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ABSTRACT

This report presents a summation of the work performed under the

Artenna HF Optimization Study, a study to determine the optimum log periodic

dipole ar.-ay design for a high gain, low coverage HF antenna over real and/or

ground screen covered earth. The major problem encountered is one of deter-

mining antenna electrical characteristics accurately in izee space and in a real

earth environment. The present state of the art in analytical antenna design

does not allow the engineer to predict log periodic antenna electrical character-

istics, especia'ly over real earth, with sufficient accuracy to be valuable for

strict system requirements. To solve this problem, a mathematical model of

a log periodic antez:ia is set up and solved with the use of high speed digital

computers. The model used allows one to obtain the current: distribution on

the antenna knowing only its physical dimensions and something about the con-

ductivity of the material used in its construction. The theoretical model, which

treats the antenna as a boundary value problem, automatically includes all the

interactions or mutual coupling between elements. From the computed values

of the currents on the antenna all electrical characteristics of the antenna, such

as radiation patterns, absolute gain, and input impedance are calculated.

Theoretical and measured UHF radiation patterns and gains are compared for

evaluation of the technique. Free space and real earth calculations are presented

and an optimum antenna design is chcsen from this information.
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EVALUATION

1. The objective of this effort was to investigate antenna techniques
applicable to arrays of HF dipole Icl periodic elements to provide gains
of 17 dbi and radiation coverage with a minimum of 14 dbi from two (2)
through 16 degrees in elevation and plus and minus 8 degrees in azimuth
over the 3 - 30 MHz frequency range with minimum real estate.

2. The approach taken by Sylvania was to investigate H-Plane arrays of
log periodic elements of the DuHamel and Mei configurations. The
original approach was to perform both an analytical and experimental
effort to determine the advantages of the Mei array approach over the
conventional Duilamel array configuration. After the effort had been
initiated, it was redirected to put full emphasis on developing a
computer progiam which would have the capability of computing the
performance characteristics of dipole log periodic elements and arrays
of log periodic elements in both the DuHamel and Mei configurations.
This computer program was written for the PADC GE 635/645 Computer in
order that RADC antenna engineers could make efficient use of the computer
program using RADC's computer facilities. RADC used its computer
facilities with the Sylvania antenna program to obtain the performance
characteristics of log periodic arrays as presented in this report. It
was determined by the many computer runs performed by RADC, that the
computer program developed by Sylvania has a limitation of only being
able to handle log periodic structures with bandwidths less than an
octave. The results from analyzing loc periodic structures larver than
an octave bandwidth did not correlate very vell with experimental results.

3. The results of this effort have shown that the following parameters
have a significant effect on the performance of dipole log periodic
elements:

a. Dipole diameter

b. Characteristic impedance of feed line

c. Tau factor

d. Alpha factor

e. Number of dipo'e elements on structure

f. Bandwidth of the structure

ix
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'This computer program will enable the antenna engineer to determine
optimum antenna parameters for arrays of dipole log periodic elements
before an extensive experimental effort is undertaken. It is hoped
that the limitations of this program can be overcome and can be made
to satisfactorily handle greater bandwidth structures.

4. With the use of the RADC GE 635/645 Computer Facilities and the
computer program developed under this effort, the Air Force will be
able to analytically determine the performance characteristics of
large HF log periodic dipole arrays for future radar systems. This
capability will also be 2dvantageous for analyzing in more detail
the performance characteristics of dipole log periodic structures.

Project Engineer
RADC/EWATA
Griffiss AFB, NY
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I INTRODUCTION

Insufficient information on the electrical characteristics of antennas

is and has been a continuous problem to the systems engineer. Whenever he

attempts to predict the receiver signal level a lack of detailed gain character-

istics becomes significant. The amount of information available varies greatly

from one type of antenna to another. The antenna we wish to consider in this

study is the log-periodic antenna.

There are may different forms of log-periodic antennas; however,

only one may be considered as useful at the present time for the operating

frequencies many for long-range purposes -- the log-periodic dipole antenna

(LPDA). Figure 1-1 is an example of a VHF log-periodic dipole antenna, the

absolute gain of which is too low for long-range systems. These antennas may

of course be arrayed to increase the gain to the required level. Arraying may

be accomplished such that the resulting array has the same frequency-indepen-

dent characteristics as the fundamental antenna. This technique has a theoretical

maximum gain. Figure 1-2 is an artists concept of such an array in the HF

region. One may also array the antennas to give broad-band characteristics

that change with frequency, but have no theoretical limit on maximum gain;

however, at the present time we are concerned only with the frequency-indepen-

dent array.

The determination of the electrical characteristics of a LPDA, when

the antenna is a close-spaced array on a homogeneous earth covered by a

ground screen of finite length, is not an easy task. The first step in the complete

1-1
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S I. (Continued)

solution of this problem is the determination of the theoretical characteristics

of such an antenna in free space. This report is addressed primarily to this

problem. The mathematical techniques to be deviloped must, of course, be

of a form that is applicable when the complete antenna is composed of arrays

of LPDA's.

The LPDA is in a class of antennas that to the present day do not have

suitable approximate mathematical colutions. Attempts to compensate for the

mutual coupling between the non-equal-length close-spaced dipole elements

using the usual arraying theory have been unsatisfactory. The present state

of the art in analytical antenna design does not allow the engineer to truly

predict the performance of log-periodic dipole antennas.

The assumptions of the form of the current distribution on the dipole

elements and consideration of the interaction between pairs of dipoles, neglecting

the effects of neighboring dipoles, has given useful but limited results.

The techniques used in obtaining solutions of the LPDA go beyond the

usual analytical methods and make maximum use of advanced numerical

analysis and high-speed digital computers. Many "solutions" to antenna prob-

lems in the past have made assumptions on the current distribution on the elements

and have used this assumed current distribution to determine radiation patterns,

etc. In other words, an answer has been assumed for a major portion of the

problem and only the minor problem of determining the far-field pattern (given

the current distribution) has been solved. In this report no assumptions on the

distribution of current are made; the antenna is treated as a boundary-value

probiem for which a solution can be obtained by numerical analysis and the aid

of a digital computer.

1-4 Ii



I. (Continued)

Thus only those parameters that define the antenna physically and

the operating frequency are the input parameters to the digital computer pro-

gram. The computer program, in turn, determines the current distribution

cn the antenna based on these physical parameters. From these derived values

of the currents on the antenna, all electrical characteristics of the antenna,

such as radiation patterns, maximum absolute gain, and input impedance are

calculated.

As shown in Section III the boundary-value problem, which mathematically

represents the antenna, can be represented by a Fredholm integral equation.

(A Fredholm integral equation is one where the unknown is under the integral

sign.) It can be shown that such an integral equation can be considered as the

limit of a set of n algebraic equations where the accuracy of the solution is a

function of n. Use is made of this fact by writing the n algebraic equations

and solving the n equations using matrix techniques. These equations are,

of course, complex in the mathematical sense.

Thr, next section of this report presents the theory behind the

mathematical model of an n element log-periodic dipole antenna in free

space. The third section presents some of the numerical results obtained

from the computer program which utilized the mentioned mathematical model.

I-5/1-6



II THEORY

A. INTRODUCTION

The primary objective of this section is to present the theory

behind thl mathematical model of an n element log-periodic antenna in

free space. The analysis of this mathematical model by numerical tech-

niques will be discussed simultaneously to enable the reader to understand

the capabilities and limitations of the computer programs utilizing this

particular model. This section does not provide a documentation of the pro-

gram that has been written using the model to be discussed, but merely

provides the theory and methods used to write such a program.

The next part of this section provides a brief outline of the basic

theory involved in the mathematical modeling of a wire antenna beginning with

a simple dipole and then extending this concept to include a log-periodic

antenna. The remainder of this section provides a detailed analysis of how

the model is derived from the theory and what numerical techniques are used

to implement this theory on a digital computer.

- !-



B. OUTLINE

To0 find an expression for the current on a dipole in terms of the applied voltage it is

convenient to first derive an equation relating the voltage to the vector potential, and then

find an expression for the vector potential in terms of the current.

The electric field at any point outside a dipole can be expressed as

E= VO -jwA()

Now, defining vp A 4

V-A -jwpeo~ (2)

we get

1 r

E IV(VA + 't, A) . (3)

Assuming the dipole parallel to the z-axis, Equation (3) reduces to

/d2A
E -j !!L +OAZ)(4)

E 21

z k 2 dz 2

where

For a perfect conductor the tangential electric field is zero on the boundary. Equation (4)

then becomes

2!

d 2A
Z+ k Az 0. 5

2!

zz
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B. (Continued)

'rhe general solution of this differential equation is

A C C1 cos kz + C 2 sin kz .(6;)

With a slice generator of voltage V applied at the center if the dipole, as derired by

;'5

lHalle~n, 5Equation '6) becomes

c. (osokz -usinkd) . (7)

This is the vector potential-voltage relationship that we set out to find.

