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ABSTRACT. The purpose of this tutorial report is to allow the reader
with a limited background in optimum estimation techniques and/or
inertial system theory to achieve a level of competence which will
permit his participation in the design and evaluatinn of sided

inertial guidance systems. To this end, the Kalman Filter is described
in some detail, with full use of intuitive concepts. Next, the theory
of inertial navigation is presented. Based on an understanding of
1nertial systems and the Kalman Filter, the reader 18 then shown how

Problems arising in the application of the Kalman Filter to practical

T T

— situations are discussed and common methods for solving them are
= 11lustrated. Examples in inmertial navigation, gyrocompassing, and

alignment transfer are pruvided in support of the theoretical
development.
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e analysis, synthesis, and desiyn of strapped-dowa ilmevtial — -
iiidance systems at the Naval Weapons Center, China Lake, Calif., it

has iecome evident that the problem of alignment and initiglization
represents an area of great concern. Strapped-down alignment and
initlalization has been expected to engender problems difterent than
gizballed, but not problems whose solutions sre technically unfeasible.

As an aid to thc research and development effort for strapped-down
inertial guidance, some essential groundwork has been prepared with the

procurement of this tutorial report for application of the Kalman filter
techniques for aiding inertial systems.
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Section 1. TNTRODUCTINON

HISTORTCAL BACKGROUND

Trertial navigatore are among the moat precige of all electromechan~
ical devices. The simple thecoretlcal basls of inertial navigation is the

‘measurement of linear and angular motion and employment of Newton's laws

te compute changes in peosition, velocitry, and artitude., <Conceptually

the inertial system is self-contained, but in practical use its perform—
ance deteriorates seriously with time unless external indicatioas of the
navigation quantities are used to remove self-generated errors. Thus,

it can be said that the utility of the inertial syastem lies in its ability
to provide information between external measurements.

Classicallv, external measurements were used to upndate the inertial
system variables in a deterministic manner, i.e., system position indica-
tion was changed to agree with the results of a position fix, etc. And,
by proper employment of external meas:vements, sensor crrcrs were removed
from the system calculations (assumi.y these errors to be constant).

This aporoach ipnored two important facts. First, external measurements

_themselves contain random errors which may be significant compared to

the inertial system errors. Also, the system errors are primarily caused
by random, time-varylng inertial sensor errors. The optimum usc of
external measurements, properly accounting for measurement errors and
gensor errors, has therefore become an important source of improvement

in inertial navigation system accuracy.

Application of the Kalman Filter to inertial navigation systems
hagan in the carly 19480's,) chertly after cptimum recursive filear chacry
was developed and published. Because the errors in a useful inertial
system propagate In essentially a linear manner and linear combinations
of these errors can be detected from external measurcvments, the Kalman
Fi{lter is ideally suited for estimating them. Operationally, the filter

relates to the inertial navigator and external measurements as 1llustrated

in Fig. 1. It also provides useful estimates of 3ll system error sources
which have significant correlation times. Figure 2 demonstrates two
common schemes for using the error estimates to correct t~5stem errors.

In addition, the Kalman Filter provides improved design and opera-
tional flexibility. As a time-varying filter, it can accommodate non-
stationary error sources wnen their statistical behavior is «nown.
Configuration changes in the inartial system are easily treated bty simple
programming changes. The Kalman Filter provides for optimum use of any
number, combination, and sequence of external measurements. It is a
technique for systematically employing all available external measurements,
regardless of their errors, to improve the accuracy of inertial naviga-
tion systems.
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. also utilize position fixes ic demonstraced,

‘the reader interested in furiher background Informatlon in the zreas
of mstrix algebra and linear system theory is referred to Ket. 1.

TLLUSTRATION OF THE IMPROVEMENT PORKIRLE

A fev figures eerve to illustrate the ability of the Kalman Filter
{9 provide superior performance in inertial evstems. Fipure 3 compares
the BMS crulse mode asimuth error of an aircraft inertlal navigation )
system whun [ived-galn velpcity deamping is provided (constant gain feed=- ~
baeck) and when the Ralman Filter {optimal feedback) iz usad. TIn Doth
cases continuous external veluclty measurements were provided and external
position fizes were mada every 15 minuteg. The fixed-gain filter did
not ume position messurements to improve its knowledge of azimuth.
However, the discentinuities in the trace indicate that the Kalman Fllter
was sble to infer something about azimuth errer each time a new positien
fix became available.

Figure 4 demonstrates the ability of the Kalman Filter to determine
inertial sensor errurs. It represents the RMS error in the knowledge of
constant gyro drift rates in an aircraft inertial navigation system, start-
ing with a 1 deg/hr uncertainty. For this example the Kalman Filter is
operating on position fixes only. The dramatic imprcovement in calibratiom

of gyro error suggests a considerable increase in navigation accuracy
between position fixes.

An 1ilustration of the Kalman Filter's ability to decrease alignmenc
+ime of inertial navigators is provided by Fig. 5. It shows the RMS
aximuth aligmment error for fixed-gain and Kalman Filter airborme align-
ment modes of an inertial navigation system. Both schemes use an external
indication of vehicle velocity, but the ability of the Kalman Filter to
It -is evidant that the
optimal! use of information rrovides & significant reduction in the time
required to align to glven asccuracy or reduces errore at the end of a
given alignment period.

OUTLINE ‘OF SECTIONS

Section 2 continues with a discussion of the basic concepts which
characterize the Kalman Filter. These include state space notation,
uncorrelated random processes, the Kalman Filter equations, and the
estimation error covariance matrix. Section 3 follows with a discussion
of inertial navigation systems., Beginning with a brief description of

inertial sensors, it progresses through gimballed and strapdown inertial

measurement units to the equatione of inertial navigation and the

linearized expressiumns for inertial navigation errors.
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Section 4 describes the correlation pruperties of errors in inertial
sensors and external measurements. It illustrates the steps necessary
to formviate these errors in the manner required by the Kalman Filter.
Section 5 describes three important mechanizations of inertial navigation
systems and dsvelops the expressions necessary to apply Kalman Filtering
to them. Whenever the inertial navigation system errors are estimated
they are applied as correct.ons to the navigator. Section 6 discusses
the use of the Kalman Filter output to minimize inertial navigator errors
at all times. Serction 7 Zescrit s the use of the Kalman Filter for
self-alignment, while Section 8 concerns the transfer alignment of one
inertiai system to another. Practical considerations which arise in
the use of the Kalman Filter are discussed in Section 9, Thay include
computer requirements, observability oi state variables, subhoptimal

fi{ltering to reduce complexity, and sensitivity analyges.
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. .Section 2. KALMAN PILTER CONCEPTS

In the late 1940's, Norbert Wiener first specified the linear filter
which has the capability of separating 2 single signal from additive
noise, minimizing the mean square error in the indicared signal--filter
output or estimate (see Raf. 4). The "Wiener Filter" is time invarilant
and the minimum mean-squared error criterion f{s theoretically achiaved

“oulv after the srationary signal and noise have been operated upon for

an infinite time.

In the decade that followed Wiener's first results, his theory was
extended to cover the cases where filtering was conducted over a finite
veriod, the filrer received inputs at discrete instants of time, the
filter and 1its inputs were nonstationary, and several signals (states)
were to be detected. In the early 1960's, Kalman and others (Ref. 5, 6,
and 7) pnrovided a unified body of linear filter theory which handles all
of these situations and is expressed eatirely in the time domain. The
Kalman Filter, as it has come to be cnlled, provides an essentially rvreal-
time reduction of its input data to give a minimum variance (i.e., least
squares) estimate of the state varizbles in a nonstationary linear system.
It can be derived in many different ways. Under iderntical assumptions,
the following approaches all yleld the same filter: least squares

estimation, Bayesian estimation, maximum likelihood, and conditional
expectation.

LINEAR DYMAMIC SYSTEMS

The Kalwan Filcver is formulated using state vector,  time domain
notatlon., The state of a dynamic system is any complete set of quantities
necessary to describe the unforced motion of that system av all future
times. Given the state at any time and a history of the system forcing
functions, the state at any subsequent time can be computed. If the
linear system behavior is described by an nth order linear differential

equation in the dependent variable, driven by £(t), a function of the
independent variable, t,

A ™y +oeee s azA(l)(t) +a ME) = £(c) )

the syatem state can be desecribed by the dependent variable, A, and

its first (n-1) derivatives, A more compact furmulation is introduced
in the following example.




[EDUR Py SO,

Example: The linear second-order differential equation for
the variable A 18 expressed by

%+ 8, (t) i+ a (t) A = a(e) + B(t)

wnere the time functions o and B are driving the squation.
Any number of driving functiene asre possible in the general-

" ecase. Appropriate state variables can be defined as

x = )
1

X wA=-a(t)x -a(t) x +alt)+ B8(t)
2 2 1 1

In vector-matrix form, the equation is

0 1 x 0 0f fa(r)
- +
-a (t) -a (:)J xJ 1 1J l-B(t)
1 2 2

which is s first-order vector differential equation. This
compact formulation can be generalized to an nth order system.,

-The state variables of a linear system, x‘, oo X are written in

the form of a atate vector for easc in manipulation

The state variables of any nth order continuous linear system can be
defined in such a manner that the system dynamics ure expressed in the
form of a first-order linear diffurential equation in the state vector x.

e —————— s
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l i The vector notatlion permits the equation 1o be written in a compact
. vector~matrix form

i i
1 L] .
1 x(t) = F(£) x(t) + 6(t) u(t) (2)
5 % The vector u contains the independent variables that are forcing the
a | system differential equations. If x has n elements and u has r elements,
i F and G are u x n and n x r matrices, respectively., Figure 6 is a block
£ diagram ifllustration of Eq. 2.
g System _
: o TTTTTTTTTTT T
) | !
E ] i )
‘=. =l G t f —T
1 | + }
| |
\ {
. { |
{ F | }
! B |
; | "
! - 1 )

|
!
|
|
|
]
l
I
|
I
!
]
{
!
|
|
!
!

FIG. 6. Block DiaBrah of First-Order Linear Differential -
: Equations in State Space Notation. - -

Given the state at time tn’ denoted g(tn), and the vector forcing
function u(t) for all time greater than t the state at any subsequent

i time, t, can be found by solving the state differential equation, Eq. 2.
Another, frequently more useful, way to express the state vector behavior
uses the state transition matrix, denoted ¢ (t, tn) to deseribe the effect

of the state at tn on the state at some other time, t. The transition

I matrix 15 an influence function. In the absence of forcing terms, the
inff{uence of Ejtn) on x(t) is displayed through the relation

. . 4‘ 1(;) = ¥(e,t ) x(t) 3)
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B The atate transition matrix s computed from the system dynamics as
- - expressed in the system matrix, F. When F i a constant, % is a function :
Fo """ of tha time difference (t-tn) and is given by

- B(e-t ) = o (7t0) )
———{ ~ "~ The matrix exponential in Eq. 4 18 ailegitimate operation and can be ;
= exprassed, by analogy with the scalar exponential, as
(t-t )?
P(r-t ) - - n 2
. o e n I+(ttn)F+-———-=——2! F+ ...
& * j
(t-t )
- :E: — vl (5)
3=0
where I is the n x n identity matrix. When F 1s time-varying, the state
trangition matrix must be calculated from the differential equation
d[e(e,e )]
T - F(e) o(e,e ) 5 (e ) ~ 1 (6)

Further details on computing ¢ are available in Ref. B.
e — T "~ Whea F is time-varying and forcing terms are available, the state
: vector can be expressed in terms of x(tp) and the state transition matrix
:

t ) !

x(t) = o(t,t ) x(c ) + / #(t,1) 6(1) u(1) dt )

St

é vhere
T, D1 e F e, v eey s

If interest 1s focused on the system state vector only at discrete points
in time, Eq. 7 can be expressed as a difference equation

Zn "ty ®

10




iU

T g T

where the notation % indicates the state vector at tp, Unless the system
HE - dynamics are stationary (not time-varying) and the time interval is fixed,
&, will be a function of time and of the interval between the instants

i represented by t; and tnyj. The term w, represents ths effeet of the

: forcing function u over the interval tp to tuy].

Ladt

e Y
v, - ‘IP LACIVP ) G(7) u(t) dt 9)

ta

The expression given in Eq. 8 will be used extensively in the discussion
which follows.

b
¢
i STATE ESTIMATION WITHOUT MFASUREMENTS
i

In the absence of random forecing terms, the system state behaves in

a deterministic (directly calculable) manner described by Eq., 7. However,

: when random disturbances are present, the system exhibits random behavior

: and, if exact measurement of x{(t) 1s not always possible, it becomes
necesgsary to estimate the state vector. If an estimate is provided at
some point in time, t,, and the system is not observed (i.e., no measure-
ments of the stote are available), the best estimate of the state at all
subsequeut times 18 providad by solving the deterministic portions of

- Eq. 8. The estimate at t; is used as the initial condition. Two factors
contribute to errors in the estimate at times later than t,; the errots
in the initial estimate propagaie in a manner described by ¢ and random
uncertainties in knowledge of the forcing functions provide sdditional
errors.

. e e =

g v

e —

Thus far we have dealt with deterministic quantities. By definitiom,
: random processes cannot be specified quantitatively as functions of ti-az.
% - It is necessary to describe then in a statistical manner. In particular,
! it is sufficient to describe random quantities (assumed Gaussian) by
their first and s2cond moments in order to apply the Kalman Filter.

The first statistical moment, or mean, is described and removed from
consideration by specitying it to be zero. Any quantity which is biased
by a known amount can be replaced by a zerc-mean variable through simple
redefinition. The second statistical moments between processes are
described in the state vector notation by the covariance matrix.
Convariance matrices are discussed in Appendix A. Conceptually their
diagonal elements are measures of the "size'' of the random signals they
describe, while the off-diagonal elements provide a rmeasure of the
interrelation between different random processes. It is assumed through-
out this discussion that covariances between random quantities are zero
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if not explicitly stated to be otherwise, Because ensemble averages or !
sxpectations are taken 1n definlng the covarlsnces, the results of the '
calculations are & valid representation only of the ensemble average

bghavior of the filter and its esiimates,

ine estimate of the state at t, is designated by X, and the random
urror in that estimate 1s defined by

LU | (10) ;

The covariance matrix of X, is denoted by P,. For zero-mean variables,
i ~ T \*
Pn.E(!-n'!n) 11)

If Q, is the covariance matrix for the random portion of ¥,» a difference
equation can be obtained from Eq. 8, 10, and 11 which describes the growth
of the estimation error covariance

T
Pn+1 - °nPn °n + Qn a2
In arriving at Eq. 12, use is madc of the fact that
= . T
E (5,, ‘_',,) -0 (13) .

since w, is uncorrelated in time.
It can be seen that the random uncertainties in w, (described by Q)
can only increase the errors in the estimate of the system state as
described by P; this i1s a reasonable conclusion. Mathematically it results
from the fact that Q, 18 a non-negative definite matrix. In continuous
notation o differential equation for the error covariance matrix results
(see Appendix A) {

———

P = FP + PF' + GQGT (14)
where Q is the covariance matrix for the random portion of u.

It should be noted that the random quantities forcing the system — e
can take two very distinct forms. One 1s errors in the control applied
to the system. The other represents random disturbance of the system.

*

Throughout the report the symbol F preceding a vector product is
used to denote the ensemble average of the quantity enclosed in the
brackets. _ o
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When a known control or forcing function, Eﬁt), is ueed in the prasence
of system disturbances, Fq. 2 can be written as

x(t) = F(r) x(t) + G(t) u(t) + L(t) p(t) {15)

to demonstrate the separsie effects. Then, when the two effects are
uncorralated, Eq. 12 and 14 ean be written as .

T
Pn+1 = Qn Pn @n + Qn + Sn {16)

P = PP+ PF +GQGT + LsLT an

-Here the S matrices are the covariance of the errors in anplication of

the control, while the Q matrices describe the effect of the random
disturbances. Since the two random driving functione have analogous
effects on the error covariance, only random system disturbances will be

considered in the subsequent discussions.

KALMAN FILTER

When use ig made of measurements to change the estimate of x, the

~error 1n the estimate is also changed. Hopefully this error, or rather

the statistical description of {t, is in some way reduced, in the Kaiman
Filter the measurements are taken as linear combinations of the system
state variables, corrupted by uncorrelated noise. The measuremeant
equation 1s written in vector-matrix notation

Z X -+
- n-n

v
-n

vhere z, is the set of measurements at time tn' zl. sy zq, arranged

in vector form

zil

13
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Hy 18 3 g ¥ B metrix describing the limear combinations of state varisbles
which comprise g, in the absence of asise. Also, yy is 2 vector of random
noise gquantities corrupting the measurements,

Exsmple: Supposa it is desired to eszimare the constant
scalar gquantity x based on a aolse-corrupted measuremenis.

__Ths noiszs has 25v0 wean and 18 umceirelsted, Am unbilssed,
minimum variance estimate re;ults when £ is takea as the
average of the measurements, z4,

i

2(n) = 1 221

i=1

When an additional messurement becomes available,

o+l
:?(n-l-l)';"%-? E z,

i=1

However, the estimate based on n + 1 measurcments can be
computed employing only X(n) and the (n + 1l)st measurement

n
a n 1 N 1
L R(otl) = 517 54'1+g+1‘g+1
i=] )
n A 1
-n+1‘(n)+n+lzn+1
- &(a) + =tz [z - 2(n)]
n+1 "“n+l

The new estimate is the 0ld estimate modified by a weighted
difference between the old estimate and the most recent
measurement. This 1s a recursive formulation, eliminating
the need to store past measurements.

3y analogy with the exampie, one logics) way to use the measuremeat
vector g, is to anticipate it based on knowledge of the measurement
matrix H, and the estimate of tbe state vector at the instant the measure-
ments are taken. If z, and H, X, do not agree, the difference must result
from the measuresen: noige vp or an error in the estimate. The state

14
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varlable estimstes can then be changed aceording to statistical knowledge
of the errors in §n and of the measurement errora. 1t would be
apbruptiete to cause gn(+). the state vecteor estimate after copsiderstion
of the measurement, to be related to X,(~ =) by

A ™ [ - + - oS
e

(<)] (20)

Between measurements, the sliate vector estimate will obey the deterministic
part of Eq. 8. This behavior of £ is i1llustrated in Fig. 7. It can be
seen that the state estimate between measuremente is obtained by math-
ematical modellng of the gystem.

The use of measurements provided at discrete instants of time causes

the error covariance to be discontinuous, having different values before
and after the measurements. This 1s illustrated in Fig., 2, 3, and 4.
For this reason, the error covariance matrix immediately before the
measurements taken at the ntD instant are used is designated Pa(-).
The same matrix after the measurements are employed is called Pn(+)'
The matrix P,(-) is computed according to Eq. 12

T
P (=) =0 P ()¢ +qQ (21)

If Eq. 20 is used to improve the gtate vector estimate, the new error
covariaace is expressed (see Appendix B) by

4 —

P_(+) = (1 - K nn) P_(-) (1 - K Hn)T + K R_K. (22)

where 1 is the square identity matrix and R, is the covariance matrix
of the measurement errors v,.

The Kalman Filter was originally derived under assumptions that
permit the a priori specification of a linear structure (Ref. 9).
The ootimum filter was found to have the structure shown in Fig. 7.
That is, it processes the measurements sequentially according to Eq. 20.
In sddition, it estilmates between measurements according to Eq. 3 and
the filter gain matrix is specified by

T -1 ’
K m R H, Ry (23)
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An alternate form of Fc. 23 which can avold the vonseguence= nf a
singular R matrix is

K =P (=) HT !H P £-) HT 1R r“ (24)
u n

“Substitution of Fq. 23 or 24 iate 22 provides an

expresiion Tur the new error covarlance mstrix entirely in terms of the
measurement matrix Hn and the measurement error covariance

- -————""(58e Appendix B.)

T T, o |- |
NORENCIER NS R NSRRI R N R et |

\
- (1 - KH P (=)

Using Fa. 2) and 25, the error covariance can be calculated for any
measurement time. Equation 23 or Fq. 24 then provides the {ilter gain
matrix and Eq. 20 updates X. The state vector estimate is carried

forward to the next measurement bv Ea. 3. The optimum estimation
nrocedure is illustrated In Fig. B.

The continuous version of the Kalman Filter is illustrated in Fig. 9.
: _ The measurements are described by

z(t) = H(t) x(r) + v(r)

Measurements are emploved to change the derivative of rhe
egtimate according to the equotion

2-r2+k(z-u3)

(277
!
Tbe Kalman Filter gain matrix is specified by
K=PH R (28)
and the differential equation for the error covariance is
b= Fp + PFF - PH' R\ HP + GOGT (29)

Inspection of Eq. 21, 25, and 29 and the knowledge that Q, R and the
initial error covariance are all symmetric matrices reveals that P, P (+),
Py(-) are always symmetric. Steady-state values of the error covariance
(and thus the filter gain) can be calculated for many stationary systems

with stationary noises without specification of the initial value
of P (Ref. 5).
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Intuitive Concepts

Inspection of the squations describing the behavior of the arror
covariance matrix reveals several observations which confirm our intuition
abnut the filter operation. The effect of system disturbances on the

"growth of the error covariaace can be seen from Eq. 21 and 29 to be the

game as tbat observed when measurements were not available (Eq. 12 and 14).
_ - The larser the statistical parameters of the disturbances as reflected )
— "~ "in the “size" of the O matrix and the more pronounced the effect of the
diasturbances es reflected in the "size" of the G matrix, the more rapidly
the error covariance will grow,

'7_5 The effect of measurement noise on the error covariance of the dis-
- crete filter is obrerved better in an alternate form of Eq. 25 (Ref, 10)
“1 .. .51 T -1
L () = P -) + B R~ H (30)

Large measurement noise (Rﬁl) provides only a small increase in the
inverse of the error covariance (a small decrease in the error covariance)
when the measurement 1s used; the associated measurements contribute

little to reduztion in esti

On the other hand, small

measurement errors (large

Rn

mition errors.

