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ABSTRACT

Papers and reports published up to the middle of 1968

in the open literature
of approach. They are
upon. General trends,

and contradictions are

are classified by subject and type
analyzed, discussed and commented
relations between studies, agreements

mentioned.
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INTRODUCTION

Until modern times the oceans were of interest to man only as a
source of food and as a medium that linked and separated the
continents. The catching of fish, the transport of goods from
one harbour to another, and the sea battles between warring
nations, all these took place at the surface. Therefore little

interest was shown in the ocean below the surface.

Recent times have seen the development of submarines, giving the
war at sea one more dimension, and the increasing need of food
for a growing world population, which makes more efficient fishing

necessary.

Connected with this development is a diversity of technical

systems that operate with underwater sound waves and are used for
detecting an enemy (active and passive sonar), distinguishing
friend from foe (IFF systems), tracing schools of fish, or measuring
depth (fathometry).

There is at least one thing all these systems have in common: they
can be considered as communication systems, since each one has a

transmitter and a receiver, between which information is conveyed,

The medium that is used in these communication systems to carry the
information from transmitter to receiver, i.e. the ocean. is

certainly not perfect.

In the first place there is the phenomenon of a sound velocity
changing with depth, that causes the formation of sound channels,

caustics, shadow zones, etc.

Next there is the so-called volume reverberation, introduced by
inhomogeneities in the medium (e.g. fluctuations in temnerature.
salinity, pressurs,and small particles of biological nature). that
influences the signals all along their prupagation path and

disturbs them in a random fashion.

Mureover, in many situations there is not only a direct path
between transmitter and receiver, but also conncction via the

boundaries, especially at longer distances.

s
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The signals that arrive at the receiver via these different paths
may interfere or may be separated in time, depending on the
geometry and the signal duration. If they interfere then one will
probably try to build into the receiver a means of separating them.
In the second case it is likely that the direct arrival will be
given priority, as it carries the least disturbed information.

Then the receiver will have to suppress the superfluous boundary-
reflected signals, because their presence makes the system

temporarily unusable for direct reception.

It is also possible to imagine a situation in which communication
between transmitter and receiver can only take place via the
bottom, or via the surface., This occurs when the receiver is

positioned in the shadow zone of the transmitter.

From the above it can be concluded that it is essential for the
designer of underwater communication systems to know how the
propagation of sound is affected by the medium and its boundaries.

A study of this effect can be split into three parts:

a) The volume.
b) The surface,
c) The bottom.

In this report we shall only be concerned with the surface effect.

As a first step in the study of "Reflection and Scattering of Sound
Waves at the Sea Surface" it seems reasonable to investigate what
work has been done in this field up to the present. The present

literature survey is the result of this investigation.
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1. GENERAL REMARKS

1.1 Definitions and Limitation of the Material

The problem of the diffraction of waves at uneven surfaces has

received increasing attention in the past fifteen years; "this
is due to the growing application of acoustic waves and radio waves in the

centimstre band" (Ref. 45, p. 1).

Often diffraction is subdivided into "reflection" and ‘'scattering",
but these terms are not always distinguished clearly in the
literature, In this work we shall call "reflection" that part of
the diffracted field that travels in the specular direction

(often named "specular reflection"). Waves in all other directions
will be called "scattered waves" or simply "scattering". Scattering
back towards the transmitter (backscattering) is also called

"reverberation".

Mathematically the problem is "marvelously complex" (Ref. 76, p. 1293).
It consists in solving a wave equation for which certain boundary
conditions have to be satisfied, whereas the shape of the boundary
can be extremely complicated. For this reason a general and exact

treatment of the problem has not — so far — been published.

Nevertheless, a large number of publications in the open literature
are devoted to the subject. But they only cover a part of the
problem: all of them are restricted to a special case, and are based
on certain assumptions — sometimes rather arbitrary — that make
simplifications possible but at the same time cast doubt on their

validity. Moreover they all deal with monochromatic waves.

The material can be limited if we consider the type of wave and the
type of boundary. Both sound waves and electromagnetic waves

(e.m. waves) give rise to the same type of mathematics, when
reflection and scattering at uneven surfaces is studied. In fact,
the mathematical formulation for sound waves can be considered as a
simplified version of the one for e.m. waves, because for sound

waves the vector equations are reduced to scalar equations. This

is caused by the fact thau sound waves do not possess the polarization

that is inherent in e.m. waves,

el
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Next, two types of boundary can be distinguished in practice, with

some idealization:

a. The free, elastic boundary (e.g. the sea surface) on
which the wave potential vanishes (homogeneous Dirichlet condition),
i.e. the so called "pressure release" or "perfectly conducting"

surface,

b. The rigid boundary (e.g. the rocky ocean floor) on

which the first derivative of the wave potential becomes zero.

