in parentheses represent the time rates of change of devia- 

toric strain,  i.e.  total components minus the symmetric terms. 

Equations (37) represent elastic behavior.    To complete the model, 

a yield criterion must be chosen.    It will be assumed that the ma- 

terial is elastic-perfectly plastic and that the Von Mises yield cri- 

terion is applicable.    This can be expressed as 

{■\ *'l*-l)-2i<"> (38) 

where Y- is the yield strength of the material and the s.,  i = 1,  2,  3, 

are the principal stress deviators.    To handle the problem of the non- 

uniqueness of stress which arises in plasticity due to the fact that ma* 

terial unloads elastically,  the stresses are first calculated using the 

elasticity equations,  tested against the yield condition and finally the 

components are adjusted normally to the yield surface,  if necessary. 
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Figure 15.    Projection of Von Mises Yield Surface on the tr-Plane 

ThU procedure is demonstrated in Figure 15.    The orthogonal prin- 

cipal stress axes are shown.    The TT -Plane is situated perpendicular to 

a line which makes equal angles with the axes.    This line is also the 

axis of a right circular cylinder in stress space,  i.e.  the yield sur- 

face, and its projection on the TT -Plane is shown in Figure 15.    When 

the material is loaded elasticly the loading path lies within the circle. 

If, however, the stress components calculated from Equations (37) 

violate the yield condition, they must be adjusted normally to the yield 

surface.    This is shown in Figure 15 where the material was loaded 

from n to n + 1.   Since the stress state at n + 1 is not possible for this 

model,  each component must be adjusted so that the state of stress is 

at point P on the yield surface.    This is accomplished by multiplying 

each stress component by the fraction 
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where 

2J ■[ 
2    .      2 2 

'l    +   82   +   '3 

2      +     2 
xx yy 

(39) 

+ -ee + 2 T 
2 
xy 

(40) 

and J is the second invariant of the stress de viators. 

The total stresses, which are used in the equation of motion 

are given by the equations 

E =    S -    Cp + q] 
XX XX 

E =s -Cp + q] 
yy        yy 

^ee  = Je6   " CP + <I] 

(41) 

T        =    T 
xy xy 

where p is the pressure given by the equation of state and q is the 

artificial viscosity term (see Appendix I).      The artificial viscosity 

is necessary only for stabilization of the numerical techniques em- 

ployed in the solution of these equations.    It has the effect of spread- 

ing out the shock front to avoid discontinuities in the stresses. 

Figure 16 is a one-dimensional schematic which indicates the 

material behavior when the total stresses are considered.    When the 

material is loaded,  path O A 3 C of Figure 16 is followed.    Line ABC 

is parallel to the hydrostatic curve and is separated from it by a value 
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of 2/3 Y  .    When the stresses are released,  the path C D E is followed, o 
It can be seen from Figure 16 that the amplitude of an elastic release 

wave can be much greater than the yield strength of the material.    This 

is because its amplitude depends on the relative slopes of line C D and 
4 

the hydrostat.    Since the slope of C D is K + —  M and the slope of the hy- 

drostat is K,  the relative slope,  and hence the elastic release amplitude, 

depends on the shear modulus of the material.    The velocity of the elas- 

tic release wave is given by 

:^T^ cE     =J(K    +TH/P (42) 

so it is seen tha.f an increase in the shear modulus has the effect of re- 

ducing the amplitude of the release wave while increasing its velocity. 

Since wave velocities are dependent upon the slopes of the stress-strain 

paths,  it can be seen from Figure 16 that an elastic release wave will 

overtake the loading wave as long as the slope of the hydrostat at the 

stress level to which the material was loaded is less than the slope of 

the elastic unloading path.    This process attenuates the shock amplitude. 

la order to effectively apply the mathematical model described above 

to the solution of impact problems,  it must be incorporated into the nu- 

merical framework of a computer program.    The numerical techniques 

and procedures used here are discussed in the following section. 

5. 2  Numerical Techniques 

A wide variety of numerical codes which can be applied to the solu- 

tion of impact problems have been developed at the General Electric 

Space Sciences Laboratory.    These include PIC WICK III (Eulerian [22]). 

VISTA (Particle-in-cell [23]) and CRAM (Lagrangian).    In addition,  a 

structure code,   DEPROSS [24,   25] is available.    The choice of numerical 
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code to be used in any particular solution of a problem depends on the 

range of values of the parameters of interest as well as restrictions 

imposed by the desired results.    In the present ballistic velocity im- 

pact study the Lagrangian code, CRAM,  will be employe».',   since it is 

best suited for including realistic strength effects,   defining boundaries 

and handling more than one material. 

5. 3. CRAM Description 

CRAM,   an acronym for Continuous Response of Anelastic Materials, 

is a two-dimensional Lagrangian code which was developed at the Gen- 
eral Electric Space Sciences  Laboratory for studying the response of ma- 

terials to dynamic loading in both the hydrodynamic and elastic-plastic 

regimes.    The code is similar to HEMP developed by M.   Wilkins [26] 

at Lawrence Radiation Laboratory and is designed to be run on the IBM 

7094 computer.    The basic equations for the Lagrangian description are 

given in Appendix I.      The finite difference equations employed in CRAM 

are in Appendix II. 

In the application of CRAM to any specific problem,   several factors 

must be considered.    These include the generation of the Lagrangian mesh, 

the proper choice of constitutive relations and material constants,   and 

loading conditions.    For the case of axisymmetric impact the Lagrangian 

grid can be generated using radial (x) and axial (y) lines as indicated in 

Figure 17.    Here a generic mesh point (j,  k) is shown.    The mass as- 

sociated with point (j,  k) is contained within the dashed lines.    The inte- 

gral definitions of partial derivatives (see Appendix I)   are employed in 

the equations of motion,  the path of integration being the closed curve, 

I,  II,  III,  IV.   This allows mesh distortion without invalidation of the nu- 

merical scheme.    The necessary loading conditions are applied at the 

mesh periphery and loading is accompl aK   H by giving a velocity to all 

projectile mesh points. 
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Figure  17.     Lagrangian Grid at Time Zero for the Case of 
Axisymmetrix Impact 

The first computation in the CRAM code is that of velocity,   using 

the equations of motion.    From these and the time step,   new positions 

are determined.     The velocities and positions calculated are associat- 

ed with the actual mesh points.    All other calculated quantities are cell- 

centered.    After velocities and positions,   the relative volume of each 

cell and its artificial viscosity are calculated.    The strain increments 

are computed next and from these,   in conjunction with the constitutive 

relation,   the deviatoric stress components are determined.    After the 

pressure is found for each cell from the equation of state,   the total 
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Stresses can be formed.    From these components the principal stress- 

es and directions are determined and finally total internal energy is com- 

puted.    When these calculations are completed for each mesh point or 

cell,  a nev, time step is computed and the cycle repeated. 

For impact studies a special subroutine, called Slide, is necessary 

to allow a decoupling of the grid points at the projectile-target interface 

(A B in Figure 17).    This routine is carried out in three basic steps: 

1. The slave points (projectile mesh points on line A B,   Figure    17) 

are allowed to move along the slide line (A B) as though it were a rigid 

boundary. 

2. The grid points in the master side (target points along A B, 

Figure 17)are then allowed to move.    Only mass on the target side is 

associated with this movement,   but forces are allowed to act across 

the slide line. 

3. The slave points are now forced to lie on the new position of 

the slide line so that voids will not be created.    A correction term is 

applied to compensate for the motion perpendicular to the slide line. 

Since the numerical scheme is based on continuum mechanics, 

special consideration must be given to post fracture phenomena.   That 

is,  the incorporation of failure criteria into the numerical scheme is 

insufficient for a complete solution of the impact problem since the 

governing equations used before failure no longer apply,  at least in the 

affected vicinity of the failed portion of the material.    Since this prob- 

lem presents a major obstacle to the total solution of the impact prob- 

lem,  and since there are several methods of handling it,  material fail- 

ure criteria and their application in conjunction with special types of 

observed failure phenomena as well as possible methods of post-failure 

treatment are discussed in the following section. 
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SECTION VI 

FAILURE PHENOMENA 

The study of failure phenomena includes the formulation and ap- 

plication of failure criteria,  a description of the failure process,  and 

the development of methods for predicting and describing post-failure 

effects.    Difficulties arise because of the complexity of material be- 

havior when subjected to impact loading which manifests itself in the 

numerous material and configurational parameters associated with a 

specific failure mode.    In addition,   the use of a continuous numerical 

mesh for describing the discontinuous phenomena of failure requires 

that special consideration be given to the failed regions or an alteration 

of the numerical scheme be developed to allow the opening of voids in 

the computational mesh.    Finally,   relatively little is known about the 

physical nature of material failure; hence,  the incorporation of a micro- 

scopic theory of failure into the numerical scheme would require further 

study,   both theoretical and experimental.    Following is a discussion of 

the various aspects of the mathematical treatment of failure phenomena. 