) cause the error covariance to decrease

considerably whenever a measurement is utilized.

When measurement noise

is absent, Eq. 25 must be used because R;l does not exist.

The effect of measurement noise on the ability of the continuous
i Kalman Filter to provide accurate estimates of the state appears in the
third term on the right side_of Eq. 29. If noise occurs in every element - -

T -1

PH R ~ HP (31)

is also positive definite and the negative of this will always cause a
decrease in the "size" of a non-zero error covariance matrix P. The

- magnitude of this term is inversely proportional to statistical paramaters
of the measurement noise. Larger measurement nolse will cause the error
1 covariance to diminish less rapidly or to grow, depending on the system )
dynamics, disturbances, and the initial value of P. Smaller noise will
cause the filter estimates to comverge on the true values more rapidly.
In the absence of measurement noise in any of the elements of z, R~ does
not exist. This case is treated in Ref. 6. The effects of system
disturbances and measurement noises of different magnitudes can be
described graphically by considering the standard deviation of the error
in the estimate of represencative state variatle. This is presented in
Fig. 10 for a hypothetical system.

20
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A —
Large disturbances and measurement
\Cﬁom.
RMS
Esti g
Error-
Sinall disturbances and measurement
noise.
B STeﬁy ‘state error occurs i disturbances, measurement
noise, system and measurements are all stationary,
o
(a) Continuous Filter
A
Vs Large _distux bances and measurement noise. . .- . _ .
RMS /l/yl/l//l-/l/l/l/l/
Estimation
Error

Small disturbances and measurement noise.

111

* Can reach steady state values of P(-), P(+)
under the same conditions as described above.

—>

(b) Discrete Filter

FIG. 10. Behavior of the RM5 Error in the Kalman
Filter Estimate of a Particular State Variable.
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Fquations 21, 25, and 29 are similar to difference and differential
eguations that appear frequently in optimization problems. Some work
has heen accomplished which demonstrates that the ¢ (or F), G, and H
mxtrices may be manipulated in order to minimize certain elements of the

" error covaciamce matrix (Ref. 11 and 12). This provides a complementary
isprovemsnt of the Ralman Filter.

Kalman Filter éai;igétrii

It was pointed out earlier that the optimality of the Kalman optimal
linear filter is contained in the structure of the filter as displayed
in Fig. 7 and 9 and in the specification of the gain matrices by Eq. 23
or 24 and 28. There is an intuitive logic behind the Kalman Filter equa-
tiors for the gain matrix. It can be seen from Eq. 23

K = P_(+) He gL
n n nn

but the same ideay apply to Eq. 28. In order to better observe the mean-
ing of the relation, assume that H, is the identity matrix. It is simply
. the transformation matrix relating the ideal measurements to the system
state according t¢ Eq. 18. Hhen Hp is the identity matrix, both P, (+) and
Ry* are n x n matrices. If Rn is a diagonal matrix (no cross- correlation
between noise terms), K, results from multiplying each column of the error
covariance matrix by the appropriate inverse of mean square measurement
nolse. Each element of the filter gain matrix 1is essentially the ratio
between statistical measures of the uncertainty in the state estimate
o and che uacertainty in a measurement. If measurement noise i¢ large and
77T state estimate errors are small, the quantity Z in Fig 7 and 9 is due
! chiefly to the noise and only small changes in | the state estimates should
- . be made. On the other hand, small measurement noise and large uncertainty
: in the state estimates suggest that z contains considerable information
; about errors in the estimates. Therefore the difference between the
C actual measurement and that predicted from HX will be used as the basis
for strong corrections tc the estimates. Equations 23 and 28 specify
the filter gain matrix in a way which agrees with an intuitive approach
to improving the estimate,

! Correlated Random System Disturbances or Measurement Noise

The requirement that system disturbances and measurement noises he

- - strictly "white noise"” or uncorrelated in time can be relaxed to include
= those random quantities whose correlation time is much lees than any

characteristic time constant of the system or measurement process.

However, the situation frequently arises where the random vectors u

or v do not satisfy this requirement. In order to make the Kalman Filter

ugeful in these cases it is necessary to augment the state vector, i.e,

to add new quantities to those which are estimated. - In essence, because

the random disturbance or measurement error is slowly varyine, we are

22

e ————




T A TR RN S O Ty T T TR O

_ NWC TP 4652

forced to estimate it in ordes to corractly evaluate its effect on the

. estimates of the system state. Correlated signals can be described as
resulting from the application of an uncorrelated input to a linear
dynamic system. In particular, a zero-mean, exponentially-correlated
disturbance is represented by the output of a first-order linear system
excited by white noise (see Section 4). The additional state variisle _

. in the estimate provided by the Kaiman Filter is the output of this first-
order system, and the original correlated system disturbance is replaced
by the uncorrelated input. In this way the augmented equations for the
system and measuvement can again be put in the form described earlier for
uncorrelated random disturbances and measurement noises. A second-order
representation of the correlated quantity would require two additional
state elements, etc. Correlated measurement noises can be treated in a
similar manner, but in the continuous filter application a more complicated

problem arises because augmenting the state vector results in a singular
R matrix (Ref. 6).

Optimum Prediction, Smoothing, and Parameter Identification

Several modifications and extensions of the Kalman Filter presently
exist. At the same time that the filter was developed it was demonstrated
that the optimum prediction of the system state for some time subsequent

. to the latest measurement is provided by making the state vector estimate
obey the deterministic portion of the state differemtial equation. The
initial condition for this equation is given by the estimate immediately
after processing the most recent measurement. The error covariance for
the predicted state obeys Eq. 12 or 14 (if continuous formulation is
desired) with the initial covariance slso given by the value immediately
following the most recent measurement.

The Kalman Filter has been extended to the area of post~data analysis
or optimum smoothing (Ref. 13), The opportunity to use data taken both
prior to and subsequent to the point In time at which we want to estimate
the system state inevitably permits better estimation accuracy. Additional
calculations aggravate a computer-size problem that is often serious with
the Kalman Filter alone. Work has also been accomplished on the problem
of estimating the parameters of a system by measuring a noise-corrupted
linear function of its state variables. Simultaneous refinewent of. our
knowledge of system parameters and rvandom forcing functions is also the
subject of much work (see Ref. 14),

AN EXAMPLE

A simple and amusing example will help clarify some of the ideas
discussed above. Figure 11 illustrates the example. The observer is
‘attempting to establish (estimate) the position of a drunk relative to
a lamp post by observing both through a telescope. The drunk is
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(b) Mathematical Model

FIG. 11, Exzample: Drunk Near Lamp Post.
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constantly taking random length steps
measurements are actually aon-linesr, based on measured angle multipliied
by a varying range. However, 1t will be assumed that the distance to

the drunk has an averaga value and deviations about that value are small
compared to the total distance. As a result, the anglé between the drunk
and the lamp post 1s taken to be linearly related to the component of the
diarance betwssn them which is normal to the lini of sight. Motfce that
the component parallel to the line of sight is not cbservable. (See
Section 9.) The single state variable involved in the problem is the
position x. The F matrix is zero. ¢ and G are scalar (1 x 1) identit~
matrix. H is the scalar £, the mean distance to the drunk. The drunk's
steps and the measurement nolse are both assumed to be uncorrelated.

Q and R are the mean square values of w and v, respectively. If measure-
mente are taken at discrete points in time which are widely separated
compared to the frequency of the drunk's steps, the estimates of his
position will deteriorate between observations. Correlated muasurement
errors would result if the observer was on a structure that was swaying
slowly compared to the measurement frequency. Given an initial value

for the mesn square error in a priori knowledge of the drunk's position,
the corrections to be made to the ostimste as a result of the measurements
could be calculated.

in random directions. The observer's

If the measurements are equally spaced and if the drunk's steps in
the observable direction x provide an RMS position change of q each

period, the error covariance of our position estimate bztween measurements
can be written from Eq. 12 as

P (-) =

r4
n c +p 1

(32)

where the lower case notation is used to indicate scalar quantities,
As a measurement is incorporated, the error covariance changes according

to Eq. 30
1 1 1
Y * o7 + = (33)
pn(*) a + pn-1(+) “n

where r, is the RMS of the measurement error, expressed as a distance.
Simplifying Eq. 33 and substituting into Eq. 23, the filter gair is

. )

2
_{+)
. - ~ ¢ e G
: 2 = 2 2
n rn q? + pn‘1(+) + tn
1
. = 72 (34)
1+ I
P19 +q?
25




The eatimate of the distance x i3 corrected with each measurement according
to .

g () =2 () +k {2ﬂ - i‘:n(a)] (35)

From Ea. 34 it can be seen :hat, if the wmeasurement noise is much less
than either the effect of the subject’s movemunt between measuremeats or- = - -
_thm uncertainty in nosition after the last measurement, ip“’1(+)ff thea

kn = 1

and the estimate of present position closely approximates the most recent
obsorvation. On the other hand, {f :z is much greater than the sum of q°
and D (+).

k <<1
a

and each observation improves the estimate very little.

EXTENSION TO NONLINEAR SYSTEMS

Though cthe Kalman Filter is optimum only when the system differential
equations and measurements are linear, it has found considerable use in
estimating the state variables of nonlinear systems with measurements that -
are noige-corrupted nonlinear functions of the state variables, This
employment of the Kalman Filter is frequently referred to as the "Extended
Kalman Filter" (Ref. 15). It is an intuitive but freguently successful

‘application of the Kalman Filter in the absence of truly optimum filters
for nonlinear systems.

Suppose the system whose state it is desired to estimate obeys the
nonlinear differential equation

x - f (xi u, t) (36)

and the meagurements are noise-corrupted nonlinear functions of the state
according to

z=h (x, t) +y 37)

26
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If our knowledge of the system state is such that the matrices ) ;g
Bt -5
el vy :
-13 =
) - : of T -
Bl ™ P (38
s B3
)
H ¢ E ~
X

are approximately constant over the range of uncertainty in i,lthen the
continuous Kalman Filter gain matrix can be computed from the ahove
linearization according to Eq. 28 and 29 or ¢ can be determined from
Ea. & and the discrete filter gain calculated. It ghould be noted that
the F, G, and H matrices computed from Eq. 38 can be nonlinear functions 3
of £, The continuous estimate of the state vector is found from the : £
egquation ) - ' E

%=£@ t)+Kz

- h(§| t)]

(39

bl

Equation 39 is similar to that used when the system 1s linear and linear :
measurements are prescribed. It differs only in the ur - of nonlinear E
system and measurement functions f and h. Figure 12 (llustrates the

continuous Kalman Filter for a nonlinear system. An alternative approach
is to precompute 2 nominal state trajectory and cvaluate P, G, aud # in 1
advance. This reduces the on-line computation necessary, but it suffers : ?
further errors if the true and nominal state differ si{gnificantly. :

These techniquas are ouly aporoximate. They require that the dis-
turbances, measurement noises, and uncertainties in the state be of such
a size that the higher-order terms ignored in computing the error
covariance are insipgnificant., If this condition is not satisfied, the
apvlication of the Kalman Filter to nonlinear systems may be usa2less.

An iterative technlgue may be useful in reevaluating the m:trices in
Eq. 38 based on making a first estimate, X,, evaluating Eq. 38, then
recomputing the state estimate, etc. (Ref. 16 and 17).

Attt il s Bt

Another aporoach to linear filtering for systems with nonlinear <
.- . dynamics and nonlinear ohservations is the use of a one-tu~une nonlinear
transformation to map the nonlinear problem into a space in which the
transformed problem is linear (Ref. 18). However, the assumption of
Gaussian noise in the transformed probiem is frequently incorrect,
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FIG. 12. Block Diagram of the Estimation
Equations for the Extended Kalman Filter. -
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Iu brief, the Kalman Filter can be quite useful in estimatisg the
state varisbles of nonlinear systems. However, more care must be axercised
in checking theorstical results by mesns of simulation. Because the
error covarianca eeuations vrovide only an approximste evalustion of the
eatimation error statisctics, Monte Carlo techniques are resguired to verify

- the uge-of -the Extended Kalman Filter for nonlinear systems. Whep the . . -

Xalman Filter produces poor estlmates of the state of a nonlinear system,
ingenious changes can often produce a useful modified version (Ref, 19).

SUMMARY

The Kalman Filter is a systematic approach to estimating the state

variables of a linear system, It provides the minimum variance estimates
based on:

1. Repeated external measurements

2. An understanding of system and measurement dynamics
3. A statistical knowledge of the system distuvbances
4. 4 statistical knowledge of measurement errors

5. A statristical knowledge of the errors in determining the
initial state.

Flgure 13 contaiﬁsza summury of the Kalman Filter equations.
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Section 3. MODFLS OF INERTIAL NAVIGZTION SYSTEMS /
AND ERROR DYNAMICS

Engineers using the Kalman Filter to improve the accuracy ofi imertial
navigators have, in part, been succeasful because they possessed a good
understanding of the physical principles underlying insrtial aavigation.
Consequently, the succeeding sections digcuss hasic inertisl vimsors, - —--
strapdown and gimballed inertial measuring units, navigation using inertial
measurements, che propagation of errors in an inertial navigation system,
and the exteinal messurements used to recalibrate.

INERTIAL SENSORS

It was noted earlier that the concept of inertial navigation is
Guite simple; measurement of linear acceleration, velocity and angular
rate, and application of Newton's laws of motion. There are two kinds
of sensors which are basic to inertial systems--those which weasure
linear motion and those which measure angular motion.

Accelerometers

Linear motion is indicated by accelerometers. As the name implies,
they measure linear acceleration though frequently the instrument output
signal is the integral of the measured acceleration (i.e., velocity
difference). Accelerometers operate by sensing the forces acting on a
proof mass. This force may be indicated by a linear displacement, torque
(through a moment arm), change in the natural trequency of a vibrating
€lement, etc, Figure 14 illustrates a pendulous accelerometer which
converts force along the input axis to torque abnut the output axis,

The quantity measured by an ideal accelerometer is often called specific
force and represents the acceleratlon of the proof mass less that portion
due to mass attraction (gravitation). It is expressed by the equation

f=m(a~-0) (40)

wherg_? is gpecific force, a is the acceleration of the proof mass, m,
and G is the gravitational attraction acceleration. If m and G are
known, acceleration can be calculated from the specific force. Accelex~
ometers typically measure specific force along one axis fixed in the
instrument and three such devices are necessary to lmply total accelera-
tion in three-dimensional navigation space. It is customary, though

not necessary, to orient their input axes to be mutually perpendicular,

In the equatiovns of inertial navigation systems, physical vectors
will be designated by an overbar to distinguish them from the vector
notation (underbar) used in discussions of the Kalman Filter.
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FIG. 14.' Single-Degree—sf-¥Freedom Accelerometer,

Gyroscopes

The angular motion sensor vsed in inertial navigation systems is the
gyroscope. Two basic types of gyroscope exist: the gso-called free or
two-degres-of-freedom gyro and tie restrained or single-degree-of-freedom
gyro.

. The single-degree—of-frmedom (SDF) gyro is 1llustiaied in Fig. 15.
Its basic operation results from the fact that an angular rate about the
input axis creates a torque about the output axis, The torque 13 expressed
by the equation

T, " Hw1 (41)

vhere wy 1s the input anguiar rate and H is the rotor spin angulzr
momentum. The single degree of freedom is provided by permitting the
gimbal to rotate relative to the case about the output axis. The gimbal
angle is the angle between the angular momentum vector and some nominal
orientation of H relctive to the case. If damping is provided between
the gimbal and the case, the gimbal angle represents the integral of the
angular raete, wy, and a rate-integrating gyro results, I[ a restoring
torque proportional to the gimbal angle is provided, the device is called
a rate gyro. In either case the sensor output is provided by weaauring
the gimbal angle. A torque generatcr which provides torque to the
gimbal about the output axis 13 also present in most applications.
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FIG. 15. Single-Degree~of-Freedom Gyro.

With the two~degree-of-freedom gyro, use is made of the fact that,
in the absence of torques, the angular momentum vector keeps a fixed
direction in inertial space. Therefore, gyro case motions are detected
from the relative orientation between rotor and case. Three SDF gyros
are used to sense the total angular motion of an instrument package.
They are customarily oriented with their input axes orthogonal. If free
gyros are used, only two instruments are required. -

INERTIAL MEASUREMENT UNITS

Inertial navigation systems require an indication of acceleration as
the input to the navigation equations. Furthermore, these accelerations
(or rather the acceleration vector) must be resolved into the coordinate
frame in which the navigation equations are computed. Two general

approaches, described below, are taken to the problem of indicating inertial

acceleration in the desired coordinate frame., Both techniques employ an
instrument cluster or inertial measurement unit (IMU) which consists of
the necessary number of gyros and accelerometers.. The inertial semnsors
measure acceleration and angular motion in a coordinate system fixed in
the IMU. The two schemes differ only in the way they provide acceleration
measurements resolved ii navigation coordinates.

Cimballed Platform:z

The first practical inertial navigation systems mounted their sensor
clusters on gimballed platforms. Cimbals permit isolation of the instru-
ments frcm angular motions of the carrying vehicles. This isolation is
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so~omplished with tha halp of the gyros. They indicate changes in the
angular orientation of the plaiform relative to inertial space and, by
maans of gimbal servos, the platform is returned to its proper attitude.

——— hen & retaticn of the platform relative to inertfal spa - > is desired,

output axls torque generators on the gyros are used to cause false indica-
tions of asngular rotaticn, Because they cannot be distinguished from

— —=actuai inputy, thuse fictitiocus rotations provide platform reorientation

ia a manner similar to that described above. For more detail, tihe concept
of the space integrator is vseful (Ref, 20 and 21). The gimballed plat-
form permits accelerometer measurements to be used directly because the
sensor input axes can be oriented parallel to the navigation axes.

Strapdown Systeas

The simplest way to mount the instrument cluster is to attach it
rigidly to the vehicle. This approach saves the weight and power
associated uvith gimbals and gimbal servos. Rut as a result of the fact
that the navigation equations are seldom implemented in vehicle-fixed
coordinates, the accelerometer outputs must be resolved into the navigation
axis system. The relative orientation between orthogonal sensor input
axes and the navigation coordinate system is described by a transformation
matrix. If the initial value of this matrix is known, the gyros provide
the necessary information tc calculate it for all subsequent times during
system operation. The acceleration vector, measured in the vehicle axes, -
is then transformed into navigation axes; subsequent data procesging is
identical with that of gimbalied systems. While the strapdown system
simplifies th: hardware requirements for an IMU, it increases the require-

--mente for computsr size, speed, and accuracy because of the transformation

matrix calculations. JTn addition, because high input angular rates are
experienced, SDF gyros in strapdown applications must be provided with
high-level torque generators.

VWhatever their mechanization, IMU's use groups of inertial sensors
to Indicate acceleration resolved in the navigation coordinate frame.
The two schemes discusszed above are illustrated in Fig. 15,

YNERTIAL NAVIGATION SYSTEMS

The simplest form of navigation using inertial instruments is expressed

by the equation
&R LE.g 42)
dt T ® . '

The vector R describes a rosition relative to the earth's center. Its
second derivetive as seen in fnertial coordimates 1is given by the properly
resolved accelerometer measurerents, with the gravitational acceleration
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Inertial Sensor Package f————sp>
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®
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Vehicle ‘@
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Acceleration In
Coordinate ) Navigation Coordinates

Sensed Angular
Motion

Vehicle

_(b) . Strapdown IMU

FIG‘.i 16. Inertial Measurement Unit Concepts.
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added. Double integration of Eq. 42 will provide indications of the
changes in R, In additicm, if the results ars to be correct, the guidance
computer must indicate G exactly, the_accelercvmeter must have no errors,
and the initlal conditions ou R and dR/dt must be known.
Most of the discussien in this report involves navigation near the
earth. For this problem three referemce frames are useful. The first
— — iz the Imartial frame slready mentioned. In additfon, & reference Frame
with origin at earth's center is defined. This frame 1s inertfally non-
" accelerating but fixed to the earth and therefore rotating relative to
inertial space at a constant rate of approximately 15 degrees per hour.
The rotation rate is represented by a vector, fi. The third reference
frume 18 that of the particular inertial system. It has its origin near
- the earth's surface, usually at the position of the vehicle carrying the
- sensors, It can rotate relative to the earth-fixed frame at a rate
designated p. For convenience the three frames are called I, E, and C,
respectively (see Fig. 17), 1ldeally, the accelerometer measurements
are resolved into the C frame.

