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ABSTRACT. The purpose of this tutorial report Y i to allow the reader

with a limited background in optinm estimation techniques and/or
inertial system theory to achieve a level of competence which will
permit his participation In the design and evaluation of aided
inertial guidance systems. To this end, the Kalman Filter is described
in some detail. with full use of intuitive concepts. Next, the theory
of inertial navigation is presented. Based on an understanding of
inertial systems and the Kalman Filter, the readtr is. then shown hw

-che two are coubined to provide accurate, aided inertial systems.
Problems arising in the application of the Kalman Filter to practical
situations are discussed and common methods for solving them are
Illustrated. Examples in inertial navigation, gyrocompassing, and
alignment transfer are provided in support of the theoretical

-- development.
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Sprtion 1. TNTROMdUCTON

HISTOWrCAL BACKGROU'ND

Tnertial navigators are am4 the mot ree -f or 1 All etr, hsn-
ical devices. Thu iple Lhaoretic-al basis of inertial navigation is the

... mea.surement of linear and-angular motion and employment of Newton's laws
tc conmute changes in Dosition, velocity, and attitude. Conceptually --

the inertial system is self-contained, but in vractica] use Its perform-
ance deteriorates seriously with time utiless external indications of the

navigation quantities are used to remove self-generated errors. Thus,

it can be said that the utility of the inertial system lies in its ability I
to provide information between external measurements.

Classically, external measurements were used to undate the inertial

system variables in a deterministic manner, i.e., system position indica-

tion was changed to agree with the resalts of a position fix, etc. And,
by proper emoloyment of external meas-ements, sensor crrcrs were removed

from the system calculations (assumt,.g these errors to be constant).
This approach ignored two important facts. First, external measurements

themselves contain random errors which may be significant compared to

the inertial system errors. Also, the system errors are primarily caused

by random, time-varying inertial sensor errors. The optimum use of

external measurements, properly accounting for measurement errors and

sensor errors, has therefore become an important source of improvement

in inertial navigation system accuracy.

Application of the Kalman Filter to inertial navigation systems

hegan in the crly 1960'c, chortly after opti-m recurtive filter the r.:
was developed and published. Because the errors in a useful inertial

system Propagate In essentially a linear manner and linear combinations
of these errors can be detected from external treasuruments, the Kalman
Filter is ideally suited for estimating them. Operationally, the filter

relates to the inertial navigator and external measurements as illustrated
in Fig. 1. It also provides useful estimates of all system error sources
which have significant correlation times. Figure 2 demonstrates two

common schemes for using the error estimates to correct i-istem errors.

In addition, the Kalman Filter provides improved design and opera-
tional flexibility. As a time-varying filter, it can accommodate non-
stationary error sources when their statistical behavior is ;mown.

Configuration changes in the inertial system are easily treated by simple

programming changes. The Kalman Filter provides for optimum use of any
number, combination, and sequence of external measurements. It is a
technique for systematically employing all available external measurements,
regardless of their errors, to improve the accuracy of inertial naviga-

tion systems.
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The reader interested in further background Information in the areas
of matrix algeb5ra and linear eystai theory is referred to Xet. 1.

S ILL ISTRATION OF THE IMPROVWYNTf N .NIBLE

A few figures serve to illustrate the ability of the alman Filter
to .prid utonrior narforaruc. *in lrvwrt I1 .,t . Figure 3 eomparcs
the WS cruise mode azimuth error of an aircraft inertial navigation
:yaaem when fixeJd-gain velotty damping is provided (constAnt gain feede- .

-b") 4A -whn 14w- Ralmdn F-4-ter (optimial f cedback-) U~ usnd. -1n 'joth
caae c al uous. external velocity measurements were provided and external
position fixes were mada every 15 minutes. The fixed-gain filter did
not uMO osition measurements to improve its knowledge of azimuth.
However. the discontinuities in the trace indicate that the Kalman Filter
was able to infer somethfin about azimuth error each time a new position
fix became available.

Figure 4 demonstrates the ability of the Kalman Filter to determine
inertial senvor errors. It represents the RMS error in the knowledge of
constant gyro drift rates in an aircraft inertial navigation system, start-
lg with a 1 deg/hr uncertainty. For this example the Kalman Filter Is
operating on position fixes only. The dramatic improvement in calibration
of gyro error suggests a considerable increase in navigation accuracyI between position fixes.

An Illustration of the Kalman Filter's ability to decrease alignment
time of Inertial navigators is provided by Fig. 5. It shows the RMS
azimuth alignment error for fixed-gain and Kalman Filter airborne align-
ment modes of an inertial navigation system. Both schemes use an external

indication of vehicle velocity, but the ability of the Kalman Filter toLi also AtiliZE DOnitifln filwsu t-L. It = tat tt
F optimal use of information provides a significant reduction in the time

required to align to given accuracy or reduces errors at the end of a i
given alignment period.

OUTLINE OF SECTIONS

Section 2 continues with a discussion of the basic concepts which
characterize the Kalman Filter. These include state space notation,
uncorreleted random processes, the Kalman Filter equations, and the
estimation error covariance matrix. Section 3 tollows with a discussion
of inertial navigation systems. Beginning with a brief description of
inertial sensors, it Progresses through gimballed and strapdown inertial

L meaaureament unita to the equations of inertial navigatioc- aud the
linearized expressions for inertial navigation errors.

4
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Section 2. KALMAN FILTER CONCEPTS

In the late 1940's, Norbert Wiener first specified the linear filter
which has the capability of separating a single signal from additive
noise, minimizing the mean square error in the indicated signal--filter
output or estimate (see Ref. 4). The '"Winner Filter" is tims invariant] __and the minimum mean-squared error criterion is theoretically achieved

--. .only after the stationary signal and noise have been operated upon for
an infinite time.

In the decade that followed Wiener's first results, his theory was
extended to cover the cases where filtering waq conducted over a finite
Period, the filter received inputs at discrete instants of time, the
filter and its inputs were nonstationary, and several signals (states)
were to be detected. In the early 1960's, Kalman and others (Ref. 5, 6,
and 7) nrovided a unified body of linear filter theory which handles all
of these situations and is expressed entirely in the time domain. The
Kalman Filter, as it has come to be cnlled, provides an essentially real-
time reduction of its input data to give a minimum variance (i.e., least
squares) estimate of the state variables in a nonstationary linear system.
It can be derived in many different ways. Under identical assumptions,
the following apnroaches all yield the same filter: least squares
estimation, Bayesian estimation, maximum likelihood, and conditional

expectation.

LINEAR DYNAMIC SYSTEMS

The Kaliuari Filter is formulated using state vector, time domain
notaLion. The state of a dynamic system is any complete set of quantities
necessary to describe the unforced motion of that system av all future
times. Given the state at any time and a history of the system forcing
functions, the state at any subsequent time can be computed. If the
linear system behavior is described by an nth order linear differential
equation in the dependent variable, driven by f(t), a function of the
independent variable, t,

(t) + * + a A (t) + a A(t) f(t) (1)
2 1

the system state can be described by the dependent variable, X, and
its first (n-i) derivatives, A more compact firmulation is introduced
in the following example.

7



r!?amlei The linear second-order differential equation for
the variable X is expressed by

A+ a (t) A+ A (t) Q (t) + 0(t)

viere the time functions a and 0 are driving the equation.
Any number of driving function@ are roanible in the g -snral

..... . case. Appropriate state variables can be defined as

1

2

Then

X
1 2

x-'--a (t) x -a (t) x + a(t) + B(t)
2 2 2 1 1

In vector-matrix form, the equation is

" 2 -.1(t -a () ] 1. (t)
which is a first-order vector differential equation. This
compact formulation can be generalized to an nth order system.

The state variables of a linear system, x , x are written in
Vie form of a state vector for ease. In manipulation

The state variables of any nth order continuoud linear system can be
defined in such a manner that the system dynamics ure expressed in the
form of a first-order linear differential equation in the state vector x.
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The vector notation permita the equation to be written in a cm-eet
vector-matrix form

x(t) F(t) x(t) + G(t) u(t) (2) ii

The vector u contains the independent variables that are forcing the
system differential equations. If x has n elements and u has r elements,
F and G are n x n and n x r matrices, respectively. Figure 6 is a block
diagram illustration of Eq. 2.

System
I I

*1I II

FIG. 6. Block Diagram of First-Order Linear Differential
Equations in State Space Notation.-

Given the state at time tn , denoted x(t ), and the vector forcing

function u(t) for all time greater than t the state at any subsequent
no

time, t, can be found by solving the state differential equation, Eq. 2.
Another, frequently more useful, way to express the state vector behavior
uses the state transition matrix, denoted 0 (t, t n) to describe the effect

of the state at t on the state at some other time, t. The transition

matrix is an influence function. In the absence of forcing terms, the
I influEnce of x(t ) on x(t) is displayed through the relation

x() - (t,tn) x(tn) (3)
n n

9
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The state transition matrix is computed frow the system dynamics as
expressed in the system matrix, V. When F 19 a constant, I is a function
of the time difference (t-tn ) and is given by

(-n =e~ ' n )  (4)

The matrix exponential in Eq. 4 is a legitimate operation and can be
expressed, by analogy with the scalar exponential, as

(t-tn)2eF(t-tn) - + (t-tn) F + 2-----+.-

(t-t) -(1

- . ~ 'j F (5)
il-0

where I is the n x n identity matrix. When F is time-varying, the state
transition matrix must be calculated from the differential equation

d[9(t,tn)]

t F(t) (t,tn  (tntn (6)

Further details on computing 0 are available in Ref. B.

. -Wh. u F is time-varying and forcing terms are available, the state
vector can be expressed in terms of x(t n ) and the state transition matrix
by

t

x(t) -0(t't X(t) + 4(t.) G() u(r) dr (7)

where

d
, d -~tT(t, T)1 J F(T) T(t, T) ; (t~t)-

If interest is focused on the system state vector only at discrete points
in time, Eq. 7 can be expressed as a difference equation

n+l =  x + w (8)0n -n -

101
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i =

where the notation n indicates the state vector at tn, Unlees the system
dynamics are stationary (not time-varying) and the time interval is fixed,
On will be a function of time and of the interval between the instants
represented by t n and tn+1 . The term w represents tho 'Pffeet of t.e
forcing function u over the interval t n to tni.

w U 0(t 1 , T) G(T) u('r) dT (9)

The expression given in Eq. 8 will be used extensively in the discussion
which follows.

STATE ESTIMATION WITHOUT MEASUREMENT5

In the absence of random forcing terms, the system state behaves in
a deterministic (directly calculable) manner described by Eq. 7. However,
when random disturbances are present, the system exhibits random behavior
and, if exact measurement of x(t) is not always possible, it becomes
necessary to estimate the state vector. If an estimate is provided at
some point in time, tn, and the system is not observed (i.e., no measure-
ments of the strte are available), the best estimate of the state at all
subsequeut times is provide.d by solving the deterministic portions of
Eq. 8. The estimate at tn is used as the initial condition. Two factors
contribute to errors in the estimate at times later than tin; the errors
in the initial estimrtc propagate in a manner described by 0 and random
uncertainties in knowledge of the forcing functions provide additional
errors.

Thus far we have dealt with deterministic quantities. By definition,
random processes cannot be specified quantitatively as functions of tL-'.
It is necessary to describe then in a statistical manner. In particular,
it is sufficient to describe random quantities (assumed G*ussian) by
their first and second moments in order to apply the Kalman Filter.
The first statistical moment, or mean, is described and removed from
consideration by specifying it to be zero. Any quantity which is biased
by a known amount can be replaced by a zero-mean variable through simple
redefinition. The second statistical moments between processes are
described in tle state vector notation by the covariance matrix.
Convariance matrices are discussed in Appendix A. Conceptually their

Ediagonal elements are measures of the "size" of the random signals theyIdescribe, while the off-diagonal elements provide a r.easure of the
interrelation between different random processes. It is assumed through-
out this discussion that covariances between random quantities are zero

11-



if "ot exPlicitly statod to be otherwise. heeause ensemble averages or
expectations are taken in defining the covariances, the results of the
calculations are a valid representation only of the ensemble average
behavior of the fLlte "n its estmates.

Toe estimate of the state at t n is designated by & and the random
airr in that estite is def(0d by

I " x - z (...

I
n n -n

The covariance matrix of i6 is denoted by P. For zero-mean variables,

• / ( 1

If QU is the covariance matrix for the random portion of y., a difference
equation can be obtained from Eq. 8, 10, and 11 which describes the growth
of the estimation error covariance

T
p1 nO + Qn (12)

In arriving at Eq. 12, use in mad. of the fact that

(iE V (13)

since n is uncorrelated in time.

It can be seen that the random uncertainties in -(described by Qn)
can only increase the errors in the estimate of the system state as
described by P; this is a reasonable conclusion. Mathematically it results
from the fact that Qn is a non-negative definite matrix. In continuous
notation a differential equation for the error covariance matrix results
(see Appendix A)

FP + pF T + GQGT (14)

where Q is the covariance matrix for the random portion of u.

It should be noted that the random quantities forcing the systemcan take two very distinct forms. One is errors in the control applied
to the system. --ne other represents random disturbance of the system.

Throughout the report the symbol E preceding a vector product is
ubed to denote the ensemble average of the quantity enclosed in the
brackets.

12



When a known control or forcing function, p(t), is used in the presence1-
of system disturbances, Eq. 2 can be written as I

I()"F(t) x(t) + G(t) R_(t) + L(t) p(t) <15) --

to demonstrate the separate effects. Then, whet, the two effects are
uscorrelated, Eq. 12 and 14 es be wrirte" as as_"

P p + Qn + S (16) L

FP + PFT + GQGT + LSLT  (17)

Here the S matrices are the covariance of the errors in application of
the control, while the Q matrices describe the effect of the random
disturbances. Since the two random driving functions have analogous
effects on the error covariance, only random system disturbances will be
considered in the subsequent discussions.

KALMAN FILTER

When use is made of measurements to change the estimate of x, the
error in the estimate is also changed. Hopefully this error, or rather
the statistical description of it, is in some way reduced. in the Kaiman
Filter the measurements are taken as linear combinations of the system
state variables, corrupted by uncorrelated noise. The measurement
equation is written in vector-matrix notation

z -H x +v (18)
9n n--n _11

where z is the set of measurements at time tn, Z1  ., z arranged

ii in vector form

z n (19)

13
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~I -1 n is a q xa matrix describing the linear cmination" of stta Var4abh1p
~-I- bich comrise xe in the absence of noise. Alsoe. Znis a vector of random

SOOS qunities; corrupting the meamursenti.

- Xmpla: 9"~po" i i desired to estimate the constant
scalar quantity x based on n noise-corrupted measurements.

_______- ~T U O±a b&a Mese noes and 10 iUnCAFF.-e~st" Aft~Med
minimum variance estimate re,;ult Wihen 2 is taken asthe4average of the measurements, zj,

When an additional measurement becomes available,

i~nnl)

Hiowever, the estimate based on n + 1 measurcments &An be
computed employing only fVn) and the (n + l)st measurement1 1 1- -

+ I re+
-I n + -n+l

The new estimate is the old estimate modified by a weighted
difference between the old estimate and the most recent

measurement. This is a recursive formilation, eliminating

~ the need to store past mea urameatE.
F By analogy with the ex IS, cfte logical --a,- to use the measurement

vector'_% is to anticipate it based on knowledge o~f the measurement
matrix HL, and the estimate of the state vector at the instant the measure-

- mntsaretaken. If za and Hn 5'do not agree, the difference mus t result
from the measurement noise v. or an er-ror in the estimate. The state

14
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variable estimates can then br changed according to statListical knowledge
of the errors in i and of the measurement errorA. It would bc
appiopLiate to cause n(+), the state vector estimate after ciderAtion
of the measurement, to be relAted to (-) by -

+ K [z H 120)
-7n.. .- .. ........ n .

Between measurements, the state vector estimate will obey the deterministic
part of Eq. 8. This behavior of _ is illustrated in Fig. 7. It can be
seen that the ntate estimate between measurements is obtained by math-
ematical modeling of the system.

The use of measurements provided at discrete Instants of time causes
the error covariance to be discontinuous, having different values before
and after the measurements. This is Illustrated in Fig. 2. 3, and 4.
For this reason, the error covarlance matrix immediately before the
Smeasurememts taken at the nth instant are used is designated Pn(-).
The same matrix after the measurements are employed is called Pn(+).
The matrix Pn(-) is computed according to Eq. 12

P (-) p (+) T +Q (21)

(1 n K H) n R

If Eq. 20 is used to improve the state vector estimate, the new error
covariance is expressed (see Appendix B) by

, I K H I -K H + K R (22)n n) unJ n n a

where I is the square identity matrix and .Rn is the covariance matrix
of the measurement errors Ya"

The Kalman Filter was originally derived under assumptions that
permit the a priori specification of a linear structure (Ref. 9).
The optimum filter was found to have the structure shown in Fig. 7.
That is, it processes the measurements sequentially according to Eq. 20.
In addition, it estimates between measurements according to Eq. 3 and
the filter gain matrix is specified by

mP(+) HT R71
. .n.. n n . .. ..

15!
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+- ~An alter~nnte form of Ec. 23 which can avoid the conosequenren nf a j

: singular R MaLlix- is

IN Pn T r, (24)
ti n n p - n  n 'n

_Craslon rot the new error covartance matrix entirely In terms of the
measurement matrix Hn and the measurement error eovariane

nU

Pn +  Pn -  Pn (- ) H T jHnP. (-) HT + RJ n n(- (25
n n n n n

I - H P

Using Ea. 21 and 25, the error covariance can be calculated for any
measurement time. Equation 23 or Eq. 24 then provides the filter gain
matrix and q. 20 updates i. The state vector estimate is carried

forward to the next measurement bv Ea. 3. The optimum estimation
Procedure is illustrated In Fig. B.

The continuous verror o alan Fter is illustrated in Fig. 9.
The measurements are descr ed by

Z() n = H(t) x(t) + v(t) (26)

(... ... . . i)

Measurements are emoyed to change the derivative of rha C tat e ctor

esturemeatc accoiml qtg to the equvtion a

The Kalman Filter gain matrix is specified by

K = P H T R - 12)

and the differential equation for the error covariance is

- )FP + PFT -PTR + T (29)

Inspection of Eq. 21, 25, and 29 and the knowledge that Q, R and the
initial error covariance are all symmetric matrices reveals that P, Pn(+),

F Pn(-) are always symmetric. Steady-state values of the error covariance
(and thus the filter gain) can be calculated for many stationary systems
with stationary noises wthout specification ff the initial valueI

of P (Ref. 5).

~17
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Intuitive Concepts

- Insction of the equations describing the behavior of the error
covariance matrix reveals several observations which confirm our intuition
ablut the filter o"eration. The effeet of system disturbances on the
growth of the error covariance can be seen from Eq. 21 and 29 to be the
sme as that observed when measurements were not available (Eq. 12 and 14).

The 1arSr the statisticalparameters of the dLsturbances a. reflected
in the "size" of the 0 matrix and the more pronounced the effect of the
disturbanas es reflected in the "size" of the C matrix, the more rapidly
the error covariance will grow.

The effect of measurement noise on the error covariance of the dis-
crete filter is observed better in an alternate form of Eq. 25 (Ref. 10)

p- ( ( ) + HT R 1  H (30)
a n n n n

Large measurement noise (Rj1) provides only a small increase in the
inverse of the error covariance (a small decrease in the error covariance)
when the measurement is used; the associated measurements contribute
little to redemption in estimttion errors. On the other hand, small
measurement errors (large Rn ) cause the error covariance to decrease
considerably whenever a measurement is utilized. When measurement noise
is absent, Eq. 25 must be used because R-l does not exist.

