UNCLASSIFIED

AD NUMBER

AD849163

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to DoD only; Administrative/Operational Use; JAN 1969. Other requests shall be referred to Office of Naval Research, Attn: Code 423, Washington, DC 20360.

AUTHORITY

Office of Naval Research ltr dtd 4 May 1977

..... 00PY

ì

CLIMAX MOLYBDENUM CO. OF MICHIGAN

ANN ARBOR, MICHIGAN

1473 CHARACTERIZATION OF THE HEXAGONAL-CLOSE-PACKED INTERMETALLIC COMPOUND FROM THE Mo-Rh, Mo-Ir, AND Mo-Pt SYSTEMS. (9) Technical Report. Januazy: 🚵 2069 / 47, "EACH TRANSMITTAL OF THIS DOCUMENT OUTSIDE OF THE DEPARTMENT OF DEFENSE MUST HAVE PRIOR APPROVAL OF THE OFFICE OF NAVAL RESEARCH (CODE 423), WASHINGTON, D. C. 20360." DC Prepared by MAR 1 9 1969 /0) J. Dahl 🛲 M. Semchyshen WILT B Research Sponsored by Office of Naval Research - MARIE 4-60-1-1338 15) NØØØ14-66-C-Ø338 NR-039-0914 11/4(402705)

CHARACTERIZATION OF THE HEXAGONAL-CLOSE-PACKED INTERMETALLIC COMPOUND FROM THE Mo-Rh, Mo-Ir, AND Mo-Pt SYSTEMS

ABSTRACT

The results of an investigation of the hexagonal-close-packed intermetallic compound found in the Mo-Rh, Mo-Ir, and Mo-Pt systems is reported. The compound was characterized by determining room and elevated-temperature hardness values, room-temperature electrical resistivity, oxidation resistance during exposure to air at 538 C (1000 F) and 982 C (1800 F), and corrosion resistance to aqueous solutions containing 41.6 or 70.9% nitric acid. The room-temperature hardness of the compound is reported to range between 300 and 675 DPH and is inversely proportional to the molybdenum content of the alloy. The molybdenum-iridium alloys are harder than the sapphire indentor at test temperatures between 1093 and 1649 C (2000 and 3000 F). The oxidation resistance of the alloys at 538 C (1000 F) decreases as the molybdenum content increases. Only the 80% Rh - 20% Mo alloy resisted oxidation at 982 C (1800 F) during a 10-hour exposure. All the alloys resist corrosion by dilute and concentrated nitric acid.

INTRODUCTION

The search for structural materials for elevated-temperature service has centered around refractory metal systems. Most of the investigations in this search have been concerned with the primary solid solutions of columbium, tantalum, tungsten, and molybdenum, and have yielded important commercial alloys such as the molybdenum-base alloys TZM and TZC. The Climax Molybdenum Company has a continuing interest in this search for new alloys, and believes that progress might be made by pursuing a study of a different class of materials than the primary solid solutions cited above. One such class of materials, which has not received significant attention, is the intermetallic compound in the binary systems containing molybdenum and an element from the platinum-group metals* rhodium, iridium, and platinum that has a hexagonal-close-packed (hcp) crystal structure. The melting temperature for this compound ranges between 1900 and 2200 C (3452 and 3992 F), high enough to make it a candidate for elevatedtemperature service. Melting temperature is a necessary, but not sufficient condition for an elevated-temperature material. It is known, however, that the platinum-group metals markedly increase the hardness of molybdenum.^{1,2} Thus, it was concluded that the refractory metal compounds warrant further investigation. This report presents the results of an investigation of the preparation and characterization of the hcp intermetallic compound found in the Mo-Rh, Mo-Ir, and Mo-Pt systems.

į

1

^{*} The term "platinum-group metals," which is used throughout this report, includes only the three elements rhodium, iridium, and platinum. A general classification for the alloys of this investigation is the molybdenum-platinum group metal alloys; a term that is also used in the report.

A critical review of the literature revealed that little is known about the hcp compound found in the molybdenum-platinum group metal systems. More importantly, the phase diagrams for these systems are still not completely defined. For example, Raub,³ Greenfield and Beck,⁴ and Knapton⁵ attempted to identify the phases occurring in the binary systems of molybdenum and the platinum group metals including rhodium and iridium, as well as platinum itself. All reported the existence of a phase having a hcp crystal structure and a wide range of solid solubility. "Epsilon" became the accepted designation for this phase because of the similarity with the epsilon phase in the Cu-Zn system. Anderson and Hume-Rothery confirmed the existence of the epsilon phase in their study of the Mo-Rh system,⁶ as did Michalik and Brophy for the epsilon phase in the Mo-Ir system.⁷ Jaffee et al.⁸ concluded, on the basis of their own phase-diagram investigations, as well as the investigations cited here, that the hcp crystal structure may occur if the average group number for the alloy is between 6.8 and 8.5.

More definitive studies of the Mo-Pt system have been made by Maldonado and Schubert, 9 Rooksby and Lewis, 10 Selman, 11 and Ocken and Van Vucht. 12 Giessen et al.¹³ have reinvestigated the Mo-Ir and Mo-Rh systems. These investigations showed that the epsilon phase reported by others cannot be characterized simply as having a hexagonal crystal structure and a wide range of solid solubility. In particular, the Mo-Pt system contains four intermediate compounds approximated by Mo4Pt, Mo3Pt2, MoPt, and Mo2Pt3.¹² (The Mo3Pt2 compound is an ordered hcp phase of limited solid solubility and not a disordered epsilon compound as suggested previously.) Giessen <u>et al</u>.¹³ found that the epsilon phase in the Mo-Rh system decomposes at 1100 C (2012 F) to an ordered orthorhombic phase having a composition of MoRh. Giesson and co-workers also reported that the iridium-rich epsilon phase is better described as MoIr3 with an ordered hcp crystal structure. A MoIr compound with an ordered orthorhombic crystal structure is also reported. This phase transforms to the disordered epsilon phase above 1610 C (2930 F). These investigators argued that, by analogy, MoRh3 should exist as an ordered hexagonal phase. It would not be possible to detect ordering in this system, however, because of the small difference in the atomic scattering factor between molybdenum and rhodium. Phase diagrams based on all the published data, including the inferences by Giesson et al.¹³ on the Mo-Rh system, are presented in Figures 1, 2, and 3.

The goal of the research program, undertaken by the Research Laboratory of the Climax Molybdenum Company of Michigan, was to characterize single-phase samples of the hexagonal intermetallic compounds defined in the phase diagrams of Figures 1, 2, and 3. The samples were characterized by determining the hardness of the alloys at room and elevated-temperatures, the resistance to oxidation at 540 C (1000 F) and 980 C (1800 F), the resistance to corrosion in oxidizing acids, and room-temperature electrical resistivity. The characterizations were made on several compositions within the limits of the hcp compound. The selection of the compositions was complicated, however, by the ambiguity in the phase diagrams. Therefore, a few selected compositions outside the anticipated hcp phase boundaries were included in the preliminary stages of the program. The compositions selected for study from each system are shown by circled crosses on the phase diagrams. The compositions of the alloys are presented in the procedures section of this report.

t manual parameters

]

-2~

EXPERIMENTAL PROCEDURES AND RESULTS

The high inherent cost of the raw materials dictated a prudent approach to sample preparation. It was decided, therefore, to cast a single, small button of each composition that would be just large enough to provide a single hardness sample. These samples would be used later for the oxidation and corrosion testing. It was found that 30 grams of each alloy was sufficient for the characterization program outlined previously. Casting was selected as the procedure for consolidation of the alloys to circumvent the problems of voids that might remain in the samples after a pressing-and-sintering operation. The disadvantage of casting the alloys is that contaminants, such as oxides, agglomerate into small inclusions instead of remaining as uniformly dispersed, fine particles in the matrix. The inclusions are generally found along grain boundaries and thus, increase the brittleness of the material.