6.1 Generalized Material Failure Criteria 

From the standpoint of a continuum approach to material failure, 

the ideal generalized failure criteria would oe in the form of a surface 

in stress space which,  when intersected by the loading curve,  would pre- 

dict failure.    Such a failure surface would not be rigid but would vary as 

a function of the material stress-strain history.    Two observations can 

be made concerning a generalized failure surface for homogeneous,  Iso- 

tropie material.    First,   the surface must be axially symmetric with re- 

spect to the line in stress space having equal direction cosines with the 

principal stress axes.    Furthermore,   since the surface should be inde- 

pendent of the spatial axes,   it can be written as a function of the stress 
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invariants.    At present there is no suitable relationship for such a gene- 

ralized theory to be incorporated into the material model for the case of 

impact.    Until such relationships are developed,  a more specific approach 

to material failure must be taken. 

6. 2        Specific Failure Criteria 

The failure modes associated with projectile-plate impact were 

previously listed as fracture due to the initial stress wave,   radial frac- 

ture behind the initial wave front,   dpallation,   petalling and plugging.    In 

addition to these,   projectile shattering could occur for certain projectile 

materials impacting at higher velocities.    These failure modes are well 

defined and their failure mechanisms are well enough understood so that 

failure criteria based on the current state of stress can be employed. 

For example,  a maximum shear theory can be used for the case of plug- 

ging and maximum tensile stress for the case of spallation.    The more 

difficult task which requires further study is to determine the exact value 

of fracture stress to be used since it is a function of the material loading 

history. 

The criterion for fracture due to the initial stress wave is one 

of maximum compressive stress.    The value of the stress to be used in 

this case does not depend on the loading history during the impact pro- 

cess since the plate fails when the initial stress wave passes through. 

The criterion for radial fracture behind the initial wave front is 

one of maximum tensile stress.    When the circumferential stress attains 

a critical value,  radial fracture will occur.    The value of the tensile 

stress to be used for this case is a function of the loading history since 

the initial stress wave has passed through the fracture region. 

The criterion for spallation failure is also a maximum value of 

tensile stress.    Fracture occurs when the axial normal stress in tension 
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is greater than a maximum value.    In impact this situation may occur 

when a compression wave is reflected at a free surface.    Again the 

value of maximum stress to be used depends on the loading history. 

A maximum tensile stress failure criterion also seems best 

suited for predicting petalling type failure.    Material that is pushed 

radially outward develops large circumferential tensile stresses which 

can cause either front or back petalling.    In addition bending stresses 

can add significantly   to the tensile stress at the back surface of a thin 

plate such that the tendency toward petalling failure is enhanced.    Again 

the criterion is one of maximum tensile stress,  the value of which is 

history dependent. 

The criterion for plugging failure is one of maximum shear stress 

and the exact value to use is again a function of previous loading. 

Finally,  the criterion for the shattering of hard projectiles would 

be one of maximum absolute value of pressure. 

The failure criteria are given here without the exact critical 

stress value since this varies not only for different materials but also 

according to the loading history.    For this reason,  some measure of 

loading history,  such as plastic work,  should be monitored.    By study» 

ing both the stress patterns and material loading history throughout the 

impact process,  definite fracture stress values should be obtainable for 

the specific failure modes and eventually combined to form a general 

failure criterion. 

6. 3 Numerical Applications of Failure Criteria 

The development of failure criteria and their incorporation into 

the numerical scheme is but a first step in the study of fracture pheno- 

mena.    The important and more difficult task is that of describing the 
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material behavior numerically after fracture has been predicted.    There 

are at least three feasible ways to do this and the methods vary in de- 

grees of difficulty. 

la the simplest method,   which is used here,   the special failure 

criteria are chosen and the numerical solution is carried out in time to 

a point where gross failure is predicted.     This ends the numerical por- 

tion of the problem and the residual effects are deduced from the dyna- 

mic state at the time of fracture.    This method has the advantage that no 

special considerations for handling the fractured material need be incor- 

porated into the numerical scheme.    The only disadvantage is that further 

analysis is necessary after the completion of the numerical portion of the 

problem in order to predict residual effects. 

An alternate method is to continue the numerical solution after 

failure is predicted but make the necessary adjustments to the stress 

and strain field in the vicinity of the fracture.    For example,   in the case 

of üpallation,   the normal stress perpendicular to the plane of failure can 

be zeroed out and an increment of strain applied to account for the initial 

separation.    In the case of plugging,   the shear stress can be zeroed out 

on the failure surface.    This method of handling fracture is relatively 

simple but requires alteration of the numerical scheme for times after 

predicted failure. 

Probably the most difficult method of handling fracture is to make 

numerical provisions for actual opening of the computational mesh along 

the fracture surface.    For certain cases,  as in plugging,   the operation 

can be simplified by assuming fracture to occur instantaneously across 

the plate thickness and subsequently treat the plug as having a free sur- 

face.    It is the general opening of voids,   such as in the case of spolia- 

tion where only an interior free surface is created,   that requires signi- 

ficant alteration of the present numerical scheme. 
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Finally,   it is possible to treat a region of severe fracture,   such 

as a hard projectile subjected to impact at high velocities and which 

shatters by altering the equation of state in that region,   to a form more 

descriptive of a particulate form of matter. 

6. 4.        The Residual State 

The residual state is defined as the dynamic state of the material 

and its configuration resulting from the impact and penetration process. 

In addition to the usual mass and velocity distribution of residual parti- 

cles,   it is important to know their shape as well as the internal state of 

the material.     The observed effects of plate spacing on secondary pene- 

tration capabilities indicate that residual kinetic energy alone is insuffi- 

cient for predicting the damage of subsequent plates in spaced armor 

configurations.    Whether or not the residual fragments will break up 

further after impact is an important question. 

Hence the development of any predictive penetration formula 

should include some realistic measure of the residual state. 
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SECTION VII 

CRAM APPLICATIONS AND RESULTS 

Two axisymmetric impact problems were solved using the CRAM 

computer code.    These consisted of a steel cylinder with length to dia- 

meter ratio of one impacting a thin steel plate (problem III) and a thin 

aluminum plate (Problem III-A) respectively.    The impact velocity was 

0. 61 km/sec for both cases as was the geometrical configuration shown 

in Figure 18.    The material constants used are listed in Table I.    The 

numerical results for the two problems will be discussed separately. 

7. 1 Problem III (Steel into Steel) 

A Lagrangian grid similar ^o that of Figure 17 was generated 

using the exterior dimensions given in Figure 18.     The impact velocity 

was 0.61 km/sec and the material parameters used in Equations (36), 

(37) and (38) are shown in Table I.     The grid points were moved accord- 

ing to the equations of motion of Appendices   I and II. 

The actual computational grid used in the solution as plotted by 

the SC 4020 plotter is shown for various times throughout the solution 

in Appendix III.    The letters superimposed on the grid cells in Figures 

UI-l through 111-14 indicate compressive stress waves traveling through 

the material.    The steeper gradients are indicated by letters nearer 

the end of the alphabet.    The lettering allows the initial stress waves to 

be traced through both the projectile and target.    After several reflec- 

tions and wave interactions,   however,   stress-plots taken from the com- 

puter output are more informative. 

Figures 19 through 22 are plots of the computed axial normal 

■tress, I.     ,  versus axial distance,  y,  along the axis of symmetry for 

problem III.    The dashed vertical line is the initial projectile-target 

interface and y = 0 is the initial position of the free surface of the plate. 
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R = 0.4155 CM 

L*0.83l CM 

T«0.I6CM 

IMPACT VELOCITY« V0« 0.61 KM/SEC 

Figure 18.    Geometrical Configuration for Problems III and III-A 

TABLE I.    MATERIAL CONSTANTS USED IN PROBLEMS IE AND IH-A 

Material Projectile Target Targrf 
Constants (in and III-A) (in) (III-A 

a 
o 

0 0 0 

ai 1236 kbars 1236 kbars 765 kbars 

a2 
2452 kbars 2452 kbars 1659 kbarb 

a3 
5138 kbars 5138 kbars 428 kbars 

a4 0 0 0 

b o 
2.2 2.2 2.13 

bl 2.2 2.2 2.13 

b2 
0 0 0 

b3 
0 0 0 

M 1930 kbars 1930 kbars 274    kbars 

Y 
o 

5.44 kbars 5.44 kbars 2. 80 kbars 

P    . mm 
-60 kbars -60 kbars -30 kbars 

^o 7. 8 gm/cm 7. 8 gm/cm 2.79 gm/cm3 
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The various curves in each figure are for various times and are labeled 

cyclewise for convenience.    The corresponding real times are given in 

U-sec on each graph. 