The effect of measurement noise on the ability of the continuous
Kalman Filter to provide accurate estimates of the state appears in the
third term on the right side of Eq. 29. If noise occurs in every element
of te measre-rent, R and R-C are positive definite matrices. The term

PHT R-1 HP (31)

is also positive definite and the negative of this will always cause a
decrease in the "size" of a non-zero error covariance matrix P. The
magnitude of this term is inversely proportional to statistical parameters
of the measurement noise. Larer measurement noise will cause the error
covariance to diminish less rapidly or to grow, depending on the system
dynamics, disturbances, and the initial value of P. Smaller noise will
cause the filter estimates to converge on the true values more rapidly.
In the absence of measurement noise in any of the elements of z, R- 1 does
not exist. This case is treated In Ref. 6. The effects of systemdisturbances and measurement noises of different magnitudes can be
described graphically by considering the standard deviation of the error
in the estimate of represent-ative state variable. This is presented in
Fig. 10 for a hypothetical system.

20
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This Is also a possbltyk_

9_

Large disturbances and measurement

Small disturbances and measurement
---. noise.

Steady state error occurs if disturbances, measurement
noise, system and measurements are all stationary.

(a) Continuous Filter

t--- Large dstuz bances and measurement noise.. ....

RMS
Error

Small disturbances and meamwement noise.

Can reach steady state values of P(-), P(+)
under the same conditions ai described above.

(b) Discrete Filter

FIG. 10. Behavior of the RMS Error in the Kalman
Filter Estimate of a Particular State Variable.
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4 Fquations 21, 25, and 29 are similar to difference and differentialI

qaations that appear frequently in optimization problems. Some workI
matrices may be raanipulated ini order to miplaize certain elements of the
error covariance matrix (Ref. 11 and 12). This provides a complementary
improwa-m- t of. the Ralman Filter.

__ Kalman Filter Gain Matrix

It was pointed out earlier that the optimality of the Kalman optimal
linea filter is contained in the structure of the filter as displayed
In Fig. 7 and 9 and in the specification of the gain matrices by Eq. 23
or 24 and 25. There Is an intuitive logic behind the Kalman Filter equa-
tiogns for the gain matrix. It cAn be seen from Eq. 23

K *P HT) R-1n n n n

but the same ideas apply to Eq. 25. In order to better observe the mean-
Ing of the relation, assume that Hn is the identity matrix. It is simply
the transformation matrix relating the ideal measurements to the system
state according tt' Eq. 18. W~hen 11n is the identity matrix, bath Pn W~- and

14lare n x n matrices. If P;1 is a diagonal matrix (no cross-correlation
between noise terms), K,~ results from multiplying each column of the error
covarianca matrix by the appropriate inverse of mean square measurement
noise. Each element of the filter gain matrix is essentially the ratio
between statistical measures of the uncertainty in the state estimate

__ and che uaceertainty in a measurement. If mea urement noiap iv large and
sta te est imate errors are anmall, the quantity iin Fig 7 and 9 is due
chiefly to the noise and only small changes in the state estimates should
be made. On the other hand, small measurement noise and large uncertainty
in the state estimates suggest that i containa considerable Inf~ormation
about errors in the estimates. Therefore the difference between the

i actual measurement and that predicted from Hi will be used as the basis
for strong corr~ections to the estimates. Equations 23 and 28 specify
the filter gain matrix in a way which agrees with an intuitive approach
to improving the estimate.

Corlae RadmSstem Disturbances or Measurement Noise

The requirement that system disturbances and measurement noises heL-i] strictly "white noise" or uncorrelated in time can be relaxed to include
those random quantities wihose correlation time is much less thnn any
characteristic time constant of the system or measurement process.
However, the situation frequently arises wihere the random vectors u
or v do not satisfy this requirement. In order to make the Kalman -Filter
useful in these cases It Is necessary to augment the state vector, i.e,
to add new quantities to those which are estimated. In essence, because
the random disturbance or measurement error is slowly varyint. we are

22
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: i forced to estimte it in order to correctly evaluate its effect on-the...estimates of the system state. Correlated signals can be described as

resulting from the application of an uncorrelated input to a linear _ -----
dynamic system. In particular, a zero-mean, exponentially-correlated-.
disturbanee is represented by the output of a first-order linear system
excited by white noise (see Section 4). The additional state vari;Ole ___-

in the estimate provided by the Kalman Filter Is the output- of this first-
F order system, and the original correlated system disturbance in replaced

by the uncorrelated input. In this way the augmented equations for the
system and measurement can again be put in the form described earlier for
uncorrelated random disturbances and measurement noises. A second-order
representation of the correlated quantity would require two additional
state elements, etc. Correlated measurement noises can be treated in a
similar manner, but in the continuous filter application a more complicated
problem arises because augmenting the state vector results in a singular
R matrix (Ref. 6).

Optimum Prediction, Smoothing, and Parameter Identification

Several modifications and extensions of the Kalman Filter presently

exist. At the same time that the filter was developed it was demonstrated
that the optimum prediction of the system state for some time subsequent
to the latest measurement is provided by making the state vector estimate
obey the deterministic portion of the state differential equation. The
initial condition for this equation is given by the estimate immediately
after processing the most recent measurement. The error covariance for
the predicted state obeys Eq. 12 or 14 (if continuous formulation is
desired) with the initial cov.ariznce also given by the value immediately
following the most recent measurement.

The Kalman Filter has been extended to the area of post-data analysis
or optimum smoothing (Ref. 13). The opportunity to use data taken both
prior to and subsequent to the point In time at which we want to estimate
the system state inevitably permits better estimation accuracy. Additional
calculations aggravate a computer-size problem that is often serious with
the Kalman Filter alone. Work has also been accomplished on the problem
of est~mating the parameters of a system by measuring a noise-corrupted
linear function of its state variables. Simultaneous refinement of our
knowledge of system parameters and random forcing functions is also the
subject of much work (see Ref. 14).

AN EXAMPLE

A simple and amusing example will help clarify some of the ideas
discussed above. Figure 11 illustrates the example. The observer is

attempting to establish (estimate) the position of a drunk relative to
a lamp post by observing both through a telescope. The drunk is

23
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V System W# M Observable Mtate

I- Observer
gi (Sensor and
L Sensor Noise)

F (a) Scenario

Iv v3 ft.
(Masurement Noise)

System Measurement

Disturbsne Drunk's
- True

I ~position

(b) Mathematical Model

FIG. 11. Kzample: Drunk Near Lamp Post.
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constantly taking randon length steps in random diuetia . Tae obaerve rs
measurenmentN are actually aon-linear, babed on measured angle multiplied
by a varying range. However, it will be assumed that the. distance to
the drunk has an averago value and deviations about Ot.. value are small

4 compared to the total distance. As a result, the ang,. between the drunk
I - and the lsmp post Is taken to be linearly related to the component of the

distanc betw an them which is normal to the li - of 91,pht. fttice that
the component parallel to the line of sight is not observable. (See
Section 9.) The single state variable involved In the problem is the
position x. The F matrix is zero. 0 and G are scalar (1 x 1) identity?

matrix. H 1s the scalar t, the mean distance to the drunk. The drunk's
steps and the measurement noise are both assumed to be uncorrelated.
Q and R are the mean square value& of w and v, respectively. If measure-
meats are taken at discrete points in time which are widely separated
compared to the frequency of the drunk's steps, the eatimates of his
position will deteriorate between observations. Correlated w.asurement
errors would result if the observer was on a structure that was swaying
slowly compared to the measurement frequency. Given an initial value
for the meen square error in a priori knowledge of the drunk's position,
the corrections to be made to the estimate as a result of the measurements
could be calculated.

If the measurements are equally spaced and if the drunk's steps in
the observable direction x provide an RMS position change of q each
period, the error covariance of our position estimate batween measurements
can be written from Eq. 12 as

=n q' + p (32) (32)

where the lower case notation is used to indicate scalar quantities.
As a measurement is incorporated, the error covariance changes according
to Eq. 30

(*.+ (33)()+p- - - p___+___3

n q + n- l n
where r. is the RMS of the measurement error, expressed as a distance. I
Simplifying Eq. 33 and substituting into Eq. 23, the filter gait is

k (+) 2 + Pn-I(+)
'n r 2  q2 +p + rk n nT-q+ (+) +r2

n Pn-1 n

1r2 (34)

1+ n T
pn1l(+ ) + q5

25i
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jThe stimte of the distance x is corrected with each masurement according J
: )" X(- + kn  zn  x(- (35)

U)+k n ^n(-)

From Be. 34 it c be seen that, if the measurent noise i much ]es8

then either the effect of the wubJact's memnmt between moauretnnts or- ..

and the estimate of pr nt position closely approximtes the ost recent
obscrvation. On the other hand, If r2 is much greater than the sum of q2and P._ (+),n

kn << 1

and each observation improvej the estimate very little.

j I «SION TO NOINEAR SYSTEMS

Though the Kalman Filter is optimum only when the system differential
equations and measurements are linear, it has found considerable use in
estimating the state variables of nonlinear systems with measurements that
are noise-corrupted nonlinear functions of the state variables. This
employment of the Kalman Filter is frequently referred to as the "Extended
Kalman Filter" (Ref. 15). It is an intuitive but freouently successful

- . application of the Kalman Filter in the absence of truly ovtimum filters
for nonlinear systems.

Suppose the system whose state it is desired to estimate obeys the
nonlinear differential equation

xm f (x, u, t) (36)

and the mnurements are noise-corrupted nonlinear functions of the state
according to

z h (x, t) +v (37)
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;i f our knowledge of the system state to such that the metric"

.. .... .. .. . .a ~uf

'Lil

• linearization according to Eq. 28 and 29 or 1 can be determined from
! ~Ea. 6 and the discrete filter gain calculated. It should be noted that

the F, G, and H matrices computed from Eq. 38 ran be nonlinear functionsof i. The continuous etimate of the state vector i foud from th

equation

it=  _(_:, t) + Mi_ - h x, 0) (39) i

IEuation 39 Is similar to that used when the system is linear and linear
[ measurements are prescribed. It differs only in the ut al- v onllnaar
i system and measurement functions f_ and h.. Figure 12 klustrates the
! ......... continuous Kalman Filter for a nonlinear system. An alternative approach-is to precomVute a nominal stAte traJecter-, d c-=l .aa "," C "ti R in

a.dvance. This reduces the on-line computation necessary, but it suffers
further errors if the true and nominal state differ significantly.

~These techniqus are omly aproximate. They require that the dis-
i turbances, measurement noises, and uncertainties in the state be of such

a size that the higher-order terms ignored in computing the errorcovariance are insignificant. If this condition is not uatisfied, theapnlication of the Kalman Filter to nonlinear systems may be usaless.
An iterative technoue may b e useful in reevaluating the btrices inEq. 38 based on making a first estimate, fo evaluating Eq. 38, then
recomputing the state estimate, etc. (Ref. 16 and 17).

E Another apsroach to linear fihtering for systes with nonlinear
dynamics and nonlinear observ.ations is the use of a one-to-one nonlinear

Itransformation to rfa the nonlinear problem into a space in which t htransformed roblem is linear (Ref. 18). However, the assumption ofGaussian noise in the transformed problemd i coequtincorrect.
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It brief, the Kalman Filter c" be quite untfu.l ietimi g m th
state variables of nonlinear systems. lowever, more care must be exerced -I
in checking theoretical results by means of simulation. Iecas the

* error covarianci eueatiems vrovide only an approximate va.lustin of the
ShFestimation error statistics, Monte Carlo techniaues are required to verify.trhe use-of -the Extended Kalman Filter for nonlinear svotans. Mhen the ...--

Xa.m" Filter pvduces -poor estimates of the state of a nonlinear system,I ingenious changes can often produce a useful modified version (Ret. 19).

SUMM4ARY

The Kalman Filter is a systematic approach to estimating the state
variables of a linear system. It provides the minimum variance estimates
based on:

I. Repeated external measurements
2. An understanding of system and measurement dynamics
3. A statistical knowledge of tht system disturbances
4. A statistical knowledge of measurement errors
5. A statistical knowledge of the errors in determining the

initial state.

Figure 13 contains a summary of the Kalman Filter equations.

I

.
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Sction 3. MODELS OF INERTIAL NAVII TION SYSTEMS
AND ERROR DYNAMICS

Engineers using the Kalman Filter to Improve the accuracy oi inartial
- navigators have, in part, been successful because they poscessed a good.

understanding of the physical principlao underlying inertial navigation.
• ~Consequently,, the Rucceedng eectionp dia cusz I-aaic-inartial C-Aaso" , ... __

strapdown and !imballed inertial measuring units, navigation uaia#, Inertial
measurements , zhe oropagation of errors in an inertial navigation system,
and the exteinal seaurements used to recalibrate.

INERTIAL SENSORS

It was noted earlier that the concept of inertial navigation is
quite simple; measurement of linear acceleration, velocity and angular
rate, and application of Ne&.ton's laws of motion. There are two kinds
of sensors which are basic to inertial systems--those which measure
linear motion and those which measure angular motion.

Accelerometers

Linear motion is indicated by accelerometers. As the name implies,
they measure linear acceleration though frequently the instrument output
signal is the integral of the measured acceleration (i.e., velocity
difference). Accelerometers operate by sensing the forces acting on a
proof mass. This force may be indicated by a linear displacement, torque
(through a moment arm), change in the natural frequency of a vibrating
el.ment, etc. Figure 14 illustrates a pendulous accelerometer which
converts force along the input axis to torque about the output axis.
The quantity measured by an ideal accelerometer is often called specific
force and represents the acceleration of the proof mass less that portion
due to mass attraction (gravitation). It is expressed by the equation

T- m (a- G) (40)

where T is specific force, a is the acceleration of the proof mass, m,
and a is the gravitational attraction acceleration. If m and G are
known, acceleration can be calculated from the specific force. Acceler-

ometers typically measure 3pecific force along one axis fixed in the
instrument and three such devices are necessary to imply total accelera-
tion in three-dimensional navigation space. It is customary, though

not necessary, to orient their input axes to be mutually perpendicular.I. 1
In the equations of inertial navigation systems, physical vectors

will be designated by an overbar to distinguish them from the vector
notation (underbar) used in discussions of the Kalman Filter.

1 _ _31
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Its basic operation results from the fact that an angular rate about the
inlput axis creates a torque about the output axis. The torque is expressed
by the equation

. o0H (41)

where i Is. the input angular rate and H is the rotor spin anguler
momentum. The single degree of freedom is provided by pexmitting the
gimbal to rotate relative to the case about the output axis. The gimbal
angle Is the angle between the angular momentums vector and some nominal
orientation of H rikltive to the case. If damping is provided between
che gimbal and the case, the gimbal angle represents the integral of theI
angular rate, wi, and a rate-integrating gyro results. If a restoring'
torque proportiotal to the gimbal angle is provided, the device is called
a rate gyro. In either case the sensor output is provided by measuring
the gimbal angle. A torque generatcr which provides torque to the
gimbal about the output axis Is also present in most applications.
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FIG. 15. Single--Degree-of-Freedom Gyro.

With the two-degree-of-freedom gyro, use is made of the fact that,
in the absence of torques, the angular momentum vector keeps a fixed
direction in inertial space. Therefore, gyro case motions are detected
from the relative orientation between rotor and case. Three SDF gyros
are used to sense the total angular motion of an instrument package.
They are customarily oriented with their input axes orthogonal. If free
gyros are used, only two instruments are required.

INERTIAL MEASUREMENT UNITS

Inertial navigation systems require an indication of acceleration as
the input to the navigation equations. Furthermore, these accelerations
(or rather the acceleration vector) must be resolved into the coordinate
frame in which the navigation equations are computed. Two general
approaches, described below, are taken to the problem of indicating inertial
acceleration in the desired coordinate frame, Both techniques employ an

instrument cluster or inertial measurement unit (IMU) which consists of
the necessary number of gyros and accelerometers. The inertial sensors
measure acceleration and angular motion in a coordinate system fixed in
the IMU. The two schemes differ only in the way they provide acceleration
measurements resolved L navigation coordinates.

Gimballed Platfor:

The first practical inertial navigation systems mounted their sensor
clusters on gimballed platforms. Cimbals permit isolation nf the instru-
ments from angular motions of the carrying vehicles. This isolation is
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a&comlished with the help of the gyros. They indicate changes in the
angular orientation of the platform relative to inertial space and, by ,
mwes of gimbal servos, Lhe platform is returned to its proper attitude.

kA-- "e a retat if of the platform relative to inertial spa' Is desired,
output axis torque generators on the gyros are used to cause false indica-
tions of angular rotation. Because they cannot be distinguished from

u -.... Inputs,-chase fictitious rotations provide platform reorientation t
in a er similar to that described above. For more detail, the concept
of the space integrator is useful (Ref. 20 and 21). The gimballed plat-
form permits accalerometer measurements to be used directly because the
sensor input axes can be oriented parallel to the navigation axes.

Strapdown Systems

The simplest way to mount the instrument cluster is to attach it
rigidly to the vehicle. This approach saves the weight and power
associated with gimbals and gimbal servos. But as a result of the fact
that the navigation equations are seldom implemented in vehicle-fixed
coordinates, the accelerometer outputs must be resolved into the navigation
axis system. The relative orientation between orthogonal sensor input
axes and the navigation coordinate system is described by a transformation
matrix. If the initial value of this matrix is known, the gyros provide
the necessary information to calculate it for all subsequent times durl'g
system operation. The acceleration vector, measured in the vehicle axes,
is then transformed into navigation axes; subsequent data processing is
identical with that of gimballed aystems. While the strapdown system
simplifies th- hardware requirements for an IMU, it increases the require-

.. .manta for computer size, speed, aixd ac':uracy because of the transformation
matrix calculations. In addition, because high input angular rates are
experienced, SDF gyros in strapdovn applications must b- provided with
high-level torque generators.

Whatever their mechanization, ThU's use groups of inertial sensors I
to indicate acceleration resolved in the navigation coordinate frame.
The two schemes discussed above are illustrated in Fig. 16.

INERTIAL NAVIGATION SYSTES

* The simplest form of navigation using inertial instrtments is expressed
by the equation

_d . +~ (42)

The vector R describes a position relative to the earth's center. Its
second derivctive as seen in inertial coordirateb is given by the properly
resolved accelerometer measurements, with the gravitational acceleration

34'1 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



Iw ____5

I~ ~ ~ ~ ~ ~~Cunne Platform______________ __

Fu I~

j ComSensed Angular

- Nvigtin Cmotiaon -

I (a) CimbalIed I14U

vehile oordnats Tan~omation Acceleration bi

Coordinate Navig-ation Coordinates

Sensed Angular

(b) . Strapdown IHU

I.FIG. 16. Inertial Measurement Unit Concepts.
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added. Double integration of Eq. 42 will provide indications of the
ehang - In n. Zn addition, if the results are to be correct, the guidance
cmpUter mat indicate U exactly, the accelerometer must have no errors,
and the itWil coitions on R and dR/dt must be known.