The alloys chosen for this study were cast in a water-cooled copper mold that had a rectangular cross section approximately 1 by 0.38 by 0.2 inch. Each button was nonconsumably arc-cast three times, turning top-for-bottom between each remelt. The melting was performed under a slight positive pressure of argon purified by melting a Mo-Ti-Zr getter button prior to casting the experimental alloys.

The 30-gram cast buttons were cut and ground to the exact size of the hardness sample, 0.8 by 0.36 by 0.2 inch. One end of the button was removed prior to testing, and was then annealed and submitted for metallographic examination. Each alloy was submitted for X-ray diffraction analysis and then annealed to reduce coring and develop the equilibrium crystal structure for the particular alloy. The alloys were heat-treated at 1400 C (2552 F) for 10 hours under a pressure of 5×10^{-5} torr, except for three alloys that were heat-treated in hydrogen for 10 hours. The 1400 C (2552 F) temperature was chosen since it was high enough to order the atomic arrangement, but not so high as to greatly increase the as-cast grain size. The heat-treated samples were resubmitted for X-ray diffraction analysis. The compositions* chosen for this program, and the crystal structure in the as-cast as well as the heat-treated condition, are presented in Table 1. The density of the hcp alloys was calculated from the X-ray diffraction data. Only those alloys that had a hcp crystal structure after heat-treatement were studied further.

All the alloys with the hexagonal crystal structure were submitted for metallographic examination. As described above, a small piece of each button not required for the hot-hardness sample was examined. All the alloys were polished in the conventional manner. Etching the alloys with aqua regia, aqua regia plus HF, and Murakami's etch proved unsuccessful. An electrolytic etching procedure using an electrolyte of 20% hydrochloric acid saturated with sodium chloride was found to etch the platinum alloys. The anisotropy of the hcp crystal structure makes it possible to view the microstructure with dark field illumination using polarized light.

* weight percent unless indicated otherwise.

Table 1

X-Ray Diffraction Analyses of Several Mo-Pt, Mo-Rh, and Mo-Ir Samples

Heat	Aim Con	mposition percent/	Average		X	-Ray D	iffraction Analysis	
No.		beteent)	Group	Density ⁴	As-Cast		After Heat Treatm	entb
	Мо	X	Inumuel))	Phases	c/a	Dhares	
						8	Filases	c'/(a'/2)
				- X	= Rhodium			
H-205	20 (21.1) ^c	80 (79.8)	8.5	12.2	hcp $a = 2.716$.			T
H-218	(<mark> 28.5 (30.0)</mark>	(0.0) 2.17	8.1	11.7	c = 4.367 hcp a = 2.737.	1.608	Unchanged	
н-219	38.3 (40.0)	61.7 (60.0)	7.8	11.6	c = 4.365 hcp a = 2.740.	1.595	Unchanged	
Н-220	48.2 (50.0)	51.8 (50.0)	7.5	11.4	c = 4.392 hcp a = 2.751,	1.603	Unchanged	
					c = 4.417	1.606	Unchanged	
				X	: Irídium			
н-209	15 (26.1)	85 (73.9)	8.2	19.5	hcp $a = 2.745$,	1.60	Ordered hcn a'= 5 400	
Н-216	17.6 (30.0)	82.4 (70.0)	8.1	19.0	c = 4.381 hcp $a = 2.740$,		c' = 4.394	1.601
н-217	19.7 (33.0)	80.3 (67.0)	8.0	18.7	c = 4.392 hcp $a = 2.737$, c = 4.404	1.603	Jnchanged Ordered hcp a'= 5.475	
, , ,							c'= 4.404	1.608
b 10 h	ulated from ours at 1400	X-ray diffra C (7552 E)	ction dat	ta. 10-5]

- 10 hours at 1400 C (2002 F) and 5 x 10⁻⁵ torr pressure except Heats H-213, H-214, and H-215, which were treated in 1 atmosphere of hydrogen. ^C Numbers in parentheses are atomic percent.

ŀ

:

Ĭ

I

I

Contract No. NOO014-66-C0338

-4-

\sim
τO
- A)
- w i
1
- 21
- 191
- 4- 1
- 21
- 14 (
ົດເ
~~ /
D 1
Z
ਧ
4
7
- -
- -
U U U U U
e 1 (
le 1 (
ole 1 ((
ble 1 (
able 1 (
able 1 (
Table 1 (
Table 1 (
Table 1 (

X-Ray Diffraction Analyses of Several Mo-Pt, Mo-Rh, and Mo-Ir Samples

1001	Ain (we	n Comp ight	osition percent)	Average		X	-Ray D:	iffraction Analysis	
No.				Group	Density (g/cm ³)	As-Cast		After Heat Treatmen	atb
	Mc		X	Number	<u> </u>	Phases	c/a	Phases	C 1 12
					X =	Platinum			(7/ B)
H-204	29 (45	(6.)	71 (54.6)	6 8		F22 5-1 1			
H-208	35 (52		65 (47.5)	6. L		here, Ict, hepu		Not heat treated	
						c = 4.488	1.61	Urdered hcp $a' = 5.5/2$, $c' = 4.488$	
								Orthorhombic $a = 2.75$,	
								b = 4.90,	
н-213 ^b	38 (56	(0.	62 (44.0)	7.8		hcp a = 2,748.		c = 4.49	
u_21.6b	6.0 / E.O	6		,		c = 4.518	1.64	Same as H-208	
-+ 1 7 _ U	6C) 7t	ĵ.	(0.14) 80	7.6	14.9	hcp $a = 2.748$,		Ordered hcp $a' = 5.590$,	_
H-215 ^b	45 (62	.5)	55 (37.5)	7.5	14.3	c = 4.518 hcp a = 2.784.		c' = 4.484	1.604
н-221	50 167	6	E0 (33 0)	c r		c = 4.518		c' = 4.497	1.604
747_11		6.	(0.00) 00	r./		hcp $a = 2.748$,		Ordered hcp, cubic	
						c = 4.518		Mo4 Pt	
d fcc =	face-c	centei	red cubic, fc	t = face.	-centere	d tetragonal, h	cb = h	exagonal-close packed.]

-5-

There is one disadvantage to dark field illumination since small pits and inclusions appear as extremely bright spots in photomicrographs. The photomicrographs prepared for this report are subject to an overestimation of the quantity of surface defects as a result of emphasis of a white area on a dark background. Photomicrographs of all the alloys are presented in Figures 4 through 7.

The room-temperature resistivity of the alloys was measured on the heattreated material using the four-point-probe technique.¹⁴ The instrument was calibrated by comparing the resistivity determined for silver, molybdenum, chromium, Type 304 stainless steel, and bismuth with the published values for each of the metals.¹⁵ The calibration curve is presented in Appendix A. The measured values of resistivity for the experimental alloys, which have been adjusted according to the calibration curve, are presented in Table 2.