To relate the voltage to the current flowing on the dipole, we can now use the known

relationship beteein the vector potential, A , and the dipole current,

Az lcos kz R dz' (8)

where R is the distance between the point in space and the point on the dipole where

current It is flowing.z

Combining Equations (7) and (8) we obtain the desired current-voltage relationship,

t, e-jkR

_ dz = B cos kz + iTV sin k~z (9)

Af 4I z RR dz ,(8

- -,

in order to solve this integral, we approximate the integral by a finite sum of currents

along the dipole. Each term in this sum contains an ipknown value of current. To solve

for these unknown current values, we need the same number of equations as we have incre-

ments of currents along the dipole. By specifying the value of z to a specific increment

along the dipole, one equation can be written for each current segment. With the dipole

divided into N segments, we now have N number of independent equations. A typical

equation for the i-th segment is

U-3
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B. (Continued)

N _______-jkR n' I , e n .V 10

l Zn Rn AZn B cos kz. - j- sink z(10)
n=1 nn

where n covers all dipole sogments, including the i-th segment. In addition to the N

number of unknown currents, the integration constant B is unknown.

An additional independent equation is obtained from the boundary condition that the

current at the tip of the dipole is zero;

I Izt 0 (11)

With N4-1 irdependent equations, the N41 unknowns can now be determined.

The same theory can be applied to a series of dipolec, as in the case of a log-periodic

dipole array. For a log-periodic array with M number of dipoles, Equation (10) becomes

M N -jkR V.
z e An Z B. cos kz.. j --I sink zi (12)

m=1n=1 n Rn mn 31 i 2,'7 1 ji

where m covers all dipoles, including the j-th dipole.

The unknown voltage, V. , at the base of the j-th dipole in the array is related to the

applied voltage, V , at the input terminal of the array by a series of tranmission line

equations.

The currents on the dipoles of a log-periodic antenna, calculated by using the approach

described above, are by definition the actual currents, including all mutual interactions

between the dipoles.

From these values of currents on the structure all electrical characteristics of the

antenna, such as far-field patterns, the absolute gain and input impedance can be

calculated.

11-4
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I C, THE DIPOLE ANTENNA

The cylindrical, cer '.er-driven antenna has been analyzed as a

boundary value problem by many workers. Basically, two methods of attacking

the problem of determining the distribution of current along the center-driven

6
antenna have been used. In the first of these, which is not a boundary value

treatment, one uses the apparent similarity between the antenna and an open-

end parallel-wire transmission line. Thus, by suitably correcting existing

transmission iine theory, a satisfactory approximation for the antenna can be

determined.

The second method proceeds from the point of view that the antenna is

11-5



C. (Continued)

a boundary-value problem which can be formulated in general terms and the resulting

equations solved by the use of the numerical methods and high-speed digitai computers.

Thus, to solve this problem, equations are needed in terms of parameters such as the radius

and length that characterizethedipoleantenna, rather than in terms of characteristic imped-

ance, terminal impedance, etc., which are basically foreign to the antenna.

The dipole antenna has been investigated from the point of view of a boundary value
1 ' 5 8 9

problem by many workers such as R. W. P. King, l~llen, L. V. King, Brillouin, and
10

Aharoni. In nearly all of these papers, different but comparable methods were used.
Some are analytically complicated in determining tne equations, and all are complicated in

their attempts to solve the resulting integral .•quatior Actamlly, the problem can be set up

formally,11 and this will lead to the integral equat-or, first Gbtained by llaelln as shown

below.

1. The Differential Equation

Since we are concerned with antennas that will be used at high fr. q-iencies, we will

assume the antennas to be thin. By this it is meant that the ratio of ,ra•.ius r of th cross

section to length 2U. of the antenna is negligible. It is not permissible to regard r0 as

zero, for the quantity

2 2tnr( ) (13)

cannot be neglected. Thus, while errors of the order ro/ can be tolerated, the antenna

cannot be regarded as infinitely thin. A lower bound on S2 has been given by Brillouin 9 of

S2 > 14 or tL/r > 1000. For the purposes of this presentation this is not a significant re-o

striction. This restriction allows us to ignore the ends of the antenna, which greatly sim-

plifies the problem but does not decrease the useful accuracy.

The analytical problem of determining the distribution of current on an antenna which

we will assume to be cylindrical (triangular or other shapes can be represented by a suit-

ably selected cylinder), of half length t, , and radius r° , may be formulated in terms of

the general boundary condition which requires continuity of the tangential component of the

electric field across any boundary surface between two media. For this analysis it is con-

venient to use a cylindrical coordir.ate system with the z axis lying along the axis of the

1I-6



C. I (Continued)

dipole, and z = 0 at the center of the dipole. We thus have (assuming the antenna to be a

solid wire for purposes of discussion) the following boundary conditions.

a. E as one approaches the surface of the wire from inside the wire must be equal

to E as one approaches the surface of the wire at the same point from outside

the wire.

b. E as one approaches the end of the wire from inside the wire must be equalr
to Er as one approaches the same end of the wire at the same point from outside

the wire.

Since the ends of the wire are required to be small by the restriction on S1 as defined in

(a) above, the average electric field, Er, on the ends must be less than the average field

along the wire. This follows since the radial current must vanish at r = 0 and r = r

and it cannot reach a large amplitude in this extremely short distance relative to a wave-

length. Accordingly, nothing of significance is neglected as far as the antenna as a whole

is concerned if no account is taken of the end faces of the wire, and hence, E We will

thus assume the current to vanish at z = +t without flowing radially inward on the end

faces.

While at this time conductors with finite conductivity have not been considered in the

computer programs, it is planned in the future to consider conductors with finite

conductivity. Thus, in the formulation of the differential equation here, we will assume

that the wire has a finite internal impedance per unit length of Zi and that the cross

sectional distribution of current in the wire is essentially the same as in an infinitely long

wire. In other words, for the purposes of this analysis it will be taken for granted that the

cross sectional and axial distributions of current are mutually independent. This is always

true to a very high degree of approximation in a good conductor.

Accordingly we have

E 0 = z ,I z (14)

where Ez is the value from the internal approach to the surface and Iz is the total current

in the wire at point z

11-7



C. 1 (Continued)

At any point in space outside the wire the electric field is

E= -VO-jwA ,(15)

where 0 and A are the scalar and vector potentials, respectively, and w is the angular

frequency. Now the relationship between 0 and A is

V.A = -jwlc = (c0--4) , (16)

where p is the permeability, which for free space has the value 4w x 10-7 henries per

meter; e is the permittivity, which for free space has the value 8.85 x 10-12 farads per

meter; and c is the velocity of light.

By substituting Equation (16) in Equation (15) we have

/ --

(V.A -jWA (17)

or

2L X ( ?2? (18)LV 'A + I2/AJJ (8

Define

k2 2 2 22(19)
C

where ) = wavelength.

Since the wire antenna carries only a z component of current, the 'V ýctor potential will

have only a z component. Thus, Equation (18) will become, with the definition given in

Equation (19),

= -j d2A Z) (20)
Ez -k 2 + k2
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C. 1 (Continued)

If we now impose the boundary condition, Equations (14) and (20) will give the following

differential equation in the vector potential:

Z I - 2Az k2A (21)
k dz

or

dz 2 2
4 k2A = jk2 Z.I (22)

dz z W z

From this last equation we see that the vector potential can be represented by a one-

dimensional wave equation which would be homogeneous for the perfect conductor (Z.i 0).

It is readily verified that the scalar potential can be represented by a similar equation.

The differential equation given by (22) is a nonhomogeneous equation and can possibly

be rewritten in the form of an ordinary differential equation and solved by numerical methods

on a igital computer. In contrast to initial value problems, which are characterized by

the fact that the information given concerns all the conditions at a given point, a boundary-

value problem such as defined by Equation (22) is one which gives the conditions at two or

more distinct points. In this equation we are seeking we must find a relationship between

the vector potential and the z coordinate at all points on the wire. This type of problem

is often called n "jury problcm". In contrast, the initial value problem is to find the rela-

tionship at another po.naL given its value at a given point; i.e., as the independent variable

is increased by a small increment. This process is sometimes referred to as a "marching

problem". The numerical solution of marching problems are much simpler than those of

jury p,,oblems: in fact, all good computer centers will have many subprograms to handle the

marching problem, while all jury problems must be set up and programmed separately.

