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SECTION I 

INTRODUCTION 

of nonpa ram et r i^c^adaptive ÍntereSt in the aPPlication 
engineering prnMem5 f-o ^ “í““0" 
pendent noiee. These methods arf^e.ir dl‘1V' “SnU-.nde- 
performance over some broad class f Sned ‘o guarantee certain levels of 

(e.g. for sampled daU th “a.5 of aÍ saZe^ "1“ 
sequences with symmetric densities) ,n”? “amP e md«Pendent noise 
tage of these techniques lies in their r.Ít “t“ *” addit,°“1 »dvan- 
compared with the optimum procedure eve^f 

Hence «rmmrslVtÒ^were^mldT^th1' ‘“'a ‘U“,“C>1 ‘“«ature. 
ways valid or desiraWe in eneineTri m ^ derivation which »re not al- 

of tlicse is the assumption of independ^sampW8' /116 m08t 
uation one would like to decide on the presence ^ e^glneerin8 8it- 
decide between several signals on the basi! nfV absence of a «ignal or to 
which are generally not incrementalW ^ time-continuous observations 
time increments. Although one can ^ 8ufficiently *maU 
at such a slow rate that the sample Values a/e ^tat^ ob8ervations 
such slow sampling is not «neridlv de« ,- ki tlCally dependent, 
sizeable portion of the available date Th' * lt involves ignoring a 
dependent observations on a number V rep0rt considers the effect of 
pled and continuous time versions. ° n°nparametriC tests for both sam- 

The us nal measure nf . 
asymptotic relative efficiency (A R fl*81 effectivene88 has been the 
fined as the relative amo^t of iateThe A‘R- E- is de- 
servation time) required for a given JLr^! °f numher °f samples or ob- 
formance compared with the amount required “°nparametric) detector per- 
optimum) test in the limit as the simal am oh t 7 a 8eC°nd (u8uaUy the 
amount of date becomes infinite Thi* mplltude 8°68 to zero and the 

the study presented herein where attent”1*88111^ ^8 limited U8efulness in 

i-rge signal results altho'ghtn «ome ^a^ît^r1^611 ^ 8maU sarnpie» 
small sample conclusions are consistent H ^ ^ A-R*E- and 
defined as the relative signal amiúde Vequ^f efficie-y. 
probability of error with a tixeïünlf. f°r “ *ive" « > given 
prohabilifes of eccoc are ff^ 

rank Õne^cÜ.lTf h° -inciden« and 

O^T) ia the observed ^ïï an?.tTVi,i0;UaViilibl' W«»; 
v(Nit = T) are takf>n a • j be N sampled values v(¿t) víZaíI 

T, are taken. A coincidence^est_ depends only on th^^si^s^of * * * * 
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these observations and not their magnitudes. The rank, r(v(kAt))of 
v(kAt) is defined as the number of sample values which are smaller than 
or equal to v(kôt) in magnitude (disregarding the sign of the values in the 
ranking procedure). Let z^,..., be the set of signs of the ranked 

data where !+l if the samllest magnitude sample if positive 

-1 if it is negative 

z 
Z 

+1 if the second smallest magnitude sample is 
positive 

>1 if it is negative 

and so on. Rank tests are those which base signal decisions on the N 
values (s^) only. In Section II the optimum coincidence detector is con¬ 
sidered. In Section III the optimum rank test is found for independent 
Guassian-distributed sample values. This is of theoretical interest pri¬ 
marily due to the implementational complexity involved. In Section IV a 
well known rank test, the Wilcoxon signed rank test, is investigated. This 
test is based on the sum of the ranks of the observations multiplied by 
their sighs: 

N 
s = £ z. i. 

w it! 1 

Thus ranks count in direct proportion to their magnitude, the smaller 
ranked observations having a smaller effect than the larger ones on the 
test statistic. The Wilcoxon statistic is implementa ble with relative ease 
when it is expressed in the equivalent form: 

N i 

sw “ £ T. sgrfv(iAt) + v(jAt)) 
i«l j»l 

where "sgn" is the sign function 

sgn(x) 
1 X > 0 

-1 X < 0 . 
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This can be formed easily for small sample sizes with simple logic cir¬ 
cuits. In Section IV it is found that the test performs nearly as well as the 
optimum rank test and compares favorably with the Gaussian parametric 
test for a range of dependence and nonnormality conditions. It is likely 
that tests of this form can be used in practice. 

In Section V asymptotic properties of several rank tests for one and 
two channels of observation are investigated for large sample sizes with 
dependence as a guide to possible behav >r under small sample conditions. 
Large sample sizes are used due to the relative ease of obtaining analyti¬ 
cal results. It is found that the nonparametric tests investigated perform 
surprisingly well compared with the optimum parametric test. As this 
result holds for both large and small sample sizes for the Wilcoxon test, 
it seems likely that this will also be true for the other tests investigated in 
Section V primarily on large sample sizes. 

An additional result of Section V is the asymptotic nomality of many 
rank type tests under dependence. This is primarily of theoretical interest, 
although it does simplify setting the test decision threshold for large sam¬ 
ple sizes. 

If the noise distributions were completely known, the optimum para¬ 
metric test would be used. When very little is known of the noise distri¬ 
bution nonparametric tests can be used. In the intermediate case when 
some imprecise knowledge of the noise distribution is known, robust tests 
can be used. In Section VI the development of the optimum robust test is 
presented when the noise is "nearly" Gaussian and evaluated compared 
with the optimum parametric test. It is found that this robust test is 
superiorato the optimum parametric test for Gaussian noise when the 
noise is not Gaussian but only "nearly" so. 

In many communications applications simple schemes can be devel¬ 
oped for adaptively improving detector performance if it is possible to 
distinguish that part of the observed data which is due to noise from that 
due to the signal. One way to do this is to start with an initial detector 
based on some initial guess, and then to modify it after each signal deci¬ 
sion based upon the assumption that the correct decision Wc . made re¬ 
garding which of M signals was sent in the most recent time interval. 
Such devices are called decision directed receivers. Although simple to 
implement, decision directed receivers are difficult to analyze because 
some of the decisions that are assumed to be correct are actually wrong, 
causing detector degradation instead of improvement. Under some cir¬ 
cumstances performance can degenerate completely. In Section VII of 
this report one such scheme is analyzed. It is expected that techniques 
coming from these results will be of significant practical use. 

3 



Section VIII summarizes the important results with recommendations 
for future work. Section IX presents conclusions. 

Many of the detailed computations are relegated to the appendices for 
the sake of clarity of the main presentation. Particular attention is direct¬ 
ed to Appendix I which presents a review of pertinent statistical terminol¬ 
ogy and results. 

A 



SECTION II 

LINEAR COINCIDENCE PROCEDURES FOR THE 
DETECTION OF KNOWN SIGNALS IN ILL-DEFINED 

BACKGROUND NOISE 

The concept of a linear coincidence detector is an outgrowth of con¬ 
ventional optimum linear filtering theory suggested by the distribution-free 
performance of coincidence procedures in general. Coincidence proce¬ 
dures have previously been considered fl ] for the detection of weak signals 
in noise of uncertain origin when the noise samples are assumed independ¬ 
ent and identically distributed (i.i.d.) and the sample size or observation 
interval is large. The basis for comparison has been the asymptotic rela¬ 
tive efficiency (A. R. E. ) which is an asymptotic comparison of the relative 
sample sizes required by two detectors to achieve identical false alarm 
probability a and detection probability ß in the limit of large sample sizes 
and vanishingly small input signals. Such comparisons are particularly 
appropriate to passive search and/or surveilance systems operating at 
threshold input signal levels where generally .he assumption of large sam¬ 
ple sizes or observation intervals is valid. The problem to be considered 
here, however, is the detection of known signals of arbitrary amplitude in 
ill-defined background noise, a situation more akin to active systems and/ 
or the data communications problem. A performance criteria in terms of 
A.R.E. bears little relevance to this problem and consideration must be 
given to the small-sample, large-signal performance. 

Some background, including a precise statement of the problem »ander 
consideration, is given together with a formulation of the locally optimum 
linear coincidence detector in the following material. It is found, as with 
most optimum nonparametric procedures on dependent data, that the im¬ 
plementation of the locally optimum linear coincidence detector requires 
parametric knowledge of the underlying distributions. To avoid this re¬ 
quirement for parametric knowledge, a particular suboptimum linear co¬ 
incidence procedure is proposed and investigated in detail. A critique of 
the A.R.E. as a performance criteria for small sample conditions is given 
and some experimental results obtained by computer simulation are in¬ 
cluded. 

A single channel detection situation is considered where the obser- 
vable ^ = (V1# V¿, ..., VN) represents an N-vector of observations ob¬ 

tained by discrete homogeneous sampling of a stationary continuous param¬ 
eter process such that V. = v(iAt) as described in the Introduction and 

VP = + YLr -N —N —N 

5 



where the N-vector represents a known signal or regression sequence, 

W-. is an N-vector of additive signal independent noise with components of —« 2 
variance o and normalized covariance martrix (when it exists) and 
where X is a scalar signal amplitude. On the basis of the observable 
we desire to decide between the two hypotheses 

vs. : X = +X1 

for some Xj> 0. If the detection problem is approached from the decision 
theoretic viewpoint, the optimum (in the sense of Bayes, N eyman-Pear son, 
etc. ) detector is based upon athreshdd test of the likelihood ratio. If the 
additive noise W is zero-mean Gaussian with normalized covariance ma- 

trix we obtain the well-known result 

< V Sn V 

where /L is a suitably chosen decision threshold and (*, • ) denotes inner 
U -1 

product. Letting a^ = — n *e8t becomes 

a.V. 
i i 

which is merely a linear filtering operation on the observed data. If the 
problem were approached from the point of view of optimum linear filter¬ 
ing theory, the object would be to apply a linear weighting to the received 
data in an effort to maximize the SNR at the termination of the observation 
interval. The quantity so obtained is then compared to a decision thres¬ 
hold resulting in a decision in favor of or H^. Again the filtering or 

smoothing sequence can be represented by the vector a^ with the SNR at 
“"“N 

the termination of the observation interval given by 

SNR 
=N%!^ 

6 



This quantity is easily shown to be maximized by choosing 

* û -1 
= aM = K K KT -N » N -N 

where p- is an arbitrary positive scale factor. This is the matched filter 
which is identical to the decision theoretic results for Gaussian data. In the 
early engineering literature (cf. [2]) maximization of SNR appeared a rea¬ 
sonable i u’e-of-thumb in any detection situation. Fortunately this ad hoc 
procedure coincided with the more rigorous decision theoretic results for 
Gaussian data. More recent results [3,4]have reUted this procedure to 
some asymptotic results as both N - ® and \ Unfortunately linear 
filtering is ineffective against noise processes possessing broad-tailed 
univariate probability densities typical of say, impulse noise or jamming 
environments. In fact, due to the often paralyzing effect of large noise 
peaks on typical receiver circuitry, linear filtering is often susceptible to 
catastrophic degradations as the result of such peaks which may occur still 
on y a fraction of the time. When the additive noise WN is independent and 

-jjN " -N' auRlt vector of ones (i.e., the d.c, signaling problem) coinci¬ 
dence procedures such as the sign detector have been advocated [i ] as a 

T»!th^d OÍporting the sensitivity of linear filtering to underlying statistics. 
The threshold test based upon the sign detector is given by 

Tn(Vn) = E S*n V. ? A0 

or in terms of vector-matrix notation 

W = «N- SGN V < % 

where 

SGN Yn = (SgnVj, SgnV2, ..., Sgn VN) 

These detectorscanbe implemented using binary devices and provide 
a fair degree of protection against abnormal behavior while providing reason 
able (at least asymptotically) efficiency under normal conditions. Unfor¬ 
tunately little consideration lias been given to their performance in corre¬ 
lated noise situations and in fact no analysis has been presented when some¬ 
thing is known of signal structure. In such situations it would appear that 

7 



a linear theory could be developed to advantage for coincidence procedures 
at the form 

N 
T-, = a. Sgn V. 

N 4( 1 . 

= < »N. SCN Ï-N> 

We shall call detectors employing statistics of this form linear 
coincidence detectors. An optimum coincidence detector will be one that 
minimises the sample size N required to achieve a fixed false alarm prob¬ 
ability a and detection probability ß for a given input SNR. It is overly 
ambitious to expect that such a detector exists which minimizes the sample 
sise uniformly in or, ß and SNR. Practical considerations then dictate 
passing to the asymptotic case as both N -» • and SNR -» 0. The result is, 
of course, the A.R.E. By maximizing the A.R.E. within the class of 
linear coincidence detectors we obtain a structure which is locally optimum. 
Prescription is then given to the theory that by optimizing performance for 
weak input signals the performance in the less critical strong signal regime 
will be adequate. 

Under appropriate regularity conditions (cf. [^]). which are assumed 
to be satisfied, the A.F.. E. of a detector T based upon the sequence of test 
statistics with respect to another detector T' employing the sequence 

of test statistics 
i • e •, 

{TJ^n ^en be expressed as the ratio of their efficacies; 

A.R.E. T,t' 

I 

where 

t 
T 

£ lim 
N -• ® 

N 

and similarly forCIf T is a linear coincidence detector with test statis 

tic defined for each N as above, then 

8 



e T = lim 
N -=> 

, Ex¡sONy 

-N' —N’ ^ 

where ßN 
element 

is the NxN covariance matrix of the vector SGN V 
—N 

with (i, j) 

rii = v » Sgn V.) 
J i j 

and {SGN V^} is the N-vector with i'th component E ÇSgn V.}, i = 1# 2, 

..., N. It is assumed that the additive noise vector W_ ha j univariate 
c.d.f. F(- ) possessing density f(- ) symmetrical about^the origin. Vhen 

ExiSgnVi) = 1 - 2F(-XS.) 

Now for XS. in some interval [-h.h] about the origin, we can expand 

F(-XS.) in a Taylor series in powers of XS. with the result 

Ff-tf.) = F(0) - XS.f(O) + 0(X2) 

and by the symmetry assumption on F we have F(0) = 1/2 so that 

ExfSgnVi} = + °(*2) 

and hence 

^ <aN, E^SGN^J x=o = ««»<aN.V 

The expression for efficacy given above then becomes 

9 



<^N' V T = lim 4f (0) - , 
T N-® Ñ<aN, 

For a fixed noise distribution, the quantity 

.2 

N 
^N* — 

— N— 

serves as a local measure of SNR which if maximized for each N results 
in a detector structure which optimizes the A.R.E. within the class of 

r^de' COÍnCÍdenCe detect°”- Then the following reasonable definition i 18 

ïhe linear-coincidence detector based upon the sequence of 
statistics {Tn}n with 

•W = <* N' SGN 

is called a locally optimum linear coincidence detector if for each N 

J-N* ^i> <Ln.Sn>2 

N* —N— 

max „ 

where the maximum is taken with respect to all a^ suchthat | |aN||2 

Now assuming that the covariance matrix ßN is nonsingular for 

each N one obtains for the maximizing a 
N 

—n 1 11 In ®n 

10 



i ! 