Several qualitative aspects of the impact process are evident in 

Figures 19 - 22.    In Figure 19t the development of the initial stress 

pulse and its propagation into the target and projectile is clearly seen. 

The compressive wave reflects from the free surface of the target at a 

time of t = 0. 394 |i sec.    The resulting tensile wave propagates back in- 

to the target and attenuates the pressure even up into the projectile.    The 

elastic precursor can also be seen in Figure 19 as the compressive wave 

travels up into the projectile. 

In Figure 20 the attenuated compressive wave front is seen ap- 

proaching the rear surface of the projectile.    It too is reflected as a ten- 

sile wave.    Also in Figure 20 an additional compressive wave pulse is 

seen building up in the vicinity of the projectile-target interface.    The 

following reasons are given for the appearance of this wave.    A rarefac- 

tion wave emanates from the free target surface at the projectile peri- 

phery and propagates behind the original compressive stress wave and 

is directed toward the axis.    For thin plates, as in this case, this rare- 

faction wave reaches the rear free surface of the target before it reaches 

the axis of symmetry and is reflected as a compression wave.    The di- 

rection of this compression wave has a component toward the axis and 

therefore is convergent in nature.    Such a convergent wave builds in 

magnitude as it approaches the axis of symmetry and therefore gives 

rise to the observed compressive wave seen originating in Figure 20. 

It is also noticed ir Figure 20 that a region of the projectile material 

has been subjected to the maximum allowable negative pressure. 

In Figure 21, the compressive stress wave continues to build 

while the rarefactive wave from the free surface of the target is seen 
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arriving at the rear of the projectile.    The reflection of this wave as a 

compression wave and its superposition on the already present com- 

pressive wave creates the large compressive spike observed in Figure 

21. 

In Figure 22 the two compressive waves have crossed causing a 

wider pressure pulse of lowe^* magnitude. The wave moving toward the 

rear of the projectile is also seen to reflect as a tensile wave in Figure 

22. 

Before other results are presented,  it is of interest to obtain a 

quantitative comparison of the results in the early stages of the impact 

process,  i.e.  before significant wave i iteraction occurs, with one-di- 

mensional predictions. 

Figure 23 shows the configuration of Problems III and III-A super- 

imposed on a semi-inf;.nite target.    Comparisons can be made with pre- 

dictions from oue-dimensional wave dynamics in the early stages of im- 

pact before significant wave interactions and reflections occur.   Several 

distances and times are of significance.    These include the distances R. 

and R- measured along the axis from the impact interface to the points 

in the target and projectile respectively where the rarefaction wave emi- 

nating from the projectile periphery meets the axis.    It is seen in Figure 

23 that for the geometry shown, R    falls outside the plate.    The distance 

x thus becomes significant which is the radial distance to the point where 

the rarefaction wave reflects from the free surface of the plate.    The 

times at which the rarefaction wave reaches these points can also be cal- 

culated from one-dimensional theory and serve as a good cheek for the 

numerical solution.    The times at which the original compression waves 

reflect from the rear surfaces of the target and projectile,  t    and t 

respectively are also important. 
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Figure 23,    Diagrams for Showing One-Dimensional Theoretical Agreement 
in the Early Stages of Impact 

From Hugoniot relationships it is shown that a good approxima- 

tion of the shock speed is 

U = A + Bu (43) 
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where U is the shock speed,  u is the particle speed and A and B are con- 

stants.    In addition the pressure at the impact interface can be written 

as 

p =   P   Uu (44) 
o 

where p    is the normal density of the material, 
o 

By noting that the pressure at the instant of impact should give the same 

result at the interface for either the target or projectile,  one can write 

PT   =   PoT UT UT   =   PoP   UP   UP   =   PP (45) 

where the subscripts T and P stand for target and projectile respectively 

and the bar indicates that Equation (43) must be altered to account for the 

projectile motion. 

Hence 

Up   =   Ap   t   l.p   (Vo   - uT) (46) 

where V    is the impact velocity.    At the interface 

Vo   -   up   =   uT (47) 

Substitution of Equations (46) and (47) into Equation (45) yields 

P m   (A„ i B^ uA u^ = P „    A^     B„ CV    - u^l (v    - u\     (48) 
oT   \   T T    T)   T       oP        P        P \   o       Ty    y  o        T J 

or 
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•    « 

u^   +   K, u^ - K, = 0 
T 1    T        2 (49) 

where 

K.   = -^ 
P „A^ + p „A^ + Zp „B„V 
oT    T      oP    P oP    P   o 

[PoT BT " PoP Bpl 
(50) 

and 

K. 
P   o V 
oP    o 

A„ + B„ V 
P        P    o 

[^T * i Bf.„ - P ^ B^J 
oP    P 

(51) 

For like materials as in Problem III,  it is seen that Equation 

(48) yields a solution 

Ur (52) 

Hence,  from one-dimensional shock dynamics [27] the values of R    and 

R. in Figure 23 can be written as 

rR 
H 

i      r^2        /• \2 "11/; 
[CH   "   (RH " UT)    J 

(53) 

and 

(*H - Vo) 

[<   -   K - "P)2 ] 1/; 
(54) 

I 

where u„ = V    - u„, R,w is the shook speed in the undeformed maierial 
P        o        T      H K 

and C    is the sound speed in the compressed material.    For Problem 
H 

III, Ru = 4. 06 km/sec and C    = 4. 42 km/sec. 
H H 
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and 

A 

This gives a value of 

R      =   0.728 cm 

R      =   0.62 cm 

It can be seen in Figure 23 that this value for R would fall off 

the plate but the distance x can be calculated from the geometry to bo 

0.324 cm. 

Now the times for the original stress wave to reach the rear 

surfaces of the plate and projectile and the initial rarefaction wave to 

reach the axis in the projectile and the rear surface of the plate a dis- 

tance x from the axis can be written as 
t 

t      =   0.394 M sec 

t.    =   2.05 U sec 

t      =   1.53 H sec 

t      =   0.394 H sec 
x 

It can be seen from Figure 19 that the initial stress wave reaches 

the frse surface of the plate at approximately cycle 35 which agrees quite 

well with the value t      =   0. 394 M sec.    In Figure 20 it is seen that the 

initial stress wave reaches the rear of the projectile at approximately 

cycle 146 which also agrees very well with the value t      =   2. 05 M sec. 
La 

In Figure 20 the initial compressive wave moving toward the rear of 

the projectile is being r3- graded by the rarefaction wave emanating from 
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the projectile periphery which reaches the axis at t   =    1. 53 |i sec,   in 

good agreement.    Because of stress wave interactions at later times, 

the simplified one-dimensional theory can not be used beyond these 

early times; however agreement in the initial stages of impact is ex- 

tremely good. 

The deformed grid for Problem III shown at various times in 

Appendix III indicates that very little material distortion occurs in the 

target beneath the projectile while severe distortions occurs beneath 

the projectile periphery.    This region is a region of predominantly 

shearing stress as seen from the graph in Figures 24 through 27 plotted 

by the SC 4020 plotter.    In Figure 24 it is seen that the maximum shear 

stress near the impacted surface of the target in the early stages of im- 

pact attains a value of approximately 3 kbars.    This seems to be the 

maximum value attained throughout the target for all times.    Figure 27 

indicates that the shear stress near the free surface of the target at 

t   =   3.032 M sec is also quite close to that value.    According to a maxi- 

mum shear theory of failure,  failure will occur along the planes of maxi- 

mur   shear which in this case is a cylindrical surface of radius approxi- 

mately equal to the projectile radius.    These results indicate that plug- 

ging failure will occur at a time of approximately 3. 123 i~i sec (cycle 230), 

i. e. when the shear stress attains its maximum value throughout the plate 

thickness. 

