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ABSTRACT

By invoking the ergodic theorem, most of the important averages of prob-
abilistic systems thatcan be represented as semi-Markoff systems can be ob-
tained as limits of ratios, preciselyas in the cases where the law of large num-
bers is applicable. The procedure is illustrated with several examples.

This paper is published as a Research Contribution to provide as early

as possible the results of CNA supnorting analysis to the Naval, Marine,
and analytical communiiy,
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SEMI-MARKOFF PROCESSES

1. There has recently been some interest in the application of
the theory of semi-Markoff processes to problems in ASW. The
purpose of this memorandum is to present some simple proofs of
the main results.

2. Suppose we are studying a system with a finite number of
states 1, 2, ..., K, and that the system changes its state ac-
cording to a given Markoff structure, with constant transition

matrix A = {aij}: if X, and x denote the states at the nth

th n+l
and (n+l) stages, we have

Prix ,, = Jlxn =i] = 35

We suppose that there is a unique vector <ni, cees T>

with strictly positive components, ande n, = 1, for which
i

(g, «ees ) A= (T, ..., nKL The m, are the limit~

ing, or steady-state, probabilities. We also suppose that aii= 0

for i =1, ..., K. This structure is fairly common in ASW models,
wherein the states refer to search, being in contact, localizing,
etc.

3. We now suppose also that we are given waiting-time densities

wij(w), such that if a transition from i to j will take place, the

random variable w is chosen from ¢ij' and the system stays in

state i for w units of time. For simplicity, we assume that w can
take on the values 1,2,3,... only (e.g., minutes), but there is
no difficulty in extending the results to continuous time. (In
some applications, the wij depend only on i, not on j.) If we

now regard the time-history X, of states, t=0,1,2,..., we have a

random process, but it is not Markoff; the conditional probability
of X1 given the past is not the same as that given only Xy - We
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need to know how long the system has been in its present state.

Such a structure as this is called a semi-Markoff process.

4. The way to proceed is clear. We take as the state-space, the
set of all (i,1), i=1,2,...,K; +=1,2,..., in which the first coor-
dinate i is one of our original states, and r denotes the time
elapsed from the instant the system entered i to the present time.
For ex: ple, suppose the first few i's are i=2,6,3,1, with waiting
times v = 3,5, 4. The graph of i versus t is as follows:

i
¢
5
4
3 S ———————
2 f—
1 —
0 5 10 is T

The states (i,7) are: (2,1), (2,2), (2,3), (6,1), (6,2), (6,3),
(6,4), (6,5, (3,1), (3,2), (3,3), (3,4), ...

THE ERGODIC THEOREM

5. It is easy to see that the random process (it,rt) is a Markoff
process, for all the information contained in the past (il,Tl),
coe (in,Tn) is already contained in (in,Tn), as far as the con-
ditional probability of (in+1,Tn+1) is concerned. Moreover, be-
cause of our assumption on the matrix A = {aij}' it also follows

that our present structure is irreducible, and every state (i, T)
is recurrent. Therefore, if the (unique) limiting probabilities

g.
i,T




are used as the initial probabilities on (i,T) for t = 0, our
process (it,Tt) will be a stationary process, and the "ergodic

hypothesis" will be valid; easemble averages and time averages

are equal.

6. More precisely, let 0 denote the space of all sample functions
(it,Tt), t =0, 1,%2,... (extending to the past as well as the

future). Let F(w) denote a function defined for each sample
function w. Then

. n
‘[ F(u),)dP(w,) = lim M‘%‘%A—n‘i‘ﬂ_‘”)—_ (1)

N~
Q

for almost every w. Here P denotes the probability in Q,

and w is the sample function obtained by shifting w one time
step to the left. As an example, suppose £(i,7) is a given
function of i and 7. Define F(w) on O as follows: 1If

w =<000 (i_llT_l)l (iolTo)l (ill—‘.l).l (12172)1 °°'> 14

then put

Flw) = f(io,‘ro).