2n 

« the noise is independent §N = the identity matrix, and if 

—TN the optimum coincidence procedure reduces to 

tn(V = ^ sgnYn> 

N 

= K Sgn V. 

which is up to an arbitrary multiplicative factor equal to the ordinary sign 
test. The above result is completely analogous to the result 

* -1 
aN = H K .y S, 

= N -N 

obtained for the optimum linear filter. If the output of the linear filter can 
be shown to satisfy the appropriate regularity conditions (in particular to 
be asymptotically normal), the A.R.E. of the locally optimum coincidence 
detector with respect to the optimum linear detector is easily shown to be 
given by 

A. R. E. # * 
C* # Xj 

2 2 
lim 4f (0)a -N~N 

N~ <§n-SnV 

As an example, if the additive noise is white Gaussian with univari¬ 
ate density 

fM = ,-1/2 (J/o2) 

one obtains 

K"n = iN = S N 

so that 

11 
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A.R.E. * * = 2/ir 
C 91-j 

a known result for the sign test compared to the sample mean. 

Evaluation of A.R. E. * * for some additional data models as well as 
O $ la 

some experimental results follow. 

In the expression for A.R.E. _# . * given above, the ratio of quad- 

ratic forms can be bounded above and below in terms of the eigenvalues of 
and Passing to the limit on N it is possible to bound the A. R. E. 

This procedure requires direct evaluation of the eigenvalues, however, and 
does not appear fruitful. An alternate approach is to employ some asymp¬ 
totic results from linear estimation theory. In particular, let 

be a discrete zero-mean noise process possessing spectral density p(\) 
\«[-iT,ir] and normalized covariance function 

r(k) = e"lkXp(\)d\ 
-IT 

and corresponding covariance matrix R . 
N 

Now let = be a discrete stationary deterministic 

sigfi&l sequence, with spectral distribution function P (X) Xe[-ir, v] 
normalized so that 

¿ / dP.w = 1 
-IT 

It can be shown [6, 7] that if p(X) does not vanish on [-ir, ir] and 
coincides a. e. with an analytic function, then 

lim 
N -*® 

— N -N^ dPs^ 

P(X) 

12 



where is the NX N covariance matrix with (i, j) element r(i-j). Like¬ 

wise 

=N^i> 

N 
2tt J 27 I MW M 

In particular, if ^ = a unit vector, then dP (\) = 2ir 6(X)dX 

so that 

^-BnV lim —11,1111 !v  
N-oo p(0) 

Applying this result to the expression for A.R.E. * * one obtains 
C , L 

A. R. E. _* * = 4fZ(0)a2 

C 'L P(0) 

where p{\) is the spectral density of the raw data and p(X) is that of the 
infinitely-clipped data. Since by definition 

P(X) = £ p(k)e_ikX 
k= -® 

it follows that 

and similarly 

i3 



o» 

V" 

p(0> = él. ?(k> 

with ^(k) the covmriance function of the infinitely-clipped data samples. 
Thus 

00 
P(k) 

2 2 ks —oo 
A.R.E. * , * = 4f (0)CT —- 

C , L _ao 

Ü POO 
k=-oo 

-IT k| ¡y 
For instance, for Gauss-Markov data one has p(k) = e 
with y « fs/b the relative sampling rate normalized to the double-sided 
noise bandwidth b cps. Likewise 

P(k) Sin p(k) 

so that 

a.r.e.c*l* 
2 
v 

+ e-Wy 

1 - e 
-ir/y 

ft 
k*-oo 

1__ 

. -W7V 
Sin {e } 

A plot of the A.R.E. as a function of relative sampling rate y is 
illustrated in Figure 1. Note that the A. R.E. rises monotonically from a 
value 2/ir for y < 1 to its limiting value 

lim A.R.E, * * « 
L , L 

Thus for increasing relative sampling rates, the locally optimum 
linear coincidence detector operating on Gauss-Markov data appears an 
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even more attractive alternative to the optimum linear detector. Another 
process of interest is the first-order Laplace autoregressive process de¬ 
scribed by the autoregression 

n 
pw + TJ 
r n-1 'n 

A -it /y 
where p = e ' and {t?n)n an independent identically distributed 

sequence with common univariate distribution H described by the mixture 

dH(tj) = p26(n)dTT+(l-p2) 

where 0(* ) is the Dirac Delta and is used to denote a distribution degenerate 
at the origin. L can be shown [8] that for this process p(k) = p(k) so 
that now 

A.R.E. _* . * = 2 

independent of sampling rate. This compares with the well-known result 
A.R.E. » 2.0 for the sign detector with respect to the sample mean operat¬ 
ing on independent Laplace data. In fact, in this case it can easily be shown 
that the sign detector is locally most powerful. 

For more broad-tailed noise distributions it is anticipated that the 
improvement in A.R.E. would be even more pronounced. It is important 
to note that these conclusions are based upon asymptotic comparisons as 
N -• » and SNR -• 0. Little, if anything, is known of the small-sample, 
large-signal behavior of coincidence detectors and since it is this regime in 
which interest is concentrated, the utility of asymptotic comparisons is of 
dubious value as a performance indicator. Nevertheless, Carlyle [9 ] 
states .. .numerical studies have frequently shown that for small N there 
is no gross violation of the conclusions reached on an A.R.E. basis and of¬ 
ten the latter are often reinforc'd for finite N. " Unfortunately no published 
evidence is given in support of this statement and, in fact, some results ob¬ 
tained in the following material cast some suspicion on its validity. 

* 
The locally optimum smoothing sequence a ^ for linear coincidence 

procedures of the form T^ = SGN V^) has been shown to be given 

16 



bY = ^ E N where \i is an arbitrary scalar and is the covar¬ 

iance matrix of the infinitely clipped data. Unfortunately, even if the norm¬ 
alized covariance matrix of the raw data is known, evaluation of 

requires parametric knowledge of the underlying noise distribution. In 
situations where is known a priori, a reasonable suboptimum procedure 

might be to employ the suboptimum smoothing sequence a = uK_* S 
-N = N -N* 

Actually for the Laplace autoregressive process, this coincides with the 
locally optimum sequence as noted previously. The resulting expression 
for the efficacy of the suboptimum linear coincidence detector is given by 

= lim 
N —K 

N 
= N 

and the A.R.E. with respect to the optimum linear detector is given by 

A. R. E. ’t* 
L, L = lim 4f^(0)o^ 

N -ao 

(gN- 5 N V 

Again it is possible to evaluate this asymptotic expression in terms 
of spectral properties as in the preceding section. In particular, let 

k"1 = Q' Q 
= N —N =N 

for some nonsingular matrix CL, 

Then the ratio of quadratic formi 

which can always 

above becomes 

be taken to be triangular. 

(S , k"1 s > 
N -N 

=N —N— N ^ ^ QNI-N9N^sî > 

where 

17 



The vector is thus obtained by passing the signal vector S 
. 

through a prewhitening filter represented by the matrix Q . If S = 
—N —N 

as in the preceding section, one has for the spectral distribution 

P^X) of the "prewhitened" component 

dp«<« = K ^ 

where p(X) is the spectral density of the raw data and K is a constant chosen 
to satisfy the normalisation constraint 

¿ / dFy*> = * 
J —TT 

Obviously we must have K = ZirpfO). Also observe that if 5 = 
Qn SON then 

Cov(lN.V = iN Cov<SGN Yn* sgn yN) Qn 

—N =N 

The vector can be considered an additive noise sequence obtain¬ 

ed by passing the infinitely-clipped data vector SGN VN through the pre¬ 

whitening filter represented by Thus the spectral density of the § 

process is given by 

Pç(X) 
P(X) 
P(X) 

and from previous comments 



lim 
N-*oo 

^n^nÍn^nV 1 
^N'^N> = 2* J_„PS{X)dP*{X) 

ir 

/.. 
_ ?(Q) 

P(0) 

Using this result the following A.R.E. is found: 

A. R. E. * = 4f2(0) a2 
J-Í «V 

p(o) 

oo 

E p(M 
= 4f2(0)CT2 - 

Ê PW 
k=-oo 

This is precisely the result obtained for the locally optimum linear 
coincidence detector. In fact, it can easily be shown that the same result 
would have been obtained had we chosen 

with ^ the N X N identity matrix. A similar situation in linear estima¬ 

tion theory was first considered by Grenander [10 ] and applied to a para¬ 
metric detection problem by Davisson [U ]. In particular, Grenander 
shows that in the linear estimation problem, if the spectrum of the regres¬ 
sion sequence ^ consists of a single point, then knowledge of the tru' co- 

variance matrix of tne additive noise sequence provides no information with 
respect to the inference problem on ^ when performance is measured in 

terms of asymptotic efficiency. With respect to the present problem, we 
find that if ^ = , the A.R.E. of an arbitrary linear coincidence de¬ 

tector with respect to an arbitrary linear detector is given by the right- 
hand side above. This result casts considerable doubt on the utility of 
A.R.E. as a valid performance criteria in the present situation. As 
pointed out by Davisson [U ], the small sample behavior is the more 
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appropriate performance measure. An extensive series of digital computer 
simulations have been initiated to enable some inferences to be drawn con¬ 
cerning the small-sample, large-signal behavior of linear coincidence de¬ 
tectors vis-a-vis linear detector structures. The results of these simula¬ 
tions for equiprobably and dipodal signalling are described next. 

The additive noise sequence is now assumed to satisfy the 

first-order autoregression 

Pw n-1 n 

with thv residual sequence {t?n}n assumed to be independent andp = e 

with y * fs/b the relative sampling rate described previously. In particu¬ 
lar, we consider three such processes with corresponding univariate den¬ 
sities f(u) given by 

1. Gauss-Markov 

f(u, . —i- ,-1/2(-V) 

2itf:2 

2. Laplace 

f(-) = -1— l“/ei 
ymmam* 

JTp 

3. Cauchy 

f(u,) = 
1 

1 + (u/p)2 

The signal or regression sequence is given by = U so that 
—N —N 

the univariate distribution of the observable V, = \ S. + W is com - 
—N —N —N 

pletely describable in terms of a location parameter \ and scale parameter 
P identical to that of the additive noise sequence For the Gauss- 
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Markov and Laplace processes ß2 = G the variance of the additive noise 
component while no such interpretation is available, of course, for the 
Cauchy process where the variance is infinite. Attention is directed to the 
bit error probability performance of linear coincidence detectors vis-a- 
vis linear analog detectors as a function of the ratio | X ¡ /ß for various 
sample sizes N and relative sampling rates y. In particular the subopti¬ 
mum linear coincidence detectors are considered with smoothing sequence 

and the resulting bit error probability performance is compared with that 
of the optimum linear detector employing identical smoothing sequence. 
The normalized covariance matrix does not exist, of course, for 

the Cauchy process. Nevertheless, by analogy with the Gauss-Markov and 
Laplace process it will be convenient in this case also to take 

i=N exponential possessing (i,j) element ^ 

For either the coincidence detector or the analog detector the 
appropriate statistic T^(V^) is formed and the threshold test T (V ) < 

0 is performed with the result 

i) Decide H. if T(V\ > 0 
1 N —N' 

ii) Decide H if T(V\ < 0 
U N —N 

iii) Decide with probability 1/2 if T^V^) = 0 

For the Gauss-Markov process it can easily be shown that the bit 
error probability Pe of the optimum linear detector is given by 

Pe = ‘ VriVÍ 
where ¢(-) is the unit Gaussian c.d.f. Since ^ = ^ and, of course, 

for this case ß = a: 
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N 

P 
e 

|-LlL 

where k., 
ij 

is the (i, j) element of In fact, it can be shown that 

N 

2 kïj = j^T [2 + (N-2)(1+P2) - 2(N - l)pl 

i.j=l 

so that Pe can easily be evaluated as a function of | X| /o, N and y for the 

optimum linear detector operating on Gauss-Markov data. In the other 
case computational difficulties dictate resort to Monte-Carlo simulation. 
In particular, the sample sizes N = 2, 4, 6, 10 are considered and relative 
sampling rates y s 1. 0 and 10. 0 are used. The results are illustrated in 
Figures 2-9. Although limited, these results are useful in determining to 
what extent, if at all, asymptotic comparisons are useful in predicting 
small-sample behavior and enable some inferences to be drawn on small- 
sample, large-signal behavior in general. Several aspects of these re¬ 
sults deserve comment at this time. 

A notable feature concerns the relative performance with increasing 
relative sampling rates. F or each of the cases considered, the differences 
in performance of the linear and suboptimum coincidence detectors tends to 
diminish with increasing relative sampling rate. It is anticipated that the 
performance difference between the optimum linear and coincidence detec¬ 
tors would be even less. This behavior is consistent with asymptotic re¬ 
sults obUined previously for the Gauss-Markov process (cf. Fig. 1 ). A 
more interesting behavior is exhibited by the relative performance of the 
linear coincidence detector (which is now locally optimum) vis-a-vis the 
optimum linear detector operating on Laplace autoregressive data. The 
linear coincidence detector was shown to have A.R.E. = 2j0 compared to 
the optimum linear detector and, in fact, to be locally most powerful for 
independent data. It is expected then that superior bit error probability 
performance would be obtained by employing the coincidence detector, at 
least for small SNR and relative sampling rate y. The results obtained 
support this conclusion where it seems to be apparently true uniformly in 
y while it definitely does net held uniformly in SNR. In fact, one observes 
in each case a cross-over point where for SNR below this point the linear 
coincidence detector exhibits superior performance and decidely inferior 
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Figure 2 

Error Probability vs. | X/ß| for 

N=2 , Y=1.0 
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Figure 3 

Error Probability vs. |X/ß| for 

N«2 , Y=10.0 
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Error Probability vs. |X/ß| for 

N=4 , y=l.0 
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Figure 5 

Error Probability va. jX/0| for 

K-4 , Y-10.0 
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Error Probability vs. |X/0| for 
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Error Probability vs. |\/P| for 

N-6 , y*10.0 
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Error Probability va. |X./ß|for 

N-10 , Y-10.0 
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performance at SNR above this point. The cross-over point is clearly in 
evidence for N = 6, 10 while for smaller sample sizes it occurs at much 
lower SNR outside the range for which the curves have been plotted. This 
is certainly the type of behavior which could not be predicted on the basis 
of A.R.E. It appears, however, that the SNR at which this cross-over 
point occurs increases monotonically in sample size so that for N in ex¬ 
cess of 10 say, the linear coincidence detector provides decidely superior 
performance at SNR levels producing bit error probabilities useful for 
data communication purposes (i. e., P less than 10“^). 