Standard techniques were used to determine the room and elevated-temperature hardness values of the alloys.¹⁶,¹⁷ A 10-kg load and a diamond indentor were used between room temperature and 871 C (1600 F), and a 5-kg load and a sapphire indentor were used between 1093 and 1649 C (2000 and 3000 F). The data are presented in Table 2 and plotted in Figure 8; the hardness of sapphire¹⁸ between 816 and 1649 C (1500 and 3000 F) is also drawn in Figure 8. All three of the molybdenum-iridium alloys are harder than sapphire between 1093 and 1649 C (2000 and 3000 F). It was noted that the sapphire indentors flattened when the load was applied on Mo-Ir alloys-the alloys themselves showed no hardness impressions.

The oxidation resistance of the alloys was determined by exposing them to air at 538 C (1000 F) and 982 C (1800 F). The corrosion resistance was evaluated at room temperature in aqueous solutions containing 41.6 and 70.9% nitric acid (a 1 to 1 volume ratio of water to nitric acid, and concentrated nitric acid, respectively). A comparable molybdenum sample was included in the tests as a control sample.

The tests for evaluation of oxidation resistance were performed on segments of the hot-hardness sample. Each of the hot-hardness samples was cut into pieces approximately 0.2 by 0.2 by 0.37 inch; the exact dimensions of each sample were determined prior to the test. One small piece of an alloy was placed in a porcelain crucible, 1-1/2 inches in diameter and 1-inch high, and the sample and the sample-plus-crucible were weighed. The combined weight of sample-plus-crucible was used to determine changes in weight during the oxidation test to minimize extraneous losses resulting from handling the samples. The crucibles plus samples, along with a blank crucible, were placed in resistanceheated furnaces at the desired temperatures. Air was circulated through the furnace at the rate of 2.25 liters/min to ensure an adequate supply of oxygen. Changes in weight were measured at regular intervals. These weight changes were converted to weight gains or losses per unit of original area on the unoxidized sample. Data on the change in weight per unit of original area for the two oxidation temperatures are presented in Table 3 as a gain in weight and in Table 4 as a loss in weight. The data are plotted in Figures 9 and 10. The sample dimension and weights as a function of time at temperature are given in Appendix B.

-6-

Table 2

.....

-

1111

Í

Ī

I

I

Hardness and Resistivity of Hexagonal-Close Packed Alloys from the <u>Mo-Pt, Mo-Rh, and Mo-Ir Systems</u>

Heat	Ai Compcs	m ition ^b	Electrical Resistivity				Hardnes	e(Had) s	at Indical	ted Tempe	rature		
N	£	×	(µ()-cm) at 20 C	Room	260 C (500 F)	538 C (1000 F)	704 C (1300 F)	871 C (1600 F)	1093 C (2000 F)	1232 C (2250 F)	1371 C (2500 F)	1510 C	1649 C
							X = Rhodiu	E E					
н-205	20	80											
Н-218	(21.1) 28 5	(8.67)	135	518	498	681	797	379	262	250	160 ^c	13.7	38.9
	(30.0)	(0.0)	200	457	740c	415 ^c	405	260	2 56	172	., ۲	0 7	 r
н-219	38.3 (40.0)	61.7 (60.0)	135	340	285	283	961	207	066		t ;	0 70	41.1
н-220	48.2 (50.0)	51.8 (50.0)	91	370	340	300	008	22 6	 0 1 5 7 7		12/	73.4	40c
				1				(77	C/1	C † 1	104	61	46
				ļ			X = Iridi	lum					Γ
н-209	15 (26.1)	85 (73.9)	68	672	630	595	195	5/.6					T
H-216	17.6	82.4							;	;	:	:	:
Н-217	(30.0)	(0.07)	74	565	507	449	442	431	,>32.5d	250d	>160d	>110d	>70d
	(33.0)	(67.0)	120	599	516	516	462	388	:	;	:		
	ĺ						= Platin				1		
H-214	42 (59.0)	58 (41.0)	92	276	246	223							T
н-215	45 (62.5)	55	145	326				707	202	861	124	108	63.2
					070	782	254	242	164	142	117	104	63.9
from Numbe Inter	l 1093 to 1093 to rs in p polated	nd diam 1649 C arenthe: value.	ond indentor (2000 to 300 ses are atomi	used 0 F) c per	from ro	om temper	ature to	871 C (16(00 F), and	i 5-kg lo	ad and sa	pphire ind	lentor use
All M saph	o-Ir al ire at	loys ar indicat	e harder than ed temperatur	sapp e (af	hire bei ter Refe	tween 109 erence 16	3 and 164	9 C (2000	and 3000	F); numbe	er Eiven	is the har	dness of

	538 C (1000 F)
	аt
le 3	Performed
Tab	Test
	Oxidation
	of
	Results

							r—–1		1
Parabolic Rate Constant	(mg ⁴ /cm ² hr)	d		0.048 0.365 0.690		0.048 0.063 0.084		1.56 4.80	
	25.0 hr	11.6		0.650 4.14 2.01		0.788 1.07 1.40		4.87 5.75	
icated	10.0 hr	4.80		0.604 2.41 1.58		0.473 0.726 0.771		3.15 4.44	• •
for Ind mperature	5.0 hr	1.663	En 1	0.371 1.49 1.10	L MIN	0.394 0.427 0.578	E.	2.56 3.43	ed samplate.
(mg/cm ²) me at Ter	3.0 hr	0.760	= Rhodí	0.371 1.01 1.02	= Iridi	0.354 0.427 0.482	= Platin	2.16 3.08	unoxidiz dation r
ht Gain ^a Total Tiv	2.0 hr	0.523	Х	0.279 0.723 0.866	X	0.276 0.342 0.337	X	1.77 2.83	of the olic oxi
Weig	1.0 hr	0.333		0.186 0.675 0.748		0.197 0.085 0.241		1.33 2.17	nal area a parab
	0.5 hr	0.238		0.186 0.482 0.748		0.158 0.512 0.241		0.787 1.87	he origi t follow
n (tion	×			80.0 61.7 51.8		85.0 82.4 80.3		58.0 55.0	sing t oes no
Air Composi (%)	Mo	100		20.0 38.3 48.2		15.0 17.6 19.7		42 45	ulated u odenum de
Heat	01	:		H-205 H-219 H-220		H-209 H-216 H-217		H-214 H-215	a Calcu b Molyb

i

i

ī

•

1

Contract No. NOOO14-66-CO338

-8-

Table 4

Results of Oxidation Test Performed at 982 C (1800 F)

 	<u> </u>			+					_
	10.0 hr	consumed		0.051		:::		: :	
Ited	5.0 hr	sample		0.022		م م 		::	
for Indica ure	1.5 hr	0.850		0.010		0.034		::	
(g/cm ²) ; Temperatu	1.25 hr	0.819		0.009		0.034 b 0.148		::	
lght Loss ^a al Time at	1.0 hr	0.729	li um	0.00 	lium -	0.034 0.078 0.138		::	- - -
ulated Wei Tota	0.75 hr	0.579	X = Rhoc	0.008 d	X = Irić	0.032 0.072 0.121	X = Plati	q q	ized sampl ion.
Accum	0.5 hr	0.408		0.007 0.188 0.344		0.028 0.061 0.095		0.389 0.424	of unoxid explanat
	0.25 hr	0.211		0.006 0.169 0.195		0.024 0.053 0.065		0.243 0.257	inal area e text foi
ition	х	-		80.0 61.7 51.8		85.0 82.4 80.3		58.0 55.0	lg orig led, se
A1 Compos (%	Mo	100		20.0 38.3 48.2		15.0 17.6 19.7		42.0 45.0	ated usin scontinu
Heat		1		Н-205 Н-219 Н-220		Н-209 Н-216 Н-217		Н-214 Н-215	a Calcula b Test di

Contract No. N00014-66-C0338

\$1

.