Except for the book by Beckmann and Spizzichino (Ref. 2), we shall
only refer here to publications that deal with sound waves and
perfectly reflecting, free boundaries; we do not, however, attempt

to give a complete bibliography.

1.2 Sound Pressure and Velocity Potential

The terms "sound pressure" and "velocity potential" need some
attention, as the way they are used in the literature may cause

confusion.

The sound waves we are interested in are pressure waves: they can
he described as a pressure field p that varies with time and
position. Closely related to the field p is the wave velocity

potential field u , as

oD, du , (Eq. 1)
dt

where p is the mean density of the medium.
0

For monochromatic waves we have

u = ]u| e tut (Eq. 2)
so that Equation 1 reduces to
P iwpou. (Eq. 3)
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3 It is this relation, only valid for monochromatic waves, that makes

H u and p interchangeable in the wave equation, in the boundary
conditions, in the Helmholtz integral, and in all relations derived
from them.

10
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2. CLASSIFICATION OF THE LITERATURE

The diversity of special cases makes a classification of the
existing literature rather difficult. However, an evaluation of
the most pertinent material can be attempted by classifying each
reference according to whether or not it treats of certain
aspects of the subject. Such a classification is attempted in
Table 1. It is reviewed in Chapters 3 & 4 and conclusions are

drawn in Chapter 5.
The division of the subject into different aspects is discussed

in the remainder of the present chapter. The numbers and letters

in Table 1 correspond to these divisions.

A, TYPE OF INCIDENT WAVE

A.1 Plane Waves

Directions appear instead of vectors, and all surface points are
equally distant from the source. Considerable simplifications

“an be obtained, at the cost of loss of generality.

A.2 Spherical Waves

The source is of finite dimensions (in the limiting case a point
source) at a finite distance from the boundary. This case is

more realistic and more complicated.

B, TYPE OF SOURCE

B.1 Source with Directivity

Radiaticn takes place only inside a limited space angle, which

restricts the active scattering area,

B.2 Omnidirectional Source

In experimental work this type of (point) cource is usually
obtained with explosives. In thcoretical studies the active surface

region becomes infinitely large, causing mathematical difficulties.

“ppe 20-22 11
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C. DIMENSION OF THE MODEL

This criterion has only meaning for theoretical work.

C.1 Two-Dimensional Model

In many cases the analysis is limited to the “plane problem"
(Ref. 45, p. 1). This means that the boundary is considered
to be a function of only one space variable, so that the
"surface" can be represented by a curve z = ( (x). It is
obvious that such models lack general validity: they are to

be considered as a first step to gain insight.

C.2 Three-Dimensional Model

Especially in the case of point sources and point receivers

it is highly desirable to represent the boundary by a function
z = (x, y). In principle the three-dimensional model can

be obtained from the two-dimensional one, at the cost of more

complicated expressions.

D. TYPE OF MODEL

The models used in the literature can all be characterized as
"whysical" models, with one exception: the "quasi-phenomeno-
logical" approach of Middleton (Refs. 59, 60), In the physical
models the inhomogeneity of the boundary is present in the
formulation of the problem from the beginning, i.e. a solution of
the wave equation is sought that satisfies certain boundary
conditions. The phenomenological type assumes an ideal boundary
and ideal wave propagation, and introduces the irregularities
independently of the boundary as point scatterers with certain
statistical properties. It is there that the difficulty of the
method lies, for these properties are not easy to ohtain, We

shall therefore give most attention tc the physical models,

An excellent survey of the models used up to 1958 has been given
by Lysanov (Ref. 45). Although his paper deals only with
periodically uneven surfaces, it has a wider importance, because
many models can be applied to both periodically and statistically
uneven surfaces, He described six methods of attacking the plane

12
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problem, both for free and rigid bkoundaries, discussed their
validity regions, and gave an extensive list of references from
both Soviet and Western authors. The existence of a rather

large number of theoretical models is due to the fact that the
boundary conditions are difficult to incorporate in an exact way.
This difficulty is caused by the complexity of the boundary.

Some more or less arbitrary assumption has to be made in order to
obtain a tractable approach. As for the assumption made, there

are essentially two possibilities:

a, The diffracted field is assumed to have a certain
structure (e.g. it is expandable in a series of plane waves:
Rayleigh Method), after which the parameters are calculated via

the boundary condition.

b. An assumption about the boundary condition is made,
after which the field is calculated, mostly via the Helml.olt:z
Integral (Ref. 1).

More or less parallel to this division runs the division into plane
wave and spherical wave models. But this distinction is rather
artificial, ~ince it is possible to use a plane wave model, which

only deals with directions, for the case of point sources and

receivers, "by selecting the set of appropriate directions" (u.=f. 11, p. 5).

The plane wave models use the methods D.1 to D.5. The spherical
wave models all start with the well known Helmholtz Integral
(Ref. 1) and then use either method D.6 or D.7 to approximate
the first derivative of the field at the boundary needed to

evaluate the integral.

