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FOREWORD

The theme of the Thirteenth Conference on the Design of Experiments
in Army Research, Development and Testing, as suggested by Dr. Walter Foster,
was "Design and Analysis for Engineering Experimentation". This was a very
appropriate theme in the light of the recent activities of the two hosts for
the meeting. This conference was held at Fort Belvoir, Virginia, on 1-3
November 1967, and the U.S. Army Mobility Equipment Research and Development
Center served together with the U.S. Army Engineer Topographic Laboratories
as joint hosts. The Army Mathematics Steering Committee, sponsors of these
meetings on behalf of the Office of the Chief of Research and Development,
would like to thank these two agencies for so ably serving the conference in
this capacity. A large number of persons at Fort Belvoir helped with the
various details needed to run a meeting of this size. We would like to
express the thanks of the attendees for the many courtesies shown them. In
particular, their thanks are due to Mr. James B. Duff, Chairman on Local
Arrangements, for his excellent execution of the many details needed to
make the symposium run smoothly.

The invited speakers for the conference featured five nationally
known scientists. Their names and the titles of their addresses are noted
below:

Regression Analysis
Professor Francis J. Anscombe, Yale University

Some Comments on Matching
Professor K.A. Brownlee, University of Chicago

Some Statistical Methods in Machine Intelligence Research
Professor I.J. Good, Virginia Polytechnic Institute

Maximum Likelihood Estimation of Reliability
Dr. Frank Proscha, Boeing Company

Data Analysis
Dr. M.B. Wilk, Bell Telephone Laboratories

In addition to these talks, there were 29 contributed papers which covered
a wide range of design and statistical problems. Following the banquet,
which was held at the Officers' Club, it was my pleasure to present the
Third Wilke Memorial Medal to Professor William G. Cochran of Harvard
University. We are pleased to be able to include in these Proceedings
Dr. Cochran's acceptance speech.

This volume of the Proceedings contains 26 of the papers which were
presented at this meeting. The Army Mathematics Steering Committee has
asked that these articles on modern principles on the design of experiments,
together with the application of these ideas, be made available in the form
of this technical manual. Members of this committee take this opportunity *1

to express their thanks to the many speakers and other research workers who
participated in the conference.



The conference had an attendance of 171 scientists; and 71 orgaaizeLions
were represented. Speakers and panelists came from Yale University, University
of Chicago, North Carolina State University at Raleigh, the National Institutes
of Health, Harvard Computing Center, University of North Carolina at Chapel Hill,
University of Georgia, Cornell University, University of Wisconsin, Boeing
Scientific Research Laboratories, Stanford University, Duke University, Virginia
Polytechnic Institute, Stanford Research Institute, the National Aeronautics
and Space Administration, Bell Telephone Laboratories, and fourteen Army
facilities.

Lieutenant Colonel John H. Cain, Deputy Commander of the U.S. Army Mobility
Equipment Research and Development Center, and Lieutenant Colonel William R.
Cordova, Deputy Commander of the U.S. Army Engineer Topographic Laboratories,
both welcomed members of the conference to Fort Belvoir. Their comments to
those in attendance contained many interesting statements about the work being
performed by the host installation. Their remarks are printed here for the
benefit of those who did not have an opportunity to attend the symposium.

The Chairman wishes to take this opportunity to thank members of his
Advisory Committee (Cuthbert Daniel, F.G. Dressel, Walter D. Foster, Fred
Frishman, Lawrence Gambino, Bernard Greenberg, Bernard Harris, Boyd Harsh-
barger, J.S. Hunter, William Kruskal, H.L. Lucas, Jr., Clifford Maloney, and
Frank Robertson) for their assistance in formulating the agenda and their
help in selecting the invited speakers.

Frank E. Grubbs
Conference Chairman

iii
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LTC John H. Cain

Good morning, ladies and gentlemen!

I am Colonel Cain, deputy commander of the U.S. Army Mobility Equipment
Research and Development Center, your co-host for this three-day meeting.
Speaking on behalf of Colonel O'Donnell, the Center's commanding officer, I
am happy to welcome you here today.

I want to thank the Army Mathematics Steering Committee for sponsoring
its 13th annual Conference on the Design of Experiments at the R&D Center.
It gives so many more of our people an opportunity to become acquainted with
the latest in statistical and mathematical methods for application in their
scientific and engineering work.

Since the R&D Center is both co-host and participant I would like to
take a few minutes to acquaint you briefly with its mission and facilities.