FIG. 17. Reference Coordinate Frames for
Near-Earth Inertial Navigation.
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The position of a vehicle near the surface of the earth is usually
described by the position vector resolved ia the earth-fixed or E
coordinate frame. The velocity of the vehicle with respect to the earth
is degignated v and expressed by

(43)

Equation 43 makes use of a theorem of Coriolis. The derivative of v
with respect to the C or navigation coordinate frame is given by

d‘J) (d?) -
—— - — - p X v
(dt c de B

The derivative of v with respect to the E frame is related by
gz) . (dz i)
\dt~E ae? ),

(44)

el
x
~
<)
X
=l

(45)

Substituting from Eq. 45 into Eg. 44,

(),

x

(46)

2 e e
-(ﬂa—t—%)-mxv-nx(fz Yy - P xv
1

Defining

el
8
Qi
+
©!

(47)
Eq. 46 becomes
-(@+R) xv-8x (@ xR)

-— J a A=y
dv) (d‘ R\
&) - 453 (48)
(dt c de? .

Substituring from Eq. 42,

(_}Z_)C.é_(;,,a)xna-ax(ﬁxi) (49)
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When considering navigation near the surface of the esarth, it is convenient
to dufine a new vector, gravity. Because of the earth's rotation, the
local vertical or plumb line is parmilel to the gravitatles vector G only
at the poles. At any other latitude the earth's rotation tilts the local
vertical, g, so that it is related to the gravitation vector by

TeC-Tx @xi) (50)

—Tuis ¥ ITlustxated in Fig. 18, Eqﬁntion 49 can be Qri::en in terms of
the gravity vector

[E)-E-Grmxves (513

FIG. 18. Definition of Gravity Vector,

Bquation 51 is one of the wmost convenient forms of the navigation
equations to implement. The left side of the equation is the derivative
of earth-fixed velocity with respect to the navigation frame. The first
- term on the right is provided by the accelerometers and the_remaining
two tarms can be calculated from position and knowledge of p. The .
computer solves Eq. 51 for the vehicle velority vector_in the navigation

frama. Then a second integrsation provides changes in R relative to tke
earth-fixed coordinate frame.
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Several cholces of the mavigation fram:z, C, are commonly used for
near-earth navigation. They differ basically in tha way the vector © is
prescribed. The three most popular are:

1. North--vertical

‘Center at present vehicle location
x~~horizontal, north
y--horigzontal, east

z--vertical (dowm)

2. Free azimuth?

Center at present vehicle location

x~-horizontal, at known (variable) angle with north
y-—~horizontal, at known (variable) angle with east
z--vertical (down)

3. Tangent plane

Center at a nominal vehicle location
%-—initial north

y-~initial east

z~-initial vertical {(down)

The first two coordinate systems are called "locally level” because
their x-y planes are always tangent to the earth at the vehicle pogition.

‘Those are usuaily found in cruise vehicles {aircraft, submarines, ships)

which travel long distances. The thiru system is referred to as 'launch

point level™ and is used in missile applicetions and for navigation over
small areas.

ERRORS IN INERTIAL NAViGATIOH SYSTEMS

It is impossible to implement inertial navigation systems without
errors. However, these errors can be kept within acceptable bounds
through the use of external measurements. Presently, the predominant
error sources are imperfect indications of motion as provided by the
gyros &nd accelerometers as well as limited knowledge of the direction
of g. Gyro errors, called drift rates, will be designated in vector
form by €, and accelerometer errors are designated V. Many inertial

* In this case the z component of w is zero. A related system,
often called "wander azimuth,"” has the z component of W equal to the
z component of Q.
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migasiaﬁmt& ‘srrors not dus té false iaitial conditions are caused
57 effects Eﬂiﬂh caa be lumped into the terms T and V. )

Uming aamrd perturbation tectniques, the affect of these errors
on the pavigation computations can be determined, Appendix C derives
the inertial navigator error eguationa for near—earth systems., It also
demonstrates the basic instability chat appears 1la the navigation equa-
tions for the vertical directioa. The error equations are expressed in
vector form in terms of the position vector inm an earth-fized coordinate
~ frame, R; imertial angular rate vector_of the navigation coordinate
frame, W; earth rotation rate vector, ; angle between computer indica-
tion of the navigation cootdinates and the axis system in which accelero-
weter outputs are actually resolved, ¥; and the specific force vector.
and instrement errors

.e .

TR+ 20 *‘xi +wx 3R

|

*+Ex@x3ﬁ-§&(§xﬁ)--$x—+6-msw%>i (52)

B [}

\ w? SR
8

wvhere

“"’.m ’ ’ (53) .
e ,IR

and the dynamics of ¥ are described (see Appendix C) by
TeyXuw+e (54)

The errors in navigation quantities are the state variables in the
Kalman Filter., By substituting the proper relation for @ into Eq. 52
and 54, the F or ¢ matrices required in Eq. 12 and 14 can te defined.
The error relations can also be diagramed, Figure 19 illustrates the
propagation &rrors in a north-vertical system.

EXTERNAL MEASUREMENTS

In order to keep the errurs gemerated in an inertial navigation
system within acceptable levels, it is necessary to recalibrate the s, “em
periodically. The recalibration or correction of system errors is
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achisvad with the use of inderendant sources of informatloa. Thase .
éxternal measuremants include position, velocity, attitude, and combina-
tions thereof. "ypical 8B0UTLES are:

Posiilon=-Radic navigaticon aida (Loran, Omega, Tacan, etc.)
Navigation satellites S
— ————-——— —-§tar sights : S
: Landmarks, identified and unidentified
Radar
Map matching

s s - 1 P

"Velocity--Doppler radar
Electromagnetic speed log

1 Attitude—~Star sight
: Horizon measurements

The external measurements are compared to correspoading quantities
: indiceted by the inertial navigation system, and system and random measure—
4 ment ervors are related linearly to the difference. This linear reiation
batwaen inertial system errors and the formed differences hetween measured
and indicated values of vosition, velocity, and attitude specifies the
: H matrices in Eq. 18 and 26. The Kalman Filter uses the differences
i between indicated and weasured quantities to provide the opntimum estimate
c¢f the inertial navigatiou system errors. Inertial sensor errors such
as gyro drift rate and accelerometer errors are also estimated. Corrections
may th 1 be applied to the system, based on the error estimates. Figure 20
. 1lluatrates the procedure. - A wore detailed descripiion of the manner in

| vhich the corrections are appiied ir found in Section 6.
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Indieated Position, Measured Position,
Velocity and Velocity and
Attitude ttitude
‘Inertial + | - T
Navigaticn ‘ | External Sources
System

_ __4 - _ - 5
Corzcctions ‘i :

Correction System Errors Plus Measurement
Y.ogic Erroxs
Navigauoxi ;
System h_
Error
Estimates

Difierences Composed of Navigation

Kalman Filter

FIG. 20. Block Diagram o1 Recalibration Scheme.
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Saction 4. CORRELATED ERROR DYNAMICS FOR SENSORS

The Kalman Filter equations displayed in Section 2 were developed
~with the assumption that the system disturbances (u(t) or w,) and measure-
ment errors (v(t) or v;) were not correlated in time. The strict require~
mant of "whita nolsa" disturbances and measurement errors van be relaxed
- -—— 28— dnaluds  thoss guaatitiss whosse cotrelatien tims 18 wuch léss than the-
characteristic times of the system or of the measurements. In either
case, the lack of correlation is an indication that nothing can be gained
by estimating the disturbances and errors themselves, i.e., if an
accurate estimate was available it would not help predict the state at
the next time of interest. However, when the disturbances and measure-
ment errors are not changing rapidly compared with the system state or
weasurements, the filter accuracy can be enhanced by estimating these
additional quantities; the filter estimates of u(t) and v{i) are used
to more accurately predict system behavior.

The estimation of system disturbances and measurement errors which

D

2
:
g.
'
!

hava significant time correlation is frequently described as "state

j vector augmentation." That 1s, the number of state variables to be
estimated is increased by including these quantities. Also. thair
dynamic behavior is described in the appropriate rows of an enlarged

, F (or ¢) matrix which specifies the unforced behavior of the augmented
state vector. Because these quantities are random, their behavior
cannot be described deterministically., Instead, they are usually taken
to be the satate variables of a fictitious linear dynamic system which
is excited by white noise. This model serves two purposes; it provides
-the proper autocorrelation characteristics through specification of

th2 lincar system and the strength of the driving noise, -and, -in
addition, the random nature of the signal follows from the random
excitation. ' The differential equation for the augmented state is in
the proper form for the Kalman Filter--a deterministic system excited
by an uncorrelated random signal., When measurement noise quantities
are included in the augmented state vector, some of the newly-defined
measurement vector elements do not contain noise. As a result, the
watrix R} is undefined and wodifications must be made to the equations
of Section 2 for the continuous filter (see Ref. 6). All correlated
system disturbances and measurement errors for inertial navigation
systems can be described to a good approximetion by a combination of one
or more of the several types of behavior described in this section.

STATE YECTOR AUGMENTATION

The augmentation of the state vector to account for correlated
disturbances can be 1llustrated using Eq. 2

l.‘. = Fx + Gu (55)
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Suppose u was composed of correlated quantities g, and uncorrelated
quantities Y. : :

u=u +u (56)

u
- 2

1f u can be modeied to obey a differeniial equation o
u =F u +u (57)

vhere u 1is a vector composed of uncorrelated quantities, then the
augmentdd state vector x' is given by

x
x' = [—;'] {58)
-1

and the augmented state differential equation, driven only by uncorrelated
disturbances, is given by

F 1 GIx] [G ) 9][«
X = 2 Lealeae 4+ Jocatoca (59)
= 0 !F R
H '

' To illustrate state vector augmentation to account for correlated

- measurem=nt noilse, fuppose

1
"
(%]

Fx + u

Hx + (60)

L]
"
1<

where u is a vector of uncorrelated disturbances, but v 1s the sum of a
correlated meagurement noise vector, ¥ and uncorrelated errors, Y,

(61)

If the correlated measurement errors are modeled to obey the white-noise

$=FV!‘ ’!V . : - (62)
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the augmented state vector x' obsys the differential equation

. cPHEEE -

and the measurement obeys

= [H|]xy, (64)

If v, has one or more zero elements (one or more measuremeats do not
contain uncorrelated errors) the R matrix has a corresponding number of

; zero rows and columns. As a result, R~! does not exist and a modification
o to the continuous Kalman Filter is necessary (Ref. 6).°

CORRELATION MODELS

Random Constant

The random constant is a nondynamic quantity with a random amplitude.
Nevertheless, if it is known to exist, the random constant must be i
“""included among the slements of the augmented state vector, !

x =0 (65)

Its constant nature is indicated by the fact that the rows of the F and f
G matrices corresponding to this quantity contain only zeros. In the

discrete formulation, the element at the intersection of the correspond-

ing row and column of the ¢, matrix is unity while the remaining elements

of the pertinent row s2re zeros. The corresponding row and column of the

matrices G Q Gl or Qn contain only zeros. Figure 21 illustrstes the

| nature of &, ¥..» and Q, when one state variable is a randem constant.

The random constant can be pictured as the output of an integrator with

— no input but having a random initial condition.

Specent work suggests that state vector augméntation may not be L ‘ i
necessary when correlated mrasurement ncise is present (Ref., 22),
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‘nel - - - Ly -
1= 0 1 o X1+ | o
| B o
3n+1 - - - J(3n “
o » J . 4 L. J
I i il g/
4'n Wn .
r -
0

Qn= 0 0 0

0 .
L -
X5 is a Random Constant

FIG. 21, Illustraztion of ®,, Wy, and.Q, When One
State Variable is-a Random Constant.

Random Walk

The random walk results when uncorrelated signals are integrated.
It derives its name from an illustration involving a man who takes
fixed-length steps in arbitrary directions (see p. 24). In the limit,
when the number of steps is large and their length is small, the
distance travelled in a particular direction looks like the random walk

variable. The state variable differential equation for this quantity
is given by ]

X =u (66)
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wvhere ‘EE [uftdu{t)) = q(c)6(e~T). A block diagram representation of
this aqustion 1s shown in Fig, 22(a). The meaa square value of the
random walk vacxiable grows linearly with time sccording to

X = g 6D

The rvows of the F and ¢ matrices which correspond to a random walk vari-
able are the same as for a random constant but, in general, Gu or v,
provide finite contiiburions to changes in the state variable. The
corresponding column and row of G Q GT can be nmon-zero and the element
at their intersection is given from Eq. 67 by q. For Qp the appropriate
element is

q({t 4y = tn)

The random walk and random bias can be represented together with the
use of only one additional state variable. This {8 iilustrated in
Fig. 22(b).

ry :

This is readily shown using Eq. 14, Since F is zero and G is
unity the derivative of P is Q. Using the lower case to denote scalar
quantities,

P = qt + p(0)

Since there are no measuremeats, ® is zero and

p=x
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(a) The Random Walk

A

(b) The Random Walk and Random Constant

: FIG. 22. Block Diagrams Demonstrating
the Combination of Random Constant and
and Random Walk in One Additional

! State Variable.

Exponentially-Correlated Random Variable

. A random quantity whose autocorrelation function is a declining
exponential

8, (1) = oteBlT 68)

™y

™I

_is frequently a useful representation of errors and disturbances in
inertial navigation systems. The same quantity provides a reasonable
approximation for a band-limited signal whose spectral density 1is flat
for a finite bandwidth of frequency. The exponentially-correlated
random variable can be generated by passing an uncorrelated signal
through a linear first-order feedback system. A block diagram for the
system 1s shown in Fig. 23. The differential equation of the additional
state variable'is -

Wi

Xx=<Bx +u (69)
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The mean square valuas of the exponentially-correlated random variable

is constant if the mean square initial condition on the integrator is .
I taken as ¥2. The specification of this gquantity appears at the inter-

) section of the appropriate row and column in the initial error covari-

e ance matrix, P(tg). The corresponding diagonal element (at the inter-

: saction of the appropriate row and column) of the F matrix 1s -B. All

other elements of the coresponding row are zero. The § matrix 1is '
similarly arranged with the disgonsl slement given by T

|

QU T

e“a(tn+l - tn)

The G, G Q ¢T and Q, matrices have the same cuaracteristics as for the
random walk, The mean square valua of x is related to q by i

s 1

o
X 26 (70)

It is interesting to note that, when the period of estimation is much
less than the time constant 1/8, an exponentially-correlated quantity
can be approximated by the random walk., Under this condition an T
exponentially-correlated variable and a random constant can be approxi-
mated by only one additional variable.

LC. LC.

= L] R
- J /

FIG. 23. Block Diagram Showing Generation ¢
of Three Random Characteristics by the '
Addition of Only Two State Variables.

*Again, Eq. 14 can be employed. Since F = -f and 6 = I,
p=-26p+q

In the steady state, p = 0, and p ='f% .
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Periodic Random Quantitics

Random variables which exhibit a periodic nature may also arise in

inertial navigation systems. Their autocorrelation functions can be
represaented by

ot it wnlfl

0, (D = o3 ~ e (cos(w'|1]-n)) (7L)
where
w = w1 - g2)/? (723

and the values of [ and w, are chosen to fit empirical autocorrelation
data. Two additional state variables are necessary to represent *
random signal with this autocorrelation function. One pair of state
quantities which prevides this relation is given by

Xg ™ ¥4 U

. : o (73)
=—2 - -
Xpe1 T TURXp T 2epxgy + (b - Zefup)u
where
2
2 _ 20 -
at = — n Wy, sin(a-n)
b2 = 295 03 in(otn) (74)
cosn n
a=tan—l ~——5——T-
(T = ¢z
and xp has its autocorrelation function given in Eq. 71 (Ref, 23).
51
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Random Ramp Variahles

Frequently, random errors arise in inertial aystems which exhibit
a definite time-growing value. The random ramp, a function which grows
linearly with time, can be used to describe them. The growth rate of

the random ramp 18 a random quantity with a givemn probability demsity.

—_Two addirional stats alemsnla avs necessary to deseribe the random
ramp:
X " %
. (75)
X1 " 0

where the initial corndition on xg4] provides the slope of the ramp.
This initial condition is exhibited in the form of a mean square slope
TZ, which appears in the corresponding diagonal element of the initial
error covarfance matrix P(t;). xg is the random ramp quantity., The
row of the F matrix which corresponds to xg has a one on the column
corresponding to xg4) and zeros everywhere else. In the ¢ matrix the
same element is specified by (tg4) - tp) and there are ones on the
diagonal. The row in the F matrix which is related to xj4] concains
only zeros. The rows of G and the rows and columns of G Q 6T or Q
which correspond to xp and xg4; are also empty. The mean square value
of xg grows as a parabola with time

?p_-' - T2 g2 (76)

The random ramp, random walk, and random constant can be represented

together by the use of only two additional state variables. This is
illustrated in Fig, 23,

A summary of the above-described random quantities is given in
Fig. 24. Occasionally other more complex random error models arise.

For example, Ref. 24 discusses a time- and distance-correlated error
whose autocorrelation function is given by

$(1,d) = g? (e‘”“) (e“’b); 1, d>0 an
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Z where a and b are a firsrc=order correlstion time and a firse-order

. correlation distance, tespectlvely, A similar correlation ap, 'ars to
; occur in certain radio navigation systema. However, the vast majority
: of irercial navigstiou sysiew neasurenent errors and disturbances can
be described by some combination of the random variable relations
summarized in Fig. 24,

~ INERTIAL SENSOR ERRORS ~

Random inertial sensor errors are produced by many practfcal and

theoretical imperfections In the opuration of these instruments. They

: are among the major random disturbances for inertial navigation systems.

i Through extensive testing and detailed knowledge of the sensor dynamices

| many other errors are measured and compensated or removed by careful
design, But, when all the tests for predictable errora and the ingenious
deaign tricks have been exhausted, there still remain errors whcae
source and systamatic behavior dufy detection. Often additional testing
reveals that the s:tatistical behavicr of these inertial sensor errors
can be described by one or more of the forms presented in the previous
section. It should be emphasized that the pertinent statistical param-
eters (uean square, correlation time, etc.) are only obtained through
the analysis of large amounts of data. Frequently the cvrror behavior
obseived is highly dependeunt on the individual instrument tested or the
period of observation. Therefore, it 18 not surprising that completc
agrcement on inertial sensor error models does not exist.

The statistical model of inertial sensor errors also depends greatly
~ on the operating situation. If the errvors im a crulse inertial navigator
are being estimated, a very detailed model may be requlred. On the
other hand, errors in a tactical missgile navigator can be determined
accurately with simpler models for sensor error statistics.

Gyro Drift Rate

In one case ar another, ail of the randum variables described in
Fig. 24 except the periodically-correlated quantity have been found to
be good descriptions of gyro drift rate. Reference 25 propcses the
combiration of random bias, exponentially-correlated error, and a random
walk as a good statiscical model of the gyro drift rate. In this case
the initial condition for the integrator In the system generatirg the
exponentially-correlated component is taken as zevro. Further studies
reveal that the random ramp may he a necessary addition in order to
d2scribe gyro drifc rate more completely. 1t can be seen that two or
three additional state variables must be added for each gyro.

e AT P YTUTD 8 R DML

54

TR ALY

e o L i WWMW‘NWWEHMIWWWHMWWIMWlmWImIIIMiHWWMMWUII‘IIIHIMMJIUMIWIM




=
[
=
=

.

R TR B AR R 75

TR T 1T

| A

(it

P

e

Accelerometer Error

Accolorometer errory are usually described lo Lerws of random
congtants and exponentially=correlated errors only., Two additional

state varlables are requlred to represent the correlation properties
of thuake arrors,

of the vertical can be modeled as an expunentlally-correlated disturbance
orfginating in the level accelerometera of an ipertial system. .This
particular geodetic error is of great importance in the long-range or
crulse~-type vehicle. While the phenomenon is spatially fixed, an

"~ equivalenr correlation time can be derived by dividing the actual

correlation distance by vehicle speed. Vehicle maneuvers, of course,
have to be properly treated in this calculation, - -~ - -

MEASUREMENT ERRORS

The measurements of posicion, velocity, and attitude used by the
Kalman Filter to improve the aceuracy of inertial navigation sygtems
may also contain errors whose correlation times are significant, The
procedure for Incorporating additional varlables into the aystem in

order tov estimate the correlated measurement errors is demonstvated on
p. 45.

The statistical proparties of medsurement errors are obtained in a
manner similar to those for sensor cirorg==physical evaluation and
analysis of large quaantities of data, Frequently, measurement errors
czn be reduced by averagliipy a uvisy measurement over a period which 1s
long compared to the crror correlation time but ghort with respect to
characteristclc thmaes of the quantity balng measured.