D.1 The Method of Small Perturbations*

The boundary conditions on z = ( (x) are transferrec to z =0
by means of a series expansion in (. The results are identical

to those of D.3, when applied to periodic surfaces.

*From: Lysanov (Ref. 45).

13
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D.2 Brekhovskikh's Method*

This approach is meant for relatively smooth surfaces that can
be considered to be "locally flat", The amplitude of the

irregularities may be large.

D.3 Rayleigh's Method

In this method the assumption is made that the scattered field

can be represented everywhere by an infinite series of undamped
plane waves.

The model was developed for a periodic boundary (see Section 3.2.1),
but Marsh has generalized it for random surfaces (see Section 3.2.2).
The validity of the basic assumption has been questioned by many
authors (see Section 3.2.3), leading to improved versions of the
Rayleigh method (e.g. D.4, D.5).

D.4 Variational Method

This method, developed by Meecham (Ref. 57), is an improvement of
the Rayleigh approach., It calculates more accurately than
Rayleigh the first N coefficientsof the series, by an error-

minimizing procedure,

D.5 Uretsky's Mevhod

Being one of Rayleigh's critics, Uretsky has developed a modified
version of the Rayleigh method, in which the wave equation is
converted into an integral equation via a Green's function

(Refs. 76, 77).

(See Section 3.2.4 for a summary of the method.)

D.6 Kirchhoff's Approximation

This method is also called "method of physical optics" (Ref. 2, p. 6).
It is assumed that at the boundary the first derivative is equal
for the incident wave and for the diffracted wave. This Kirchhoff

approximation is somewhat arbitrary, as has been pointed out by

*From: Lysanov (Ref. 45).

14
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Mintzer (Ref. 61), and is therefore also encountered in a modified
form (Ref. 38). But in all cases the assumptions made leave the

approximation open to discussion.

D.7 Integral Equation Method

The first derivative of the reflected field at the boundary is
estimated via a Fourier integral, which is obtained assuming a
receiver at the boundary. The method is therefore also called
Fourier Transform Method:; it is introduced by Meecham (Ref. 58)
and described independently by Lysanov in his dissertation
(see Ref. 45, p. 4).

£

D.8 Other Models

A model based on a different philcsophy was prepared by Middleton
(Refs. 59, 60). Instead of the classical or "physical" approach
(as used in D.1 - D.7), he used a "gyuasi-phenomenological®
approach in which the surface roughness is introduced as a

-andom distribution of point scatterers on a perfectly flat
boundary. (See Section 3.4 for details.) Still other models that
do not fit in the foregoing scheme can be found in Beck..ann's
book (Ref. 2). Some of them are non-Kirchhoff methods.

E. TYPE Of SURFACE

Three types of boundaries can be distinguished, ranging from a
pour approximatiun of the true ocean surfice to a more realistic

one:

E.1 Periodic Surfaces with Deterministic Profile

This type of boundary can be described exactly without invoking
probability theory. A rigorous treatment of the problem is
possible, mostly involving the (Rayleigh) expansion of the

reflected field into an infinite set of plane waves,

15
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E.2 Periodic Surfaces with Randem Profile

For this type, probability theory is needed. The spatial

correlation function of the surface elevation is periodic.

E.3 Random Surfaces

In this case the surface elevation and the slopes are considered
to be stationary Gaussian processes, This is done primarily
because only then can the analysis be continued up to a level
where some conclusions can be drawn. Fortunately measurements
at sea of elevation and slope have shown that the assumption of

a "Gaussian sea" is satisfactory in most cases (Refs. 4, 24).

F. TIME

F.1 Time-Independent Surfaces

The larger part of the papers assume for simplicity a surface

that does not depend on time.,

F.2 Time-Variant Surfaces

More realistic is a surface of the type z = (¢ (x, y; t). Then
phencmena like Doppler-effect and frequency smear can be studied.

G. RELATIVE ROUGHNESS

Only in papers .. a very theoretical character is there no
statement about the relative size of the irregularities with
respect to the wave length of the incident radiation. In others

a "roughness parameter" appears, very often formulated via the
Rayleigh criteerion of roughness. This roughness parameter y is
proportional to the ratio h/\, vhere h is the surface amplitude
or the standard deviation of the surface elevation and )\ the
wavelength of the incident radiation. Then one or both of the

following possibilities are considered:

16
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G.1 Rough Boundaries ;
If the correlation between the elevation of neighbouring surface
points is low, the surface is relatively very rough. Shadowing

can occur at lower grazing angles, Scattering is diffuse,

G.2 Smooth Boundaries

Surfaces with good correlation are relatively smooth. Specular

reflection is dominant.