Also to be observed is the increasingly superior performance of the 
coincidence detector compared to the linear detector operating upon the 
broad-tailed Cauchy process as the sample size N increases. This is* 
more pronounced for small relative sampling rates. Thus one can observe' 
(cf. Fig. 8) the reasonable performance afforded by the coincidence detec¬ 
tor operating on Cauchy data for N larger than 10 say, while the linear de¬ 
tector remains completely paralyzed. For N«2 there is no noticeable differ- 
erence in performance of the two detectors. It appears then that for 
sample sizes (N > 10 say) the linear coincidence detector offers consider¬ 
able advantages over the linear detector in broad-tailed noise environments 
typical of impulse or jamming noise. 

The concept of a locally optimum coincidence detector has been 
introduced and consideration given to its asymptotic performance. The 
locally optimum coincidence detector was shown to require parametric 
knowledge for its implementation. As a result a particular suboptimum 
coincidence was proposed for the detection of known signals in ill-defined 
noise backgrounds which does not require parametric knowledge for its 
implementation. Asymptotic comparisons vis A-vis the optimum linear 
detector have been shown to give identical results as the locally optimum 
coincidence detector. This analogy suggests, among other things, that 
small-sample, large-signal criteria are the more appropriate performance 
indicators for the detection situation under consideration. Extensive com¬ 
puter simulation results are given indicating the performance of coinci¬ 
dence detectors in small-sample, moderate-to-large SNR environments. 
These results suggest the appropriateness of the suboptimum linear co¬ 
incidence detector in the regime of moderate sample sizes and SNR's 
suitable for reliable data communication purposes. Considerable protec¬ 
tion is afforded against deviations from the almost universal assumption 
of Gaussian noise distributions. In fact, as we note for the case of La¬ 
place noise, improvements vis-vis the optimum linear detector operat¬ 
ing on Guassian noise are possible. Nevertheless, one must be willing 
to trade this feature for the accompanying degradation in bit error prob¬ 
ability if Gaussian noise is in fact present. As an example, for N = 10, 
y - 1. 0, one observes from Fig. 8 that the suboptimum linear coincidence 
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detector requires approximately 2 db more SNR to achieve P = IO-2 as 
the optimum linear detector. e 

Subject to this limitation, then, the present results indicate that 
for moderate sample sises the suboptimum linear coincidence detector 
offers an attractive alternative to the linear detector for the detection 
of known signals in uncertain noise environments. Obviously more ex¬ 
tensive simulation results of this nature will be useful in presenting a 
more complete picture of the behavior of linear coincidence detectors. 
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SECTION III 

OPTIMUM RANK TEST 

v(At) vmoSe °ne,“ °f °h8ervati™ I« available and the aaople values 
( t), v(2At),...,v(NAt) are taken. Let the signal appear as one of two d.c. 

noil!1S¿írh 0r ~A’ lmbedíed in additive sample-to-sample independent Gaussian 
noise with mean zero and variance one. It is well known that the optimum 
test compares the sample mean K 

S~ K l v(iAt) 

vector of' 7AS in the Introduction, a rank test is based on the 
ector of + ones, Z « (zj.z^....z^ where z± - +1 if the i'th smallest sam¬ 

ple value in magnitude is positive and z± - -1 if the i'th smallest sample 

value is negative. An example would be the following for N - 4: 

i v(iAt) 

1 
2 
3 
4 

-2 
-1 
4 
1.5 

i 

1 

2 
3 
4 

Zi 

-1 
+1 
-1 
+1 

(|v(2At) I 
(|v(4At) i 
(lv(At) i 
( iv(3At)i 

1) 
1.5) 
2) 
4) 

Z - (-1, +1, -1, +1). 

Based on the rank ventor Z, one of two decisions (hypotheses) are to be aside 

hq: signal -X was sent 

signal +X was sent 

Let p_(Z) and p+(Z) be the probabilities that the vector Z is observed 

due to the combination of signal and 

ly. The optimum rank test is based 
noise when -A and +A are sent respective- 

on the likelihood ratio 

P+(Z) 

The likelihood ratio is compared with a threshold, A0. If A > A , the hypo¬ 

thesis Hl that +A „as sent is accepted (which means that the probability that 

Z occurs when +A is sent is more than AQ times greater than when H0 is sent). 

I 
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If A < Aq, Hq is decided and if A ■ a random decision is made between 

and If Ag ■ 1 and +X are a priori equally likely the probability o^ 

error is minimized. 

In Appendix II the detailed computations are presented for the opti¬ 

mum rank test when C ■■ 1 for large amplitude signals, X ;> 1 and small sample 

sizes. For N - 2 to 6 samples the optimum test follows: 

N Decide +X sent. 

2,3 +1 

if Decide H^, -X sent 

otherwise 

4 
4 

1. z. -+1, I z, 1 0 
i-1 x 

otherwise 

4 

or 2. z, --1, I z. - 2 

i-1 1 

5 1. 

or 2. 

1. 

or 2. 

or 3. 

- +1, 

z5 - -1. 

z6 - +1, 

Zg - +1, 

Z1 + Z2 - 

5 

l 
i-2 

5 

I 
i-1 

6 

ï 
i-3 

6 

l 
i-1 

6 

ï 
i-3 

0 

otherwise 

otherwise 

Needless to say, the optimum rank test cannot be simply Implemented although 

it is not prohibitive. In the next section a more practical test is xnvesti- 
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gated and found to be almost as good as the best rank test. 

compared 

Appendix 

than 4/3 

the same 

An important question is that of how good the optimum rank test is 

with the optimum test on the original data. This is answered in 

I where it is stated that the signal energy never has to be more 

gr\at- or optimum rank test than for the optimum test to attain 
probability of error. 
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SECTION IV 

THE WILCOXON RANK SUM TEST 

The Vilcoxon test is based on the sun of the signed ranks of the N 
observations : 

N 

S 
V X 

i-1 
i 

where zi’z2**'*,ZN are defined in Section II. Sy is compared with a thres¬ 
hold C. If S >C, is decided; otherwise Hq is decided. This is a sub- 

optinua rank test when the noise is Gaussian. However, it is stated in 

Appendix III that the Vilcoxon test is almost as good as the optimum rank 

test of the preceding section for sample-to-sample independent Gaussian 
noise. To be more precise, the Vilcoxon test requires a signal energy that 

is only 3/ V 8^1.06 greater than the optimum rank test for the same prob¬ 
ability of error and a signal energy that is greater than that required 
by the optimum test. 

The above result is for independent observations. It is well- 
known that for a large number of independent small amplitude observations, 

the Vilcoxon test requires a signal energy that is only ir/3 «=«1.01» greater 

than the optimum test. In Section V this behavior is verified for dependent 

normal observations. In the remainder of this section it is shown that for 

some small sample nonGaussian, dependence conditions, the Vilcoxon test is 

almost as good or better than the optimum test for dependent normal obser¬ 
vations. 

The investigations are most easily carried out by simulations. 

The N simple values are generated using the following procedure. The first 

noise sample, y(At), is generated with a random number generator in the com¬ 

puter followed/ by a transformation to obtain the desired-aeiue probability 

density. Each succeeding sample value is generated by the dependence model: 

v(iAt) - pw(i-l) At) + q(iAt), i - 2,....N 

where n(2At), ^(SAt),..., ^(NAt) is a sequence of independent random 

variables generated by the computer with a desired probability density. The 

noise values are added to the signal to form the observed sequence v(a t) * 
♦ A v( At), v(2At) ■ ♦ A ♦ w(2A t),...,v(NAt) ■ ♦ A + w(N At). The 

Vilcoxon signed rank sum statistic is formed as described above. This is 

compared with the thresholds and a decision of + A made. This procedure is 

then repeated many times with a count of the errors kept to determine the 
error probability. 
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Figures 10-12 present the probabilities of error under various condi¬ 
tions. In Figs. 10 andU, the noise Is Gaussian and p ■ 0.9. It Is seen that 
the probability of error Is nearly the sane for the Wllcoxon as for the opti¬ 

mum test for various numbers of samples and signal amplitudes. In Fig. 12 

the noise has a Cauchy density with p - 0.5 for which the optima nomal test 

performs very poorly and for which the Wllcoxon test is significantly better. 
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Figure 10. Probability of Error with 5 Dependent Samples 
vs^. Signal-to-Noise Ratio Gaussian Noise 
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SECTION V 

THE EFFECTS OF DEPENDENCE 
OF NONPARAMETRIC RANK TESTS 

Although the research In this study concentrated on small sample 
sizes, it is nonetheless of interest to investigate the performance of non- 
parametric tests for large sample sizes under dependence. The reason for 
using large sample sizes is the relative ease of obtaining analyti^î result, 

it hHr:rtriC/e8t perfonn8 wen under dependence for large sample sizes' 

â f T Welj f" -11 ’l“‘- Comparison b.t«.p 1 ' 
fnr ÍÍ! Sfi h1^ 8ection «"d the preceding indicate that this is true at least 

cidence teitS™" Simllar conclnsions were made in Section II for coin¬ 

ed Th/fiîîÎV*^10^?*81^117 thre® nonParametriC rank tests are consider- 
ed. The first is the Wilcoxon test described in the preceding section. The 
second is the Mann-Vhitney two channel rank test. Suppose that two channels 
of observation are avaüable rather than only one wi "sample value. 
V.(2At),..,pV.(NAt) and v (ût),...,v„(NAt) respectively. The first ^ 
cliannal contains signal plus noise ¿ and the 

second channel contains noise only. The Mann-Whitney test is performed bv 

the ^ the ^ -‘*"*1 chL.TÓbí.yr- 
r.ÍÍ«.n«Ta'° ‘ "* «« oo„,«,l.„tly 

N N 

l l sgn/v (At) - V (At)) 
1-1 j-1 1 2 

where sgn is the sign function, 

sgn(x) 
i 1 X > 0 

(-1 X < 0 

. th*rd te8t considered in this section is the Kendall t test Thi 
test applies when two channels of observation are available as in the Irecld1 
in* n.r.gr.ph, ..ch confining th. coo.on .l,n.l plu. chfff-' 
dependent nol.e. The test U per feed bj compering wlth.thf .hoîdêh. 
correlation between ,lg„, „f 81mpU velue .llfferencee: thr"l’0ld th* 

I sgn[v1(lit) -T,(Jût)ï egn[v2(lit) - v,(Jit)] 

IdJ 

A particular variant of the above three statistics called a ¡sized 
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statistic Is siso Investigated In this section. Suppose the N observations 

(W paired observations If a two channel detector is used) are divided Into 

subsets, each containing n observations (m paired observations If two chan- 

n«ls)• On each of these subsets a statistic of one of the above forms is 

ganerated as may be applicable to the particular problem at hand. If the 

nuaber of subsets is denoted by p» the result of this procedure is p numbers, 

®l*®2,**’’^p corre8Pon^^n? to each of the subset statistics. The mixed sta¬ 

tistical test Is performed by comparing the sum of the p statistics, 

P 

with a threshold. The reason for doing this rather than forming the nonpara- 

■etrlc statistic on all the data Is that a double sum of N values requiring 
a total of n2 additions is replaced by p double sums of m values requiring 

® total of psi2 " mN additions. Thus a reduction in complexity is attained. 

The loss in test effectiveness can be quite small for small values of m as 

shown In [13] for Independent sampling and in this section under dependence. 

Several ways of selecting the subset groupings are possible, two of 

which are considered here.^ The first, called method one, forms the subsets 

sequentially in real time. The disadvantage of this procedure is that for 

rapid sampling (small At), ranking effectiveness is lost-due to sample de¬ 

pendence. This will be demonstrated later in numerical results. The second 

grouping, called method two, takes the-observations p samples apart so that 

samples within each set become independent as the total number, N, of obser¬ 
vations (and hence p) becomes large. 

The detailed computations appear in Appendix III. For the purposes 

of presenting numerical results, a dependence model as in the preceding sec¬ 

tion was chosen. If WjUt) .w^At),... .w^NAt) and w2(At),... ,«2(NAt) are 

the noise samples in the two channels of observation (in the case of the 
Wilcox on test only the first set is used), w^iAt) and w2(iAt) satisfy 

w^(lAt) - p(At)wk((i-l)At) + n(iAt), 

k - 1,2' 

la 2,3,... ,N. 

Here the parameter p(At) depends on the sampling interval: 

p(At) * e 
-At 

Thus closer sampling means more highly dependent sample values. 
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as 
In the 

the noise. 
case of the Kendall r statistic the signal is random as well 
The signal is taken to have correlation function 

Os(At) - (1 + At)e~lÄtl 

Figures i3-!5 present the asymptotic relative efficiencies for the Wil- 
coxon, Mann-Whitney and Kendall t statistics respectively as compared with 
the optimum test on the continuous data (At - 0) as a function of At. Also 

te^n a8ympt0tlc relat*ve efficiency of the optimum sampled data de- 

íhaí n £îireSPeCt ÎVhe opt:lmum detector on continuous data. It is seen 
that tne Wilcoxon and Mann-Whitney detectors are almost as good as the opti¬ 

mum sampled data detector for any sampling interval without too much further 

índSthn 2fflc^ency W^en a mixed statistic with m - 10 values in each subset 
and the second grouping method is used. If the first method of grouping is 

used however, there is a loss in A.R.E. as At - 0 as predicted above. The 
Kendall x detector is not as close to the optimum detector. However, this 

ÍpI^1?0 trff,U?der i?deS^drCe Where lt: 18 wel1 known that the asymptotic 
well ÍVe eíflCÍency 18 9/2ïï2 [ However, again the mixed statistic works 

It is known that many nonparametric statistics including the Wilcoxon 
Mann-Whitney and Kendall r are asymptotically normally distribuîeÎ when în 
dependent sapling i8 USed. In Appendix III the theoíetle.l detllú .te 

stetîstlceStilWhîle ^der dependence for cert.ln of thee, 
statistics While this is primarily of theoretical interest, in practice for 

ablv simolIH8^’ and error Probability calculations are consider- 
, y 1 plJJled thr°uf^ the normality assumption as the exact distribution of 
tne statistics are difficult, if not impossible, to obtain under dependence 
except possibly through simulations. 

