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ABSTRACT

This report presents a summation of the work performed under the
Artenna HF Optimization Study, a study to determine the optimum log periodic
dipole ar-ay design for a high gain, low coverage HF antenna over real and/or
ground screen covered earth, The major problem encountered is one of dester-
mining antenna electrical characteristics accurately in iree space and in a real
earth environment, The present state of the art in analytical antenna design
does not allow the eagineer to predict log periodic antenna electrical character-
istics, especially over real earth, with sufficient accuracy to be valuable for
strict system requirements, To solve this problem, a mathematical model of
2 log periodic ante:.:a is set up and solved with the use of high speed digital
computers, The model used allows cne to obtain the current distribution on
the antenna knowing only its physical dimensions and something about the con-
ductivity of the material used in its construction, The theoretical model, which
treats the antenna as a boundary value problem, automatically includes all the
interactions or mutual coupling between elements. ¥ rom the computed values
oi the currents on the antenna all electrical characteristics of the antenna, such
as radiation patterns, absolute gain, and input impedance are calculated.

Theoretical and measured UHF radiation patterns and gains are compared for

evaluation of the technique. Free space and real earth calculations are presented

and an optimum antenna design is chcsen from this information,
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EVALUATION

1. The objective of this effort was to investigate antenna techniques
applicable to arrays of HF dipole lcg periodic elements to provide pains
of 17 dbi and radiation c¢overage with a minimum of 14 dbi from two (2)
through 16 degrees in elevation and plus and minus 8 degrees in azimuth
over the 3 - 30 MH; frequency range with minimum real estate,

2, The approach taken by Sylvania was to investigate H-Plane arrays of

log periodic elements of the DuHamel and Mei configurations. The

original approach was to perform both an analytical and experimental

effort to determine the advantages of the Mei array approach over the

conventional Dullamel array configuration. After the effort had been ;
initiated, it was redirected to put full emphasis on developing a i
computer progxam which would have the capability of computing the

performance characteristics of dipole log periodic elements and arrays

of log periodic elements in both the DuHamel and Mei configurations.

This computer program was written for the RADC GE 635/645 Computer in

order that RADC antenna engineers could make efficient use of the computer

program using RADC's computer facilities. RADC used its computer

facilities with the Sylvania antenna program to obtain the performance

characteristics of log periodic arrays as presented in this report. It

was determined by the many computer runs performed by RADC, that the

computer program developed by Syivania has a limitation of only being

able to handle log periodic structures vith bandwidths less than an

octave, The results from analyzing loc periodic structures lareer than

an octave bandwidth did not correlate very well with experimental results.

3. The results of this effort have shown that the following parameters
have a significant effect on the performance of dipole log periedic
elements:

a, Dipole diameter

b. Characteristic impedance of feed line

¢. Tau factor

d. Alpha factor

e. MNumber of dipo’e elements on structure

f. Bandwidth of the structure

ix




P .

This computer program will enable the antenna engineer to determine

optimum antenna parameters for arrays of dipole log periodic elements

before an extensive experimental effort is undertaken. It is hoped

that the limitations of this program can be overcome and can be msade

to satisfactorily handle greater bandwidth structures. '

4, NWith the use of the RADC GE 635/645 Computer Facilities and the

computer program developed under this effort, the Air Force will be :
able to analytically determine the performance characteristics of

large HF log periodic dipole arrays for future radar systems. This

capability will also be advantageous for analyzing in more detail

the performance characteristics of dipole log periodic structures,

(i:ggz;~4u./5'325%;::(4;1 o

CARMEN S, MALAGISI
Project Engineer
RADC/EMATA
Griffiss AFB, NY




I INTRODUCTION

Insufficient information on the electrical characteristics of antennas

is and has been a continuous problem to the systems engineer. Whenever he

attempts to predict the receiver signal level a lack of detailed gain character-

. istics becomes significant. The amount of information available varies greatly
from one type of antenna to another. The antenna we wish to consider in this

study is the log-periodic antenna,

[ OV PP USSP

There are may different forms of log-periodic antennas; however,
only one may be considered as useful at the present time for the operating
frequencies many for long-range purposes -- the log-periodic dipole antenna
(LPDAj). Figure I-1 is an example of a VHF log-periodic dipole antenna, the
absolute gain of which is too low for long-range systems. These antennas may
of course be arrayed to increase the gain to the required level, Arraying may
be accomplished such that the resulting array has the same frequency-indepen-
dent characteristics as the fundamental antenna. This technique has a theoretical
maximum gain. Figure I-2 ic an artists concept of such an array in the HF
region, One may also array the antennas to give broad-band characteristics
that change with frequency, but have no theoretical limit on maximum gain;
however, at the present time we are concerned only with the frequency-indepen- .,
dent arrzy.

The determination of the electrical characteristics of a LPDA, when
the antenna is a close-spaced array on a homogeneous earth covered by a

ground screen of finite length, is not an easy task. The first step in the complete

I-1
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1. (Continued)

solution of this problem is the determination of the theoretical characteristics
of such an antenna in free space, This report is addressed primarily to this
problem. The mathematical techniques to be devcloped must, of course, be
of a form that is applicable when the complete antenna is composed of arrays
of LPDA's,

The LPDA is in a class of antennas that to the present day do not have
suitable approximate mathematical solutions, Atltempts to coinpensate for the
mautual coupling between the non-equal-length close-spaced dipole elements
using the usual arraying theory have been unsatisfactory, The present state
of the art in analytical antenna design does not allow the engineer to truly
predict the performance of log-periodic dipole antennas.

The assumptions of the form of the current distribution on the dipole
elements and consideration of the interaction between pairs of dipoles, neglecting
the effects of neighboring dipoles, has given useful but limited results.

The techniques used in obtaining solutions of the LLPDA go beyond the
usual analytical methods and make maximum use of advanced nurmerical
analysis and high-speed digital computers. Many '""solutions'’ to antenna prob-
lems in the past have made assumptions on the current distribution on the elements
and have used this assumed current distribution to determine radiation patterns,
etc, In other -vords, an answer has been assumed for a major portion of the
problem and only the minor problem of determining the far-field pattern (given
the current distribution) has beer solved. In this report no assumptions on the
distribution of current are made; the antenna is treated as a boundary-value
probiem for which a solution can be obtained by numerical analysis and the aid

of a digital computer.

I-4
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I. (Continued)

Thus only those parameters that define the antenna physically and
the operating frequency are the input parameters to the digital computer pro-
gram. The computer program, in turn, determines the current distribution
cn the antenna based on these physical paramaters. From these derived values
of the currents on the antenna, all electrical characteristics of the antenna,
such as radiation patterns, maximum absolute gain, and input impedance are
calculated,

As shown in Section III the boundary-value problem, which mathematically
represents the antenna, can be represented by a Fredholm integral equation,
(A Fredholm integral equation is one where the unknown is under the integral
sign.) It can be shown that such an integral equation can be considered as the
limit of a set of n algebraic equations where the accuracy of the solution is a
function of n, Use is made of this fact by writing the n algebraic equations
and solving the n equations using matrix techniques. These equations are,
of course, complex in the mathematical sense.

Ther next section of this report presents the theory behind the
mathematical model of an n element log-periodic dipole antenna in free
space. The third section presents some of the numerical results obtained

from the computer program which utilized the mentioned mathematical model.

I1-5/1-6
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II THEORY

A, INTRODUCTION

The primary objective of this section is to present the theory
behind th: mathematical model of an n element log-periodic antenna in
free space, The analysis of this mathematical model by numerical tech-
niques will be discussed simultaneously to enable the reader to understand
the capabilities and limitations of the computer programs utilizing this
particular model. This section does not provide a documentation of the pro-
gram that has been written using the model to be discussed, but merely

provides the theory and methods used to write such a program,

The next part of this section provides a brief outline of the basic
theory involved in the mathematical modeling of a wire antenna beginning with
a simple dipole and then extending this concept to include a log-periodic
antenna, The remainder of this section provides a detailed analysis of how
the model is derived from the theory and what numerical tecnniques are used

to implerent this theory on a digital computer,

II-1
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B. OUTLINE

To find an expression for the current on a dipole in terms of the applied voltage it is
convenient to first derive an equation relating the voltage to the vector potential, and then
find an expression for the vector potential in terms of the current.

The electric field at any point outside a dipole can be expressed as

E = -vg - jwA . (1)

>
Now, defining ©.A aq

VA = -jwped 2)

we get

= 1 .-o 2 - ;
E—-j—‘o—"—e'[V(VA"'quA)] . (3)

Assuming the dipole parallel to the z-axis, Equation (3) reduces to

where

k2 - wZue

For a perfect conductor the tangential electric field is zero on the boundary. Equation (4)
then becomes




B. (Continued)

The general solution of this differentiai equation is

AZ = C1 cos kz + 02 sinkz . (6)

With a slice generator of voltage V applied at the center of the dipole, as derived by
24
Halle’n," Equation ‘4) becomes

_ LV
Az = C1 cos kz 5 smk|zl . 7

This is the vector potential-voltage relationship that we set out to find.