)but of the discussi in this report involves navigation near the
earth. For this problm three reference frame are useful. The first
-j----j egr L frm lready-mnmtione. -In addition, a reference frame
with oriin at earth's center is defined. This frame is inertially non-
acelerating but flxed to the earth and therefore rotating relative to
Inertial space at a constant rate of approximately 15 degrees per hour. I
The rotation rate is represented by a vector, fA. The third reference
frme ts that of the particular inertial system. It has its origin near
the earth's surface, usually at the position of the vehicle carrying the
sensors. It can rotate relative to the earth-fixed frame at a rate
designated p. For convenience the three frames are called 1, E, and C,
respectively (see Fig. 17). Ideally, the accelerometer measurements
are resolved Into the C frame.A!

alA

FIG. 17. Reference Coordinate Frames for
Near-Earth Inertial Navigation.
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The position of a vehicle near the surface of the earth is usually
described by the position vector resolved in the earth-fixed or Z

coordinate frm. The velocity of the vehicle viLh respect to the enrth
is designated v and expressed by

Equation 43 makes use of a theorem of Coriolis. The derivative of v
with respect to the C or navigation coordinate frame is given by

( dv-) (d - (44

The derivative of v with respect to the E frame is related by

kd) E d)E

d2.R| - )- x R) (45)

Substituting from Eq. 45 into Eq. 44,

Id dC d 2 ) 1 ?j X fl X f j) PX (46)

Defining

+_ (47)

Eq. 46 becomes d

( 1- (w + )x v - Pi x (I x R) (48)

Substituting from Eq. 42,

(dvt)C - m-f ( + 1) x v+ G-1'x (CI x R)(9

37
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A" c.I iering navigation near the surface of the earth, it is convenient
to "fine a new vector, gravity. Because of the earth's rotation, the
local vertical or plumb line to parallel to the grav{tatioa vector G onay
at the poles. At any other latitude the earth's rotation tilts the local
vertical, S, so-that it is related to the gravitation vector by

:A g x(qXR)(

-- hish wMuastiated in Fig. 18. Equation 49 can be written i tte of
the gravity vector

6; + X xv+j (51)

J -

FIG. 18. Definition of Gravity Vector.

Equation 51 is one of the most convenient forms of the navigation
equations to implement. The left side of the equation in the derivative
of earth-fixed velocity with respect to the navigation frame. The first
term on the right is provided by the accelerometers and the-remaming
two terms can be calculated from position and knowledge of p. The
computer solves Eq. 51 for the vehicle velority vector in the navigation
fran. Then a secxod integration provides changes in R relative to &.e
earth-fixed coordinate frame.

38
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Se veral choices of the navigation frana, C. are commly used for
near-earth navigation. They differ basically in the way the vector w is r
prescribed. The three toat popitlar are:

1. North-vertical

. . - Center at present vehicle location
x-horizontal, north
y--horizontal, east
z-vertical (down)

2. Free azimuth 
2

Center at present vehicle location
x-horizontal, at known (variable) angle with north

y-horizontal, at known (variable) angle with east

z-vertical (down)

3. Tangent plane

Center at a nominal vehicle location

x-initial north

y--initial east
z--initial vertical (down)

The first two coordinate systems are called "locally level" because
their x-y planes are always tangent to the earth at the vehicle pn ttion. -.
Thce are uwually found in cruise vehicles (aircraft, submarines, ships)
which travcl long distances. The thir system is referred to as "launch
paint level" and is used in missile applications and for navigation over

small areas.

ERRORS IN INERTIAL NAVIGATION SYSTEMS

It is impossible to implement inertial navigation systems without
errors. However, these errors can be kept within acceptable bounds
through the use of extei'nal measurements. Presently, the predominant
error sources are imperfect indications of motion as provided by the

of g. Gyro errors, called drift rates, will be des_nated in vector

form by , and accelerometer errors are designated V. Many inertial

In this case the z component of w is zero. A related system,

often called "wander azimuth," has the z component of Z equal to the
z component of Q.

39
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______ s- te err re rot due to falov initial condttion are c.aused
by effects v""hcan be I to the te-m T and

Uing~ standard perturbation tectaiques, a f fect of these errors
on t e saviatin computations can be determined. Appendix C derives
the Inertial navigator error equations for near-earth systs. It also
dewm a .ate th aic instability that appears in the navigation equa-

t for the vertical d etion. Th error equations are expressd in
vetw, om.' .... term of the positiom vector in an ear-th-fixod coordinate_,...
frai-os 19 tuartil -angular rate vector of the navigation coordinate

fram, W earth rotation rate vector, n; angle between computer adica-
tion of the navigation coordinates and the axis system in which accelero-
meter tps are actually resolved ; and the specific force vector

andinstrument errors

+W X (-wx8R ~ x (-a x 67) m~ x +V 2w (Sw)R (52)

+ W 2 TR

where

W . i (53)-- V 9

and the dynamics of go are described (see Appendix C) by

T X W +c (54)

The errors in navigation quantities are the state variables in the
Kalman Filter. By substituting the proper relation for - into Eq. 52
and 54, the F or 0 matrices required in Eq. 12 and 14 can be defined.
The error relations can also be diagramed. Figure 19 illustrates the
propagation errors In a north-vertical system.

EXTERNAL MEASURENTS

In order to keep the errirs generated in an inertial navigation
system within acceptable levels, it is necessary to recalibrate the s, -em
periodically. The recalibration or correction of system errors is
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Fiachi~~d%-d with &he use of inderandant sour-ces of infor laz. Thos
fiternil meemurmenti Include position, velocity. attitude, and combina-

tions thereof. Typical sources are:
Poxldiou-Radlo navigation aids (Loran, Omega, Tacan, etc.) I

Navigation satellites
--S tar siht

- LAndmarks, identified and unidentlf led
VUadar
'ap,matching

VeWrociy-~Doppler radar
Electromagnetic speed log

Attitude-Star sight
Horizon measurements

The external m.easurements are compared to corresponding quantities
indicatted by the inertial navigation system, and system and random measure-
ment errors are related linearly to the difference. This linear relation
between inertial system errors and the formed differences betw-en measured
and indicated values of Position, velocity, and attitude specifies the
H miatrices in Eq. 18 *uW 26. The Kalman Filter- uses the differences
between indicated and measured quantities to priovide the optimum estimate
cf the inertial navigatiou system errors. Inertial sensor errors such
as gyro drift ratp- and accelerometer errors are also estimated. Corrections
may th i be applied to the system, based on the error estimates. Figure 20
illuarrotes the pro-cedure. A.nore datalled derseelp~ian of the manner in
which the corrections are applied ir found In Section 6.
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I Indicated Postioni, Measured Position,
,Velocity and Velocity and '-7-

Iniertial +
Navigatain bdra Soux-

S Systemn

Difterences, Composed of Navigation
CorretionSystem Errors Plus Measurement

Navigation______
System
Error

Kama Estimate

FIG. 20. Block Diagram o. Recalibcation Scheme. -
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Section 4. CORRELATED ERROR DYNA2ICS FOR SENSORS

The Kelman Filter equations displayed in Section 2 were developed
with the ass titn that the system disturbances (u(t) or -) and measure-
ment errom (v(t) or v.) were not correlated in time. The strict require-
meat of whlti noise" disturbances and measurement errors can be relaxed

, ...... Zo "thoo quantitig# who corralatloa t a Is um h 1"a than the

chracteristic tme of the system o of the measurements. In either
case, the lack of correlation is an Indication that nothing can be gained
by stinat nt the df estuubances and errors themselves, i.e., if an
accurate estimate as available it would not help predict the state at
the neet time of interest. Hoever, when the disturbances and measure-
men sigifc nt timichanging rapdly compared with the system state or
mesurements, the filter accuracy can be enhanced by estimating these
ditional quantitiesc e the filter estimates of u(t) and are used

to more accurately predict system behavior.ot a e

The estimation of system disturbances and measurement errors which
have egnificant time correlation is frequently described as "state n
vector at en tatovar Tbles isf a hfictitiousflsae variables to be
estimated is increased by including these quantwtres. Also. their
dymc behavior is described in the appropriate rows of an enlargd
F (or ) matrix hach specifies the unforced behavior of the augmented
state vector. Because these quantities are random, their behavior
cannt be described deterministicallyo Instead, they are uaualny taken

to bhe roe form variables of a fictitious liniar dynamic system which
in excited by white noise. This model serves two purposes; it provides
-the proper autocorrelation characteristics through specification of

the linear system and the strength of the driving noise, and,in
addition, the random nature of the signal follows from the random
excitation. The differential equation for the augmented state is in
the proper form for the Kalmn Filter--a deterministic system excited
by an uncorrelated random signal. When measurement noise quantities
are included in the augmented state vector, some of the newly-defined
measurement vector elements do not contain noise. As a result, the
matrix R - is undefined and modifications must be made to the equations
of Section 2 for the continuous filter (see Ref. 6). A1] correlated
system disturbances and measurement errors for inertial navigation

systems can be described to a good approximation by a combination of one
or more of the several types of behavior described in this section.

STATE V1!ZTOR AUGHENTATION

The augmentation of the state vector to account for correlated
disturbances can be ill ustrated using Eq. 2

X- Fx + Gu (55)
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Suppose u was composed of correlated quantities u and uncorrelated

P1 quantities u , . . ..

u + u (56)

i~ jIf u can be modeled to obey a differential equation

I -FU u +u (57)

where u is a vector composed of uncorrelated quantities, then the

augmertad stae vector x' is given by

- (58)

and the augmented state differential equation, driven only by uncorrelated

disturbances, is given by

To illustrate state vector augmentation to account for correlated
measurerv.nt noise, ruppose

Fx + Gu

iz =x+ V (60

where u is a vector of uncorrelated disturbances, but v is the sum of a

correlated meaurement noise vector, v, and uncorrelated errors, v2

V!. + (61)

If the correlated measurement errors are modeled to obey the white-noise

driven differential equatiun

= F  (62)
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rda augmented state vector x' obeys the differential equation

II F-

and the messurement obeys

- iI x',* v~i(64)

If v has one or more zero elements (one or more measurements do not
contain uncorrelated errors) the R matrix has a corresponding number of
zero rows and columns. As a result, R- 1 does not exist and a modification
to the continuous Kalman Filter is necessary (Ref. 6).3

CORRELATION MODELS

Rando Constant

The random constant is a nondynamic quantity with a random amplitude.
Nevertheles, .if it is-known to exist, the. random constant must be
Included among the elements of the augmented state vector.

x- 0 (65)

Its constant nature is indicated by the fact that the rows of the F and
C matrices corresponding to this quantity contain only zeros. In the
discrete formulatiou, the element at the intersection of the correspond-
ing row and column of the On matrix is unity while the remaining elements
of the pertinent row are zeros. The corresponding row and column of the
matrices C Q CT or Q. contain only zeros. Figure 21 illustrates the
nature of On, w , and Q. when one state variable is a random constant.
The random constant can be pictured as the output of an integrator with

I no Input but having a random initiai condition.

Recent work suggests that state vector augmentation may not be
necessary when correlated m-asurement noise is present (Ref. 22).

46
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I 2n+1 0 0 X2 o

-n~ -.- JX

fn  wn .

0

Qn" 0 0 O"

X2 is a Randoin Constant f
FIG. 21. Illustration of On, wn, and.Qn When One
State Variable is a Random Constant.

Random Walk

The random walk results when uncorrelated signals are integrated.
It derives its name from an illustration involving a man who takesii fixed-length steps in arbitrary directions (see p. 24). In the limit,
when the number of steps is large and their length is small, the
distance travelled in a particular direction looks like the random walk
variable. The state variable differential equation for this quantity
is given by

-u (66)
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1 wher+e [U(t)U(T)j - q(t)6(L-T). A block diagram representation of
this aquation is shown in Fig. 22(a). The mean square valuL of the

Srandom walk variable grows linearly with time according to

x qt* (67)

The rows of the F and # matrices which correspond to a random walk vari-
able are the same as for a random constant but, in general, Gu or wn
provide finiite conttibutions to changes in the state variable. The
corresponding column and row of G Q GT can be non-zero and the element
at their intersection is given from Eq. 67 by q. For Qn the appropriate
element is

q - t)

The random walk and random bias can be represented together with the
use of only one additional state variable. This is illustrated in
Fig. 22(b).

*,

This is readily shown using Eq. 14. Since F is zero and G is
unity the derivative of P is Q. Using the lower case to denote scalar
quantities,

p - qt + p(O)

Since there are no measurements, 2 is zero and

p-T
p4x

48 I
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1(a) The Random Wl

(b) The Random Walk and Random Constant

FIG. 22. Block Diagrams Demonstrating
the Combination of Random Constant and
and Random Walk in One Additional
State Variable.

Exponent ally-Correlated Random Variable

A random quantity whose autocorrelation function is a declining
exponential

xx (T) -0e(68)

is frequently a useful representation of errors and disturbances in

inertial navigation systems. The same quantity provides a reasonable
approximation for a band-limited signal whose spectral density is flatIl
for a finite bandwidth of frequency. The exponentially-correlated
random variable can be generated by passing an uncorrelated signal
through a linear first-order feedback system. A block diagram for the
system is shown in Fig. 23. The differential equation of the additional

state variable is-

i-O + u (69)
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The mean square value of the exponntially-correlated raudow variable
in constant If the mean square initial condition on the integrator is
taken to VS. The specification of this quantity appears at the inter-~
section of the appropriate row and clumn in the initial error covari-
ance matrix, P(to). The corresponding diagonal elemnt (at the inter-
sectian of the appropriate row and colum) of the F smatrix is -0. All
other elements of the coresponding row are zero. The 0 matrix is

simlary arenadwith-the diagonal alement given by

e8"(tn+i tn)

The , G CT n Q matrices h.ave the same cLaracteristics as for the
random walk. The mean square value of x is related to q by

x (70)
20

It is interesting to note that, when the period of estimation is much
less than the time constant 1/8, an exponentially-correlated quantity
can be approximated by the random walk. Under this condition an
exponentially-correlated variable and a random constant can be approxi-
mated by only one additional variable.

LC. LC.

* FIG. 23. Bllock Diagram Showing Generation
of Three Random Characteristics by the
Addition of Only Two State Variableb.

*Again, Eq. 14 can be employed. Since F - ~and G 1 ,

p - 20p + q

In the steady state, 0 , and p
25

50



_ NWC TP 4652
I - _

~I I Periodic Random ouantitic-

Random yariables which exhibit a periodic nature may also arise in _

W inertial navigation systems. Their autocorrelation funcLioaa caa be"
represented by ___

. ___-_... . . . . .. .. .... . ._____-

Xx co(T - a (com(W'ITI-n)j (71)

where

,wn(l 42)1/2 (72)

and the values of 4 and wn are chosen to fit .empirical autocorrelation
data. Two additional state variables are necessary to represent 1
random signal with this autocorrelation function. One pair of state
quantities which provides this relation is given by

x^ - g~l~au(73)
X£+l = "2xt 2rw~X (b - 2a~wn)u

where

2 2a2cos Tn sn(-n)

Sb 2 . Cos q sin(a+n) (74)

0L -)tan-

and xj has its autocorrelation function given in Eq. 71 (Ref, 23).
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Rado AM Variables

Frequently, random errors arise in inertial system which exhibit

a definite time-growing value. The random ramp, a function which grows
linearly with time, can be used to describe them. The growth rate of
the random ramp is a random quantity with a given probability density.-......

-- Men additonal tate alanta are necessary to deseribe the random
ramp:

(75)

where the initial cordition on xk+l provides the slope of the ramp.
This initial condition is exhibit-ad in the form of a mean square slope

, which appears in the corresponding diagonal element of the initial
error covariance matrix P(to). xt is the random ramp quantity. The
row of the F matrix which corresponds to xt has a one on the column
corresponding to xX+ I and zeros everywhere else. In the * matrix the
same element is specified by (tn.l - tn) and there are ones on the
diagonal. The row in the F matrix which is related to xj+ 1 contains
only zeros. The rows of G and the rows and columns of G Q GT or Qn
which correspond to xk and x"+ are also empty. The mean square value
of xy grows as a parabola with time

- 2- t2  (76)

The random ramp, random walk, and random constant can be represented

together by the use of only two additional state variables. This is
illustrated in Fig. 23.

A summary of the above-described random quantities is given in
Fig. 24. Occasionally other more complex random error models arise.
For example, Ref. 24 discusses a time- and distance-correlated error
whose autocorralation function is given by

I (Td) "a (t / a) (ed/b) t, d > 0 (77)
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where a and b are a firqt-ordpr correl&tion time and a first-order
correlation distance, respecilvely. A nimilar correlation ap, ,ars to
occur in certain radio navigation syntems. However, the vast 2iajoLity

of ivertial uavigLiiuu sybLeui uhiurerlert errors and disturbances can
be described by some combin-ttion of the random variable relations
sumasrized in Fig. 24.

INERTIAL SENSOR ERRORS .

Random inertial sensor errors are produced by mnny practical and
theoretical imperfections in the opezation of these instruments. They
are among the major random disturbances for inertial navigation systems.
Through extensive testing and detailed knowledge of the sensor dynamics
many other errors are nmasured and compensated or removed by careful

design. But, when all the tests for predictable ecrors and the Ingenious
design tricks have been exhausted, there still remain errors whcse
source and syotamatic behavior dufy detection. Often additional testing
reveals that the s.atistical behavicr of these inertia] sensor errors
can be described by one or more of the forms presented in the previous
section. It should be emphastzed that the pertinent statictical param-
eters (mean square, correlation time, etc.) are only obtained through
the analysis of large amounts of data. Frequently the error behavior
obseived is highly dependent on the individual instrument tested or the
period of observation. Therefore, it is not surprising that complete
agroement on inertial sensor error models does not exist.

The statistical model of inertial sensor errors also depends greatly
on the operating situation. If the errors in a cruise inertial navigator
are being estimated, a very detailed model may be reqlired. Ou the
other hand, errors in a tacticai missile navigator can be determined
accurately with simpler models for sensor error statistics.

C yro Drift Rate

In one case or another, ail of the random variables described in

Fig. 24 except the periodically-correlated quantity have been found to
be good descriptions of gyro drift rate. Reference 25 propcses the
combination of random bias, exponentially-correlated error, and a random
walk as a good statistical model of the gyro drift rate. In this case
the initial condition for the integrator in the system generatir.g the
exponentially-correlated component is taken as zero. Further studies
reveal that the random ramp may be a necessary addition in order to
dscribe gyro drift rate more completely. It can he seen that two or
three additional state variables must be added foi. each gyro.
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Accelerometer Error

Aro..... rnmter rr ar;: usually d~ccribed i Le-Lms of random
consLants and exponentially-correlated errors only. Two additional
state variables are requt.ed to represent the correlation propertic,

ML ot thjso orriirm.

Although it Is-not an acAer ta-ut r error per se, gravity deflection
of the vertical can be modelvd i as . ponentially-correlated dsturbance
originating in the level accelerometers of an Inertial ayntem. This

particular geodetic error is of great Importance In the long-range orCrufse-type vehicle. While the phenomenon In spatially fixed, an

equivalent correlation time can be derived by dividing the actual
correlation distance by vehicle speed. Vehicle maneuvers, of course,
have to be properly Lreated in this calculation. ... ...

rfEASURF;w.NT ERRORS

Tke measurements of position, velocity, and attitude used by the
Kalnan Filter to improve the accuracy of inertial navigation systems
may also contain errors whose correlation times are Bignificant. The
procedurt for Incorporating additional variablea into the system In
order to estimate the correlated measurement errors in demonatvated on

P. 45.

The statistical properties of mesburement errors are obtained in a!. ma,ner similar to those for sensor ezror--phyial evaluation and-
i- analyuis of large quantities of data. Frequently, measurement: errors

can bt rcdticcd by avaragiiUg a zuUiuy measurement over a period whbch is J
long compared to the error correlation time but short with respect to
characteristic timess of the quantity blag mea(sured.

ciPos.tion Mleasurements

Radio position indication schemes such as Loran or Omega contain
errors which can be viewed as a random bias lus an exponentially-
correlated quantity. Toe characteristic times of the exponential auto-
correlation functions are in the range of 3 to 15 minutes for Loran C
and I hour for Omega. This model of radio navi3ation uncertainties is
approximate because position itself affects the errurs. However, the
approximation is valid for slowly-movig vehicles such as ships. TheI radiometric 6extant (i.e., sun or moon tracker) is uscd to determine
position and also nerves to illustrate errors which can arise in

WE attitude measurements with radic instruments. Its angle measurements
ae corrupted by white noise, random constant, and exponentially-
correlated errors. These can be converted into similar errors in
position indication through knowledge of the measurement geometry.