43 



I
C
 
B
E
I
A
T
I
V
E
 
E
P
P
 

SAMPLE MEAN 
DETECTOR 

1.0 

A t 

2.0 

Pigurtt 13. Th® Asymptotic Relative Efficiency with respect to 
a parametric teat on continuous data for various 

Mann-Mhitney Detectors, Pn(t)*e 

interval. 

,Atasampling 



Figure 14. 
The Asymptotic Relative Efficience wi.n 

a parainetric test on continues data fSr vã?ioíst0 

Wilcoxon Detectors. »„(t)..^sampling interval. 
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Figure 15. The Asymptotic Relative Efficiency with 
respect to a parametric test on continuous 
data for various Kendall t Detectors, 

Pnit)®e ^ P8(t) “(1+11| ) e I fc1 , At=8ampling 
interval. 
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SECTION VI 

ROBUST DETECTION PROCEDURES FOR SIGNALS 
OF KNOWN FORM IN NEARLY GAUSSIAN NOISE 

parametric ^ been ‘ione ln the ““ ^ 
testa i„ ma„; situation* is tharthe l.“0"^8,",,^6 U8e 0£ "°"P«ametric 
distributions is too bioad! Foí aramo e « - ^ POS8ÍI>le 
noise distribution is "nearly" Gaua.iJl in no susPects tl>at the underlying 
one u nid expect to pay a stif/penâítv für »nnse uith zero median, then 

of an zero median disiributloí Sions ih^í^.t ÍÜ'/“'115' c0"Bl8ts 
from the rather severe data reduction involved ,P ^ pald 18 to be expected 
and is reflected in a relatif compÚn^t^ "0"P8'an,8?rlp ppppadurea, 
relative efficiency „hen the distribution “"«uaïïy^uLiaT.38’'"8^'1' 

of caaaSXntnh:i:^eari^stotLr:h“r1icXorh’Irís í„h: 888u"ptip" 
mum statistical procedure based on th* r* , IC is known that an °Pti- 
for seemingly miL deviatio^lr: tt Gaussian ^ ^ 

between Parametric^estranfnonpaíametric‘'tesíf "such 8°mewhere 

tions from a nominal model. One does^orexne^0 Ser^°usly for sma11 devia- 
well as the optimal test based on the " \ T / r St test to Perf°™ as 
fits the modei exactly however it «. T, ^ the dlatribution 

robust test should perform better than°the na^0™ "early as well‘ Also» the 
of the distributions whîch are neaï JaccorH? T'"1" t6St f°r a lar8e 8^set 
the nominal model. The test should generaHv^erfmeasure) to 
metric test of equivalent complexity. Y P f0rm better than a nonpara- 

bust detectors for signals of^nown^mL*^6 and Performance of ro- 
By nearly Gaussian noise it is meant that " ad^tlv® nearlY Gaussian noise, 

the actual situation may be anywhere Ín I Íel1 H WhlCh deacribes 
assumed Gaussian distribution. In particuTIÍ neighborhood of the 

fined by the mixture, or e-contamL^í^dli 

F(x) - (1- )N(p,o) + eH(x) , 0 < e < 1 

H(x)reis añ arbitraryNd™tíibúÍiÍñ ^efl^M U ^ Standard deviation o, an. 

th. theoretical and .ctu.1 .Unions, TJ^lllZTeTs 

with the robust es1^!»» ofln CO'’n8ctlon 
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uncertainty used by Huber [15], who has provided the theoretical framework 
upon which the robust procedure is based. 

It is easy to see that some typical nearly Gaussian distributions 

(e.g.f [16 ] the density function f(x) ■ K exp(>- |x|C/a), c < 2, but c close 
to 2) may be written in the form above by a suitable choice of parameters. 
In addition a very broad family of distributions is defined which are, in 

some sense, nearly normal for small e. Thus, if a detector is robust for 

a family defined above, one may feel confident in using the detector in sit¬ 

uations for which it is known that the noise is nearly normal but for which 

no detailed knowledge of the distributions is available. 

In this section N samples from one channel of observation are taken: 

v(iAt) - X + w(iAt), i - 1,2.N 

where X is a constant signal and the w(iAt) are independent, identically dis¬ 

tributed, nearly normal noise samples. From these sample values it is desired 

to detect the presence or absence of a signal when the signal amplitude is 

known (Hqî X - 0 against X ■ X^ > 0) and the detecti>.i when the signal 

amplitude is unknown (H^: X « 0 against H^: X > 0). In either case it will 

be shown that the robust detector involves the use of a soft limiter. 

Consider first the case where X^ > 0 is known and where the{w(iAt)} 

are Independent, identically distributed normal random variables, N(0,1), i.e., 

the noise distribution is nominally the unit normal distribution. The choice 

of 0 « 1 is only a matter of convenience. Huber's results [15] may be applied 

directly to this problem. 

Huber's Results. Suppose that Pg and p^ are the probability densities 

of the observations v(At),v(2At).v(NAt) when no signal is present and a 

•igual is present, respectively. Then the robust test is performed by com¬ 

paring a test statistic 1^00 with a threshold where 

N 

Tn(V) - £ T(v(iAt)) 

N i-1 

and Ie' Pi/Po i c' 

pi/po c' c pl/p0 < 

c" Pl/P0 1 c" 
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If yv) is greater than the threshold the decision that a signal is present 

lLTdie\uU smaller than the threshold, no signal is decided The 

ability o^detertf í" sense' with guaranteed minimum power (prob- 

:i^nrp^tr Sès: airrate 
tion'remai8' deSlred 'o11“81"68® qualities mentioned in the^ntr^duc- 
manee. S dete™i"ed by actual evaluation of the detector perfoÍ- 

Huber's results 
HqîA = 0 against H^:A = 

Hq and , respectively. 

can now be applied to the problem of testing 

V The densities pQ and p , corresponding to 

are: 

2 / « 
P0(v) * K e~X U 

Pjiv) - K e~^V~V I1 

4n individual term of the probability ratio is given by 

P1(v) 
e[ve-(Ao2/2)l 

!f tn(v) > C, decide signal present. 

If Tn(v) < C, decide no signal present 

where 

vv> Ê T(v(iAt)) 
i-1 

v6 “ (Ao/2) - a' 

T(v) vA - (A„/2) 
o Q '' a' < vA op < .• 

v»o - (»p i a" 
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Thus the test stitipfic may be formed by passing the sequence 

v(iAt) XQ - (^/2) 

rr/JS::: :s£™ ;; rssjis-s- 
0 o' a /Ao + Xo 2’ and then summing. The two forms 

"L8hrtíêDif:erer th"shoids 
holds are related hy ’ Sy to show that the thres- 

for a' araí^^^rt^^u^arcrdír^uLt1:0"1"8 equatio"a 
1 - »Ka’/X0) - (Xq/2) J + ea 1 [(a'/X ) + (X /2)] - _!_ 

u U 1 - r: 

,[(«'VV + (»0/2>! + «'‘"ti -d(a"/x - ,/2)] . 
u U 1—í 

beL^soîiuonrcorïes^ndînrtfc^rc^^Îrîg8 that a' ‘ a"* these 
symmetry of the unit normal c.d.f., that'if a” LTsoLtÍon^rtí"8 h 
eouation, then -a" is a solution of the first AlL íh ?? f he 8eC°nd 
Increasing in a' and the second is decreasing‘in Í" Th* C equation ls 
that the condition a’ < a" is equivalent to !’ < 0 ; " Py°P"tie8 
< a Wh.r. n d .U , equivalent to a < 0 < a’ , or simply -a < 0 

a a is the solution to the second equation. Thus the quantit, 

v(iAt)A0 - \p2 

ÎLoîêrdv?MM8V as shown in the figure. The data 

(“g 160 índ his iHí’ ‘i" Pa8Sed thrCU8h 3 Umlter Wlt" value8 ^ -S 
values^ . limiter with values AL 

ytranetry is located at *q/2, thereby limiting extreme values of both signa 

»d no signal distribution, to th. ..„s „tont. The seals factor 1/x re¬ 

sult. in limiting v(ldt) -, the ...a relative amount that X vflat) 1,° 

limited by the limiter with values a' and a". 

a /Aq + Aq/2 is a limiter whose center o: 
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Figure 16b 

Figure 16. Fonns of the Rcbust Detector 

Figure 17. Probability of Accepting Hj vs 

Signal Amplitude 
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™.u ‘ror““" —- 
havior of the normalized statistic 

For the case where \Q is small, consider the b¡-' 

vv> 
N 

L [T(v(i¿t))+ a]/2a 
i-1 ~ “ 

dâtfpoî^'ar^rtrr^iro“ e,uaid'° re »f 
the ¿1^ «at. For the case „here ^ l8 fl«d «"„d r ! ha« 

nî:r “ntciti; :: :: :::::::: ::: — the s»P1e 

Lu^tT^r: %i\T.rn 
00 0 o a> Ao + W2 which are both approximately A /2 

or large 1(). I„ thl8 c,8e th8 te8t do88 „ot beconie the ^ ^ ^ 

^Tti°L :hij r::1:.::::-:: *: - » —- 
8 Q* The reason that it is not para- 

.«trie 1. that the c part of the .Irtot, can have Its rrss arbitrarily far 

«r.“p“r‘o^u«r:::::8:r8d“::t:::d\r::td%n:em?:::::ru:hk:na”plltude 

~ •,<»“ “-"“íâ?:1“ ;r;. 
ror a *‘v.a fixed t „e .88r. ! to be greater thaa aoae minlaun „.lu8, n8„ely 

■in to Prev*nt the el.a.ea of probability deoaltlea odder signal “7 

r H“b"> ^ th.t th, t«.t c, 
d min lth the ®8®urance of a guaranteed minimum power 

or a 1 A ^ along with a guaranteed maximum false alarm rate. 

■haded raglOT^of^ri^^l^Th^lo^: 1>1‘a alan" ara 8uaranteeiJ to lie In the 

^".hor::.";.::: :: p8""*11^1::"':::: » th« Po„er 
la not adequate In the aenae that it". ! .ha lo”'r hound given by Huber 
»<i<x’ ù :z y VTi^irdoaa?othoi,if- d F ioxe, nowever, to find the sharpest lower bound on 

the power, which ia denoted by B - B. (A), for all A > 0. 
The general 
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This bound aluav.s^coincldes Wth^'the power at T1“ CUrV" °f Flg' 17- 

USe. whitV“:;:::”“::;5'5as,;°"h“-d>d-»-aaetUa„y 

-t there i^ „1 i;"i eZ;11 ^ ^ appears 

"<ce ordering relation for the te“” ‘ ^asista 

selection of V which yieid, the Uniter values »ust be b 7 

evaluation of detector performance for various ' 
nous Ad> The test statistic 

(V) 
N 

E 
i-l 

T, (v(iAt)) 

j:^^raÍuyauZ-:í- -- -tribution for finite , However. 

etely large N, assuming that is „omal. 

lî™ ÍL^n^I^orrndT-^o^Tiri^ T™' ”ith t>d- Talae 
Possible noise distributions for vlrf™ Í ^ P°”'r over al 
»Uh ». . „.„6 l8 actu.av . , V th' Pa-ei »f the robust test 

d actually Gaussian, and the power arvi 

, the sample mean test for the Gaussian and for the two ^ ^ ^ 
the two f-contaminated densit: 

q» (v) - -Ü-0 

/27 

a-(v-i)2/2 

/27 
-(v-A)2/2o2 

e t: 

The design value . 0.06 yield, a nearly beat mini. 

responding limiter values are 6. n « p0“er curve. The c 

although the », . 0.06 curvTifnoYu^«'^6 7 Zi' 'V' Ph 

below the », . 0.03 curve in the small signai ^ , 

the intuitive feeline thfl^ m j 8 • These curves reflect 

test since harder limiting result^ii^too1"8 h^1 re8UU ln a best robu*t 
limiting results in too much sensitiva mUCh data reductlon and lighter 
Actually, the », . 0.10 ^ar'ly1'..^,^" °f 5h' -“«Xic 

corresponding limiter values are AL - -0 82 a a„ “ th' 
and AU ■ +0.92. This suggests 
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° = -03 

- ^ = .06 
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inated (€ = .01) Noise with 

Figure 18. False Alarm and Power for Limiter Detector 
und Sample Mean Detector sector 
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1¾. ín 8eMra1, th* "lnl"u,,, "O”" "ÍH be about the same tor 1.2 < AU-AL 
^ 'V, 

Inated «odeie Is^eÍy £00^0^6^01 “Sise âT” deteCt0r for the E-contan- 
H ter"s of false ala™ rate, e.g., for 0 - 10 

the' robus ^detect or 7 that where t - 0: wherea, 

r “ -- áíitr^iitnrr L°"d 

reterredlottïtrel ot ^r^lLT^T^ ^ ^ 

spect to the sample mean test An aJAtt-4 i 
made with the A.R.E., e of the ( l0—1 “"Parison of loterest can be 
r(„ , , , a."' °f the Slgn datector. the equivalent nonparamet- 
rlc test, with respect to the sample mean test. 

lor a»antge„aH;s:tem:í6L;:8AUtEIn “ ™ret “t^0^6815 a"d 

restent I *tU3t t°n’ h»Pa '»r a good lower bound™'thlaRr TJV' ^ 
restricting our attention to alternate densité *^e A-R-E- This suggests 

slons of hypothesis densities, l.e„ densities ^f “e C 

Thls restriction Is made and In addition It Is assumed that ihe mean°„ ^ 

r:re rfixed at °l-and 3q‘<x,/9j aai8ta- -d ^ f„r 
almost al V In some 1 neighborhood of tero, cher, exists C(v) > o Integrable 
such that[|9q (v)/3A ] < G(v) in some A u , , ~ integrable, 

A - A SOme A neighborhood of zero. These restric¬ 
tions mav result in a rat-tna*- *-ua . estríe 

cal deviations^ from normality are" stiU"iníllVín'tMs^subseT'6" ^ tyPl" 

tactor LCd m ‘ * T “ " ^ -mple mean de- 
t cto and T - s the sign detector. Also, let ^(.) repre8ent the func. 

that3[ 17?rm °f the lln,lter wlth values AL and AU. Then it can be shown 

'*,m [/: V« i n 
2 

where o^ is the variance of ..-j.. . 
1 0t lKL under no signal conditions. 

tinuous atrthr™igrí::ltLlai:íbÊu0Ttíeav.l;i„add^tltv fntlon ia -- sample mean is given by fl7]; Slgn detect°r with respect to the 

55 



- 4 °l ’o2«» 

*l,B 18 evaluated f°r two limiters, one with AL - -0.56 and Al « +3.62 (cor¬ 

responding to E - 0.01 and “ 0.06 in the previous section), and one with 

AL ■ -1.3 and AU ■ +1.3. The models of nearly normal noise for which e 
and e are evaluated are: 

s,m 

e(-v2)/(20^) 

e 

5, 0 < e < 0.1 o 
e 

and 

c 
b) q0(v) 1 < c < 2 e 

2(l/c)+l r(1/c) 

The results, shown in Fig. 1¾ clearly indicate the robustness of the limiter 
detector. For example, with q0(v) given by the above, and limiter values 

“ -0.56 and AU ■ +0.56, e^ ^ is 0.82 for e * 0, strictly increasing 

with c and equal to 2.3 for e ■ 0.10. In addition e^ ^ is approximately 

23X to 30X higher than e for 0 < e < 0.10. 
s ,■ — — 

The results presented in this section indicate that the soft limiter 
detector is robust for detecting a constant signal in noise which is known 

to be nearly normal but for which little detailed knowledge is available. It 

appears that the power of the robust detector is relatively insensitive to 

limiter values within a broad region, though this question needs further 

study. Another open question is whether or not a robust solution exists for 

the problem in which the hypothesis class is given by an e-contaminated family 

while the alternate class is a translated version of the hypothesis class. A 

solution to this problem would not be encumbered by the overlap of hypothesis 
and alternate in the small signal region. 
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Figure 19. 