5

-9-

All the 538 C (1000 F) oxidation samples were examined metallographically on completion of the exposure tests. Only the samples having relatively high molybdenum contents developed significant thickness of oxide layer. Photomicrographs of the few visible oxide layers are presented in Figures 11 through 14. 1

The curve of weight gain per unit of original surface area for Heat H-219 (Figure 9) has an anomolous discontinuity. Examination of the sample after 5 hours of exposure revealed that a number of cracks had formed along the edges of the specimen. The net result was that the actual surface area being oxidized was greatly increased over the original area.

The change of weight per unit area data of Table 3 were plotted versus time on a log-log scale. The slope of the lines drawn through the data indicated that the oxidation of all the experimental alloys is closely approximated by a parabolic rate law. The parabolic rate constant for each alloy is given in Table 3. The rate constant for Heat H-219, given in Table 3, is based on data for the initial 2 hours of the test, since the crack formation noted above made it impossible to accurately calculate the surface area being oxidized.

The oxidation testing of several samples at 982 C (1800 F) was terminated after a short time of exposure. There were two reasons for discontinuing the test. For example, it was felt that Heats H-219, H-220, H-214, and H-215 were were oxidizing as rapidly as molybdenum. It was decided to save the remainder of the unoxidized sample for other testing programs. On the other hand, the oxidation of Heats H-209, H-216, and H-217 were discontinued because of the concurrent formation of a nonadherent, powdery black oxide, and volatilization of MoO₃; the former increased the weight of the sample, the latter decreased its weight. The net result of this competition was that the oxidation rate could not be measured.

The evaluation of the corrosion resistance of the hcp compound in two concentrations of nitric acid was also performed on small pieces cut from the hot-hardness specimen. Each small sample was measured and weighed prior to being immersed in 100 ml of either 41.6% nitric acid (a l to l volume ratio) or 70.9% nitric acid (concentrated). A small piece of molybdenum was included in each test as a control sample. Each sample was washed with water, rinsed with methanol, and air-dried after each time period in the acid solution. The results of the tests, including original sample dimensions, are presented in Tables 5 and 6. The results of exposure to the 41.6% nitric acid solution, which proved to be more severe than exposure to concentrated acid, are also plotted in Figure 15 as weight loss per unit of area on the original unexposed sample. The data for exposure to the concentrated nitric acid are inconclusive. No trend or pattern in weight change developed in the 255 hours of the test, except for Alloy H-215 (55% Pt and 45% Mo), which showed a slight decrease in weight.

-10-

<u>Table 5</u>

Heat No.	Ain Compo (%	m sition)	Surface Area	Starting Weight	Accumulat Uni Ir	ted Weight t Area (m dicated 1	: Change per g/cm ²) for Total Time
	Мо	x	(em)	(8)	25 hr	98 hr	268 hr
	100		1.895	1.8987	Samp solv	le comple ed in les	tely dis- s than 2 hr
			X	= Rhodium			
H-205	20	80	2.092	2.1330	nil	nil	nil
H-219	38.3	61.7	2.256	2.2436	nil	nil	nil
н-220	48.2	51.8	2.380	2.5155	nil	nil	nil
	4 <u></u>	- <u></u>	x	= Iridium	*	۰ <u>ـــــ</u>	
н-209	15	85	2.542	4.3498	nil	nil	nil
н-216	17.6	82.4	2.328	3.9860	-0.472 (-1.1) ^a	-0.601 (-1.4)	-0.601 (-1.4)
			X	= Platinum			
н-214	42	58	1.995	2.3868	-0.652	-1.40	-2.41
н-215	45	55	1.992	2.2531	(-1.3) -1.76 (-3.5)	-4.32 (-8.6)	-7.38 (-14.7)

Results of Corrosion Testing of Experimental Alloys in an Aqueous Solution Containing 41.6% Nitric Acid

^a Numbers in parentheses give accumulated weight change (mg) for indicated total time.

1

ļ

I

<u>Table 6</u>

Heat	Ai Compos (?	im sition %)	Surface Area	Starting Weight	Accumula (mg/cm ²	ted Weig) for In	ht Chang dicated	e per U Total T	nit Area ime
NO.	Мо	x	(cm ²)	(g)	2.0 hr	6.5 hr	23 hr	96 hr	255 hr
	100		2.084	1.8847	-0.575 (-1.2) ^a	1.73 (-3.4)	-5.18 (-7.2)	-99.50 (-197)	
				X = Rho	odium				
H-205	20	80	2.092	2.1330	nil	nil	nil	nil	nil
н-219	38.3	61.7	2.256	2.2436	nil	nil	nil	nil	nil
н-220	48.2	51.8	2.380	2.5150	nil	nil	nil	nil	nil
	• <i>·</i>		·	X = Iri	ldium			 ,	
н-209	15	85	2.542	4.3497	nil	nil	nil	nil	nil
н-216	17.6	82.4	2.329	3.9846	nil	nil	nil	nil	nil
<u>}</u>		L	L	X = Plat	inum			<u></u>	
н-214	42	58	1.995	2.3818	nil	nil	nil	nil	nil
H-215	45	55	1.992	2.2381	nil	nil	nil	nil	1.6 (-3.0)

Results of Corrosion Testing of Experimental Alloys in Concentrated (70.9%) Nitric Acid

^a Numbers in parentheses give accumulated weight change (mg) for indicated total time.

Contract No. NOO014-66-C0338

DISCUSSION

One major problem encountered in this investigation would tend to limit the applicability of the molybdenum-platinum group metal hcp compounds--they are extremely brittle. The brittleness of the compound may be considered in two ways:

- the grains of the alloy exhibited some fracture around hardness impressions, particularly at low temperatures [below 675 C (1250 F)], and high rhodium or iridium contents (greater than 70% rhodium or 80% iridium--the lowest iridium content in buttons cast for this study). The molybdenum-platinum hcp phase and the rhodium alloys containing 50 and 40% molybdenum appeared to be more ductile, as indicated by the deformation around the hardness impressions.
- 2. The grain boundaries of all the samples lack cohesion and can be considered to be the dominant factor in determining the apparent ductility of the alloys. Here again, the alloys with the higher iridium and rhodium contents are more susceptible to loss of grain boundary cohesion than the alloys with the higher molybdenum contents. One alloy, the 71% Rh - 29% Mo alloy, was so brittle that it could not be properly cut or ground to produce the hardness specimen because of grain boundary fracture.

Fractography provided a means for examining the grain boundaries of some of the compositions. Two typical fractographs are presented in Figure 16; one was taken on Heat H-205 (80% Rh and 20% Mo) the other was taken on Heat H-209 (85% Ir and 15% Mo). Both grain boundaries are densely populated with what appear to be oxide inclusions. Efforts to reduce the quantity of inclusions by recasting the alloy with a small carbon addition failed. It was found, however, that rapid cooling through the liquidus region of the phase diagram improved the apparent cohesion of the grain boundaries. It is reasoned that quenching the liquid alloy decreased the grain size of the solidified material, and increased the grain-boundary area over which the inclusion could be distributed. Samples prepared in this manner were easier to cut and polish than samples cooled slowly from above the liquidus temperature. A more thorough study of means for reducing grain boundary impurities is recommended.