The Center [see the first of the following figures] was for 20 years,
until two months ago today to be exact, the Engineer Research and Development
Laboratories. The change in name, however, in no way changed its location
in the Defense chatL shown here. Now, as then, the Center is THE R&D agency
of the Mobility Equipment Command in St. Louis, a major sub-command of the
Army Materiel Comand.

Our mission [second figure] remains the same, and in each aspect, from
research thru engineering for procurement, the goal remains the ultimate in
mobility equipment for the Army.

To achieve this goal [third figure] the Center engages in R&D in some

13 areas. You can see from the diversity of these fields of endeavor, that
a wide range is offered for design of experiments.

Our organization, as shown here (fourth figure] features four R&D
Laboratories: Military, Electro, and Mechanical Technology, and Intrusion
Detection and Sensor. The Engineering Laboratory prepares technical data
packages which give industry the specifications, drawings and other informa-
tion it needs to build quality mobility equipment in quantity.

Some 1400 scientific, engineering and support personnel are employed
at the Center [last figure]. The main physical plant is just down the road
a piece. Approximately 30 permanent structures on a 240-acre site house of
the best R&D facilities in the country. Additional test facilities are
supplied at the 900 acre annex on Delvoirae North Area.

The Center, you will note has several tenants. One of these, the
U.S. Army Engineer Topographlc Laboratories, is co-host for this conference.

To give ETL a chance to add its welcome, I will close now with best
wishes to Chairman Dr. Frank E. Grubbs and to all of you for a lucky 13th.

i• ii
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WELCOME REHARKS

LIC Wiiiam K. Cordova

Thank you Colonel Cain.

On behalf of Colonel Anderson, the Comanding Officer of the U.S. Army
Engineer Topographic Laboratories, I take pleasure in welcoming you this
morning.

I might begin by saying that we too have had a recent name change, prior
to 28 July 1967 being known as the U.S. Army Engineer, Geodesy, Intelligence
and Mapping Research and Development Agency, the acronym being GIMRADA.

The mission of USAETL is as follows:

The U.S. Army Engineer Topographic Laboratories (ETL) is a Class II
activity under the Chief of Engineers. It is the principal field activity
of the Corps of Engineers for the accomplishment of research and development
of equipment, procedures and techniques in the specific field of geodesy,
military geography and mapping for application both to troop and to base
plant operations. The Chief of Engineers may assign work to these Laboratories
under research and development projects utilizing either RDT&E funds or other
appropriate funds.

Our research and development program in Mapping and Geodesy includes
activities within the entire spectrum from basic research through exploratory
development, advanced systems development and finally engineering development,
where a particular system or item is engineered for production and service use.

Our primary goals are as follows:

a. Develop the capability to provide current and adequate "Terrain
Data" when and where needed for military purposes.

b. Minimize the geodesy and gravity portion of the error budget
of weapons and missiles systems.

c. Maintain superiority in technology to be able to project the
state of art and to provide meaningful forecasts to customers.

The USAETL organization is comprised of two major technical operating
elements:

a. The Research Institute, which conducts basic and applied research
and individually oriented exploratory development involving the
disciplines related to mapping and geodetic sciences, is located in
GSA rental space in Alexandria, Virginia. I believe a number of you
know Lr. Larry Gambino of the Research Institute who will be presenting

1-x



a paper at this session.

b. Our Mapping and Geographic Sciences Laboratory, which conducts
feasibility studies, design, development and tests and evaluation
of systems, equipment and techniques in the specific fields of
mapping, geodesy and geographic sciences, is located within the
MERDC area along with the Headquarters and support offices. We
currently have 28 trailers. The Chief of Engineers has approved
a site on the North Fort Belvoir Post for our new building which
we hope to get approved in the FY 69 budget.

I hope this very brief presentation has given you a general feel for
our mission, goals and work. If I can be of assistance to any of you, please
stop by my office.

Thank you very much. I hope you have an enjoyable and fruitful conference.