There are, of course, other ways in which one may solve the boundary value differen-

tial equation as shown in Equation (22). One approach that can be used and will be used

here is to restate the problem as an integral equation.

11-9



C. 2 The Integral Equatien

Since Equation (22) is a nonhomogeneous equation, the general solution must consist

of a complementary function and a particular integral. The complementary function may be

written in the form

AC =-j [Clcoskz + C sinkz] , (23)z c 1 cs 2

where C1 and C2 are arbitrary constants of integration. A particular integral has been

obtained and is

Ap Z I (z) sin (z-z) dz (24)z o

0

One may verify that (24) does satisfy (22) by substituting (24) in (22).

This equation is valid everywhere including the surface of the antenna, but will not be

valid at z = 0 since the scalar potential will have a discontinuity due to the driving voltage

at that point. This voltage source can be inserte using King'sI slice generator. To allow

for this additional condition, the differential equation must be rewritten as two equations

as follows:

z

A -- [Clcoskz + C2 sinkz-Z. fI(z)sink(z-z)dzl forz>0 (26)Az - "2

0

and

z

A -- - C3cos kz + C4 sin kz - Z I I(z) sin k (z-z) dz for z < 0 (27)

Now the boundary conditions will determine the constants C1 C2 C and C

1' 2' 3
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C. 2 (Continued)

Now from Equations (15) and (16) at r = r0 the scalar potential is

-- (28)OZ c2 6z Ir=r

Inspection of Equations (26) and (27) in view of (28) indicates that if Az is an even function,

Cz must be an odd function, and vice versa. If we let that thickness of the slice generator
be 26 , then

V (29)

and

0-6 (30)

where V is the applied voltage, then the function 0z is odd. Thus, Az must be even.

These conditions are represented in equation form by

Oz =-z (31)

and

A = A . (32)z -z

In order that (26) and (27) may satisfy (31) and (32) for all values, the following relation

must hold:

C 3 = CI and C4 = C2 (33)
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CC.2 (Continued)

We can then combine Equations (26) and (27) into the following form:

z
A -j 2o z sin k I zIZf I(z) sin k(z-z) dz] (34)Az - 2

0

It is readily shown that (34) is unchanged if -z is everywhere written for z . In the inte-

gral one must replace the variable z' by -z'.

The boundary condition on the scalar potential is

as we allow the shce generator ti ickness to approach zero. From Equation (33) we may
write

(36)

--z Z= - c2 ¢6

and

aA z W -0- 6 j(37)

z- z=_ c2-5'

so that

0 -0 j c2 6A (38)-6 bz z=_5

and

S rlim 0 2 jc2 Iim u Az r (39)
v -2 0 6 -W b-,0•-a
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C. 2 (Continued)

Upon differentiating Equation (34) with respect to z and setting z equal to 6 and allowing

6 to approach zero, we have

)A _ -jkC 2 (
6-0 -z (40))

so that with k -/c we then have

C2 . (41)

The equation for the vector potential then may be written

z

A C1 coskz +- Ysin k zI - Zi I(z') sin k(z-z') dz' (42)

0

Figuratively speaking, let us for the moment sit back and see what Equation (42) is

saying, -and what it is that we desire. First, it is an equation for the vector potential on or

outside the dipole. Secondly, it has two unknown constants, C1 and Z. Z. is no concern

at the moment since we know it is the internal impedance per unit length of wire that can be

determined when we so desire.

C1 is an integration constant and therefore related to a boundary condition. The only

boundary condition that has not been used is the condition at the tip of the dipole. We know

that the current must be zero at the tip. That is, C1 can be determined by the equation

I - 0 (43)

But this is an equation for the current while Equation (42) includes C in the equation for

the vector potential. Therefore, it appears we must obtain a relationship between the vector

poten'ial and the current. Then, when we have the equation relating the vector potential to

the current and substituting Equation (42), we can determine C by the use .of Equation (43).
To obtain the relationship between the current and the vector potential, we must use the

Helmholtz equation which relates the vector potential and the current.

I-13
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C. 2 (Continued)

The amplitude of the vector potential defined by Equations (15) and (16) must satisfy

the Helmholtz equation

SAX + k2 X ( ) ,

where 1 is the volume density of current flowing in the antenna. The Helmholtz integral,

by substituting in Equation (44), can be shown to satisfy this equation. This integral is

_: I -jkr 1

A e dv', (45)"r 1
v

where v is the volume of the antenna, dv' is an element of v, i'1 is the current density

at dv', and r1 is the distance between the point whose cylindrical coordinates are

(r, e, z) where X is to be computed and the element dv' is at (r', e', z'). There

are no radial components to X, since we have assumed no radial components of current

flow. The z component is

t4 . -jkrI

A 'z e dv' (46)

v

It has been shown by King and Harrison that A z evaluated from

-jkR
f I' e

AZ=4R d (47)

where

R = z-z') 2 + r 2

on the surface of the antenna differs by a negligible amount from Az computed by the

exact equation given by (44) and (45). Here R is the distance from the point (r, 0, z)

11-14
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C. 2 (Continued)
outside the conductor where A is to be calculated to the center of the element dz' at

z
z' on the ax•s.

Finally, by using Equation (47) in Equation (42) we have

jc/p I' -k dz' C Ccos kz 4 •sin k Iz .- Zi sin k(z-z') dz' (48)
Sz R z

-1 0

The solution of this equation or the same equation where Z. has been set to zero can be

done by at least two methods. The method we will not use consists of expanding the integral

on the left into two integrals by the use of integration by parts. This results in one integral

which is integrable in closed form and another integral which is not integrable in closed

form. If one performs this integration and substitutes back in the original equation, a first

order solution is derived. If Equation (43) is then applied and C1 determined, one has?1

the expression that was originally derived by Hallen. His derivation, of course, was not
the same as given here. It is this approach which gives rise to the expression for S2 as

used in (13). The other method is numerical, and since it is the method used, the solution

will be given in detiil in the next subsection.
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D, NUMERICAL SOLUTION OF THE INTEGRAL EQUATION

At this time we have not considered conductors with finite conductivity; therefore, in this

subsection we will assume that the internal impedance per unit length is zero. We may then

rewrite Equation (48) as follows:

C -jkR dz B cos kz + jV sin kI z 1 0, (49)
f z R

where
41TC 2

B
JCP

and

71 = impedance of free space 1207r.

Further,

ejkR = G' (z, z (50)
R

which is the free-space Green's fimction.

We may then write (49) as follows:

11 GI (z, z 1) dz' - B cos z + iv sinkIzi 0. (51)

11

Equation (511 is an equation of the form

b

a(x) y(x) = F(x) + D f K(x,ý) y(4) dg, (52)

a

where ce, F, and K are given functions and D, a, and b are constant. This equation is

known as a Predholm integral equation. The function y(x) is to be determined.

When a V 0, the above equation involves the unknown function both inside and outside the

integral - In the special case when a =- 0, the unknown function appears only under the

integral sign, and the equation is known as an mtegral of the first kind; in the case where
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D. (Continued)

S- 1, the equation is said to be of the second kind. It would appear at first glance that

Equation (51) is of thi first kind, but it is in fact of the second kind. The reason for this

is thatt the integration constant B is a function of the current - specifically, the current at

the tip of the dipole.

It can be shown - that a Fredhom integral equation can be considered as the limit of a

set of n algebraic equations, as the number of equations increases without limit. Use can

be made of this fact to obtain approximate solutions to such integral equations. Therefore,

we must determine a method whereby Equation (52) can be expressed as a set of n algebraic

equations.

In elementary integral calculus an integral of the form

b

y f F(x) dx (53)

a

is defined as the limit of an equation of zhe form

= lira i• F'xk (54)Y n n (Xk)
k=1

where the interval (a, b) is divided into n subintervals of lengths A xl, A x 2. .... 11 Xn, and

xk is the point in the k-th subinterval. An approximate value of y can be obtained by not

proceeding to the limit, and herce b3 expressing y approximately as the weighted sum of

the ordinates F(xk) at nchosen points x , x2 . x of the interval (a,b):

y h nWk F(xk), (55)
k=1

where h is the length of all intervals and Wk is a "weighting" coefficient associated with the

Xk point. In its simplest form, we let the point xk be at the center of the k-th interval

and give the value unity to all the weighting coefficients. The resulting formula is known as

the trapezoidal rule. The accuracy of the approximation can of course be increased by

increasing n or changing the weighting coefficient or functions. An example of the latter

is Siinpson's rule, which is applicable only if n is odd, is where the weighting coefficients

are of the form

W1 ,I W? I .W3 . Wn-2 Wn-1, Wn = 1/311, 4, 2, 4,....2, .4, I1 (56)
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D. (Continued)

when n is greater than five. More elaborate formulas can be found in the literature13,14, j 5

where this technique is oftcn called Gaussian quadrature.

