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ABSTRACT

By invoking the ergodic theorem, most of the important averages of prob-
abilistic systems that can be represented as seni-Markoff systems can be ob-
tained as limits of ratios, preciselyas in the caseswherethe law of large num-
bers is applicable. The procedure i illustrated with several examples.

This paper is published as a Research Contribution to provide as early
as possible the results of CNA supnorting analysis to the Naval, Marine,
and analytical community.

(REVERSE BLANK)



SEMI-MARKOFF PROCESSES

1. There has recently been some interest in the application of
the theory of semi-Markoff processes to problems in ASW. The
purpose of this memorandum is to present some simple proofs of
the main results.

2. Suppose we are studying a system with a finite number of
states 1, 2, ..., K, and that the system changes its state ac-
cording to a given Markoff structure, with constant transition

matrix A = (a..); if xn and xn+1 denote the states at the nth 1
and (n+l) stages, we have

Prxn 1  jx n = i = aij.

We suppose that there is a unique vector <ri" IT

with strictly positive components, and i = 1, for which
i

(Ti' ... ' iK ) A = ( *I' ... , TK) " The ni are the limit-
ingor steady-state, probabilities. We also suppose that a..= 0

for i = 1, ... , K. This structure is fairly common in ASW models,
wherein the states refer to search, being in contact, localizing,
etc.

3. We now suppose also that we are given waiting-time densities
ij (w), such that if a transition from i to j will take place, the

random variable w is chosen from cpij, and the system stays in

state i for w units of time. For simplicity, we assume that w can
take on the values 1,2,3,... only (e.g., minutes), but there is
no difficulty in extending the results to continuous time. (In
some applications, the pij depend only on i, not on j.) If we

now regard the time-history xt of states, t=0,l,2,..., we have a

random process, but it is not Markoff; the conditional probability
of xt+1 given the past is not the same as that given only xt . We



need to know how long the system has been in its present state.
Such a structure as this is called a semi-Markoff process.

4. The way to proceed is clear. We take as the state-space, the
set of all (i,T), i=1,2,...,K; '=1,2,..., in which the first coor-
dinate i is one of our original states, and T denotes the time
elapsed from the instant the system entered i to the present time.
For exE ple, suppose the first few i's are i=2,6,3,1, with waiting
times = 3,5, 4. The graph of i versus t is as follows:

i
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The states (i, ) are: (2,1), (2,2), (2,3), (6,1), (6,2), (6,3),
4 (6,4), (6,5), (3,1), (3,2), (3,3), (3,4), ...

THE ERGODIC TEORE

5. It is easy to see that the random process (it,rt) is a Markoff

process, for all the information contained in the past (i 1 , 1 ),

(i Tn) is already contained in (i ,T n ), as far as the con-

ditional probability of (in+ , n+l) is concerned. Moreover, be-
nause of our assumption on the matrix A = (aij], it also follows

1)
that our present structure is irreducible, and every state (i, )
is recurrent. Therefore, if the (unique) limiting probabilities

a.
i,T
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are used as the initial probabilities on (i,T) for t = 0, our
process (it, t ) will be a stationary process, and the "ergodic

hypothesis" will be valid; ea.semble averages and time averages
are equal.

6. More precisely, let 0 denote the space of all sample functions

(itTt), t = 0,+ 1,*2,... (extending to the past as well as the

future). Let F(w) denote a function defined for each sample
function w. Then

r F(w)dP(w") lim F(MI+ F(U ) + - +F(Unw)
= n-o n + 1(1)

for almost every w. Here P denotes the probability in 0,
and UW is the sample function obtained by shifting w one time
step to the left. As an example, suppose f(i,T) is a given
function of i and T. Define F(w) on 0 as follows: If

W -- (i_lI,7_i), (i T 0 ), ii,71! .,  (i2,T72), --'

then put

F(w) = f(i0 , 0).

Since fF(w)dP(w) = E[f(i,T)], we have from (1),

=n)-lim [f(i 0 ,. 0 ) + f(il,Tl) + .. + f(i, 'n)]/n

E[ f] + 1~ /

(2)

7. For the applications, we are usually interested in the lim-
iting value as t - w of some probability or expected value
associated with our process (it, t). This limiting value, or

steady-state value (which is independent of the starting position
of (i,T)) is the same as what we would obtain for any value of t
if we started our process with random values of (i,T) whose prob-
abilities were equal to the limit probabilities of (i,T) as
t - -. This implies that our answer is obtainable in Q, in the
form JF(w)dP(w), and then (1) can be invoked.

-3-



~i *EXAMPLES

8. We begin with the limiting values

a .lira Pr[ (it, t ) = iT (3)

ror this purpose, we define F(w)in fl:

for w P< iv Trv> : v - 0, 1, v 2..

1i if (i01' 0) - (i, (4
F(w) - 0 if (io'o (i)

Then

- f F() dP (w)

- li go+ 91+92 " '' + n  (5)
~ + 1

in which J if (iV, V)  (,)
9V to otherwise.

Let us start with (i0 T0) (1,1), and let our sample function

be of the form

(1,I), (1,2)1,..,(lWl), (i2,1), (i2,2) , ... (i2,w 2 ) •

c l -2 wk )

with
fn = w1 +w2 +...4"Vk " There are k possibly different

is in this segment 0 < t £ n, and each is repeated wm times.