{

The rapid cooling from above the liquidus temperature did introduce the question of coring during solidification. It had been anticipated that the 1400 C (2552 F) heat treatment would alleviate some of the effects of coring. However, remnants of the dendritic structure are observed in Heat H-205, 80% Rh and 20% Mo [Figure 4(a)], Heat H-216, 82.4% Ir and 17.6% Mo [Figure 5(b)], and Heat H-215, 55% Pt and 45% Mo (Figure 7). Semiquantitative analysis on the electron microprobe analyzer indicated that only the molybdenum-platinum alloy had a detectable difference in composition between the matrix and the boundary region. The grain boundary area is slightly richer in platinum than the matrix. Two areas, approximately 0.5 micron in diameter (one in the

-13-

matrix and one in the etched region, marked on Figure 7(a), were examined more precisely. It was found that there is a 3 atomic percent difference, equivalent to approximately one weight percent, in the platinum content between the two areas, grain boundary region 2 is higher in platinum. Cursory examination of other points confirmed that this difference existed at the same level throughout the sample. Ð

The segregation or coring in Heat H-215 resulted in a small amount of second phase that appears as a small black phase in the etched sample [Figure 7(a)]; the amount of second phase present is less than about 5 volume percent, and was not detected in the X-ray diffraction pattern. The one photomicrograph of Heat H-215 [Figure 7(a)] showing the second phase was taken on a sample from the edge of the arc-cast button where segregation is highest. The second photomicrograph of Heat H-215 [Figure 7(b)], which shows no second phase, was taken from a more central location in the arc-cast button. Even though the quantity of second phase in Heat H-215 is small and the difference in composition between the two areas in the heat is also small, these two factors may have had an influence on the hardness of the sample, as will be discussed later in this report.

Although the heat treatment at 1400 C (2552 F) for 10 hours failed to homogenize several of the experimental alloys completely, the annealing treatment did order the two molybdenum-platinum alloys and two of the three molybdenumiridium alloys. The ordered structure for MoIr3 has been identified as MgCd₃ type, space group D^4 -P6₃/mmc with 8 atoms per unit cell.¹³ The X-ray diffraction pattern for the order hexagonal Mo₃Pt₂ (or Mo5Pt₃) has been published, 10 but no further definition of space group is known.

It is interesting to note that the crystal structure of as-cast Mo-Pt alloys (Table 1), over a range of 35 to 50% molybdenum, was disordered hcp, the so-called epsilon structure. The crystal structures of the annealed alloys differ markedly from the as-cast structures, except for the two compositions at 42 and 45% molybdenum (Heats H-214 and H-215). It may be surmised that the investigators reporting a wide range of homogeneity for the disorderd epsilon phase in the Mo-Pt system did not anneal their sample properly. In other words, the results of this study of arc-cast and annealed materials confirm the phase relations suggested by Rooksby and Lewis, 10 and Selman.11 The data of this investigation indicate that the range of solid solubility of molybdenum and platinum in Mo3Pt2 is smaller than estimated by Ocken and Van Vucht¹² (Figure 3).

The trends in lattice spacing, as influenced by the average group numbers of the alloys studied, are presented in Figure 17. The lattice constant, a, of the normal hexagonal structure is plotted, not the a' of the ordered structure. Since five of the nine compositions prepared have the normal, disordered structure, it was decided to use $\frac{1}{2}a'$ for the plot. The data are taken from Table 1. The interesting aspect of Figure 17 is that lattice spacing of the three systems studied are affected differently by changes in composition of the hexagonal phase, i.e., by changes in the average group number. Both the $\frac{a}{2}$ and c lattice constants for the Mo-Pt alloy increase as the platinum content increases; the ratio of c/a, however, remains constant. The lattice constants for the Mo-Rh alloys decrease as the rhodium content increases, but at different rates. Thus, the ratio c/a goes through a minimum at some average-group number between 8.0 and 8.25. These trends for the Mo-Rh hcp phase are in agreement with the trends noted by Anderson and Hume-Rothery, ⁶ although the actual constants determined in this study are from 0.1 to 0.5% larger than those reported by Anderson. In contrast to both the Mo-Pt and Mo-Rh alloys, the <u>a</u> for the Mo-Ir alloys increases with increasing iridium content, but the <u>c</u> decreases. The c/a ratio for the MoIr3 composition range decreases fairly sharply with increasing iridium content. In summary, it is concluded that the average group number of the alloys has little or no effect on lattice constants, and that some other physical factor, such as differences in atomic radii, must determine lattice constants.

It may also be noted that the hardness of the molybdenum-platinum group alloys between room temperature and 1093 C (2000 F), as well as their resistance to oxidation at 538 C (1000 F) and corrosion in nitric acid, varies more as a function of atomic percent molybdenum in the alloy than any other factor. The hardness of the alloys at all test temperatures with few exceptions decreases as the molybdenum content increases from 26 atomic percent in Heat H-209 to 60 atomic percent in Heat H-214. Similarly, the parabolic rate constant for oxidation at 538 C (1000 F) decreases markedly as the molybdenum content of the alloys decreases over the same range of atomic percents. The shaded band (Figure 18) is drawn to show the general trend of the parabolic rate constant as a function of molybdenum content. The weight loss per unit area of the alloys during exposure to dilute nitric acid (Figure 15) also decreases markedly.

There are some exceptions to the trend noted for hardness of the hcp alloys with respect to molybdenum content. First, Heat H-205 (21.1 atomic percent Mo and 79.8 atomic percent Rh) has less molybdenum than Heat H-209 (26.1 atomic percent Mo and 73.9 atomic percent Ir) and yet is softer than Heat H-209. Part of this behavior may be attributed to the ordering of the Mo-Ir alloy and to differences in atomic radii. The other exceptions occur at higher molybdenum contents. Specifically, Heat H-215 has a higher atomic percent molybdenum in Heat H-215 versus 59 atomic percent molybdenum in Heat H-214), but is harder than Heat H-214. Similarly, Heat H-220 has a higher atomic percent molybdenum than Heat H-219 for the Mo-Rh alloys (50 atomic percent molybdenum in Heat H-220 versus 40 atomic percent molybdenum in Heat H-219), but is harder than Heat H-219. These two exceptions to the general trend of hardness as a function of molybdenum content may be a result of the coring and minute amount of second phase; the latter being observed only in Heat H-215.

It is interesting to compare the hardness of the molybdenum-platinum group metal hcp phase with the hardness values of other refractory metal systems. The hardness of TZC, a molybdenum-base alloy, ¹⁹ is plotted in Figure 8, and may be seen to fall below all the alloys prepared for this study. Hardness data for other refractory metal systems are not as plentiful as would be desired for this comparison; however, Semchyshen and $Barr^{20}$ have reported room-temperature hardness values of 340 to 400 DPH for a wide range of arc-cast tungsten-base alloys. The hardness of these alloys decreases to approximately 80 DPH at 1540 C (2800 F) as shown by the hardness band in Figure 8. Field <u>et al.</u>²¹ have reported room-temperature hardness values of 100 to 400 DPH for tantalum-base alloys, with one or two experimental alloys reaching 500 DPH. Therefore, if hardness can be used as an indicator of other mechanical properties, it might be expected that the molybdenum platinum-group metal hcp compounds may be able to surpass the strength properties of some of these refractory metal alloys.