Thus, Equation (52) by the use of Equation (55) can be approximated in the form when it

is the second kind where D = 1. Let y(x) not under the integral be B(x):

n
B(x) + F(x) + h F, W K(x,xk) y(xk) = 0 (57)

k=-

where the points xk are spaced a distance h apart with the first and last points being h/2

from the points a and b. If we now require that equation be written at each of n chosen

points where the points are the xk points, we obtain n linear equations

n
B(xi) + F(xi) + h F Wk K(xi,xk) Y(xk) = 0 (58)

k=l

i = 1, 2,....n

in the unknowns y(x 1 ), y(x 2 ) ..... Y(Xn) which specify approximate values of the unknown

function y(x) at the n points. Introducing the following abbreviations,

F. F(x.), K.. = K(xi, x.), B. = B(x,),

where Kij is the value of K(x, ) when x = xi and • = xj, the set of equations given by (58)

can be written in the form

n

h , KikYk +F" iB. =0. (59)
k=1

Thus, if we consider the numbers Fi, Bi. and Yk as components of the vectors F, B, and

y', and define the matrix K = [Kij], the set of equations (59) can be written concisely in

the form

h R[y] +[Fi]+[B3 = 0 (60)

or

y -1 =1/hR-l(-F]+ [B] 0, (61)
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D. (Continued)

where K inverse of the matrix R, thus obtaining the value of y at n uniformly spaced

points.

Using the method outlined in the above paragraphs, we may rewrite Equation (51) as a

set of linear algebraic equations

h n -zksink zi i 1,2,...n, (62)

where Ik is the current on the dipole at the k-a, point. Investigation of this set of n eoua-

tions will show that we have n equations and n+2 unkno vns; the unknowns being B and V.

We must find two additional equations before we can solve the set of equations given in (62).

The applied voltage which is represented by V presents no problem. We may let the applied

voltage be unity giving the following equation:

V -I = 0. (63)

To determine B we must write an equation that expresses the current at the tip. This

can be accomplished in two ways. The first method we used was to write a Taylor series

expansion of the current at the points k -- 1, 2, 3,....m that is in terms of 11, 1, I3 .....

SIn, where m < n, since there are only n points on the half dipole. The k = I point is h/2

from the tip, k = 2 point is 3h/2 from the tip, k = 3 point is 5h/2 from the tip, and the

k = m point is (2m + 1)h/2 from the tip. While the resulting equation does not involve B,

it is the additional expression requiired to give the required square matrix. Since we are no

longer using the Taylor series expression, the lengthy derivation will not be given, only

the final equation which is as follows:

! -3' 2 1( . 0, (64)'i 3 2 5 3 2m +1

in'.
where is the binominal coefficient given by

(m) j! ( (65)
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D. (Continued)

The second method is to extrapolate the currents I1, I2, and 13 which are unknowns and

require that the current at the tip be zero. The equation will be of the form

f(t-h/2)I1 +g(1- .•)I 2 +hI + -h)t 3 =0. (66)

The form of f, g, and h will be determined later. If the set of equations represented by

Equation (62) are applied over both halves of the dipole, as is inferred, there are two things

in error. First, with numerical intxegration represented by (62) as with analytical integra-

tion, one cannot integrate over a discontinuity. As shown in Equation (35), there is a dis-

continuity in the scalar potential at the slice generator in the center of the dipole. Secondly,

since the current distribution on the dipole is an even function and Equation (62) is identical

for z and -•, the resulting matrix will be singular. These two things can be corrected

quite simply, while at the same time decreasing the number of terms in the matrix (62) by

two, by taking note of the symmetry of the Green's function which is

G (zi,z) = G (zj, zi). (67)

First we reduce the number of points from 2n to n: that is, we integrate only over one half

of the dipole. At tO.e same time we replace the free-space Green's function with a modified

Green's function which includes the effects of the point -z That is, let

G (zi, zk) = G' (zi, Zk) + G' (-zi, Zk). (68)

Thus, by writing the set of equations represented by EquaLion (62) using the modification

given by Equation (68), Equation (63), and Equation (64), or Equation (66), we have a set of

algebraic equations that relates the current on a dipole to the length of the dipole, the radius

of the dipole, and the applied voltage.

E. SINUSOIDAL APPROXIMATION FOR THE NUMERICAL SOLUTION

In subsection D it was indicated that more elaborate formulas for the weighting coeffi-

cients can be found in the literature. Most of these methods are written assuming one has

no knowledge of the behavior of the unknown function under the integral sign. Dr. Mei

has pointed out that we do have knowledge of the behavior of the current on the dipole. We

know that we must be able to represent it by a Fourier Series of finite length. Further,

we should be able to represent the current in a region *h/2 about a point quite accurately
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E. (Continued)

by only the first three terms in a Fourier series. Thus, we may approximate the current

i(z) near the k-th segment as

I(z) Ak + Bk sin k(z-Zk) + Ck cos k(z-Zk)z (69)

or by applying at the k-th point and the points on either side and writing Ik for I(Zk), we

have

Ik_1 A k-B ksinkh +Ckcoskh (70)

Ik Ak + Ck (71)

Ik+1 Ak + Bksinkh +Ckcoskh (72)

F Solving this set of simultaneous equat:ons for Ak' Bk9 Ck in terms of

k-i, IkIk+l, we have

ak 2 sinkhcoskh -2 sinkh - 2 sinkh (coskh-1) (73)

A 1_ -sin kh Ik-, + 2 sin Ikh cos kh Ik - sin kh 'k+l] (74)k
'Ak A!k ~'C k KI(4

Bk (1-cos kh) Ik-i + (cos kh - cos kh) Ik + (cos kh-l) Ik+1 (75)

k [ -2 sin kh + sin kh Ik+l] (76)• C~~k A ik- hk_

This gives for I(z)

.(z) = -k {'k-I I-sin kh + (1-cos kh) sin k(z-zk) + cos k(z-z) sin khl

+ 1 12 sin kh +cos kh -2 sin kh cos k(z-zk)I
k I k

+ k1 -sin kh + (cos kh-i) sin k(z-zk) -sin kh cos k (z - Zk)] (77)
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E. (Continued)

Writing Equation (77) in a more compact forn,

I(z) = X(z) Ik-1 + Y(z) 'k + Z(z) 'k+1 (78)

where the coefficients are given by

X(z) = -sin kh -i (1-cos kh) sin k (z-zk) + sin kh cos k(z-zk) (79)

Y(z) = - 2 sin kh cos kh -2 sin kh cos k (z--zk) (80)

Zlz) = 1-sin kh + (cos kh-1) sink (z-zk) + sinkh cosk(zzk) . (81)

Equation (78) states that the current in a given segment is a function of the current at the

center of that segment and the current at the center of the segments on either side. Thus,

as it stands (78) cannot be used for the point k = 1 located h/2 from the tip, or the point

k = n located h/2 from the center, since these points do not have points on either side.

Therefore, we must determine a special set of coefficients for each of these points using

the next two points moving away from the boundaries. Consider the tip point first. The

expression for I(z) in the tip segment is:

I(z) = A + B sin k (z-z) + C cos k (z-z 1 ) (82)

I1 = A1 + C1 (83)

12 = A1 + B1 sin kh + C1 cos kh (84)

13 = A1 +B1 sin2kh + C cos2kh. (85)

Solving this set of simultaneous equations we have

L1 =ZAk (86)

S1k

1 - I -sin kh I1 + sin2 kh 12 - sin kh 13  (87)A 1 
31
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E. (Continued)

B, = 1(co_ kh - cos 2kh) I, + (cos 2kb-1) I + (1-cos kd) 1 (88)

C = [(sin 2kh - sin kh) I,- sin 2kh 2 + sin kh13 (89)51

Thus,

I(z) = X1 I1 +y112 +Z1I 3 (90)

for the tip segment where

X1 = [-sin kh + (cos kh - cos 2kh) sin k(z-zl) (91)

+ (sin 2kh - sin kh) cos(z-z 1 ) J
- 1 [sin 2kh - (1-cos 2kh) sin k(z-z 1 ) - sin 2 kh cos k(z -z)J (92)

Z1 -sin kh + (1- cos kh) sin k(z-z,) + sin kh cos k(z--z) (93)

The expression for the n-th segment is
I(z) = An +Bn sin k(z-z n) +C n cos k(z-z n) , (94)

which gives using the above method

I(z) = X nIn +YnI +znI -2' (95)

where

x i_ [-sin kh + (cos 2kh - cos kh) sin k(z-z)
Xn n

"+ (sin 2kh - sin kh) cos k(z-z n) (96)
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E. (Continued)

Y 5 sin 2kh + (1 - cos 2kh) sin k(z-Z) - sin 2kh -os k(z-z) (97)
n

Zn ;-I -sin kh + (cos kh-1) sin k(z-z n) + sin kh cos k(z-z n)] (98)
n

In Equation (55) it is assumed that the function was constant over the segment, thus the

area was represented by the product of f(xk) and h. Now, however, I(z) is not constant and

to obtain the area we must perform an integration over the distance h. Further, each

element of that part of the matrix which represents the integral will consist of terms

involving the currents on either side excluding the special cases near the boundaries.