De tec torÍC ReUtÍVe Ef£~>’ tne Robust 
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SECTION VII 

A DECISION DIRECTED SCHEME 

FOR THRESHOLD ADJUSTMENT 

ability íri!har"rvith an a 
equally likely which is the minímav *1 yíUS /he levels are usually assumed 
the same as il the worst cas^^,^ , (.the leVel °f Perfo™ance is 

better than this, oñe^ouíd like to de's'i^a 6 d,1Stri^tlon ia) • To do 
signal decision threshold so that the probabiííf ^ adJustin8 the 
Hopefully this procedure could be aÏplïed to a " ÍS 

the noise distributions are unknown as well. 
Bible to develop procedures whirb ^al■0 a " a^ditlon it; should be pos- 

alv. signal tran^ission"?6 ïo sîudy L Z n1ia? ln S"C“S- 
hold adjustment in independent ra..cL Pa n5iaT of such methods, thres- 

nal transmission is independent of the^ast?6 8 COnsldered where each sig- 

(unknown) “a'prior^prcbabilities'n IL°T °f leVelS* +A °r -A with 
noise has zero mean and unit variance A^ienarJ1^ ^ the Gausslan 
ends. The optimum detector decides that a Se ^ *1? T SeC- 
observation, v (n-*kk corresoond-lna m ^ ? k’ +A was S£nt lf the k'th 
the threshold given by: 8 6 k th slgnal transmission, exceeds 

ilR 
P 

Otherwise It Is decided that -A was sent Ifn»!/-? ►u 
the usual minis«* solution. If p . i/2 'the threshíín thre“hold Is zerc 

th. test in favor of the more lively positive Ratio's? ’ ^ 

problem of,í«Í^t'^1Jhe1^l™eDÍobIbiMtltlVelyaPlea8lng solutl'>” t0 the 
solution Is found by usina the rel.M V P to do better than the mlnimax 

tlve signal level ha.e o* he <>f the poei- 
th. estimate of p st tîm^î ir^gffo^' ^ " the "«'“t- That Is. 

k+1 
1 & i 1-P 
k 2- u( v(it) - jr- in- 

i-1 2A 

where u(x) is the unit step function. 

u(x) 
X > 0 

X < 0 
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This can be put in the form of a difference equation: 

k+1 !'k Pk “ u(v(kt) - 
1 1_Pi 

2A Jin 
VJ 

SI-“J'ESiSS 
1. Can the procedure "run away" so that the estimate converges 

to zero or one? Conceivably it might since a series of Se! 
cisions in the same direction could so bias the detector 

nrnLií ™Uld co"tlnue in the same direction with a high 
probability so that eventually p * 1 or 0. 

2. If the estimate does not "run away," does it converge to 

L " T C°nceivably it might converge to a biased es¬ 
timate due to the bootstrap" nature of the technique or 
not converge at all. H 

P“run Zay it'convergé^trrbiasëréÎtLat.^xceprwhen'p'. !/2matTh€ 
anount of bias depands on the signal-to-nolse ratio and on p. 

those „h™: T^TniÁ1^; 

in Pk+1 ecluals zero. With nrnhahtn-.. c _ the step change 

points : 

TT, , - VaxLrc vi cne step chanBp 
With probability one pk will approach one of these 

E Pk - u(v(kT) 
1 

2 A ¿n 
í-Pl 

■] 
0 , 

functioneofXpe"tatÍOn ^ Wlth t0 the n°lse distribution as a 
k 

An evaluation of the above eciuation recuite - - 
two forms shown in Fig. 20 depending on a2 ^ i, CUrve of one of th 

crosses'the^xis wÎth^positive'"^^0'1"' "expíesaíoí 

are unstabie (convergence occurs with^robl^íi^^"")'^^^:'Jhis^no'te 
rage change in pk+1 (i.e., -1/k tines the expression plotted) i, 
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Figure 20. Form of the Expected step Change 
signal-to-Noise Ratios Above and 
Critical Value. 

for 
Below the 
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fact generally biased)“polnt'betueen^eírand''’'" 1S “ staMe (althoegh In 
whereas In curve (II) the onlv c- •• ? d >s “e11 as at the en"s: 

a enricai sig„ai-t„’„:::. arehat tha e-ds- ^ ^--t. 

Which convergence to an Inte^edlate^luê“" Ltí^d^L^h^TWa, 

aordy goes to tero or one. The amount of bias when 1 , „ den. d \ 
P. As 1 * . or p * l/2. the bias disappear, A8 * \P ^ ' *"d 
Of a runaway to the ends goes to zero * T “ th'' orobfbility 
probability which appears^n Fig 21 fñr t b wo been formed this 
ability is verv small for mL^e^ígnai " ^ U i® 8een chat the prob- 

amount of bias in the convergent estate il l l *' In F1*-22 the 
It is seen that the bias is not excessivo f°r 8everal values of A. 
invol’-ed appear in Appendix IV. " The detalls of the computation 

Placing "barriers" ¿el^^d^bo^^i^h'^^íLM: ^ 
cne estimates could not proceed. 

P changes, PerhapsaslLlÿ7lthttÎMa'’eHencaPPllC*î1°n8 that thc t,'ua valua 
»on which allows for updating uTo'^ll ‘c^lsT^r ^ 

Pk+1 “ pk ' 0 Pk - u(v(kt) 
2A in 

i-P,. 

™,s“-« ™”“ 

To present specific resulfa ïw—, ^ 
steady state distribution of p , soivld with3- represent the statistical 

intermediate value, one without such a staÎÏe^ Wlth * 8table 
probability of error using the technique is 0 m ^ ^ fir8t C88e tha 
the true value of p i8 U8ed, a négligé diJ^rence15" WUh ^158 When 

0-30« in^hr^-^nTistÂríVÍ ^ ^ ^ 
is, however, a very poor case in that th , C\ Value) * ^18 
lower than that normally encountered. 6 8l8nal“to~noi8e ratio is much 

interest!C ^ feU that thlS technl<lu« is potentially of great practical 
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Figure 21. Bound on the Probability of Error as a 
Function of X-SNR, p-0.5 
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Figure 22. Bias in Estimation, 
A 

Poo'P» VS. True Prior, p 
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Figure 23. 
¡í* î®™ the Probability Curve for the 
Üîîoï fí? E" tima te for Signal-to-Noiee 
Ratios Above and Below the Critical Value, 
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SECTION VIII 

IMPORTANT RESULTS AND RECOMMENDATIONS 
FOR FUTURE WORK 

Three areas considered during the 
further investigation as outlined below, 
ical or an empirical nature or both. 

contract period seem most worthy of 
These studies might be of a theoret- 

parametric detection?' íhe^Judges dauringnthrcontrfactSphe0rritoÎlme ^ 
most heavily (although not exclusively! on fho Í P 1 d concentrated 

decision problen,. The optl^ "as der^e'd"^ hi^ 
amplitude, nominally Gaussian signals. Because of thf rn^í ^86 
tion, attention turned to the Wilcoxnn rant f ^ comPlexity in genera- 
ranked ir magnitude with the sum of the ra , 8um 8t®tistlc (the samples are 
being the threshold test statistic! ^ ?OSltlVe ob8ervations 
simple manner. It was found that the wíí b6 ll"plemented ln a relatively 
as the best statistir Í Wilcoxon statistic was nearly as good 

than the optimum statistic 00° the Taw Tnrank^ H0t t°°.much le88 effective 
would be used if the noise dïstribnT’ Unranked data <the statistic that 
elusion was found to be valid for a n Werr ^omPlete^y known). This con- 

nonGaussian conduta! ?hasa HlT“"'"' T?U 
the need for further studies. These could heTf^ encouyafln8 and suggest 

ric tests in the degreeSofhaCpriori1assTÎDtiate t0 parametric and nonparamet- 

altuatlons than tha? conaÍd^e^ln^iH^r^crsH^Íd J'd“ Í" ^‘ 

»athoda we reconsidered 
These Ideas are highly promising and seam i* sl8nal Probeblllty structure, 
provements in detector performance The anal6 < t0 r®Sult in si8nificant im- 

the binary decision case with signíil-to-sianlríY° Y® concentrat«d 
tan be expected when the .r^pp'îud8^^"^^?*"“-, 
are used. The theoretical nrohiam«, PP ° ”nere sl8nal-to-signal dependencies 
tlons, however. Péleme are much more difficult In these situ.- 

It is strongly recommended that further aM-o«n„., u g 

area. An additional motivation is provided by the fací Yr * !" ï° thlS 
theory will have wider applicability than i YT f C that much of the 

In particular, applications to adaptive eqíalizatiorand^tr0^6™ COn8idered- 
rected schemes can be anticipated ? Q 11 tlon and other decision di- 
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SECTION IX 

CONCLUSIONS 

in« th» pr*®ented the m08t important results determined dur¬ 
ing the contract period. These results consist of several practical an- 

ïoUe «d'o-tÏieePriblem<0f deteCting and/or communicating in an uncertain 
¡uhî!,r ^ Snî e"vlronæei,t- Because of the broad based extent of the 

..’oini™"“ ,hiie pr°"isi"*’ "«<* 
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APPENDIX I 

review of DETECTION theory and terminology 

- -——n P:bJirt:~ r;:Ho and 

H l0: 8l<5nal "zero" sent 

Hl: signal "one" sent 

Ret detect loí^H^and^Hj'hav^the"generaI^eanlng6^*116^* 
In the case of tar- 

H ,0: no target present 

2: target present 

Hypothesis «„ meet be tested agelnst hypothesis H the h. 

accept Hn and reject H or vice versa H I f ' obJ«“ya baing to 

nUn h—‘ the hyp„theels,0„he8reaTHUTVeferred ^ *S 

to as the alternate hypothesis or sl„ply the alternative. ^ 

Statistical tests aro A 

signal plus contaminating noise Theso r” the ob8ervations containing the 
one of two criteria- rhf „ 18e- These tests are optimized w^K — 8 
tb. development at'a^ts "ïroMn^ep0'^^' 

the sr.^A'tt^tiïîs"?!“6?"!1^ 18 taRvently"(and^lvays‘in cm"'" '““f 

a threshold (or thresholds' «d «‘d'clslo'1'' °b8ervatl°n« and compared'iuh> 

-r —* - - -a - -‘ttt -aiis^o“^hr£. 

the nature'of the^Óbs^rvãíÍMs"0"^“^^? t‘nSUlSh*d ‘n tbls "Port based on 

the'oth“'t 18 aaattahle containing a slg„"l‘of°”ly 0ne 'hannel of 

cat^tJrs^âî^rknr f8'"’818 "haatvaUoTa e0™vaPu:hu‘Sr 
channel hel^g a8ref1eref„cer "iï/eZîï ‘Z ^ ™ ^ ^ «c'ond 

tt»“:£fS8S;'£Í7pad™:írff^rí--rí:ttear„o„- 

few unknown parameter! (for eram!’! Ptohahllltv distribution txcept fo'T 
unknown mean and variance, some of 
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th. ~X"íMarohr”bp";v:.lrfverity or £aisit^ 
tMt. A nlnp.r.Ktrlc te.t í ^ fL ^ÍT ^ at by the P«™etric 
«ri.nt .ithín th. cl...““ d 'tv.l ls In. 

»triDucions under H0. A nonparametrlc hypothe- 

be specified init^nmber of^arMet^^íf11 Under thC hypothesis cannot 
•Ith .„„J. A..»pt^'.r.“cïïtn“!S “°r aXmpia’ a11 «ittrlbutlon. 
and weaker; therefore, conclusion*! i.rr< a th ”onPara“etric testing are fewer 

tive to data distrib^tionaî u^rtainty ^ ^ ^86 te8t8 3re le8s sensi- 

expected (that is, errors will^e^ade* ith"06’ 8tatlstlcal results must be 

-t H, is accepted when^ -aUy^ 

r°“' ^en thC rCVer8e haP^8* -d H0 is accepted when it should be 

n avor of a type II error has been committed. For a fixed 

larger as the prÍbabiUt^of^typ^I error^11^ °f * 11 err0r becomes 
Ideally, some tradeoff i, hLÍ,2¡P\Í frr°r ls decreased and vice versa. 

probabilities of making these two errors^îlfthe ^ baJanCe between the 
* type I error is called a false alarm. ’ 1 h Ca8e °f tar8et detecti°n 

Suppose a set of N sampled values 4 -, * 

convenience by the vector V is to he •«> .4 4 .denoted for 
hypotheses can be restated ^ in the 8tatist^al test. Then the 

H°: target'0™ * POpulatlon 8ena^ted by signal zero or no 

versus 

Hr H0 is not true. 

c.pt„c. H0 Ü.P1U. . probablii.tlc Jodge^cc that th. vector v ls „„„ 

ly occur under H0 th«, under Hr The d.gre. of llldlhood required 

ecceptence of H0 depend, upon the eccepteble error prob.bllltle, (or 

-or. generelly the co.t function) to be dl.cu..ed In greeter detell. 