H. THE SUB-SURFACE LAYER

Since the sea surface is the interface between air and water,
both "elements" can mingle to a certain extent under favourable
win'l conditions. In this case the sub-surface layer contains

a large number of small air bubbles that can produce a kind of
volume scattering. In many.cases the effect of this on surface
scattering can be neglected; in certain cases, however (high
wind speed, small grazing angles), the volume effect can
screen the surface effect.

-

H.1 1Ideal Layer

It is assumed that only the boundary causes the scattering and

reflection and that the ocean itself is ideal everywhere.

H.2 Inhomogeneous layer

In theoretical work this type is discussed by Lysanov (Refs. 46, 47).
Many experimenters assume its exirtence in their explanation of

data. The presence of air bubbles below the surface up to a certain

depth, or a layer in which the sound velocity increases linearly

with depth, is assumed.

17
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I. THEORY AND EXPERIMENT

I.1 Theoretical Studies

The papers in this group are of a purely theoretical character,

i.e. without experimental verification of the results obtained.

I.2 Experimental Work

In this grou; the results of experiments, mostly carried out at

sea, are presented.

I.3 Comparison

Several papers start with a theoretical model, which is followed
by a comparison with own data or with data from other publications.

Experimenters may also "borrow" a theoretical model for comparison.

J. MAIN SUBJECT OF THE PUBLICATION

Almost all publications assume the characteristics of the surface
to be known, i.e. they descrvibe the surface with a deterministic

and periodic function, or presuppose the statistical properties of
the boundary. Tlicse publications deal with the following subjects

and quantities, .

J.1 Rigorous Solution of the Wave Equation

In papers of a very theoretical character Rayleigh's expansion of
the fiel', diffracted at a periodic surface or at a random

boundary (Marsh - Ref. 48) into an infinite series of plane waves,
is adopted, with or without modification (Uretsky - Refs. 76, 77 «»
and Meecham - Ref. 57) for the surface "valleys}; the amplitudes

of the waves are calculated. In the case of a random surface this

is done via Wiener's Generalized Harmonic Analysis.

J.2 Amplitudes of the Diffracted Field: Reflection Coefficients

Some model studies have been performed o check the above rigorous
solutions for periodically uneven surfaces, Refl cted and

scattered amplitudes of order zero ( = specular reflection) to

18
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m (m= -1, -2, -3 ..., have been measured (backscattering).

Sometimes the results are normalized to obtain reflection
coefficients. Measurements at sea have also yielded a reflection
coefficient (Refs. 42, 67).

J.3 Second Order Statistical Moments of the Diffracted Field

In this category the following subjects are encountered:

a) Reflected and scattered intensity.

b) Power reflection coefficient.

c) Scattering strength (forward, backward).
d) Scattering cross section.

e) Amplitude and phase fluctuations.

f) Spatial correlation of field amplitudes.
This is the largest group, containing both theoretical and
experimental results. In many cases the dependency on grazing

angle, frequency, or wind speed is investigated.

J.4 "Doppler" and other Frequency Effects

A small number of papers recognize the fact that the surface is
time-variant., Then "Doppler effect" and "frequency smear" are
studied.

J.5 Geometrical Shadowing

A special group of articles is devoted to the shadowing of
surface "valleys" by neighbouring "peaks", which can occur at

high frequencies and small grazing angles.

J.6 The Inverse Problem

This is the casc¢ when the parameters that characterize the surface

2re inf{erred from the properties of the diffracted field,

J.7 Sea Surface Wave Spectrum

The theory of a surface wave spectrum is discussed in papers of more
recent date. This theory provides an estimate of the surface cor-
relation function that is more realistic than the arbitrarily chosen

functions in earlier work.

19
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39 Horton, C.W. et al, 211126 f{3t112]|1}131!3
40 Kur'yanov, B.F. 1 211,6(3|1]2]1]1]|3
41 La Casce, E.0. et al. L2 1 |1 236(1 |1 {L,2f1] 3] 2
42 Liebermann, L.N. 2 |1 B 1312 212
43 Liebermann, L.N. 2146
44 Lippmann, B.A. 1 3 111
45 Lysanov, Yu.P. 1 1 1,231 11]1,2

7,813

46 Lysanov, Yu.P. 1 2 {31141 21191
47 Lysanov, Yu.P. 1 11314122112
48 Marsh, H.W. 1 11313 |1 111]1,3
49 Marsh, H.W. et al, 1 213131212 ]|1]1]3,7
50 Marsh, H.W, 1 2131312 111]3
51 Marsh, H.W. 2131312213137
52 Marsh, H.W, 1 3 11
52 Marsh, H.W, 1 {1113 |32 11114
54 Marsh, H.W. et al. 3,6 3124
8 7

55 Martin, J.J. 2 213137
56 Medwin, H. 2 11 (2|6 |3 ]2 |L,2]1 ]334
57 Meecham, W.C. 1 1 14 |1 (1121111123
58 Meecham, W.C. L2 12 |1 |7 |21 113123
59 Middleton, D. L2 1,212 |8 |L,2{2 (1,2 1 12,3
3 4,5