Position Measuremeats

Radio position indication schemes such as Loran or Omega contain
errors which can be viewsd as a random bias ;lus an exponentially-
correlated quantity. The characteristic times of the exponential auto-
correlation functions are in the range of 3 to 15 minutes for Loran C
and 1 hour for Omega. This wmodel of radio navization uncertainties 1s
approxlmate because position ftself affects the erxvurs. However, the
approximation ig valld for slowly~-moviag vehicles such as ships. The
radiometric sextant (i.e., sun or moon tracker) is used to determine
position and also seives to illustrate errors which can arise in
attitude measurements with radic instruments. Its angle measurements
ace corrupted by white noise, random constant, and exponentially-
correlated errors. These can be converted into similar errors in
position indication through knowledge of the rieasurement geometry.
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Velocity Measurement

{mppler velocity measurements contain correlated erruors. These
errors may differ for along-track velocity mesdsuremente and across-
track velocity (Ref. 26). However, it has been shown (Ref. 2) that
averaging Doppler medsurements over a short period of time will reduce
the slze of the neasurement errors- and-permit them to be considered..
as uneorrelzted. A ship's EM log has an appavent error if any ocean
current exiets, It is usually modeled as a random constant plus error
which is exporentially correlated in position. The position correlation
coefficient 1s then converted into & characteristic time by dividing 1t
by ship's speed,

Attitude Measurement : ' a SRR s

Attitude measurement errors in a radio sextant have already been
discussed. They are characteristic of all attitude sensors whicn
measure alectromagnetic radiation below the visible range. Uptical
measurements of attitude in which the light path passes through an
atmosphere are also subject to exponentially-correlated errors. Attitude
measurement instruments (possibly including effects due to the man
operating them) also provide random constant and uncorrelated errors.

A digcussion of random gystem disturbauces and measurement errors
is necesgarily incomplete. Each inertial sensor and measurement device
to be used Iin a system employing the Kalman Filter must have its errors

..carefully analyzed before a pruper error model can be deterulned,
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Sectlon 5. APPLYCATTION TO MAVIGATICHN SYSTEMY

Diffe -ential equntjons describing the propagation of inertial
navigation system errors have been developed and the use of the Kalman
Filter doncrllied. A4 mlready hinted, the filtev will catimate the errors
in the inertlal uwavigatlon system rather than the system variables
tiiemselves. It is the error quantitles whose dynanlcs can be described
in terms of lincar equations which, though nul exacl, are an excellent
appruximation. Ia this rection state vectors are defined and the systenm
matrices F, corresgponding to different system configurations, are
extracted from thz error differential equations, Given F, it is
possible 1o compute the ¢ mavrices of the discrete filter formulation,

In additlon, the measurement metrices, H, are epeciffed for common
external measurements. Also, the effects of random system disturbances

~ and mzudsurement errosy are described in terms of the G, (, and R matrices.

The gection 18 concluded by stating all of the matrices required to
estimate the errors in a north-vertical inertfal mavigation system and

displaying some results from the Kalman Filter error covariance equation
faor that case.

NAVIGATIUN COORDINATE SYSTEMS

To begln, a more, Jetailed exposition Llg made of the three inertial
navigation coordinate frames outlined under Tnertial Navigation Systems
(p. 35) and in Appendix C.

Morth-VYertical Coordivates

Currently, the wmost common set of coordinate axes used for Inercial
navigation 1n long-term crulse systeme such as SINS 1s the orthogonal
triad-oriented north horizongal (x), east horizontal (y), and vertical
downward (z). These axes, subsequently called north-vertical coordinates,
or a similar set oriented north horizontal, east horizontal, and vertical
upward, always have thelr center at the vehicle position and permit
easy calculation of navigation quaatities such as longftude and latitude.
Ir a gimballed north-vertical system, the platform is rotated relative
to Irertial space abtout its nominal », y, and z arxes according tu Eq. 47.

w o= A+ ) cos L

wy a ~ L (78;

wz=-(£+9) sin L
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e s e by se——

vwherea A and L are the computad values of ‘ongitude and latitude aad b

iz the magnitude cof the eart 's angular rete (see Fig, 25). Of course,
errorg in the frwjerentation of Eq. 78 may arise due to gyro drift ratcs,
et¢, If the computed values of A and L are correct and the platform is
injeially aligned, Eq. 78, vhen implemenied withont error, will keep the
tv.o covtdinate frames parallel. In a strapdown system, the same rotation
18 accomplished by supplying the required zngular rate to the'direction

" coéina cumputations.

Free Azimuth Coordinates

Some inertial navigation aystems do not preovide a platform rotation
command about the vertical axis, This eliminates the torquing error
ausgoclated with the 2 gyro, which ordinarily displays poorer drifc rate
characteristics than either of the gyros with horizontal (nput saxes.
These "free azimuth" navigatfon systems indicate the direction of north
by calculating rhe angle between horfzontal north and one of the instru-
mented horizontal platform axes. For calculation >f longitude and
latitude the accelerometer outputs are resolved into north and east
components through this angle. The platform angular rates are:

w, = (8 + XY cos L cos @ = I, 6in «
wy w-( + &) cos L ein o - L cos o (79)

w =149
Z

where a 18 the horizontal argle between north and the platform x axis.

In s sense, the {ree azimull system 18 & uybrid of gimballed and
strapdown systems, storing oue angular relation in the form of the off-
azimuth angle and nulling others by keeping the platform level. Several
refinements on this scheme occur, These include defining a false north
dirzction Iin order to avoid high azimuth rates :2ar the earth's geographic
poles. Free azimuth coordinates are frequently used for aircraft
inertial navigation systems where high platform angular rates about the
z axis can be required of a norch-vertical system.

Tangent Plane Cocrdinates
e t—

The use of tangent plane coordinates is another iechnique for
2liminating the errors i1esulting from platform rotation. ([t takes
advantage of the fact that constant platform angular rates can be
generated wuch more accurately than time-varying ones. By defining
the navigation axes tv be those which coincide with the north-vertical
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FIG. 25. North-Vertical <“oordinates.
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axes at a fixed point on the earth (see Fig. 26) only the horizontal
and vertical components of the earth rate at this point must be
implemented. These rates are constant functions of the fixed-point
latitude, Ly, and Q.

w = cos L
X [o}

w =0 (80)
y

wz = -} sin L,

Tangent plane coordinates are usually used in inertial navigators which
do not compute latitude and longitude. They are found in short-range
vehicles such as airborne tactical missiles whose target location is
often measured directly in the tangert plane coordinate frame. If the
vehicle carrying a tangent plane inertial navigation system moves more
than 2 fovr =t1me-from the £incd point, mass attraction forces must be
calculated along the x and y axes in crder to compensate accelerometer
outputs.

SYSTEM STATE DIFFERENTIAL EQUATIONS

The system matrix F describes the unforced behavior of the system
state variables according to the equation

%= F : (81)

When discrete calculatious of the state vector are considcred, F is used
to compute thc transition matrix ¢ as described in Section 2. Of course
F is dependent on the specifde=wrmec variables chosen and the order in
which they appear in the state vector. Reordering the same state
variables only requires shifting rows and columns in F, The inertial
navigation system error quantities which constitute approprilate state
variables can b2 written in identical fcrm for all three navigation
coordinate frames discussed above

'I’ . .
x (GRX 6r, OR SR ¢ o ¢z) (82)

’
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FIG. 26. Tangent Plape Geometry.
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Notice that position and velocity in the z or vertical direction are
not included as errors of the inertial system. The assumption is made
that these quantities are obtained from some other source because of
the basic instability which exists in instrumenting the vertical channel
of an inertial navigation system (see Appendix C). Special assumptions
must be applied to the tangent plane coordinate frame implementation to
keep its error equations similar to those of north-vertical and free
azimuth systems; the effects of errors due to inaccurate indication of
mass attraction forces along the x and y axes are ignored and it is
assumed that the local vertical does not differ from the fixed-pouint
vertical by more than ¢ few degrees. Systems employing the tangent
plane coordinate axes usually permit these simplifications.

The state vector defined by Eq. 82 exhibits directly the errors in
position, velocity, and attitude. Notice that, in a north-vertical
system, the same state variables could be specified in terms of longitude
and latitude errors through the exprzssions

SR_ = RSL
X

SR = RSL
X

(83)
'6Ry = R cos L §A

6R

<

Rcos L 6A - L R sin L SA

where R is assumed constant. Similar equations relate the position and
velocity errors in a free azimuth system to longitude and latitude errors.
However, they ijnvolve resolution through the angle between north and

the system x axis,

YA
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The equatlons developed in Appendix C provide the I' matrix tor the

sthate vectar ot He,

c <

| o€

=E ©

houmsw

B2 uhen north-vertical coordinotes are employed

) 0 1]
0 — -0 il | EE B
0 a
. y
-g 0 -a -
1 (86
0 W, “wy
Wy 0 “x
wy o Ty 0
—

The systen watrix when tangent plane coordiuater are used differs foum
that preseated above because the platiornm axes: are not rtaied in
proportion to velocity

|
1]

e o

<

o o ]

0 0 0

0 g 2

€ 0 -a, | (85)
0 w, w,

~w, 0 w,

“y e ’
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The subscript is placed on the abov2 matrices ia anticipallon of later
xpandiag the state vector to I{nclude correlated error terms. The
elements in Fy incilude only the most significant terms and the effects

of position aud velocaty nlong the vertical axis are ignored. Of course,
the values of w , Wy, and wgz will differ for the three -avigaticn axin

! systems according to Eq. 78 to BO, As an example of the complexfty which

i esn result vhen move terms are included, Fig. 27 1 the complete Fp
matrix for north-vertical coordinates written in_terma of 1nnui:ude, .
latitude, and vertical velocity and acceleration.

SYSTEM DISTURBANCES

The state vector differential equation is driven by inercial sersor
errors and incorrect indicatiuns of vertical pocition and velocity, The
latter errors can corme from one or more of several instrumeuts whosge
: consideration 18 beyond the scopc of this document. The effect of the
evrord will =imply be presented.

Veri.lical poéition and velocity errors can be exhibited by reuritingr
Eq. 81 to include a forcing term

x = Fx +Gu e (863

Again, specification of G and u permits the calculation of w for the
digevete case., If only 6R, and 82, are coneidered as driving tetms,

A ’éRz"
u=1, (87>
SR,

C 18 glven, for the state vector defiped in Eq. 82, by

-
' 0 0 0
GT‘= 0 0 0 00 . . (88)
o 0 ~2wy 0, 0
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Or, following fhe notation and exera detail of Filg. 27, the G matrix 1Is

[0 o b 2L, 6 0 0
T *D; 2 sinZl,
G = PR - . - 189)
[ ] Tt T Tt T ) - \
) 1o o ;2{‘_&‘“&”‘"‘ 2(q +i)cosL. 6 0 .
A +) cosL

In a similar meanner, the effects of gyro and accelerometer errors can be
exhibited by defining

JE8lv v e e ¢ (90)
ST %y )y

The error sources of Eq. 87 and 90 could be considered together by
properly arranging their trespnctive G matrices into one matrix expressing
their combined effect on x. If the inertial sensor errors of Eq. 9C are
not correlated in time, no state vector augmentation is needed.. In terms
of the state vector of Eq. 82, the G matrix for the effects of Eq. 90

is

| [0 6

0 0 0]
0 0 0 o0 0
1 0 0 0 o
G=10 1 0 0 0 (91)
0 0 1 o0 o
0 0 0 1 o
| 6 0 9 0 QJ
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In eruth, the inertial geusor errors are highly correlaved gquantities
and sre usgyally described by onc ov more of the correlation medels given

in Section 4, It is therefure neceusary to augment the state vector
and enlarge the F matrix accordingly. Fer example, if all inertial

Rensor error . can be modeled as random walk qudantities, random constiants,

or the sum of both, reference to the preceding section {ndicates that

~iive additional state variables are neutﬂﬂary. "The augmented state

vector is given by

T f; :
l"}R ORyGR bﬁyaxwywz vay ¢ (y z] (92)

The new F matrix is given by - -
3 G o
| (12x12) (93)
0)

where the submatrices G and Fx are given in Eq. 91 and 84 or 85. Th:

uncorrelated digturbances which provide the random walk characteristic
can be denoted by

, T
v =Ju u u
u [vx vy < u(y u¢7] (94)

and the new G matrix is given by

G =]~ (12x5) ©(95)
b

where I¢ is the 5 x 5 identity matrix

*Frequently, when matrices are expressed in terms of their sub-
mat-ix elements, the dimensions of the entire array will be noted as
shown.
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If any of the errors do not exhibit random walk behavior, the
corresponding diagonal element of 15 48 changed to zero, The random .
constant nature of the ezrrors is exhibited by setting the corresponding
diagonal elements of the initial error covariance matrix, P(ty), equsl
to thely mesn square values, =

1f the sensor errors.have expcnential correlation enly, the state . e
vector of Eq. 92 i3 3:ill used but

Y

ujmnmﬁvmmmmmmﬁmmmm

F =f- P, {12x12) - (96)

vhere F 1s the matrix whose diagonal elements are composed from the
quantities B described in Section 4,

(97)

N
)

o o
o ©
o

&

The vector u and the matrix G ave essentially tiue same for this case.
Many other comhinations of correlated sensor errors can be prescribed
by careful adherence to the rules set down in Section 4.

-

When state vector augmentation takes place to accommodate correlated
system disturbances, the size of the covariance matrix Q, in the dis-
crete fllter also increases., If the quantities forcing the original
F n-element state vector differential equation are not uncorrelated, the
' fizat © rows and columns of Q, are composed of zeros while an appropriate
gubmatyix in (. is the covariance of the uncorrelated quantities, u,
described in Sectiom 4. For the two examples of correlated inertial
sensor errors given above,
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o1 o]
n |- (12,12) (98)
L0 %]
wherz2 - - - - i - e o
Q- E [o 2] (s

The discrete forcing vector w, is computed with Eq. 9, using u' as

defined in Eq. 94.
has dimension 7 x 7 (the original state had seven elements).

Toe

zero submatrix in the upper jeft corner of Q
Other

correlation characteristics for inertial sensor errors may require a

larger augmented state vector and therefore Q, and Q) matrices.

In the

continucus filter simila: behavior cccurs in the matrix product G Q cT,

MEASYREMENTS

The Kalman Filter detects the buildup of errors in an inertfal
guidance system through comparison of system indications with external

measurements.

1f the measurement is not given directly in navigation

coordinates 1t must be jroperly transfcrued through knowledge of the

particular gecmetry involved.

The transformation can eithcer be per-

formed outeide the Kalman Filter or tak~ place in the megsurement

matrix, H.

Since direct measurement of inertial sensor errors is not

common, the matrices displayed below are for the original 7-element
state vector of Eq. 82.
correiated random disturbances only adds an appropriate number of a

zexo columns on the right side of the matrices showa.

Augmentation of the state tc auccount for

It should be

emphasized that H relates the difference between system-indicated and
measured values to the system errors.

Positlon-~Measurem«nt of positlion alone gives a measurement

matrix, HP’

H

l1 0 0 0 0 0.0

= (100)
It 10 0 0 0 0f

69

|

sl el s bt uun.umu..m..inmmﬁuiﬂlwmuummmmmlmmuumuulmun‘u‘|n‘vmmn|lrrrmmimll||mmrlm‘m

%
|

T

TH TR T TR 2= =




A

il

1f pusition meagurementg are given in terms of latitude and longftude
they can be compared with system I{ndications of these quantities and

1
7 0 0 0 0 00O

B = . .. . (101)
e 1 e il . .
e F s L 6 0 0 0 O o

for the state vector of Eq. 82,

Velocity——The measurement matrix for velocity measurements is

0 0L 00 OO
W, =] (102)
000100 0}

Attitude—-For most attitude measurements the instrument is pointed
according to computed attitude and the angular deviaticu of a reference -
point is measured. As a result, the measurement 1is of ¥y, not $. Con~
sequently not only attitude errors, but position errors as well are
measured, because : -

VR3-W
6R 6R (102)
- — - -
69:{ 3 68y R
The measurement matrix is . - *
¢ -% 001020
1
Ha ll 0 0 0 01 0 (104)
0 0 ¢ 0 0 0 1

MIMMWWWMWWIWWIWMIIINﬁﬂMWIM "

70

PRV




Y N R

oy

ADAA U ot 1 s

AT

NWC TP 4652

for the free azimuth and tapngent plane coordinate sysiems. For north-
vertical coordinaccs,

w =il ¢ o8 0o 1o {165)
a R
g 882 43 0 0 9 1
| R : .

When combinations of measurements are made, the measurement matrix
fs constructed by "stacking” the a} priate matrices shown above. For
example, 1f position and velocity are measured at the same tire '

H
H = .E- 106
P,V "v ( )

MEASUREMENT ERRORS

Though the "measurewents"” for the Kalman Fillter are accually
differences between system~indicated and exrernally-measured yosition,
velocity, and attitude, the measurement errors are attributed to
iuaccuracies in the externil ilndications only. A8 a3 result, some
external measurements--such as position at a surveyed point~-~are uitaa
considered to be essentlally error-free. However, when the inertial
system is aboard a moving vehicle, important external measurement errors
do arise. These are specified statistically by thieir erzur covariance
matrices, R, When the errors are considered to be uncorrelated bztween
measurements, position, velocity, and attitude measurement error
covariance matrices czu be denoted

T
Rp-E(v %’) (107)

7

where

v - (108)
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similarly,
T T
g, = E (iv _L,,) 5=, (109)
S Ry]
and
| . Vox)
R = E(.‘.’,, };a) Y, = |vey (110)
tiz

The messuremeat error covarlance can be a diagonal mazrix (only zero
elements off the dlagonal). This Ipdicates mo cross-correlorion between
reasurement errors. However, the measurements nust frequeatly be taken

in coordinates other than thlose used for navigation, and cross-cerrelation
between wmeasurement errors in common, The wmegsurement instruments and
geomerry dictate mea urement error correlations. 1i several errvor
quantities are measured at the same time, the ~rrer covariance matrix

R 18 comstructed rrom the aponropriate matrices definzd above. In terms )

of the earlier example invelving stacking messurement matrices,

R | o ,
R = yg.émn.h .
p,v o : R J (111>
[ 4

The zero submatrices in the off-diagonal position of Eq. 111 indicate
a lack of correlation betwcen position and velocity measurement ertors.
If measurement errors are ‘ime-correlated, the stace vector mest be
augmented as described in Section 4 and under System Disturbances

(p. 6%).
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: AN ILLUSTRATION: NORTH-VERTICAL MNAVIGATION
B IN A TACTICAL AlRCRAFT

lhe exzmple chosen to demonstrate Kalman T'llter operation comes
directly from Ref, 3, in which a north-vertical inertial navigation -
syelem Is alded Ly ifuletmitlent positive fixes occuring either two ux
tour times an hour. The Kalman Fllter is emplcyed to provide Op i
use of these measurements. Alritude indications are assumed to come
from an s3ltimerer or some othier moninertial device whose errors are
very sma'l and therefore not estimated., The gyro and accelerometer
errors are modeled as random constants, and longirtude and latitude fix
errors are assumed to have exponential autocorrelation properties.
The fourteen-element augmented state vector is given by

T 51
{KbL RcosLoa R6L RcosLéx o xPy®Pzx Yy fx ¢y <z L e)] (112)

vhere e} and e, are the lat.tude and longitude measurement errors. The
F matrix is given by

loic
©

1

-----

g S i (14x14) (113)

o)
113
o
P e L L
o]
o)

where F, 15 as prescribed in Fig. 27. The G matrix has 14 rows and

2 columns
(v}
G = {--
I {114)
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The measurement matrix has 2 rows and 14 coluwmms
B=|1, [0l 12 (115)

Qn (or G Q ¢T) 18 at 14 x 14 marrix

Q= [|---t---- | | (116)

whers A is the 2 x 2 covariance matrix of white noise driving the linear
model for position error generationm.

The following parametéré were used in calculating the Kalman Filter
estimation errors: ’ )

BKS initilal position errors, north and east, ft_......... 350
Initial velocity @UIOF . ceeeevecvscoscacsanssssssssaaas NODE
EMS initial vertical tilt, €0 .ee.vievecacasesannseaceas 10
RMS icitiai azimuth error, €€C ...ececeseccesoscaniancas. 10
EMS constant gyro drift rate, deg/hr ...eeeeecseeesaeass 0.1
- RME accelurometer bias error, U c.ieesceesciccassacesanes 50
RMS uncorrelated porition fix errors,
north and east., a.mi  ........ AU §
Latitude, deg . ceicceieeecenncnorenusssosssssosaosasasases 30
Adrcraft headling ...iciieeicnnoascconionscsensenanaaees FEast

Any variation of these parameters is noted in the following discussion,

Figure 28 shows PMS v.hicle position error time histories. The
improvement in position accuracy resulting from taking fixes at 15~
minute intervals as opposed to every half hour is demonstrated. Notice
that th~ estimation errors (and therefore filter gain) exhibit an
app-oximate steady-state behavior after about 2 hours.

figure—of-meuit is defined for this Ralman Filter-aided cruise
inertial navigation system. It is the square root of the time average
of mean squure pos.tion error after 2 hours of filtering, This figure-
of~merit is plotted ir Fig. 29 as a tunction of RMS position measure-
ment error for th: case where positicn is determined every 15 minutes.
bBecause latitude error grows faster between fixes, the figure-of-merit
for 6L is consir .ently larger. Of course, the other variables were
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held constant while measurement error was varied. Figure 30 displays
variation of the figure-of-merit as a function of vehicle velocity.