II

* I
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THIRTEENTH CONFERENCE ON THE DESIGN OF EXPERIMENTS

IN ARMY RESEARCH, DEVELOPMENT AND TESTING I!
1-3 November 1967

Wednesday, 1 November

0800-0930 REGISTRATION - Main Lobby of Humphrey's Hall

0900-0915 OPENING OF THE CONFERENCE - Auditorium of Humphrey's Hall

James B. Duff, Chairman on Local Arrangements, U.S. Army
Mobility Equipment Research & Development Center

WELCOME

Colonel Edwin T. O'Donnell, CE, Commanding Officer

U.S. Army Mobility Equipment Research & Development Center
and

Colonel Edward G. Anderson, CE, Commanding Officer
U.S. Army Engineer Topographical Laboratories

0915-1130 GENERAL SESSION 1 - Auditorium*

Chairman: Dr. Walter D. Foster, Biomathematics Division,
U.S. Army Biological Laboratories, Fort Detrick, Frederick,
Maryland

REGRESSION ANALYSIS

Professor Francis J. Anscombe, Department of Statistics,
Yale University, New Haven, Connecticut

SOME COMMENTS ON MATCHING

Professor K.A. Brownlee, Statistics Research Center, University
of Chicago, Chicago, Illinois

1130-1300 LUNCH

1300-1500 CLINICAL SESSION A - Auditorium

Chairman: Joseph Weinstein, Electronics Components Laboratory,

U.S. Army Electronics Command, Fort Monmouth, New Jersey

Panelists:
Francis J. Anscombe, Yale University

Cuthbert Daniel, Private Consultant, New York, N.Y.
Frank E. Grubbs, U.S. Army Ballistic Research Laboratories
William Kruskal, University of Chicago

H.L. Lucas, Jr., North Carolina State University
Clifford J. Maloney, National Institutes of Health

*All sessions of the conference will be held in Humphrey's Hall. Lunches will be
served in Mackenzie Hall.
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wednesday (continued)

ON I.METHODS OF OPTIMIZATION OF A 14ULTIOBJECTIVE SURVEY

John C. Atkinson, Harvard Computing Center, Medical Branch,
Boston, Massachusetts

COMPONENTS OF VARIANCE OF A LINEAR FUNCTION IN REPEATED TRIALS

Walter D. Foster, Biomathematics Division, U.S. Army
Biological Laboratories, Fort Detrick, Frederick, Maryland

1300-1500 TECHNICAL SESSION I - Room 2E

Chairman: Cyrus Martin, Quality Assurance Group, U.S. Army
Engineer Topographic Laboratories, Fort Belvoir, Virginia

THE DERIVATION OF THE OPERATING CHARACTERISTIC CURVE OF A SKIP
LOT SAMPLING PLAN

Allen C. Endres, U.S. Army Ammunition Procurement and Supply
Agency, Joliet, Illinois

A MODEL FOR THE FORMULATION OF QUALITY INCENTIVE CLAUSES FOR ITEMS
PROCURE]D ACCORDING TO ACCEPTANCE CRITERIA INVOLVING SINGLE SAMPLING
PLANS BY ATTRIBUTES

Roger R. Rymer and Eugene Dutoit, Picatinny Arsenal, Dover,
New Jersey

OPTIMUM SAMPLING PLANS FOR GRADING BINOMIAL POPULATIONS

Paul B. Nickens, Surveillance and Reliability Laboratory,

Ballistic Research Laboratories, Aberdeen Proving Ground,
Maryland

1300-1500 TECHNICAL SESSION II - Room 2F

Chairman: Frank Robertson, U.S. Army Mobility Equipment
Research and Development Center, Fort Belvoir, Virginia

METHODOLOGY OF ASSESSMENT OF BIOCELLULAR REACTIONS TO ABSORBED
ENERGY

George 1. Lavin, Terminal Ballistic Laboratory, U.S. Army
Ballistic Research Laboratories, Aberdeen Proving Ground,
Maryland

THE EFFECT OF INVENTOqY FORECASTING UPON SUPPLY EFFECTIVENESS
Patsy Courtney, U.S. Army Aviation Materiel Command, St. Louis,

Missouri
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Wednesday (Continued)

THE ABBA SEQUENCE: A SEQUENTIAL PROCEDURE FOR CrUPAUTCA " Tw-

Arthur Pilleradorf, Ballistic Research Laboratories, Aberdeen
Proving Ground, Maryland

1500-1530 BREAK

1530-1700 TECHNICAL SESSION III - Auditorium

Chairman: Gideon A. Culpepper, Missile Test and Evaluation
Control Division, White Sands Missile Range, New Mexico

ON EXPECTED PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT
ANALYSIS

P.A. Lachenbruch, School of Public Health, Department of
Biostatistics, University of North Carolina, Chapel Hill,
North Carolina

INTRA-PROFILE VARIANCE

Claude F. Bridges, Institutional Research Division, Office
of Research, U.S. Military Academy, West Point, N.Y.