To relate the voltage to the current flowing on the dipole, we can now use the known

relationship between the vector potential, Az , and the dipole current,

. b kR

= 1 1

Ay, = 4y f L, R dz', ®)
-1

where R is the distance between the point in space and the point on the dipole where
current I'z is flowing.

Combining Equations (7) and (8) we obtain the desired current-voltage relationship,

y KR .V
flz' R’ dz = Bcos kz + i 3m smk'zl . 9
-4

In order to solve this integral, we approximate the integral by a finite sum of currents
along the dipole. Each term in this sum contains an urknown value of current. To solve
for these unknown current values, we need the same number of equations as we have incre-
ments of currents along the dipole. By specifying the value of z to a specific increment
along the dipole, one equation can be written for each current segment. With the dipole
divided into N segments, we now have N number of independent equations. A typical

equation for the i-th segment is




e o
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B. (Continued)

L o, 1L sl
' Az = Bcoskz, + j=— sin klz. , (10)
n=1 Zn Rn n i 2n i

where n covers all dipole segments, including the i-th segment. In addition to the N

number of unknown currents, the integration constant B is unknown.

1 An additional independent equation is obtained from the boundary c¢ondition that the
current at the tip of the dipole is zero;

1., =0 . (11)

With N+1 irdependent equations, the N+1 unknowns can now be determined.

The same theory can be applied to a series of dipoles, as in the case of a log-peciodic i
dipole array. For a log-periodic array with M number of dipoles, Equation (10) becomes

M % e-ijn Vj
I Az = B,coskz.. + j5= sin klz..l , {(12)
m=1 n=1 Zn Rn mn H ji 2n ji

where m covers all dipoles, including the j-th dipole.

The unknown voltage, Vj , at the base of the j-th dipole in the array is related to the
appiied voltage, V , at the input terminal of the array by a series of tranmission line
equations.

The currents on the dipoles of a log-periodic antenna, calculated by using the approach
described above, are by definition the actual currents, including all mutual interactions
between the dipoles.

From these values of currents on the structure all electrical characteristics of the
antenna, such as far-field patterns, the absolute gain and input impedance can be
calculated.

II-4




C. THE DIPOLE ANTENNA

The cylindrical, cer ‘er-driven antenna has been analyzed as a

boundary value problem by many workers. Basically, two methods of attacking

the problem of determining the distribution of current along the center-driven

antenna have been used., In the first of these,

which is not a boundary value

treatment, one uses the apparent similarity between the antenna and an open-

end parallel-wire transmission line. Thus, by suitably correcting existing

transmission line theory, a satisfactery approximation for the antenna can be

determined.

The second method proceeds from the point of view that the antenna is

II-5
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C. (Continued)

a boundary-value problem which can be formulated in general terms and the rcsulting
equations solved by the use of the numerical methods and high-speed digitzi computers.

Thus, to solve this problem, equations are needed in terms of parameters such as the radius

and length that characterize thedipole antenna, rather than in terms of characieristic imped-

ance, terminal impedance, etc., which are basically foreign to the antenna.

The dipole antenna has been investigated from the point of view of a boundary value
problem by many workers such as R.W.P. King,1 Hz'.}leln,5 L.V, King,8 Brillouin,9 and
Aharoni.10 In nearly all of these papers, different but comparable methods were used.
Some are analytically complicated in determining ine equations, and all are complicated in
their attempts to solve the resulting integral ~quatior Actnally, the problem can be set up

forma]ly,11 and this will lead to the integral equation first ¢btained by Hullén as shown
below.

-

1. The Differential Equation

Since we are concerned with antennas that will be used at high freiuencies, we will
assume the antennas to be thin. By this it is meant that the ratio of »a:ius o of th <cross

section to length 2¢ of the antenna is negligible. It is not permissible to regard r, as
zero, for the quantity

_ 24
Q = 24n (—r—) (13)

o

cannot be neglected. Thus, while errors of the order ro/l, can be tolerated, the antegna
cannot be regarded as infinitely thin. A lower bound on @ has beeu given by Brillouin™ of
2>14 or {,/r0 >1000. Tor the purposes of this presentation this is not a significant re-
striction. This restriction allows us to ignore the ends of the antenna, which greatly sim-

plifies the problem but does not decrease the useful accuracy.

The analytical problem of determining the distribution of current on an antenna which
we will assume to be cylindrical (triangular or other shapes can be represented by a suit-
ably selected cylinder), of half length £ , and radius r ., may be formulated in terms of
the general boundary condition which requires continuity of the tangential component of the
electric field across any boundary surtace between two media. For this analysis it is con-

venient to use a cylindrical coordirate system with the 2 axis lying along the axis of the




C.1 (Continued)

dipole, and z = ¢ at the center of the dipole. We thus have (assuming the antenna to he a

solid wire for purposes of discussion) the following boundary conditions.

a. EZ as one approaches the surface of the wire from inside the wire mnust be equal
to Ez as one approaches the surface of the w.re at the same point from outside

the wire.

b. Er as one approaches the end of the wire from inside the wire must be equal
to Er as one approaches the same end of the wire at the same point from outside

the wire.

Since the ends of the wire are required to be small by the restriction on Q as defined in

(a) above, the average electric field, Er , on the ends must be less than the average field
along the wire. This follows since the radial current must vanishat r = 0 and r = r,
and it cannot reach a large amplitude in this extremely short distance relative to a wave-
length. Accordingly, nothing of significance is neglected as far as the antenna as a whole
is concerned if no account is taken of the end faces of the wire, and hence, Er . We will
thus assume the current to vanish at z = +{ without flowing radially inward on the end

faces.

While at this time conductors with finite conductivity have not been considered in the
computer programs, it is planned in the future to consider conductors with finite
conductivity. Thus, in the formulation of the differential equation here, we will assume

that the wire has a finite internal impedance per unit length of Zi and that the cross

LR

sectional distribution of current in the wire is essentially the same as in an infinitely long

wire. In other words, for the purposes of this analysis it will be taken for granted that the
cross sectional and axial distributions of current are mutually independent. This is always

true to a very high degree of approximation in a good conductor.

Accordingly we have

% (14)

where Ez is the value from the internal approach to the surface and IZ is the total current

in the wire at point z .
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C.1 (Continued)

At any point in space outside the wire the electric field is
E = -vp-jwA , (15)

where ¢ and A are the scalar and vector potentials, respectively, and w is the angular
frequency. Now the relationship between ¢ and A is

V.K = _jwue = j(%>¢ , (16)
[+

where p is the permeability, which for free space has the value 47 x 10‘7 henries per

meter; ¢ is the permittivity, which for free space has the value 8.85 x 10—12 farads per
meter; and c is the velocity of light.
By substituting Equation (16) in Equation (15) we have
-t v . K . -—
= - -— A 1?"
E v (-jwue) jw (17)
or
- 1 - 2 -
E = v(v-A + ofuek)] . 18
jwpe [ w ke J 18)
Define
2 2
K = oPue = = (—iﬂ) , (19)
c

where ) = wavelength.

Since the wire antenna carries only a z component of current, the v-'ctor potential will
have only a z component. Thus, Equation (18) will become, with the definition given in
Equation (19),

E = -j% Z A ) . 20)
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C.1 (Continued)

If we now impose the boundary condition, Equations (14) and (20) wiil give the following
differential equation in the vector potential:

w dzA.z 2
2.1, - - % — KA, @1)
or
A 2
( .
—2 szz = & 21 . 22)
dz“ w

From this last equation we see that the vector potential can be represented by a one-
dimensional wave equation which would be homogeneous for the perfect conductor (Zi - 0).

It is readily verified that the scalar potential can be represented by a similar equation.

The differential equation given by (22) is a nonhomogeneous equation and can possibly
be rewritten in the form of an ordinary differential equation and solved by numerical methods
on a igital computer. In contrast to initial value problems, which are characterized by
the fact that the information given concerns all the conditions at a given point, a boundary-
value problem such as defined by Equation (22) is one which gives {he conditions at two or
more distinct points. In this equation we are seeking we must find a relationship between
the vector potential and the z coordinate at all points on the wire. This type of problem
is often called 2 "jury problem". In contrast, the initial value problem is to find the rela-
tionship at another poini given its value at a given point; i.e., as the independent variable
is increased by a small increment. This process is sometimes referred to as a "marching
problem". The numerical solution of marching problems are much simpler than those of
jury p.oblems: in fact, all good computer centers will have many subprograms to handle the

marching problem, while all jury problems must be set up and programmed separately.