These terms of the matrix will be

bk

A(i,k) = f (Xk 'k-1 +Ykk + Zk k+l) G (zi, z') dz' , (99)

a k

where

ak = zk - h/2

bk = zk + h/2

and for the tip point

b1

A(i, 1) = ]/ (X 1 I+Y12 +Z 13 ) G (zi, z')dz' , (100)

a1

where
aI = z -h/2 = _t _-3h
a1  1 -h/

bI = z1+h/2 = t,

and for the base point
b
n

A(i, n) = f (Xn In +Y nIn-1 + Zn In2 G (zi, z') dz' (101)

a
n
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E. (Continued)

where

a = z -h/2 = 0
n n

b = z fh/2 = 3h
n n 2

Since the unknown currents Ik_1' Ik' and Lk+1 are under the integral sign, one might

ask if replacing one integral equatfon by m integral equations do we represent the integrals

in (82) to (84) by a m point sum. This is not true since the current Ik_, Ik, and Ik+1

are not variables in the integrals - they are constants. The type of integral we are con-

cerned with here is of the form

b

k(z', ZG) (z, z') dz' (102)

a

where b-a = h. When given z', zk and z. we can calculate the product XG

One of the more accurate methods of numerical integration is using Lagrangian
16

integration coefficients, where

b

f f(x) dx Y O 1 al ... Yn' (103)

a

where the a's are the coefficients and y's are the values of f(x) at the n points. Accuracy

increases with the number of points, but the computer time also increases. The use of

10 intervals which is 11 points seems to be a good compromise. The value of the

Lagrangian integration coefficients for n = 10 are given in Table IMl-1. Thus, ty evaluating

the product X.G.a. at each of the i points in the interval (a,b) and summing and multiplying

by h/10, the integral represented by Equation (102) can be evaluated and inserted in

Equation (99)-(101).
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Table 111-1. Lagrangian Integration Coefficients

i .1

0 0.268341483

1 1.775359414

2 -0.810435705

3 4.549462882

4 -4.351551226

5 7.137640304

6 -4.351551226

7 4.549462882

8 -0.810435705

9 1.775359414

10 0.2683414o3

E. (Continued)

With this sinusoidal approximation we can decrease the number of points on the dipole

for a given accuracy. Also we need no longer do a Taylor series expansion for the boundary

condition but can use Equation (90) with z =

I (t) = X1 (0)I1 + Y1 (t) 12 + Z 1 (t') 13 0 (104)

and the current at the feed point is given by

1(0) X (0) 1n Yn(0) 1 -1 + Z n(0) 1n2 (105)

F. SBIULTANEOUS LINEAR EQUATIONS

Finally, one note on the solution of the n + 2 simultaneous linear equations. Most

computing centers have subroutines that can solve a set of complex simultaneous linear

equations using various methods. While the computer we have available is sufficiently

large to handle a single dipole, it was felt that when one had antennas with more than five

dipoles there would be insufficient core. Thus, a subroutine was developed that does not

require more than two rows of the argumented matrix in the core at one time by the use of

magnetic tape units for storage. The method used was the Gauss-Jordan elimination

method with normaliZation. 17 This method allows us, if desired, to solve up to 500 simul-

taneous linear equations without overflow. By properly filling the matrix we have not

experienced any difficulty with round-off errors so far (130 equations).
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G. EQUATION FORMULATION FOR A LOG-PERIODIC DIPOLE ANTENNA

After one has formulated the equations for a single dipole, what changes or additions

must be made to give the set of simultaneous linear equations that will describe a log-

periodic antenna? There is one change to be made and one addition to be made. We must

change Equation (62) so that the intpraction between the different dipoles of the antenna are

properly handled. We must also add additional equations to represent the transmission

lines that tie the dipoles of log-periodic elements together.

The approach used below to determine the changes is based on the separate work of
18

one of the authors.

The vector potential on a dipole antenna in the presence of N-1 other dipoles, which

need not be of the same length, can be represented by an equation which is based on

Equation (47) using the symbology given in Equation (50). The vector potential will, if all

the dipoles are parallel to the z-axis with their centers being in the z = 0 plane, have only

a z component. Thus, we have at point P

nd t
Az(P) Z f I (zn G (z', zp) dz' (106)

m = 0

where Az (P) is the vector potential at any point which is outside the dipoles, nd is the
number of dipoles, tm is the length of one half of dipole m, Im (z') is the current flowing

in dipole m at the point z', and G(z', z p) is a modified Green's function of the form given

by Equation (68) and with r of Equation (47) replaced by d, the horizontal distance between

the dipole m and point P.

The scalar potential at point P can be found from the following relationship

=f o jkR dv, (107)

v

where p is the charge density and v is the volume. We may rewrite Equation (107) for our

antenna as follows:

0n(P) I d fm 61m (,) G (z, z) dz', (108)S() jw-- F1 Pz
m=1 l

0
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which after integration by part and using the quantity

)G ýG
(109)

~P

we have

1 nd fm
0(P) - j~c nd m im(Z,) • ~G(z', zp) dz' (110)

The tangential electric field on any antenna produced by the currents on the other antennas

is

E -70 - jwp A - (P) - jwp A (P), (111)z z z

where the point P is on the surface of the dipole but

A zh (P)

O(P) -7 j A (Zp (112)

Therefore,

2A(P)
Ez Z -j i IA(P) (113)

z IwE 2ýZ z

or

I= V A(P) (11-4)

For the tangential electric field to vanish on the surface of the d~poles, we have fur dipole m

E z(P)m -Ez(P)m (incident) = -Vm 65') 13) 5

or

A C1 sin I- z C cos (1)
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This last equation can now be represented by a set of algebraic equations in the form given

by Equation (62), etc.,

nd 11 2V.
1 E W Im G(Z.,zj) -B. cos kz. +2-) sink IzI 0 (117)

xr. m im iun j 217 (17

j = 1, 2, n.

HIere we now have "i boundary condition for each dipole, which is the reason that the B's are

subscripted, and each dipol.- has its own driving voltage. Also, while Equation (117) cannot

show, as it is written, the use of the sinusoidal approximation is used as outlined in sub -

section E. The equations for the boundary conditions on the tips of the dipoles are written

using the form given by Equation (104).

If. TRANSMISSION LINE EQUATIONS

Equation (63) which is the single equation for the driving voltage on a single dipole will

become the driving voltage of the transmission line which feeds the log-periodic dipole

elements. To relate this voltage to the base of each dipole, an additional set of equations

in terms of the current at the base of each dipole, flowing into the dipole and down the trans-

mission line must be determined. These equations are based on the assumption that the

transmission line has no ohmic or radiation losses.

There is no need to derive one single equation that gives the relationship between the

input voltage or current and the voltage or current at the most distant dipole. We need only

derive the relationship between the n and n4-l dipole and repeat this relationship between

the n4 I and the n+2 dipoles until all sections of the transmission line have been covered.

Figute 11-1 shows the geormetry involved.