60 Middleton, D. L2 L2 |2 |8 [1,2]2 |1,2 1123
3 4,5

61 Mintzer, D. 2 11 {2 {6 112 111111
62 Murphy, S.R. et al. 1 1 B5 11 1|11]1.2
63 Parker, J.G. 1 2 1311 |1 i{31t12
64 Parker, J.G. 1 2 13 |1 |1 12 |t}|31]2
65 Parkins, B.E. 1 2 {6 (31212 (1(3]3
4,7

66 Patterson, R.B. 1 {8 {13 |1 1 {113
67 Pollak, M.J. 2 |1 2 ]2
68 Proud, J.M. et al, 1 1 {4 {1 (1 }2 (1 }3]2
69 Proud, J.M. et al,. 2 J1 |1 16 |3 |1 |21 )3 |36
70 Richter, R.M. 2 |2 2 |3

21

St P e



s

O Sdattlin | st el

Ref, Author(s) A C|D|E G|H|I|J
no.

71 Rojas, R.R. 3 114
7 Schulkin, M. et al. 1,2 3 13,7
73 Shaw, L. 1 1 115
74 Smirnov, G.E. et al. 2 2 1,3 1,211 |2 |3
75 Smith, B.G. 1 1 315
76 Uretsky, J.L. 1 1 1 12 1 |3 |2
77 Uretsky, J.L. 1 1 1 L,2 11 11 |1
78 Urick, R.J. 2 2 12 |3
79 Urick, R.J. et al. 2 2 12 13
80 Wagner, R.J. 1 1 315
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3. COMMENTS ON THE LITERATURE

3.1 Introduction

The phenomenon of scattering and reflection of sound waves at the
sea surface, generally speaking, takes place simultaneously in

three domains:

a. Time

The ocean surface is continuously in movement, due to winds and
currents, A realistic description of this surface and its
reflection properties is therefore impossible without involving
the time variable. Most promising seems the Neumann-Pierson model
of ocean waves, based on a surface whose elevation and slopes can
be considered as stationary Gaussian processes., This subject is

discussed in greater detail in Section 4.8.

b. Frequency

The scattering and reflection properties of the surface are not
only a function of time, but also of the signal frequency. For
very high frequencies a behaviour similar to "geometrical optics"
is likely: shadowing of "valleys" by "peaks" may occu - (see
Section 4.6), whereas for low frequencies the waves will be

diffracted and reach all surface points.

c. Sgace

The diffracted field depends strongly on the relative position of
source and receciver with respect to the boundary. The shadowing
mentioned in (b) will become increasingly important when the
grazing angle approaches 0. Volume-scattering due to an

inhomogeneous sub-surface layer can also take place then,

A general statistical description of the diffracted field, complete

up to second order statistical moments, therefore requires both

a realistic surface model that takes into account the possibility
of shadowing and sub-surface scattering, and observation of the
field at two separately located receivers, at two frequencies,

and at two instants of time. Only then one can obtain knowledge
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about the following subjects:

Impulse response of the surface
Frequency spreading of signals due to the Doppler effect
(Coherence limits)

Curvature of the wave fronts.

OQur first and general conclusion may therefore be that most of the
papers analysed give a very incomplete description of the scattering
and reflection of sound waves by the ocean surface, as they deal —

roughly speaking — only with the following features.

a. Time-Independent Surfaces

The sinusoidal boundary is often encountered (Refs. 13, 31, 36, 37,
64, 76), and the saw-tooth also occurs (Ref. 68). Both of them are

very rough approximations of the true sea boundary.

The random surfaces are based on the assumption of a stationary
Gaussian process, mainly for computational reasons. Analysis of the
sea surface has shown that this assumption is not far from the truth
(Refs. 4, 24). The spatial correlation function of the surface.
however, is often arbitrarily chosen, e.g. exponential or Gaussian,
again with the ercuse that it makes continuation of the calculations
possible. In more recent publications the Neumann-Pierson model of
ocean wave spectra is receiving increasing attention (Refs. 49, 51,
55, 65, 72).

An intermediate position is taken by the random periodic surfaces
(Refs. 21, 29, 30, 33).

b. Monochromatic Waves

Sometimes, in experimental work, a pulsed-CW source is used (Refs. 17,
28, 32, 34, 39, 56, 67, 68, 69), or even explusives (Refs. 9, 10, 18,
19, 20, 51, 70), but then the analysis is done via narrow-band

filters, reducing it to the monochromatic case again.,

¢. One Receiver

Exceptions are found in the Russian literature (Refs. 33, 34).
(See Section 4.2)

24




d. No Shadowing

This subject is treated separately (Refs. 14, 16, 73, 75, 80).
(See Section 4.6)

e. Ideal Sub-Surface Layer

In experimental work the presence of such a layer is sometimes
hypothesized (Refs. 10, 19, 23, 78, 79). Russian authors have
investigated its influence in some theoretical work (Refs. 29, 46, 47).
(See Section 4.4)

There is one important exception to this general conclusion: the quasi-
phenomenological approach of Middleton (Refs. 59, 60). A very short

description of this approach can be found in Section 3.4.