(If the »âlÙërîv(14Ü))“re contlnü^T' ““T*' that tha Pr»b«l>illty dens It. 

nrru^-if™ “«e 

Suppoee further thet ther.et“fr.liPo"f5?bl°n 'i" “‘f"11 or t>r*et cundltlon. 

r“atar *p-ce” .Hr8ib<leiv“r °ie ;a * «• 
be divided into two p.rt., ^ .„d tf x belM1g“t„ ^ "So“.“ bT" 

» a ^). H0 1. ..Id to be true, C„„vcr.cly, , £ ^ ^ that ^ ^ 

1 ^ 
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Now the hypotheses to be tested become 

V * E aH 

versus 

0 

Hl: A e 

In some cases or may consist of a single point. In this case the 

hypothesiSniShCalledeSimple. t^herwise, the hypothesis is Seid to be com- 

esis is uniquely determinedSuppose that ^ «”edebrotthh£.^.le„îrth' 

parameters A and A +u_, L 
H _ H o 1 

Hf) ls given by the likelihood ratio: 

Then the relative probability of V occurring under 

Vv> 
A * -^ 

Px (V, 

"l 
Thus, acceptance of H,, is reasonable (and is formalised a. 

test or the fundamental lemma of Neyman and Pearson) if 
the optimum Bayes 

A > C 

s-:““ íríi.í.rrus™1’ ■••• -- 
N 

1 
Ñ T, v(iAt), 

i»l 

the sample mean. 
f(V) > C,. Let this function be called f(v). Then H0 is accepted if 

The threshold C (or is determined to minimise the average cost 

fix the false alarm probability at so™^ ''"f" the Bayes crlter1« or to 
criteria. Probability at some level a under the Seym.n-Pe.rson 
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APPENDIX II 

RANK TESTS FOR NORMAL 
LARGE SHIFT ALTERNATIVES 

. .^e £ir,Bt *V"1 OÍ an a8ymPtotic expansion for the order vector 

f. ^°° th' ‘ignil ** binarr and th‘ ■>“« 
. t0:“m,p1'a”d normal. Thi. i. u.ed to find the 

tlÍ'wT ^ , ' . °r 'qual error Pr°t*abilitiee in detecting each oí 

•ample mJn’uLZ T''^ 'aiCiency reL“,v' «° *b« optimum parametric 
■ample mean test is found to be greater than or equal to 3/4 Soecificallv 
i/for ■ample .ire. N. „„ i. the large., integer <_ 3N/4 and ^ f^he "' 

■mallest integer > 3N/4. the efficiency i. minf^. 4N0/N)/N> 3/4. The 

efflciency of the Wilcoxon test ie found to be bounded above by 1/, 2 for 
th.. «m. error probabiUtie.. Specifically, if N0 i. ,h. .maL., integer 

•uch that 2N0(N0 ( 1) > N(N +1), the efficiency i. N0/N c l/yl . 

1. Introduction 

tributiJffL^V ' '.'ru(NAt> den0te a #amPle with the normal cumulative dis 
tr&bution function ♦ with mean X and let Z = ..zN> be the sign-order 

where z. = 1 if the i*tl3 smallest observation in magnitude is positive and 

». * -1 otherwise. Then for testing the shift alternatives: 

Hq: X < 0 

versus 

Hj: X > 0, 

the most powerful (i.e. optimum) test is based on the likelihood ratio 

-EÍH. 
P(-Z) 

where p(Z) = probability that Z is observed when ^ is true and by symmetry 

pi-Z) = probability that Z is observed when HQ is true. For equal error 

probabilities under H0 and Hj, C = 1. Using ideas similar to that of 

Klots [19 ] and Hodges and Lehmann [ 20], who found the order of the 
error probability for large X, the first term in an asymptotic expansion of 
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powerful rank ar„ddíheMrr Pr0bab:llty Ci" b' io“d to *'« ‘»e rao., test and the efficiency of rank tests. 

2* Order Vector Probability 

probability8 OÍ ,h' Standard n0rmal '““»«y « th. ord.r 

p(z) = N! fut) n ¢(1. -z.xidt, 
^ i=l 1 1 “ 

Where 1 = (tl.y and 1 iB the indicator function 

vector 

I(„ =(1 i£0<-'i2t2<...<«N 

^ 0 otherwise 

The integrand takes on its largest value at a value of t determined by , 

dec'ea8es exponentially fir deviations from that value Thi« u N 
it possible, up to lower order terms as 1 ^ ♦ u * Th^ makes 
into a product of integrals which ran K °0' t0 break up the integral 
trate this, let N = 6, ^ m°re readÜy eva^ted. To illus 

Z = (-^-1.1,1,-1,1) 

Then 

max ^ ¢((. - z.X)I(t) = 0Z(x, , W3(^IU. 
«KO) 

attained for t.t =n‘t t «■ ~ ^ ii „ 
12 *3» 4»tc - X/3; t^ = X. Thus, in this case, p(Z\ 

can be broken up into the i ^ i 
the values 0 < t < t < < , Ts ° lntegrals since th* integ ral over 

- 1 < Í2 < • • ■< i6 xs the same except for lower order terms as 

1 - 2 - 00' 0 - t3 - ^ 115 1 0 5 t6 < «>• The integrand can be 

divided more generally by defining the sequence of -cluster- values 
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® < < • * • < in terms of the integers 0 = M < M 

« N and the difference sequence = = - M , . . 

^N-l wliere 
J 

(1) If S *£ < 0 for every 1 < j < N, = 0 and 
i =1 A 

< M, <. . . < M 
¿ n 

m M. 

MI is the largest value such that 

j 
£ z for every 1 < j < N, 
i=l “ ~ 

j 
(2) Tf ^ > 0 for some 1 < j < N. u = -i— 

i-1 --1 

where is the largest value such that 

> 0 and 

M. 

i=l 

i 

M 
1 

¿ 
i=i j 

(3) For k > 2, 

& 

where is the largest value such that 

l 
m. 

“k L z. 

iaMk-i+1 1 

¿ Zi 

isMk-i+1 j * ^-1 

j > M 
k-1 ' 
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then 

max 
N 

n 
i~l 1 

m. 
= n <0 

i=l 
/ X). 

That this is the largest value of the integrand and that it occurs for the 
above sequence follows from the obvious fact that the " he 
when some o< the . are equal, that by d.ftmÔ^eÙllUv °CCUr‘ 
run. with the „o„n¿ga.ive value, between run. for^Tn ' a Ttrictly ZZ^t 
increasing .equence, and finally that the aunt of .qua®! rfthe fo™ 

(t - X.) 1. minimized for , a. the centroid. I, may be verified by obviou. 

ri8dhr:rrT:u7r„uat,:n v °ther o£ «q^uty nave to result in a nonstrictly monotone sequence. 

the produc! oíZ ^gVaU I bit tb - the «un. ,. 

decreasing tall value». Hence for Urü '' VilUe* eXC<ÎPt ex<>onen'ially 

n 
p(z) = n Q. 

i=i 1 

where for i > 1 and for i = 1 if ^ > 0: 

Q. = 

/ : 
Orgt, 

m. 

if 
j-i ‘ V ,+j x* * 

i-l J 

-• exp 

\ 2 /. ji! 0V'V,d!- 
-oo<t < . . . < t <00 

1— — m — 

without‘con. ide ifing®nutgnitude *Äm * “ ^ -obabifity of an order vector 
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m. 

Q, = ■/ n <p(t. - z X) dt 
j=l J - 

0<t. < .. .< t 
-1- — m. 

= exp( - -^-(1 - ^ )X)J . yiX)dt. 

Oct c... c t 
- 1- -n^ 

Since ux < 0, the limits of integration cannot be extended to However, 

the integral is the same as the probability that a sequence of normal vari¬ 
ates with mean is nonnegative and has a given order. Since there are 

nrij! equally likely orderings: 

1_ , ml 2 mi 
= exp("T"(i - * (^) 

m 
1 1 

Jg-ft) 

mi; i^im‘ 
Vj < 0 

m. 
1 -"i 

exp( - — X) ^ = 0 m 
m^Z 

where the asymptotic formula « (x) ^ as x - is used. 
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Now the likelihood ratio can be evaluated for large X. Let m , m 

and un be defined as above and let .k and 1 

Wr " ’ ' be the corresponding values for -Z. Let ^ 

!0 if > 0 
and n = 

kj^ if = 0 1 

0 if p1 > 0 

mj if ^ = o. 

Note that in general ¿ * n and k. ,1 m., although, oí 
course. 

n 

E m. 
i=l 1 

l 

E k.. 
i=i 1 

Then for large X the expocentxal p,rts of the probability will dominate. 

zl _ KiZj, oni r X 2 
-z) " K(Z,X exp r I Em (1.^) 

L i=l 1 1 
-£izl - 

p(- 

i I 
where K(Z) is a function which depends on Z and not on X Hence th. 
argxun.ut of the exponent generally determines the decision in the far out 
\ case. The decision rule is to decide that is, +X) if 

F(Z) T 2 

1=1 
0. 

If F(Z) < o, H0 is decided. If F(Z) = 0, 

If F(Z) = 0 and no_ni> 0> Hi l8 decidedj 
the decision is based on 6 . 1/ 

1 r 
If nQ-nj < 0, Hg is decided. 

I he probability of error for the optimum rank c 
sum of the probabilities of all rank vectors under H wl 
ciding Hq: nl wt 

is given by the 
result in de- 
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Pre 'Z P(Z) 

í,"**r*'X'he "T”8 in the »Weh contain the minimum exponent in 
the asymptotic probability will deominate. Thus for any N, if ? 

.,, ^ ” '7 "'¡(i-i'f )x2 
P(Z) = G{Z) n e ¿ 1 

i=l 

= G(Z) exp J - ( -7- ( E m.d - ^ )J 

where G(Z) is a nonexponential factor and (m. ). (p.) depend on Z. then the 

vector Z with the smallest value 

M(Z) = £ m.(i . ^ , 

over all vector, .uch that p(Z)/p(-Z) < 1 will determine as x - 00. 

Let M0 be that minimum value. Then asymptotically. 

Pre “ Cr(Me' {M0/2)X 

where C(\) is a nonexponential factor. 

or .rror°!.'!l*.C^ânyÍOr OP‘imUn, •““"’'•Wc test the probability 

Ppe = 

H«c. the reUtive efficiency of the rank test to the parametric test is given 
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The value MQ can be found for any N by noting from the decision 

procedure that there must be a vector Z such that MQ = M(Z) and in 

addition for which p(Z)/p(-Z)< 1, implying that M(-Z) < In other 

words, M0 is the smallest number for which there is a vector Z such 

that 

M0 = M(Z) > M(-Z) 

Suppose that any integer, ^.N/2 < Nj < N is selected. For what 

vector Z is M(-Z) a minimum given that M(Z) = N ? The answer is 

that sj = z2 = ... = zm^ = -1, zM^+1 s ... = zn = +1. Thus 

(2N - N)2 
M(-Z) > N - --- 

N 

Therefore is the smallest integer such that 

(2N - N)2 N 
N N - --- _ A 1ST „ 1 . 

or 

N1 > 
3 
4 

N 

Thus M0 is determined by ^ and if ^ > | N, the efficiency is determined 

by N0 " N1 " 1 in which case is the smaller of Nj and 4^(1 - N /N). 

Or the relative efficiency is: 

R.E. = miniN^ 4N^(1 - N^NJ/N 

which implies that for large N, R.E. = - . 

A similar procedure can be used to bound the Wilcoxon efficiency 
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APPENDIX III 

DISTRIBUTION OF TEST STATISTICS 
UNDER DEPENDENCE 

If the Gaussian normalized correlation function p(t) is integrable, 

|p(t)I dt < ® 

Î;Î;E‘ ?f °n! ^ Wlth resPect to another can be expressed as the 
~flc>u4*s 0f the test where the efficacy of statistic SN for the 

statistics in this report is: 

e - lim 
N->® 

K '[sni 
3AJ 

N var (SN) 
A - 0 

n“"ber of »«“Pies in each channel, xis the signal amplitude, 
and J is the smallest value such that the derivative is nonzero. 

For the sample mean 

E[SN] - A 
u 

lim N var [SN ] - lim 
N-*» v n-kx, 

.2 N N 

N E E 2p([i-j]At) 
i-1 j-1 

lim 2o^ T (1- 
N- k-N N 

-)p(kAt) 

2 N 
■2° E P(kAt) 

k*® 
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XírLTiT"' U8es of „ (t). the efflc(icy 
for the 

2u 

2a H o(kAt) 
k*-<» 

For the Mann-Whitney statistic, as A -*■ 0, 

A-0 EfSMJ " “õ "aT íPrfx(iAt) - y(jAt) > 0| A1 

PrfxCiAt) - y(jAt) < OJA]} 

1 

o/T 

N var fS^], Ä N N lí 

N3 i-i jti ¿I ^ Ef«ní*(*út)..y(jAt)J 1 A«0 

sgnfx(kAt) - y(lAt)j) 

Now by the inverse sine rule if -, » 
relation coefficient p: ’ x and y are Gaussian with mean zero and cor- 

Efsgn(x)sgn(y) ] - sin'1, 

Thus : 

N var [S^] 
JL N 

o’- S/1 ‘ ^><1 - M)slll-1 0{iuit)to(imn 

la an Intagâr^ IndipêndltTTanch'^^ thal: £<>r ' > 0. thara 
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8in-l p(nAt)+p(kAt) _ 
sin 

-1 p(nAt) 

And for sufficiently large N: 

H H. W<M (1 " J^i)<1 ' Jïi,8ln'1 

Thus in the limit: 

lim N var [S^j 

X-0 
E 2 «ln"1 

Thus the efficacy is: 

e 
MW 
_1_ 

2„2 £ 2.ln-l fll£âÜ 

n—• 2 

The asymptotic relative efficiency of the Mann-Whitney with respect to the 
sample mean test is 

£ p(nAt) 
n*-« 

f zsin-1*-^ 
n*— ¿ 

The A.R.E. of the mixed statistic with the first grouping follows 
from the equation with N replaced by m and an additional outer summation 

to account for group-to-group correlation. A similar anal- 
YBls results in the A.R.E. for the second grouping. 