1530-1700 TECHNICAL SESSION IV - Room 2E

Chairman: Henry Ellner, Quality Assurance Directorate,
U.S. Army Materiel Command, Washington, D.C.

A STATISTICAL TEST OF TWO HYPOTHETICAL RELIABILITY GROWTH CURVES
OF THE LOGISTIC FORM IN THE DISCRETE CASE

William P. Henke, Research Analysis Corporation, McLean,
Virginia

ON FITTING OF THE WEIBULL DISTRIBUTION WITH NON-ZERO LOCATION
PARAMETERS AND SOME APPLICATIONS

Oskar M. Essenwanger, Physical Sciences Laboratory, Research
and Development Division, Redstone Arsenal, Alabama

1730-1830 SOCIAL HOUR - Mackenzie Hall (Officer's Club)*

1830- Banquet - (As above)

Presentation of the Samuel S. Wilke Memorial Award

*Attendees will not be able to return to motels unless they have their own
transportation.
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Thursday. 2 November

0830-1000 CLINICAL SESSION B - Auditorium

Chairman: A.C. Cohen, Department of Statistics, University

of Georgia, Athens, Georgia

Panelists:
Robert Bechhofer, Cornell University
Cuthbert Daniel, Private Consultant
Bernard Harris, Mathematics Research Center, U.S. Army

Henry Mann, Mathematics Research Center, U.S. Army
Frank Proschan, Boeing Scientific Research Laboratories
Herbert Solomon, StarIod University

DETERMINATION OF TBO BY WEIBULL PROBABILITY PARAMETERS FOR
REPAIRABLE COMPONENTS

John L. Mundy, U.S. Army Aviation Materiel Command, St. Louis,
Missouri

0830-1000 TECHNICAL SESSION V - Room 2E

Chairman: Raymond Schnell, U.S. Army Chemical Corps, Edgewood
Arsenal, Maryland

A TECHNIQUE FOR INTERPRETING HIGH ORDER INTERACTIONS

Melvin 0. Braaten and John Tonzetich, Duke University,
Representing Shaw Air Force Base, South Carolina, and the
North Carolina Operations Analysis Standby Unit, University
of North Carolina, Chapel Hill, North Carolina

A SIMPLIFIED METHOD FOR FINDING OPTIMUM EXPERIMENTAL DESIGNS

Melvin 0. Braaten, Duke University; Ray L. Miller, Jr., Shaw
Air Force Base, South Carolina; Fred W. Judge, Wood-Ivey
Systems Corporation, Winter Park, Florida. Representing
Shaw Air Force Base, S.C., and the North Carolina Uperations
Analysis Standby Unit, University of North Carolina, Chapel
Hill, North Carolina

0830-1000 TECHNICAL SESSION VI - Room 2F

Chairman: Erwin Biser, U.S. Army Electronics Command, Fort

Monmouth, New Jersey

DEFINITIVE CALIBRATION OF AN AERIAL CAMERA IN ITS OPERATING
KNVIRONMENT

Lawrence A. Gambino, U.S. Army Topographic Laboratories,
Fort Belvoir, Virginia
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Thursday (Continued)

DESIGN AND ANALYSIS OF A STATISTICAL EXPERIMENT ON HIC.H VnTTAP-P
FRF A Vn0!.T TI ,VA U....

M.M. Chrepta, G.W. Taylnr, and M.H. Zinn, U.S. Army Electronics

Command, Fort Monmouth, New Jersey

1000-1030 BREAK

1030-1130 TECHNICAL SESSION VII - Auditorium

Chairman: Henry Dihm, Advanced Systems Laboratory, Directorate
of Research and Development, U.S. Army Missile Command,
Redstone Arsenal, Alabama

A MODERATELY DISTRIBUTION FREE TECHNIQUE FOR SMALL SAMPLE RELIABILITY
ESTIMATION

Michael G. Billings, U.S. Army Chemical Corps, Dugway Proving
Ground, Utah

1030-1130 TECHNICAL SESSION VIII - Room 2E

Chairman: Agatha Wolman, U.S. Army Strategy and Tactics Group,
Bethesda, Maryland

USE OF REFERENCE COMPONENT MIXTURE DESIGNS IN A CALIBRATION
APPLICATION

Raymond H. Myers, Department of Statistics, Virginia Polytechnic
Institute, Blacksburg, Virginia, and

Bernard J. Alley, U.S. Army Missile Command, Redstone Arsenal,
Alabama

1030-1130 TECHNICAL SESSION IX - Room 2F

Chairman: Joseph Mandelson, Quality Evaluation Division,
Quality Assurance Directorate, U.S. Army Edgewood Arsenal,
Maryland