The equations for an ideal transmission line are given by1 9

V Vc-JSn + V'ejsn (118)

n

Z i Ve-Jn - V'cJ n (119)

where Sn is the distance to a reference point on the left in radians from point n, V is the

amplitude of the direct wave, V' is the amplitude of the reflected wave, V is the voltagen
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across element n, i is the current flowing into the junction of the transmission line and

the n. element, while Z is the surge impedance of the line. The determinant of these

two equations is

e- n eJn

D = = -2 (120)

e-JSn -eJSn

while

e jSn V
n

V e =' e- n oZin e-js n2 - (Vn -Zi) (121)2 n o n

and V eJSn
n

Zi eJ~Sn is
Zoin e -ejsn

V =2 -2 (Vn +Zi)" (122)

Now let us consider the equations at the n+1 dipole with reference to the n dipole. If

the spacing between the dipoles were sufficiently short so that the effects Af the transmission

line were zero, we need only consi er the transposition of the wires. Thus,

"Vn+1 -'- -Vn or -Vn+ 1 = Vn (123)

Z I -Z ; or -Z i Z i (124)
o n-1 o'n 0n-i on

or rewriting (118) and (119) fer the n+1 dipole we have

SVe-JSn+1 + VWeJSn+1 (125)

-i' Ve 1 Th'+l - V'e3 5 n+t 10o n+1 (126)
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Substituting Equations (121) and (122) in (125), we have after reduction

= V~ [eJn + e-janj+ [z 1eJan - e-Jan 1  (127)-n+1 = n 2 Join 2j(27

where

n= n -n+1,

which gives

-Vn' 1 Vn cos o jn JZoin sin a n (128)

or

V "-V Cosa +jZi sina =0 (129)

In a similar manner, we have

ivn
in + XZ sin a + ji cos r= 0 (130)
n+1 Z n n

The expression for the current i, is for the current to the right of dipole n+l, while"n+1
the equation needed is for the current just to the left of dipole n+1. The voltage across the

transmission line as one moves toward the generator and passes the feed point of the n+l

dipole must be continuous so Equation (129) is correct as it stands. However, the current

must increase by the amount flowing into the dipole. Therefore, we must rewrite Equation

(130) to include the current In+1, the current flowing into the n+1 dipole. The current on

the left must be

L (n+l)L + l (131j

while the current on the right is

R =n+
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Therefore, we have

jVn

in+l In+l + Z sin a i cosor =0, (133)
0

where In+1 is determined by Equation (95) as applied to the n+1 dipole.

To demonstrate how we apply .hese equations and consider the ends of the transmission

lines, consider the 5-element dipjlc showkn in Figure 111-2. The current flowing in an

antenna at the base of the antenna is, using Equation (45),

I. X.I.s -. Y ,I. (1k4)
j j'n !j'n-I + kj'n-2 (134)

where the single subscript on I inoicates the current flowing in to the base of the j dipole.

The equations for the voltages will be

V2 sina•

V1 , Cos 2•1 j i1 c I Zo = 0 (135)

V V+ __ sin a2

V c +os + ji Z = 0 (136)2Cos CI 22 cos cr2 9

3i c

V34 +C + j i- 4 C Z 0= (138)3cosa ( '3 csos 3  o (3~

SV • + ji4 Z = 0 (138)
cosa• cosa4 o

V sin a.
V. + o02__ + j i Z Z = 0 (139)

;) cos 5 :5 cOS 75 0

V 0 1.0 (140)
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For the currents we have, where i's represent transmission line currents and I's
represent dipole currents,

iI, = 0 (141)

11V

i2-I2 + •sin al + ilCos a, 0 (142)

jV1
i3 3 + -1sna +s i2cosa2 = 0 (143)

0

JV4
i-3 + f sia+ Coor=0(144)

4 4 Z0 3 3 3(14

+ j- + sinra +i cosaCr = 0 (145)
Z 5 4 4

jV 5
i0 - sinor- - 1- cos a- = 0 (146)

It is, of course, not realistic to have the long transmission line in front of the antenna,

but this has been left on to make it easier to write the equations. It can be removed by

subtracting (7- froir all a's.

I. FAR FIELD, INPUT IMPEDANCE, AND GAIN

The relationship between th. current on a short dipole and the far field is given by 20

6M It. sin0
sE (147)

where I is the current, 0 is the polar angle, s is the distance from dipole to distant point

where E8 is to be determined, X is the wavelength in meters, and t is the length of the

dipole. It is required, of course, that t.<< X and that the current be constant over I or I

reprc.erits its average value. The log-periodic antenna as we have represented it does not

consist ef a single short dipole, but arrays of short dipoles. Thus, the current shown in
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Equation (147) is only representative of all the currents represented in Equation (117). We

need then some relationship that will give the total E in the far field.

If we assume that the distance to the point P where Ee is to be determined is suffi-

ciently far that the lines from P to all of the current elements on the antenna can be con-

sidered parallel; that is, we are in the Fraunhofer region and we can rewrite Equation (147)

as follows

ND NP j 6Mf1im sill0e-jk (sire - so)

E (148)

where s is the distance to a reference point, for example, the apex of the log periodic and0
s. is the distance to the current element i. NP is the number of points on the m-th dipole

and ND is the number of dipoles in the array

Let yim represent the distance from the center of the j dipole to the i-th point in

radians. As before, E represents the distance from apex of the log-periodic to the ilm

dipole in radians. Then, by the use of a little trigonometry, we have

k(S. -s ) = -Y. cos6 +a sin cos0, (149)
im o im m

where 6 is the polar angle and 0 is the azimuthal angle in a spherical coordinate system.

Thus, the far field E0 at point P at a distance s 0 , polar angle 0, and azimuthal angle 0,

is expressed by

ND NP j 60TI sin
E = S- im exp cos@+a sinecos0) (150)

6 = A- s A I! uYin Co mm1l i=1 o

If the applied voltage to the antenna is one volt, then the real part of the inverse of the

input current is the radiation resistance while the imaginary part is the -adiation react",nce.

The input current is shown in Figure 111-2 as i . The transmission line between the shortest
0

dipole and the apex is not a part of the antenna, it is assumed that the technique given after

Equation (146) is used which makes this section of line of zero length.

Gail. as it will be used on this project is defined as the gain relative to a loss ess

isotropc antenna in free space. It will be expressed in decibels--i.e -- dbi The
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mathematical definition of gain then is, which is in agreement with the IEEE definition of

power gain in a given direction,

Gdbi 10 log 117 x the radiation intensity in that direction1 (151)

total power accepted by the antenna

where the radiation intensity, P, is the power radiated in the given direction per unit solid

angle. That is

2 2E0 r
P - 120 (152)

J. CONCLUSION

This completes the derivation and description of the expressions that relate the physical

parameters of a log-periodic antenna to the currents on the elements of the antenna, the

input impedance, and gain where the solution was obtained assuming that we have a boundary

value prublem. Also the solution was obtained knowing that the best numerical techniques

and digital computers were to be used.
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III NUMERICAL RESULTS

A. INTRODUCTION

During the study covered by this report a step-by-step procedure

was used to obtain a computer program for a log-periodic antenna in free

space and over real earth. At first the theory presented in Section II of this

report was programmed to calculate the current distribution on just a single

dipole. When the validity of the results of this simple program had been

verified, the more complicated case of two identical dipoles in free space

was mathematically modeled and programmed. This procedure of applying

the theory to problems of ever-increasing complexity and verifying the

calculations at each stage of the process was followed throughout.

The following subsections present the numerical results of some of

the most interesting stages in the development of the present computer pro-

gram. At each step the computer results are compared with data previously

published or to data obtained experimentally wherever practical.

B. SINGLE DIPOLE

As stated above, the theory was first applied to a single dipole in

free space. The dipole was divided into ZN sections and the current computed

for each of the individual sections. At first the current was assumed to be

constant on each section of the dipole, but later it was found that the number

of dipole divisions needed to obtain an accurate current distribution on the

dipole could be reduced by assuming a more complex current form for each

dipole section. The desirability of using a minimum number of dipole divisions

is two-fold. The most obvious reason being a reduction in the computer time

III- I



B. - -Continued

required for a given degree of accuracy. Although a savings in this quantity

is not particularly important for the single dipole solution, it is essential if a

multielement structure is to be analyzed. The second reason for requiring

a minimum number of dipole divisions, although less obvious than the first,

is equally important. In reducing the theoretical solution presented in Section

II to form a suitable form for computer use, some approximations were made that

require the length of each dipole division to be much greater than the diameter

of the dipole; therefore, there is a maximum number of dipole divisions that

can be used and still maintain a high degree of accuracy in the solution. For

thin dipoles, of course, the problem does not arise since an accurate solution

can be obtained by using a number of dipole divisions far below the maximum

allowed.

ii
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B. - -Continued

Figures II-I and 111-2 illustrate the current distribution on the half-

wave dipole for different values of N and for both the constant current model on

each division and the sinusoidal current model on each division. For comparison,

1
the dipole current distribution calculated by R. W. P. King is also shown on each

graph. The advantage of using the sinusoidal current model for each segment

of the dipole is seen by comparing the two figures. With the sinusoidal current

form, the resulting current distributions approach that obtained by King with

fewer dipole divisions and remain nearer King's distribution over a wider range

of N than do the distributions obtained by using the constant current form for

each division. It is also interesting to note that the maximum current is not at the center of

the dipole as wculd be expected. This is explained by the fact that the particular dipole used

is relatively thick and thus appears electrically longer than half a wavelength. Current dis-

tributions have been calculated for much thinner dLpoles ar.d the current maximum does

appear at the center of the dipole as expected. (See Figure 111-3)

The gain of this antenna was calculated using the method described in ths s4c )n on

theory and was 2.15 db, the value predicted by Jordan. 2

C. TWO DIPOLES

Having verified that the theory was correctly applied to a single dipole, the next step

was to try solving the current distributions on two dipoles connected by a transmission line.