Other data such as the generalized plastic strain obtained by sum- 

ming the incremental relationship 

1/2 
d C. = 11 d €.. de.. I 

L3        y       ijj 
(55) 

indicate the localized nature of the plastic deformation.    The generali- 

zed plastic strain for t   =   3. 123 u sec in Problem III is plotted versus 
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X(CMI 

Figure 24,    Shear Stress Versus Radial Distance Near the Impacted Surface 
of the Target at 0. 3263 ^ sec for Problem III 

70       eo 

Figure 25.    Shear Stress Versus Radial Distance at the Center of the Target 
at 0. 3263 ^sec for Problem III 
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Figure 26.   Shear Stress Versus Radial Distance Near the Free Surface of 
the Target at 0. 3263 ^sec for Problem in 

a. 
< m 

i.o □: 
10 20        30        .40        50 60 

X(CM) 

70        80 

Figure 27.   Shear Stress Versus Radial Distance Near the Free Surface of 
the Target at 3.032 /usec for Problem III 
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radial distance in Figure 28.    The k-values of 2,  6,  and 10 refer res- 

pectively to the free surface,  the center plane and the impact surface 

of the plate.    Figure 29 shows the plastic work defined as the sum of 

the increments 

d W     =   E..   Id e' 1 (56) 
P ij   L     ijJP x    ' 

plotted versus radial distance at t   =   3, 123 |i sec for the same set of 

planes.    Again the region to which severe plastic distortion is restrict- 

ed is evident and supports plugging failure. 

Figure 30 is a plot of internal energy versus radial distance at a 

time of 3. 12 M sec for the same set of planes in Problem III.    The curve 

indicates that the plate material is heated in the narrow band where severe 

deformation takes place beneath the projectile periphery.    This, of course, 

would be expected and indeed actual plugs have been inspected and mark- 

ings attributed to high temperatures at the plug periphery have been ob- 

served. 

Since the analysis of the results of Problem III indicate that plug- 

ging failure will occur,  the estimated residual velocity should be com- 

pared with the results of the plugging theory of Recht and Ipson [20]. 

Since plugging failure was predicted to occur at t   =   3. 123 |i sec, the 

axial velocity versus radial distance at that time is plotted for the free 

surface,  center plane and impact surface of the plate in Figure 31.    It 

is seen from this figure that most of the plate material beneath the im- 

pacting cylinder is moving at a relatively steady rate but drops off to 

zero rapidly for radial values greater than the original projectile radius. 

From Figure 31 an estimated residual velocity for the plug and projec- 

tile combination might be 0.4 km/sec.    Now by using the necessary para- 

meters of Problem III which are given in Figure 18 and Table 1 together 
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Figure 28,    A Plot of Generalized Plastic Strain Versus Radial Distance for 
Problem III.    The Time is t = 3. 123 ^sec and the k-values of 2,  6,  and 10 
Refer Respectively to the Free Surface, the Center Plane and the Impact 
Surface of the Plate. 
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Figure 29.    Plots of Plastic Work Versus Radial Distance for Problem III. 
The Time is t = 3. 123 ^sec and the k-values of 2,   6,   and 10 Refer Respectively 
to the Free Surface, the Center Plane and the Impact Surface of the Plate 
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Figure 30,    Plots of Internal Energy Versus Radial Distance for Problem III. 
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Figure 31.   A Plot of Axial Velocity Versus Radial Distance lor the Plate of 
Problem III.     The Time is 3. 123 /jsec and the k-values of 1, 6,  and 10 Refer 
Respectively to the Free Surface, the Center Plane and the Impact Surface 
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with the experimentally obtained value for the ballistic limit velocity of 

0,406 km/sec [28] and a plug projectile diameter ratio of 1,  Equation (6) can 

be used to obtain the theoretical value for residual velocity.    This is found to be 

V     =   0.382 km/sec 
r 

This value of residual velocity is shown by a dashed line on Figure 31. 

The agreement with the estimated value is extremely good.    In addition 

an average time-to-failure can be approximated by 

'AVG 
= v  ¥v    = 3-2^8ec 

o r 

this value is also close to the predicted time of failure of t   =   3. 123 n sec 

determined from the analysis of the numerical results. 

Next in order to obtain the exact shape of the plug the region of 

the target subjected to maximum shear stresses must be examined. 

Figure 32 shows the region of plate material subjected to shear stresses 

greater than 2 kbars.   The crosses indicate the maximum values of shear 

for that given plane.    It is assumed that fracture will occur along a line con- 

necting the crosses.    The vertical dashed line indicates the original pro- 

jectile radius so it is seen that the plug will have a slightly greater ra- 

dius than that of the original projectile.    This is due to the fact that the 

projectile deforms radially after impact.    The final predicted projectile- 

plug configuration is shown in Figure 33.    From this figure the residual 

mass and kinetic energy can be calculated.    Analysis shows that the plug 

material is only slightly compressed,  mainly in the axial direction, and 

that the degree of compression increases with radial distance.    The pro- 

jectile,  however,  is compressed axially but expanded radially such that 

its overall state is one of expansion.    The residual energies of the plug 
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8 9 
and projectile are 5.44 x 10    ergs and 2.56 x 10    ergs respectively and 

9 
their combined kinetic energy is approximately 3. 1 x 10    ergs.    When 

this residual kinetic energy is compared with the initial value of 6.55 x 
9 

10    ergs at the instant of impact,   it is noted that approximately 52.6% 

of the energy is either left behind in the target, dissipated or transferred 

to internal energy.    Just how this energy is partitioned is not known 

and remains the subject of further study.    It is believed,   however,  that 

for the case of plugging a high percentage of this enecgy remains in the 

plug-projectile combination as internal energy. 

It is of interest to know whether or not the projectile or plug will 

fracture during or after the impact process.    Complete fracture or shat- 

tering has been observed at the higher ranges of ballistic velocity, the 

severity decreasing with decreasing impact velocity through stages of 

partial fracture,   contained spall and finally no failure at all.    Figure 

20 shows that axial stresses do attain the largest allowable tensile stress 

during the impact process so that fracture is predicted.    Figures 34 and 

35 are traces of the projectile at times of t = 1. 33 M sec and t = 1. 92 M sec 

respectively.    The cross-hatched areas represent regions subjected 

to tensile stresses high enough to initiate fracture.    Although the stress 

distribution is complex, the tensile stresses in these regions are mainly 

due to the rarefaction wave from the free surface cf the plate and radial 

material flow in the projectile.    Thus the numerical results predict contained 

failure in the projectile in the form of spall or radial crack initiation. 

The exact shape of the fractured region or its effect on the unfractured 

projectile material can not be predicted at this stage since no alteration 

in the numerical scheme other than limiting the tensile stresses to their 

maximum value has been carried out. 

The steel-steel impact problem discussed here has been repro- 

duced experimentally at the Air Force Armament Laboratory,  Eglin Air 

Force Base,  Florida. 
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The raw data for eight shots are given in Table     IV-1 of Appendix 

IV.  Also in Appendix IV,   Figures IV- | and IV- j are sample prints of the 

x-ray negatives showing projectile-target configurations before and after 

impact.    Figure IV-2 indicates that the particular projectile shown has 

experienced some degree of yaw before impact. 

The averages over seven shots (nos.   2 through 8 of  Table    IV-1) 

of the plate plug and cylinder residual velocity are shown in Figure 31. 

Agreement is quite good with both the numerically predicted residual 

velocity and the value obtained from the plugging theory of Recht and 

Ipson   J20l ; although the calculated value is somewhat lower. 

Since fracture initiation in the projectile is predicted for the 

steel-steel impact problem as seen in Figures 34 and   35, it is ol intorest 

to obtain an experimental verification.    Figures IV-5 through IV- <5oi 

Appendix IV are post-impact photographs of cross-sections of the pro- 

jectile.    Figure IV-J is a cross-section of the projectile shown in Figure 

IV-X while Figure IV- 4 Is an enlargement of the region of predicted 

fracture initiation. Similarly,  Figures IV- 5 and IV-5 are the cross 

section and enlargement of the region of predicted fracture initiation for 

the projectile shown in Figure IV-2. 

Fracture markings are clearly in evidence as predicted numerically. 

The arrow shown on Figures IV- 4 and IV-6 indicate the direction of pro- 

jectile travel.    It should be noted that the fracture markings shown in Figure 

IV-S are off center due to the pro-impact yaw experienced by that pro- 

jectile as seen in Figure IV- 2. 

7. 2        Problem III-A (Steel into Aluminum) 

The dimensions for problem III-A are identical to those for 

Problem III and are given in Figure 18. The impact velocity of 0. 61 

km/sec is also the same.  The only difference is that an aluminum target 

is substituted for the steel target of Problem III.  The material constants 

used are given in Table I.    The deformed grid plots for Problem III-A 

are given in Appendix V. 
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Figures 36 through 38 are plots of axial stress versus axial dis- 

tance for various times for Problem III-A.    The development of the ini- 

tial pressure pulfe,  its propagation through the target and projectile and 

reflections from the free target surface can be traced. 