There are, of course, other ways in which one may solve the boundary value differen-
tial equation as shown in Equation (22). One approach that can be used and will be used

here is to restate the problem as an integral equation.
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C.2 The Integral Eguation

Since Equation (22) is a nonhomogeneous equation, the general solution must consist
of a complementary function and a particular integral. The complementary function may be
written in the form

A =-%J [Clcoskz + C sinkz] R (23)

2

where C1 and 02 are arbitrary constants of integration. A particular integral has been
obtained and is

. z
p _ 3% AN
Al = — I(z) sin (z-z) dz . (24)
z c .
o

One may verify that (24) does satisfy (22) by substituting (24) in (22).

This equation is valid everywhere including the surface of the antenna, but will not be
valid at z = 0 since the scalar potential will have a discontinuity due to the driving voltage
at that point. This voltage source can be insertec using King's1 slice generator. To allow
for this additional condition, the differential equation mus! be rewritten as two equations

as follows:
z
Az = -E]- [Cl cos kz + C2 sin kz - Zi f I(z') sin k(z-z') dz'] forz>0 (26)
0
and
z
- -l - _ o AN
Az = [Cscoskz+C4smkz Zifl(z)smk(z z)dz] forz<0 . 27
0

Now the boundary conditions will determine the constants C1 . C2 , C3 , and C 4
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C.2 (Continued)

Now from Equations (15) and (16) at r = r, the scalar potential is

% " "% 3z ler - @8)

Inspection of Equations (26) and (27) in view of (28) indicates that if Az is an even function,

'Z»Z must be an odd function, and vice versa. If we let that thickness of the slice generator
be 26, then

-

and

A\
%5 "3 (30)

where V is the applied voltage, then the function ¢. is odd. Thus, Az must be even.
These conditions are represented in equation form by

o, = g (31)
and
A = A . (32)

<

In order that (26) and (27) may satisfy (31) and (32) for all values, the following relation
must hold:

c, = C and C, = C, . (33)

II-11
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C.2 (Continued)

We can then combine Equations (26) and (27) into the following form:

zZ

- _j . _ ' . -l t
Az c [Cl cos kz + C2 smklz' Zifl(z) sin k (z-2) dz] . (34)

o

It is readily shown that (34) is unchanged if -z is everywhere written for z . In the inte-
gral one must replace the variable z' by -z'.

The boundary condition on the scalar potential is

_ lim _ -
VT 60 [‘bb ¢-6] (35)

as we allow the siice generator ti ickness to approach zero. From Equaiion (33) we may

write
oA, . -jcg 2 (36)
oz 2=0 c
and
3A »
—azz =13 e @7
z=-0 c
so that
jcz aAz
e T =P 5 T —— (38)
6 6 w dZ z=-6
and
N limo¢ _ 2 j02 lim aAz 39
\" 2 6 —— _ (39)
60 [7V) 60 2a 2=6
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C.2 (Continued)

Upon differentiating Equation (34) with respect to z and setting z equal to & and allowing

6 to approach zero, we have

Ilim z

dA - jkC2
60 3z )

, (40)
z=0 ¢

so that with k = w/c we then have

:—1—7
C, 5V . @1)

The equation for the vector potential then may be written

z
Az c[Clcoskz +§-smkzl ZiJ[I(z)smk(z z)dz] . (42)
o

Figuratively spealking, let us for the moment sit back and see what Equation (42) is
saying, and what it is that we desire. First, it is an equation for the vector potential on or
outside the dipole. Secondly, it has fwo unknown constants, C1 and Zi . Zi is no concern
at the moment since we know it is the internal impedance per unit length of wire that can be

determined when we so desire.

C1 is an integration constant and therefore related to a boundary condition. The only
boundary condition that has not been used is the condition at the tip of the dipoie. We know
that the current must be zero at the tip. That is, C1 can be determined by the equation

1 z=1 0o . 43)
But this is an equation for the current while Equation (42) includes C 1 in the equation for
the vector potential. Therefore, it appears we must obtain a relationship between the vector
poten*ial and the current. Then, when we have the equation relating the vector potential to

the current and substituting Equation (42), we can determine C. by the use of Equation (43).

1
To obtain the relationship between the current and the vector potential, we must use the

Iielmholtz equation which relates the vector potential and the current.
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C.2 (Continued)

The amplitude of the vector potential defined by Equations (15) and (16) must satisfy
the Helmholtz equation

PA + K2R = 4, (44)

where 7 is the volume density of current flowing in the antenna. The Helmholtz integral,
by substituting in Equation (44), can be shown to satisfy this equation. This integral is

br &}

- i -jkr
A=r“'f“le v, (45)

m ry

v

where v is the volume of the antenna, dv' is an elementof v, 'f'l is the current density
at dv', and ry is the distance between the point whose cylindrical coordinates are
(r, &, z) where A isto be computed and the element dv' isat (r', ¢', z'). There
are no radial components to A, since we have assumed no radial components of current
flow., The z component is

i -jkr
Az=4i;- —I-_E e 1dv' . (46)
1
v

It has been shown by King and }'Iarrison11 that Az. evaluated from

I! e
A, = £ / L az @7

where

R = V(z—z')2 + r2

on the surface of the antenna differs by a negligible amount from Az computed by the
exact equation given by (44) and (45). Here R is the distance from the point (r, 6, z)
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C.2 (Continued)

outside the conductor where Az is to be calculated to the center of the element dz' at

2' on the axis.

Finally, by using Equation {47) in Equation (42) we have

£ . yA
jep I’e‘Jdez'l‘C coskz + wsinklz| -z [ I sink@-z)dz' . @8
In z R 1 s kz zsm A i zsm {(z-2z z' . (48)
-4 0

The solution of this equation or the same equation where Zi has been set to zero can be
done by at least two methods. The method we will not use consists of expanding the integra}
on the left into two integrals by the use of integration by parts. This results in one integral
which is integrable in closed form and another integral which is not integrable in closed
form. If one performs this integration and substitutes back in the original equation, a first
order solution is derived. If Equation (43) is thex} applied and C1 determined, one has
the expression that was originally derived by Hallen. His derivation, of course, was not
the same as given here. It is this approach which gives rise to the expression for Q as
used in (13). The other method is numerical, and since it is the method used, the soluticn
will be given in detail in the next subsection.
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D. NUMERICAL SOLUTION OF THE INTEGRAIL EQUATION

; At this time we have not considered conductors with finite conductivity; therefore, in this
subsection we will assume that the internal impedance per unit length is zero. We may then

rewrite Equation (48) as follows:

< : .
f r & JkR dz' - B cos kz +-“2‘L sin k|z| = 0, 49)
A R n
-4
where
) 41rC2
jeu
and
n = impedance of free space = 120m.
Further,
e"‘kR = G'(z, z"), (50)
R

which is the free~space Green's function.

We may then write (49) as follows:

L
ol BN 1 | . ..LJV 5 = -
fl;u z, 2')dz Bcosz-—z-ﬁ-smklzl 0. {(51)

-4

~

Equation (51) is an equation of the form
b
a(x) y(x) = F(x) +D f K(x,§) y(€) d§, (52)
a

where a, F, and K are given functions and D, a, and b are constant. This equation is

known as 2 Fredholm integral equation. The function y(x) is to be determined.

When a # 0, the above equation involves the unknown function both inside and outside the
integral. In the speci2l case when & = 0, the unknown function appears only under the
integral sign, and the equation is known as an integral of the first kind; in the case where

-16




'_Q_ . {Contirued)

o = 1, the equation is said to be of the second kind. It would appear at first glance that
Equation {51) is of the first kind, but it is in fact of the second kind. The reason for this
is that the integration constant B is a function of the current - specifically, the current at

the tip of the dipole.

It can be shownz“‘2 that a Fredhom integral equation can be considered as the limit of a
set of n algebraic equaticns. as the number of equations increases without limit. Use can
be made of this fact to obtain approximate solutions to such integral equations. Therefore,
we must determine a method whereby Equation (52) can be expressed as a set of n algebraic

equations.

In elementary integral calculus an integral of the form

b
y - fF(x)dx (53)
a

is defined as the limit of an equation of the form

n
- lim 5
= s kZ; 8%, F(xk), (54)
k=1
where the interval (a,b) is divided into n subintervals of lengths Axl, sz, I X, and

Xy is the point in the k-th subinterval. An approximate value of y can be obtained by not
proceeding to the limit, and herce by expressing y approximately as the weighted sum of

the ordinates F(xk} at nchosen points X;, X,,....X, of the interval (a,b):

2’

0
y = h kZ_ZI W, Fix), (55)

where h is the length of all intervals and W, is a "“weighting" coefficient associated with the

Xy point. In its simplest form, we let the p};int X be at the center of the k-th interval
and give the value unity to all the weighting coefficients. The resulting formula is known as
the trapezoidal rule. The accuracy of the approximation can of course be increased by
increasing n or changing the weighting coefficient or functions. An example of the laiter

is Simpson’s rule, which is applicable only if n is odd, is where the weighting coefficients

arc of the form

* H ; 7 = B 5
{‘Vr“z'“s ..... wn_z,\\n_l,Wn} 1/3{1,4,2,4,....2, L 1} (56)
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D. (Continued)

. n
when n is greater than five. More elaborate formulas can be found in the literaturem’m’]"

where this technique is oftcn called Gaussian quadrature.