SUMMARY AND CONCLUSIONS

An investigation has been conducted on the hcp intermetallic compound found in the binary systems that include molybdenum and one metal from the group rhodium, iridium, and platinum. The compound can be broadly characterized as having a hcp crystal structure and melting at temperatures in excess of 1900 C (3452 F). The compositions that are characterized ranged from 50 to 80% rhodium, a disordered hcp phase; from 80 to 85% iridium, centered around MoIr₃, an ordered hcp compound; and 55 to 58% platinum, the limits of the ordered hcp compound Mo₃Pt₂. Until this investigation, little else was known about the compound. This investigation has characterized small arc-cast samples of several compositions within limits of the hcp compound by determining the room and elevatedtemperature hardness, the resistivity, the oxidation resistance when exposed to air at 538 C (1000 F) and 982 C (1800 F), and corrosion resistance to aqueous solutions containing 41.6 and 70.9% nitric acid.

All the alloys were arc-cast and then annealed at 1400 C (2552 F) for 10 hours. The annealing treatment developed the equilibrium crystal structure without greatly increasing the grain size of the samples. Most of the samples were homogeneous and single phase, as determined by metallographic and X-ray diffraction analyses. One sample, containing 45% Mo and 55% Pt, did have a small amount of unidentified second phase in the grain boundaries.

The molybdenum-platinum group metal hcp compound is embrittled by oxides that are dispersed along the grain boundaries during solidification. The alloys having the higher molybdenum contents are less prone to the effect of grain boundary impurities.

The hcp compound has a room-temperature hardness between 300 and 675 DPH. The hardness of the compound decreases as the atomic percent molybdenum increases. The hardness of the molybdenum-rhodium and molybdenum-platinum hcp compound decreases to about 50 DPH at 1649 C (3000 F). The molybdenum-iridium alloys studied are harder than sapphire (the material used as the indentor) between 1093 and 1649 C (2000 and 3000 F). On the basis of hardness data, it is concluded that iridium is most effective in hardening the hcp phase for a fixed molybdenum content, followed in decreasing order by rhodium and platinum.

All the alloys gain weight during oxidation at 538 C (1000 F) following a parabolic rate law. The parabolic rate constant increases as the atomic percent molybdenum in the alloy increases. All the alloys except one lose weight at 982 C (1800 F) at approximately the same rate as pure molybdenum. Only the 80% Rh - 20% Mo alloy exhibited oxidation resistance at 982 C (1800 F) for periods up to 10 hours.

The alloys investigated are all resistant to corrosion by dilute and concentrated nitric acid. The molybdenum-platinum alloys do lose a small amount of weight in 250 hours of exposure.

The hcp compound has resistivity in the range of 100 μ ohm-cm at 20 C.

1.14

RECOMMENDATIONS

The research program has provided a limited characterization of a hcp intermetallic compound containing molybdenum and a metal from the group rhodium, iridium, and platinum. It is noted that the room and elevated-temperature hardness of the compound is generally greater than molybdenum, tungsten, or tantalum base alloys. It is believed that the hcp alloys are worthy of further investigation. In particular, a better characterization of mechanical properties is required to evaluate the usefulness of the alloys. In addition, it is necessary to establish a procedure for increasing the purity of the alloys by decreasing the grain boundary impurities. No fair evaluation of properties is possible with the grain boundaries as brittle as they were in the samples prepared for this investigation. Finally, it is recommended that consideration be given to finding a ternary alloying element that could be substituted for the expensive platinum-metal elements used for this study.

Data presented in this report may be found in Laboratory Records Book 780, pp. 9-32.

REFERENCES

- 1. W. D. Klopp, F. C. Holden, and R. I. Jaffee, "Further Studies on Rhenium Alloying Effects in Molybdenum, Tungsten, and Chromium," Battelle Technical Report to Office of Naval Research, Nonr-1512(00), July 12, 1960.
- W. D. Klopp, F. C. Holden, and R. I. Jaffee, "Studies of Molybdenum, Tungsten, and Chromium Alloys with Improved Ductility," Technical Report, Contract No. Nonr-1512(00), June 1960.
- 3. E. Raub, Z. Metallkunde 45 (1954), 23-30.
- 4. P. Greenfield and P. A. Beck, AIME Trans. 206 (1956), 265-276.
- 5. A. G. Knapton, J. Inst Metals 87 (1958), 28-32.
- 6. E. Anderson and W. Hume-Rothery, J. Less Common Metals 2 (1960), 19-28.
- 7. S. J. Michalik and J. H. Brophy, AIME Trans. 227 (1963), 1047-1053.
- R. I. Jaffee, R. Viswanathan, J. C. Ho, J. G. Booth, P. S. Rudman, and E. W. Collings, Battelle Memorial Institute, Summary Technical Report on Contract No. Nonr-2547 (00) and No. Nonr-3589 (00), September 15, 1967.
- 9. A. Maldonado and K. Schubert, Z. Metallkunde 55 (1964), 619-626.
- 10. H. P. Rooksby and B. Lewis, J. Less Common Metals 6 (1964), 451-460.
- 11. G. L. Selman, Platinum Metal Review 11 (1964), 132-137.
- 12. H. Ocken and H. H. N. Van Vucht, J. Less Common Metals 15 (1968), 193-199.
- B. C. Giessen, U. Jaehnigen, and N. J. Grant, J. Less Common Metals 10 (1965), 147-150.
- 14. <u>Handbook of Semiconductor Electronics</u>, L. P. Hunt, ed., second edition, McGraw-Hill Book Company, Inc., New York, 1962, Section 20, p. 4.
- 15. <u>Metals Handbook</u>, T. Lyman, ed., eighth edition, vol. 1, American Society for Metals, Novelty, Ohio, 1961.
- 16. F. P. Bens, ASM Trans. 38 (1947), 505-516.

•'

- 17. M. Semchyshen and C. S. Torgerson, ASM Trans. 50 (1958), 830-837.
- 18. R. D. Koester and D. P. Moak, J. Am. Ceram Soc., 50 (1967), 290-296.
- M. Semchyshen, R. Q. Barr, and E. Kalns, "Arc-Cast Molybdenum and Tungsten-Base Alloys,"(1960-1961) Contract Nonr-2390(00), Project NR 039-002, Climax Molybdenum Company of Michigan, 1962.

-19-

Contract No. NOOO14-66-CO338

 M. Semchyshen and R. Q. Barr, "Arc-Cast Molybdenum and Tungsten Base Alloys (1957-1959)," Contract Nonr-2390(00), Project NR 039-002, Climax Molybdenum Company of Michigan. .

Ŧ

ĩ

,

÷

--

. . . .

;

•

•

ï

I

J

A. L. Field, Jr., R. L. Ammon, A. I. Lewis, and R. L. Richardson, "Fabrication of Tantalum-Base Alloys," in <u>High-Temperature Materials</u>, G. M. Ault, W. F. Barclay, and H. C. Munger, eds, Interscience Publishers, Inc., New York, 1963, vol. 11, pp. 139-160.

Ì

۴

after E. Anderson and W. Hume-Rothery, J. Less Common Metals 2 (1960), 19-28; modified with data from B. C. Giessen, U. Jaehmigen, and N. J. Grant, J. Less Common Metals 10 (1965), 147-150.

⊕ Represents the compositions of molybdenum-rhodium alloys arc-cast for this investigation.

Į

I

Ì

ļ

•

Ī

ļ

1

J

]

after B. C. Giessen, U. Jaehnigen, and N. J. Grant, J. Less Common Metals 10 (1965), 147-150.

⊕ Represents the compositions of the molybdenum-iridium alloys arc-cast for this study.

ľ

ľ

ľ

Represents the composition of the molybdenum-platinum alloys arc-cast for this study.