25
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Velociy Measurement

5D-3ppler veloctty masurements contain correlated errors. These -
errors may differ for along-track velocity meaourementa and across-

a track valocity (Ref. 26). However. it has been uhw (Ref. 2) Ltmat
averaging Doppler masure _ents over a short period of time will. reduce

.-- the size of the wmaurament errors- and--permit- them to be considered-.............
as uneorrelKtL". A ahlp'a EM log haa an apparent error if any ocean

_- curLWIL exists. It ia usually modeled as a random constant plun error
which in exponentially correlated in position. The position correlation
coefficient is then converted into & characteristic time by dividing it
by ship's speed.

Attitude Measurement

Attitude measurement errors in a radio sextont have already been
discussed. They are characteristic of all attitude sensors whicn
measure electromagnetic radiation below the visible range. Optical
measurements of attitude in which the light path passes through an
atmosphere are also subject to exponentially-correlated errors. Attitude
measurement instruments (possibly including effects due to the man
operating them) also provide random constant and uncorrelated errors.

A discussion of random system dinturbances and measurement errors

to necessarily Incomplete. Each inertial sensor and measurement device
to le used In a system employing the Kalman Filter muht have its errors

.-carefully analyzed before a proper error model can be determined.

E
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S,'-tLion 5. APPJ.WATTON TO NAV]GAT]'iG MYTEHLU

Diffe ential equitions describing the propagation of inertial
navigation system errors have. been developed and the use of the Kalman I
Fi~lter dos,;1-', A-4 tq]rendy hinted, the. filter wilt ctlmate the f-irors-
in Lhe Inetial tiLavigaLiLun sygtem ratt r than the system variables
tiimselves. It is tho error quantities whous dynamics can bedmsc-rlbed

in termn a3 linear equa-ins which, though ntuL excL, ate an excellent
appruximation. In this Vection state vectors ara defined and the system
matricu F, corresponding to differe-L syteumi configurations, are
extracted from th2 error differential equatioits. Given F, it in
possible to computC th. 4 masrices of the discrete filter formulation.

In addition, the meaurement wLtrices, If, are specified for common
external measurements. Also, the effects of random aystem disturbances
and m:.!auremcnL erro.s are dencribed in termb of the G, Q, and R matrices.
Th oecLfott is toncluded by stating all of th.- timtrices required to

estimate the error. in a north-vertical inertial navigation system and
displaying some rosultu from the Kalman Filter error covariance equation
for that cane.

NAVIGATIuN 1:UOO.DiNATE SYSTEMS

To begin, a riworc, "etailed exposition Ig made of the three inertial
navigation coordinate frames outlined under Inertial Navigation Systems
(p. 35) and ir, Appendix (.

C(rr- miJy, the ,nost connon set of coordinate axes used for inertial
navigation in long-term cruise systems such as SINS is the oi thogonal
triad-oriented north horizontal (x), east horizontal (y), and vertical .
downward (z). These axes, subsequently called north-vertical coordinates,
or a similar set oriented north horizontal, east horizontal, and vertical
upward, always have their center at the vehicle position and permit
easy calculation of navigation quantities such as lcngitude and latitude
In a gimballed north-vertical system, the platform is rotated relative
to Inertial space about its nominal x, y, and z ares according to Eq. 47.

- (5 + ) cos L "
X-

W - L (76)

w - - (? + i) sin L I
5-
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whera X and L are the computed valuv- of longitude and ltitudu a.id 1i

i- th- =gnitude of the eart 'b angular r ste (see Fig, 25). Of course.
Pr errors in the ii",retwntation of Eq. 78 may arise dup to gyro drift rat"s,

qtc. If th-- computed values of X and L ara correct and the. platform is
initially mlign-d, Eq. 78, when Im]omei ,nI.r wititt will veep Ole
t%,o cwrdinatoe fraruen parallel. In a strapdown mystep, thet same rotation
in accomplishod by-supplying-the required angular rate to the'direction
cGiaa computations.. - -

Free Azimuth Coordinatdn

Some inertial navigation systemn do not provide a platform r6totion
comand about the vertical axis. This eliminate@ the torquIng error
associated with the z gyro, which ordinarily isplays poorer drift rate,
characteristics than either of the gyros with horizontal input axen.
These "free azimuth" navigation systems indicate the direction of north

Vby calculating the angle between horizontol north and one of the instru-
mented horizontal platform axes. For calculation of longitude and

latitude the accelerometer outputs are i esolved into north antd esst I
components through this angle. The platform angular rates are:

L

Fw - ( + X' cos L con Ot - 1, sin a

w0 y--(Sl + [)cos L sin a - cur. a (79)

WI
L I

where a is the horizontal argle between north and the platform x axis.

In a ;nza, thc frea Azimuus systcm is u iybrid of gimballed and j
strapdown systems, storing oue angular relation in the form of the off-
azimuth angle and nulling others by keeping the platform level. Several
refinements on this scheme occir. These include defining a false north
direction in order to avoid high azimuth rates zar the earth's geographic
poles. Free azimuth coordinates are frequently used for aircraft
inertial navigation systems where high platform ang'ular rates about the
z axis can be required of a north-vertical system.

Tauent Plane Cocrdinates

the use of tangent plane coordinates is another technique for

eliminating the errors tesulting from platform rotation It takes
advantage of the fact that constant platform angular rates can be
generated much more accurately than time-varying ones. By defining
the navigation axes to be those which coincide with the north-vertical

58
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'axes at a fixed point on the earth (see Fig. 26) only the horizontal

and vertical components of the earth rate at this point must be

implemented. These rates are constant functions of the fixed-point

latitude, Lo , and Q.

w Q cos L
x

W 0 (80)

fw -S sin L.
Tangent plane coordinates are usually used in inertial navigators which
do not compute latitude and longitude. They are found in short-zange
vehicles such as airborne tactical missiles whose target location is
often measured directly in the tangent plane coordinate frame. If the
vehicle carrying a tangent plane inertial navigation system moves more

, _ fc'- z=li fr~hc, f-- hc. point, mass attraction forces must be
calculated along the x and y axes in order to compensate accelerometer
outputs.

SYSTEM STATE DIFFERENTIAL EQUATIONS

The system matrix F describes the unforced behavior of the system
state variables according to the equation

S-Fx (81)

When discrete calculations of the state vector are considered, F is used
to compute the transition matrix 0 as eescribed in Section 2. Of course
F is dependent on the speciftuwo!Wme variables chosen and the order in
which they appear in the state vector. Reordering the same state
variables only requires shifting rows and columns in F. The inertial
navigation system error quantities which constitute appropriate state
variables can bc written in identical form for all three navigation
coordinate frames discussed above

TI (6R ( 6R 6R 6R 4y 4 z (82)"\6R y x y x .

b U 
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Notice that position and velocity in the z or vertical direction are

not included as errors of the inertial system. The assumption is made

-that these quantities are obtained from some other source because of

the basic instability which exists in instrumenting the vertical channel

of an inertial navigation system (see Appendix C). Special assumptions

must be applied to the tangent plane coordinate frame implementation to

keep its error equations similar to those of north-vertical and free

azimuth systems; the effects of errors due to inaccurate indication of

mass attraction forces along the x and y axes are ignored and it is

assumed that the local vertical does not differ from the fixed-point

vertical by more than e few degrees. Systems employing the tangent

plane coordinate axes usually permit these simplifications.

The state vector defined by Eq. 82 exhibits directly the errors in

position, velocity, and attitude. Notice that, in a north-vertical
system, the same state variables could be specified in terms of longitude

and latitude errors through the expr2ssions

6R - R6L
x

6R - R6L

x
(83)

6R - R cos L SX
y

6R - R cos L 6X - L R sin L 6X
y

where R is assumed constant. Similar equations relate the position and

velocity errors in a free azimuth system to longitude and latitude errors.

However, they involve resolution through the angle between north and
the system x axis.
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Thet iuqU"Liou&. dveJaied In Appenudix C provide the le flIfLrix for Lhic
mvtilt-i vertcr o~f Eq. H,) vh~ nnrtj1-Vm~c.til 'a'diIi f t unipluycd

I
~0 0 0 A 0 0_ 0-

0 oak 0 2w 0 -
II y

0 .. i tan L -2 0- - 0 -a (l4

wZ ~tfaL 0 1 0

0 4 tan L)- 0 -W0

The oyuttii rutrix whi taul~ent: plane. ciordiulater ;Are Ufied diffte'p from
that presated above because the plait axteu are not r -tW-Ld in
proportion to Veluclty

0 0 1 0 0 0

CI 0 0 2.0 g a
z y

r 0 0 -2WZ 0 -9 0 -a (85)
x 0 0 0 0 0 j) -

o 0 0 0 -Q .0Il

0 0 0 0 14 -lo 0~
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The subscript in placed on the abiva matrice ia anLicipatioin of later
expanding the state vector to Include correlated error terms. The
elements in Fy inciudr only the moet significant terms and the effect t
of posicioa and vebcifty *-long the vertical axis are Ignoced. Of course,
the values of u,., wy, and wz will differ for the three lavigation axki
systems according to Eq. 78 to 80. As an exanple of the complexity which 4
can result when more tctrmu a included, fig. 21 iZ the complete F.
matrix for north-vertical coordinates written in term.atof. longitude,-.- .
latitude, and vertical velocity and acceleration. . . -

SYSTEM DISTURANCES

The state vector differential equation is driven by inercial sersor
errors and incorrect indications of vertical povitlon and velocity. Tne
latter errors can core from one or more of several insLruments whose
consideration is beyond the scope of this document. Tke effect of the
e'-rors will !,imply be presented.

Vertical position and velocity errors can be exhibited by rewriting
Eq. 81 to include a forcing term

x Fx + Gu . . °(86)

2

Again, specification of G and u permits the calculation of w for the

diactete case. If only 6Rz and .z are considered as driving terms,

u ! zR: (87)

C is given, cor t!.e state vector defined in Eq. 82, by

GTF 000 000 Oj (88)
00 0 i
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or, following the notation 4nd extra detail of Fig. 27, Lhe G MaLrix isiI

L 2~ L 0 0 0+ -T- al a2L

_ j I (89)

02dosL

In a similar manner, the effect@ of gyro and accelerometer errors can be
exhibited by defining

UT - V c e i (90)
- y x y zI

The error sources of Eq. 87 and 90 could be considered together by
properly arranging their respoctive G matrices into one matrix expressing
their combined effect on x. If the Inertial sensor errors of Eq. 90 are
not correlated in time, no state vector augmentation Is needed. In terms
of the state vector of Eq. 82, the G matrix for the effects of Eq. 90

r 0 0 0 0 i
0 0 0 0 l
1 0 0 0 0

G 0 1 0 0 0 (91)

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1j
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In cruth, the inertial sesior errors are highly correlaued quantities
snd Pre usually descrIbed by onc oi1 mi.re of th- CortrlaLiun models given
in ,Sec ion A. It is therofvre Leceusary to augnent the state vector 1
anzd enlarge the F %atrix accordingly. For exaeple, if all inertial

aeneor error . emn be modeled ag random valk qudntitla, ratulrn cvunants,
or the sum of both, reference to the preceding section Indicates that .
five -additional state variables ave neuttisary. The -augmented state _
vector iz given by

'IT R Ry& X6 1 (92)

The new F matrix is given by--

F o ] (12X 12) (93)

where the submatrices G and Fx are given in Eq. 91 and 84 or 85. Th' .

uncorrelated disturbances which provide the random walk characteristic
can be denoted by

:U' J t

S= Vx u U, y u (94)

and the new G matrix is given by

G' (12x5) (95)1

where I. is the 5 x 5 identity m-trix.

*Frequently, when matrices are expressed in terms of their sub-

matzix elements, the dimensions of the entire array will be noted as
shown.
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MI
If any of the errors do not erhibit random walk behavior, the

correspondin& diagonal elent of Ij is changed to zero. The random
constant nature of the zrrors is exhibited by setting the co-rsponding l
diagonal elements of the initial error covariance matrix, P(to), equal
to their mean square values,

If the sensor errors-have expcnential.correlat'on.only, -the state ..
v-GL of Eq. 92 is still used hut U

F'" _Fi---' --- 112x121 (96)

where Fu is the matrix whose diagonal elements are composed from the
quantities 8 described in Section 4.

-5x0 0 0 0
X -0 0 0 0
0 V

0 0 0 9) 0

U I

L 0U 0-
the vector u and the matrix G are essentially tie same for this case.
Many other combinations of correlated sensor errorq can be prescribed
by careful adherence to the rules set down in Section 4.

When state vector augmentation takes place to accommodate correlated

system disturbances, the size of the covariance matrix Qn in the dis-
crete filter also increases. If the quantities forcing the original
n-element state vector differential, equation are not uncorrelated, the
fizst n rows and columns of Qn are composed ofzeros while an appropriate

L subatrix An Q-c is the covariance of the uncorrelated quantities, u,
described in Section 4. For the two examples of correlated inertial

sensor errors given above,
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0 2,12) (98)

" L i

wher_

Ej (99)

The discrete forcing vector !i is computed with Eq. 9, using u' as
defined in Eq. 94. The zero submatrix in the upper left corner of Qn
has dimension 7 x 7 (the original state had seven elements). Other
correlation characteristics for inertial sensor errors may require a
larger augmented state vector and therefore Qn and Q1 matrices. In thecontinuous filter similac behavior occurs in the matrix product G Q GT.

MEASUREMENTS

The Kalman Filter detects the buildup of errors in an inertial

guidance system through comparison of system indications with external
measurements. If the measurement is not given directly in navigation
coordinates it.must be 1-roperly transfcrmed through knowledge of the
particular geometry involved. The trasformacion can eithir be per-
formed outside the Kalman Filter or tak, place in the meaurement
matrix, H. Since direct measurement ot inertial sensor errors is not
common, the matrices displayed below are for the original 7-element
state vector of Eq. 82. Augmesitation of the state to account for

correlated random disturbances only adds an appropriate number of a
zuzo columns on the right side of the matrices showa. It should be
emphasizoe that H relates the difference between system-indicated and
meadured values to the system errors.

Positlon--Measuremnt of position alone gives a measurement
matrix, U,

[1 0 0 o o 0 01H (100)
PLI 1 0 0 0 0 0]
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if psitloft aserebents are given in terms of latitude and longitudeJthey can be cowared with system indications of thCa quantiLies and -

0 0 0 0 0 1
a ..L.. - 00-o (101)

PP.. .... . . . .. . .. 0 0 0 0L

for the state vector of Eq. 82.

VeocitLy-The measurement matrix for velocity measurements is

H v "(102) -
0 0 1 0 0 0 0"

Attitude-For most attitude measurements the instrument is pointed
according to computed attitude and the angular deviaticl of a reference
point is measured. Ad a result, the easurement is of ,, not *. Con-
sequently not only attitude errors, but position errors ab well are
me itsred, because

6R 6R (103)
60 y-~ 68 - -?

x R y R

The measurement matrix is

C- 0oo 1 a 0

Ha 0 0 0 0 1 ] (104)

00 0 0 0 01
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for thp free ayitith dnd tangent plane coordinate 6y .tm, For nurth-
vertical coordinatcs,

a - 0010 0

g ~. i ~ o U05)

0 bin of0 0 0 O 1

When combinations of measurements are made, the measurement matrix
is cons-tructed by "stacking" the al jpriate matrices shown above. For
example, if position and velocity are measured at the same. tie

H p (106)
ppy

.EASUREHE iT ERRORS

Though the "weasuret-jents" for the Kalman Filter are accually
differences between system-indicated and externally-measured ;oaition,
velocity, and attitude, the measurement errors are attributed to
LILuracie5 in the extern3l indications only. As a result, some
external measurements--such as position at a surveyed point--are ofton
considered to be essentially error-free. However, when the inertial
system is aboard a moving vehicle, important external measureme't error-
do arise. These are specified statistically by their er:.r covariance
matrices, R. When the errors are considered to be uncorrelated bw-tweet
measurements, position, velocity, and attitude measurement error
covariance matrices cmau be denoted

R _E (107)j

where

~.rnxi(108)
YP"I
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STiVilar 1,iU

VI

and

The measurent error covariance can be a diagonal matrix (only zero
elements off the diagonal). This odicates no cross-correklrion between
meaurement errors. 'nwever, the measurements tust frequently be taken
in coordinates other than those used for navigation, and cross-correlation
between meabureent errors in comon. The measurement instruments and
geometry dictate meaj:reenL errot correlations. It several error
quantities are mearured at the same time, the irror covariance matrix
R is ,,ostructed from the appropriate matrices defined above. In terms
of the earlier example involving stacking meesureitent matrices,

Li E i e e LRI j (--- 1
The zero subemtrice" in the off-diagonel position of Eq. 11 indicate

a lack of correlation between position and velocity measurement errors.
If measurement errors are time-correlated, the sta~e vector must beaugmented as described in Section 4 and under Systen DisturbanceF

(p. 64).

L r I
L
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AN ILLUSTRATION: NORTH-VERTICAL NAVIGATIUN
IN A TACTICAL AIRCRAFT

1he example chosen to demonstrate Kalman rilter operation com
directly from Ret. 3, in which a north-vertical inertial navigation
bybt_-w it. aided by Li L ,L iLLtziaL putiLic -f oixe ut UKi- eithlwr two UK
tour times an hour. Me Kalman Filter is employed to provide oprisnum
use of these measur ments. ArItude indications are a sumed to come
from an altimeter or some oILer noninertial device whoge errors are
very sma.l and therefore not estimated. The gyro and accelerometer
errors are modeled as random constants, and longitude and latitude fix
errors are assumed to have exponential autocorrelation properties.
The fourteen-element augmeuted state vector is given by

X eL RcLsLx P L Rc°' L k ox fYz vx vy x (y Cz e e (112)

vhere eL and eA are the lat.tude and longitude measurement errors. The
F matrix is given by

r : (o14 14) *(113)

L It

where Fx is as prescribed in Fig, 27. The G matrix has-14 rows and
2 col umns

(1134) I
G 0 :-ILI



The ma urement matrix has 2 rows and 14 columns

H- 1,~l 11% (115)U

irn (or G Q GT ) is at 14 x 14 matrj-

0 01
gI Io I

-- - - -- - - - - - - - - (116)

OA

where A is Lhe 2 x 2 coveriance matrix of white noise driving the linear
model for position error generation.

The following parameters wo-re used in calculating the Kalman Filter

estimation errors:

RMS initial position errors, north and east, ft ........ 50
Initial velocity error ................................. None
MEM initial vertical tilt, se.c.......................... 10

!MS initiai azimuth error, s'e............................ 10
contant gyro drift rate, deg/hr ................... 0.1

RM accel-rometer bias error, ig ........................ 50
RMS uncorrelated pocition fix errors,
narth undi e*aj.t- ni---- -....... ......................

Latitune, deg ........................................... 30

Aircraft heading ....................................... East

Any variation of these parameters is noted in the following discussion.

Figure 28 shows RMS v~hicle position error time histories. The

improvement in position accuracy resulting from taking fixes at 15-
minute intervalu as opposed to every half hour is demonstrated. Notice
that th estimation errors (and therefore filter gain) exhibit an
approximate steady-state behavior after about 2 hours.