Thus, Equation (52) by the use of Equation (55) can be approximated in the form when it
is the second kind where D =1. Let y(x) not under the integral be B(x):

n
B(x) + F(x) + h kZ_l W K(x,x) yix) = 0 (67)

where the points X, are spaced a distance h apart with the first and last points being h/2
from the points a and b. If we now require that equation be written at each of n chosen

points where the points are the Xy points, we obtain n linear equations

n
B(x) * F(x) *h kgl W, K(x,%) y0q) = 0 (58)
i=1,2,....n

in the unknowns y(xl) , y(x .. .y(xn) which specify approximate values of the unknown

)s -
2
function y(x) at the n points. Introducing the following abbreviations,

Fi = F(xi), Kij = K(xi, xj), Bi = B(xi),

where Kij is the value of K(x,£) when x = X and § = xj, the set of equations given by (58)

can be written in the form
h ZKikyk+Fi+Bi = 0. (59)

Thus, if we consider the numbers Fi’ Bi’ and Yy as components of the vectors F , ﬁ and
¥, and define the matrix K= [Kij] , the set of equations (59) can be written concisely in

the form

hR [yl +[F]+[B]l =0 (69)
or
(F1+[B]

(yl=1/mk™? = 0, ©61)

Py —————




D. (Continued)

where K -l inverse of the matrix K, thus obtaining the value of y at n uniformly spaced

points.

Using the methed outlined in the above paragraphs, we may rewrite Equation (51) as a

set of linear algebraic equations

2

‘Jn 3
. w3 Vo1 i1 .
h k§1 Wk G (_zi,zk, i B cos kz‘i +—_217 sin k !Lil i=1,2,...n, (62)

where lk is the current on the dipcle at the k-t puint. Investigation of this set of n euua-
tions will show that we have n eguations and n+2 unknowns; the unknowns being B and V.
We must find two additional equations before we can solve the set of equations given in (62).
The applied voltage which is represented by V presents no problem. We may let the applicd

voltage be unity giving the following equation:
V-17=0. (63)

To determine B we must write an equation that expresses the current at the tip. This
can be accomplished in two ways. The first method we used was to write a2 Taylor series
expansion of the current at the peints k = 1, 2, 3,....m that is in terms of I1 , 12, 13, .

Im, where m < n, since there are only n points on the half dipole. The k = 1 point is h/2
from the tip, k = 2 point is 3h/2 from the tip, k = 3 point is 5h/2 from the tip, and the

k = m point is {2m + 1)h/2 from the tip. While the resulting equation does not involve B,
it is the additional expression regaired to give the required square matrix. Since we are no
longer using the Taylor series expression, the lengthy derivation will not be given, only

the final equation which is as follows:

DG, Gk

1T 3ty gt T 0 (64)

\\'hcre(’?) is the binominal coefficient given by

() asyr - (5)
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D. (Continued)

The second method is to extrapolate the currents Il’ 12, and 13 which are unknowns and

require that the current at the tip be zero. The equation will be of the form

f(L-h/2)11+g(L—%*i)12+hL(-%‘-) I, =0. (66)
The form of f, g, and h will be determined later. If the set of equations represented by
Equation (62) are applied over both halves of the dipole, as is inferred, there are two things
in error. First, with numerical integration represented by (62) as with analytical integra-
tion, one cannot integrate over a discontinuity. As shown in Equation (35), there is a dis-
continuity in the scalar potential at the slice generator in the center of the dipole. Secondly,
since the current distribution on the dipole is an even function and Equation (62) is identical
for z and -z, the resulting matrix will be singular. These two things can be corrected
quite simply, while at the same time decreasing the number of terms in the matrix (62) by
two, by taking note of the symmetry of the Green's function which is

G (zi, Zj) =G (zj, zi). 67

First we reduce the number of points from 2n to n: that is, we integrate only over one half
of the dipole. At the same time we replace the free~space Green's function with a modified
Green's function which includes the effects of the point ~2;- That is, let

G (zi, zk) = G' (zi, zk) + G! (-zi, zk). {68)

Thus, by writing the set of equations represented by Equa.ion (62) using the modification
given by Equation (68), Equation (63), and Equation (64), or Equation (66), we have a set of
algebraic equations that relates the current on a dipole to the length of the dipole, the radius
of the dipole, and the applied voltage.

E. SINUSOIDAL APPROXIMATION FOR THE NUMERICAL SOLUTION

In subsection D it was indicated that more elaborate formulas for the weighting coeffi-
cients can be found in the literature. Most of these methods are written assuming one has
no knowledge of the behavior of the unknown function under the integral sign. Dr. Mei
has pointed out that we do have knowledge of the behavior of the current on the dipole. We
know that we must be able to represent it by a Fourier Series of finite length. Further,
we should be able to represent the current in a region +h/2 about a point quite accurately
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E. (Continued)

by only the first three terms in a Fourier series. Thus, we may approximate the current

i(z) near the k-th segment as

I(z) = Ak + Bk sin k(z-zk) + Ck cos k(z—zk),

(69)

or by applyving at the k-th point and the points on either side and writing Ik for I(zk) , we

have

Pud
1}

k-1 A - B, sin kh +Cy cos kh

I = A +C

k k k

ot
i

K+1 Ak + Bk sin kh + C-k cos kh

Solving this set of simultaneous equations for Ak’ Bk’ Ck in terms of

I 1

k-1’ Kk’ K+, W€ have

Ak = 2 sin kh cos kh -2 sin kh - 2 sin kh (cos kh-1)

2
"

BN TP : o
Kk Ak [-smkhlk_1+2 smkhcoskhlk sin kh !k+ll
Bk N l(l-cos kh) Ik—l + (cos kh - cos kh) Ik + (cos kh-1) Ik+ll

c, = ~ [sinkhl

K & k-1 —2sinkhlk+sinkh1

el -
This gives for I{z)

z) = :l}z {Ik—l {-sin kh + (1-cos kh) sin k(z—zk) + cos k(z—zk) sin kh]

+ Ik {2 sin kh + cos kh -~ 2 sin kh cos k(z—zk)

g i~sin kh + (cos kh-1) sin k(z-z; ) - sin kh cos k (z - zk)]} .

II-21
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E. (Continued)

Writing Equation (77) in a more compact forn:

Iz) = X@) L, _, +Y@ L +Z2(2) L, (78)

where the coefficients are given by

X(z) = EITE -sin kh + (1-cos kh) sin k (z—zk) + sin kh cos k(z —zk)] (79)
Y(z) = 731? 2 sin kh cos kh -2 sin kh cos k (z -zk)] (80)
Z(z) = il—( -sin kh + (cos kh-1) sin k (z—zk) + sin kh cos k (z-zk)] . (81)

Equation (78) states that the current in a given segment is a function of the current at the
center of that segment and the current at the center of the segments on either side. Thus,
as it stands (78) cannot be used for the point k =1 located h/2 from the tip, or the point
k = n located h/2 from the center, since these points do not have points on either side.
Therefore, we must determine a special set of coefficients for each of these points using
the next two points moving away from the boundaries. Consider the tip point first. The

expression for I(z) in the tip segment is:

I(z) = A1 + B1 sin k (z-zl) + C1 cos k (z-zl) (82)

L = A + C, (83)

12 = Al + B1 sinkh + C1 cos kh (84)

13 = Al + B1 sin 2 kh + C1 cos 2 kh. (85)
Solving this set of simultaneous equations we have

Al = Ak (86)

A1 =ZII -sinkh11+sin2kh12-sinkh13 87
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E. (Continued)

B, = L [(cos kh - cos 2kh) I. + (cos 2kh-1) I, + (1-cos kh) 1 ]
173 1 2 3
_1 . L o .
c, i [ (sin 2kh - sin kh) I, - sin 2kh I, + sin kh 13] .