Since JF(w)dP(w) = B[ £(i,1)], we have from (1),

ECF) = MR [e(ig, 1) + £(i,")) + ... + f(in,Tn)J///n +1
(2)

7. For the applications, we are usually interested in the lim-
iting value as t ~ = of some probability or expected value
associated with our process (it,ft). This limiting value, or

steady-state value (which is independent of the starting position
of (i,T)) is the same as what we would obtain for any value of t

if we started our process with random values of (i,T) whose prob-
abilities were equal to the limit probabilities of (i,T) as

t - ». This implies that our answer is obtainable in 1, in the

’
form jF(o)dP(w), and then (1) can be invoked.

0
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EXAMPLES

8. We begin with the limiting values

o .= Lim Pr[(it,‘rt) = (i,1] (3)

T ¥ (emmm——

A a

For this purpose, we define F(w)in Q:

3 g forw={< iv -rv>=v-0,=t1,\g2,...}
- 1 if (89,79 = (4,7
3 P(o) = (4)
0 if (iy, 7y # (1,7
f g Thsn
oiip = | Flw)aP(w)
a
Eot 51+85...48
- v w (s)
in which

]1 if (i,,7) = (i,7)
3 g = v )
; v \0 otherwise.

Let us start with (io,'ro) = (1,1), and let our sample function
be of the form

b2 O e

(1,1),(1,2) 00, (1,9), (ip, 13, (p,2) 4.0 o (i, W)

MR Y Al

i; oooo(&ll)l(iklz)l"'(iklwk)aooo

TV TR

with

ns= w1+w2+...w There are k possibly different

k *
in'l in this segment 0 < t < n, and each is repeated L times.
Wo will have roughly k"i of them equal to i (cf. paragraph 2):;
for each :l.n that equals i, we will have exactly one 7 = T if

and only if v, 2 1, and none if W < 1. Now, given that im = i,

! -4~
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the waiting time density in state i is

(Pi(w) =Zj ¢ij (w) aij . (6)

So the probability that 7 < W given im =1,

is Lt def
T s (w') = E (7) (7

w!=T

It follows that roughly kniEi('r) of the 2's in (5) equal 1, and

#’ the quotient in (5) is about
‘ kn.E. (1) _ niEj_(-r) )
‘ n (Wt wy + ... + wy) /k

¥n the denominator, we have in the sum w1 + ... t Vi about

knl w's from cpl(w) , knz w's fronm q:z(w) ., ete,  Lat

[ ]
;i = z (pi(w)w ,
w=1

the mean wait-time ir state i. Then we have

t} ' Wy + cee. + wk"' kﬂl Wl +:kn2w2+ ces + anwK ’

and (5) and (8) now give

_ mE; (1)
117 st
11 7 e T T Yk
-5-
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i.e.,

o . = __TiEM (9)
' 2"
3

This is an impcrtant resuic,
9. We may also require
_ lim . s
O, = p=w PT [1t- 1] (10)

Evidently, we have

We use (9) and observe that

Sam =Y wym =7, (11)
T=] w=l
so that T W
T
o, = - (12)
zj"j"j

This is also important. Note the difference between m, and Oy

10, In a forthcoming memc, D. Culbertson defines his states
not as we do, but by (i,y), in which i has the same meaning as
ours, but y denotes the time remaining in state i until the

next jump. Using our set-up, take y fixed and i fixed, and de-
fine F(w) in Q thus: if

.6-
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W =< Le00s <i0,70>, <i0,'ro+l>,... <iolw >,< 1111> i

.’..>
1 if w -~ o + 1 =y and io = i

put F(w) = .
0 otherwise .