A fture-of-meit is defined for this Ialman Filter-aided cruise
inertial navigsti>v system. It is the square root of the time averageLf m-en Sn're ps-lt!-n error afrer 2 hours of filtering, This fiure-
of-usrit is plotted in Fig. 29 as a tunction of RMS position measure-

ment error for tb! case where position is determined every 15 minutes.
because latitude error grows faster between fixes, the figure-of-merit

I for 6L is consi ently larger. Of course, the other variables were

17
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FIG. 28. RM-S Position Ervor Histories.
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held constant while measurement error was varied. Figure 30 displays
variation of the figure-of-merit as a function of vehicle velocity.
The essential insensitivity of position estimate errors to airspeed is
demonstrated. The figure-of-merit was also found to be affected little
by sizable variations of vehicle direction, operating latitude, inertial
sensor errors, and platform azimuth alignment error about the paramecers
presented above.

3

2
Latitude

Position FOM
(nm)

~Longitude

Four Fixes per hour

12 3

RMS Randori Fix Error (nm)

FIG. 29. Position FOM Versus RMS Random Fix Error.

Initial estimation accuracy is shown to have no effect on the RMS
filter errors after 2 hours, assuming of course that the size of the
initial errors is properly reflected in P(to). This is illustrated in
Fig. 31. The initial RMS tilt and azimuth alignment errors are six
times as large in case 1 as in case 2. Figure 32 demonstrates the
ability of the Kalman Filter to estimate gyro drift rate, thereby
providing in-flight calibrativam==-4W accuracies shown are somewhat
optimistic because the drift rate was assumed constant. A mere realistic
nodel for gyrc drift rate is an exponentially-correlated error. In
that case the drift rate will be time-varying and the filter estimation
errois will approach a non-zero lower limit.
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FIG. 30. Position FOM Versus Aircraft Velocity. I
-ne example discussed is a practical one and the figures serve to

illustrate an important point: the error covariance equations not only
set.'e to prescribe the Kalman filter gain matrix, but are also useful I
in performing consistent analyses of systems containing the optimum
linear filter. They can be used to determine the accuracy changes that
will result if inertial sensors or measurement devices are altered.
The resulting !-rati,-nffs are specified in tcram useful Lu Lhe sys:em

I- designer.

Erro

C I

010L

FIG.31.Effect of Initial ConlJfti-ns.
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Section 6. CORRECTIONS OF INERTIAL NAVIGATION :
SYSTEM ERRORS :

F i At this point all the operations necessary to provide Kalman
Filter -estimates of the errors in. inertial navigation systems have been
presented. This chzpter discuzsoa two Saneral echemeb sing these
estimates to improve system accuracy. Emphasis will be placed on the
technique 'ihich corrects errors within the system directly.

CORRECTION OF NAVIGATION SYSTEM OUTPUT

Because navigation system outputs such as position, velocity, and
heading dre the principal quantities of interest, the most apparent use
of error estimates is to apply them as corrections to the system output
(ieedforward technique). Figure 33 illustrates this scheme. The feed-
forward approach has minimum complexity because only the quaatities of
interest are corrected. However, the linear-error dynamics of inerttal
guidance systems actually result from a linearization of error behavior.
It is conceivable that, if corrections were only applied tu the system
output and internal systum errors were allowed to grow, the lineariza-
tior. would no longer be valid. In addition, some inertial navigation I
systems are so constructed that their olitputs are directly connnected
to other, dependent systems, precluding the use of feedforward correction. I
These considerations have led to the frequent use of a different scheme
for emplhying system error estimates. =

&wow-

Iy

FIG. 33. Illustration of Feedforward

Correction of System Output.
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DIRECT REMVAL OF NAVIGATION SYSTEM ERRORS

!a

II
An alternate technique for the application of the system error

estimates is to use them to chaige the state variables within the
inertial navigator (feedback configuration). Figure 34 illustrates this
approach. The quantities to be changed can all be represented as outputs

of different integrators (or summuing processes in adigital computer)....
This Js a consequence of writing the state variable behavior in the
form of a first-order differential equation. If all the system errors
are corrected, the quantities of interest (position, velocity, etc.)
will always have their "best" values. The use of this technique usually
involves three distinct forms of control or error removal which differ
because the integrators mentioned above may be of different types and
may or may not be accessible. In the following discussion the assumption
is made that discrete measurements are being used. Extension to the
use of continuous error estimates is straightforward.

-- m w.
aii mbl bi,da .

- -

FIG. 34. Illustration of Feedback Correction

of Navigatiun System Errors.

Reyet or Impulsive Control

When the quantity whose error-is to be corrected is an electrical
eignal ac the output of an integrator (or in the memory of a digital

P computer), it can be changed immediacely. The resetting of thiF value
can be viewed as the application of an impulse of proper size to the

integrator input, hence the expression "impulsive control." Impulsive
correction minimizes the system errors for all times between measure-
ments (Ref. 27). Typical of the variables subject to this control are
position and velocity, as well as attitude when it is represented by a
direction cosine matrix.

isii
-80 ___
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Rapid Torquing

When a gimballed platform is found to have an incorrect attitude, A

this error can be removed by rotating the platform. The integrators in
this case are the integrating gyros which control platform angular rates.

7 lWhile an impulsive iuput to the gyros is not possible, the plarform is
_rotated at its maximum rate until the error Is corrected. This Is a
good approximation to impulsive control.,

Continuous Correction

Not all of the system state errors estimated by the Kalman Filter
can be rapidly corrected. It will. be recalled that it is usually
necessary to estimate correlated system disturbances and measurement
errors. In so doing, the new state variables are often represented as
outputs of fictitious linear system. However, the integrator inputs
of these systems cannot be reached. Thus, the Kalmaa Filter output
cannot be applied as an impulsive correction. For example, consider the
sum of a constant and an exponentially-correlated gyro drift rate. The
system error estimates (estimates of gyro drift rate components) can
only be applied as corrections at the gyro output, or equivalently as a

Fi - torque with known effect on the ouLput. Figure 35 illustrates this case.

umfl PAU MOIL

FIG. 35. Illustration of the Feedback Correction
of a Typical Gyro Drift Rate Model.

_.
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The correction for the constant drift rate la an obvious one-
effectively subtract the estimate of this quantity from the gyro output.

i it follows from th;- difference in gyro error which would occur- if the

Integrator were accesalble. The correction for all time after t n Isithon given tn term of the estimate of this error atL n by

Xcor X2n e g t ' n  (117)
corr 2~ ~ n

Notice that xcorr 2 is the Kalman Filter estimate of x2 (L) when no
correction is applied. Therefore, by subtracting this value the estimate
of x2 is made zero.

The gyro errors in this example and the corrections applied based
on Kalman Filter estimates are illussirated in Fig. 36. Similar argu-
ments can be used to prescribe the continuous corrections necessary for-
other forms of correlated system errors and disturbances. It should be
emphasized that, when subsequent measurements produce additional error
estimates, tte corrections based on these new errors are added to thosL
alraady being applied.

I ,
Correomitm of CpAM

Cwre~e lashed (

I i ~I "
FIG. 36. Illustration of the Feedback

Correction of Conetant and Exponentially-
Correlated Gyro Drift Raze.
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FILTER EQUATION SIMPLIFICATION

One important result of applying error estimates directly to
remove system errors is that this provides a simplification of the
Kalmn Filter equations. Equation 20 can be written as

it

Since thL feedback scheme. causes

_U

inmediately after the measurements are made, the next estimate of the
system errors is given from Eq. 118 by

2 K zd (120O)1

It should be remembered that the quantity zn+l in Eq. 120 is composed

from the difference between the actual measurpments and those indicated
by the inertial system output variables. This simplification eliminate&
the need to compute Onxn and Hn-l.nn. 1he matrices On and Hn+I are,
however, still required for the calculation of Kn+l .

83
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~~Scction 7. .PdPLICTION TO GYROMO.WASSTMC:

Prior to the use of Iaiman filters in inertial navigation systems,
platfom alignment ani the removal of cruise system errors were usually
conaidered separntely. In order to sell-align the inertial navigator,
certain additioial electrical connectiorw were i.dc wiLhin the ±.ybtci

which provided additional platform rotation comands. These techniques
suffered some of the shortceminga discussed in-Section-l for-cruise
error reduction--they used stacionary filters and did not account for
time-varying inertial &armor and measurement errors. If the Kalman
Filter ia provided for estimating cruise system errors, it is easily
employed to aid platform alignment as well. Tht! term gyrocompassiig, I
originally used to describe the tracking of both gravity and the hor -
zonral component of earth rate by self-aligning inertial systems, Is
frequently applied to all schemes for self-alignment, including use cr
the Kalman Filter.

The filtering approach permits estimatiorn of the system errors
until they are determined to uithin a prescribed accuracy, followed by
a rapid error-correction process. Consequently, the Schuler loop
characteristic of locally-level systems is not destroyed during the
alignment procedure and the inertial platform errors are not affected
by vehicular motion. (The conventional gfrocompassing ground aiignment
approach is demonstrated in Ref. 28.) The alignment of strapdown systems
is analogous to that of platform systems even though corrections are
applied to the direction cosine matrix instead of rotating the instru-
mnnt cluster.

FIXED-POSITION GYROCOMPASSING AL:GNMENIT

When the carrying vehicle is not moving relative to the earth,
position information is usually known with such accuracy that it can
be considered error-free. In addition, any velocity indi:ations in the
inertial system can be taken as errors and used for direct inputs to
the Kalman Filter. If attitude refurences are available, t',ey can also
be employed to aid in system alignment. If vehicle position is well
known, measurement errors in position and velocity can only be generated
by vibrations in the carrying vehicle. The desire to align rapidly,
combined with a situation where only small measurement errors with short-
period correlations exist, provides Lhree basic alt rnatives for fi id-
position alignment with the Kalman Filter.

One approach is to effect continuous filtering (Ref. 29). In this
case, as a result of the continuous approach, velccity and position
measurement error time correlations become significant and the state
vector must be augmented to accounL for them. This necessitates using



I iI

a considerably modified and more complex version of the Kaltman Filter
than is necenary for cruise etrur eaLimti.no An alternate scheme.

which is more compatible with :h. equ.tnt rece5asry f-,r cruisc inrtlal
system augmentation, is to use Lhe discrete version of the Kalmat Filter,.
employing measurements at intervals larger than the short correlation
time of Lhe measurzpaent errors. A a result, th" arrros in ,eaurettens.
can be asnatme-d mcorrelated and the Kalma Filter equations of S ictio2

...... ca b- used. -A third- Apprnach,- used in- the -following s cton, is to.

tonas dr the AL m"IiIr~at r r.s~ becauwc its correlatiouh ns~e A¢ t o u- rlze er eia or~atnperiod is small relative Lo sy6L#_=w::::::: characteritiLcs. This permits con-.

tinuous filtering with fewe- state variables, but may not be as accurate £

as the first technique. The second approach is discussed below bec use
It follows closely the ideas xlready presented., "

Briefly. when north-vertical navigation coordinates are considered
fora vehicle which is essentially motionless relative to the earth, the
state vector can be defined by Eq, 82 and the :'. matrix of Eq. 84
specializes to

e 0 1 0 .0 0 0

0 0 0 1 0 0 0

0 0 0 -ZLsinL 0 g 0
0

F 0 0 2inLo  0 -g 0 0 (12)
o 0mL 0 1 0

00 0 - 0 -(iL
R

-1
0 0 0 MinL3  0 MosL.
-f',ob° -tan 1o

I _ R 0 0 - - 0 -*eo sL 0

I the measurement errors are assumed uncorrelated, state vector aug-
mentation is entirely due to inertial sensor errors. In addition, over
the short estimation period of alignment these can be approximated as
the sums of constants and randou walk quantities. If the estimation
period is very short, representation by random constants may suffice.
In either case Fu is zero. The F matrix for the augmented state, Eq. 92,
is given b: j

x i~ (142N12) (122)
0 0

85
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If randlom walk hthavior in inelludea in the models of all iqerr.;al
fienor, Qrror , the )rxC Q T in.

ip where QU is the covariance matrix for the vector of uncorrelated inputs
U to -rhe rano-walk-generating i.ntegraL.ors. 4n can be approximated for
9F the Ahort intervals betweea measurements by

Llnt _-)F (124)

The matrix Q. in the error covarane quatio in .onterm-s of a

5 x 5 matrix Ln as

-w-ere t

T)(12(1)

LnV and £=u(Td i6

the I

If only constant inertial sensor errors a.re considered, GQGT -nd Qn are
zero. In any case, the mean square values of the random consteantsu
apper In the diagonal elments of the lower right 5 x 5 submatri of
the initial error covariance, P(uo). by

tI

LE 1

i
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If velocity and position measurements are used and position
difference is assumed to contain no errors, the matrix R is

0 0 0 0

R= 0 0 ak 0 (127)
R

0 0 0 a2

where C2 x is the mean square indicated vehicle velocity caused by
vibration. Velocity errors are assumed uncorrelated in Eq. 127. The
measurement matrix, 1I is given in Eq. 106.

pry

All of the matrices necessary for clazulating the error covariance
and filter gain as functions of time have bedn prescribed. If the
disturbances and measurement noise are stationary or their time behavior
is known beforehand, the filter gain matrix can be precomputed and stored.
If they are stationary, the gain will reach a unique steady state.
Some suboptimal filter possibilities are discussed in Section 9 for
similar cases.

MOVING VEHICLE GYROCOMPASSING ALIGNMENT

The self-alignment of inertial navigation systems in moving vehlclus
is computationdlly similar to fixed-position gyrocompassing. Velocity
and position differences again provide the Kalman Filter inputs.
However, sizable measurement errors are common in the case of moving
vehicle alignment. Position measurements are typically provided by
Tacan, Loran, or Omega radio navigation aids. Velocity can be measurei
by Doppler radar in an *AwAi&t or by a ship's spied log. Because
velocity indications are usually given in vchicle coordinates, an
independent heading reference is needed to resolve Lhem into navigation
coodinates. Any azimuth errors in this device will be transferred to
the inertial system. In addition, position and velocity must be estimated
in the moving vehicle case.

For example, consider the airborne alignment of an inertial naviga-
tion system with the aid of Doppler velocity indication and intermittent
position fixes. It can be shown that the correlated measurement errors
appearing in Doppler indications of velocity can be removed by pre-
filtering for a period of 30 to 60 seconds (Ref. 2). The prefilter output
(input to the Kalman Filter) contains uncor:l2ated errors and a small
blas error wh:ich is ignored in tfhe following discussion. The sysz.em
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matrix, F., is no longer constant. It is prescribed by Eq. 84 (or 85)

with , O , W. computed according to Eq. 78, 79, or 80, depending on
the naviga ion coordinate frame. If no augmentation of the state vectr

results froiy correlated position or velocity measurements, the F and
GQCT matrices follow the form prescribed in Eq. 122 and 123. The
matrices On and Qn also are similar to thobe outlined in the preceeding
section.

The measurement noise matrix is nonsingular. If the position fix
errors are not cross-correlated, the R matrix will be

cr 0O 6RO

6R I
R= -------- - --- - (4x4) k128)

I

0 , RI VIJ

where 36RX is the mean square error in position fix along the x axis, etc.

The matrix Rv describes the velocity measurement error covariance.
Because Doppler velocity errors along and across the aircraft track
differ and usually appear in both north and east velocity measurements,

is not commonly a diagonal matrix. If along- and cross-track Doppler
errors are assumed not correlated with each other and given by the
vector

V 1 (129)

the velocity errors resolved into north and east components are given
by 2v

Fc Sn Csac 1 (130)
S COs in cs oj
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The matrix is then dependent on the heading angle a

RV =cov V-1, VI

-vV

a

(0s(V -e )sina cosa (131)

+e Sixeca a, C

---------------------------------

I e Sifl

I V

a C

The fact that R is a function of vehicle heading imposes a restriction
on the vehicle flight path when precomputation of the filter gain matrix
is desired, The measurement matrix Hp,v is similar to the one described
in the previous section.

A comparison of Kalman Filter accuracy and the RMS errors that
result from a fixed-gain alignment technique is shown in Fig. 37, 38,
and 39 for this example. The important parameters used in arriving at
these figures are:

RMS initial tilt angles, mrad ............................ 2
RMS initial azimuth error, mrad ......................... 10
RMS constant accelerometer errors, .................. 10-4
RMS constant gyro drift rates, deg/hr ............. 0.01

RMS Doppler bias eror t/sec
Cross-track ......... ............................ 3.0
Along-track ............... ..... 2.0

RMS Doppler errors with 1-sec correlation time
(along- and across-track), ft/sec ...................... 3

RMS uncorrelated Doppler errors at the end of a
30-sec prefiltering, ft/sec

Cross-track ....................................... 1.0
Along-track ...................................... 0.75

RMS uncorrelated position fix error, ft
North-south ....................................... 600
East-west ......................................... 600

Vehicle velocity (due east), ft/sec .................... 800
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FIG. 39. Optimal-Versus-Conventional Airborne Alienment Accuracy.

The Kalman Filter exhibts a d:stinct aucuracy advantage in estimating
attitude error:, (Fig. 37 and 39) regardless cf the time interval between
position fixes. This follows from the fact that velocity errors contain

considerable information about system misorientation while position errors,
though contributing some additional accuracy, are less useful. The
similarity of Fig. 39 to Fig. 5 results from the fact that they describe
situations which are almost identical. The Kalman Filter also provides

Fmore exact estimates of position than the fixed-gain filter (see Fig. 38).
The letter accuracy of the Kalman Filter in estimating all three
quantities results from its tlme-varying nature and the fact that it
considers time-varying inertial sensor errors. The fixed-gain filter
errors approach those of the Kalman Filter in the steady state but the
ability of the latter to provide faster aliognwnt is well documented ij

the figures.
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si When the gyros and accelerometers have not been running for a con- I
siderable time before the start of filtering, their internal, temperatures
will nut have been stabilized. To the ekerot that they can be determined,
the temperature-caused errors can be aubtracted from the sensor error j
models. If these effects can be accurately established, the Kalman Filter
airbornm alignment ciu be performed with an inertial system as it is
being warmed up.

-- I

kI
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Section 8. APPLICATION TO ALIGNMEIT TRANSFER i
The Kalman Filter is a useful tool for the transfer alignment of

one inertial system, to another. The problem is essentially one of
accurately eatimattnp misalignment. Cnce the misorient4tion is detected,
removing the errors-is-not-difficult. While transfer aligment of a

• ~~weappn inertfiql reference system fram a " tr.-ytmimposes all the

errors of the master on the slave", this situation may often be preferred
to that of aligning the slave to an "ideal" coordinate friie.. Before
filtering, the two systems are first brought into near aligrment by some
knowledge of their relative orientation. This is usually accomplished
without difficulty because they are connected by a physical structuz2 ar
tae time of alignment. The residual misorientation caueed by uncertainties .
in muuaiting and structural flexure is small and permits livearization ,f
the equations describing alignment errors.

The alignment transfer technique employing the Kalman Filter is
basically an extension of vector matching. The vector& employed Are
motions which can be measured by inertial sensors. such as linear accel-
eration and velocity or angular rate and displacement. Matching of
vectors which are measured by inertial components already available
eliminates the necessity for elaborate additional equipment to perform
alignment, although a computer is required to process the measurements.