Thus,
I{z) = x1 I1 +Y1 12 + Z1 13
for the tip segment where

X1 = Al— I-sin kh + (cos kh - cos 2kh) sin k(z-z

1 Y

+ (sin 2kh -~ sin kh) cos(z-zl) ]

o
]

Al— [sin 2kh - (1-cos 2kh) sin k(z-zl) - sin 2 kh cos k(z—zl)]
1

z, = =~ [—sin kh + (1- cos kh) sin k(z-zl) + sin kh cos k(z—zl)]
1

(SN
g [N

The expression for the n-th segment is

z) = An + Bn sin k(z-zn) + Cn cos k(z ~zn) ,

which gives using the above method

Iz) = xn In +Yn In—l * Zn In—2’

where

. l_ —ci QS - i -
3«‘(n = An [ sin kh + (cos 2kh - cos kh) sin k(z zn)

+ (sin 2kh - sin kh) cos k(z-zn)l

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)
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E. (Continued)

*
F s

Y
n

>

[sin 2Kkh + (1 - cos 2kh) sin k(z-z ) - sin 2kh ~os k(z -zn)] 97
n

Z = Zl—- ‘ -sin kh + (cos kh-1) sin k(z-zn) + sin kh cos k(z-zn)] . (98)
n

In Equation (55) it is assumed that the function was constant over the segment, thus the
area was represented by the product of f(xk) and h. Now, however, I{z) is not constant and
to obtain the area we must perform an integration over the distance h. Further, cach
element of that part of the matrix which represents the integral will consist of terms
involving the currents on either side excluding the special cases near the boundaries.

These terms of the matrix will be

Py
Ad,k) = f K L *Y, L +2 L )Gz, 2 dz, (39)
"
where
a, = z -h/2
b, =z, +h/2

and for the tip point

b
1
AG, 1) = f X, 1, +Y L, +Z 1) G (z,, z) dz' (100)
4
where
= - -4 .30
a; = zg h/2 =1 3
b, = z, +h/2 = 1,

and for the base point

b
n
A(i, n) = f X L +Y 1 +2Z 1 )Gz, z)dz’ (101)
a
n
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E. (Continued)

where
a =z, -h/2 =0
= = E}l
bn =z +h/2 5

Since the unknown currents Ik-l’ Ik’ and ]'k 4 are under the integral sign, one might
ask if replacing one integral equation by m integral equations do we represent the integrals
Ik’ and Ik +1

are not variables in the integrals - they are constants. The type of integral we are con-

in (82) to (84) by a m point sum. This is not true since the current Ik-l’

cerned with here is of the form

b
fX (z', zk) G (zi, z'") dz! (102)
a

where b-a = h. When given z', zk and z; we can calculate the product XG

One of the more accurate methods of numerical integration is using Lagrangian

integration coefficients, 16 where

b

/f(x)dx= @, o, y1+....anyn, (103)
a

where the a's are the coefficients and y's are the values of f(x) at the n points. Accuracy
increases with the number of points, but the computer time also increases. The use of

10 intervals which is 11 points seems to be a good compromise. The value of the
Lagrangian integration coefficients for n = 10 are given in Table II-1. Thus, Ly evaluating
the product XiGiai at each of the i points in the interval (a,b) and summing and multiplying
by h/10, the integral represented by Equation (102) can be evaluated and inserted in
Equation (99)-(101).
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Table 1II-1. Lagrangian Integration Coefficients

i

(¢
1

0.268341483
1.775359414
.810435705
4.549462882
~4.351551226
7.13764£304
-4.351551226
4.549462882
-0.
1.
0.

W = O
{
(=

810435705
775359414
268341443

W & a3 & O

10

E. (Continued)

With this sinusoidal approximation we can decrease the number of points on the dipole
for a given accuracy. Also we need no longer do a Taylor series expansion for the boundary
condition but can use Equation (90) with z =4.

I¢) = X, 01 ¢ Y1 WL +Z2, W =0 (104)
and the current at the feed point is given by
(105)

1) = X L +Y ©OL  +2 (01

1 2"

F. SIMULTANEOUS LINEAR EQUATIONS

Finally, one note on the solution of the n + 2 simultaneous linear equations. Most
computing centers have subroutines that can solve a set of complex simultaneous linear
equations using various methods. While the computer we have available is sufficiently
large to handle a single dipole, it was felt that when one had antennas with more than five
dipoles there would be insufficient core. Thus, a subroutine was developed that does not
require more than two rows of the argumented matrix in the core at one time by the use of
magnetic tape units for storage. The method used was the Gauss~Jordan elimination
method with normalization. 17 This method allows us, if desired, to solve up to 500 simul-
taneous linear equations without overflow. By properly filling the matrix we have not

experienced any difficulty with round-off errors so far (130 equations).
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G. EQUATION FORMULATION FOR A L.OG-PERIODIC DIPOLE ANTENNA

After one has formulated the equations for a single dipole, what changes or additions
must be made to give the set of simultaneous linear equations that will describe a log-
periodic antenna? There is one change to be made and one addition to be made. We must
change Equation (62) so that the interaction between the different dipoles of the antenna are
properly handled. We must also add additional equations to represent the transmission
lines that tie the dipoles of log-periodic elements together.

The approach used below to determine the changes is based on the separate work of

one of the authors. 18

The vector potential on a dipole antenna in the presence of N-1 other dipoles, which
need not be of the same length, can be represented by an equation which is based on
Equation (47) using the symbology given in Equation (50). The vector potential will, if all
the dipoles are parallel to the z-axis with their centers being in the z = 0 plane, have only

a z component. Thus, we have at point P

d
AP =

AwE

Lm
. f Im 2z G (z', zp) dz', (106)
0

where AZ(P) is the vector potential at any point which is outside the dipoles, nd is the
number of dipoles, Lm is the length of one half of dipole m, Im(z') ig the current flowing
in dipole m at the point z', and G(z', zp) is a modified Green's function of the form given
by Equation (68) and with r of Equation (47) replaced by d, the horizontal distance between
the dipole m and point P.

The scalar potential at point P can be found from the following relationship

® =/‘°e dv, (107)

where p is the charge density and v is the volume. We may rewrite Equation (107) for our

antenna as follows:

1
nd m
R 3l (z) ' '
oP) = G % / m®) 6@, zp e, (108)
m=1 0 9z
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G. (Continued)

which after integration by part and using the quantity

oG 3G
2 W (109)
we have
nd ’m
o) - _jT:r? Z f L) %ZB_G(Z',ZP) dz' . (110)
m=]1 o P

The tangential electric field on any antenna produced by the currents on the other antennas

s

- 30(P)
BZP

E = —vw—prAz =

’ - jwp AZ(P) , (1il)

where the point P is on the surface of the dipole but

, 2A(P)
T - — —_— 2
3(P) jwe sz (112
Therefore,
2
1 e Az(P) .
E = Twe '—gp—‘ “jwna (P) (113)
or
, _ 12 2 .
jeE, = [—azp + k ]AZ(P) ) (114)

For the tangential electric field to vanish on the surface of the dipoles, we have for dipole m
- - 1 H = .V /4 -
EZ(P)m Ez(P)m (incident} ‘m G(Vm) (115)
or
A © C sink izp * C, cos k zp . (116)

Zp
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G. (Continued)

This last equation can now be represented by a set of algebraic equations in the form given

by Equation (62), etc.,

ffi { n 2\’j
h' S W I G, ,z)¢ -5, coskz +5o sinklz.l = 0 (117)
Pt Sz miim T Vim? j j2n j

j=1,2, ....n.

Here we now have 1 boundary condition for each dipole, which is the reascn that the B's are
subscripted, and each dipol: has its own driving voltage. Also, while Equation (117) cannot
show, as it is written, the use of the sinusoidal approximation is used as outlined in sub-
section E. The equations for the boundary conditions on the tips of the dipoles are written
using the form given by Equation (104).

H. TRANSMISSION LINE EQUATIONS

Eguation (63) which is the single equation for the driving voltage on a single dipole will
become the driving voltage of the transmission line which feeds the log-periodic dipole
eclements. To relate this voltage to the base of each dipole, an additional set of equations
in terms of the current at the hase of each dipole, flowing into the dipole and down the trans-
mission line must be determined. These equations are based on the assumption that the

transmission line has no ohmic or radiation losses.

There is no need to derive ore single equation thai gives the relationship between the
input voltage or current and the voltage or current at the most distant dipole. We need only
derive the relationship between the n and n+1 dipole and repeat this relationship between
the ntl and the n+2 dipoles until all sections of the transmission line have been covered.

Figure 111-1 shows the geometry invoived.