The essential insensitivity of position estimate errors to airspeed is
demonstrated. The figure-of-merit was also found to be affected little
by sizable variations of vehicle direction, operating latitude, inertial
sensor er-ors, and platform azimuth alignment error about the parameceirs

presented above.

E 3
[
2 b
Latitude
Position FOM
( nm)
1}
Longitude
Four Fixes per hour
0 1 2 3

RMS Randora Fix Error ( nm)

FIG. 29. Position FOM Versus RMS Random Fix Error.

Initial estimation accuracy is shown to have no effect on the RMS
filter errors after 2 hours, assuming of course that the size of the
initial errore is properly reflected in P(t,). This is fllustrated in
Fig. 31. The initial RMS tilt and azimuth alignment ervors are six
times as large in case 1 as in case 2, Figure 32 demonstrates the
ability of the Kalman Filter to estimate gyro drift rate, thereby
providing in-flight calibratieme=Bke accuracies shown are somewhat
optimistic because the drift rate was assumed constant., A mecre realistic
nodel for gyrc drift rate is an exponentially-correlated error. In
that case the drift rate will be time-varying and the filter estimation
errors will approach a non-zero lower limit.
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2

Position FOM
T
1

0

e w e Four Fixes per Hour
- . Two Fikes per Hour
RMS Posilion ¥1x Error - 1 am

- O S DS S M T oy 4 T2 S w4 gy e Sl St s WA SRS S D

-

1000 2000

Velcity (fpa)

30. Position FOM Versus Ailrcraft Velocity.

The example discussed is a practical one and the figures serve to

illustrate an important point:

linear filter.

designer.

the error covariance equations not only

ser ‘e to prescribe the Kalman Filter gain matrix, but are alsc useful
in performing consistent analyses of systems containing the optimum
They can be used to determine the accuracy changes that
will result if inertial sensors or measurement devices are altered.
The resulting trade-offe are spacifisd in terms useful tu the syszem
.0
C.OL /
s sob Cane |
Error
2
(X ¢ /
Lepr \ v [V
Came 2
o — e ]
o . 1.6 1.0 Ao
Tice ( wure |
FIG. 31. Effect of Initial Condftinne.
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Section 6. CORRECTIONS OF INERTIAL NAVIGATION
- SYSTEM ERRORS

At this point all the operations necessary to provide Kalman
.. Filter estimates of the ctrors in. inertial navigation systems have been
presented, This chapter digcussos two general schemes using these
estimates to improve system accuracy. Emphasis will be placed on the
technique which corrects errors within the system directly.

CORRECTION OF NAVIGATION SYSTEM OUTPUT

Because navigation system outputs such as position, velocity, and
" heading are the principal quantities of interest, the most apparent use
of error estimates is to apply them as corrections to the system output
(ieedforward technique). Figure 33 illustrates this scheme. The feed-
forward approach has minimum complexity because only the quaatities of
interest are corrected. However, the linear -erroc dynamics of inertial
guidance systems actually result from a linearization of error behavior,
It is conceivable that, 1if correctinns were only applied tu the system
output and internal system errors were 3llowed to grow, the lineariza-
. ‘ tion would no longer be valid. In addition, some inertial navigation
systems are so constructed that their outputs are directly connnected
to other, dependent systems, precluding the use of feedforward correction.
. - These considerations have led to the frequent use of a different scheme
for employing system error estimates. : .

Brtial Oupt + . Correcied Outp-t

=y e
]

cd vires

Extarpal

FIG. 33. Illustration of Feedforward
Correction of System Output.
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DIRECT REMOVAL OF NAVIGATION SYSTEH ERRORS E

Ao alternate technique for the application of the system error
estimates 18 to use them to chuwge the state variables within the
inertial navigator (feedback configuration). Figure 34 illuatrates this
approach, The quantities to be changed can all be represented as outputs
of different integrators (or summing processes in a digital computer).
This Js a consequeance of writing the state variable behavior in the
form of a first-order differential equation. If all the aystem errors
are corrected, the quantities of interest (position, velocity, etc.)
will always have their "best" values. The use of this technique usually
involves three distinct forms of control or error removal which differ
because the integrators mentioned above may be of different types and
may or may not be accessible. In the following discussion the assumption
is made that discrete measurements are beialg used. Extension to the
use of continuous error estimates 1s straightforward.

—

It

/

l

?%
i

Kniman
lisr
Emtarasl
w_

FIG. 34. 1liustration of Feedback Correction
of Navigatiun System Errors.

Reset or Impulsive Control

When the quantity whose error is to be corrected Is an electricel
gignal ac the output of an integrator (ecr in the memory of a digital
computer), it can be changed immediacely. The resetting of thie value
can be viewed as the application of an impulse of proper size to the
integrator input, hence the expression “impulsive control." Impulsive
correction minimizes the system errors for all times between measure-
ments (Ref. 27). Typical of the variables subject to this control are
position and velocity, as well as attitude when it 1s represented by a
direction cosine matrix.
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Rapid Torquing

When a gimballed platform is found to have an incorrect attitude,
this error can be removed by rotating the platform. The integrators in
this case are the integrating gyros which control platform angular rates.
: While an impulsive input to the gyros is not possible, the plarform is
! _rotated at its maximum rate until the error is corrected. . This i3 a

i good approximation to impulsive control, . , o

] ! Continuous Correction

Not all of the system stete errors estimated by the Kalman Filter
can be rapidly corrected. It will be recalled that it is usually
necessary tu estimate correlatad system disturbances and measurement
errors. In so doing, the new state varizbles are ofteun represented as
outputs of fictitious linear systems, However, the integrator inputs
of these systems cannot be reached., Thus, the Kalmaan Filter output
cannot be applied as an impulsive correction, For example, consider the

R sum of a constant and an exponentially-correlated gyro drift rate. The
system arror estimates (estimates of gyro drift rate components) can

only be applied as corrections at the gyro output, or equivalently as a
torque with known effect on the outpur. Figure 35 illustrates this case.

% e S mm e - e e s - -9 3
i T ! i
L . H 3
: ‘ | a

£ - :

f [ -: i R
J

= 1 Ragiml Liyre

i Drift Rate ’

~—
J

i ntheiesiteia ey |

e T — ———— - —— — -

FIG. 35. Illustration of the Feedback Correction
of a Typical Gyro Drift Rate Model.
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The eorrection for the constant drift rate iz an obvious one--
effectively subtract the estimate of this quantity from the gyro output.
The correctisn for the exponentislly-corvelated error is not as apparent;
it follows from the difference in gyro error which would occur If the
integrator were accessible. The correction for all time after t, is
than given in terms of the estimate of this error at ty bv

xcorrz " X2, e. (1172

Notlice that Xcorys 18 the Kalman Filter estimate of x3(t) when no
correction is appii Therefore, by subtracting this value the estimate
of x2 13 made zeso.

The gyro errors in this example and the corrections applied based
on Kalman Filter estimates are {llusirated in Fig. 36. Similar argu-
ments can be used to prescrib. the continuous corrections necessary for.
other forms of correlated system errora and disturbances, It should be
enphasized that, when sulbsequent measurements produce additional error
estimates, the corrections based on these new errors are added to those
alresady being applied.

Gyro Dvif: Kate N .ﬁ’ DriRt Mate L R
_ to Adjast Gyre Outpat
T
T === "'1
| Corrertion of Canstazs
] Z)“w Gyro Krror 2 :
: Correctios Agyliod |
“*to blegrator eutput t
| ”er measure- B i -
| -a=1;ue-¢ l
=T
| f. |
B
{ |
) |
|
SR .

FIG. 36. Illugtration of the Feedback
Correction of Constant and Exponentially-
Correlated Gyro Dzift Ra:e.
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FILTER EQUATION SIMPLIFICATION

One imporiant result of applying error estimates directly to
remove Bystem errore is that this provides a simpiification of the
Kalman Filter equations. Equation 20 can be written &s

. , .
™Y - R
B ST .¢n_§ + Ko i.z vy “H u@ £ ) o (118)
>51nce the feedback scheme causes
X =0 (119}
=

, 1mmedia:e1y after the measurements are made, the next estimate of the

system errors ic given from Eq. 118 by

b

2orl " %ol Zanl (“0_) .

It should be remembered that the quantity z 47 in Eq. 120 is composed
from the difference between the actual measurements and those indicated
by the inertial system output variables. This simplification eliminates
the need to compute $pXy and Hp410nR,. The matrices ®n and Hp+y are,
however, still required for the calculation- of Kn4q.
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Section 7, APPLICATION TO GYROCOHPASSING

Prior to the use of kalman Filters in iuertial navigation aysteams,
platform alignment and the removal of crulse system errors were usually
congidered separately. In order to self-align the inertial navigator,
certain additioral electrical connections were made within the system
which provided additional platform rotation commands, These techniques

_suffered some of the shortccmings discussed in Section 1 for cruise

error reduction--they used stacionary filters and did not account for
time~-varying inertial censor and measurement errvors., If the Kalman
Filter is prvovided for estimating cruise system errors, it is easily
employed to aid platform alignment as well. The term gyrocompassing,
originally used to describe the tracking of both gravity and the horf-
zontal component of earth rate by self-aligning inertial systems, is
frequently applied to all schemes for self-alignment, including use cf
the Kalman Pilter. ) '

The filtering approach permits estimatiorn of the system errors
until they are determined to within a prescribed accuracy, followed by
a rapid error-correction process. Consequently, the Schuler loop
characteristic of locally-level systems 18 not destroyed during the _ .
alignment procedure and the inertfal platform errors are nov affected
by vehicular motion. (The conventicnal gsrocompassing ground asignment
approach is demonstrated in Ref. 28.) 7The alignment of strapdown systems
is analogous to that of piatform systems even though corrections are
appl.ed to the direction cosiue matrix lnstead of rotating the instru-
mont cluster.

FIXED-POSITION GYROCOMPASSING ALIGNMENT

When the carrying vehicle is not moving relative to the earth,
position information is usually known with such accuracy that it can
be considered error-free. In addition, any velocity indiczations in the
inertial system can be taken as errors and used for direzt inputs to
the Kalman Filter. If attitude references are available, t..ey can also
be employed to aid in system alignment. -Xf vehicle position is well
known, weasurement errors in position and velocity can only be generated
by vibrations in the carrying vehicle. The desire to align rapidly,
combined with a situation where only small measurement errors with short-
period correlations exist, provides three basic alt:natives for fi =d-
position alignment with the Kalman Filter. :

One approsch is to effect continuous filtering (Ref. 29). 1In this
cagse, as a result of the contianuous approach, velccity and position
measurement errur time correlaticns become significant and the state
vector must be augmented to accuunt for thenm, 18 necessitates using
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a considerably modified and more complex versien of the Kalman Filter

than is necessary for cruilse error =stimaticn, An alternate scheme,

which 1s more compatible with the equipment nercsssary for crulse isartial
syetem augmentstion, Is to use the discrete version of the Kalman Filter,
employing weasurements at intervals larger tham tiae short correlation

time of the measurement errors. AS a rasult, the errors in wmeasuremenss
can be aasnmed uncorrelated and the Kalmsp Filter equations of Section 2 -
can bes used. --A third-approach,- ueed 1n- the -following section, 18 to T
consider the meisurement moise as unacorrelated becguse irs correlarion |
period {5 small relative {0 sysiem characteristics. This permits con~- -
tinuous filtering with fuwe~ state variables, but may not be as accurate

as the first technlque. The second approach is discussed below becausa

it follows cloee;y the ildeas zlready presented.,

Briefly. when north-verti al navigation coordinates are conaldered
for a vehicle which is essentlally motionless relative to the earth, the
state véctor can be defined by Eq. 82 and the Yy matrix of Eq. B4
speclalizes to : ’

¢ 0 1 0 o ¢ 0

0 0 0 1 o -0 0

0 0 -0 -msinL 0 g 0

F, = 0 0 2minL, 0 -g 0 0 (121)

mul, 5 o L o min_ 0
e e R [¢]

R

-1 ) ;

0 0 g O osinL 0 mcosL
-mosLo -mﬂLo
o 0 0 —p— 0 -deosky 0 |

Ii the measuremeut errors are assumed uncorrelated, state vector aug-
meatation is entirely due to inertial sencor errors. In addition, over
the short estimation period of alignment these can be approximatad as

the sums of constants and random walk gquantities., If the estimation
period is very short, representation by random constants may suffice.

In either case F, is zero. The F matrix for the sugmented state, Eq. $2,
is given b

T 10
e
1 15

Fo oo L2 (12:12) (122)
o1 o0
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' 1f random walk behavior 1s included in the models of all inerc’al
sensor errors, the wmatrix G 0 ol 4=

1
i
GG - |---F----1 (12:19) (123)
i
i
1

wvhere Q, is the covarlance matrix for the vector of uncorrelated inputs
to the random-walk-generating integrators. $, cun be approximated for
the short intervals between measurements by

$ ¥ Lt -t)F (124)

The matrix Q, in the error covariance equation is glven in terms of a
> x 5 matrix L, as

D 01 '
= amelean
Q“ ! {125)
¢ :Ln_j
whera
T : fne1 o
L=t (_P’.n En) and £ = ulm)dr (326}
tn
If only constant inertial semsor errors are considered, uQGT snd Q. are

zero. In any case, the mean square values of the random coust mts

- appear in the diagonal el ments of the lcwer right 5 x 5 submatrix of

the initial error covariance, P(t,).

M v 000 ol A 1 s R D

SRR T (T W T A T




NWC TP 4652

If velocity and position measurements are used and position
difference is assumed to contain no errors, the matrix R is

0 0 0 0
o 0 0 O
R= {0 0 a‘ﬁ 0 (127)
X
0 0 0 o%
» - 3

where ozﬁ is the mean square indicated vehicle velocity caused by
vibration. Velocity errors are assumed uncorrelated in Lq. 127. The
measurement matrix, Hp v is given in Eq. 106.

’

All of the matrices necessary for claculiating the error covariance
and filter gain as functions of time have beén prescribed. If the
disturbances and measurement noise are stationary or their time behavior
is known beforehand, the filter gain matrix can be precomputed and stored.
If they are stationmary, the gain will reach a unique steady state.

Some suboptimal filter possibilitiec are discussed in Section 9 for
similar cases.

MOVING VEHICLE GYROCOMPASSING ALIGNMENT

The self-alignment of inertial navigation systems in moving vehicles
is computaticnally similar to {ixed-position gyrocompassing. Velocity
and position differences again provide the Kalman Filter inputs.

However, sizable measurement errors are common in the case of moving
vehicle alignment. Pousition measurements are typically provided by
Tacan, Loranr, or Omega radio navigatiun aids. Velocity can be measured
by Doppler radar in an wdsesaft or by a ship's spzed log. Because
velocity indications are usually given in vchicle coordinates, an
independent heading reference 1s needed to resolve them intc navigation
convdinates. Any azimuth errors in this device will be transferred to

the inertial system. In addition, position and velocity must be estimated
in the moving vehicle case.

For example, consider the airborne alignment of an inertial naviga-
tion system with the aid of Doppler velocity indication and intermittent
position fixes. It can be shown that the correlated measurenent errors
appearing in Doppler indications of velocity can be removed by pre-
filtering for a period of 30 to 60 seconds (Ref. 2). The prefilter output
(fnput to the Kalman Filter) contains uncorrzlated errors and a small
bias error which is ignored in the following discussion. The system
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matrix, F,, is no longer constant. It is prescribed by Eq. 84 (or 85)
with w,, , W, computed according to Eq. 78, 79, or 80, depending on
the navigation coordinate frame. If no augmentation of the state vector
results from correlated position or velocity measurements, the F and
GQGT matrices follow the form prescribed in Eq. 122 and 123. The
matrices ¢, and Q, also are similar to those outlined in the preceeding
section.

The measurement noise matrix is nonsingular. If the position fix
errors are not cross-correlated, the R matrix will be

GER 0 !
o 2. 1 ©
%6R_ 1 .
R= |eeeceaa- l-f ............ (4x 4) (128)
(0] i R
L i i

where Ué is the mean square error in position fix along the x axis, etc.
The matrix R,, describes the velocity measurement error covariance.

Because Doppler velocity errors along and across the aircraft track
differ and usually appear in both north and east velocity measurements,
R, is not commonly a diagonal matrix. If along- and cross-track Doppler
errors are assumed not correlated with each other and given by the

vector

LA B (129)

the velccity errors resolved intoc north and east components are given
by vy

COSq -sing (130)

j<
i

sin o COSqx
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The R, matrix is then dependent on the heading angle o
- ’ oyt
R, = cov[!v, _\_rv]
[ . ! 7
o’y cos® a |
a :(dav 'Oav )SiMCO&! (131)
+g°  sin® a ] a c
I I S e
i ]
Vo va‘sm a
(o"v -oﬁv ) sinacosa |
a c t+9?  cos’a
- ! c ]

The fact thatR is a function of vehicle heading imposes a restriction

on the vehicle flight path when precomputation of the filter gain matrix
is desired, The measurement matrix Hy y is similar to the one described
in the previous section,

A comparison of Kalman Filter accuracy and the RMS errors that
result from a fixed~gain alignment technique is shown in Fig. 37, 38,
and 39 for this example. The important parameters used in arriving at
these figures are:

RMS initial tilt angles, mrad ...ceecceccocssccvceanscssannas 2
RMS initial azimuth error, mrad ..ceeeveecesasssssccnssss 10
KMS counstant accelerometer errorsS, § «...eeesccccccesss 1074
RMS constant gyro drift rates, deg/hr ...eeeeveeeceseess 0.01
RMS Doppler bias error, ft/sec
CroSS=tracCk eceseeessosssccscsesssssossssassscssansss 3.0
Along=tYack ceeececsscscsscenssonnssascsascsssncass 2.0
RMS Doppler errors with l-sec correlation time
(along- and across-track), ft/SeC .euieeeecccescsenvecses 3
RMS uncorrelated Doppler errors at the end of a
30-sec prefiltering, ft/scc
Crogs—track .ceeeeeseoesvovenssseosnscsssssasscssnose Lo
AlONE—LTACK «veesevececonssssscoscsaccscasnssoccnss 0.75
RMS uncorrelated position fix error, ft
North=south ..eeiiieeeirnsovsonsrecancscanncsasnass 600
EQaSt~WeSt «ieieeeeessessnansscanccnnasanaas ceceavacs 600
Vehicle velocity (due east), ft/sec ..vueuvn.. B - (4]
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The Kalman Filter exhibts a distinct accuracy advanicage in estimating
attitude errvor: (Fig. 37 and 39) regardless cf the time interval between
position fixes. This follows from the fact that velocity errore contain
considerable information about system misorientation while position errors,
though contributing some additicaal accuracv, are less useful. The

similarity
situations
more exact
The hetter
quantities

of Fig. 39 to Fig. 5 results from the fact that they describe
which are almost identical., The Kalman Filter also provides -
estimates of position than the fixed~gain filter (see Fig. 38).
accuracy of the Kalman Filter in estimating all three

results from its time-varying natuve and the fact that it

considers time~varylng inertial sensor errors. The fixed-gain filter
errors approach those of the Kalman Filter in rhe steady state but the -

ability of

the latter to provide faster aligument is well documented in

the figures.
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When the gyros and accelerometers have not been running for a con-
slderable time before the start of filtering, their internal temperatures
will ot have been stabilized. To the extent that thcy can be determined,

" the temperature~caused errorg can be subtracted from the sensor errvor
models. If these effects can bhe accurately established, the Kalman Filter
airborne alignmant cen be performed with an inertial system as it is
being warmed up. :
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Section 8. APPLICATION TO ALIGNMENT TRANSFER

The Kalman Filter is a useful tool for the transter alignment of i
one inertial system to another. The problem iz essentislly one of
accurately eatimating misalignment. Cnce the misorientation is detected,
removing the errors .is. not -difficult. While transfer aligument of a

. weapon Inertial reference syctem from a “waster"-system imposes ail the Uy

errors of the master on the "slave", this situation may often be preferred

to that of aligning the slave to an “ideal" coordinate frime. Before
filtering, the two systems are first brought into near aligrment by sofe
knowledge of their relative orientation. This is usuvally accnmplxsﬁed
without difficulty because they are connected by a pliysical structure ar .
tue time of alignment. The residual misorientation cauced by uncertainries -

in muunting and structural flexure is small and permirs linearizatdon a‘ L

the equations describing alignment ervors.

The alignment transfer technique employing the Kalwan Filter is )
basically an extension of vector matching. The vectors employed are - i
motions which can be measured by inertial sensors, such as linear accel- -
eration and velocity or angular rate and displacement. Matching of
vectors which are measured by inertial components already availlable
eliminates the necessity for elaborate additional ejuipment to perform
alignment, although a computer is required to process the measurements.