Transfer alignment using the Kalman Filter is ancomplished by
measuring the same vector in the ta nzarly-aligned coordinate systems
and using the difference as the filter input. A good discussion of the
principles involved in determining thp robative all-4 nment of orthogonal
coordinate frames by vector matching can be found in Ref. 30. It is
well known that the relative orientation of two axis systems cannot be
determined uniquely by measuring a single vector. Two noncolinear vectors
are needed, and for fixed measurement accuracies, two vectors at right
angles are preferred. An example of alignment using two noncolinear
vectors is the conventional gyrocompassing of an inertial system; the
two vectors, with known orientation in the reference coordinate frame,
are gravity and earth rate. The useful portion of earth rate is that-
part normal to gravity. At the poles, where the two vectors are parallel
this technique becomes useless. Away from the poles the gyrocompassing
system detectd the two vectors and their misalignment with the platform
axes, reorienting the platform until it is properly aligned. The gyro-
compassing example also serves to illustrate the fact that transfer III alignment is not restricted to the use of a reference inertial system.
Any set of axes in which the necessary vectors can be measured will
serve as the master coordinate frame.
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GIMIALLED SYSTEM TRANSFER .ALIClMENT

Transfer alignment between two gimballed pl&*forms consists of
accurate estimation of the misalignment and subsecuent rotation of the
slave platfurm to bring its axes into :oLncidence with the mastur frame.
This rotation can be accomplished with great precision. Therefore,
though the correction of slave attitude could be accomplished during - .
atimAtion, it would a-,rve to increae the filter computations without

V --increasing accuracy. Attitude correction is not required to preserve
the linearity of the differential equations for alignment errors.

Coarse alignment to within a degree or two is accomplished by
matching corresponding gimbal wngles of the two systems. Consider the
north-vertical coordinates described in Section 3; because no disturb-
ance of the normal operation of both systems occurs during,estimation,
the Schuler tuning characteristic of these systems is unaltered.
Previomsly proposed leveling schemes based on vector matching destroyed
the Schuler characteristic, creating new alignment errors (see Ref. 31).
Because both platforms are isolated from vehicle angular taotion during
the estimation process, structural flexure only provides an initial
condition on the error statistics of the misalignment. Initial conditions
for longitude and latitude are provided to the slave from the master
system after completion of alignment. The ideas outlined in the balance
of rhis section are a summary of work reported in Ref. 12.

After the slave system is given initial values of east velocity and
north velocity from the master system, both platforms are operated in
their normal modes while filtering is conducted. Earth rate commands
to the avros are identical and originate from the master system. Two
or three of the velocity Indications of the systems are compared and the
differences are used as inputs to the Kalman Filter. Velocity differ-
ences due to the physical separation of the two systems are removed
from these signals prior to their entrance into the filter. The
differential equations for the velocity differences, 60, and small mis-
alignment angles, 4, between the two nearly aligned gimballed systems
can be written in the form of Eq. 2 where

R 01 20 0 ( -a) a
x z Z y

6 R I-201 0 2n -(9-a) 0 -a

"'".' 0 -P0 0 -a a 0
xI ,F= y x (132)

0 0 0
y "R o 0 WA m

j0 _0L -W 0
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G is the identity uaLrix and u i& the vector of difierences between
"acrernmeter errors V and gyro errors c

F~i: ' U " %m XS YxY In a Ym Ys Zm ZS 13
.. . [ m .... .. ..... ....- -

The measurement matrix 11 is given by

1  ~. 08 0010
H G 0 0 0 (134)

L 0 1 0 0

If only north and east velocities are being compared, the thir6 rcus
and columns of Fx and i are deleted and Vz is dropped from u. The non-
colinear vector Is provided by maneuveing the vehicle, thereDy Creating
an acceleration vector with time-varying orientatiotr relative to th*
master coordinates. The cantLruous version of the Kalman F'ilter is used

tand an infinity of noncolinear vector pairs results from the vehicle
Aaneuvers.

Accelerometer errors, V, and gyro drift rates, E, are represented
by the sum of a random constant and a random walk. This description of
itcxLial sensor errors augments the state Vector with one additional
variable for each ae-sor con'.idered, thereby doublLng the dimension of
the problem. However, through familiarity with the importancv of
various effects, the st at, vector can be reduced Ref. 12). In
particular, the. Schuler period and gyro drift rate are observed to have
no aignlflcance for the problem considered there, due to the short time
of observation.

FInspection of the F matrix for this problem and knowledge of its
appearance in the differential equation for the error covariance matrix
(Eq. 29) indicates that the accuracy of the Kalman Filter can be
influenced by vehicle maneuvers tiirough the accelerations ax, ay, and
az. L.hen vertical velocity is not av.ailable for comparison and theIveiiicle is restricted to horizontal maneuvers, the sum of the mean
square errors in the estimates of *,x, Oy, and 4z is minimized by rotating

the acceleration vector at its maximum rate (Ref. 12). For an aircraft,
this implies a maximum rate turn at constant speed. In addition,

E. because in the ab3ence of vertical acceleration the measurements
and 6 cannot distinguish between constant eccelerometer error and

H platform tilt, the accuracy of the filter in estimating *x and Oy is
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, If all three veloc:ity differences are available as input& to the
: filter, the aircraft cptimum horizorrtal maneuver ins till the tightest

Sturn permissible. In this case, the constraint between tilt angle

v.L

estlymaton accuracy and coeftant accnleromeier errors is remoted

---laaue e te aditional easatent, ORz ,  lso contains indicatioun of
and 0 y which are distinguichable from the constant portions of Vx

&nd Vy Consequently, estimates of the constant errors in the x and y
accelerometers have greater accuracy. Similar improvements result when
cmly horizontal velocities are compared but vertical maneuvers are]I performed. Inspection of the F matrix reveals that vertical maneuvers,

by creating a time-varying az, providu a means of distinguishing between
4level misalignment (time-varying coefficient) and constant accelerometer

errors.

Measurement noise, as mentioned earlier, can be generated by relative
velocities between systems caubed by structural flexure.- In addition,
some quantizaticn and signal tranamissior noise may be significant.
While the noise present in the velocity signals of either inertial
reference system is typically a v.ry small fraction of the true signal,
errors in the velocity difference can have significant relative magnitude.

The use of the continuous version of the Kalman Filter and the size
of the state vector generate a considerable computer load if all calcula-
tions are performed on-line. Precomputed gains, stored as functions of
time and vehicle heading, can reduce this problem considerably. However,
thu veLICle Caidyliu he th tYimt=llUd IUCLLIal -sysLns wuuld have to
perform preplanned maneuvers. This can be a tactical problem, but
typical alignment times are on the order of a minute or less.

The ability of the continuous Kalman Filter to provide quick, accurate
estimates of the misalignment between two gimballed inertial systems is
illistrated by Fig. 40 and 41. They show time histories of the RMS errors
in Kmlan Filter estimates of level and azimuth misalignment when only
horizontal velocities are compared. The errors were found by solving
the error covariance differential equation (Eq. 29) with following
inputs:

Vehicle maneuver ....................... 3-g horizontal turn
Vehicle velocity, ft/sec ............................... 103
Measurement noise .......... 1.5 ftisec RMS from each system;

flat power spectral density to
1,000 cps (see Appendix A)

RMS gyro drift rate, deg/hr ........................... 0.25
RMS constant accelerometer error, g.................... 10- 3
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2 The to figures idicate tLhaL at the end of a 15-second estimation

erio4 tha azint .isaligm-rat ir nnw auch ;%ore accurately than leve
misaligmnt. It can be seen that the estimation errors for the level
angle have rem hed a steady-state value of Vrmilliradians. This cor-

--- respond to the lower limit imposed by the co-nstant nccelerometer errorr, =

The factor of V'results from adding the %e.n square accelerometer
-errrs frm corresponding sensors in- thetwo systems. Of - ourae, corn-
parisan of vertical velocities or performing a ertLical maneuver will
remove this constraint. It can be seen that the Kalman Filter holds
considerable promise as a means of measuring the misalignment between
two gimballed inertial guidance system .

STRAPDUN TO GIMBALLED SYSTEM TRANSFER ALIG14FLENT

Alignment between a stabilized gimballed inertial reference system
and a strapdown inertial system involves accurate deterwnation of the
tr-naformetion matrix relating the two coordinate frames. The initial
coarse alignment is determined by calculating the translormation matrix
from gimbal angles. For reasons similar to those discussed in the pre-
vious section, more accurate determination of the relative orientation
is necessary.

Three variables are needed to describe the relative orientation
betaeen two sets of three orthogonal axes. However, in the atr;pdown
application it is necessary to compute changes in orientation based on
angular rates measured by the system gyros. In this case the differential

... equations for the Euler Angles contain a singularity corresponding to
gimoni luck in a stabilized platrorm. For general angular motion, at
least four parameters (analogous to four gimbals) are needed. It also
is possible to compute all nine elements or direction cosines of the
transformation natrix directly.

Though more variables are involved, the direction cosine calcula-
tions are linear. The differential equations for three- or four-parameter
representations of rotation are highly nonlinear. Reference 32 provides
a core complete discussion of transformation matrices. When the Kalman
Filter is to be used, linearity of the original equations avoids pctential
errors that can result from linearization about a nominal trajectory.
If the linearizaticn is performed perfectly, no one set of parameters
offers an estimation accuracy advantage over the others (Ref. 12).
Hower, only calculation of the nine direction cosines will be con-
sidered below.
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The true direction cosine matrix, C, rel&Len an arcelpratinn vector
measured in platfom cordinates, Aps LL khe same vecLor resolved in
jehicle or sLrapdow-n coordinats, Iv, accorda'i to

°j -- -
The othogonality of the transformation dicates that the inverse of C is
also its transpose, simplifying calculation of the relation C- con-
siderably. The linear diferential equation for C, in terms of the
angulaz rate of the otrdpdown system expressed in vehicle coodinateas,
is given by

a, (136)

where the matrix Q is constructed from the vehicle angular rates (1 36

and w. according., to

0 z _Wy

Q2 JjAw; 0* * (137)

An initial error exists ir knowledge of the C matrix. The watrix~in the compater

cc C + 6C (138)

is the sui of the true matrix and a small difference which obeys a
differential equation analogous to Eq. 136Il

I

S...(3
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The platform accelerometer triau indicates the true acceleration vector

ip plus accelerometer ecrors Vp. The strapdown sensors provide the sum

of CTZp and an error vector Vv" The difference between the strapdown

measurement transformed by Cc and the platform indication is

- (6C) CTap + C~v - Vp (140)

where the term 6C0 v has been considered a higher-order effect and

ignored. Defining a new 3-element vector, d, by

(141)
(to) = 0

an 18-element state vector can be composed from d, Vp, Vv, and the
elements of 6C. This state vector, x, obeys a linear differential
equation

x Fx

where the elements of F are composed from the elements of C, the
accelerations measured by the platform accelerometers and the angular
rates measured by the strapdown system gyros. Many of the elements of
F are zero. The filter input is the vector d, provided by integrating
the acceleration difference E, The elements c d nre velocity differences
in the direction of the platform axes. The 18 state variables indicate
that there are 324 elements in the error covariance matrix. Since
rapid alignment or estimation of 6C is desired using continuous measure-
ments, a precomputed filter gain matrix may be necessary. Because any
prescription of the K matrix equ'ses knowledge of F, preplanned maneuvers
must be executed precisely in order to obtain the accuracies promised by
the error covariance analysis.

If angular maneuvers are restricted during alignment in order to
avoid the singularity in the differential equations, the thr2e Euler
Angles can be estimated using the Extended Ka.man Filter. The size of
the state vector is then reduced to 12 elements. However, the elements
of the F matrix for this case are more difficult to calculate, involving
vines and cosines of time-varying Euler Angles. Again the filter gain
matrix may be too complex for anything but precomputation. It should be
noted that alignment using Euler Angle estimates does not restrict the
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relative oientation of the twco nvaramK after otimation to -mpleted.
The Ruler Angie flatIMAtOS AV@ 12onverted into direction coie Ptth
enid at tlitering fin order to correet the trans fcri~tation matrix.

0 iI" tirt cleart what meaning can he attached to the gum oterrug
vat iances In Lite eatiMaLes of the Euler Angleti or th@ Plomfentra Of k;.
An Indication of filter aecilay with Some physical meaning in trequired,

If .h Iro 6GC~i, raguits from a smil. minalligument, the product- -- ---- _

of tit@ transpne oif Clho Urue transformation matrix and the computed
matrix to a third transformation whirh iuen he approximated by

LC L 1 (142)

1P V
the 014811 angtoo Ox~. *f., aud g are the anguhur orientation errors about
thygo orthirigotul anon (m, y, ani1 r) that tire deancrthed by 6C.

pwmborlrl that

C C + dc

(143)

V U L;Z 7
r

A iq qSe ipna-et-movitI to thts lii Lit the mean square errors tit tho
9*01cmatot. F .f livd +0. In te'-pm of Orrn tot th" Ontiwate of 6C.

Oie F0. lie O-Ptugod an the" meAU4 value of
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Th vector _1and 6Aare the Ith column vectors of the Cand 6C
matrces Th avragng rocss nvovesonly the elemnts of the 6C

6C dreclythefigre-f-mrit an e epresedin ermof the true
direction cnines and elements of the error covariance matrix which lie 4
both 01k an&; off the diagonal. When th itretmtnEuler Angles,
the error covarinuce marrix elements enter the f igure-of--Merit in a more
complax fashion. Of course, this evaluation of filter accuracy to only -

-- -__c~onduaed dur-Ing prl Iiary fe" ofthe Kalman Filter alignment

102



.. .. ..-=- -- _ ,1

NWC IP 4652

Section 9. KALMAN FILTER IMPLEMENTATION CONSIDERATIONS

In this section some of the practical details of implementing the

Kalmau Filter are discussed. The purpose here is to introduce the __

reader ro a few problems and Lo demonstrate common approaches to reducing
them. Of course, practical considerations generate subJeit1'esl .... - -

Consequently, no attempt is made to discuss all of the problems encountered
and the approaches presented are not the only ones possible. -

COMPUTER COMPLEXITY

The compact vector-matrix notation in which the Kalman Filter
equations are written is deceptive. Literally thousands 'f multiplica-
tions can be described by a few strokes of the pen and equations can
easily be written that cannot be solved quickly enough by even the
largest and fastest modern computers. Many reports are available, and
many more will be written, describing in detail, for one system or
another, the memory requirements and number of computer operations needed
to incorporate a single external measurement using the Kalman Filter.
Among these are Ref. 2, describing airborne alignment and cruise error
removal using position fixes and Doppler velocity information, and
Ref. 33 which compares Kalman Filter computer requirements to those for
a growing-memory digital filter.

A few general comments can be made to illustrate how demands on
the computer are related to the formulation used in the Kalman Filter....
Sasicajly, the computer requirements are related to the number of elements

in the state vector and the number and repetition rate of external
measurements. The computer time requirement is directly related to the
frequency at which measurements reach the discrete filter, because the
covariance and estimation difference equations are solved with each new
inpuc. Also, to be useful, the filter equation (Eq. 20) must be solved
in a srall fraction of the time between measurements. The continuous
'ilter requires solution of differential equations and, if a digital
computer is being used, the time step size required determines whether
any computer time is ivailable for other calculations.

The number of d.,ial.computer operations necessary to incorporate
each new measurement (or the number of integrators, multipliers, and I
resolvers in an analog computer implementation of the continuous filter)
is largely determined by the state vector size. One of the basic
diffewences between conventional filters and the Kalman Filter is that
the latter attempts to measure random errors if they are time-correlated.
This feature is also the major cause of large state vectors in the filter
equations. Unfortunately, staLe vector size and computational complexity
are not linearly related. The mazrix difference (or differential)
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equations describing error covariance behavior, Eq. 21, 25, and 29,
• ____ represent n2 scalar equations where n is the number of state variabl,s. j

Furthe rmre. the mlLiplicaLion of two n x n matrices, often required in
the solution of these equations, represents n 3 separate scalar multi-

plicationa that must be carried out by the computer. The seriousness of
.thi-situation in of ten realieved in parriculaT app 14 rtions, through_ ......... : I

- efficient programmin;. This is possible when many of the matriy elemen~s
.... ' are zero,

Computer requirements are reduced if the matrices which appear in

the system and error covariance differential equations are constant.
Analytic solutions exist for the error covariance matrices for the

discrete and continuous filters when F, H, G, Q, and R are constant

(Ref. 7 and 34). Implementation of these solutions is usually less

demanding of computer time if the measurement schedule is periodic and

the interval between measurements is much longer than the time step

required for ac ;urate solution of the differetial equations. I j
A problem scmetires arises when an error covariance matrix is

reduced from an Initially large value to a very small quantity. In this

case, signific/mnt digits are frequently lost and the positive definiteness

of the covarLnce matrix can be destroyed. A square root formulation
of the Kalman Filter has been developed which is helpful in this sitia-
ton (Re. 351. It avoids the necessity of using double precision in

this case or permits the use of shorter word lengths tan might otherwise

be required for problems of this sort. On the other hand, the square

--root formulation requres more calculations than the single precision

conventional formulas. Also, if measurements provide knowledge of some

state variables that is much more accurate than the estimates immediately
prior to observation, Eq. 22 is a more precise equation for updating the
error covariance matrix than Eq. 25 (see Ref. 36).

Frequently, a reduction in computer requirements cn be achieved
by prefilterin, the external measurements. Consider the case where
Doppler velcciry measurements are used to aid an inertial navigation

system (Ref. 2). The velocity indications are available several times
a second tbut velocity errors are es.sentially constunt over a much longer
period. By ave-xaging the differences between Doppler measurements and
idertial system indications over several seconds the correlation between

measurement errors at the input to the KalmAn Filter may be reduced to a

nepg1ibla a ourit. . double reduction of computer vfq.irements can

result; the state vector sizE may be reduced because it is no longer
necessary to consider correlated measurement errors, and the measure-
ments reach the filter less frequently, permittin8 slower calculation

rates. The averaging process causes a significant reduction in the

mean square weasurement noise, providing fewer measurements of higher

quality. Hawever, an additional measurement error does occur because
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during the prefiltering process. In general, this technique is useful

because the Doppler velocity measurements are provided much more fre-
qiueualy tha nlecessary. CTT

'---------------It frequently happens that the systemmpodl. painstaking ly c=-
strutted during the initial analysis to include every possible detail,
is later sharply reduced because of computer limitations. If this
reduction is to be accomplished wichout making the Kalman Filter useless,
a mears for analyzing its effect on accuracy is necessary. Such a
procedure is outlined under "The Effects of Imperfect Models" (p.115).
As ususkl, practical considerations dictate an engineering approach to
implementation of the Kalman Filter. It is necessary to determine
trade-offs between accuracy and computer complexity.; The final choice
is at least partly subjective. Typical state vector size for Kalman
Filter applications to inertial navigation systetas rappes from 6 to 21
elements. Computer memory requirements range from appruximately 1,200
to approximately 4,000 words, reflecting the fact that efficient pro-
gramming can partially relieve the "curse of dimensionality." Unfor-
tunately, the larger state vectors usually appear in aircraft applica-
tions where aeasurements are taken more frequently and computer size is
more critical.