The Wllcoxon is the analog of the Mann-Whitney for the one channel 
case. Given the observation x(t) with mean > it is desired to test 
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versus 

A > o . 

it can be verified that the efficac’ 
agrees with that of the Mann-Whitney for th, 
fined in the preceding except for the factoi 

of the one-sample mean test 
two-sample mean test as de- 
of 2 in the denominator: 

e 
IP 

p(nAt) 

N 1 J, N 

SW " i?i j?! (1+6ij)s8ntx(fAt) + x(jAt)] < c 

The efficacy is evaluated by proceeding as before for the Mann-Whitney: 

lim -^EtsJ] 
A-0 dX W N 

N N 

£ £ 

1+6 
il 

iml J“1 P Ki-j)At] o/ÍT 

I £ a-M, 
n—N N 

1+6 
on 

l+p(nAt) o/ir 

due to the independencePof’'th^tw^cTaMeîs^h'11'1 n0t f°r the 
»ent slmlljt to that 1„ ^To ^ " « 

lim lim 
N-»* A-K) 

—— EfS^l 
9A tl!>wJ 

2 

o Vit 

The variance also 
countered in the Maññ^uñeír*"181“8 fr<” deP“d*"“ which were not en- 
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lim V var(sjî) 
N-*» w 

p[(i-k)At]-H)[(l-i)AtHp[(j-k)At]-l-p(j-t)At] 

2^1+p[(i-j)At] /r+p[(k-£)At] 

lim 
N-**> ttN“ 1 I X Y sin 

0 

-1 

This can be reduced by one summation to: 

, N 7 N N N 
lim N var(S ) - ilm y y y H ^ ix , min,n n k £,. 
»*- W1 »- „w2 „tr.„ ktl„ ¿iN ll^ax(0,N'i«,N) + 

sin"1 P (nAt)^-p (£At)4-p [ (n-k)At ]+p [ (k-£) At ] 

2»/l+p(kAt) /l+p[(n-£)At] 

where 

r(x) 
ix X > 0 

0 X i 0 

to that ln f„™ 

U. » var (sj) . A £ 2,10-1 tíMíl . 

em- 

Thus the efficacy is. 

Z 2SÍO-1 
n— 2 

The A.R.E. with respect to the sample mean is: 
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w 

'ly 

p(nAf;) 

28ln_1 ^InAtl 
2 n* 

2Z LhefûiuE;.ôtedhe ‘¿Z fSí 'î' Milc°xon rfor the ^ ttK 

.orreUt1ÍôriL«f"ed„í«dSÍâm-ííun“"“RÍ!0^,fL'ct^.thThê,,terCh*,m'1 
efficacy o£ the mixed Wilcoxon with the iiret sequentUl type oí grouping 

W1 

ID 

n«-fn 
(1 -½1) 

1 + 6 
on 

/l+p(nAt) 
00 in m n — 

51 E Z E r[1“max(0»^C¿) + min (0,J j._» jç«-^ m to m J TO TO TO 

‘^okX^nt»81”'1 

P (Tjm+ti) At ]+f) [ ( jnri-£) A t ]+p [ ( jn+n-k) At ]+ 

---P [(Jp+£-1) At] 

2»/ï+p(kAt) i^l+p [ (n-£)At] 

where r(x) is as defined above. 

ing is: By 8l,*llar CalCUlatl0n”’ th' 'fflc',cV for the ..coud «thod of group- 

”W2 
Ü +m"] 

° lm Sln lo (^t)+2(m-1) sin”1 2(m-1) (m-2) sin-1 ^-] 
/2 2 

n*-x 
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n*l d*JÏ:‘enîa11 T “tatl8tlc ia one which has application to the two chan- 

chinÍel oÎtputs^ ^ Signal ln nolse- Let *(t) and y(t) be the two 

x(t) - As(t) + n (t) 
X 

y(t) - As(t) + n (t) 
y 

wh«re nx(t) and ny(t) are independent noise processes and s(t) is a common 

noise independent signal process. It is desired to test 

Va 0 

versus 

0 . 

"“i8! Pr0^e88es are raean zero Gaussian, then the optimum 
paraaetric test for Independent sample value is an energy detector: 

S 
N 

e 
1 
N 

N 

£ fx(iAt) + y(iAt)]2 < c. 
i-1 

Let the normalized correlation function for the signal be p (t) and 

the noise processes be Pn(t), and let the noise variance be o2 and the 

Â.«rí»p“*b™“ÍÍ!'i.:Th*n th' *fflC*CJ' 0Í th' 

c 
e 

8 

»4 E »'(kit) 
k— n 

The Kendall x 

between ranks 

pressed as: 

nonparametric test for correlation is based on the correlation 

in the two channels. The statistic is most conveniently ex- 

I sgn[x(iAt)-x(jAt)]sgn[y(iAt)-y(jAt)]. 
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ceding tohbe?fftCaCy ÍS fOUnd by calculati°ns similar to those in the pre— 

k-- 

2^2 sin 
k—« 

-i Pn('kAt) 2 

Äxn:.\n°.Mte thu re.ult Md 
parameter. Ce that thti signal correlation is not a 

The results for the mix^H f-t. 
obtained by cmpntatK™ aimil” to ""Í?'” 0f ^ouping .re 

those in the preceding material: 

m 

T 1 

a V /i k i~P (kAt) 2 

k-l »” l-P^(kAt) 
m 

l£, ,¿ r+ minfO - ^ J i"-m k--m i--m m m’m'' ^U,m’m’m^ 
kï<0 i^i 

r 2 

m-1 
k— 2 {sin_1Dn(kAt)}2 + (»^{sln’1 J1 

Note that the signal corr«ia«-*.». 
Stopping but l8 re.outd ,. th* aequential 

the aastaaption^that the «MMbCtionf ^hé0!” s"bse’“«'t concluaipn, i. 

W.kii1" thlS S<Ctl°" th' «action Î. ií« fi“;“*“0 ‘a »y-Ptotic”!1; 
Mann Whitney statistic is considered .C , d’ For <*«*initeness the 

results hold for the Wilcoxon ’“d‘riednï.nh th:t.t:tri,ctri,,e that 
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The theorem of Rosenblatt [ 2Í Is used to establish asymptotic 

normality of the mixed statistics for m < «. The definition of a strong 

mixing condition is required as a preliminary to a statement of the theorem. 

Let the process {xt> t e T} be defined on a probability space where 

<7 is the minimum a-field of w sets with respect to which the xt's are meas- 

u**k^** Furthermore, denote by ^ the minimum o-field generated by the 

*t’s for r < t < s. For t > 0 let 

sup P{AfiB} - P{A}P{B} 

A,B 
< a (r ) 

X 

uniformly in t where the supremum is with respect to A e¿7 C , B e ¿7°° 

Definition: The process {xt} satisfies the strong mixing condition if 

\(t) -► 0 as t -► 
process. 

•. *x(t) is referred to as the mixing coefficient of the 

cl**rly if is strong mixing, then so is any process {zt}, derived 

from it if events defined in terms of z , v < t' depend on the x 's for 

{zt) is also strong mixing if events defined in terms of z t v ^ t\ 

depend on the x^'s for y in a finite union of intervals and if events de¬ 

fined in terms of z^, t' + t, depend on the x^’s for u in another finite 

única of Intervals such that the minimum separation between the two sets of 
Intervals becomes infinite with r . 

Depending on whether sampling or continuous processing is used, define 

t'-r 

or 

The central limit theorem can now be stated: 
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Theorem (Rosenblatt [21]): Let {z 

The statistic n(r,s) - H(r,s)/0(r,s) 

strong mixing and 

t t T) be a zero mean stoch-stic process, 

is asymptotically normal if {zt} is 

Hr, 
r-s-H» o4(r,s) 

consider for the moment the Markov process defined on the integers 
.,-1.0,1,... which satisfies - pxn + ^ „here {uM is an inde¬ 

pendent ergodic sequence. The strong mixing properties of this process fol- 

V y ^ the eaSlly e8tabll9hed f«t {22 ] that ergodic Markov processes are strong mixing. 

Fortunately, for Gaussian processes, it is possible to obtain mora 
general criteria for strong «Hing. In , 23 J lt L Bh^ tK.t H u“ 

íatlILí8/ itaíí°naíy G“US8l," Ptoeese possessing spectral density p(l) 
tional in X, then {xt, t e T} is strong mixing and in fact a (t) >0 

exponentially in r. X 

of grouping: lder ^ Mann-Whitney te8t statistic with the first method 

with 

MW1 

,n A 

m p n-0 

P-1 m m 

LEE £ 
n-0 iTl jtl 

'1J sgn [v^nmAt + ¿At) - v (nmAt + jAt)] 

sing the'separatlon^ropertjN^Let*18 ^ ^ ^ *“ -- 

z 
n 

m 

E 
i-i 

m 

E 
J -1 

It is clear that 

Consider 

(zn} is strong mixing. 

the second method of grouping with test statistic 
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sN 
MW2 

1 

2 
n p 

s1 E E 
n-0 1*1 j-i 

Ut 

'ij “ ®8n [v1(nAt) + IpAt) - v2(nAt + J.pAt)] 

E - E E z? 
J“1 k-l ij 

Th. a«qu«nce {*n> 1. not .trong mixing because zo and z use adjacent values 

of the {^(lAt)} and {v2(lAt)} processes. However, If the statistic 

/ . _±_ Pr^ 
2 A* zn ■ P n»t) 

le considered, rather than the strong mixing property of the statistic 

Is preserved and since 

>1112 b** Che 

£ e((s*2 - - ». 

esynptotic dletribution es lï..« 
MW2 

.t.tl.tl^r::í*bllihíd thî mtl0ng “iX,a8 proPertie8 of the resultant test 
stetlstlce operating on Gaussian data with rational spectral densities it 
romains only to demonstrate the above nonent conditions. ’ 

These will be demonstrated under the null hypothesis H for the two- 

intermediate statistic and the second 
method of^ grouping. Obvious analogous results hold for the other groupina 

Md the single-channel Hilcoxon and Kendall r tests. Consider the staîisîic 

«¿2 given above. It has already been shown in the efficacy calculations 

that w(8liil) - OCH ). Hence it la necessary to establish that 

>[<&/] - 0(N4). 
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The following lemma is required ae a preliminary: 

i£=â= » V 1 m 1.2.3,4 are 

normalized covariance 
zero-mean Gaussian random variables with 

'ij 

so that 0 1, then 

E ÍI Sgn(Y ) 
i-1 1 

EiY^} 

E{yJ} E{Yj} 

4 V- .-1 
I 2^- 8in XnpDfl|> sin^flp I}, 

rr r<s P‘1 1 rs1 ' 

-1, 

Proof: From Pawula [24 ] 

E ("Ss" y4 ■ ,-f 2 'it r<s 

P ^ q r 

-./: pq.rsfa)^ 

VT 2 2 -a p 
rs 

da> P )1 q r ^ 

defined as 
as the qUantity Ppq.rs ( )ls a Partial correlation coefficient [25] 

pq.rs 

E(n_ n } 
P»rs o.rs7 

Einf } E(n2 } 
p.rs q.rsJ 

Wlth Vrs the residual of the random variable Ç after the best U 
"»te of C in term« c F , P th b 8t line*r esti- 

3 4 themsel r> 8 remOVed• random variables Ç i - 1 2 
3,4 themselves are zero^ean Gaussian with covariance matrix 1 

/ \ 

^ (01 2 P^J 0 < a < 1 
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But surely the correlation coefficient between the residuals must be 
less than that between the variables themselves. Thus, for p ï* q 

pq.rs(a) 
< a 

pq 

so that 

E {^ SgnCYj)J E i»rs 
it r<s 

/1 sin ^{a| 

— 

0 efi ~ ^(1 - O p 

Pn(1l ) 
pq 

2 
rs 

da;p^qi*r^s 

n r<s 
X, sin 

1 |p__lda 

■‘"W T J 0 yi-a 2 2 
Prs 

where use is made of the fact sln^talp 1} < sin"'L{|p 1} since 0 < a < 1, 
pq pq — 

Finally, performing the a integration in this last expression the desired 
result is obtained. 

Now define the variables 

-1, 

rikjk ■ vi(nk"it + V« - W + 44t) 

for k - 1,2,3,4; Jk - 1,2.. and - 0,1,2. With 

. A E<YikJk 

kl 
E{Y? , > E{yJ } 

kJk 

Pt(nk"n^Ät*'rtlk"1i)At,+ [(Vnt)At+(Jk"Jt)Atl 
2 
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Then 

Z £ £ 
4**^ il,12,i3,i 

} 

and from the preceding lemma 

P ^ q r j< 

of four objects taken too ,t . ftae "r JÍ) .‘e °v« th' ««1-0! co.bln.tle 

tbls Inequality end by suitable t.Ub.l/ f >y -ubstltut. 

cases It Is found that the »cent conditions fO^íhO’.'” O'“* 0t ^ ’,X 
by the statistic S.“ f„, __ «rouping represented by the statistic S" u . --r“‘B ‘^'»'‘«encea 

cistic SmW2 follow by similar arguments and need not h* . 
Thus the asymptotic normality of th<» mi a ^ epeated< 

intermediate statistic for “LI ftlie^V^rSÍ? 