The calculated times at which the initial stress wave reaches the 

free surfaces of the plate and projectile respectively are 

t       =   .27 U sec 

t       =   2, 04 fJ sec 

Also by using values of R       =    5.92 km/sec and C       =   6.085 km/sec 

for the aluminum target and C       =   4.096 km/sec for the projectile,   it 
H 

is found that 

R      =    1.3 cm 

and 

x   =   0. 35 cm 

Hence the times for the rarefaction wave which emanates from the im- 

pacted surface at the projectile periphery to reach the projectile axis 

and the rear surface of the plate respectively are 

t     =   2. 2 ^i sec 

t     =   0. 27 ki sec 
x 

73 



I 

.D 
0 
u 

0, 
u 
0 _o V- 

£ 
- 0> h 

^^ 1 en 
u 3 
UJ 0 

(0 a> - K - 00 
■ 

4, CM   0) > 
** o - rö 4J 
UJ 
2 ö d Ö - K 

^M ^^ ( 
»- 

- 
U> 

2 
ü ^^ ^^ 0) 

UJ 
> Q 

> 
o o 
—   <M 

O 
ro - in • pH 

X 
Ü < 

(A 

•i* 3 
A    • B) 

J9 ^ 

=1 3- ̂  1 • 

V 
> 

0) 
^    *■■ 

r 

< O - (VI ^ 
r—< 

It) 
•H 

"^ 
— 

i i •       i l • « 
__, 

0 

• ' n 
4J 

o o o o     o O o o o o O O o 0 

o a> 00 N       iO m V ro (VJ — — CSJ 

0) 

s - CM 
i" 

i i • 

u 
p 
be 

M ■? 

74 

■ 

■, 



.\ 

o 
UJ 
w ^ CJ N 
i^ (M <n f^ 

«• 1£) 00 

UJ o o o 
2 
l- 

UJ 
-1 
Ü o o o 

* (0 00 
Ü 

< 
I 

a 
t-H 

6 
I—I 

o 
u 

tx 

to 
0) 

09 

> 

c 

4) 

•4-» 

< 

m 
■»-> 

o 

75 



u 
Ul 
0) 

UJ 

—   «O   CM  ^ 
ro   0»  CO 0) 
o o ^ IO 

o o o o 
o CM 00 »o 
— — — CM 

o 
00 

§ s: 

8 

? 

< 
i 

£ 
0) 

'S 
ex 

o 

a» 

o 
•i-i 

> 

0) 
u 
c 

(fl 

< 

3 
(0 

> 
to 
to 
v 
u 

x 

Ü 

U) 
•M 
0 .—« 

"l 

>• 
;i 

76 



o 
LU 
on 
^ 

-^i- 

CM   ^H vO 
UJ CSJ >o r^ 

C\J   C\J CNJ 
h- 

LU 
-J 
o oo rr\ s 
> CSJ  rr\ ro 
o 

w 

o 
OH 

tn 
V 

H 

9 
O 
u 

> 

V 
u 
c 

X 
< 

m 

> 

« 

X 
<: 

0 

O 

u 

77 



These values of time agree reasonably well with prediction of the nu- 

merical solution. 

By comparing the deformed grid plots for Problem III-A in Ap- 

pendix V with those for Problem III in Appendix III,   it is seen that the 

target lip formed in the aluminum target is much greater.  This is due, 

of course, to the difference in target materials for the two cases,   alu- 

minum being more ductile than steel. 

Analysis of the numerical results for the steel-aluminum impact, 

III-A,  indicates that plugging type failure should be expected here also. 

Figures 40-42 are plots of shear stress versus radial distance at the 

impacted surface,  the center plane and the free surface of the aluminum 

plate respectively.    These plots represent the shear stress distribution 

at time t = 2. 757 ^sec which corresponds to the time at which the stresses 

attain values of approximately 1, 5 kbars completely through the piate 

thickness.    It will be assumed that plugging failure occurs at this time 

and no further numerical calculations will be carried out. 

Figures 43 and 44 are plots of generalised plastic strain and 

plastic work versus radial distance for various planes in the target at 

the time of failure. 

It can be seen from these figures that the major plastic de- 

formation,  at least at the center plane (k = 6) and the impacted sur- 

face (k = 10),  is due to shear stresses which develop beneath the pro- 

jectile periphery.    On the free surface of the plate (k = 2),  however,  it 

is seen that maximums occur at the axis as well as beneath the projec- 

tile periphery.    The maximum at the axis is due in part to the tensile 

stresses caused by plate bending.    The extent of thie bending is shown 

in Figure 45 which is a trace of the free surface of the plate at t = 2. 757 

U sec.    For comparison, a plot of the free surface of the steel plate of 

problem III is shown at a comparable time.    Because of the difference 

in material,  more bending is observed for the Aluminum plate.    How- 

ever,  this bending is not sufficient to create the necessary circumferen- 

tial stresses for pctalling failure at this time.    The question is,  at the 
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Figure 41.    Shear Stress  Versus Radial Distance at the Center Plane of 
the Target at t ^ 2. 756 ^sec for Problem III-A. 
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Figure 42.    Shear Stress Versus Radial Distance at the Free Surface of 
the Target at t = 2.756 ^sec for Problem III-A 

time of failure,  which mechanism will be dominant at the rear surface 

of the plate,  shear failure at the projectile periphery or tensile failure 

near the axis?    Since the impact velocity is well above the ballistic 

limit velocity for this case, it is believed that the former will occur and 

therefore cause plugging failure. Hence from Equation 16 of the theory 

of Recht and Ipson the value of residual velocity is found to be 

V     =   0.549 km/sec r 

This gives the average time to fracture as calculated by Equation (57) 

as 

which agrees remarkably well with the predicted failure time. 
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The details of the experimental program £or duplicating Problem 

III-A (steel into aluminum) are contained in a report by R.   Recht     28] . 

Some of the results are shown in Appendix VI.    Cylinders of 4130 steel, 

325 BHN were impacted normally against 20Z4-T3 aluminum sheets of 0. 16 

cm thickness at nominal velocities of 0.61 km/sec.    The length to 

diameter ratio for the projectiles were approximately equal to unity. 

Both plan and elevation view flash radiographs were taken for each test 

in order to measure impact and residual velocities.    Figures VI-1 and 

VI-2 of Appendix VI show sample radiographs for Test No.  75.    The 

projectile path is from right to left.    The plate plug can be clearly seen 

in these radiographs and its dished nature due to plastic deformation 

is evident. 

The experimental results are given in Table VI-1 and Figure 

VI-3.    In Table VI-1 the measured impact velocities,  cylinder and plate 

plug residual velocities and angle of incidence are given for each shot. 

InFigure VI-3 residual velocity is plotted versus impact velocity.    The 

dashed line represents the curve predicted by the DRI equation.    It is 

noted that the plate plug velocity is greater than the residual velocity 

of the projectile.    This is due to elastic release after the plug has been 

sheared through. 

The impacted cylinders,  plate plugs and perforated plates were 

received from DRI and are shown in the photographs of Figures VI-4 

through E-6.    The cylinders have been deformed as expected,  having a 

greater radius at their impacted ends.    The plugs were sheared out in 

one piece and remained in a dished configuration because of plastic de- 

formation.    The fractured plugs shown in Figure VI-4 were caused by 

secondary impact in the collecting medium. 

Figure VI-7 shows experimental plots of the ratio of target hole, 

plate plug head and rear of projectile diameters to the original projec- 

tile diameter versus impact velocity. The diameters of the rear of the 

projectiles have decreased somewhat during penetration.    The heads of the 
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projectiles have increased somewhat as expected and have approxima- 
i 

tely the same diameters as the plate plugs.  It is seen that hole size as 

well as diameter of projectile head and plate plug increase with impact 

velocity while the diameter of the rear of tne projectile is rather insen- 

sitive to velocity,  at least for the cases shown here.    The fact that the 

target hole size is considerably larger than the plug indicates that plas- 

tic deformation continues in the plate causing hole widening after per- 

foration. 

Figure 46 is a plot of the numerically calculated axial velocity 

plotted versus radial distance for various planes through the aluminum 

target at the predicted failure time for Problem III-A.    The dashed lines 

indicate both the experimentally obtained residual velocity measurement 

and the value calculated by Equation (6) assuming D/d = 1.    It is seen 

that the residual velocity predicted by the CRAM code solution is in 

good agreement with the theory of Recht and Ipson as well as with 

experimental results. 

Figure 47 is a trace of the numerically predicted final projectile- 

plug configuration at t = 2.757 /^sec.    The plug periphery was determined 

as before by connecting the cells which were subjected to the maximum 

shearing stresses.    Also,  indicated in Figure 47 are the actual measured 

variations of projectile head and plate hole radii for the specimens 

shown in Appendix VI. 
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SECTION vm 

CONCLUSIONS 

Present penetration formulas governing the ballistic range of 

velocities are either empirical in nature or are based upon over-sim- 

plified models.    The insight necessary for developing formulas of a 

more predictive rather than descriptive nature is obtainable through 

parametric studies based upon numerical solutions describing the hy- 

drodynamic and elastic-plastic material flow.    Such solutions are made 

available through the use of large scale computer codes such as CRAM. 