Transfer alignment using the Kalman Filter is sccomplished by
measuring the same vector in the tuc ncarly-aligned coordinate systems
and using the difference as the filter input. A good discussion of the
principles involved in determining the ralative alisnment of orthogonal
coordinate frames by vector matching can be found in Ref. 30. It is
well known that the relative orientation of two axis systems cannot be
determined uniquely by measuring a single vector. Two noncolinear vectors
are needed, and for fixed measurement accuracles, two vectors at right
angles ave preferred. An example of alignment using two noncolinear
vectors is the conventional gyrocompassing of an inertial system; the
two vectors, with known orientation in the reference coordinate frame,
are gravity and earth rate. The useful portion of earch rate is that-
part normal to gravity. At the poles, where the two vectors are parallel
this technique becomes useless. Away from the poles the gyrocompassing
system detects the two vectors and their misalignment with the platform
axes, reorienting the platform until it {s properly aligned. The gyro-
compassing example also serves to illustrate the fact that transfer
alignment is not restricted to the use of a reference incrtial system.
Any set of axes in which the necessary vectors can be measured will
serve as the master coordinate frame.
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GIMBALLED SYSTEM TRANSFER ALICNMENT

Transfer aligmment beiween two gimballed pla“forms consists of
accurste estimation of the misalignment and subseguent rotation of the
slave platfvrm to bring lts axes into zolncidence with the master fraue,.
3 J This rotation can be sccompliahed with great precision. Therefore,
= T though tho correction of slave attitude could be accomplished during. . _.
- -satimatlion, 1t would sarvs to increase the filter computations without

increasing accuracy. Attitude correction is not required to preserve
the linearity of the differential equations for alignment errors.

Coarse alignment to within a degree or two is accomplished by
matching corresponding gimbal angles of thc two systems. Consider the
north-vertical coordinates described in Section 3; because no disturb-
ance of che normal operation of both systems occurs during estimation,
the Schuler tuning characteristic of these systems is unaltered.
Frevionsly proposed leveling schemes based on vector matching destroyed
the dchuler characteristic, creating new alignment errors (see Ref. 31).
Because both platforms are isolated from vehicle angular wotion during
the estimation process, structural flexura only provides ar initial
condition on the error statistics of the misalignment. Initial conditions
for longitude and latitude are provided to the slave from the master
system after completion of alignment. The i1deas outlined in the balance
of this section are a summary of work reported in Ref. 12.

After the slave system is given initial values of east velecity and
north velocity from the master aystem, both platfurms are operated in
their normal modes while filtering is conducted.” Earth rate commands
I . to the gyros are identical and originate from the master system. Two
or three of the velocity indications of the systems are compared and the
differences are used as inputs tc the Kalman Filter. Velocity differ-
ences due to the physical separation of the two systems are removed

"' from these signals prior to their entrance into the filter., The
differential equations for the velocity differences, SR, and small mis-
alignment angles, ¢, between the two nearly aligned gimballed systems
can be written in the form of Eq. 2 where '

? | [6R,] 0 @, o 0@y a]
! G.Ry 'zsz ¢ g!xi'&'az) 0 -2,
| .
x2 P , 7pﬁ=m ’ -zrlzx Py AT (132
ox o L 0 0 u
7 Oy R0 0w 0w
(3 -O-NL——é—Uwy-u‘ o |
9%
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G ls the identity matrix and u is che vector of difierences between
accelerometer errors V and gyro errers ¢

T f.. 133;
ut - pv, e, v, ee, Me, -e Me. -, Me, - )1 (133)
- !E *m *s Im Y5 Fm % 7 ﬁ g ‘ - C

The measurement matrix H is givea by

H=]0 1 ¢4 0 0 0 (134)

<o
-
o
o
o

1f only north and east velocities are being compared, the third rcus

and columns of Fx and il are dcleted and V, is dropped from u. The non~
colinear vector is provided by maneuvering the vehicle, thereby crexting
an acceleration vector with time-varying orientaticn relative to tha
master coordinates. The contlruous varsion of the Kalman Filter is used
and an infinity of noncolinear vector pairs results from the vehicle
Janeuvers,

.. Accelerometer errors, V, and gyro drift rates, ¢, are represented - -
by the sum of a random constant and a random walk. This description of
lueriial sensor errors augments the state vector with cne additional
variable for each e=nsor considered, therety doubllng the dimension of
the problem, However, through familiarity with the importance of

various effects, the stat: vector can be reduced \Ref. 12). 1In
particular, the Schuler period and gyro drift rate are observed to have
no zignificance for the prcblem considered there, due-to the short time
oi observation.

Inspection of rhe F matrix for this problem and knowledge of its
appearance in the differential equation for the error covariance matrix
(Eq. 29) indicates that the accuracy of the Kalman Filter can be
influenced by vehicle maneuvers turough the accelerations ayx, ay, and
az. When vertical velocity is not available for comparison and the
vehicle is restricted to horizontal maneuvers, the sum of the mean
square errors in the estimates of ¢, ¢,, and ¢, is minimized by rotating
the acceleration vector at its maximum rate (Ref. 12). For an aircraft,
thisg implies a maximum rate turn at constaut speed. In additionm,
because in the absence of vertical acceleration the measurements GRx
and 6K, cannot distinguish between constant ~ccelerometer error and
platform tilt, the accuracy of the filter in estimatlng ¢, and ¢y is
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= dirsctly limited by the size of the x and y axis accelerometer hiases,
3 This serves to demonstrate one aspect of the observability problem ®
= discussed in Section 3. -

oL

If all three velocity differences are available as inputs to the

" filter, the aircraft cptimum horizontal maneuver i{s still the tightest
turn permissible, In this case, the constraint between tilt angle
estimation accuracy and constant accelerometer errors is removed
because the additional measefement, 8R;, 4180 contains indicatiovuns of
¢y and ¢y which are distinguizhable from the constant portions of Vx
and V.. " Consequeutly, estimates of the constant errors in the x and y

4 accelerometers have greater accuracy, Similar improvements result when

S only horizontal velocities are compared but vertical maneuvers are

3 ‘,ﬁl performed. Inspection of the F matrix reveals that vertical manscuvers,

‘ by creating a time-varying az, provide a means of distinguishing between
J level mipalignment (time-varying coefficient) and constant accelerometer .

errors, :

S J ——t

Meagurement noise, as mentioned earlier, can be generated by relative

; velocities between systems caused by structural flexure.. In addition,

i some quantizaticn and signal transmissior noise may be significant.

! While the noise present in the velocity signale of either inertial

reference system 18 typilcally a v=ry small fraction of the true signal, -
3 errcra in the velocity difference can have significant relative magnitude.

The use of the continuous version of the Kalman Filter and the size -
of che state vector generate a considerable computer load if all calcula-
tions are performed or~line. Precomputed gains, stored as functions of
time and vehicle heading, can reduce this problem considerably. However,
- : the veuicle cariylap The Twe gluballed luerilal sysiems would have to
perform preplanned maneuvers. This can be a tactical problem, but
typical alignment times are on the order of a minute or less.

The ability of the continuous Kaiman Filter to provide quick, accurate
estimates of the misaligmment between two gimballed inertial systems is
illugtrated by Fig. 40 and 41. They show time histories of the RMS errors
in Kalgan Filter estimates of level and azimuth misalignment when only
: horizontal velocities are compared. The errors were found by solving
3 the error covariance differential equation (Eq. 29) with following
3 inputs:

3 Vehicle maneuver ....eecececessscacasss. 3=g horizontal turn
f; ! Vehicle Velocity, ft/sec L N N N R I A 103
Heasurement noise .......... 1.5 ft/sec KMS from each system;
flat power spectral demsity to

1,000 cps (see Appendix A)

RMS gyro drift rate, deg/hr ..cieveecesscccerecasconose 0.25
RMS constant accelerometer error, £ ..eceecececessesessss 1073
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migaligpment.

‘parlson of vertical velocities or performing a

The two fixures indicate thar at the end of a l5-second estimation
period the aziamuth misaligmment 1s known such more accurately than level
It can be seen that the esiimation errors for the level
angle have reached a steady-state value of milliradians. - This cor-
vesponds to the lower limit imposed by the constant sccelerometer arrors,
The {actor of 1{§—resu1ts from adding the me.n square accelerometer
errurs from corresponding sensors in the two systems. Of course, com-
‘ertical maneuver will
vemuve this constraint. 1t can be seen that the Kalman Filter holds
considerable promise as a means of measuring the misalignment between
two gimballed Inertial guidance systenms,

STRAPDOWN TO GIMBALLED SYSTEM TRANSFER ALIGHNHENT

Alignment between a atabilized gimballed inertial reference system
and a strapdown inertial system involves accurate Jetermination of the
transformation matrix relating the two coordinate frames. The initial
coarse alignment is determined by calculating the transiormation matrix
from gimbal angles. For reasons similar to those discussed in the pre-
vious section, more accurate determination of the relative orientation
is necesgsary.

Three variasbles are reeded to describe the relative crientation
between two sets of three orthogonal axes. However, in the sto:.pdown
application it is necessary to compute changes in orientation based on .
angular rates measured by the gystem gyros. In this case the differential
equations for the Euler Angles contain a singularity corresponding to
gimbal lock in a stabilized piatform. TFor general anguiar motion, at
leagt four parameters (analogous to four gimbals) are needed. It also
is possible to compute all nine elements or direction cosines of the
transformation watrix directly.

Though more variables are involved, the direction cosine calcula-
tions are linear. The differential equations for three~ or four-parameter
representations of rotatioa are highly nonlinear. Reference 32 provides
a gore complete discussion of transformation matrices. VWhen the Kalman
Filter is to be used, linearity of the original equations avoids pctential
errors that can result from linearization about a nominal trajectory.

If the linearizaticn 1s performed perfectly, no one set of parameters
offers an estimation accuracy advantage over the others (Ref. 12).
However, only calculation of the nine direction cosines will be con-
sidered below,
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The true direction cosine matrix, C, relates an accrleratinn vector
measured in platform coordinates, Zp, te the same vector resolved in
sehicle or strapdown coordinates, i,, accordiag to

The othogenality of the transformation dicates that the inverse of C is
also its transpose, simplifying calculation of the relatioen ¢! con-
siderably. The linear differential equation for C, in terms of the
angula: rate of the strapdown system expressed in vehicle coo-dinates,

is given by

C =G

where the matrix {2 is constructed from the vehicle angular rates Uys Wy,

and w, according.to

Q= J-u, 0
wy o wy

An initial error exists ir knowledge of the C matrix.

in the computer

Cc=c+6c

is the sum of the true matrix and a small difference which obeys a
differential equation analogous to Eq. 136

6C = 6C 0

O - R ép..—,_cgv. I

i maatr s me— merml 2 s o

O
:}
The watriyx ;
(138) i ]
i
‘ .
i
(139) .;
]
g
i
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The platform accelerometer triau indicates the true acceleration vector
3p plus accelerometer errors Vp. The strapdown senmsors provide the sum
of cTd, and an error vector Vv The difference between the strapdown
measurement transformed by C. and the platform indication is

K = (8¢) cTa, + c¥, - U, (140)

where the term GCVV has been considered a higher-order effect and
ignored. Defining a new 3~-element vector, d, by

= A

Aule

(141)
d (to) = O

an 18-clement state vector can be composed from d, V,, Vy, and the
elements of 6C. This state vector, X, obeys a linear differential
equation

x=Fx

where the elements of F are composed from the elements of C, the
accelerations measured by the platform accelerometers and the angular
rates measured by the strapdown system gyros. Many of the elements of

F are zero. The filter input is the vector d, provided by integrating
the acceleration difference A. The elements cf d are velocity differences
in the direction of the platform axes. The 18 state variables indicate
that there are 324 elements in the error covariance matrix. Since

rapid alignment or estimation of 8C is desired using continuous measure-
ments, a precomputed filter gain matrix may be necessary. Because any
prescription of the K matrix=regwises knowledge of F, preplanned maneuvers
must be executed precisely in. order to obtain the accuracies promised by
the error covariance analysis.

If angular maneuvers are restricted during alignment in order to
avoid the singularity in the differential equations, the thrze Euler
Angles can be estimated using the Extended Kaiman Filter. The size of
the state vector is then reduced to 12 elements. However, the elements
of the F matrix for this case are more difficult to calculate, involving
#ines and cosines of time-varying Euler Angles. Again the filter gain
matrix may be too complex for anything but precomputation. It should be
noted that alignment using Euler Angle estimates does not restrict the
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relative orientation of the two svatems afeer entimation 19 -ompleted,
The Euler angle astimates are converted into direction cosines st the
end ot tiltering in ovder Lo eorveet the transfcrmation matrix. '

1k {8 nnt clear what meaning can be attached te the sum of erxos
vaitjances In the estimatea of the Euler &ngles or the elemenes of (,
An indieation of filter aeceuraey with seme physical meaning is required.
1f the aror in U, 8C, vosults from & small misalignment, the produst.. . .-
nf ehe transpone dof the true tvanaformation matrix and the computed '
matriz {8 a third transformatlon which cen be approximated by

RER 9y
(142)

The saall anglea Pye by and ¢p are the angular vrientation errors about
three orthogonal ases (k, y, anl e) that are daascribed by §C,
Remembering that

¢ = ¢+ 66
(143)
- T e g
¢ ts ohaaived thdl

) 0 ]

1 Ve qw
¢ & = %32 0 gH (1éi')

Vy Vg 0
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Tha vactors Cy and §§1 are the ith column vectors of the C and 6C -

matrices. The averaging process involves only the elements of the 6C '
matrix becaune C is deterministic, When the Falman Filter 1s estimaiing

6C diractly, the figure-cf-merit can be expressed in terms of the true

direction cosines and elements of the error covariance matrix which lie

- both on ani off the dizgonal.

When the filter estimates Euler Angles,

the errer covariance margix elements enter the figure~of-wmerit in a more
complsx fashion. Of course, this evaluation of filter accuracy is only

techaique.
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Section 9. KALMAN FILTER IMPLEMENTATION CONSIDERATIONS

In this section some of the practical details of implementimg the
Kalman Filter are discussed. The purpose haere is to introduce the
reader ro a few problems and Lo demonstrate common approaches to reducing
them. Of course, practical considarations generate subjective solutions. . .
‘Consequently, no attempt is made to discuss all of the problems encountered
and the approaches presented are not the only ones possible,

COMPUTER COMPLEXITY

The compact vector-matrix notation in which the Kalman Filter
equations are written is deceptive, Literally thousands of multiplica-
tions can be described by a few strokes of the pen and equations can
easily ba written that cannot be solved quickly enough by even the
largest and fastest modern computers. Many reports are available, and
many more will be written, describing in detail, for one system or
another, the memory requirements and number of computer operations needed
to incorporate & single external measurement using the Kalman Filter.
Among these are Ref. 2, deacribing airborne alignment and cruise error
ramoval using position fixes and Doppler velocity information, and
Ref. 33 which compares Kalman Filter computer requirements to those for
a growing-memory digital filter,

A few general comments can be made to i1llustrate how demands on
the computer are related to the formulation used in the Kalman Filter. ..
Sasically, the computer requirements are related to the number of elements
in the state vector and the number and repectition rate of external
measurements. The computer time requirement is directly related to the
frequency at which measuremants reach the discrete filter, because the
covariance and estimation difference equations are solved with each new
inpuc. Also, to he useful, the filter equation (Eq. 20) must be solved
in a swall fraction of the time between measurements., The continuous
tilter requires solution of differential equations and, if a digital
computer- i3 being used, the time step size required determines whether
any computer time is 1vailable for other calculations.

The number of d.,.tal computer operations necessary to incorporate
each new measurement (or the number of integrators, multipliers, and
resolvers in an analog computer implementation of the continuous filter)
is largely determined by the state vector size. One of the basic
diffevences between conventional filters and the Kalman Filter is that
the latter attempts to measure randcm errors if they are time-correlated.
This feature is also the major cause of large state vectors in the filter
equations. Unfortunately, staie vector size and computational complexity
are not linearly related. The ma:rix difference (or differential)
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. gquations describing error covariance behevior, Eq. 21, 25, and 29,
represent nl scalar equations where n is the number of state variables.
Furthermore, the multiplicaticn of two a1 x n matrices, often required in
the solution of these equations, represents n3 sepavate scalar multi-
plications that must be carried out by the computer. The seriousness of oo : P

— - ehis sizuasion is ofren relisved in particular applications through C e b

.1 ... efficient programming. Thias is possible wien many of the matrir elemenis .
Ao ©  are zero,

Computer requirements ace reduced if the matrices which appear in
tha system and error covariance differential equations are constant.
Analytic solutions exist for the error covariance matrices for the
-] discrete and continuous filters when F, H, G, (, and R are constant
(Ref. 7 and 34). Implementation of these solutions is usually less
demanding of computer time if the measurement schedule 18 periodic and ]
the interval betwveen measurements is much longer than the time stop
required for ac:urate solution of the differential equations.

L ) i it il |

[

A problem scmetimes arises when an error covariance matrix is

reduced from an initially large value to a very small quantity. In this
" case, significant digits are frequently lost and the positive definiteness

i of the covariance matrix can be destroyed. A square root formulation
1 of the Kalman Filter has been developed which is helpful in this situa- -
3 tion (Ref. 35)}. It avoids the necessity cf using double precision in
this case or permits the use of shorter word lengths t.aan might otherwise
be required for problems of this sort. On the other hand, the square .
—1 . ... .root. formulation regures more celculations than the single precision ' '
conventional formulas. Also, if measurements provide knowledge -of some
state variables that is much more accurate than the estimates immediately
prior to observation, Eq. 22 is a more precise equation for updating the
error covariance matrix than Eq. 25 (see Ref. 36).

Frequently, a reduction in computer requirements cin be achieved
by prefiltering the extermal measurements. Consider the case where
Doppler velocity measurements are used to aid an inertial navigation
system (Ref. 2). The velocity indications are available several times
& second bLut velocity errors are essentially constunt over a much longer
pericd. By averaging the differences between Doppler measurements and
i iaertial system indications over several seconds the correlation between
T measurewent errors at the input to the Kalman Filter may be reduced to a
- negligibla amourit, 4 double reduction of computer roguirements can
2 result; the state vector size may be reduced because it ie no longer
necessary to corsider correlated measurement errors, and the measure-
ments reach the filter less frequently, permitting slower calculation
rates. The averaging process causes a significant reduction in the
wean sguare wmeasurement nolse, providing fewer measurements of higher
quality. However, an additional measurement error does occur because
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the average is blased when the inertial system velocity error is changing
during the prefiltering process., In general, this techaique is useful
becsuse the Doppler velocity measurements are provided much more fre-
quently than necessary.

_—

SRGEE L
'
i

"It frequently happens that the system model, painstakingly con-
structed during the initial analysis to include every possible detail,
is latar sharply reduced because of computer limitations., If this
reduction is to be accomplished without making the Kalman Filter useless,
a mears for analyzing ite effect on accuracy is necessary. Such a
procedure is outlined under "The Effects of Imperfect Models" (p.1l15).
] As usrurl, practical considerations dictate an engineering approach to
! implamentation of the Kalman Filter. It is necessary to determine
trade-offs between accuracy and computer complexity.; The final choice
is at least partly subjective. Typical state vector size for Kalman
Filter applications to inertial navigation systems rances from 6 to 21

_ elements. Computer memory requirements range from appruximately 1,200
to approximately 4,000 words, refiecting the fact that efficient pro-
gramming can partially relieve the "curse of dimensionality.' Unfor-
tunately, the larger state vectors usually appear in aircraft applica-
tions where ueasurements are taken more frequently and computer size is
more critical.

noHRE -

OBSERVABILITY . e

In any situation-where many variables are to be measured ur estimated . N
by observing a small number of cutput quantities, the question uvf observa- ;
bility arises. For example, in the state and measurement equations

3 ;‘x i, 5, O X, '
E: %N “|ta fa O||%]| +Gu (145) .
E z= 1 0 0 X +v (146)
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the variable x3 is not observable. MNo amount of filtering of the
measurements will improve the accuracy in knowledge of x3. The
lirgrature contains many statements of the strict matnematical definition
for cbsurvability (see Ref. 7 and 8). More common in the application

of the Kalman Filter to inertial nevigation systems is the observability
problem demoustrated by

n oa allx
Hl=10 o of|e| +6u (247)
% o o0 o|ix

z=x3+v (1s8)

where the £ elements are time-varying but ¢} and c2 are constant,
Equations 147 and 148 illustrate the case where two variables (x3 and x3)
can be recovered from the measurement only as & linear combination. This
is the ulivacion discussed in Section 8 where the velocity difference
between two nearly coincident inertial systems is influenced in the

ssme way by platform level misalignment and constant level-accelerometer
errors. The two effects are not semarable, A similar situation arises
in estimating constant east gyro drift rate and azimuch error in a
north-vertical system when only position measureuents are available.