3.2 The Rayleigh Method and Related Solutions of the Wave Equation

with Boundary Condition

At the end of the 19th century Lord Rayleigh studied the scattering

of sound waves at periodically corrugated surfaces (Ref. 6). His
method can be considered as the first attempt to solve the wave
equation in combination with a boundary condition. It is an intuitive
approach that has been used by many investigators, of. n with
modifications, up to the present day. The Rayleigh method is

described in Section 3.2.1.

The periodicity of the boundary prompted Rayleigh to expand the
reflected field into a set of undamped plane waves. His assumption
that this expansion is valid up to the boundary (which he made to use

the boundary condition) has been questioned by many authors.
"However, ...... N0 rigorous proof of the invalidity of Rayleigh's method has
ever been published" (Ref. 77, p. 402).

Although Rayleigh's method was originally suggested by periodicity of
the boundary, it has been extended by Marsh to random surfaces.

Details of this generalization can be found in Section 3.2.2.

25

VR

B e P N




D

3.2.1. Rayleigh's Method for a Sinusoidal Surface

A simple and straightforward description of the Rayleigh method for
a periodic boundary is given by Beckmann (Ref. 2, Chapter 4), from

which the following is a summary.

A plane monochromatic sound wave with wavelength ) is incident on
an infinitely long periodic boundary with angle of incidence §. In

its most simple form such a boundary can be described by:
z=¢(x) =¢(x+14) (= < x < @), (Eq. 4)

where A 1is the period of the surface corrugation. Because of the
periodicity of the surface the diffracted field is assumed to
propagate in certain discrete modes, making angles 8m with the

vertical that are given by the grating formula:

sin B, = sin § + m A/ A (m = 0, t 1, s 2, oo,

or in terms of the wave numbers k and K
sin 8 = sin g + m K/k. (Eq. 35)

We remark that for m = 0 the reflection is "specular'.

According to Eq. 35, em can only assume discrete values when )
and A are held constant. These are the directions of scattering.
They have the property that in these directions the waves scattered
from individual periods reinforce each other because their phase

difference is an integral number of periods.

For a sinusoidal surface, namely for

¢ (x) = h cos (Kx) (-2 < x < ») (Eq. 6)

Rayleigh calculated the amplitudes Am (m = 0, E 1, t 2, ...) of

the scattered waves via the boundary condition p = 0, where p 1is

the total pressure field. His procedure for obtaining a solution of
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the wave equation, i.e. the coefficients Am, is based on two

assumptions:

a. That the total field can be written as an infinite sum

of plane waves:

p(x,z)==exp[ik(x sin § - z cos 9)]-F Ei Am exp[ik(x sin §_+z cos em)]

m=-—e

(Eq. 7)
(the first term on the right hand side being the incident wave).

b. That this equation holds everywhere above and on the
boundary. This assumptinn is not at all obvious and has been

seriously criticized. (See Section 3.2.3)

With his two assumptions Rayleigh found that for a point (x,z)

at the boundary

exp[-ikC(x) cos e]==- i} Am 5 exp[ime + ik(¢(x) cos em]' (Eq. 8)

m=-e

"Both sides of this equation are now exparded in a Fourier seriss with respect
to x (which will in general result in a double series on the right side) and
the resulting Fourier coefficients are equated. This results in an infinite set
of linear equations, sack of which contains the unknown coefficient Am. By
progressive solution (cr successive approximation) the coefficients Am are tnen

approximated" (Ref. 2, p. 43). Formulae for the firsi coefficients

can be found in Table 2.

The total number of possible modes as predicted by Eq. § is limited
by the condition |sin aml <€ 1. We call this maximum M. For

m >M the condition is violated., Then cos am becomes imaginary
and we have (See Eq. 8) waves propagating along the surface

(Rayleigh surface waves) that decay exponentially with depth,
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The propagation in discrete modes described here is valid for
"surfaces?" ﬁhat extend from -e to +», It is.interesting to note
what happens when the periodic surface is of {inite length. Then
the diffracted field — instead of being cancelled completely
because of destructive interference between the directions given by
the grating formula (Eq. 5)— decreases gradually and then increases

again, when the observer is moved from the direction B to em-Fl'

In this way the so-called "lobes" are formed. Their width increases

as the surface becomes shorter.