A computer impact solution must in addition predict the failure 

mode and describe the residual state.    In the absence of a generalized 

failure criterion special failure criteria must be employed for predict- 

ing the onset of the various delineated failure modes.    Of these the most 

important are maximum axial tensile stress for predicting spallation, 

maximum circumferential stress for predicting petalling and maximum 

shear beneath the projectile periphery for predicting plugging type failure. 

There are several methods for describing post-failure material 

behavior.    It is possible to end the numerical solution at the time of pre- 

dicted failure and predict pest failure behavior on the basis of the dyna- 

mic state at the time of failure.    It is also possible to artificially des- 

cribe post failure behavior by continuing the numerical solution with the 

proper stress and strain alterations in the region of failure.    Certain 

cases exist in vhich the failed regions can be handled simply by modify- 

ing the equation of state.    Finally it should be possible to allow voids in 

the computational mesh.    These various possible methods for handling 

post failure material behavior are listed in increasing orders of diffi- 

culty and the first method was employed for the two solutions described 

in this report. 

A complete solution of a steel cylinder impacting a plate of like 

material is presented.    In the initial stages of impact the numerically 
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predicted stress wave propagation and reflections are in good agreement 

with one dimensional calculations.    By looking at the distribution of shear 

stress, generalized plastic strain and plastic work as well as the defor- 

mation pattern,  it became obvious that the failure mode for this problem 

is plugging so the failure criterion to be used is one of maximum shear. 

Failure was predicted to occur when the maximum shear stress develop- 

ed near the impact suriace of the plate attained the same value through- 

out the plate thickness.    This occurred at time t   =   3,032 [X sec and the 

stress value was approximately 3 kbars.    The residual velocity accord- 

ing to the theory of Recht and Ipson was found to be 0. 382 km/sec.    This 

value agreed quite well with velocities attained throughout the portion of 

the plate beneath the projectile at the predicted ti te of failure.    By as- 

suming that failure occurred along the planes of maximum shear the 

actual plug shape was predicted.    From this the total residual energy of 
9 

the plate-plug projectile configuration was determined to be 3. 1 x 10 

ergs.    This accounts for 47.4% of the total energy and it was assumed 

that much of the remaining energy was contained in either the projectile 

or plug as internal energy.    A region of contained failure was predicted 

near the impact surface of the projectile and verified experimentally. 

In addition the final configuration of the residual mass particles agreed 

with measured values. 

A second problem,  similar in all respects to the first with the 

exception of target material, which was aluminum in this case,  was 

also solved using CRAM.    Plugging failure was predicted to occur at a 

time of 2.76 ysec.    The residual velocity of 0, 549 km/sec calculated 

by the theory of Recht and Ipson was in good agreement with the numerically 

calculated velocities throughout the plate material in the region beneath 

the projectile.    Plate bending was slightly more significant for the 

aluminum target than for the steel; however, tensile stresses at the rear 
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surface were significantly less than values necessary for failure while, 

at comparable times,  the shear stresses developed beneath the projectile 

periphery were approaching critical values. 

An experimental program was set up by R.  Recht at the Denver 

Research Institute for duplicating the steel-aluminum impact problem. 

Plugging failure was observed and the plate plugs were dish shaped due 

to bending. The observed residual particle masses and velocities were 

in good agreement with theory; however,  the projectile anr! plate plug did 

not remain in contact after fracture because of elastic recovery. 

The results of this study indicate that,  not only are large com- 

puter codes such as CRAM able to predict material flow produced by 

ballistic impact, but that they provide much more information suitable 

for performing parametric impact studies and developing penetration 

formulas than any other presently known method,   either theoretical or 

experimental. 
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APPENDIX I 

BASIC EQUATIONS IN THE CRAM CODE 

The Lagrangian form of the equations of motion for axial symmetric 

and planar symmetric situations are: 

^L ^T T 
xx   + ^_^L +_ÜL 

3x oy y 

ÖT bL 
.. xy ,       yy 

^ ox ^y 

S   - L 
XX #0 

= py   (i-i) 

where; L      =   -(p-ki)+S     ,    E      --(p + q)+S XX r        -»    ' xx yy r I» yy 

^e3 ■(p+q) +s fl« 

Note:   the terms marked are set equal to zero for planar symmetric 

problems. 

Continuity Equation 

Strain-Rates 

V       äx       3y      y 

9 x    ,   . 
xx       ^ x MQ 

yy       Sy xy 3x 5y 

(1-2) 

(1-3) 

First Law of Thermodynamics 

E=    -(p + q)V + v/s      C      +S       k      +Sfla«flfl + T      c     \ a_4) r   n y xx   :cx       yy    yy      *w   »9        xy   xyJ ^ *' 

Artificial Viscosity 

C2  ^o   (v/v)2A 
q =  rr      for V < o 

q = o,  for V ^ o 

C    = constant ; A = area 
o 

(1-5) 
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The basic geometric element in a typical grid network is a quadrila- 

teral of arbitrary shape. It is therefore convenient to represent the spacial 

partial derivatives by their integral definitions: 

——   ■ lim J 

3x 

9y 

lim 
A-»0 

= lim 
A-» 0 

iF"'? dS 

where: 
Ö- 

A = area 

C ■ boundary of area A 

S s arc Umgth 

"n ■ unit normal vector to C 

i = unit vector in X-direction 

j = unit vector in Y-direction 

Applying the above to the quadrilateral 1, 2,  3, 4lwe obtain.for F   defined 

at the points 1, 2, 3, 4 

J  F^.TdS =   /F||-dS =  - rF23(y2 - V j 
c c 

+ F34(V3->r4)+F4l(y4 ^1)^12(^1^2)] 

F      2   /F.+F.\  /2 
ij ^    1       Jy/ 

I 
Therefore, 

H  --5[F23('r
2-V3)tF34('r3->r4)iF4l(V4-yl) 

Iä[(F
2-

F4)(^-1'I)-(V2-V4)(F3-FI)" 
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Similarly, 

5F 
9y 2A (F2-F4)(X3-Xl)   -(X

2-%)(F3-Fi)] (1-7) 

3 F     3 F 
The quantities-r— , -r—> are considered to be defined at the center of the 

^ x      3 y 
quadrilateral.    For the acceleration routines uued to move,  say, point P, 

the given quantity F in Equations (A-6) and (A-7) is defined at the center of a 

quadrilateral.    The area enclosed in the integration is the area I, II, III, 

IV. 

m 

UL 
® 

® 
' 

(1-8) 

The corresponding difference equation for the x and y components of ac- 

celeration become: 

^F   n^  •   i   d   S s    .     Jp^   .   y^     +     p^    .   y^ 

+ Fo{yiy-yi) + F(S>^i'yii)] 

+ F(3)(XIV"XI)+ F(D(Vxii) 
(1-9) 

For time derivatives, a standard central differencing scheme is 

employed.    See Appendix II for a complete list of the difference equations 

used. 
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APPENDIX II 

DIFFERENCE EQUATIONS' IN THE CRAM CODE 

1* Mass Zoning and Indexing 

The material is divided into quadrilaterals with n grid indexed j, k 

that distorts with the material.    In the following figures,  the centers and 

vertices of the quadrilaterals will be denoted as follows: 

Q   «   j + 1/2, k + 1/2 1   =   j, k 

(D   .   j - 1/2, k + 1/2 2   = j + 1, k 
(D   s   j - 1/2,  k - 1/2 3   = j + 1, k + 1 
@   =   j + 1/2, k - 1/2 4   = j,  k + 1 

Y ' 

(D 

d)' 0' 
sz k 

k-l 

j-l i     j*i 

The mass at zero time associated with each quadrilateral is obtained 

by using the well-known theorem of Pappus for determininp; the volumes 

swept out by the quadrilateral cross-sections rotated about the y-axis.    For 

example, the mass at zero time for quadrilateral^^ is calculated as follows: 

(a) 

HD-if^ 
o o \   . o       / o o o \   . o 

/v.   + v.   + v. I A     + fv.   + v.   + v. 1 A. fy- + y^ + y. 
cr 

a  + Tl   + ^2   +  ^4 Q   (n-i, 

masses M  , M    and e calculated similarly. 