In the form Of'a^í^irOm^f‘“„deü «ríObl“8' 8t*tl8tlc cam>»t be put 
tion of the standard central for “>a appllc, 

is not dependent. To circumvent this diffir,,!^18 U true even ^60 th« d< 
theorems have been developed. Most notable ^ th^"81 ln*eniou8 
Limit Theorems for U-statistics f 2fi 1 a ^ thls re*ard are Hoeffding’s 
and Savage [27]. These limit theorLI’ d ploneerln8 work of Cheraoff 

statistic T„ in mean-square^by^another Ic^T?»“^* ^ 

• single „1 rand» uarlables. If 11. g“ hM f°™ 8t 
ÏjJ} "0 then it follows c ^ N-** 11 w - ^ wxxuws 

rrom Cramer ^ Theorem f9öl *.u«♦- ., 

tone distributions, n.e'.sy. tíL^iítTilV^lir' “b"“'*1 

v<a the standard central ll.lt theorems, Implies th^f y 
N 
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CUC * 8lJ“lla4r Pro«dure can be employed In the dependent sample 
cue where now th« appropriate limit theorem is that of Rosenblatt. This 

h«"' /"« Mann-Whitney statistic 1. . lin„r rink. 
orur statistic which can be written In the form 

ml, 
N 

H 

■ £ 
1-1 ^l2»! 

where the are given numbers In the interval (0,1] and ^ « 1 if the i'th 

ÎÎÎÎÎ**4 !“?le/aS fr<* the 8lgn£l channel and zero otherwise. The Mann- 
Whitney statistic can be written In this form with - (i/N). 

r. 4 **y^>totlc distribution of statistics of this form operatine on 

of^hí^ChÍ™«1? 8pectral density is established by an exteuion 

^d ^v2e Ïlt rafn ^/vr“; ^ fol^in8 quantities are called Chernoff 
ana savage. Let and m/N and assume that for all N the inequalities 

° < \) - S - 1_X0 < 1 hold for aome fixed *0 1 1/2. The quantity F (x) is 

to be the empirical distribution function of the signal sample (X }“" while 

Cn(y) is the empirical distribution function of the reference samÍ!le"{Y }n 

Define: 1 1"1 

Hjjix) - xnph(x) + (1- lN)Gn(x) 

«hld. «in b. c.ll.d th. cortlMd «plrlcl c.d.f., while the quentlty 

■í») " àhF + (1- 1,,)0(,) 

î“4 “* th« «‘“«1 «l«Ml end reference eeaple c.d.f.win 
îîeSiîL popuutlon c.d.f. In.teed of th. llneer r.nk-ord.r 
tn.^ “’t^™^ "M* ^ fou”d it convenient to conelder etetle- 

«hlch U wily Been to reduce to the linear rank order etetlstlc with n . 

1,(1/10. Obvlounly 1^(-) need only be defined on the lettlce 1/», 2/H,?!î, 

W/W, but we shall find it convenient an f'hnr-ww-.fF e 
«teen of definíMnn Pm /n ^n;enien^ 88 Chernoff and Savage, to extend its 
«n definition to (0,1] in such a way that .y.) i8, i„ fact, continuous 

on this interval. Following the details of the Chernoff-Savage paper the 
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statistic 
TN can written as 

T» ' A + B1N ♦ "îN + ¿ Si i-1 N1 

IN 
(1-V 

m 

m 

- E(B(X1)}] 

where 

B, - _ I1 ' ÀN) * 
2N -- ^ '“ L [B (yi) - EiB(y^)}] 

B(x) /: J,rH(y)]dG(y) 

and 

*Cx) ä Í* J. fH(y)JdFCy) 

JCO - lia JN(ç) 
N-m» O < ç < 1 

is assumed to exinf ar>A * 
«isc and is not constant- 

trarily, say by H(x )-1/2. With « Entity xq is determined arbi- 

thdeR t0 the Chernoff-Savage Theorem it relatÎVely "lld re««l«rity conditions ;ohe 7'obi*"^ S- Ltzs nr °< 
normal, and since they are Inrf.« j 1,1 ®2N are *8y"«Ptotically 
the higher order r I independent so also is their y 

probability, as N s^haTt^ ^ ^ 

by an application of Cramer's ^0^2^ °f TN ls e«ablished 
«» 128J. In particular, 

SiS2£a: If (v (lit))» n 

1 2 J"I 8re »utuaIly Independent sequences 
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J" °bt“,lned hwogeneous sampling of a stationary Gaussian 
process with absolutely Integrable covariance function, and if 

1. 

2. 

J(H) - lim J (H) exists for 0 < H < 1 and is not constant 
K-*« 

fi “ %(!//!*)* 

wh€re: Ij, - (x: 0 < Hjj(x) < 1} 

3* JK(1) - o (v'ÏÏ) 

4. 

6. 

[•J(1)(H)| - 1^1 
dH1 

1 K[H(1-H)]"i-1/2 + 6 

for i - 0,1,2 and for some 6 > 0 

5. Jj|(*) is monotone increasing in its argument. 

rí lIfÒÍ Iüíhtl0n * “”lfor* LÍP»lilti cooJitlon on (0,1), 
1..., lor «ch ,o c (0.1) th«r. «l.t. ««(«)> 0 «d « M lod.pcn^nt 
of x such that 

o 

¡J(x) - J(xo)I < M I* - xo| for |x-xo| < 6(xo) 

then for fixed F, G and the statistic is asymptotically nontrivially 

normally distributed as m,n and hence N 

harm tIÏ* ^ thÍ8 bh€0re* ls f«*rly lengthy and will not be given 
tare. Let us merely remark that the conditions 1-4 follow from the original 

'll11* condltl°“ S-6 have been added to allow appli- 

ral LÍMÍt TheoreB and to «tablish the higher 
order nature of the terms when the data is no longer i.i.d. The condi¬ 

tions 1-6 can all be shown to hold for the Mann-Whitney statistic. 

sinale "î* precedln* result do^ not apply directly to the 
•ingle channel Wilcoxon detector or the Kendall r detector. Some comments 

ï -- 
The notation y - op(N' means p - lim y/N > 0 

/ 
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are appro- 
concerning the 
priate. 

situation with respect to these latter detectors 

If fictitious and V2 channels are identified with the positive 

and negative samples and the observations ranked with respect to magnitude 

f1 29I that the Wilcoxon statistic can be represented in the 
fr°™ 0^f%linear "nk statistic. It would appear then that the extended 

^?0rem Íi appllcable to the single channel Wilcoxon detector. 
T S Í conclusion is the fact that while each of two sum. called 

and above are shown to be asymptotically normal, the two sums are IN “2N 

no longer independent and unless one can prove they are jointly asymptoticallv 

normal, one cannot conclude [30] that their sum + B^ is asymptotically 7 

normal. A proof of the joint asymptotic normality of these sums appears dif¬ 

ficult, and consequently it is not yet possible to establish the asymptotic 
normality of the fully-ranked Wilcoxon detector. 

The situation with respect to the Kendall r test presents another 

problem as it is not a linear rank-order statistic. Nevertheless, in the 

independent case the Kendallt statistic can be shown to converge in mean- 

t° Jhe Spearman Rank Correlation test [31,13]which is a linear rank- 
order statistic. In the case of correlated input data, if this convergence 

continues to hold then an application of the extended Cheraoff-Sava*e result 
will have established the asymptotic normality of the Kendall r statistic 

Due to the extremely complicated nature of the computations involved it h¿s 
not been possible to show that this is the case even for Gaussian data 

Thus the asymptotic normality of the fully-renked Kendall t statistic remains 
an open question. 
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APPENDIX IV 

ANALYSIS OF THE DECISION DIRECTED RECEIVER 

The estimate of the prior probability of a one, p , satisfies 
n 

1_ 
n 

n 

X 
i=k+l 

/n z 
o 

1 
2¾ m 

u(* ) is the unit step function and z is an initial estimate used until time 
k + 1. ° 

The regression function is the expected value of the bracketed 
change as a function of p (the subscript is now dropped for convenience: 

m(Rp) = E^C P - u< ^ - ¿jj- ¿n )] 

* P - Prob (deciding "one" given p) 

* P - P<tKX - — /n - (l-p)<D(-x(n j¿.) 

where p is the true prior and ♦(• ) is the normal distribution function. 
The aeros of m(ft p) determine the convergent values of the estimate as 
n -• «o. Plots of the form of m(£, p) appear in Fig. 20 in the text. 

There is a critical signal-to-noise ratio \ such that if X > X . 
c c 

there exists a stable convergence value, 0 <ß <1 if 0 <p <1. 
oc 

m«^) - P i* not aero, however, except as X - « or if p * 1/2. This bias 

is calculated and appears in Fig. 21. 

It is imporUnt to evaluate or at least bound the probability that 
the estimate converges to one or aero rather than p . It is possible to 

00 

get an upper bound by the following reasoning. Suppose that another 
estimation scheme is proposed where if p ever exceeds some fixed 
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value, X < 1 for any n, it is absorbed (fixed» at x _ 
that the threshold is fixed at w > <= furthermore, suppose 
nf * ( 7 X »'"i1**/*). Since X > p, the probabiUtv 
of absorption at x is increased over the variable proDaDiiity 
orobabilitv nf aka„.r,* * vari^oie threshold case. Thus the 
p ooability of absorption at x is a bound on the probability of converaina tn 

where ‘ÎY ^ 8ChCm'- “»‘her echeme can be prop'.“* 
where ,f Pn ever goee he!»» eon,, value y. then the ee.hnate t. ab.orbed 

ST oi *h' tw<> Pr°babilitiea oí absorption at * or y pro- 
vides an upper bound on the probability of runaway. Y P 

*andineTth|!LPrbaHUity 80iag ib°V' X ^11 b* «-¡<*«.<1 with the under- 
standing that an abvious similar analysis exists lot gome below v This 
probability can be expressed as 8 Y* Thl® 

probri- £1 »i+ x] 

where for convenience is used in place of the random variable 

u(- 1 x 
in --) . 

^ 2\ ^ i-x 

The probability can be rewritten as: 

n 
Prob[ k(x-ZQ) + L (x-O.) < 0] . 

i*k+l 1 

This probability satisfies the following difference 
equation (cf. Feller (3¾ ): 

S W(x,H*+x-l + (1 - s+x 

where 

Kz = probability of absorption storting at the value z » k(x - * ) 

w(x) ■ probability that ^ = 1 at any step 

= x - m(x, p) 

The solution is subject to the boundary conditions 
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K, = o z < O 
lim u s O 

z 

Proceeding in the usual la.hion for linear difference equations solutions of 

the form H = y are sought so that y satisfies 

x-1 
f(>* = ir(x)y +(1- ir(x))y - 1 = 0 . 

Unfortunately this polynomial may have an infinitely countable set of roots. 
However, a bound on the solution ^ can be found by first noting that y = 

is one root, and since f(oo) = f(0) = w. there must be at least one more real 
root in the range 0 <y<oo (including possibly a double root at y = 1). If 
there is a real root, y , such that 0 < y < L then 

O 'o' 

P < V 
z- Z 

This is true because * y* - ^ satisfies the difference equation, 

as s - « and Wx > 0 for z < 0. This implies that ^ is a probability and 

hence 

w -• 0 
z 

or 

way - P >0 
Z ' O Z — 

Fortunately there is such a root, yQ, between zero and one if (and only 
if) 

M 
(LlxHx) k ! 
x(l-tr(x)) < * 

This condition is always satisfied if X < Xc for some x. That the above is 

necessary is found by differentiating f(y) and noting that f(y) a o has only 
one solution for 0 < y < oo, the solution being for y equal to the above 
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expression. Hence the minimum of f(y) exists at th* ™ . 

a roo, the tett a„d hJTo, Zl Th ^ ^ ^ 

on6' ,h6re 18 P-itiva root which i. l.'e, tlïl'oTuy™ ^ " 
7» rM < 1. 

root of f(y) and then mi^TlTing^bou^d by finding the real 

easily done by iteration. Starting with an initïüÎ íalue X* ^ 

y oo ir(x) l/(l-x) 
» 

successive iterations of the following 
f(y) = 0 converge to y : rearrangement of the equation 

yo(n+i) = (ir(x) + (1 - ir(x))yon)1/(1‘x> 

In fact, as X - „o, ^ 0. Hence, 

yQ ^ r "(x)]1^1'*) 

So for large X: 

Pz < vz - [ «(x)J8/(1',‘* 

F urthermore, 
that suppose that x is determined as a function of 

a. in such a way 

X - 
2X 

¿n -« . 

To be specific, for some 0 <a <1, let rx/(l-x)] Then 

^(x) “* P , 
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and 

V 
Z 

e 
P 

2aX 
2 

(1-z ) 
o 

z 
o 

Thiz double exponential behavior in X causes the probability bound to go to 

«ere with extreme rapidity (for p = 0. 5, X = 2. 0, v = 10‘4642). Hence 
z ' * 

for even moderate signal-to-noise ratios runaway can be neglected. 

i T?e where the estimate is updated rather than allowed to con¬ 
verge is handled by replacing the 1/n convergence factor by a fixed con¬ 
stant, « « 1. If or is too large the estimate will not "settle" under station¬ 
ary conditions. If <* is too small the estimate will not "track" well under 
nonstationary conditions. Hence some compromise is called for. Anexam 
ination of the stochastic difference equation reveals that the density f(p) 
of the estimate in steady state satisfies 

where »(• ) as before is the probability of deciding "one" as a function oi 
estimate. Unfortunately it has not been possible to solve this equation 
•xactly. However, if the continuous estimates are quantized in N incre¬ 
ments, A (say A • .001, N « 1000), the probability of any estimate in steady 
state can be determined by a computer solution. 

. ®l"cVhe e,timate- continuously vary for all time, and since the 
probability ofany «Mímate is sonsero (albeit small), at some future time 
the estimate will (with probabUity one) runaway to zero or one. Of interest 

U T* “f*11 (*VCrag® tim® to thi> event* “ this is sufficiently large the 
probability can be neglected. 

The following difference equation is satisfied by m., the mean time 

to reach fixed values x and 1-x starting at a value p: 

with th. bound»ry condition, m » 0, p < x. p > 1 - Thi. equntion can 
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also be solved computationally. 

noise raUo:/rup“^rtrl^P:;3«¿rtLtheestabOV; <0r tar«e 
with an a such that at each time the estimate is chan«d h‘ *" q,“nti"d 
increment A with x M4. Then Uie dS.rlnce eqXn i.^Te“* °“ 

mA = P”!- 
P P+ A + “"’p-h+1 • 

where q _ i - p. Looking for solutions of the form m. = 

geneous equation: p 
to the horno- 

1 = py + qy 

results in 

V = 1, q/p 

The solution to the nonhomogeneous equation is 

P * 1/2 

P = 1/2 

Combining and adjusting for boundary condition. 
results in: 

1 

q-p 
I-M+ -*L-¿M 

(q/p)M - (q/p)N_M 
(q/p)^A - (q/p)M 

P * 1/2 

= M(M-N) + N ¿ - (Ê)2 
Û A 
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Suppose that N * 1000, A = . 001, M = 10 and the true prior is p = 1/2. 

Then X10 by the above approximation. This is a relatively poor 

appraacimatiai; however, since the restoring force is greater on the ends 

then the one step assumption made. 
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