Several cases of two dipoles in an array have been programmed and current distributions

found. In many instances much useful information such as variations in input impedance with

changing dipole spacings and lengths was found, but for the most part these results only

served as a check on the tieory and programming procedure and were not investigated

further.

There iz one particular case of general interest, however, which should suffice as a

representative example of the many two-dipole arrays which have been programmed. The

example in mind is an array of two half -wave dipoles separatec, by one-half wavelength and

fed in phase to give a broadside radiating structure. The currents on both dipoles are

identical. The dipoles are fed by a single voltage generator at the base of one dipole, with

a scction of transmission line one-half -wavelength long connecting the remaining dipole.

To obtain "in phase" voltages at the ba.,,e of each dipole, the transmission line was

switched so that there was an additional 180-degree phase shift at the second dipole besides
I11--
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the 180-degree phase shift introduced by the length of transnmission line. The gain for
3

this array is 6. 029 db and is consistent with values found by using other methods. The

input impedance to each dipole is 62 + J6. 3 ohms and is comparable to the value of

60 +j4 obtained by Kraus.

D. LOG-PERIODIC ANTENNA

-' In this section probably the most important results of the study are presented.

These are the computed values of current distribution and radiated power for an entire

log-periodic antenna. After many trial computer runs, a satisfactory program was

finally achieved for the LP antenna and the results of this program were compared to

data measured from existing antenna models.

The model that was analyzed on the computer was a 10-element switched-phase

log-periodic antenna (bandwidth 250-500 MHz) with ce = 450 and? 0. 853. The antenna

feed structure was a 137-ohm two-wire line. Two computer runs were made for two

different frequencies. Figures 111-4 and 111-5 show the current distribution at frequencies

of 300 MHz and 450 MHz, respectively. The currents are nearly as would be expected

by antenna engineers. The highest currents appear on the elements near resonance and

on the next smaller elements; i. e. , the active region includes the resonant elernenl plus

the next several smaller elements. The phase progression from one element to 0he next
4

is also in agreement with measurements made previously.

Figures 111-6 through 111-9 show a comparison between measured and calculated

radiation patterns at frequencies of 300 MHz and 450 MHz for this log-periodic

dipole array.

Figures III-10 through -1-14 show the current distribution and far-field

patterns (measured and calculated) of a 6-element log-periodic at operating

:requencies of 650 and 850 MHz. The design band limits are 550 and 1000 MHz.

Figures 111-15 through 111-19 show the current distribution and far-field

patterns for a 10-element version of the antenna given above. In comparing the

c,-r rents shown in Figures III-10 and 111-15 one must note the difference in

maximum values. The major reason is that both antennas theoretically wer-:e

fed with ideal 1-volt sources, thus allowing the antenna with the lower input

nrnpcdance to draw more current. In the calculation of absolute gain as described

21 S'•ction I1, this effect is account-d for automatically. 111-7
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D. -- Continued.

The patterns shown in Figures 111-6-9, 11-14, and 16-19 are

probably the most conclusive proof available to show that the theory and com-

puter program are valid when applied to a log-periodic antenna. The discrepan-

cies between calculated and measured data that show up in the back lobes of the

patterns are due to environmental conditions at the test site and to the lack of

perfection in model building techniques. One argument that indicates that the

physical model is at fault instead of the mathematical model, is the fact that

the measured data is not symmetrical where the differences in the two sets of

data occur. For future work, higher quality models will be used and tested in

a controlled environment.

Figures 111-20 and III-21 show the current distribution and far-

field patterns of a log periodic dipole array when the A angle is 45 degrees.

Antennas with angles this high are sometimes used in broadside or billboard

arrays. Since the computer outputs are symmetrical about the 0-90 degree

line, only half of the E- and H-plane patterns are included in Figure 111-21 and

many o( the succeeding patterns.

Figures 111-22 through 111-24 show the current distribution and

far field patterns of a 10-element array designed for maximum gain using the

techniques developed by R. L. Carrel. The maximum gain was found to be 10. 7

dbi while Carrel's method predicted a gain to 11 dbi.

Figures III-Z5a through c show that the computer program that

has been de-valoped will predict the existence of the so-called 3/2 moding. Three-

halves moding occurs when only part of the available energy is radiated in the

active region around the half wave element with the remainder being radiated

in the region of the three-halves wave element. The effect shown probably

would have been more pronounced if the operating frequency had been a little

higher.
1
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E. LOG-PERIODIC ARRAYS

As a final step in the computer solution of log-periodic antennas

an array of LP's was analyzed. The arrays were of two types -- the DuHamel

array where all log periodic antennas making up the array are identical and the

Mei array where all elements of equal length lie in a straight line, thereby

making it necessary for each LP in the array to be of a different design (See

Figure 111-26). The DuHamel array has a circular phase front whereas the

Mei array has a flat phase front. Of the computer runs made, the DuHamel

array was the most often used while the Mei array was used only occasionally

as a check against the DuHamel designs.

Two basic LP designs were used as elements in forming the LP

arrays. These were a high gain LP (10 dipoles, $. = 6. 370, I' = 0. 96) and a

medium gain LP (9 dipoles, o- = 44. 34°, '" =0. 78). Both medium and high

gain antennas were designed to operate in the upper UHF region (length of longest

dipole =0. Z5 meters) so models could be constructed and tested easily if a

comparison between computer and empirical data was desired. This choice in

design frequencies is not a restriction for antennas operating in free space,

however, since the computer program in this mode works only with relative

and not absolute values, i.e., a half wavelength antenna looks electrically the

same at all frequencies. The only case where actual frequencies must be

analyzed in the computer program is that in which the antenna is to be placed

over real earth which is frequency sensitive in the absolute sense. For the

sake of convenience, all patterns for the medium and high gain antenna arrays

in the remainder of the report were run at frequencies of 1100 MHz and

665 MHz, respectively. See Figures 111-27 and III-28 for single LP patterns at

these frequencies.
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E. -- Contlnued

In switching from single LP antennas to LP arrays the interests in

electrical characteristics changes also. Previously, current distributions

were of prime concern, L .t now the gain and pattern coverage that can be

achieved with different antenna designs is of interest. The major factors

affecting the gain and pattern coverage of an array are the individual LP designs,

of which we have chosen two as being representative, the manner in which the

LP's are arrayed and the number of LP's in thc array. The particular array,

DuHaniel or Mei, once chosen, leaves only the spacing between LP's and the

numbe:r of LP's in the array as the variables to be optimized.

The process used to find an optimum set of array variables was one

of choosing the spacing to be used between LP's and then to make computer

runs with varying numbers of LP's in tne array. Figure ILT-29 shows a graph

of maximum gain versus the number of LP's in the array for various DuHamel

spacings. The term LP spacing as used here means the distance in wavelengths

betweea the half wave dipoles of neighboring LP's in the array. The data for

this graph was obtained from computer runs for high gain LP's in an array.

It is interesting to note that the array gain does not necessarily increase with

an increase in the number of LP's in the array, but often decreases. If one

visualizes the geometry of an LP array he sees that each additional. element

placed o.n the array must be positioned at an ever increasing angle from the

direction of radiation for the array. The radiation from these off-axis LP's

contributes significantly to the side lobe leve', thereby decreasing the amount of

gain that could be realized with the additional element. This increase in sidelobe
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E. - -Continued

level coupled with that due to arraying when some of the LP elements in theF i! array are separated by more than a wavelength can cause an overall decrease

in array gain, especially when the LP to LP spacing in the array becomes large.

[

Figure 111-30 is a graph, similar to that of Figure 111-29, for medium

gain LP's in an array. This graph shows trends identical to those of the previous

graph with the only difference being an overall lower gain for the medium gain

LP arrays.

The two graphs just mentioned do not tell the complete story of arraying

trends; however, a closer look at some radiation patterns indicates that a

particular array may have more gain than another, but its radiation coverage

could be completely unacceptable. For example, Figure 111-29 shows that a

DuHamel array with four LP's spaced 1. 5 wavelengths apart has a higher

maximum gain than a si milar array with elements spaced 1.25 wavelengths

apart, but a glance at the radiation patterns shows that the peak of the beam

(actually two peaks -- one on either side of boresight) occurs abott 6 degrees

off boresight for the higher gain array (Figures UI-31a, b). See Part IV -

Appendix for a complete set of E-and H-plane radiation patterns and gains of all

designs run on the computer. Even though the 1. 5 wavelength spaced array has

higher maximum gain, the 1. 25 wavelength spaced array has a higher boresight

gain.