DEVELOPMENT OF AN IMPROVED MODEL FOR ACOUSTIC SOUND RANGING

Robert P. Lee, Atmospheric Sciences Office, U.S. Army Electronics
Command, White Sands Missile Range, New Mexico

AN EXPERIMENT ON THE METEOROLOGICAL EFFECTS ON SOUND RANGING

William H. Hatch, Atmospheric Sciences Office, U.S. Army
Electronics Command, White Sands Missile Range, New Mexico

1130-1300 LUNCH
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Thursday (Continued)

1300-1520 CLINICAL SESSION C - Auditorium
Cha,.a1. Vor1,V!Gr ... RP rh AnalvIRI Corporation.

McLean, Virginia

Panelists:
Robert Bechhofer, Cornell University
O.P. Bruno, U.S. Army Ballistic Research Laboratories

A.C. Cohen, University of Georgia
Walter D. Foster, U.S. Army Biological Laboratories
Boyd Harshbarger, Virginia Polytechnic Institute
H.L. Lucas, Jr., North Carolina State University
Herbert Solomon, Stanford University

PAR-AMIETERS IN R&D IN RELATION TO COST/ACCURACY INVESTIGATION

Robert G. Conard, Systems Evaluation Branch, Advanced Systems

Laboratory, Research & Development Directorate, U.S. Army

Missile Command, Redstone Arsenal, Alabama

ON EXPERIMENTS CONCERNED WITH THE SAMPLING DISTRIBUTION OF

LANCHESTER'S PARAMETERS

David R. Howes, U.S. Army Strategy and Tactics Analysis Group,

Bethesda, Maryland

1300-1520 TECHNICAL SESSION X - Room 2F

Chairman: William W. Wolman, Traffic Systems Division, Office

of Research and Development, Bureau of Public Roads, Washington,

D.C.

ESTIMATES OF P(Y < X) AND THEIR APPLICATION TO RELIABILITY

PROBLEMS FOR BOTH CONTINUOUS AND QUANTAL RESPONSE DATA

Bernard Harris and J.D. Church, Mathematics Research Center,

U.S. Army, University of Wisconsin, Madison, Wisconsin

NUMBERS NEEDED FOR DETECTING IMPORTANT DIFFERENCES IN CHI-SQUARE

TESTS

C.J. Maloney, Division of Biologics Standards, National Institutes

of Health, Bethesda, Maryland, and F.M. Wadley, Consultant,

U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.

ON A STATISTICALLY CONSISTENT ESTIMATE OF AN AVERAGE CUMULATIVE

QUANTAL RESPONSE FUNCTION

George W. Evans II, and Robert C. McCarty, Stanford Research

Institute, Menlo Park, California. Representing the U.S.

Army Research Office-Durham

1300-1520 TECHNICAL SESSION XI - Room 2E

See next page



Thursday (Continued)

Chairman: Joseph M. Cameron, Statistical Engineerina Laboratory,
;aLicnai bureau or Standards, Gaithersburg, Maryland

I.

DESIGNS OF EXPERIMENTS AS TET.LSCOPING SEQUENCES OF BLOCKS

Arthur G. Holms, National Aeronautics and Space Administration,
Lewis Research Center, Cleveland, Ohio

ON A CLASS OF NONPARAMETRIC TESTS FOR INTERACTIONS IN FACTORIAL
EXPERIMENTS

P.K. Sen, School of Public Health, Department of Biostatistics,
University of North Carolina, Chapel Hill, North Carolina

ON THE RANK MOD p OF THE DESIGN MATRIX OF A DIFFERENCE SET
Jessie MacWilliams, Bell Telephone Laboratories, Murray Hill,

New Jersey, and Henry B. Mann, Mathematics Research Center,
U.S. Army, University of Wisconsin, Madison, Wisconsin

1520-1550 BREAK

* 1550-1700 GENERAL SESSION 2 - Auditorium

Chairman: Professor Boyd Harshbarger, Department of Statistics,
Virginia Polytechnic Institute, Blacksburg, Virginia

SOME STATISTICAL METHODS IN MACHINE INTELLIGENCE RESEARCH

Professor I.J. Good, Department of Statistics, Virginia
Polytechnic Institute, Blacksburg, Virginia