OBSERVABILITY

In any situation where many variables are to be measured ur estimated
by observing a small number of cutput quantities, the question Uf observa-bllity arises. For example, in the state and measurement equations

0 0

Z 0 0 + V (146)

o0
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the variable x3 is not observable. No amount of filtering of the
feasuremento will improve the accuracy in knowledge of x3 . The
lit.arature ccWaino many statements of the strict matnamatical definition
for obsurvability (see Ref. 7 and 8). Move common in the application
of the Kalmn Filter to Inertial navigation syst-s is the observability
problem demustrated by

X 0 0 (147)

znx+v (18)

where the f elements are time-varying but cl and C2 are constant.
Equations 147 and 148 illustrate the case where two variables (x2 and x3)
can be recovered from the measurement only as a linear combination. This
is the aiLus.ion discussed in Section 8 where the velocity difference
between two nearly coincident inertial systems is influenced in the
msme way by platform level misalignment and constant l.evel-accelerometer
errors. The two effects are not senarable. A similar situation arises
in estimating constant east gyro drift rate and azimuth error in a
north-vertical system when only position measureutents are available.
The Kalman Filter corrects the estimates of the two inseparal le variables

...... a-ccordina to the variances of their estimation errors. If one variable
is known much more accurately than the other, almost all of the difference
(z-^I) is used to correct the least precise estimate. For the problem
discussed under "Gimballed Oystem Transfer Alignment" (p. 94), when the
initial uncertainty in gOy is much greater than the standard deviation
of a-axis accelerometer error, the Kalman Filter will attribute the
entire effect to the tilt angle, "y. As a result, che RHS steady-state
eitimation errors in 90y and Vx are identical and essentially cr-tal to
the RHS accelerometer error. There is no accuracy improvement in the
estimate of constant accelerometer error. If the two initial error
variances were approximately equal, both estimates wouldi be improved by
the Kalman F,.1ter. Only when the two errors are made separately
observable by providing an additional measurement or a time-varying
element in the system matrix can both estimates be improved by the filter
regardless of the initial error variances.
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SUBOPTIMAL FILTERS

Several forms of suboptimal filters have already been suggewted.
Generally, a suboptimal filter is a modification or simplification of
the optimal or kalman Filter. In a genaa, ny KAlmn Filter is sub-
optimal becauce all the effects on system state behavior can never be - ___

S... . determined. The imporLant consideration in going from the Kalman Filter
-.-. to a suboptimal f o-mulatieo is an ability to analyze the cffect an

accuracy that is produced by the change. ------ _

Simplified Hodel

In order to reduce computational complexity, certain known dynamics
that exist in the system, its disturbances, or in the measurement errors
are often intentionally ignored. Of course, this neglected behavior is
understood by the designer to have a minor effect on the state variables
of interest. The new, simplified dynamics are described by a state
differential (or difference) equation and a measurement equation similar
in form to those for the original, complete system. The same error
covariance equations can be applied t' the simplified system, though
reduction in state vector size will reduce the computer capability
required for their solution. In a like manner, the same equations are
used to find the Kalman Filter gain matrix. Unfortunately, the error
covariance matrix found using the simplified forms of system, measure-
ment, or random vector covariance matrices does not provide correct
values for the estimation errors in the complete system. It is only
correct when the true system is accurately described by the simplified
aquations. To analyze the effect of using the simplified filter, a
sensitivity analysfi mi t be c nducted. A discussion of . ..it.ity
analyses is provided on p. 114. These computations generate the error
covariance matrix for the complete state vector estimate when the filter

incorporates the simplified gain matrix and the simplified descriptions
of state dynamics and the measurement procesn. The errors described can
be compared to those calculated for the complete Kalman Filter, and

trade-of fs are determined.

As an example of simplifying state dynamics, consider the use of

stellar measurements to correct inertial navigation system errors. Star
sightings usually measure the error angles between computed and Elatform
axes, described by the vector p. The differential equation for Is
given in Appendix C as

ii- xW+c (149)
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if stellar measuruments are taken frequently and SI i therefore kept
small, the predominant effect in the differential equation is the drift
rate vector, Z. Ihe entire system state vec:Lur: differential equation

can then be approximated by the 3-element form

U 4 u (150)

Augmentation is made to account for the correlation properties of the
gyro errors, but the resulting state contains 4 elements less than that
using the system state description provided in Eq. 82. In reducing the
state vector size, it was obeerved that certain elements were being
measured directly, and the usual state vector formulation was changed
(from # to *) to accommodate that fact. In addition, certain terms

x Z) were dropped because they were expected to have little effect
on the state vector differential equation. The consequence of thene
changes is a reduced state vector and simpler state differential
equations, both of which provide smaller computer requirements.
Reference 37 presents results of computer simulations indicating that
the simplified filter gives good accuracy despite these approximations.

As a practical matter it is often wise to increase the magnitude
of the disturbance covariance matrix, Q, when system model simplifications
are made. Frequently, fictitious system disturbances are assumed where
none exist. These adjustments account for the errors in state extrap-
olation caused by approximations in the model. The effect is to make
tht filter gains higher, thereby making the filter more dependent on
measurements and less dependent on inaccurate state vector extrapolation.

Simplifications of the system model, the mepsurement model, or the
error correlation properties can be made in many cases. Based on the
knowledge that certain effects or terms are relatively minor, they are
made with the intent of reducing computer requirements for the filter
or for filter-gain matrix calculations. Eventually, a sensitivity
analysis as outlined in "Effects of Imperfect Models" (p. 115) is neces-
sary to establish the accuracy trade-ofs involhad.

Precomputed Gains

A great deal of the Kalman Filter computer burden can be relieved
if the error covariance equations can be solved beforehand and the filter
gain matrix computed and stored for use during subsequent filter opera-
tion. As mentioned earlier, this ib only pussible when the measureumaL
schedule and system dynamics are known in advance. If no new informa-
tion about system and measurement behavior (including the statistics of
disturbances and measurement errors) arises during filter operation, a
Kalman Filter employing correct precomputed gains remains optimum. When
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_____ _________ ____ ____ I I



-S .

5L

.. . ... . . . - 4

hWC TP 46!2

the Kalman Filter is applied to inertial navigation syrtems, vehicle
course and speed during filtering must be easumed to permit precomputed
gains. If any deviation from this trajectory can occur, a sensitivity V
analysis- will reveal what changes will take place in the estimation.
error statistics.

.. ....... When precomputed filter gains are used, further simplification can ..... - --

-be made by modifying their time behavior. Often, only the steady-state
filter gains (when they exist, see p. 17) are used. This is equivalent
to using the Wiener filter. It permits the storage of a number of con-
stant quantities equal to the product of state vector dimesion with
measurement vector size. Less drastic simplifications of the filter
gain time behavior are often produced by approximating the savior of
gain matrix elements by analytic or discontinuous functions of tim,.
Figure 42 illustrates the use of a declining exponential or a two level
constant to replace a gain element with similar behavior. in both cases
the computer memory requirement is reduced to storing a small number of
constants and the gain element is easily computed when it is required.

if the system behavior is dependent on quantities other than time,
filter gains can be precomputed for a range of these variables and an
interpolation scheme applied after they are determined. In navigation
systems the gain elements may depend on vehicle course and speed More
generally, the gains in the extended Kalman Filter may depend on the
state variables theaselveg. An ii.lustration of this case arises in
using the Kalman Filter to estimate position and velocity of an unknown
b~llistic reentry vehicle. Nonlinear state equations result. Furthermore,
the filter equatione must be solved quickly and precomputed gains are
very desirable. Hcver, certalti gain matri-x elements can be specified
by interpolation on the basis of estimated altitude (Ref. 38). Other
precomputei gain elements were irsensitive to all known 0hysical param-
eters and their time-varying characteristics were approximated. A
sensitivity analysis revealed little de~eriuration in accuracy resulted
from the filter gain approximations. Figure 43 compares results for the
optimum and suboprimum filters. Of course these are single simulation
runs made with identical random disturbances and measurement noise.
Similarity of ensemble error statistics was established by sensitivity
analysis and Monte Carlo techniques.

When approximations to the optimal filter are produced by modifying
the filter-gain matrix behavior only, analysis of the effect on error
covariances is easily performed. For the discrete filter, Eq. 22 can be
used to computc the error covariance matrix with any filter-gain matrix.
A similar expression for the continuous filter is given by

- (F -KH) P + P(F -KH) T + KRKT + GQGT  ,(151)
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substituting the modified gains in one of these equations, filter
accuracies can be obtained for comparison with those resulting when the
optimum filter is used. If the system state dynamics and measurement
process are also changed, a more elaborate scheme is required to determine
the estimation errors. This is outlined in subsequent sections. As
with all other attempts to simplify the filter, modified descriptions of
filter gain are usually based on insight into the problem at hand.

Decoupling Equations

Many classical analyses of inertial navigation systems were simplified
by separating portions of the problem. Small cross-coupling terms in the
differential equations were ignored and one large set of equations was
reduced to two or more smaller sets. A similar approach can be taken
in order to simplify the Kalman Filter equations. Though the decoupling
of system dynamics is usually based on good physical intuition, detailed
mathematical approaches" do exist (see Ref. 39).

Referring to the system described in Section 5, the terms in the
matrix Fx of Eq. 84 involving vehicle accelerations or coordinate frame
angular rates are typically much smaller than the others. They are the
cross-coupling terms relating the two level loops and the azimuth drive
of a north-vertical inertial system. If these quantities are ignored,
Fx becomes

0 0 0000

0 0 0 1 0 0 0

0 0 0 0 0 g 0

F = 0 0 0 0 -g 0 0 (152)x1

C 0 0 0 0 0

0 0 -- 0 0 0 0R

0 0 0 0 0 0 0

IL
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Now, by rearranging rows and columns of Fx (rearranging the order in

which the state variables appear in x),

0 1 0 10 0 01 0

0 0 g 0 0 00

0 -A 0 10 0 0 0

F 0 1 00 (153)

x 0 0 0 0 0 -g 0

! 1 I
0 0 0t0 o 0-----------------.

00 0 010 0 01

for the state vector defined by:

X T =[65%RXpX,6R~ 0'~ (154)

The partitioning lines in the system matrix serve to illustrate the
fact that Fx is zomposed from zeros except for the submatrices along
the diagonal. The state vector-matrix equation can be decomposed into
three independent sets of differential equations. A considerable
reduction in computer time and memory requirements results. The added
consideration of correlated sensor errors does not alter the situation.
When gyro and accelerometer errors are constant, the three state equations
are

0 1 0 0 0 6RX

0 0 g 1 0

y : R 010 1 y (155)vx
-- 4----- y

0 0 0 0 0 Vx

C 0 0 010 0 'E.
y j 0
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6R y 0 1 0 L 6R~

6R y 0 0 -g1 0 6R

0 1 00 1 (156)

o o o I"7-7
y I y

0I,,j 0 010 0 JL1

and

(157)

No measurement equation is available for the state given by Eq. 157.
It is unobservable. The error covariance equation for this state vector
is given by Eq. 14 or 21. A marine inertial navigation system is treated
in Ref. 39. By eliminating cross-coupling terms, the state is reduced
from one vector of 16 elements to four vectors with 4 elements each.
Analysis of the relative accuracy for this scheme compared to the full
Kalman Filter indicates that estimation errors do not increase rignif-
icantly as a result of the approximations involved in decoupling.

SENSITIVITY ANALYSES

The error covariance matrix computed for the Kalman Filter by
Eq. 21 and 25 or Eq. 29 is based on the assumption that the description
of system dynamics and the measurement pzocess is exactly correct. In
addition, thn random distur eTfand measurement errors are assumed to
be correctly described by the covariance matrices provided. Bccause
some uncertainty about the true system behavior or measurements may
exist or because the random vector covariance matrices are usually
calculated from incomplete empirical data, a technique for checking
the effect of incorrect descriptions is desirable. Once established,
the same relations can also be used to investigate the relative accuracy
of subopt4.mal filtering schemes. This section provides a brief discus-
sion of the steps necessary to perform sensitivity analyses and to check
suboptimal filter formulations.
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TeEffects o rn-uaStatistics

Imperfect specification of the statistics for random disturbances
a'd masureent errors to not uncoes. Thooe quantities, as they appear
i the R and Q matrices are usually computed from incomplete data. For
example, gyro drift rate data may be available from tests performed on
a limited number of similar gyros. Also, these taste may have been of
an undesirably short duration and the laboratory environment probably
differs significantly from that of the inertial navigator. Obvicsly,
the statistical behavior of the drift rate for this particular model

gyro is not thoroughly established by these tests. Broad confidence
limits exist for the statistical drift rate descriptions. However, theKalman Filter formulation requires that, for the error covariance analysis _

to be accurate, the exact statistical behavior of random quantities be
described in the R or Q matrices akid in the iaitial error covariance,
.P(to). In order to determine the effect incorrect error statistics will
have on the filter estimation errors, a range of values for these
matrices may be investigated. The sensitivity curve that can result is
illustrated in Fig. 44.

When tn incorrect description of error statistics is used to find
the filter gain matrix, the true error covariance matrix which results
can be determined using Eq. 22 for the discrete filter. The filter gain
matrix is computed in the usual manner, based on the best guess of error
statistics. To check the affect of an incorrect choice, a differett
value of Q, R, or P(to) is substituted in Eq. 21 and 22 with the same

F valcej for K. A new hintory of estimation errors results. Comparison
vivh thz original erroK uuvariances indicatEu the se itivity of the
Kalman Filter to incorrect statistics. A slm:nlar procedure can be

rt d out fur the continuous filter uning Eq. 151. (Seu also Ref. 40.)

The Lffocta of Inuierfiu odals

A more complex analysis in required to determine the sensitivity
of a Kalman filter to changes or errors in the system equations or the
measurement process. Consider the problem of anatving simplifications
In the filter. The designer knows the true state and its behnvior'-thiis
rvpresants his best understanding of the system operation. A good
description of the measuremoeut tI ales available. The true sLate dif-
tfrer, e equation for the disciete formulatLiu is written ......

n -n

i11! •
I i - i i I i i i I V -- I V I ia
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FIG. 44. Sensitivity of RKS Position Error to Error
in Estimated G)ro Drift Rate.

But, for simplicity, the filter operates with a different set of transi-
tioa and measurement matrices described by Ot and HA. The estimate of
the state immediately after each measuremento R obeyL

+ K:An - 0* 2n*(159)

which is similar to Eq. 20. It should be noted tLat frequently, as a
result of simplifytz4 the state vector, w way not contain as many
elemnts as thu true state, x. Consequently, the error of interect
must be exkiressed as

x W R*(160)
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where the matrix W accounts for the difference in state vector dimension
and for any linear tansformtion that may be used in defining the
zifmplified state. As befors, the quantity of interest is the error
covarlance _

SP co (,.

- E 

-, 

T

= coy Q, ) - [coy QA, *)J wT (161)

- W coy ( *, x) + w[cov (*, 2*)] WT

The covariances required to solve for the estimation error covariance
matrix using Eq. 161 can be calculated by defining a new vector, r,

r "(162)

Remembering that

Fn . = n An +  n .- (163)

a difference equation for r is found using Eq. 156 and 159

LI K +L..(164)°2 oI. 1-
In Eq. 164, starred matrices refer to those used in the simplified model
of the Kalman Filter. The new state 'ariable difference equation is in
the form of Eq. 8. Given initial conditions for the covariance of r,

* that matrix can be calculated for all future measuriemenL times usinE
Eq. 12. The cnvariance of r can be expressed by

C OVX.) cov(x, *
cov(r, -I - - I- (165)

ov *, A) cov( X* ) ,117
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The quantities needed to solve Eq. 161 are contained as submatrices ofI
the covariance for the new vector, as shown in Eq. 165. Notice that,
unlearn ths true state and the simplified state have the same dimens~ion,

cov(:x) and cov(x, ')-- .I

are not square. Several computec programs solving matrix difference
equations of the form given by Eq. 12 are lia widespread use.

More efficient calculation of the matrices on the right side of
Eq. 161 result from the observation that

xo~'~ ) -(cov(x, 2I*)]T(16

Defining

P.1 -cov (,x)

P2 (O*C 2*) (167)

P3-Cov(x, )

smaller matrix difference equations con be written for Pl, P2, and'3

P3 5. 1 KH 'In n + QAl fUfl 18

F ~ p HT y TT ,Ps K** n K- 0~*H *

An.n na

Once the error covarjatice has been computed using Eq. 161, it c~a be
*compared to that resulting from the true system an calculated by Eq. 21
and 25. Of cuurse, a similar procedure is available for the continuous
case.
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When the sensitivity of a Kalman Filter design to correct specifi-
cation oZ the true system is to be investigated, the same procedure is
followed. However, the 0* and H* matrices are now those used in
designing the filter and K* is the cesulting filter-gain watriz. The
altered 0 and H matrices are substituted for the unstarred quantities
in the above equations.

All of the calculations in this section are carried cut off-line,
before actual use of the filter. They provide a complete approach for
analyzing the sensitivity of the Kalman Filter to erroneous specification
of system and measurement behavior or to incorrect statistics for randomquantities. : -=

.19
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Appendix A

ij ~cOVARIANCE KATRICES 1
The covariance matrix for two random vector procewses is defined

in term of the ensemble average values of the vectors and the ensemble . -

.avrge value of their outer product. The covariance matrix for a(t) . _'

and b(t) is given by (E denotes ensemble expectation)

ov[a(t), '(t)) E L(t) bT(t)] -E [a(t)] E L.T(t)i (169)

Since only zero mean quantities are dealt with in Kalman Filter work,
the simplification

cov[a(t), b(t)) - E L(t) b7(t)] (170)

can be made. The covariance of the errors in the Kalmaan Filter estimate
of the state x is described by the matrix P

P(t) -coyLY(t), ;Mt] (171)

- -I - Tz covzriar.co ati for syt disturbanc~es is givet by

Qn cOv(-, Y-n)

in the discrete filter, and

Q - co.(., u) (172)

in the continuous filter. For measurement noises, the ovariance is the
same in both cases:

R - cov L, v) (173)

O120
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FE j
The requiremutL that the measurement toise and system disturbances be I
unoLrelated in time gives the restrictions

S- c~rovju(t). a('[)! Q- S(t-T) -l4

CVfXv(t), vX(T)J - R(t) 6(t-.)

in the continuous estimation case. The operatur 6 is the Dire delta
function. When the discrete version of the slmau Filter is used, the
correspondinE requirement is that disturbances and noises must be
essentially uncorrelited over the smallest measurement interval.

co(win, )- 0 for m n

iiQn for m -n
(175)

cov(.,.) 0 for m n

Rn  for m n

Though it seldom arises, the case when measurement noises and system
disturbances are cross-correlated can be treated (Ref. 7).

NOISE AND DISTURBANCE COVARIANCES FOR THE CONTINUOUS FILTER

1In the discrete version, the diagonal elements of Rn snd Qn are

readily identified as the mean square valuec of particular elements
from the random noise and disturbance vectors. Computing the eleme.its

of Q(t) and R(t) macrices used in Eq. 29 for the continuous filter in
tha same manner would be incorrect. Inspection of Eq. 29 reveals that
these covariance matrices have the units of Qn and Rn, respectively,
multiplied by zhe unit of time. The necessity for this can be observed
from Eq. 174 because the Dirac delta function carries with it units of
time. A different explanation follos from the fact that truly uncor-~related signals do aot exist in nature. This presents no problem in

~~the discrete case because disturbances and measurement errors whosa
correlation time is iusignificant compared to the smallest observation -

interval can al.ays be defined. However, when tne interval is caused
to vanish. what are considered as uncorrelated random signals are
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frequently quantities whose autocorrelation periods are much shorter
than the characteristic time- of the system and the measurements.
aloerence 10 shows that, under these circumstances, the derivative of
the error covariance matrix for a continuous process excited by a random
disturbanee depends on the time integral of the correlation

Assuming that u(t) is exponentially correlated with correlation period
1/0, the driving term becomes

Q(t) - E [_(t) u(t)] (176)

If one element of u has a mean squared value of 02 and a flat, one-sided
power spectral density, Suu, out to a bandwidth 8, the power spectral
density is related to 02 and 8 by:

0
2

u (177)

and the corresponding diagonal element of the Q matrix is given by ]
q 2Suu (178)

THE COVARIANCE MATRIX DIFFERENTIAL EQUATION

Given the state vector differential equation,

;(t) - F(t) (t) + G(t) u(t) (179)

Combining Eq. 177 and 178. we get q - 2o'/O. This result diffurs
from that in the footnote on p. 50 because here we desire to approximate

a r.orrelated random variable by an equivalent uncorrelated signal. In
Section 4 we found the etrength of an uncorrelated signal which produces
a certain size uutput when passed through a first-order linear filter.
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we wish to study the dynamics of the error covariance matrix P(t),
defined as

(t) u E I[i(t) RT(t)J (180)

Consider the function P(t, t-E), where E is a small position number.