. . I . . 19
The equations for an ideal transmission line are given by

vo- ve ISh + vielSy (118)

Zj, - Ve % - viel®h (119)

where Sn is the distance to a reference peint on the left in radians from point n, V is the

amplitude of the direct wave, V' is the amplitude of the reflected wave, Vn is the voltage

11-29




I1-30

Figure II-!. Transmission Line Geometry

gprea g s e =

rts

3




H. (Continued)

across element n, in is the current flowing into the junction of the transmission line and
the n element, while Zo is the surge impedance of the line. The determinant of these
two equations is

¢ %
D = = -2 {120)
e 5y e
while
e ®n v
n
-js. Z i -js
g1 o=t 8 n2 onl _ e 2n (Vn-zoin) ] (121)
and v eI5n
n
Zoin —e}sn -ejsn
Vo= 5 = o (VT2 i) (122)

Now let us consider the equations at the n+l dipole with reference to the n dipcle. If
the spacing between the dipoles were sufficiently short so that the effacts of the transmission

line were zero, we need only consi er the transposition of the wires. Taus,

V.. = -V or -V _ =V (123)

Z i = i - Z i
on*i on ontz on

or rewriting (118) and (119) fcr the n+l dipole we have

Ve-jsnﬂ + vrelS

_vnfl = n+l (125)
_7 it - 7-,_:‘5 +1 -y is +1 24
Zol nil Ve “"n+i - V'e’"n+l . (126)
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H. (Continued)

Substituting Equations (121) and (122) in (125), we have after reduction

- - v ePn + ¢ YiZ i en - e
n+l n 2 o' 2j
where
On - sn - sn+1,
which gives
-le = Vn cos O'n + Jzoln sin Un

or

A" tV_ cos +3Z 1_ sin = @
n+l i cn 3 on c;n
In a similar manner, we have

¥,
<y + . L. -
4 ——-—ZO sin O’n + 1, cos ur 0

The expression for the current i;l +1

the equation needed is for the current just to the left of dipole n+l. The voltage across the
transmission line as one moves toward the generator and passes the feed point of the n+l
dipole must be continuous so Equation (129) is correct as it stands. However, the current

must increase by the amount flowing into the dipole. Therefore, we must rewrite Equation

{130} to include the current In +1°
the left must be

1 =

L= Ohedy * 1

n+l’
while the current on the right is

= 31
IR ln+l

I-32

is for the current to the right of dipole n+1, while

the current flowing into the n+l1 dipole. The current on

|
(127) . !

(128)

(129)

(130)

ks

(131

(132) i




H. (Continued)

Therefore, we have

WV
P | + = sinC *1 cos
n+l n+i Lo n n ¢ o’n

il
(=]

{233)

where In +1 is determined by Equation (95) as applied to the n+1 dipole.

To demonstrate how we apply _hese equations and consider the ends of the transmission
lines, consider the 5-clement i< lc shown in Figure II-2. The current flowing in an
antenna at the base of the antenna 18, using Equation (435),

I, = X1, + Y.,I + Zkl

j BR P'n-1 i'n-2 (134)

where the single subscript on 1 inaicates the current flowing in to the base of the j dipole.

The equations for the voltages will be

\"2 sin Gl
LS + 31 = 35
\ 1 cos 0’1 ) 11 cos 0‘1 Zo 0 (139)
V3 sin g,
Vo ¥ cos 9, ¥ 19 Tos o, Zo =0 (139)
\Y sin o
, 4 .. 3 _ or
V3+E_aso +“3-EESU o 0 (137
3 3
‘v’,5 sin 0'4
\'4 cos O T 14 coS O Zo =0 (138)
4 4
\Y Sin O
J ottt i e 2 = 0 (139)
3 CUsS 0. Dcensg. O
J 9
7 =
Y, o 1.0 . (110)
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Figure II-2 Leg-~Periodic Antenna
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H. (Continued)

For the currents we have, where i's represent transmission line currents and I's

represent dipole currents,

11 - I1 =90 (141)
vy
i2 - I2 + 7 sin oy + il cos o, = 0 (142)
o)
vV,
i3 - 13 T sin 0y + 12 cos 0, = 0 (143)
o
jV3
14—14 *-‘—Z—smc;'3 -l~i30050f3 = ¢ (144
o
vy
i5—15 + - sinc}'4+i4 cosO‘4 =0 (1435)
o
Vg
io + 7 sin 05 - i5 cos 0'5 = . (146)
o

It is, of course, not realistic to have the long transmission line in front of the antenna,
but this has been left on to make it easier to write the equations. It can be removed by

subtracting o5 from all o's.

1. FAR FIELD, INPUT IMPEDANCE , AND GAIN

The relationship between the current on a short dipole and the far field is given by 20

- . j6omILsin® ~
By = I (147)

where I is the current, 8 is the polar angle, s is the distance from dipole to distant point
where ES is to be determined, A is the wavelength in meters, and £ is the length of the

dipole. It is required, of course, that £<< X and that the current be constant over ? or I
represents its average value. The log-periodic antenna as we have represented it does not

consist of a single short dipole, but arrays of short dipoles. Thus, the current shown in
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I. (Continued)

Equation (147) is only representative of all the currents represented in Equation (117). We
need then some relationship that will give the total EB in the far field.

If we assume that the distance to the point P where EG is to be determined is suffi~
ciently far that the lines from P to all of the current elements on the antenna can be con-
sidered parallel; that is, we are in the Fraunhofer region and we can rewrite Equation (147)

as follows

ND NP j6OTL sin® e k(85— 8g)
E, = S (148)
8 m=1 i1 so>t

where S is the distance to a reference point, for example, the apex of the log periodic and
s is the distance to the current element i. NP is the number of points on the m-th dipole

and ND is the number of dipoles in the array

Let Yim represent the distance from the center of the j dipole to the i-th point in
radians. As before, Gm represents the distance from apex of the log-periodic to the m
dipole in radians. Then, by the use of a little trigonometry, we have

k (sim - So) = “Yim €08 8+ o, sin 8 cos 9, (149)
where 0 is the polar angle and ¢ is the azimuthal angle in a spherical coordinate system.

Thus, the far field E
is expressed by

0 at point P at a distance Sy polar angle 6, and azimuthal angle @,

ND rég jeom I sin®
EO =2 X exp{~3(—yim cos 8 + o, sin 0 cos @)} (150}
m=1 i=1 o]

If the applied voltage to the antenna is one volt, then the real part of the inverse of the
input current 1s the radiation resistance while the imaginary part is the radiation reactince.
The input current is shown 1n Figure I11-2 as io' The transmission line between the shortest
dipole and the apex is not a part of the antenna, it 1s assumed that the technique given after

Equation (146) is used which makes this section of line of zero iength.

Gail as it will be used on this project is defined as the gain relative to a loss ess

isotrepic antenna in free space. It will be expressed in decibels--i.e --dbi The

o-36
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I. (Continued)

mathematical definition of gain then is, which is in agreement with the IEEE definition of

power gain in a given direction,

47 x the radiation intensity in that direction (151)
total power accepted by the antenna °

Gdbi = 10 log

where the radiation intensity, P, is the power radiated in the given direction per unit solid

angle. That is

2
g 2.2

0 1
P = T E (152)

J. CONCLUSION

This completes the derivation and description of the expressions that relate the physical
parameters of a log-periodic antenna to the currents on the elements of the antenna, the
input impedance, and gain where the solution was obtained assuming that we have a boundavcy
value prublem. Also the solution was obtained knowing that the best numerical techniques

and digital computers were to be used.
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III NUMERICAL RESULTS

A, INTRODUCTION

During the study covered by this report a step-by-step procedure
was used to obtain a computer program for a log-periodic antenna in free
space and over real earth, At first the theory presented in Section II of this
report was programmed to calculate the current distribution on just a single
dipole., When the validity of the results of this simple program had been
verified, the more complicated case of two identical dipoles in free space
was mathematically modeled and programmed. This procedure of applying
the theory to problems of ever-increasing complexity and verifying the
calculations at each stage of the process was followed throughout.

The following subsections present the numerical results of some of
the most interesting stages in the development of the present computer pro-
gram. At each step the computer results are compared with data previously

published or to data obtained experimentally wherever practical,

B. SINGLE DIPOLE

As stated above, the thecry was first applied to a single dipole in
free space. The dipole was divided into 2N sections and the current computed
for each of the individual sections. At first the current was assumed to be
constant on each section of the dipole, but later it was found that the number
of dipole divisions needed to obtain an accurate current distribution on the
dipole could be reduced by assuming a more complex current form for each
dipole section. The desirability of using a minimum number of dipole divisions

is two-fold. The most obvious reason being a reduction in the computer time

III1-1
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required for a given degree of accuracy. Although a savings in this quantity
is not particularly important for the single dipole solution, it is essential if a
multielement structure is to be analyzed. The second reason for requiring

a minimum number of dipole divisions, although less obvious than the first,

is equally important. In reducing the theoretical solution presented in Section
II to form a suitable form for computer use, some approximations were made that
require the length of each dipole division to be much greater than the diameter
of the dipole; therefore, there is a maximum number of dipole divisions that
can be used and still maintain a high degree of accuracy in the solution. For
thin dipoles, of course, the problem does not arise since an accurate solution
can be obtained by using a number of dipole divisions far below the maximum

allowed,
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Figures III-1 and III-2 illustrate the current distribution on the half-
wave dipole for different values of N and for both the constant current model on
each division and the sinusoidal current model on each division. For comparison,
the dipcle current distribution calculated by R.W. P, King1 is also shown on each
graph. The advantage of using the sinusoidal current model for each segment
of the dipoie is seen by comparing the two figures. With the sinusoidal current
form, the resulting current distributions approach that obtained by King with
fewer dipole divisions and remain nearer King's distribution over a wider range

of N than do the distributions obtained by using the constant current form for

each division. It is also interesting to note that the maximum current is not at the center of
the dipole as wculd be expected. This is explained by the fact that the particular dipole used
is relatively thick and thus appears electrically longer than half a wavelength. Current dis-
tributions have been calculated for much thinner dipoles and the current maximum does

appear at the center of the dipole as expected. (See Figure III-3)

The gain of this antenna was calculated using the method described in the sv¢ >n on
theory and was 2.15 db, the value predicted by Jorcl.':m.2

C. TWO DIPOLES

Having verified that the theory was correctly applied to a single dipole, the next step

was to try solving the current distributions on two dipoles connected by a transmission line.