Friday, 3 November

0830-0915 GENERAL SESSION 3 - Auditorium

OPEN MEETING OF THE AMSC SUBCOMMITTEE ON PROBABILITY AND STATISTICS

Presided over by: Dr. Walter D. Foster, Biometric Division,
U.S. Army Biological Laboratories, Fort Detrick, Frederick,
Maryland

0925-1200 GENERAL SESSION 4 - Auditorium

Chairman: Dr. Frank E. Grubbs, Chairman of the Conference,
Ballistic Research Laboratories, Aberdeen Proving Ground,
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_&=1811;515 i "/ COMPUTER AGE

F.J. Anscombe
Department of Statistics

Yale University
New Haven, Connecticut

1. INTRODUCTION. The commonly used methods of statistical analysis took
much of their present-day form in the period of rapid development of statistical
science between the two world wars. They were conditioned, more than perhaps is
generally realized, by the principal computing resource of that period, the
desk calculator. They give just about the best return possible for the amount
of effort that a human being equipped with a desk calculator could reasonably
(or even a little unreasonably) be expected to invest in a statistical analysis.

Now that our computing resources are enormously greater, w need not content
ourselves with merely following the procedures suitable for the desk calculator.
Almost anything we might ask for can be had at very little cost. What can we
make use of? What sorts of calculations and output will give us most understanding,
least misunderstanding?

Our extended computing powers can affect statistical methods in two ways.
First, we are able to make better use of traditional methods, or of methods
closely related thereto. Above all, we can now afford to ask freely for scatter-
plots. These are tedious to construct by hand, but trivial with a computer. We
can also demand the calculation of residuals, to test agreement of the data
with assumptions underlying the method of analysis. We can afford to make
transformations of variables and repeat analyses, to see if agreement is improved.

Second, we can consider methods of analysis that are radically different
from traditional methods and involve much heavier computation. The great majority
of traditional statistical analysis comes under the heading of "least squares"
- regression, analysis of variance, and analogous procedures like the analysis
of contingency tables by X2 . The least squares principle was originally advocated
by Laplace and Gauss a century and a half ago because they thought no other method
of combining observations would be computationally feasible. Now there are many
other possibilities, and these should be explored.

This paper has the modest purpose of illustrating a few features of statis-
tical analysis in the computer age. A set of gunnery readings, to which
traditional regression analysis is applicable, is examined.

Section 2 contains a brief digression on computing. In section 3 traditional
regression methods are exemplified in their modern guise. In section 4 a non-
traditional analysis is briefly reported.

This research was supported by the Army, Navy, Air Force and NASA under a
contract administered by the Office of Naval Research. Reproduction in whole
or in part is permitted for any purpose of the United States Government.
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Wilk's paper [5] further exemplifies the impact of the computer on
statistical analvqiQ

2. STATISTICAL COMPUTING. The computer has not so far hAd the profound
effect on staListics that it has had on some other fields of science and
technology.. The reason is perhaps that good statistical analysis is done
In stes7- Methods must be adjusted to fit the data; the adequacy of
theoretical descriptions of "models" must be assessed. This requires inter-
action between the investigator and the computer, Fixed program packages are
not altogether satisfactory.

An explosive development of statistical science can be expected once
programming can really be done by any interested person, without a large
preliminary investment of time in mastering a computer language and without
much time spent in actual coding. What makes programming so tedious in
FORTRAN and other commonly used languages is the negotiation of arrays.
Arithmetical operations are required, not just on individual numbers, but
on whole vectors or matrices; and in these languages such operations must
be spelled out in loops. Successful attempts have been made to relieve the
intolerable tedium with special computing systems for vectors and matrices.

I have had access to an experimental implementation of Iverson's
programming language known as APL [3,4], at IBM's Thomas J. Watson Research
Center, Yorktown Heights, N.Y. APL is running as a coding language for
computation in conversational mode through typewriter terminals. Though
the language was not originally developed for statistical work (but rather
for the precise and concise expression of any algorithms), it is in fact
well adapted to statistical purposes. Two salient reasons are:

(I) APL was designed at the outset to handle (almost indifferently)
scalars, vectors, matrices and rectangular arrays in any number of dimensions.
All the basic arithmetic operations can be performed on arrays just as well
as on scalars, without any loop written in the program. Programs in APL
therefore tend to contain few loops. The programmer is encouraged to think
of array operations as entities without a logically irrelevent internal
sequence; this is aesthetically pleasing, even illumiuating.