For several combinations of 8§, A and kh, Beckmann (Ref. 2)

gives figures that illustrate this formation of lobes (Fig. 1 and 2).
They show that with decreasing value of kh the "roughness" becomes
smaller so that fewer and fewer sidelobes appear and the lobe with

m = 0 (specular reflection) becomes more and more pronounced. With
constant kh anu fj the reflection becomes more specular as §
increases. Both facts agree with a definition of roughness of the

form
x = Ckh cos §. (Eq. 9)

Other authors (Refs. 8, 12) considered an infinitely long
periodical boundary, i.e. they studied the set of amplitudes ;

A A+1, Atz,"Atm. Abubakar (Ref. 8) arrived at some interesting

O’

conclusions:

a. If kh << 1, the non-specularly reflected waves are

small, irrespective of )\, 3pecular reflection is then dominant.

b. If A\ << )\, surface waves can occur. Part of the incident
energy is then trapped in the "valleys", at the expense of the
undamped scattered waves. These can become completely negligible, so
that, if )\ is small enough, only specular reflection (m = 0)

remains. This agrees with Beckmann (Ref. 2, p. 36).
3.2.2 The Marsh-Rayleigh Method for a Random Surface

The methond of Lord Rayleigh for a sinusoidal boundary has been

generalized by Marsh for the case of a random surface (Ref. 43).
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A=10\ 0 =45, kh=6

FIG. 1 DIFFRACTION OF A PLANE HARMONIC WAVE BY A SINUSOIDAL BOUNDARY OF FINITE LENGTH

Wavenumber k 22 7T/ A;
for the surface roughness.

? (x) =h cos{2 W x/A); ongle of incidence 8 = 45°, kh is a measure
From Beckmorn ond Spizzichino ~ Ref. 2, pp. 50-56)
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A=10,0 =80, kk=6 ~o~ A=10), 0 =80° kh =03 o~
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FIG. 2 DIFFRACTION OF A PLANE HARMONIC WAVE BY A SINUSOIDAL BOUNDARY OF FINITE LENGTH

Wavenumber k = 2T1/A; ? (x) = h cos(2W x/A) ; ongle of incidence 0 = 80°, kh is a measure
for the surface roughness. (From . Beckmonn and Spizzichino — Ref. 2, pp. 50-56)
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He published his generalization "in an heuristic form, in order to avoid

presenting the excesdingly heavy analysis required for a rigorous treatment"
(p. 330). This omission of sufficient comments on the basic steps
in his paper, together with a rather large number of misprints,

makes his article somewhat hard to follow.

Marsh's extension of the Rayleigh method is obtained via Wiener's
concept of "Generalized Harmonic Analysis" (Refs. 5, 7). It produces
an expression for the correlation function of the scattered field at
two points in space in a horizontal plane below the rough surface

upon which a plane monochromatic sound wave is incident, but "this
solution is readily extended to include electromagnetic waves, general elastic

waves, and non-planar, non-harmonic sources" (p. 330 - abstract).

The "exact" solution for the problem of wave scattering by irregular

surfaces can be summarized as follows.

A monochromatic plane wave (direction cosines g, 8, Y) is incident
on a random pressure relief boundary S[z = s(x,y)]. For the

diffracted field pl(x,y,z) a plane wave representation is sought by

writing
+oo

P {%,y,7) =J:re><p[—ik(xx + uy - vZ)] dG(x,u) > (Eq. 10)
-

where G(),u) is the generalized spectrum of pl(x,y,z) and

A, 4. v are the direction cosines of the diffracted wave (hence:
\¢ + u? + v® = 1). The expansion (Eq. 10) is a straightforward
generalization of the Rayleigh method for a periodic surface, in
which pl(x,y,z) was decomposed into an infinite series of plane

waves (See Eq. 7).

Rayleigh's second assumption, that the expansion is valid up to the
boundary, is also adopted by Marsh; the criticisms of Rayleigh's

approach apply therefore equally to Marsh (See Section 3.2.3).
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With the boundary condition of zero total pressure and after

normalization of variables: kx = &, Kky = n, ks(x,y) = of(E,n),

02 = k®h?, h® = ((s - (s))?Y and (({ - (C))®) = 1, Marsh obtained

+eoo
exp[-i(c@ + gn + yoC)]tJ;IeXp[-i(lﬁ + un - voC)] dG(yr, w) = 0. (Eq. 11)

After this he expanded G(), y) in a power series in 0:

G\, W) =Z " A (s n) (Eq. 12)
m=0

and the coefficients Am ¢are to be calculated. Substitution of

Eq. 12 into Eq. 11 yields an infinite set of simultaneous linear
equations for the determination of the Am (A, ). By clever
manipulation of these equations Marsh found a simple-looking
expression for the scattered field at a point not on the boundary.
Choosing the coordinate system in such a way that the point of
observation lies in the plame 2z = 0 (this includes: ({(x,y)) # O,

in contrast to most other theories) he obtained:

exp| -i(ag + By + yo() |
1 + X

p(g, ns 0) = - (Eq. 13)

where X 1is a complicated operator closely related to the basic

expression in Wiener's work,

Marsh, Schulkin and Kneale (Ref. 49) have worked out the method in
more detail, assuming ¢ so small that G(), u) can be represented
satisfactorily with three terms of the series in Eq. 12. The
necessary condition for this approximation was not discussed. They
found that
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dA,

-8(r-a) 8(u-p) drdu

dA, = Zin<ge-i(ag+Bn)> dady
(Eq. 14)

dA, = 2Yp(g) * [vF<ge‘i(“g4'5“)>] dadu

where F(-> denotes the Fourier transform and % means convolution.