Several cases of two dipoles in an array have been programmed and current distributions
found. In many instances much useful information such as variations in input impedance with
changing dipole spacings and lengths was found, but for the most part these results only
served as a check on the theory and programming procedure and were not investigated
further.

There i5 one particular case of general interest, however, which should suffice as a
representative example of the many two-dipole arrays which have been programmed. The
example in mind is an array of two half-wave dipoles separatec. by one-half wavelength and
fed in phase to give a broadside radiating structure. The currents on both dipoles are
identical. The dipoles are fed by a single voltage generator at the base of one dipole, with
a scction of transmission line one-half wavelength long connecting the remaining dipole.

To obtain "in phase' voltages at the base of each dipole, the transmission line was
switched so that there was an additional 180-degree phase shift at the second dipole besides
m-?
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C. (Continued)

the 180-degree phase shift introduced by the length of transmission line. The gain for
3

this array is 6. 029 db and is consistent with values found by using other methods. The

input impedance to each dipole is 62 +J6.3 ohms and is cornparable to the value of

60 + j4 obtained by Kraus.

D. LOG-PERIODIC ANTENNA

St b na s

In this section probably the most important results of the study are presented.

These are the computed values of current distribution and radiated power for an entire

log-periodic antenna, After many trial computer runs, a satisfactory program was

finally achieved for the LP antenna and the results of this program were compared to

data measured from existing antenna models.

The model that was analyzed on the computer was 2 10-element switched-phase
log-periodic antenna (bandwidth 250-500 MHz) with a = 45°% and T =0.853. The antenna
feed structure was a 137-ohm two-wire line. Two computer runs were made for two
different frequencies, Figures III-4 and III-5 show the current distribution at frequencies
of 300 MHz and 450 MHz, respectively. The currents are nearly as would be expected

by antenna engineers. The highest currents appear on the elements near resonance and

S

on the next smaller elements; i. e., the active region includes the resonant element plus
the next several smaller elements. The phase progression from one element to ihe next

is also in agreement with measurements made previously.

Figures III-6 through III-9 show a comparison between measured and calculated
radiation patterns at frequencies of 300 MHz ard 450 Milz for this log-periodic
dipole array,

: Figures 1II1-10 through III-14 show the current distribution and far-field
P patterns (measured and calculated) of a 6-element log-periodic at operating
srequencies of 650 and 850 MHz, The design band limits are 550 and 1000 MHz.

Figures III-15 through III-19 show the current distribution and far-field
patterns for a 10-element version of the antenna given above. In comparing the
currents shown in Figures II1-10 and III-15 one must rote the difference in
maximum values, The major reason is that both antennas theoretically wers
fed with ideal 1-volt sources, thus allowing the antenna with the lower input
impedance to draw more current. In the calculation of absolute gain as described

1 :m Section I1, this effect is accounted for automatically. (-7
r -
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D. ___--Continued,

The patterns shown in Figures I1I-6-9, 11-14, and 16-19 are
probably the most conclusive proof available to show that the theory and com-
puter program are valid when applied to a log-periodic antenna, The discrepan-
cies between calculated arnd measured data that show up in the back lobes of the
patterns are due to environmental conditions at the test site and to the lack of
perfection in model building techniques. One argument that indicates that the
physical model is at fault instead of the mathematical model, is the fact that
the measured data is not symmetrical where the differences in the two sets of
data occur, For future work, higher quality models will be used and tested in

a controlled environment,

Figures II1-20 and III-21 show the current distribution and far-
field patterns of a log periodic dipole array when the ® angle is 45 degrees.
Antennas with angles this high are sometimes used in broadside or billboard
arrays. Since the computer outputs are symmetrical about the 0-90 degree
line, only half of the E- and H-plane patterns are included in Figure III-21 and
many of the succeeding patterns,

Figures III-22 through III-24 show the current distribution and
far field patterns of a 10-element array designed for maximum gain using the
techniques developed by R. L. Carrel. The maximum gain was found to be 10.7

dbi while Carrel's method predicted a gain to 11 dbi.

Figures III-25a through c show that the computer program that
2 has been devzioped will predict the existence of the so-called 3/2 moding. Three-

halves moding occurs when only part of the available energy is radiated in the

é active region around the half wave element with the remainder being radiated
' in the region of the three-halves wave element. The effect shown probably
would have been more pronounced if the operating frequency had been a little
F higher.
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E, LOG-PERIODIC ARRAYS

As a final step in the computer solution of log-periodic antennas
o ’ an array of LP's was analyzed, The arrays were of two types -- the DuHamel
| array where all log periodic antennas making up the array are identical and the
Mei array where all elements of equal length lie in a straight line, thereby
making it necessary for each LP in the array to be of a different design (See
Figure II1-26). The DuHamel array has a circular phase front whereas the

Mei array has a flat phase front, Of the computer runs made, the DuHamel

array was the most often used while the Mei array was used only occasionally

as a check against the DuHamel designs,

Two basic LP designs were used as elements in forming the LP

R e T N

arrays. These were a high gain LP (10 dipoles, & = 6, 370, T =0.96) and a
medium gain LP (9 dipoles, A = 44, 340, T =0.78). Both medium and high
gain antennas were designed to operate in the upper UHF region (length of longest
dipole =0.25 meters) so models could be constructed and tested easily if a
comparison between computer and empirical data was desired. This choice in

e ) design frequencies is not a restriction for antennas operating in {ree space,

k however, since the computer program in this mode works only with relative

3 and not absolute values, i.e., a half wavelength antenna looks electrically the
same at all frequencies. The only case where actual frequencies must be
analyzed in the computer program is that in which the antenna is to be placed
over real earth which is frequency sensitive in the absolute sense. For the
sake of convenience, all patterns for the medium and high gain antenna arrays
in the remainder of the report were run at frequencies of 1100 MHz and

665 MHz, respectively, See Figures III-27 and III-28 for single LP patterns at

these frequencies.
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E. --Cont.nued

In switching from single LP antennas to LP arrays the interests in
electrical characteristics changes also, Previously, current distributions
were of prime concern, . .t now the gain and pattern coverage that can be
achieved with different antenna designs is of interest. The major factors
affecting the gain and pattern coverage of an array are the individual! LP designs s
of which we have chosen two as being representative, the manner in which the
LP's are arrayed and the number of LP's ir the array, The particular array,
DuHamel or Mei, once chosen, leaves only‘r the spacing between LP's and the

number of LP's in the array as the variables to be optimized,

The process used to find an optimum set of array variables was one
of choosing the spacing to be used between LP's and then to make computer
runs with varying numbers of LP's in tne array. Figure II1-29 shows a graph
of maximum gain versus the number of LP's in the array for various DuHamel
spacings, The term LP spacing as used here means the distance in wavelengths
betweea the half wave dipoles of neighboring LP's in the array. The data for
this graph was obtained from computer runs for high gain LP's in an array.

It is interesting to note that the array gain does not necessarily increase with
an increase in the number of LP's in the array, but often decreases., If one
visualises the geometry of an LP array he sees that each additional element
placed .n the array must be positioned at an ever increasing angle from the
direction of radiation for the array., The radiation from these off-axis LP's
contributes significantly to the side lobe level thereby decreasing the amount of

gain that could be realized with the additional element. This increase in sidelobe
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E. --Continued

level coupled with that due to arraying when some of the LLP elements in the
array are separated by more than a wavelength can cause an overall decrease

in array gain, especially when the LP to LP spacing in the array becomes large.