In all previous examples the arrays analyzed have been of the

DuHamel or circular phase front type. rhe Mei array, however, offers an

alternate design approach which seems to be somewhat superior to the DuHamel
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E. -- Continued

array. Figure 111-32 as a bar graph showing a comparison of the two arrays

for different designs and as can be seen the Mei array is significantly higher

in gain for all designs. The designs used for this comparison were not preselected,

but were chosen simply because they happened to be the only designs for which

both array types were run on the computer. The comparison is by no means

exhaustive in the n.ýmber of different designs used, but the results are so de-

cidedly one way that the Mei array could safely be called the superior array

type at least in terms of array gain. One also notes that the gain of the Mei

array does not decrease in going from four to five element arrays unlike that of

the DuHamel designs. There is nothing to indicate that this trend won't reverse

with the addition of the sixth element, but at least up to five elements the gain

of the Mei array increases with additional elements. See Figure HI-33 for the

radiation pattern of a 5 element Mei array-the highest gain array run.

Before concluding this section on the comparison of array types we

note that the one comparison involving medium gain LP's shows the Mei array

with higher gain than the DuHamel array, but with the radiation in the opposite

direction. Even t'.ough the Mei array gain is higher, the fact that it radiates in

the backward direction seems to indicate an unstable design. Unfortunately

there are no other computer runs on medium gain LP Mei arrays available to

indicate whether or not this instability is a property of the array type.

In our final step in the analysis of LP arrays we have placed the

arrays over real earth. Due to an oversight on the part of the author, the

computer runs were made at UHF instead of HF and, because of a shortage
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E. --Continued

of time, reruns on these arrays at the proper frequencies were not obtained.

The two cases of arrays over real earth that were run are of some interest,

however, and are shown in Figures III-34a and b. The ground chosen for the

runs had a conductivity, e of 5 x 10 emu and a relative dielectric constant,

of 15 - a rather mediocre earth. The gain of these arrays is slightly less

than there counterparts in free space (See Part IV) and if one were to speculate

he could draw the conclusion that this decrease in gain would be less at HF

frequencies. Speculating further we can say that most probably th, ta\e-off

angle at the lower frequencies would be somewhat higher than th - :1, the UHF

case at hand, although there is no way of specifying exactly what it would be.

The parameters affecting the radiation characteristics of an HF array are so

numerous that drawing exact conclusions from the available UHF runs would

not only be meaningless, but would be impossible. It is only possible to

speculate about the direction of change that might occur in going from UHF to

HF.

Until now this section has simply provided the results of the various

computer runs on LP arrays with only some of the more interesting results being

pointed out. It is time to draw some conclusions and apply these conclusions

to a specific array design. At the beginning of this study a set of design goals

to be achieved was specified. With the limited data at hand we can see which

goals can be fulfilled, which goals seem likely to be fulfilled and which goals

will take considerably more study to determine whether or not they are possible

to meet.
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E. -- Continued

One of the foremost design goals is the gain which has been

specified as a minimum of 17 dbi at the beam peak. A 5 element Mei

array with 3/4 wavelength spacing has a free space gain of 16. 9 dbi, nearly

enough to meet the requirements. However, the Mei array seems to

increase in gain with additional elements so that a minimum gain of 17 dbi

shouid be easily achieved with a 6 or 7 element array even over real earth.

The second design goal, equally important as gain, is the

coverage that can be obtained. The azimuth coverage was specified as a 16

degree beamwidth at and near the peak of the beam in elevation. Since the

azimuth coverage should change only slightly between a free space situation

and over real earth, the free space patterns available should give a good

indication as to the coverage that can be achieved by an HF antenna. Another

look at the same 5 element Mei array shows a beamwidth of 15 degrees with the

first sidelobe 17 db below the beam peak. The beamwidth is only a degree

under the design goal, hardly enough to bother with since the beamwidth will

probably change more than a degree with a change in frequency. The side-

lobe level of -17 db is 2 db better than the -15 db specified in the design goal

requiremnents.

The el.evation coverage is to have a beamwidth from 2 to 16 degrees.

We can see from the UHF pattern that this goal cannot be achieved with a simple

HF antenna above ground, there must ba a ground screen in front of the array

to lower the beam peak. No more can be said about the elevation pattern or

screen effects since the HF information is not available
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E. -- Continued

By using the data that is available on the five element Mei array,

we can now proceed with the design of an optimum 3-30 MHz HF array. As

mentioned previously, the number of elements would be increased from five

to six with an inter-element spacing of 0. 75 wavelengths.

With a t of 0. 96 each LP element of the array would consist of

62 dipoles for a total of 372 dipoles for the array. The longest dipole would

be 164 feet tall while the shortest would be 13. 59 feet tall. Four dipoles

have been added to the high frequency end of each LP element to insure

that maximum gain is achieved at 30 MHz.

The spacing between the longest dipoles of adjacent LP elements

would be 0.75 )k or 246 feet for a total array width of 1230 feet at the low

frequency end. Similarly, the spacing between the shortest dipoles of

adjacent LP elements would be 20.4 feet giving an array width of 102 feet

at the high frequency end.

Since we are design'_ng a Mei array, the spacing between dipoles

of an LP element is dependent on element placement in the array (See Figure

III-Z6). Although the dipole spacings differ from element to element, only the I

inter dipole spacings of an imaginary LP in the center of the array need
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E. ---Continued

to be specified since all dipoles of the same length on the various LP

elements will fall on a line perpendicular to this imaginary centerline.

Of course, if there were an odd number of LP elements in the array, then

there would be an actual center LP element. The best choice for the

imaginary center LP element would be the high gain LP discussed pre-

viously with an oý angle of 6.370. Using this information and some simple

geometry, the spacing between the longest and the next longest element in

the imaginary LP can be found from the expression

s= .- "(153)zt~4~)

where S is the desired spacing and l.,.,is the length of the longest element.

For the particular array at hand this spacing is 59 feet. Making use of

geometrical progression formulas one can determine the total length, L,

of the array from

L= - (iS4)

where 11. is the length of the smallest element. The total length of

our array is 1352.1 feet.
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Until now only the dimensions of the longest dipole and the

spacing between the two longest dipoles in the imaginary center LP have

been presented. Obtaining the dimensions of the remainder of the elements

and spacings is simply a matter of successive multiplication by ".

The only remaining parameter that must be specified for a

complete array design, is the line length between adjacent dipoles in an LP

element. Although the physical spacing between dipoles of an LP element

depends on the placement of the element in the array, the line length con-

necting aay two dipoles in an LP element must be the same for similar dipoles

in each LP element in the array to maintain a flat phase front. The line

lengths can be obtained by letting the electrical spacing equal the physical

spacing for the outer most elements in the array since the outer elements will

have the largest separation between dipoles. Again using some simple geometry

we find that the line lergth from the largest to next largest dipole in the outer

LP elements is 63. 9 feet. To obtain the other line lengths from dipole to

dipole in the LP's all that is required is successive multiplication of the

largest line length by .

The design of the HF Mei array is now complete and may be

summarized as follows:

Frequency 3 - 30 M-z

No. of LP Elements 6

No. of Dipoles/Element 62

No. of Dipoles/Array 372
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t" 0.96

Spacing Between Elements 246 ft. Low Frequency End

20.4 ft. High Frequency End

Array Width 1230 ft. Low Frequency End

102 ft. High Frequency End

Array Length 1352. 1 ft.

Largest Dipole -to -Dipole Spacing
on Centerline 59 ft.

Largest Line Length 63. 9 ft.

The characteristic impedance of the transmission line was 60 ohms for the

computer runs used in designing this array. However, no attempt has been

made to optimize this impedance, therefore no transmission line impeda:nce

will be specified in this design. Similarly, there is not enough information

available to specify the type and size ground plane necessary to make this

array meet the elevation coverage specified.

There are other design goals such as VSWR that were specified

at the beginning of the study, but the program has changed scope to such an

extent that these goals are no longer in the realm of the study. Such design

goals are secondary, however, compared to the primary objective of proper

gain and coverage.
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Although not every aspect of the original study has been considered

because of the redirection in emphasis from antenna physical modeling to

mathematical modeling, it is felt that an optimum HF array design has been

achieved to the extent intended in the study. Du-:ing the course of the study

an extremely valuable tool in the form of a computer LP array analysis program

has been developed and furnished to the customer for optimizing arrays with

different design goals.

The mathematical model developed under this study was the best

at the time of its writing, but use of the program and an analysis of the results

show that there are changes that would improve and expand this model. It is

felt that these changes would greatly benefit the user of such a model and that

a future study be undertaken to incorporate any desireable changes in the model

and computer program.
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