(b) 

A     a   area of triangle "a" 
a B 

A     «   area of triangle "b" 

/A\n        1 n/n       nN.n/n        n\       n/n n" 
\V0'   2    [X2   (y3 -^j*  X3    [W^r X4   (y2   "   ^ (11-2) 
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I 

2, Continuity Equation 

v® = T (^[fa + ^3 + ^) < + f" + Sz + ^)Ab JD 

II- 
(D 

® 

© 

® 

k+l 

k-l 

i-i        j       !♦• 

3, Equations of Motion 

(a) 

•n+I/2 .n-1/2        At 
J, k J.k .  n 

n 

to, j.k 

\n    / n        n 
'xxj©   ^11 ' yIII 

*"M^-^y(***u*-t) 

n    /„n n 

^yj® ^i ii 
. n   Q n 

+   At     ß 
j.k 

(II-4) 

(II-5) 
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(b) 
.n + 1 /2 .n-1/2  .    At 

y. ,       +  
J.K ,   n 

n 

2^5 
j.k 

.—     .n  .   n n   . 

n   .   n n. + <2:yyb'"m   "   V'   *  <Eyy8'V-i' 

^ '^ K - 4' - '^6'% - vm) 

'VS ^m-^v»   -   <V®(yiv-^> 
(II-6) 

.        \n / n n» 
+    Atna" 

(c) 
<P 

n 
>,k 

/ 0»n 

f P A 
i..n 

P     A 

'Q vn /Q 

/oAn\ /oAn\ 
(jeji.\   * (JLAJ 
\ vn ^    v vn / ®J 

j.k 4 j   [   VM   'J^ 
n 

T"v^-'|@^ Tn <■£-' xy     M 
(3) 

Tn   (—) 
xy1 M   ' J0 

(11-7) 

ß 
n 

j.k 
1 
4 *yy ■ ^ '#' O 

n 
1 yy     ee' l M ' 0 

n 
(Ln   - En   )   (—) v yy     ee' * M ' O 

n 
v yy     ee' { M ' ® 

(d) 

J.k J.k j,k ^ 

yn+i  =   y",  + yn+1/2    Atn+1/2 
j.k        'j.k 

(n-8) 
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4. Stress-Strain Relations 

(a)   Strains 

*& 3  (Aato + (Abb 
n+1/2 1  /Än+1 n 

n+l/2 livn+1 4-    Vn \ 

4 3 

X 
1 2 

WM^) 
n+i/; 

0 2A 
n+1/2 

(x2-x3)(y3-y1) 

(y2"y4){k3'ki) 

n+1/2 

(: yy. 

.n+1/2 

10 
a.\ n+1/2 

9An+l/2 (y2-y4){x3-x4) (n-9) 

yn+1/2 

(x
2-X4)(y3->rl) 

n+1/2 

n+1/2 

y 

y Jo 
v_ 
V 

(€      +'€     ) 
xx       yy 

n+1/2 

0 

.   y+i/2     /_av_ + _öx_\ _      i 
*y/0 [ 3x     '     öy ;   - ^+172 

AD 
(y2-y4)(y3-y1) 

(y2-y4)(y3-y1) 

- (x2-
x4) (XJ-XJ) 

(x2-x4) (x3-x1) 

n+1/2 
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( A«    )n+1/2 n+1/2   Atn+l/2 
xx'Q) 

(Ac   )^1/2 

yy 0 

(Ac   )n+1/2 

=  (c   )"+1/2 Atn+1/2 

.     .n+l/2 A n+1/2 
(U-10) 

(Ac   )n+1/2   =  «    ^i/2 At
n+1/2 

AV 
V 

,n+l/2 

0 
Vn+1/"\        A   „+1/2 Vl       -Vl 

CD      /0 
,n+l/2 

0 

(b) Stress Deviators 

(S     )^1     =   (S     )"   +2M xx© ^ Q 

(S     ^    =   (S     )"   + 2M 
yy 0        yy 0    ^ 

(se9,0   ' ,se9)®+'" 

A    n+1/2 1    /AV\n+l 
A €xx "   3    [—) 

IZ 

"0 
+   ('xx)0 

Ac n+1/2        1    /AV 
yy 3    V  V 

n+1/2 
.n 

A   n+1/2        J_  / Av\ 
a €ee       ' I • v v / 

n+1/2 
JD 

yy 0 

^D 

(T   f* = (T   )" + M   (A cn+1 

^0 xy (p      K    L   'xy 
/2 .n 

+      (Ö      )' xy 0 (11-12) 

5.        Equation of State 

pn+1   =    A(Vn+1)   +   B (Vn+1)   •    En+1 

0 0 0 0 
(n-i3) 

5,    Artificial Viscosityr   , ,. ._ _ 7      2 oAn+l/2 . ,   v   2 
/ V \ n+1/2 c    p A 

_   V 
n+1/2 

0 
c       =   4, calculate for V < o o 
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4 

7. Total Stress 

.n+1 
(£.„.) xx CD 

(S  )n+1 

"0 

(s   )n+1 

(s   )n+1 

n+l        n+1/2 
p      + q 

n+l        n+1/2 
p      +q 

CD 

0 (11-15) 

/r     *n+1 n + l 

96 Q 

n+l       n+1/2 
P      +q 

0 

8, Energy Equations 

(a)   First Law of Thermodynamics 

i + l- [B^
1
)]    (vn+1-vn) 

n+1/2 

(11-16) 

(b)   Energy Dissipation or Energy of Distortion 

zO   " Z®+ V01/2  \S™ '** + Syy V+ soe '** * T«y ^y, 

Azn+,/2   _   zn+l_zn.    sn+l/2   =   1   (sn+l   + s„ , 
ij 2       ij U 

n+1/2 

® 
(n-i7) 

9. Von Mises Yield Criterion 

.n+l 
2J [(S?+I)2

+(S£+1)2   +  (s^1)2] 

= r(sn+i 
|_     XX 

)2  ♦ (s"41,2 + ( 
yy ' C'2] + 2'C'2    <11-18' 

2J"+1-|(Y)2 

o      o 
=   1- 

n+l 
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n+1 n + 1    ji+l        n + 1 „ , n+1       .     , , .   , .     ,   . ^n + l    ji+l 
If k > 0, then multiply each of the stresses S       ,  S-.       g r 7 xx        89   '    yy 

J rr, n+1   ,     I 2     „   ,  J. ,n+l ,, , n+1 
and T by^j r-    Y   / W 2J .    If k - 0, use the stresses as computed 

by Hooke's law. 
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APPENDIX III 

SC 4020 PLOTS OF THE LAGRANGIAN 

GRID FOR PROBLEM III 

The following grid plots show the predicted deformation of the 

projectile-target configuration at various times during the impact process. 

The choice of the grid depends on several factors including the geometrical 

configuration,  degree of resolution desired and computing time, A 

rectangular grid is best suited for cylindrical projectile impact. To 

obtain the desired rcolution and stress wave definition through a given 

region,  a miminum o. ten zones in the direction of propagation is re- 

quired.    In both Problems III and III-A,  this requirement   created 

relatively small zones in the targets which were thin in comparison to 
_4 

the projectile length.    In the interest of computing economy (10      min/ 

cycle/cell on IBM 7094) a larger cell size was used for the projectile. 

This variation in grid size did not adversely affect the results and 

agreement with both one-dimensional wave propagation calculations and 

experimental evidence was good. 
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TIMC 0.00t CYCLE 1.00 

CIC[C[C|C tmm fTTTy rrnqn?' c[C|C|C|c 

Figure III-1.    Problem III, t = 0. On    ^sec. 
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TIMC o.ort CrCLC 10.00 

c c 
-- nz 

Figure III-2.    Problem III.    t = 0.079^8ec. 
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TIMC O.tOI CYCLE to.00 

1 

CCCCCCCCCI 

CCCCCCCCCI! 
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IT                              L .    .           .f '- V * 

2        d   M JndT   IT TH   HiHc A 
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1 III M Ml M 1111   1 M M   1    1  M 

Figure III-3.   Problem III, t = 0. 201 ß sec 
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TIMC 0.5« CrCU 90.00 

A 

A A A A 

c C C • • A 

c C c c c ■ 
c C c • * 

\ 

A A A A A 
-I 

C i X 
X 

- " - - - - - ■ r 

. . _ - I i X 
X 

X 
X - - - : : - : : : 

" ■ m * m — " A X 1 
" ■ •m   m m ■■ ~ 7 r u 1 
"* ™ ■   ■   ■ 

— ^ i c L f Ä 
IX rii 21 XX A X 2 X X xx- ^ ■" ie i '- A 
nMnwMtiHwwwHwrniWMfiiiiiHwuwwMMriirdrj»« 

l_ !w 

Figure III-4.    Problem III, t = 0. 326 ^jsec. 
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TIMC 0.4M crctt 40.00 