P6t',t-c) =E IRt Tt- (181)

Differentiation with respect to time yields

P (~t-) :E[ (t) - T (t-()+ -_(t) - T (-)

= F(t)EL\) x (t.) ] + G(t)[u(t) _T(t_)] (182)

+Er(t) X T(t-c)] F T(t-() +EL(t) uT(t-() j GT(t - )

The second term on the right-hand side of Eq. 182 must be zero, as there
can be no correlation between the state of the system at a given time and
a driving noise which exists in the future. To evaluate the last term in
this equation, we use the solution to Eq. 179 given by Eq. 7 when tn is
zero.

t

R(t) = (t,0) 3(0) + f t(t,T)G(r)ux)idr (183)

0

Postmultiplying Eq. 18 h4-m-T(t-c) and taking the ensemble avecage of
both sides results in

E_(t) u T (t - ( )] =O(t,0)ELx(O) T (t-()]

t
0 (t,,r) G (T) E [u ( uT(tf) d r

4?€ (tj,t-) G (t-() Q (t-c)
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The first term goes to zero for reasons. already described, and the
second (integral) term is readily evaluated due to the delta function
in the integrand.

Substitut~ng Eq. 184 into Eq. 182 and using the fact that c(t,t) I,
the limit as c -~ 0 yields

i(t) - F(t) P(t) + P(t) FT(t) + G(t) Q(t) GT(t) (185)
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Appendix 8

A KALMA1 FILTER DERIVATION

It is possible to derive the Kalman Filter by optimizing an assumed
form of linear estimator. Based on the desire to avoid a growing memory
filter, a recursive estimator is sought in the form (see Section 2):

*2 (+) - (-) + Kz H n~~) (186)
-n -n TIIni-n -~

where -) and _(+) are the estimates of statc vector n immediately

before and immediately after the measurement -n, at time tn. That is,
the state estimate is corrected at the time of each measurement accord-
ing to a weighted difference between the actual and anticipated measure-
ment vectors. The optimum weighting matrix Kn is to be specified.

An equation for the estimation error after incorporation of the
nth measurement, denoted :_n(+), can be obtained from Eq. 186 through
substitution of the measurement equation

-Zn Hn Kn + -Vn (187)

and the relations
+i

-E (+ 2n +
(188)

-n(- 2E-n + _n(-H

The result is

x -n(+) (I - Kn HI) 1i () + Kn ]Vn (189)

Using Eq. 1.89, the expression for the change in the error covariance
tiatrix when a measurement is employed (Eq. 22) can be derived. Frim the
def i nI tion

c' ( . [I. ,
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n n n - a n ) D

T 4

and, as a re@Llt of uncorrulated meanurement errors,

i(-)v T H

-n -n -E 3nF)~

T TT1

(1 K Kn R KT (190)

n nl n n n nlfn n

elements (trace) of the error covariance matrix P o((+)i

th ata eiaiefrtetaeo h rdc 'tomtierespect to Knand equate it to z~ero. Use is made of the relation for

° I

eesryttkethe partial derivative for the trace of the+ prdc4 womtices A
andec B oK n qaei ozr.Ue smd f erlto o

I i trace (,B- T ;l 2AB
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If B is symmtric. From Eq. 190, the result to

F-2 1 K, Hr,) ~n)I+ 2y, P" L (192)

- -- olving for-K,,

Kn Pn(-) 1 (193) 

which is the Kalman Filter gain matrix a3 expressed In E-1. 24. Sub-
stitution off Eq. 19i irito Eq. 190 given

Pn ( + ) "Pn (- ) -Pn(-) H I H [a n2 i+R 1 hn Pn) (194)

nI n n Inn-

which in Eq. 25 in the text.

A Simpler Form for Y-n: There is a matr'x Inversion relationship
which staten that, tor P as given in Eq. 194, n1 is expressible aa
(Ref. 10)

-I T -A- 1?) . ()+ H R- (195)n n nl n n

We jee this result to manipulate K1n as foilow.

Kn P(-) T n Pn(-) Hn +

Spn(+)p n (+) pn( ) H HiT -1

n "Pn(-) n) R+

P Pn(+Ph(- + Hn R -1 IIn J(.) H H Pn() H + R
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al n n n A n

S T  +H T  t P - H + R.-' (196)

....---
nn I_ In_ N_ . ... In n.. .n!... . ... . .

t on +) HT R-1
n n

which is the simpler form sought. The equations for the continuousI
Kalman Filter can tIo derived in a similar manner or Wi1l result frow
the above equations by taking the limit an the meaaureet inte-rval
vanishes. Although the derivacion here wae for an assumed recursive,
single-stage filter, the result has been shown to be the solution for a
nuch more generdl problem.
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Appendix C

DERIVATION OF NAVIGATION SYSTEM ERROR DYNAMICS

Three nearly coincident orthogonal coordinate frames must be
defined in order to study the propagation of errors in an inertial
navigation system. The three axis systems are different only to the
extsnt that errors exist in the navigator. The most familiar coordinate
frame considered is the "ideal or true navigation frame." Its definition
follows one of those presented, under Inertial Navigation Systems (p. 34).
The remaining two frames are df:scribed only by thier relative orientation
with respect to the true navigation axes.

The "computer axes" are defined by the orientation the computer
believes the navigation axes have. In the absence of initial condition
errors, the computer for a gimballed north-vertical system will calculate
latitude and longitude changes by twice integrating the properly scaled
outputs of the north and east accelerometers. If the accelerometer out-
puts provide incorrect indications of the true north and east acceler-
ation, the comiputer and true axis ,systems will no Longer coincide. For
imall angle misalignments the relative orientation can be described by
a vector. The vector 60 represents the rotation necessary to bring the
true axes into coincidence with the computer axes.

The third coordinate system of interest will be calle~d the "platform
axes." This description is proper when gimballed inertial systems are
being consi.dered A more general definition--one which includes the
possibility of strapdown systems--is that the platform axes describe the
coordinate frame into which accelerometer outputs have been resolved when
they leave the inertial measurement unit. The platform axes can differ
trom the computer axes because the inertial angular rate demanded of the
platform by the computer is not accurately implemented (gyro drift rates)
and because the commands are given in computer axes but executed in
platform axes. The small angle rotation necessary to bring the computer
axes into coincidence o platform axes is represented by t,_ A
similar angle relating true axes to platform axes is written as 4 and
expressed by

= - + 6@ (197)

Several other important quantities can be defined:

w - Inertial angular rate of true axes

w, = inertial angular rate of computer axes

Wp W Inetial angular rate of platform axes.
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The vectors U, V and e are defined in previous sections of this report.

However, the use of subscripts in this appendix will differ from the
section ov inertial navigation systems. Here the subscripts C and P are

used to indicate relation to the computer axes and platform axes,
respectively, while the absenc;e of subscript indicates relation to the

true axes. The subscript I is again used to designate inertially-fixed
coordinates.

To begin, the expression relating the acceleration of a point
relative to inertial space is written in terms of accelerations and
velocities relative to the computer axes and the inertial angular rate,

dd & R I + 2 d d

+ C X CR) (198)

Equation 198 results from a theorem by Coriolis. It describes the ideal
behavior of the computed value of 9 when a perfect indication of
(d2 T/dt2), is provided. The subscripts C and I indicate the coordinate
frames in which the differentiation takes place or, in the case of the
vector 'C, designate the coordinate frame under consideration. The
vector quantities in Eq. 198 can be resolved into any coordinate frame
desired. The computer, in the absence of information about system
errors, assumes that all three axis systems are parallel. It will solve
the equation in C coordinates and the solution will be in error if
specific force is not properly indicated and resolved. Improper indi-
cation results from accelerometer errors, and improper resolution results
from misalignment between the computer and platform axis systems. The
indicated specific force is related to the actual value in the computer
coordinate frame by

f. -f - x f mV (j99)

In addition. in order to obtain (d27/dt 2)l, the mass attraction acceier-

at:in mast be added to the acceleromei-er outputs acccrding to Eq. 42.

Because the near-earth navigation coordinate systems outlined previously
all indicate local vertical, it will be more convenient to work Jr terms

of th,'. gravity vector, g,

- Q (Q x R) (C200)
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Hiever, for the plirpnio of £tv ntiatifng t1it tfrr er of sMai. arrorc

In the cotiputed valo- of R on the noalriation rror prnpg t.ion, rr-n he

aSimed parallel to k and obeying

A

jhe re

When'iV! 1. the radius of the earth, ws Is the Schuler frequency. Then

6g -W Tj- 2w (OWi) R (203)

and the perturbations Jn the left side of Eq. 198 caused by r ,saligtment
between platform and computer uxes and small errors in the c-mputed

value of R are, to the first order,

-X~ + V+ Q x(Q x SR) 6R-2w O~w)R

sI
Equating these to the firt-order perturbations of the right side of

Eq. 198 ,rovdes an expression for the propagatlol of :aVigULiUn bysteM

errors

I ~c(~r~cx ~(204)

x ( C 6R) _ f (i OR) ,rI
The notation of Eq. 204 can be simplified by nottlia thar the first four
teri& on th2 left can be related through the theorem of Coriolis
(Eq. 198) to similar products and derivatives as viewed from the true
(unsubscripted) axes
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p-arng th!-_ abnolute value notations for t i nd by 1, and g. Lhe
ua-tity 6,. can be further refined by av tiii-Lhnia, frumita drfiniticyn,-

g.a4 . (206)

-Then

S207)

Equation 205 becomes

- - (2081~
, X 6R) (OR JIHI- -

Equation 208 can be ubed Lo dremonstrate the fact that, if the navi-

gation equations are solved along a coordinate axis which is riot orthogonal
to 1, the navigation errox along this axis is described by an unstable
differential equation. Of course, not all navigation system axes can be
orthogonal to l and, in fact, near-earth navigation coordinate systems
usually have orie axis parallel to t he position vector. Many of the terms
in Eq. 208 whi:h are dependetit on Z and Q can be neglected when consider-
ing vezicles traveling near the earth's surface at reasonable speeds.
Rearranging and aimplifying, Eq. 208 i.an be wrILLer

wS R 15 n (209)

13i.
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II
to the axs In that cjfi the term

-
provides no component In the nurth and east direerona. The x and y ,.
eompanento of Eq. 209 are

1
2 (wj 6H w 6RZ)

Y Y
4 a 6R- X " (2 10 )

y (211)

m X z .X y

_ie unforced portions of these equations exhibt a pure oseillatory~characteristic at the Schuler frequency. flowev, r, along the nXis 1'lich isq
i is uVt essentlally orthogonal to ,the quantity -3 A i /R provPd~s a

compon.nt of mangitude Y z
or - 4 ---
Or

I-- 3.x, 6Rz

==..
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(0a
I- A 1he r companevt of Eq. 209 ir

2w (wRR)

R + w' (1- 3X) 6R + j (212)Z 8 z + : 1 f x " 1P f + V z

Ignoring the time-varying nature of 1(6Rx.r + OR$.)21, the unforced
portion of Eq. M12 is unstable; the error in inlicating the z component
of R will grow unbounded. Similar behavior would result for errors in
the x and v directions if they were defir.ed with components parallel to
R. Of course, this behavior does not i-esult from a peculiar character-
s8tic R, bu rather from the n!eed to compensadt~ accelero-eter outputs

for mass attraction forces and the fact that R and gravity are approxi-
mately parallel. Because the mass attraction forces obey an inverse-
Yquare distance law and must be calculated according to the indicaed
distance from the erth's center, the instability results. This can be
seen more simply by ccnsidering a scheme to navigate in thk .ertical
direction only. Figure 45 illust.rates the caiculations necessry. The

... q" -- -, 
U

g R 
2

9comp R2

is added to the acceierometer output to give the upward acceleration with
respect to inertial space. Double integration gives the computed value
of distance to the center of the earth, R. A small error in the indicated
value of R, 6R, causing it co be too large, will reduce the size of gcomp,
m"kLg tlhe indicated value of accelerarion too large. The integrations
cause the indicated value of R to grow even larger, etc. The fact that
the error, 6R, grows unbounded is evident.

The implication of this instability for practical navigation is that,

at least for long periods, inertial navigation along axes not perpendicular

to the mass attraction force is not feasible. Over short periods of time
such as that encountered for a missile launch the error growth may not be

significant. However, cruise navigators usually instrument only horizontal
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oupu R +-6R

Computer

2

co (R.OR)2

FIG. 45. Navigation in the Vertical Direction.
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axes tnd use altimeters or depth ,agen to indicate vertical di.Lacv.
When varLical motion has high-freuency characteristics or must ba
indicated very accurately, a vertical accelaromater may he used, but
m- a attraction forces are computed irom height indications given by
other instruer,Ls.t

VxLurnin# Lu Eq. 210 and 211, for near-earth navigation in north-
vertical or free azimuth coordiPates the x and y components of T"h_ are --
given by

5 - ---'- (213)
x R

SR
d. - - (214) 1

y R

In addition, for the north-vertical syatem

+O =- -Y t an L (215)

bscause the platform axes are rotated about the z axis according to y
velocity. The tangent dane navigation coordinate system does not
exhibit a misalignment 60 based on position errors, because no axis
system rotation results from position changes. The so is true of Se
in the free azimuth system. For the two locally lev~l navigation frames,

Eq. 213 and 214 are useful. Since, from Eq. 197,

i , + 66 (216)

rhen

gU (y -t) (217)
y y

and

:: I ;6Ry g (,p" x (218)
3 )~ X X
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F Wx~hrmc're, for near-earth cruise vehicles

f/m a

J-"- (219

From Eq. 210, 211, 217, 218, and 219, the differential equations for x
and y position errors in near-earth, locally level cruise inertial
navigators can be written

go yl O ay v w I

Y (220)

46 . . ...- ip a + .v . . .R ( 2 21 ) _

To completely describe the error dynamics of inertial navigation
systems the attitude-error behavior must also be spectried analytically.
To beeln. two relbarinn.9 betw~een thn inrilal aagola. rates o'f the plat-
form and cfmputer coordinates and Ware stated

W Pa y  + WeC(222)P C

Cobining Eq. 222 and 223 and dpproximaing he by pl

t.= + x W (224)
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This to the basic equaLAun describing theLerror angle dynamics.IZxprea1oas result fue the rtnmw-.-aente of I

F ,

~"~ *(225)

41Z (I +.. WY4. #

Using the x component of Eq. 197. 213, and 225

% "'Y O z (a" -" (228)

W y

In a like manner,

5R 6R{
x (229)Y -- 'r x zxz 'YO + -R'-

andI

O R w R +

Equations 220, 22!, 228, 229, and 230 are the p:imary error dynamic
eqiuatious for near-earth inertial oystemq of the loca;.ly level type or
for a tangent plane system that is near its initial point. The term

o8 n the right side of Eq. 230 is I
6R 6R

-tan L Yu + w -~-X sec LR y R
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when a uorth-verfical systcm is being cG ideMrd aud La zero for tiag nt
plane and froo azimuth coordinatoz. Usually, term of the nature

H and

are relaLively small and can be dropped. The three near-earth mysteua

described In the section on inertial navigation systema differ only in

the way they provide Z. In terms of latitude, L, and longiLtude, A,
they are I

1. North-Vertical System

' (" + Q) coa L
L*

w Y - (231)
~Y

- 12) sin

2. Free Azimuth System

xj -(X"S2 coo Lcoecg-Lsin~t

W + -( +) cos L sin a -Lcos a (232)
y

t 0 -

3. Tangent Plane System

w - P cos Lx 0
W - 0 (233)y

w - sin L

139
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whnre a in the ancle b~tveen n~orth horizontal and the free aziuLh

r -

The noredao dynaicnitsof agaioe oyscllaerorsovu at thchr
frqep 4mrpriod) The efet fsor 3husca gxhbtdy nnderrorsEq on0 221tor,
22l8,it29 and 23.atti wil berr cafllw fro t they eq ribeseaio--

af1,r-alylawlne.r=-rd &sat. V (ha)aa om.I le0 ~giu
are~~~~~ usdt(rdeatabnkdarmsfrtexadylossoni

0e (234)

V+ 9/R 4y (239)

preovided rowne cionsisrros andame scillativeoci t terr Scoler
gro drift ratemi geeriote. ahe ofctngf attitud error. npsiin

1eoiy4n0titl ~osflo fo h qain
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z ty
R x

WrOII

df

(b) y Loo

FIG. 46. Blcck Diagramn of Short-P~eriod Error Behavior
in Locally Level Systems .
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t7t

LL, G-TEtJ FiROR PROPAGATION

In north-verLical inmrtial navlaat4ri ays-t"aP, error dyni- of n
fre" e cy coneaderably lcwer than those dcacribed above uccur. en-
tioly. Aditiano dywemten reoult from wuncrtainty in the c-
puLer's knot -znge of the ori=tation of t" &Arrh ratatico, vpetpr, .

If it is assuMed thAt ths navigaLor in not moving -'ith respert to-- .- ,- - - - - --.. .. . . . ... . .... . .. .

L (2.0)

6R

R coo L(241)g tcos L

6" - 6A coo L (242)
x

6 -6. (243)
y

68 - -6 sin L (244)

From Eq. 197, 225. 226. 227, and 241 and the above expreHgions, differ-emtil'equationE result for the components of €

R dn -S1 sin L 6L - f2 sin L y (245)

€ - 4- + cos L + 0P isin L (246)

II

R 6k

--tnL- 6L 11 coosL-0 SQco L (247)
- y
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fror. C.iili~raiun Finally, Eq. 220 and 221 provide

F Iy

- . . . .. . . -- --

and

A._. (24,9)
Equations 7h, and 245 through 249 cam be written In terms of Laplace

Tranforms and arranged in the vector-matrix form

r 1 0 0 0 ne J
•0 ..1 s S1 sin L 0 1 sin L Y-

1 0 - in L s -f- cos L O , (2W0)-

0 I

S0 0 - 0 0 0

Ey setting the dtermnant of the coefficient matri. in Eq. 250 to zero,
thc behavior of rhe variabl s can -e seen

1 +  (S2 + S) 0 (251)

616
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| Th1 two Schtaer frquincv charoetei latics resuit from Lhu x and v loop 1
a ehert-nerlod error behavior. The additiona o"cillation 1. a 24-hour

] or lana-pvrLid mode which In pnt Lmortant wihon durarL-a of 2 or 3 hours -[ ! arr cmnsidered, but is significan t In long-term cruise navigators.

-Nav y Q -ouping raarm haus boon -e-red both in tIL b dug ;.ionl-
a f std the o preceding. Thejtr affucb axe uially secondary compared Lo _
these di-playd here. Cum ldtr;aLien gf a vWlte moving over the earth's

_aur ar -uod dhavq-% eA L 2-hor=d, -ut oBat applicationfl
' I the oL f X is mu-la les Lian S. When the acceleration compensation

error term (of the nature 2w 4) are retained in Eq. 220 and 221, the
Cart-t.erm oscillation freqtletcies are modified alightly. A more
detailed analysis 19 pceesnted in Ref. 41. Figure 47 shows the result
of a simulation in which the errors in a stationary north-vertical
system were excltvd by a constant x-axis gyro drift rate. the 84-minute
mode io clearly visible. In addition, the first quarter of a 24-hour
mcde is evident.

The error equations developed in this Appenaix are furtherspecialized to prvvide syrtema behavior matricet, F, for the Geverai
navigation schemes conali-red in Section 5.

i1 I
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5g7iii r o

0 Error Angle

-10 6 120 180 240) 300 360
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FIG- 4.7. Platform Tilt Errors Resulting From, Constant
North Axis Gyro Drift Rate.
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