The Kalman Filter corrects the estimates of the two insepara®le variables
according to the variances of their estimation errors. I1f one variable.
is known much more accurately than the other, almost all of the difference
(z-%1) 18 used to correct the least precise estimste. For the problem
discussed under "Gimballed Cystem Transfer Alignment" (p. 94), when the
iritial uncertainty in 3¢y is much greater than the standard deviation
of x-axis accelerometer error, the Kalman Filter will attribute the
entire effect to the tilt angle, ¢y. As a result, che RMS steady-state
estimation errors in B¢y and Vx are identical and essentially ermal to
the RMS accelerometer error, There is no accuracy iwprovement in the
e¢srimate of constant accelerometer error. If the two initial error
variances were approximately equal, both estimates would be improved by
the Kalman Fllter. Only when the two errors are made separately
observable by providing an additional measurement or a time-varying
element in the system matrix can both estimates be improved by the filter
regardless of the initial error variances.
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SUBOPTIMAL FILTERS

Several forms of suboptimal filters have already been zuggestad.
Generally, a suboptimal filter is a modification or gimplification of
the optimal or Kalman Filtar, . In a sensa, any Kalman Filter is sub-
optimal becauze all the effects on system state behavior can never be
determined, The important consideration in going from the Kalman Filter

-to a suboptimal formulatien is an ability to analyze the effect om
accuracy that is produced by the change.

Simplified Hodel

In order to reduce computational complexity, certain known dynamics
that exist in the system, its disturbances, or in the measurement errors
are often intentionally ignored. Of course, this neglected behavior is
understood by the designer to have a minor effect on the state variables
of interest. The new, simplified dynamics are described by a state
differential (or difference) equaticn and a measurement equation similar
in form to those for the original, complete system. The same error
covariance equations can be applied t» the simplified system, though
reduction in state vector size will reduce the computer capability
required for their solution., In a like manner, the same equations are
used to find the Kalman Filter gain matrix. Unfortunately, the error
covariance mairix found using the simplified forms of system, measure-
ment, or random vector covariance matrices does not provide correct
values for the estimaticn errors in the complete system. It is only

" correct when the true system 1s accurately described by the simplified
2quations. To analyze the effect of using the simpitfied filter, a
sengitivity analysis must_be conducted. A discussion of sensitdivity
analyses is provided on p. 114. These computations generate the error
covariance matrix for the complete state vector estimate when the filter
incorporates the simplified gain matrix and the simplified descriptions
of gtute dynamics and the measurement process. The errors described can
be compared to those calculzted for the complete Kalman Filter, and
trade~offs are determined.

As an example of simplifying state dynamics, consider the use of
stellayr measurements to correct inertial navigation system errors. Star
sightings usually measure the error angles between computed and plarform
axes, described by the vector Y, The differential equation for { is
given in Appendix C as

V=0 xwo+e (149)
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1f stellar measurcments are taken frequently and U is therefore kept
small, the predominant effect in the differential equation is the drift
rate vector, €. lhe entire system state vectour differential egquation
can then be approximated by the i~element form

i,__._z | s

Augmentation is made to account for the correlation properties of the
gyro errors, but the resulting state contains 4 elements less than that

- using the syatem state description provided in Eq. 82. 1Ian reducing the

gtate vector size, it was obegerved that certain elements were being
measured directly, and the ususl state vector formulation was changed
(from 0 to §) to accommodate that fact, In addition, certain terms

(¥ x @) were dropped because they weve expected to have little effect
on the state vector differentisl equation. The consequence of these
changes is a reduced state vector and simpler state differential
equations, both of which provide smaller computer requirements.
Reference 37 presents results of computer simulations indicating that
the simplified filter gives good accuracy despite these approximations.

As a practical matter it is often wise to increase the magnitude

of the disturbance covariance matrix, Q, when system model simplifications

are made, Frequently, fictitious system disturbances are assumed where
none exist. These adjustments account for the errors in state extrap-
olation caused by approximations in the wodel. The effect is to make
the £4lter gains higher, thereby making the filter more dependent on

neasurements and less dependent on inaccurate state vector extrapolation.

Simplifications of the gystem model, the measurement model, or the
error correlation propesrtiez can be made in many cases. Based on the
knowledge that certain effects or terws are relatively minor, they are
made with the intent of reducing computer requirements for the filter
or for filter-gain matrix calculations. Eventually, a sensitivity
analysis as outlined in "Effects of Imperfect Models" (p. 115) 1is neces-
sary to establish the accuracy trade-cfls involvad.

Precomputed Gaing

A great deal of the Kalman Filter computer burden can be relieved

if the error covariaance equations can be solved beforehand and the filter

gain matrix computed and stored for use during subsequent filter opera-
tion. As mentioned earlier, this is unly possible when the measurement
schedule and system dynamics are known in advance. If no new informa-~
tion about system #nd measurement behavior (including the statistics of
disturbances and measurement errors) arises during filter operation, a
Kalman Filter employing correct precomputed gains remains optimum, When
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the Kalmern Filter is applied to inertial navigation syetems, vehicle i -
course and spesd during filtering must be ussumed to permit precomputed t -
gains. If any deviation from this trajectocy can occur, a sengitivity s
analysis will reveal witat changes will take place in the estimation
error gtatistics.

When precomputed filter gains are used, further simplification can
‘be made by modifying their time behavior. Ofcen, only the steady-stata
filter gains (when they exist, see p, 17) are used. This is equivalent
to using the Wiener filter. It permits the storage of a number of con-
stant quantities equal to the product of gtate vector dimersion with ‘
measurement vector size. Less drastic simplifications of the filter 3 Tz
gain time behavior are often produced by approximating the savior of
gain matrix elements by analytic or discontinuous functions of tima,
Figure 42 fllustrates the use of a declining exponential or a two level
constant to replace a gain element with similar behavior. Im both cases
the computer memory requirement is reduced to stoxing a small number of
constants and the gain element is easily cumputed when it is required.

if the system behavior is dependent on quantities other than time,
filter gains can be precomputed for a range of these variables and an
interpolation scheme applied after they are determined. In navigation
systems the gain elements may depand on vehicle course and speed. More
generally, the gains in the extended Kalman Filter may depend on the
state variables themselvec. An iilustration of this case arises in
using the Kalman Filter to estimate position and velocity of an unknown
ballistic reentry vehicle. Nonlinear state equations result. FPurthermore,
the filter equations must be snlved quickly and precomputed gains are
very desirable. Houvsver, ceftsin gain watrix elements can be specified
by interpolation on the basis of estimated altitude (Ref. 22). Other
precomputed gain elements were insensitive to all known physical param-- i
eters and their time-varying characteristics were approximated., 4 |
sensitivity analysis revealed little deterivration in accurzcy resulted
from the tilter gain approximations. Figure 43 compares results for the
optimum and suboptiwum filters. Of course these are single simulation
runs made with identical random disturbances and measurement noise.

Similarity of ensemble error statistics was established by sevnsitivicy
analysis and Monte Carlo techniques.

When approximations to the optimal filter are produced by modifying
the filter—gain marrix behavior only, analysis of the effect on error
covariances 13 easily performed. For the discrete tfilter, Eq. 22 can be
used to computc the erroi covariance matrix with any filter-gain metrix.
A similar expression for the continuous filter is given by

P = (F-kN) P+P(F -k)T + KRk? + GQGT (s1)
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“". By substituting the modified gains in one of these equations, filter

accuracies can be obtained for comparison with those resulting when the
optimum filter is used. If the system state dynamics and measurement
process are also changed, a more elaborate scheme is required to determine
the estimation errors, This is outlined in subsequent sections. As

with all other attempts to simplify the filter, modified descriptions of
filter gain are usually based on insight into the problem at hand.

Decoupling Equations

Many classical analyses of inertial aavigation systems were simplified
by separating portions of the problem. Small cross-coupling terms in the
differential equations were ignored and one large set of equations was
reduced to twc or more smaller sets. A similar approach can be taken
in order to simplify the Kalman Filter equations. Though the decoupling
of system dynamics is usually based on good physical intuition, detailed
mathematical approaches do exist (see Ref. 39).

Referring to the system described in Section 5, the terms in the
matrix Fy of £q. 84 involving vehicle accelerations or coordinate frame
angular rates are typically much smaller than the others. They are the
cross-coupling terms relating the two level loops and the azimuth drive
of a north-vertical inertial system. If these quantities are ignored,
Fyx becomes

0 0 - 0 0 0 0
0 0 0 1 0 0 0
92 0 0 0 0 ¢
Fx = 0 Y 0 0 -g 0 0 (152)
cC 0 0 112 0 0 0
0 0L 0 0 0 o
R
0 0 0 0 0 0 o0
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Now, by rearranging rows and columns of Fy (rearranging the order in
which the state variables appear in Xx),

- -
0 1 0l0 0 o 1o
o 0 glo o ojo
|
1 ! |
R S R
0 1 0
e 0 0 :o i 0 (153)
X 0 0 olo o - Lo
{
0 0 010 L o}o0
_______ | ) S S
0 0 0,0 0 o'o
- -
for the state vector defined by:
xT -[6r_ 6R_o 5R_sR
X" =| SR, 0R, oy SR SR o 0, (154)

The partitioning lines in the system matrix serve to illustrate the
fact that Fy is composed from zeros except for the submatrices along
the diagonal. The state vector-matrix equation can be decomposed into
three independent sets of differential equations. A considerable
reduction in computer time and memory requirements results. The added
consideration of ccrrelated sensor errors does not alter the situation.

When gyro and accelerometer errors are constant, the three state equations

are

™o ar
) Gli*'Ia‘ 1 0 : 0 0 6R.]
oe o .
6 6
R.x 0 0 g : 1 0 1'\‘.x
. 1 |
=0 -z 0,0 1 (155)
y UL R_CV 2 L%
Gx 0 0 O : 0 0w,
. |
¢ 0 29 0,0 0}]ce
Y
1L - - L L y g
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or] [ 1[sr]
6“5 o 10 Lfi_.g_ ¥
o | *
) SR|J0 0 g1 O]}SR
y . 8 i y
o 1|0 R 0_1}_0_ _ -1_ Oy (156)
v 0 0 010 O]}vw
y : Y
and

a|_ ' (157)

No measurement equation is available for rhe state given by Eq. 157.

It is unobservable. The error covariance equation for this state vector
is given by Eq. 14 or 21. A marine inertial navigation system is treated
in Ref. 39. By eliminating cross-coupling terms, the state is reduced
from one vector of 16 elements to four vectors with 4 elements each.
Analysis of the relative accuracy for this scheme compared to the full
Kalman Filter indicates that estimation errors do not increase rignif-
icantly as a result of the apprcximations involved in decoupling.

SENSIT1VITY ANALYSES

Thke error covariance matrix computed for the Kalman Filter by
Eq. 21 and 25 or Eq. 29 is based on the assumption that the description
of system dynamics and the measurement pcocess 1s exactly correct. In
addition, th~ random disturPETTE®™and measurement errors are assumed to
be correctly described by the covariance matrices provided. Bncause
some uncertainty about the true system behavior or measurements may
exist or because the random vector covariance matrices are usually
calculated from incomplete empirical data, a technique for checking
the effect of incorrect descriptions 1s desirable. Cnce established,
the same relations can also be used to investigate the relative accuracy
of subopt’mal filtering schemes. This section provides a brief discus-

slon of the steps necessary to perform sensitivity analyses and to check
suboptimal filter formulatioms.
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The Effects of Erronsous Statistics

lmperfect gpecification of the statistics for random disturbances
and maasurement errors ia not uncommon, Those quantitles, as they appear
ir the R and Q matrices are usually computed from incomplate data. For
example, gyro drift rate data may be available from tests performed on
a limited number of similar gyros. Aluse, these tests may have bean of
an undesirably short duration and the laboratory environment probably
differs significantly from that of the inertial navigator. Obvicusly,
the statistical behavior of the drift rate for this particular wmodel
gyro is not thoroughly established by these tests, Broad confidence
limits exist for the statistical drift rate descriptions. However, the
Kalman Filter formulation requires that, for the error covariance analysis
to be accurate, the exact statistical behavior of randuom quantities be
described in the R or Q matrices and in the iaitial error covariance,

P(tg). In order to determine thu effect incorrect error statistics will

have on the filter estimation errora, a range of values for these
matrices may be investigated. The sensitivity curve that can result is
illustrated in Fig. 44.

When an incorrect description of error statistics is uged to find
the filter gain matrix, the true error covarlance matvix which results
can be determined using Eq., 22 for the discrete filter. The filter gain
matrix is compuied in the usual manner, based on the best guesa of error
statisties, To check the effect of an incorrect cholce, a different
value of Q, R, or P(typ) is substituted in Eq. 21 and 22 with the same
valuen for K. A new history of estimation errors results, Comparison_
with the original ertoi vuvariances indicates the sensitivity of the
Kalmau Filter to incorrect statistice. A slmllar procedure can be
varrled out fur the continuous filtaer using Ly, 151, (Seu also Ref. 40.)

The Bifecis of Iwperfact Models

A more complex analyais lu required to datetmine the senstitivity
of a Kalman filrer to changes ur ervors in the system equations or the
meapurement process, Consider the problem of analvziug eimplificacions
in the filter. The designer knows the true state and ite bahnvior=—thin
representa his bast underatanding of the system operation. A good
description of the measurement ly alsu avallable. The true state dif-
ferernve aquation for the discrete forwulatiou la wrltten . . .. -

B " O Xty (158)
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FIG. 44, Sensitivity of RMS Position Error to Error
in Estimated Cyro Drift Rate.

But, for simplicity, the filter operates with a different set of Lransi-
tioa and measurement matrices described by o% and HY. The estimate of
the atate immediately after each measurement, &'{, obeye

041 = 03 87 + Kj |0 -Hp 9 A0 (159)

which is similaxr to Eq. 20. It should be noted that frequently, as a
reyult of simplifylng the atate vector, %, may not contaia as wany
elements as thu ¢rue state, X. Consequently, the error of interect
wust be expressed as

~

Fux-wg" (160)
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~ Eq. 12. The covariance of r can be expressed by

where the matrix W accounts for the difference in state vector dimension
and for any licear transformotion that may be used in defining the
rimplified state. As befor2z, the quantity of interest is the error
covariance

P = cov (%X, X)

~E G BT
= cov (x, x) - [eov (x, ZM) W' (161)
- W cov (§*, x) + W[cov (§*, %)) Wl

The covariances required tc solve for the estimation error covariance
matrix using Eq. 161 can be calculated by defining a new vector, r,

X
I 4 ..:.-I (162)
2* |
Remembering that
B 2z, = Hy xp +vg . o (163)

a difference equation for r is found using Eq., 156 and 159

X+l o, | 0 Xn ¥n
N N  CA R T
=a+l na K Hnt %y Za K, !nJ

In Eq. 164, starred matrices refer to those used in the simplified model
of the Kalman Filter., The new state variable difference equation is 1in
the form of Eq. 8. Given initial conditions for the covariance of x,
that matrix can be calculated for all future measurement times using

cov(x, x) :
COV(E, 1) = =~ — e e e e e = _ (165)
i

cov(®*, x) cov(&*, 2%
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The quantities needed to solve Eq., 161 are contained as submatrices of
the covariance for the new vector, as shown in Eq. 165. Notice that,
unless the true state and the simplified state have the same dimension,

cov(*, x) and cov(z, 2V . . . .

are noc square., Several computer ptogiams solviug matrix difference
.equatious of the form given by Eq. 12 are in widespread use.

More efficient calculation of the matrices on tha right side of
Eq. 161 result from the observation that
cov(Z*, x) = [cov(x, §9)]1T (166)

Defining

P 4 cov(x, x)

Py 4 cov (X*, gf) (167)
P3 4 cov(x, %*)

" smaller matrix difference equations cen be written for ﬁl, Py, and P3:

T e T T T .
= K* . » L - K* H*
Po, =KIH Py HOK:TKSH Py @20 (-K:HY) 68)

~K* T, T,,T T T
PO-KIED G R B KT+ U-KRRD) IR, ot T0 - K2 HY)

T

e T, .T. 4 T
:F°n+1'°n‘?‘ngn K* fwnp?nof‘ G-K;H;)

Once the error covariance has been computed using Eq. 161, it can be
compared to that resulting from the true system as calculated by Eq. 21
and 25, Of course, a similar procedure is available for the continuous
case, ‘
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When the sensitivity of a Kalman Filter deaign to correct specifi-
cation of the true system is to be investigated, the same procedure is
followed. However, the $* and H* matrices are now those used in
designing the filter and K* is the cesulting filter-gain watrix. The
altered ® and H matrices are substituted for the unstarred guantities
in the above equations.

All of the calculations in this section are carried cut off-=line,
before actual use of the filter. They provide 4 complete approach for
analyzing the sensitivity of the Kalman Filter to erroneous specification
of system and measurement behavior or to incorrect statistics for random

quantities,
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Appendix A
COVARIANCE MATRICES

The covariance matrix for two random vector processes ia defined
in germs of the ensemble average values of the vectors and the ensemble
— -—-—gverage value of their outer product. The covariance marrix for a(t)

: and b(t) is given by (E denotes ensemble expectation)

covia(e), u(r)] = E [a(e) bI(e)) -E (a(e)] £ bT(&)] . (Q169)

| Since only zero mean quantities are dealt with in Kalman Filter work,
the simplificaticn

covla(t), b(t)) = E [a(t) bi(t)] (170)

; ceu be made. The covariance of the errors in the Kalman Filter egtimate
of the state x is described by the matrix P ‘

P(t) = cov{X(t), X(t)) (171)
= - - . The covariarce matrix for systewm disturbances ié given by
Qp = coviwy, ¥n)

in the discrete filter, and

Q = cov(u, u) (172)

in the continuous fiiter. For measurement noiges, the covariance is the
same in both cases:

K = cov(v, v) - (173)
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The requirement that the measurement noise and system disturbances be
uncoiLrelated in time gives the restrictions

cov[u(t), ul1)] = Q&) S(t-1)
' _ _ {178)
coviv(t), v(1)] = R(t) §(t-7) '

in the continuous estimation case. The operator & is the Dirac delrta
function. wWhen the discrete version of the Xalmau Piiter 1s used, the
corresponding requirement is that disturbances and noises must be '
essentially uncorreluted over the smallest measurement interval.

cov(wp, w,) = 0 for m # n
= Qn for m = n

{175)
cov (v, !u) = 0 for m¢ n
= Ry for m = n

Though it seldom arises, the case when measurement noises and system
disturbances are cross-corcelated can be treated (Ref. 7).

NOISE AND DISTURBANCE COVARIANCES FOR THE CONTINUOUS FILTER

In the discrete versioa, the diagonal eclements of R, and Q, are
readily identified as the mean square values of particular elements
from the random noise and disturbance vectors. Computing the elemeats
of Q(t) and R(t) macrices used in Eq. 29 for the continuous filter 'in
tha game manner would bte incorrect. Inspection of Eq. 29 reveals that
these covariance matrices have the units of Q, and R,, respectively,
multiplied by the unit of time. The necessity for this can be observed
from Eq. 174 bacause the Dirac delta function carries with it units of
time. A different explanation follows from the fact that truly uacor-
reiated signals do aot exist in nature. This presents no prohlem in

the discrete case because disturbances and measurement errors whosz - T
"correiation time is iusignificant compared to che smallest observation

interval can always be defined. However, when tne interval is caused
to vanish, what are considered as uncorrelated random signals are
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frequently quantities whose autocorrelation periods are much shorter
than the characteristic times of the aystem and the measurementa,
Raference 10 shows that, under these eircumatances, the derivative of
the error covariance matrix for a continuous process excited by a random
disturbance depends on the time integral of the correlation

G~ ————E {utt) uT(0)}

Assuming that u(t) is exponentially correlated with correlation period
1/8, the draiving termz becomes

E [u(e) uT(e)] (176)

Wi

- Q(t) =

If one element of u has a mean squared value of 02 and a flat, one-sided
power spectral density, Syu» Out to a bandwidth 68, the power spectral
density is related to 02 and 8 by:

y . )
g
s - —B— QAN

and the corresponding diagonal element of the Q matrix is given by

q = 28,," (178)

THE COVARIANCE MATRIX DIFFERENTIAL EQUATION

Given the state vector differential equation,

i ' - 30 = F(t) X(t) + G(e) u(r) (179)

; *Combining Eq. 177 and 178, we get q = 26</B. This result differs
| from that in the footnote on p. 50 because here we desire to approximate
a correlated random variable by an equivalent uncorrelated signal., In
Section 4 we found the etrength of an uncorrelated signal which produces
2 certain size vutput vhen passed through a first-order linear filter.
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we wish to study the dynamics of the error covariance matrix P(t),
defined as

P(t) = E [X(t) XT(D)] (180)

Consider the function P(t, t-€), where € is a small position number.

P(t,t-€) = E [X(t) XI(t-€)]

(181)
Differentiation with respect to time yields
. 2. ~T ~ AT
P@,t-¢) =ETxM X " (t-¢) + xt) X " ¢t-¢) ]
=FOEEDX Tt-6)] + GOELu® X T t-e)) (182)

GO XT-0] FT -0 LR u T -0 ) 6Te-0)

The second term on the right-hand side of Eq. 182 must be zero, as there
can be no correlation between the state of the system at a given time and -
a driving noise which exists in the future. To evaluate the last term in

this equation, we use the solution to Eq. 179 given by Eq. 7 when t, is
zero.

¢ :
X(t) = o, 0) X(0) +f ®t,T)Gerue)dr (183)
0

Postmultiplying Eq. 189-hyq!$(t—€) and taking the ensemble avecage of
both sides results in

Ex®uTt-01 =0t,0ELX0)uT ¢-e)]
t

+_/0. &, ) G(T)E[LL(‘I‘)ET(t-()]dT
=¢ t,t-) G (t-¢) Q t-¢)

(184)
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The first term goes to zero for reasons. already described, and the
second (integral) term is readily evaluated due to the delta function
in the integrand.