(ii) There is a high degree of consistency in APL. Syntax is governed
ruthlessly by a very few simple rules. Once the basic vocabulary is learned,
the language is easy to remember. There is a remarkable absence of arbitrary
features that require frequent reference to the manual. The language there-
fore has a peculiar dignity and reasonableness. One feels it is worth learnirg.

I have elsewhere [2] prepared a description of APL, with illustrations
of its use in statistical work. The above remarks are abstracted from that
article.

This implementation of APL as a computer coding language is not yet
available for general use. Something like it must surely become available
eventually, hopefully soon. I am confident that it will have a profound
influence on the development of statistics. The computations mentioned
below were done through an APL terminal.
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3. LLANT-SQUARES RiGRESSION. The data used for this study of regression
methods were kindly supplied by Dr. Frank 1. Grubbs, of the U.S. Army
Ballistic Research Laboratories, Aberdeen Proving Ground. They relate to
some 175 mm. gun firings. In Table 1 we sea the following information for
35 rounds: Range (metres), Projectile Weight (lb.), Muzzle Velocity (f.p.s.),
and four items of weather information taken at the maximum ordinate of the
trajectory, namely Temperature (do&, C), Air Density (kgm/lO00), Range Wind
and Cross Wind (both in metres per second divided by 10). The first 24 rounds
were fired on one day, between 13.07 and 15.13 hrs. The remaining 11 rounds
were fired the next day between 10.57 and 11.33 hre.

Let us perform a regression analysis of Range as dependent variable on
the other six variables as predictors (or "independent" variables). As usual,
we shall begin by considering a linear combination of the predictor variables,
and then later consider the possibility of a nonlinear function.

The traditional first step in such a regression analysis is to calculate
the matrix of sums of squares and products of deviations of the seven given
variables from their means, and then perhaps note various correlation coefficients.
What is considerably more informative than the correlation coefficient between
two variables, and just as easily obtained from the computer, is a scatter plot
of the two variables against each other. Before ever any regression is
calculated, a good deal of insight can be obtained by looking at a few such
scatter plots. Here we should expect Muzzle Velocity to have a substantial
predictive effect on Range, as is verified by plotting these against each other.
So plots of the other predictor variables against Nuazle Velocity are of
interest. One such plot is shown in Figure 1P, where Cross Wind is the other
variable. We shall see that Muxzle Velocity and Cross Wind turn out to be
the only two effective predictors, and in retrospect this diagram is the most
revealing.

The diagram shows more of the relation between Cross Wind and Muzzle
Velocity than is conveyed by the simple correlation coefficient (which happens
to be about 0.27). As that correlation coefficient indicates, the two variables
are only slightly related, so far as the calculation of linear regression is
concerned. But if we should wish to calculate a nonlinear prediction surface
with these two variables, it becomes relevant to notice that whereas the
abscissas (M.V.) are distributed rather uniformly over an interval, the
ordinate (C.W.) are clustered in two bands with a sizable gap between. We
shall be able to estimate a quadratic response to MV., and also a cross-
product response (interaction between both variables), relatively well, but

*The plotting cods in the figures is as follows: one observation is repre-
sented by a small circle, two coincident observations by a plus sign, three
or more coincident observations by a star. The axes are shown by crosses;
zero is marked if it occurs.

No machine works perfectly all the time. When I ran off these figures
the terminal showed an occasional wobble in the left margin. The fault seemed
too trivial to warrant repetition on another terminal.
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~ ~. 175MM. ON FIRINGS

8AME WEIGUT UIL E. al n. R.K CRA

20138 147.40 3001 9.1 0.9985 2.3 -5.0
20097 147,80 2995 9,1 0,9983 2.2 5.0
20096 147,50 3002 9.2 0,Q981 2.1 -5.1
20031 147.40 2997 9.3 0.9976 1.9 -5.1
20079 147.00 3003 9.3 0.9974 1.8 5.1
20081 147.50 3002 9.4 0.9972 1.8 1.1
19953 147.80 2993 9.4 0.9971 1.7 5,2
20079 147.20 2999 9.4 0.9969 1.6 -5.2
20391 147.20 3031 9.5 0.9968 1.6 -5.2
20318 147.25 3021 9.5 0.9965 1.5 5.2
20272 147.10 3020 9.5 0.9963 1.4 :5.3
20319 147,00 3031 9.6 0.9961 1.3 5.3
20037 147,40 2998 9.9 0.9952 0.8 :4.8
19989 147.60 2993 10.0 0.9952 O.6 4.7
20025 147.80 2996 10.0 0.9951 0.7 4,6
20064 147.50 2997 10.1 0.9951 0.7 4.5
20170 148.20 3004 10.1 0,9950 0.6 :4.4
20363 147.80 3018 10.2 0.9948 0.6 4.3
20214 148 o0 3015 10.2 0.9947 0.6 -4.0
20160 147.40 3016 10.3 0.9947 0.5 ,4.0
20261 147.00 3015 10.3 0,9946 0.4 .3113
20209 146.70 3013 10.4 0.9946 0.4 3,7
20231 147 40 3016 10.4 0.9946 0.3 3.6
20254 147,00'. 3014 10.5 0.Q945 0,3 3.4