Figure I-30 is a graph, similar to that of Figure III-29, for medium
gain LP's in an array. This graph shows trends identical to those of the previous
graph with the only diiference being an overall lower gain for the medium gain

LP arrays,

The two graphs just mentioned do not tell the complete story of arraying
trends; however, a closer look at some radiation patterns indicates that a
particular array may have more gain than anather, but its radiation coverage
could be completely unacceptable, For example, Figure III-29 shows that a
DuHamel array with four LP's spaced 1.5 wavelengths apart has a higher
maximum gain than a si milar array with elements spaced 1. 25 wavelengths
apart, but a glance at the radiation patterns shows that the peak of the beam
(actually two peaks -- one on either side of boresight) occurs about 6 degrees
off boresight for the higher gain array (Figures III-3la, b). See Part IV -
Appendix for a complete set of E-and H-plane radiation patterns and gains of zll
designs run on the computer. Even though the 1,5 wavelength spaced array has
higher maximum gain, the 1, 25 wavelength spaced array has a higher boresight
gain,
In all previous examples the arrays analyzed have been of the
DuHamel or circular phase front type. The Mei array, however, offers an

alternate design approach which seems to be somewhat superior to the DuHamel
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i

array., Figure III-32 s a bar graph showing a comparison of the two arrays

for different designs and as can be seen the Mei array is significantly higher

in gain for all designs. The designs used for this comparison were not preselected,
but were chosen simply because they happened to be the only designs for which
both array types were run on the computer. The comparison is by no means
exhaustive in the number of different designs used, but the results are so de-
cidedly one way that the Mei array could safely be called the superior array
type at least in terms of array gain., One also notes that the gain of the Mei
array does not decrease in going from four to five element arrays unlike that of
the DuHamel designs., There is nothing to indicate that this trend won't reverse
with the addition of the sixth element, but at least up to five elements the gain
of the Mei array increases with additional elements. See Figure III-33 for the
radiation pattern of a 5 element Mei array-the highest gain array run,

Before concluding this section on the comparison of array types we
note that the one comparison involving medium gain LP's shows the Mei array
with higher gain than the DuHamel array, but witk the radiation in the opposite
direction. Even tt.ough the Mei array gain is higher, the fact that it radiates in

the backward direction seems to indicate an unstable design. Unfortunately
there are no other computer runs on medium gain LP Mei arrays available to
indicate whether or not this instability is a property of the array type.

In our final step in the analysis of LP arrays we have placed the

arrays over real earth, Due to an oversight on the part of the author, the

computer runs were made at UHF instead of HF and, because of a shortage
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E. --Continued

of time, reruns on these arrays at the proper frequencies were not obtained,
The two cases of arrays over real earth that were run are of some interest,
however, and are shown in Figures III-34a and b, The ground chosen for the
runs had a conductivity, € , of 5 x 10-14 emu and a relative dielectric constant,

£, of 15 - a rather mediocre earth. The gain of these arrays is slightly less
than there counterparts in free space (See Part IV) and if one were to speculate
he could draw the conclusion that this decrease in gain would be less at HF
frequencies. Speculating further we can say that most probably th tawe-off
angle at the lower frequencies would be somewhat higher than th' . ;. . the UHF
case at hand, although there is no way of specifying exactly what it would be,
The parameters affecting the radiation characteristics of an HF array are so
numerous that drawing exact conclusions from the available UHF runs would
not only be meaningless, but would be impossible, It is only possible to
speculate about the direction of change that might occur in going from UHF to
HF.

Until now this secticn has simply provided the results of the various
computer runs on LP arrays with only some of the more interesting results being
pointed out. It is time to draw some conclusions and apply these conclusions
to a specific array design., At the beginning of this study a set of design goals
to be achieved was specified, With the limited data at hand we can see which
goals can be fulfilled, which goals seem likely to be fulfilled and which goals
will take considerably more study to determine whether cr not they are possible

to meet,
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E. --Continued

Cne of the foremost design goals is the gain which has been
specified as a minimum of 17 dbi at the beam peak. A 5 element Mei
array with 3/4 wavelength spacing has a free space gain of 16, 9 dbi, nearly
enough to meet the requirements. However, the Mei array seems to
increase in gain with additional elements so that a minimum gain of 17 dbi
shouid be easily achieved with a 6 or 7 element array even over real earth,

The second design goal, equally important as gain, is the
coverage that can be obtained. The azimuth coverage was specified as a 16
degree beamwidth at and near the peak of the beam in elevation. Since the
azimuth coverage should change only slightly between a free space situation
and over real earth, the free space patterns available should give a good
indication as to the coverage that can be achieved by an HF antenna. Another
look at the same 5 element Mei array shows a beamwidth of 15 degrees with the
first sidelobe 17 db below the beam peak. The beamwidth is only a degree
under the design goal, hardly enough to bother with since the beamwidth will
probably change more than a degree with a change in frequency. The side-
lobe level of -17 db is 2 db better than the -15 db specified in the design goal
requirements,

The elevation coverage is to have a beamwidth from 2 to 16 degrees,

We can see from the UHF pattern that this goal cannot be achieved with a simple
HF antenna above ground, there must ba a ground screen in front of the array
to lower the beam peak. No more can be said about the elevation pattern or

screen effects since the HY information is not available
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By using the data that is available on the five element Mei array,
we can now proceed with the design of an optimum 3-30 MHz HF array. As
mentioned previously, the number of elements wovld be increased from five
to six with an inter-element spacing of 0, 75 wavelengths,

With a T of 0.96 each LP element of the array would consist of
62 dipoles for a total of 372 dipoles for the array, The longest dipole would
be 164 feet tall while the shortest would be 13,59 feet tall, Four dipoles
have been added to the high frequency end of each LP element to insure
that maximum gain is achieved at 30 MHz,

The spacing between the longest dipoles of adjacent L elements
would be 0, 75 A or 246 feet for a total array width of 1230 feet at the low
frequency end. Similarly, the spacing between the shortest dipoles of
adjacent LP elements would be 20, 4 feet giving an array width of 102 feet
at the high frequency end.

Since we are design:ag a Mei array, the spacing between dipoles
of an LP element is dependent on element placement in the array (Sse Figure
II-26). Although the dipole spacings differ from element to element, only the

inter dipole spacings of an imaginary LP in the center of the array need
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E. --Continued

to be specified since all dipoles of the same length on the various LP
elements will fall on a line perpendicular to this imaginary centerline,

Of course, if there were an odd number of LP elements in the array, then
there would be an actual center LP element. The best choice for the
imaginary center L.P element would be the high gain LP discussed pre-
viously with an &4 angle of 6. 37°, Using this information and some simple
geometry, the spacing between the longest and the next lcngest element in

the imaginary LP can be found from the expression

'—
= 53
5% 2 tan™3) (153)

E ‘ where S is the desired spacing and!.-.‘,is the length of the longest element.
For the particular array at hand this spacing is 59 feet. Making use of
geometrical progressicn formulas one can determine the total length, L,

of the array from

ad ity

Y CWLP AN
L XA (154)

where 1.,‘ is the length of the smaliest element. The total length of

our array is 1352, 1 feet,
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E. --Continued

Until now only the dimensions of the longest dipole and the
spacing between the two longest dipoles in the imaginary center LP have
been presented. Obtaining the dimensions of the remainder of the elements
and spacings is simply a matter of successive multiplication by T .

The only remaining parameter that must be specified for a
complete array design, is the line length between adjacent dipoles in an LP
element, Although the physical spacing between dipoles of an LP element
depends on the placement of the element in the array, the line length con-
necting aay two dipoles in an LP element must be the same for similar dipoles
in each LP element in the array to maintain a flat phase front. The line
lengths can be obtained by letting the electrical spacing equal the physical
spacing for the outer most elements in the array since the outer elements will
have the largest separation between dipoles, Again using some simple geometry
we find that the line lergth from the largest to next largest dipole in the outer
LP elements is 63,9 feet. To obtain the other line lengths from dipole to
dipole in the LP's all that is required is successive multiplication of the
largest line length by T .

The design of the HF Mei array is now complete and may be

summarized as follows:

Frequency 3 - 390 MHz
No. of LP Elements 6

No. of Dipoles/Element 62

No. of Dipoles/Array 372
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T 0.96

Spacing Between Elements 246 ft. Low Frequency End
20, 4 ft. High Frequency End

Array Width 1230 ft. Low Frequency End
102 ft. High Frequency End

Array Length 1352.1 ft.

Largest Dipole-to-Dipole Spacing
on Centerline 59 ft.

Largest Line Length 63.9 ft,
The characteristic impedance of the transmission line was 60 ohms for the
computer runs used in designing this array., However, no attempt has been
made to optimize this impedance, therefore no transmission line impeda:ce
will be specified in this design. Similarly, there is not enough information
available to specify the type and size ground plane necessary to make this

array meet the elevation coverage specified.

There are other design goals such as VSWR that were specified
at the beginning of the study, but the Program has changed scope to such an

extent that these goals are no longer in the realm of the study. Such design

goals are secondary, however, compared to the primary objective of proper

gain and coverage.
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Although not every aspect of the original study has been considered
because of the redirection in emphasis from antenna physical modeling to
mathematical modeling, it is felt that an optimum HF array design has been
achieved to the extent intended in the study. Duzing the course of the study
an extremely valuable tool in the form of a computer LP array analysis program
has been developed and furnished to the customer for optimizing arrays with
different design goals,

The mathematical model developed under this study was the best
at the time of its writing, but use of the program and an analysis of the results
show that there are changes that would improve and expand this model. It is
felt that these changes would greatly benefit the user of such a model and that

a future study be undertaken to incorporate any desireable changes in the model

and computer program.
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