Contract No. NOO014-66-C0338

N6593 Dark Field Illumination X250 (a) Heat H-205 (80% Rh and 20% Mo)

N6590 Dark Field Illumination X250 (a) Heat H-218 (71.5% Rh and 28.5% Mo)

N6591 Dark Field Illumination X250 (c) Heat H-219 (61.7% Rh and 38.3% Mo)

N6592 Dark Field Illumination X250 (d) Heat H-220 (51.8% Rh and 48.2% Mo)

the feather management of the second s

Figure 4 Photomicrographs of the Molybdenum-Rhodium hcp Alloys Heat-Treated at 1400 C (2552 F) for 10 Hours

CEDING PAGE BLANK_NOT FILMED

Contract No. NOO014-66-CO338

N6597 Dark Field Illumination X250 (a) Heat H-209 (85% Ir and 15% Mo)

N6588 Dark Field Illumination X250 (b) Heat H-216 (82.4% Ir and 17.6% Mo)

N6594 Dark Field Illumination X250 (c) Heat H-217 (80.3% Ir and 19.7% Mo)

Figure 5 Photomicrographs of the Molybdenum-Iridium hcp Alloys Heat-Treated at 1400 C (2552 F) for 10 Hours

ورجامد

-29-

PRICEDING PAGE BLANK-NOT FILMED

.

• ::

N,

Contract No. NOOO14-66-CO338

N6602 NaCl Saturated Solution of 20% HCl X500 (a) Etched Condition Microprobe analyses were made at Locations 1 and 2. A

second phase is present in the microstructure and indicated by an arrow.

(b) Dark Field Illumination

E

فله الجهدة بوريقيد

-33-

Į.

l

I

I.

Ì

.]

1

1

I

I

Ī

l

J

I

J

I

1 1 . 18 . etc.)

Figure 9 Accumulated Weight Gain of the Molybdenum-Platinum Group Metal hcp Compounds on Exposure to Air at 538 C (1000 F)

-34-

Contract No. NOOO14-66-CO338

Į

ł.

I

ľ

Ľ

ſ

Ľ

ſ

ľ

Figure 10 Accumulated Weight Loss of the Molybdenum-Platinum Group Metal hcp Compounds on Exposure to Air at 982 C (1800 F)

-35-

PRECEDING PAGE BLANK_NOT FILMED

Contract No. NOOO14-66-CO338

N6577

Ŀ

Mechanical Polish

X500

No. 1 The state of the second

Figure 11 Photomicrograph of the Oxide Layer on Molybdenum Exposed to to Air at 538 C (1000 F) for 25 Hours

-39-

Figure 13 Photomicrograph of Oxide Layer on Heat H-217 (80.3% Ir and 19.7% Mo) after Exposure to Air at 538 C (1000 F) for 25 Hours

Figure 14 Photomicrograph of the Oxide Layer Developed on Two Molybdenum-Platinum Alloys after Exposure to Air at 538 C (1000 F) for 25 Hours

-43-

PRECEDING PAGE BLANK-NOT FILMED

١

Ľ

Γ

L

ľ

Ŧ

1

l

Contract No. NOOO14-66-CO338

Figure 15 Weight Loss per Unit Area for the Molybdenum-Platinum Group Metal hcp Compounds on Exposure to an Aqueous Solution of 41.6% Nitric Acid

1

Figure 16 Fractographs of a Rh-Mo and an Ir-Mo Alloy Showing Grain Boundary Oxides

-47 -

l

Figure 17 Lattice Spacings As a Function of Average Group Number for the Alloys Prepared for this Investigation

-49-

Figure 18 Parabolic Oxidation Rate Constant for the Alloys Investigated [Samples exposed to 538 C (1000 F) in Air]

-50-

-

ł

ş

i

. ÷

1

ļ

APPENDIX A

and the second second

ſ

ĺ

C

F

E

I

ſ

Ľ

CALIBRATION OF THE FOUR-POINT PROBE FOR ELECTRICAL RESISTIVITY DETERMINATION

.....

n na shakarati anagganatan.

APPENDIX B

I

I

F

ĺ

ſ

Ł

OXIDATION TEST DATA

ing 1/2 where statistics are seen that for a single sector is a sector of the sector is

داده سینیند این در دی

님
mΪ
a
리
8

E)	
(1000	
U	
538	
at	
Data	
Oxidation	

l														
Heat	Compo (sition %)	Dime	nsions	(in.)	Surface Area	Starting Weight Sample plus			Accumul for Ind	ated We icated ' 538 C (ight Ga Total T 1000 F)	d n (mg) ime at	
2	Wo	×	Length	Width	Diameter		Crucible (g)	0.5 hr	1.0 hr	2.0 hr	3.0 hr	5.0 hr	10.0 hr	25.0 hr
:	Blan	k Cruc	ible				11.6007	-0.7	- 0 -		- -	-		
;	100	;	0.368	0.190	0.167	2.105	13.4957	(-0.7) ^a 0.5 (0.5)	(0.0) 0.7 (0.2)	(+0.4)	(0.0) 1.6 (0.5)	(0.0) 3.5 (1.9)	-0.4 (0.0007) 10.1 (6.6)	-0.8 (-0.4) 24.5 [14.4)
							X = R]			, ,	
H-205	20.0	80.0	0.366	0.183	0.182	2.154	14.0877	0.4	0.4	0.6	0.8	8.0	13	-
н-219	38.3	61.7	0.366	0.184	0.170	2.076	13.9678	(0.4) 1.0	(0.0)	(0.2)	(0.2) 2.1	(0.0)	(0.5)	(0.1)
н-220	48.2	51.8	0.365	0.216	0.203	2.540	14.6870	(1.0) 1.9 (1.9)	(0.4) 1.9 (0.0)	(0.1) 2.2 (0.3)	(0.6) 2.6 (0.4)	(1.0) 2.8 (0.2)	(1.9) 4.0 (1.2)	(3.6) 5.1
	ĺ	ľ					X = Ir]	1	1				
н-209	15.0	85.0 0	0.376	0.206	0.205	2.540	16.2835	0.4	0.5	0.7	6.0	1.0	1.2	0
H-216	17.6	82.4 (0.368	0.195	0.195	2.342	15.9517	(0.4) 1.2	(0.1)	(0.2) 0.8	(0.2)	(0.1)	(0.2)	(0.8)
н-217	19.7	80.3 (0.363	0.177	0.173	2.076	14.9532	(1.2) ⁰ 0.5 (0.5)	(-0.1) 0.5 (0.0)	(0.6) 0.7 (0.2)	(0.2) 1.0 (0.3)	(0.0) 1.2 (0.2)	(0.7) 1.6 (0.4)	(0.8) 2.9
							X = Pc	1	1	1				
H-214	42.0	58.0 0	.365	0.168	0.167	2.034	13.8962	1.6	2.7	3.6	4.4	5.2	6.4	0
н-215	45.0	55.0 0	.365	0.172	0.169	1.981	14.2696	(1.6) 3.7 (3.7)	(1.1) 4.3 (0.6)	(0.9) 5.6 (1.3)	(0.8) 6.1 [0.5]	(0.8) 6.8 (0.7)	(1.2) 8.8 72 0)	(3.5) 11.4
a Numb b Weigl	ers in hing be	paren	theses d to b	give t e in er	the increm	nental w	eight gair	ls for e	ich peri	od of	xposure		(0.2)	(0.2)

Contract No. NOO014-66-C0338

State State

B-1

B-2	
Table	

Oxidation Data at 982 C (1800 F)