Substituting Eq. 184 into Eq. 182 and using the fact that ¢(t,t) = I,
the limit as € - 0 yields

P(t) = F(t) P(t) + P(t) FI(t) + G(t) Q(t) GT(t) (185)
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Appendix B
A KALMAN FILTER DERIVATION

It is possible to derive the Kalman Filter by optimizing an assumed
form of linear estimator. Based on the desire to avoid a growing memory
filter, a recursive estimator is sought in the form (see 3ection 2):

gﬂ‘(+) =& (=) + Kyz, - Hy 2,(-) : (186)

where zn(-) and gn(+) are the estimates of statc vector x, immediately
before and immediately after the measurement Zny at time t,. That is,
the state estimate is corrected at the time of each measurement accord-
ing to a weighted difference between the actual and anticipated measure-
ment vectors, The optimum weighting matrix K is to be specified.

An equatfion for the estimation error after incorporation of the
nth measurement, denoted gn(+), can be obtained from Eq. 186 through
substitution of the measurement equation

+ v (187)

and the relations

En(+) = xpn + En(+)
N . (188)
n(=) = xp + £y (=)
The result is
X () = (1 - Ky Hy) %q(=) + Ky vy (189)

Using Eq. 189, the expression for the change in the error covariance
miatrix when a measurement {5 employed (Eq. 22) can be derived. From the
definition

e - ~ Y 1'
H f . ¢ + { i S )
PO coviR G () £t Xplh Xy G
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R ~T .
Ei% (0% ()] =P ()

Elv, v =K,
and, as a result of uncorrelated meagurement errors,
ExCvy £ v 3¢ -0
Thus
P()-0-K H)P (. 0-K H)T .k R KT
n nonon n°n n nn

“

elements (trace) of the error covariance matrix Pp(+

1t ia desired to chooee K to minimizs the sum of the d

~—

trace (P )} ELE %, ©) FI=ELE )% 6]

(191)

This is equivalent to minimizing the length of the estimation error

vector. To find the value of K, which provides the minimum, it is

necessary to take the partial derivative of the trace of Pp(+) with
respect to K; 4nd equate 1t to zero. Use 18 made of the relation for
the partial derivative for the trace of the product of two matrices A

and B

3-1- [trace (ABAT)| = 248
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if B 18 symmetric. From Eq. 190, the result is

-2 (1 = Kg M) Po(-) HE + 2Kn B, = O (192)

l‘mmmm'lmmmummmu L 1991 O (R IFT I qwmwunnmm A
i

Solving for K.,

Kn = Pa(-) WG [, Pnt) u) + anl'l (293)

which 18 the Kalman Filter gain matrix a3 expressed in Eq. 24. Sub-
stitution of Eq. 193 ifuto Eq. 190 gives

Pa(#) = Bo(=) = Pp(-) 1l

Hy Pg(-) HL + a“]'l Hy Pa(=)  (194) f

which 18 Eq. 25 in the text.

A Slapler Form for ¥pn: There is a matrix inversion relationship

which states that, tor P_ as given in Eq. 194, ¥;,~l 1s expressible aa
(Ref, 10) -

S DI W T -1 )
oot en (=) + Hn Rn Hn (195)

satniunid L

We use this result to manipulate Ky as foilows

Oy

Ky = Po(-) WL [un Pa(-) HY + gn]'l | :
-1 T T -1
BACEACENSRLE IS NS TN

T
n

-1 -1 T T -1
= + -) + - - +
P ( )IP (~) H R H. ]Y ‘( ) H H P (<) H Rn
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Expapding 2nd collecting Lerms yields:

7 1 1

T . -1
H P -) Hn] [Hn P (=) H_ o+ anj

¥ —
b (e
K o~ P (9) H '1 + R

Tt T [ -1
R R N LN A S L0

S T -1
- Pn(+) Hn Bn

1 which i{s the simpler form svught. The equations for the cuntinuous

the above equations by taking the limit as the measurement interval
vanishes. Although the derivacion here was for an sssumed recursive, {

single-stage filter, the result has been shown tc be the solution for a
much more genersl problen.
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Appendix C
DERIVATION OF NAVIGATION SYSTEM ERROR DYNAMICS

Three nearly coincident orthogonal coordinate frames must be
defined in order to study the propagation of errors in an inertial
navigation system. The three axis eystems are different only to the
extent that errors exist in the navigator. The most familiar coordinate
frame considered is the 'ideal or true navigation frame.'" Its definition
follows one of those presentzd under Inertial Navigation Systems (p. 34).
The remaining two frames are discribed only by thier relative crientation
with respect to the true navigation axes.

The "computer axes'' are defined by the urientation the computer
believes the navigation axes have. In the absence of initial condition
errors, the computer for a gimballed north-vertical system will calculate
latitude and longitude changes by twice integrating the properly scaled
outputs of the north and east accelerometers. If the accelerometer out-
puts provide incorrect indications of the true north and east acceler~
ation, the computer and true axis systems will no longer coincide. For
small angle misalignments the relative orientation can be described %y
a vector. The vector 80 represents the rotation necessary to bring the
true axes into coincidence with the computer axes.

The third coordinate system of interest wili be called the '"platform
axes.'" This description is proper when gimballed irertial systems are
being considered. A more general definition--one which includes the
possibility of strapdown systems--is that the platform axes describe the
coordinate frame into which accelerometer outputs have been resoived when
they leave the inertial measurement unit. The platform axes can differ
trom the cumputer axes because the inertial angular rate demanded of the
platform by the computer is not accurately implemented (gyro drift rates)
and because the commands are given in computer axes btut executed in
platform axes. The small angle rotation necessary to bring the computer
axes into coincidence wéeirrhe platform aves is represented by V. A
similar angle relating true axes to platform axes is written as ¢ and
expressed by

b=y + 50 (197)

Several other important quantities can be defined:

w = inertial angular vate of true axes

@, = inertial angular rate of computer axes
-

Wo—

w, = inestial angular rate of platform axes.
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The veccors ﬁ, V and € are defined in previous sections of this report.
However, the use of subscripts in this appendix will differ from the
section op inertial navigation systems. Here the subscripts C and P are
used to indicate relation to the computer axes and platform axes,
respectively, while the absence of subscript indicates relation to the
true axes. The subscript I is again used to designate inertially-fixed
coordinates.

To begin, the expression relating the acceleration of a point
relative to inertial space is written in terms of accelerations and
velocities relative to the computer axes and the inertial angular rate,

[

%’g:)l_:(d’R *2%’( ) (ac “’c) xR

+ EC X (&Cx R) (198)

Equation 198 results from a theorem by Coriolis. It describes the ideal
behavior of the computed value of R when a perfect indication of

(d2 R/de? )1 1s provided. The subscripts C and I indicate the cocrdinate
frames in which the differentiation takes place or, in the case of the
vector'ﬁb, designate the coordinate frame under consideration. The
vector quantities in Eg. 198 can be resolved into any coordinate frame
desired. The computer, in the absence of information about system
errors, assumes that all three axis systems are parallel. It will sclve
the equatiorn in C coordinates and the solution will be in error if
specific force is not properly indicated and resolved. Improper iadi-
cation results from accelerometer errors, and improper resclution results
from misalignment between the computer and platform axis systems. The
indicated specific force is related to the actual value in the computer

coordinate frame by ~————

?iz? Vxf+mv (199)

In addition, in order to obtain (dzﬁ/dtz)l, the mass attraction acceleor-
atinoa mast be added to the acceleromeier outputs according to Eq. 42.
Because the near-earth navigation coordinate systems outlined previousiy
all indicate local vertical, it will be more convenient to work ir terms
o¢ the gravity vector, g, '

(

p =0 -Qx (xR (200)
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Hewever, for the purpases of lavestigating the elfevis of smals errors
in +he computed value of R on the navipation error propagafion, § can he

assumed parallel to R and obeying

CERa (201)
~ Where B - ST T T T T T -
hel
\/lil (262)

Uhen'}?f!is the radius of the earth, wg {s the Schuler frequency. Then
= _ T -
Sg w? §R 2w, (Gws) R (203)

and the perturbations in the left side of Eq. 198 caused by risaligament
between platform and computer nxes and small errors in the cmputed
value of R are, to the first order,

- x- +V+Rx (] x 6R) - w 6R - Zus (bws) R

Equating these to the {irst-order perturbaticns of the right side of
Eq., 198 nrovides an expression for the propagetion of mavigation system
errors

& 6R - [abR (d Y = - T -
a .t OR X s
'!(d“)c a‘) a‘t‘“t)c" !) Prm { (
- . (204)
+ 3O (quGR)-ﬂx lméR)w.-;’Tﬁ 2« (6w ) R

The notation of Eq. 204 can be simplified by noting thar rhe firet four
terus ovn the left can be related through the theorem of Coriolis

(Eq. 198) to similar products and derivatives as viewed from the true
(unsubscripted) axes

131

| HWC TP 632 .




i
. L

H [6R+ 20y 6R - wx BR + w ¥ (wx 8R ) -;‘_.;;qr;’

z ! }-{ ' ; (3015)
- "4 GRS OR 7 Loy e rt

Bezlacing the abseolute value notations for fﬁ] and ‘E] by R and g, the
quantity &@E can be further refined by noting thai, from its definition,-

)

i;
SN | I gﬂ‘? (206)
“s H
" Then
g B
3 °g 0
buwg = - ilgﬂl d“ﬁ? .
K 207
8 PR +207)
¥ n 8
Equation 205 becomes )
éﬁ+&3x5ﬁ+&xbﬁ'wr(&x6_ﬁ)’ )
2_, o o _ { ;“u_mgj " (268}
VO« 6 x8R) - w (BR - 8 |6R ’ :

o .

8

Equation 208 can be used to demunstrate the fact that, if the navi-
gation equations are solved along a covordinate axis which 1s not orthogonal
to X, the navigation error along this axis 1s describad by an unstable
differential equation. Of course, not all navigation system axes can be
orthogonal to R and, in fact, near-earth navigation coordinate systems
usually have one axis parallel to the position vector. Many of the terms
in Eq. 208 whi~h are depencdent on w and {! can be neglected when conslder-
ing venicles traveling near the earth’'s surface at reasonable upeeds.
Bearranging and simplifying, Eq. 208 can be writter

+T-2(5 < 6R)

Bl

XN - = R, _ -
R + w (R - 316913)- ¥ x (209)

-

0 0 0 0 0 00 1 0 i




in the north=vertical eanrdinates the vactar k Is escentially pa
to the 7 axis. In that case the term

. = R
ETV'QH'TT

2

provides nn component in the nourth and east direcr.ons. The x and y
components of Eg. 2097 are

L b 1 AU

,g(uzéRy - uJy fle) l

SR+ o B - \
URx “e "l 1 (210)
e (g - {f }+9
m-Yz'y Yyz ' x
5 (2(%6;{2 “w, OR )
) + 6R =
RY ué y (211)

Tiie unforced portions of these equations exhib t a pure oscillatory
characteristic at the Schuler frequency. Howev.r, along the axis which 1s

is uct essentially orthogonal to K, the quantity -3 [8R] R/R provides a
component of mangltude

-3J6R* + 8RR « §R°
x y Z
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where

— the z componevt of Eq. 209 is

Z(myéRx - w 6Ry) ’

. 2 _ .
GRZ + w (1 - 3)) GRZ . (212)

1 .
+ = (wy fx ; wx fy) + st

1

Ignering the time-varylng nature of [(6Rx)2 + ($Ry)2], the unforced
portion of Eq. ?1Z is unstable; the error in indicating the z component
of R will grow unbounded. Similar behavior would result for errors in
the x and y directions if they were defited with cumponents parallel to ¢
K. Of course, tnis behavior does not vesult rfrom a peculiar character-
stic R, bui rather from the nced to cowmpensate accelero.eter cutputs
for mass attraction forces and the fact that Kk and gravity are approxi-
mately parellel. Because the mass attraction forces ubey an inverse-
square distance law and must be calculated according tc the indicated
disrance from the earth's center, the instability results. 7Tis can be
seen more gimply by ccnsidering a scheme to navigate in the .ertical
divection only. Figure 45 1llus+trates the caiculations necesscrry. The

amrantity
quantity

PR BRUTRRANS D ® b rsammrr st =

2
DB E
R

lo

Scomp 2

is added to the acceierometer output to give the upward acceleration with
respect to inertial space. Double integration gives the computed value

of distance to the center ¢f the earth, R. A small error in the indicated
value of R, OR, causing it co be tvo large, will reduce the size of Bcomp?
maklsg the indicated value of acceleration too large. The integrations
cause the indicated value of R to grow even larger, etc. The fact that
the error, SR, zrows unbounded is evident.

e | W7 TR ST T D
-

The implication of this instability tor practical navigation is that,
at least for long periods, inertial navigation along axes not perpendicular
to the mass attracticn force is not feasible. Over short periods of time
such as that encountered for a missile launch the error growth may not be
significant. However, crulse navigators usually instrument only herizontal
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Navigation in the Vertical Direction.
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axes snd uge altimerers or depth pages ¢to indicate vertical distauce.
When vertical motion has high-freoguency characteristics or must be
indicated very accurately, a vertical accelerometer may he used, but
mass attraction forces sre computed from heilght indications given by
other instruments.

Beturning to Eq. 210 and 211, for near-earth navigatlon in_north-
vertical or free azisuth coordicates the x and v components of 88_are

_glven by L o o
&R . )
66)( = _ﬁ}' (213)
éR
68, = - (2143

In addition, for the north-vertical syaten

SR

- - 3 X
5Bz g tan L (215)

because the platform axes are rotated about the z axis according to y
velocity. The tangent plane navigatilon coordinate systea does not
axhikit a misalignment based on position errors; because no axis
system rotation resulis from position changes. The same 1s true of 597
in the free azimuth system. For the two locally level navigation frames,
Eq. 213 and 214 sre useful. Since, frouw Eq. 197,

T+ 80 (216)
chen
3 - & S
wy OR = ROR =-g “y
= (217)
£ (wy -wy)
and
w§ ORy =g (o, = 4,) (218)
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Furthermore, for near-earth cruise vehicles
{ nxé a
}’/ y
s
- . A /m=a. (219)
rz/ni -

From Eq. 210, 211, 217, 218, and 219, the diffcrential eauations for x
and y position errors in near-earth, locally level cruise inertial
navigators can be written

onxsgoy+pzay+vx+ 2w, bRy - : (220)

uRy = -g‘px-vzax+vy-2wzéRx (221)

To completely describe the error dynamics of inertial navigation
ayscems the attitude .error behavior must also be specified analytically.
To begin, two relatiopns between thes incrtial angular raies of the plat-
form and computer coordinates and Y are stated

Gp= g+ §x Gt € (222)

V@ (223)

P “c
Combining Eq. 222 and 223 and approximating BC by @.

VEUxwe € (224)
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This ig the basic equation describlag thegerror angle dynamics.
Zxpressions reault for the comronents of ¢

. 2
by gy, (225)
— e s — __9yiiy’wx"z'wiax (226)
By 7Ot Uy Py Ty Py (227)
Using the x component of Eq. 137, 213, and 225
‘p‘zﬁx'wx oh 7
‘(x-wy éz’“’z (wy' “y)+ _ﬁl . (228)
L
Pl tug ¥y tu Py tw; T TR
In a like manner,
. SR SR
“’ys‘_y*“k"z'wz'ox’“’z'ﬁy "R - (229)
SR SR
s = - - - _x y - Z
v, 54 “k'py4wy"’x wy_fi! “® *9, , .(‘30)

Equations 220, 221, 228, 229, and 230 are the primary error dynamic
equatious for near-earth inertial systems of the loca.ly level type or
for a tangent plane system that is near its infictfal point. The term
692 ou the right side of Eq. 230 1is

SR 6R_
-tanL—iz-i»w —Y gec? L
y R

138

Iuw|wmmmmnmlmwmmuwwwmm

SIS

By sbois P

S H————————————— et




eI

¢ TP 4652

vam < i

BEnOI . WA,
{
t
|
|
'
i
t
i
'
i
\
e e 11 e

when a north-vercical mystem ig being ccasidered and iz zero for tangent
plane and free azinmuth coordinates. Usually, teras of the nature

are relatively sma.l and can be dropped. The three near-earth systemsa !
described i{n the section on inertial navigation systems differ only in
the vay they provide W. In terms of latitude, L, and longitude, A,
they are
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1. North-Vertical System

P w = (N +0) cosl
N my - -L (231)
: w o= (X + @) sin i !

2. Free Azimuth System

w = (N4 Q) cos L cos & - L sin o

LRITTR T I

wy a =(A+) cos L sin o - i cos Q (232)

w =0
Z

3. Tangent Plane System

w = cos L
X o

(233)
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where @ 18 the sngle betveen north horizontal and the free azimuth
X axlg, aad Lg is the isjitlal puint latitude.

SHORT-TERM ERBOR PROPAGATION

PO 5 R S

- - The behavior uf imertisl navigativy systim errers over a short
peried (2 or 3 hours) can be exhibited by considering Eq. 220, 221,

|

.

"

b . __ . of locallir_level pnear-sarth systsms. The wmajor teres is thedwe equaticns
are used to produce the block diagrams for the x and y loops shown in
Fig. 46, While the two information loops generated Aare interconnected
through the quantity w,, the principal short-period dynamics result from
the feedback paths shown. The unforced shori-period behavior can be
obtained in Laplace Transform notation by inspection of Fig. 46.
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(s* + g/R) ¢, =0 (234)

(s? + g/R) ¢y =0 (235)

The unforced dynamics consist of undamped oscillations at thne Schuler

frequency (84-wmir period). The effects of sensor errors on positiorn,
velocity, end attitude errors follow from the equations
. V1 (s)
5317(8) f7;7f2f57§ (235)
. sVi (s)
GRi (8) = =% TR (237)
. se, (8)
: b, (8) = ST T /R (238)
Constant blas terms described by
Vi )
Vi,(u) - — $239)

i - provide growing pcsition errors and oscillating velocity errors. Constant
gyro drift rate generates an oscillating attitude error.
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228, 229 and 230, 1t will be recalled that they describe the behavior— -
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FIG. 46. Blcck Diagram of Short-Period Errer Behavior
in Locally Level Systems.
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LURG-TERK ERROR PROPAGATION

In north-vertical inertlal navigation aystems, error dynamics of a
freguency conslderably lewer then those described shove utcur. FEssen-
tielly, rhese additional dynsmice result from uncertzinty in the com-
puter's knowlenge of the orientation of thae earth rotation vector, 0.

If it is assumed thai the navigstor is not moving with respect to -

the eardhy, - —  ———-

) 6'Rx

SL = < | (240)
: SR

§% ® T oos L (241)

o"ex = 6\ cos L (262)

86 = -6L (263)
y

6'92 = -35 sin L (244)

From Eq. 197, 225, 226, 227, and 241 and the above expresuions, differ-
ential equatione result for the components of ¢,

+

éR
b = —L - -
¢x, n f8in LSL - R sin L ¢y (245)
) G.RX
¢yu——i—+¢zﬂcosL+¢zQsinL (246)
) SR
¢’--—-R1tan,L,-, 'SLQcosL-¢chosL (247)
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Terms which do not provide closed Infyrmation loops have been omitted

from these equations,
from conslderatiou.

and

SR
X

n
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Notice that the use of Eq. 241 has eliminated 6\
Finally, Eq, 220 and 221 provide

(248)

(249)

Equations 740 and 245 through 249 can be written in terms of Laplace
Transforms and arranged in the vector-matrix form

F

1

-2 sinlL

e

Q2 ginl

s

Q con L

0

- ¢ns L

s

i gin Ll

§{ cos L

= g (250)

Ey setting the determinant of the coefficient matyriz: in Eq. 250 to zero,
the behavior of the variabl=zs can te seen

Z
s + & 52+ 0 -0

(251)
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The two Bchuler frequancey charactesistics result from the x and v luop
gheort-psriod error beuavior. The additional osciiiation is a 24-hour
or long-period mode which s not important when durations of 2 or 3 hours
are considered, but is significant in long-term crulse navigators.

Havy cross-coupling terms have been ignered btoth in this discussion
snd the uvpne preceding. Thelr effecis are usually secondary compared to
those displayed here. Couslderation of a venicle moving over the earth's
zurface vould have wedified the 2Z4-hour mods, bLut for most applications
the size of X 16 much lese Lhan {). When the acceleration compensation
ervor terws® (of the nature 2w §R) are retained in Eq. 220 and 221, the
faort-ters oscillation frequeucles are modified slightly. A more
detailed analysis s presented in Ref. 41. Figure 47 shows the result
of a simulation in which the errors im a stationary north-vertizal
system were exclited by a constant x-axis gyro drifct rate. [he B4-minute

mode is clearly visible. In addition, the firat quarter of a 24<hour
acde 1lg evident.

The error equations developed in this Appenaix are further
speclalized to provide syrtem behavior matricec, F, for the several
navigation schemes consid=red in Section 5.
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