•      ••••••A* 

CCCCCCCCtl 

CCCCCCC         C        C        B 

«      «          1                                       1              1 

I    1    j    !    i    I    1     11    1    1 

n rrrh n lA 

1   IIIIIIIIMIM MUlll   i 1111111^*11 M M 1 M 11111 H 11 

Figure III-5.    Problem III, t = 0.462 ^sec 
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TIMC O.MS 
ClCLt tO.OO 

Figure III-6.    Problem III, t = 0.745 M8ec. 
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TIMC 1.04» CYCLE »0.00 

* A A        A 

e e e     e e     e e A A 

c c c     c c     c c G B A 

c c c     c c     c c e e 

* 
-\ rn TA 

_e 

c 
• ä J« 

c .LA 
m m 

T / if r r 
A T £ E L tjr; \\- ^^g; —  Ä C ~ I' c ~ ~ T T 

1 **f'l i i * r r- ■ -r xf^'I' /rrrfrf' -> 
*  A A   A   t   C tlL^.L • -r^T. TTfiE -TT- 

" " — 
Ä Ä A A   A  A   A A  Ä^Ji IX-" 

_ _ «MM   :::5:S -- ±-- 
LI 1  ' ' ' 

?F 
"" "" ~ — ~ — "" ~ — — "■ 

A ' 
- " - "" " 

A 

LJA A 

E- 
■■  • 

i - 
" 

-^ B- — _ _ _ _ _ _ M m 

Figure III-7.    Problem III,  t^  1.046 ^sec. 
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r TIME 1.3» 
CYCLE 100.00 

B        6        B        B        B        B        A A 

c       c      C      C      C      c      e 6 A 

E        6        B        B        B        6        6 6 B 

tmmm^m 

~— 

^^^ 

r— 
A 

A 

C 

*        * 
B 

1 

C         B C T 
c      c      A      e e 

:> 
B        C        C        E        e        A 

\6 ^ 
C c r r r    A * * ä  1* A ii,zi-   1 | 4T+- 

^ ft ■ r        , jzrh m       If # 
■ ■   ■   .   L  '   i"  i  A /. TlA    jl      L ^ _X 

^ 

■ r :   .   i      •   .i ,. 7 /.         I L 

f 1111 it: 

/CJ/Stor^ ■* 

; - 
-1 

" ^ m 

-i "■ 
H ^ — " 

■ 

TE _L J 
— 

■■ ■ ~ " 
f/A — .. "■ — " 

" _ 

A . " " l— — " 
A " 

c d 
' ' '" m m 

□ u Ü ̂ _ _ 

Figure III-8.    Problem III,  t=  1. 330 u sec. 
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tlMt i.et« CTCLC 120.00 

t     c     e     e     A     A 

ccccceeAA 

A     AC     e     e     e     e     A 

"^             j      . 

A 

,   * 

'üt 6   c   e   6 1 ' 1 ' a e      e     c     c     e     e \ 

e       6       C       C                A            \ 

e     c     c      e             6     e      c 
^ 

c      c      c                     c      A              t 

r \ A        6 ie\   \   \Tirr 
 ~Z 4-/^5< 
 " Btf-rx 

Figure III-9.    Problem in,  t=  1.624^ sec. 
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Tine i.»ir CTCLC 140.00 

A         A A        A 

*      A     e     E     B B        A 

*     e      c      c      c      e B        A   1 

E     c      c      c      e      * 

E        C        C         6        6                    A 

c      c     c     c      6             e      e 
\   " 

c      c      e     A              Ac \     B 

C           E                                   A          A A 
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A   A   A 7        A   A       (                           1      _J  f m 

Figure III-10.    Problem IE,  t =  1. 917 M sec 
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Figure m-11.    Problem III,  t = 2. 210^ sec 
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Figure III-12.    Problem III, t = 2.449M«ec 
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Figure m-l 3.    Problem m.  t = 2.789ii8ec 
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FigurelU-U.    Problem III,  t=  3.123^860. 
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APPENDIX IV 

EXPERIMENTAL DATA FOR PROBLEM III (STEEL INTO STEEL) 

TABLE IV-I.    EXPERIMENTAL DATA FOR EIGHT IMPACT CASES SET 
UP TO DUPLICATE PROBLEM III 

ot Projectile Weight (gr»ing) 
o.        Before Impact     After Impact 

53.4 

52.8 

S3.5 

53. I 

52.3 

53.3 

52.8 

53.5 

53.2 

52.9 

53.0 

53.0 

52.8 

53.4 

52.8 

53. 3 

Plut WeiRht 
(Rrains) 

10.7 

12.6 

12.0 

12.0 

12.8 

1 1. 3 

11.9 

I 1.85 

Velocity (km/sec) 
Froiectile 

Before Impact     After Impact 

.'■1 

.(.1 

. 636 

. (.1 

.61 

.61 

. 61 

.636 

. 507 

. 3o55 

.406 

. 397 

.418 

. 392 

. 400 

.400 

Plug 
After Impart 

. S47 

. 376 

.41 

.421 

.434 

.442 

.449 

.449 
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a I

Figure IV- 1. X-ray Data Showing the Experimental Pre- and Post-Impact 
Configurations for Problem III. Impact is from Left to Right

i %

-'i

Figure IV-2. X-ray Data Showing the Experimental Pre- and Post-Impact 
Configurations for Problem III. Impact is from Left to Right and the 
Projectile Experienced Yaw in This Case
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Figure IV-3. Cross Sectional View of the Deformed Projectile Shown in 
Figure IV-1
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Figure IV-4. Enlargement of the Cross Sectional View of Figure IV-3 
Showing the Fracture Markings in Detail
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Figure IV-5. Cross Sectional View of the Deformed Projectile Shown in 
Figure IV-2

120



.V

•Wa. /'
I . .

not reproducible

V. '4-?.'* • ■i4 ^

. ••■ A -•'

V ■ Ji. ■. •■* TV"'" - * .7 .. Xii
.; V .->4^ , •' ■'! * .

« ^ . ■•. »k

. ■ -,. ' V. .:

’""■ V :

•‘V
' • , .i'v
• * ■ *

*** ^ J*‘Nii

• -;r'
" • ♦»li

"^134-* -'»i»>

'^: . . " y%i
<;..%. • ■:•><

Figure IV-6. Enlargement of the Cross Sectional View of Figure IV-5 
Showing the Fracture Markings in Detail
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APPENDLX V 

SC 4020 PLOTS OF THE LAGRANGIAN GRID 

FOR PROBLEM I1I-A 

TIMC O.OOt CtCU 1.00 

1 t 1 

1 1 1 1 1 1 

1 t 1 I 

lj_ i_j 1 _ _ _ L _ _ „ J 

Figure V-l.    Problem III-A, t = 0. 005/isec. 
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Figure V-2.    Problem III-A, t = 0.317 ßaec. 
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I - - 

TIMI 0.110 CTCLC M.OO 

Figure V-3.    Problem III-A, t = 0. 570 ^»sec 
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^«LC        ».00 

Figure V-4.    Problem IH-A, t = 0.777 M»ec. 
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L 

Figure V-5.    Problem III-A, t = 1. 094 fiaec, 
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Figure V-6.    Problei-n. III-A, t = 1.358^8ec. 
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Figure V-7.    Problem III-A, t = 1. 540 ^sec. 
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Figure V-8.    Problem III-A, t = 1.564^8ec. 
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APPENDIX VI 

EXPERIMENTAL DATA FOR 

PROBLEM lU-A (STEEL INTO ALUMINUM) 

TABLE VI-1.    DATA FROM EXPERIMENTS FOR DUPLICATION 
PROBLEM III-A CARRIED OUT AT D.R.I.  BY R.  RECHT 

TEST NUMBER 69 70 72 73 74 75 76 77 

Impact Velocity (km/sec) 0.568 0. 642 0.645 0.565 0.652 0.620 0. 587 0.600 

Residual Velocity of Plate 
Plug (km/sec) 0.564      0.640      0.667    0.573    0.668    0.635    0.597    0.587 

Residual Velocity of Cylin- 
der (km/sec) 0.489      0.555      0.560    0.480    0.556    0.533    0.490    0.509 

Angle Between Axjs of 
Cylinder and Line of Fire 0.5 7 2       5.7 0.5 1 1       2.5 
Just Prior to Impact (De- 
gree*) 

130 



\'

^ • f
K* U.-

•.* » 
‘p

h

Figure VI-1. Plan View Flash Radiograph for Test No. 75

Figure VI-2. Elevation View Flash Radiograph for Test No, 75
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Figure VI-3,    Plot of Residual Velocity Versus Impact Velocity for the Set 
of Experiments Performed at DRI for Duplicating Problem III-A.    The 
Dashed Line is the Prediction from the DRI Equation 
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Figure VI-4. Impacted Projectiles and Pltte Plugs
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