Then F(w) = 1 if and only if the system is in state i and the
time remaining at t = 0 until a new state is reached equals y.
Then

- . def ~
f F(w)dpP(w) = Pr i, =i&y = y] = %.y. (13)
a .
From (1), we have §
N _ lim gl +_EZ;+ ces + gn '
S5,y = now = (14)

in which each

1 if iv = i & Wp =T, + 1=y

v ~ |0 otherwise

in which v is the waiting-time for the currently occupied state.
Now, given that i = i, let w denote the waiting time for the
current scjourn in this state. Then the 7's that we would observe
are T = 1,2,...w while the y's are y =w, w-1,...,1; i.e., ex~-
actly one of the y's will equal our specified y if and only if

one of the 7's does. Therefore the argument given in paragraph
8. holds here also, and we get

= _ m.E. (y)

i,y -—
‘ E:jnjwj

(15)

~o




the (i,T)'s and (i,y)'s have exactly the same distribution,

1l. Another question that is often of interest concerns the mean re-
turn time to state 1, given that the system has just left state 1.

By examining a few typical sample functions (and their graphs),

we quickly see that

E (return time to state 1 | syetem just left state 1]

L)

F dap
= —i (16)
[ ¢ ar
‘o
x in which
L P smallest positive t for which i = 1 if ij =1
; F(w) = & i# 1
o 0 otherwise
“? and 1 ifig=1 &i, #1
: G(9) =19 otherwise .

P

;o By (1), we obtain

1im 5t L+ .8 19
n-e §1+§2+...+§n

E [return time | just left] =

AT

" in which the t  and § are obtainable from any one sample function.
Most of the t, and g, are zero. It is only when we have an i, =1
and i“_l:h 1 that t,> 0 and §, = 1. So (17) can be writter:

TRPET TR

- W, + W, + ... + W
i 1 lk X (18)

3 E Elreturn time | just left] =

3‘-‘”.
3
[ -]
]

TR
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AT

in which k denotgs the number of times we observe the system leave
state 1, up to time n, and Wﬁ is the mth return time. Let r denote
the number of actual transitions (a change in i) that occur up to

tire n. Then rougnly k = rm, = no. of times i = 1; .+ XM, = no.
of Eimes i'f K. Therefore the numerator in (18) is roughly
£, W, + rn3w3 + Lo XMW and since k = W (18) becomes
E [return time | just left i=1]
nf@+...+nw
= KK w
T oW 1
o, +
I TS WAL -
N Wy (19)

using (12). For any state i, the mean recurrence time is

1 -0,
Elreturn time | juwt left i) = W, . (20)

C. 1
1

12, Our final example concerns the observed waiting time dis-
tribution for a given state, say i = 1. When the steady-state
condition prevails, we observe ocur system, and given that i = 1,
we inquire when it arrived in i = 1 and when does it leave, and
call the difference, departure time minus arrival time, the
wait-time (or scjourn time). The distribution of this variable
is pot the same as the given wait time distribution. We denote
this variable by w, and we calculate its characteristic function

E[ejaw].

Put F(w) = {ejaw if 10 =1
0 if 10,¢;l

— .
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and G(w) = 31 if i) =1

0 if ic + 1

‘vhen ' [ F dp
Ele? ™| i = 1] =

Io G ap

and by use of (1), and arguing as in the last paragraph, we have

jow Jow,
- . w, e l +... +W e k
B'{ejaw l i"l} o lim 1 k
ke~ wl + eeo + Wk

in which Wireses Wk denote k sojourn times for i = 1. Dividing

numerator and denominator by k and going to the limit, we geot

E[wejw i=1]

3[050‘-‘" | i = 1] =

w
wa(w)ﬂw

= Iej“ —= ; (21)

it follows from (21), that the distribution we are seeking is
given by the density function

wo. (w)
"'é—'— . (22)

In case. cpl(w) has the form wl(w) = A e-)‘w; the true mean
holding time is W = k-l; but .by (22), what we observe if we
use the procedure outlined at the beginning is W = 27\":L
This is the so-called "inspection paradox."

-10.
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