Heat	Compo (%	sition)	ρ	imensic (in.)	suc	Surface Area	Starting Weight Sample plus			Accu for	mulated 1 Indicate 982 C (Weight Lo d Total T 1800 F)	ss (mg) lime at		
2	Ŵo	×	Length	Width	Diameter))	Crucible (g)	0.25 hr	0.5 hr	0.75 hr	1.0 hr	1.25 hr	1.5 hr	5.0 hr	10.0 hr
:	100	Blank 0	Crucibl 0.369	e 0.179	0.167	2.033	11.5982 13.4624	(0.000) ^a 0.428 (0.428)	(0.000) 0.829 (0.401)	(0.000) 1.178 (0.349)	(0.000) 1.482 (0.304)	(0.000) 1.665 (0.183)	(0.000) 1.828 ^b (0.163)	(0.00)	(000)
								X = Rh							
H-205	20.0	80.0	0.367	0.183	0.180	2.144	1140.41	0.012	0.015	0.017	0.019	0.021	0.023	0.047	0.109
н-219	38.3	61.7	0.366	0.189	0.183	2.203	13.9281	0.373	0.513	discont	(v.vvz)	(700.0)	(200.0)	(((70.0)	(700.0)
н-220	48.2	51.8	0.365	0.216	0.193	2.465	14.5043	(0.480 (0.480)	(0.148) 0.848 (0.368)	discont	inued 1	-	-		
								X = lr							
H-209	15.0	85.0	0.375	0.205	0.205	2.527	16.3055	0.061	0.071	0.080	0.087	0.086	0.086	discon	inued
H-216	17.6	82.4	0.369	0.194	0.187	2.283	15.7154	0.122	0.139	0.164	0.178	discor	tinued		·`
н-217	19.7	80.3	796,0	0.178	0.171	2.032	14.9022	0.133 (0.133)	0.194	0.246	0.279	0.299 (0.020)	0.312	discon	inued
								X = Pt							
H-214	42.0	58.0	0.365	0.173	0.159	1.989	13.8739	0.484	0.774	díscon	tinued				
н-215	45.0	55.0	0.365	0.168	0.168	1.947	14.2789	0.500	0.826	discon	it inued	-	-	-	
a Num b Mol	bers i ybdenu eight	n pare w samp gain.	ntheses le comp	give letely	the increi consumed	mental wi in 1.5 h	eight los: nours.	ses for ea	ich perio	d of exp	osure.				

I

ļ

ł

1

]

J

-]

17

Contract No. NOO014-66-C0338

B-2

UNCLASS IFIED

I

I

I

I

I

I

I

I

I

I

I

I

	ing minorarion inder at	entered when the	overall report is classified)
DRIGINATING ACTIVITY (Corporate author)		20. REFORT S	ECURITY CLASSIFICATION
Climax Molybdenum Company of Michigan,	A Subsidiary	UNCLAS	SIFIED
of American Metal Climax, Inc., 1600 Hu	ron Parkw a y	2b. GROUP	
Ann Arbor, Michigan 48105		_ _	
REPORT TITLE			
Characterization of the Hexagonal-Close the Mo-Rh, Mo-Ir, and Mo-Pt Systems	e-Packed Inter	metallic C	ompound from
DESCRIPTIVE NOTES (Type of report and inclusive dates) Pechnical Renort			
AUTHOR(S) (First name, middle initial, lest name)			
J. Dahl and M. Semchyshen			
REPORT DATE	78. TOTAL NO.	OF PAGES	76. NO. OF REFS
January 1969	50 + 3 App	endices	21
CONTRACT OR GRANT NO.	98. ORIGINATOR	S REPORT NUM	BER(5)
N00014-66-C0338			
PROJECT NO.			
	9b. OTHER REP this report)	ORT NO(S) (Any a	other numbers that may be assign
		Office of	Naval Research
ABSTRACT		<u> </u>	
\mathbf{V}_{i}			
The results of an investig intermetallic compound found in is reported. The compound was and elevated-temperature hardne resistivity, oxidation resistant (1000 F) and 982 C (1800 F), and solutions containing 41.6 or 70 hardness of the compound is repand is inversely proportional to The molybdenum-iridium alloys a at test temperatures between 10 oxidation resistance of the allot the molybdenum content increase resisted oxidation at 982 C (1800 All the alloys resist corrosion acid	ation of the h the Mo-Rh, Mo characterized ss values, roo ce during expo d corrosion re .9% nitric act orted to range to the molybder re harder than 93 and 1649 C oys at 538 C (s. Only the & 00 F) during a by dilute and	nexagonal-co- o-Ir, and M by determi com-temperat osure to ai esistance t id. The ro between 3 num content the sapph (2000 and (1000 F) de 30% Rh - 20 a 10-hour e d concentra	lose-packed lo-Pt systems ning room ure electrical r at 538 C o aqueous com-temperature 00 and 675 DPH of the alloy. tire indentor 3000 F). The creases as % Mo alloy exposure. ted nitric

Security Classification							
4. KEY WORDS	LINKA LINKB LINKC Role wt Role wt Role wt					KC	
		ROLE	T WT	ROLE		ROLE	WT
Molybdenum Rhodium Iridium Platinum Hardness Electrical resistivity Corrosion Oxidation							
INSTRU	JCTIONS			<u> </u>		 	
 ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De- fense activity or other organization (corporate author) issuing the report. REPORT SECURITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord- ance with appropriate security regulations. GROUP: Automatic downgrading is specified in DoD Di- rective 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author- ized. REPORT TITLE: Foren the complete report title in all capital letters. Titles in all cases should be unclassifica- tion, show title classification in all capitals in parenthesis immediately following the title. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. AUTHOR(S): Enter the name, first name, middle initial. If military, show raids and branch of service. The name of the principal author is an absolute minimum requirement. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. NUMBER OF REFERENCES Enter the total number of references cited in the report. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. Se, & SA. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. ORIGINATOR'S REPORT NUMBER(S	imposed b such as: (1) "" (2) "" (3) "" (4) "" (4) "" (5) "" (5) "" (5) "" (5) "" (5) "" (6) "" (7) "" (7)"	y security Qualified sport from Foreign a sport by I U. S. Gont is report dire hall require value of the cand e cand e ca	v classifi requeste DDC. '' announcer DDC is no vernment directly litary agei ctly from est throug ibution of users sh bution of users sh ibution of users sh s been fu ibution of users sh s been fu military NO' MILITAR oject offi h and der Enter an i ument ind elsewhere space is sirable th acch parag military agraph, r iitation o length is Key word t charact taloging security ment moo geograph n to f linh	cation, us ers may ob ment and ion tauthorizing agencies from DDC through incies may DDC. Or gh this reponall reques runished to marce, for TES: Use this reponall required, at the abastract g distative of above required, at the abastract g distative of the security of epresente n the lengs from 150 (s are tect) erize a re the report classification y an indice (s, rules,	sing stan stain cop dissemin red." may obta obtain c her quali rt is con t through rt is con t through t the Offi r rale to nown e for addi ITY: En oratory sy. Includy iving a t f the republic t the republic stract of f the a continu- stract of f e abstra- classific. d as (TS, th of the l to 225 v micelly i port and tion if ation of and weig	dard state ies of this ation of the in copies qualified copies of the field users trolled. Qualified ce of Tec the public itional explored the public ition of the classified ct shall e abien of the public explored the public ition of the public i	ments of of DDC

Unclassified Security Classification ١,

P

ì