Equations 10, 12 and 14 with 2z = 0 gave an expression that approximates

Eq. 13.

The correlation function

‘1’(§, n) T (p(gi’ Ny o 0) p%(gq_ t+ g, N4 +n, 0)> (Eqn 15)

then followed easily:

+e
¥(g, m) = e HOEFEN) [yhyyrces(e, m) -4y0? H\m(x- @ u-8) dadu] .

(Eq. 16)

In this formula F(), u) is the "power spectrum" of ((&, n), and
¢(§, n) the surface auto-correlation function; F and § are each
other's Fourier transforms.

The Fourier transform of VY(g, n), called AM(x, u), has an

important physical meaning: it "is proportional to the intensity of waves
procesding parallel to the line with direction cosines }),v. ... In general,
AM will consist of both a discrete and a continuous portion, The discrete
portion, whers AM is singular, represents plane scattered waves of finite
amplitude (such as the specularly reflected wave). For such plane waves, the

integral of AM in the immediate vicinity of its singularity is equal to the
square wave amplitude" (Ref. 48, p. 331).
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Fourier transformation of Eq. 16 indeed gives two terms of different

character:
Mg(Xs w) = 0(a, B) 8(x-a) &(u-8) + T(x, v (Eq. 17)

where (Q is the specular part:

+w
(e, B) =1 - 4yo® HF(&- o, m-8) (1-242 -mz)% dtdm, (Eq. 18)

and T the non-specular part:

T(x, u) = 4y%0® F(r-a, u-8). (Eq. 19)

This last expression is comparable with Eckart's formula for ¢
(see Eq. 47). It shows a similar dependence on the wave spectrum F,

but differs in the proportionality factor,

The specular term ( is used in Ref. 49 for the prediction of the
surface loss per bounce, when a ray travels in an isothermal
surface-bounded channel, whereas the non-specular scattering part T,
also called "spectral reflection" (Ref. 49, p. 338), is considered
in the backscattering studies (Refs. 50, 51). A more detailed
treatment of these and related subjects can be found in Refs. 11 and
54. Comparison of the Marsh theory with experimental data shows

satisfactory agreement (Ref. 51).
3.2.3 The Dispute about the Rayleigh Method

Commenting upon Rayleigh's procedure for obtaining a solution for the
wave equation in the presence of a sinusoidal boundary, Uretsky

remarked that: " The crucial and unjustified step in this procedure is tha
assumption that Eg,. 7 describes the solution sverywhers above the bounding

surface" (Ref. 77, p. 401). Referring to a letter by Lippmann

(Ref. 44) he made it seem plausible that the assumption breaks down
in the "valleys" between the "peaks", because there both upgoing and
down-going waves should be expected. For this reasun he carefully
developed a solution to the problem, based on Green's cheorem,

(See Section 3.2.4). Comparing his results with those of Rayleigh,
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one of his conclusions (based on numerical experimentation)

is " that the Rayleigh equations are useful when the undulations of the bounding
surface are gentle (small hK)" (Ref. 77. p. 421).

Meecham too (Refs. 57, 58) remarked that the validity of Rayleigh's
second assumption is doubtful. He developed a variational method,
for the case of a periodic surface (Ref. 57), which improves the
Rayleigh method via an error-minimizing procedure and a Fourier
transform method for boundaries of arbitrary shape (Ref. 58). This
latter method, in which an approximation of the first derivative

of the pressure at the boundary is obtained via a receiver at this

boundary, is found to be " preferable to previous methods, notably those
which can be classified as physical optics (such as Rayleigh's), since the error
in the transform method is of second order in the surface slope whereas the
error in previous methods is of first order in the same quantity " (Ref. 58,

p. 370 - abstract). Applied to a sinusoidal boundary the method

produces expressions for the amplitudes Am.

The question of the validity of Rayleigh's second assumption has

been attacked from another side by Heaps. He presented "an
investigation of the least possible value of the surface pressure consistent
with the assumption that all the reflected radiation is in the form of undamped

plane waves " (Ref. 37, p. 815). He arrived at the conclusion, after
comparison of his results with experimental data collected by

La Casce and Tamarkin from a sinusoidal model surface (Ref. 41),
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