Wit will have roughly k~r of them equal to i (cf. paragraph 2);

fox each im that equals i, we will have exactly one v =- if 1'

and only if vm : T, and none if wm < T. Now, given that i m  i,

* -4-
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the waiting time density in state i is

C i (w) =. ij (w) ai (6)

So the probability that T wi given im =,

is is def

cpi(w') = Ei (T) (7)
w I=T

It follows that roughly krriEi(T) of the 's in (5) equal 1, and

the quotient in (5) is about

)rri E i (T) Ti Ei (T)1

n1 = (w1+ w2 + ... + Wk)/k (8)

Cn the denominator, we have in the sum wI + ... + wk about

ktfr w's from yj2(w),, kar etc. ,aet

2 w' frol(%? (w

w1l

the mean wait-time in state i. Then we have

w1 + ... + wk ~ku 1 1 +TT 2 2+ ... + krKI

and (5) and (8) now give

a.T = _ "ii (

'lWl + --- + 'K WK

-5-



i.e.,

ai, - ~"~P ( (9)

This is an important ..su!L.

9. We may also require

1 =  m Pr it= (10)

Evidently, we have

a Ya
i i =. 1 ,i'

We use (9) and observe that

Ei wCP(w) w(1

so that w (12)
i Wji

This is also important. Note the difference between TTi and a..

10. In a forthcoming memo, D. Culbertson defines his states
not as we do, but by (i,y), in which i has the same meaning as
ours, but y denotes the time remaining in state i until the
next jump. Using our set-up, take y fixed and i fixed, and de-
fine F(w) in 0 thus: if

-6-



= < ... < 0 ,¢> ,  < i T 0  + i ,. .< i 0 ,1w > < i l >

I if w -T 0 +1 y and i 0 i
put =(W

0 otherwise

Then F(w) = 1 if and only if the system is in state i and the
time remaining at t = 0 until a new state is reached equals y.
Then

I def

F(w)dP(w) Pr I i t y i,y (13)

From (1), we have

S lim i + 2+ + n, .a (1 4 )
i,y n- n

in which each

I i if iv = i & - + = y
9V= 0 otherwise

in which wm is the waiting-time for the currently occupied state.

Now, given that i, = i, let w denote the waiting time for the

current sojourn in this state. Then the T's that we would observe
are T = 1,2,...w while the y's are y = w, w-l,...,l; i.e., ex-

actly one of the y's will equal our specified y if and only if
one of the T's does. Therefore the argument given in paragraph
8. holds here also, and we get

7Ti Eik(Y)
-. = .. (15)

-7-



the (i,)'s and (i,y)'s have exactly the same distribution.

11. Another question that is often of interest concerns the mean re-
turn time to state 1, given that the system has just left state 1.
By examining a few typical sample functions (and their graphs),
we quickly see that

E [return time to state I system just left state 1)

JFdP

J~dP (16)rG d

in which

(smalle,,t positive t for which it 1 if i 0 =1
F(w)u otherwise &iI $ l

and 1i if i0 = 1 & i1 * 1
G (w) = otherwise.

By (1), we obtain

Z [return time Ijust left] tl + t 2 + + tn (17)
91n- 1 + 2 +  n

in which the t and g are obtainable from any one sample function.

Most of the tv and g are zero. It is only when we have an i = 1
and +!± 1 that t > 0 and t = 1. So (17) can be written:

I E~return time Ijust left] = 2m (18)
k

I -8-
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in which k denotes the number of times we observe the system leave

state 1, up to time n, and W is the mth return time. Let r denote
the number of actual transitmons (a change in i) that occur up to
tire n. Then roughly k = rn1 = no. of times i = 1; ...r. = no.

of times i = K. Therefore the numerator in (18) is roughly

2 2 + r 3 3 + .. r,. and since k = n1 r, (18) becomes

. [return time I just left i=l]

'r + 
+

1T1 w 1  1

a + a +
01 (19)

using (12). For any state i, the mean recurrence time is

1-a.

E~return time I just left i. = . W . (20)
1

12. Our final example concerns the observed waiting time dis-
tribution for a given state, say i = 1. When the steady-state
condition prevails, we observe our system, and given that i = 1,
we inquire when it arrived in i = 1 and when does it leave, and
call the difference, departure time minus arrival time, the

wait-time (or sojourn time). The distribution of this variable
is not the same as the given wait time distribution. We denote
this variable by w, and we calculate its characteristic function

E[eJW).

Put F() = j XW if i= 1
~w 0 if i 1

.9-



and G(W) 1i if i0=1

0 if i; +1

'Then

E[eJCw i- 13
JQGdP

and by use of (1), and arguing as in the last paragraph, we have

i- e-a 1r ~li + +w ejawk

z kL w1 +

In which wI ,..., Nk denote k sojourn times for i = 1. Dividing

numerator and denominator by k and going to the limit, we gat

x - - ; (21)

it follows from (21), that the distribution we are seeking isgiven by the density function

V (22)

In case. 9l(w) has the form ol(w) Xwe the true mean
-1

holding time is W = - but.by (22), what we observe if we
use the procedure outlined at the beginning is W = 2X-
This is the so-called "inspection paradox."

-0-
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