20072 147,30 3005 10.3 0.9988 0.1 0.6
20142 147.20 300R 10.3 0.9987 0.1 0.6
20089 147.40 3002 10.2 0.9986 0.2 0.7
20022 147 40 3006 10.1 0.9983 0.3 0.8
20030 146.50 3022 99 0.9979 0.5 1.0
20105 147.00 3019 9.9 0.9978 0.5 1.0
20045 147 00 3017 9.8 0.9976 0., 1.1
20103 147:00 3019 9.8 0.9976 0.5 1.1
20132 147,80 3011 9.8 0.9975 0,6 1.1
20334 147.80 3023 9.7 0.9q75 0.6 1,2
19962 14820 3013 9.7 0.9974 0.6 1,2
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a quadratic response to C.W. less well than if the points in the diagram had
been more uniformly distributed between the same extremes.

The six predictor variables are apparently uncontrolled. There is no
indication of any deliberate variation in the Projectile Weight or Muzzle
Va~ncity, These could have been intentionally varied, but something approaching
an orthogonal pattern of joint variation would presumably have been adopted.

The weather characteristics were apparently not deliberately varied either,
since the rounds were fired in two short series one afternoon and the following
morning. We shall not therefore be surprised to find that some of the variables
have no detectable relation to the "dependent" variable Range, even though we
may believe that with wider variability and more numerous observations each
variable would be seen to have an effect.

In such a situation a step-by-step procedure of introducing one variable
at a time into the regression relation suggests itself. A simple computational
routine, easily programmed, goes like this. Each time a new predictor variable
is introduced, not only the dependent (Range) vector but all the other so-far-
unused predictor variables are replaced by their projections at right-angles
to the designated preditor vector. All these vectors become vectors of
residuals. By the end of this process, if all the predictor variables are used,
the matrix of their values will have been completely orthogonalizsed -- but we
shall not neessarily go this far. Each variable has been read to only limited
precision (Projectile Weight generally to 0.1 lb. apparently, Muzzle Velocity
to 1 f.p.s., Temperature to 0.1 deg. C, etc.) If at any stage the corresponding
vector of residuals shown little more variability than this round-off error, that
variable should be dropped from further consideration. Usually we shall wish
not to introduce any variable into the regression relation unless its presence
causes a perceptible lowering of the residual mean square. (The objectives
of stepwiss regression and possible methods of procedure have been discussed
in the literature -- for references see (1].)

The single variable that shown most relation to Range is Muzzle Velocity,
end after regression on that has been performed the next most related variable
is Cross Wind. The effectx may be summarized in the following analysis of
variance of Range:

TABLE 2. Analysis of Variance of Range

Sum of squares D.f. Mean square

Muzzle Velocity 239416 1 239416

Cross Wind (after M.V.) 86169 1 86169

Residual 143946 32 4498

Total about mean 469532 34 13830

The corresponding formula for predicting Range is

9.227 (M.V.) - 19.5 (C.W.) - 7687. (1)
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That is about all that seems to be worth doing In the way of simple linear
regression on the available predictor variables. The further reduction in the
residual sum of squares due to introducing any of the other variables is slight.
(Each of the variables has a substantially greater residual mean square, after
regression on M.V. and C.W., than would be caused merely by the apparent round-
off error in the readinge, and so would be usable.)

At this stage it is advisable to make scatterplots of the Range residuals*
against (a) the fitted values for Range given by the expression (1) above, and
(b),each of the original six predictor variables in turn. The plot against
Cross Wind suggests a nonlinear dependence of Range on Cross Wind. This plot
and also the plot against Muzzle Velocity suggest that the residual variance
of Range is perhaps changing progressively with these variables.

Now if Range depends on Muzzle Velocity and Cross Wind, it.need not do
so merely linearly. In fact, theory suggests that C.W. should have a quadratic
effect. Three more "independent" variables were brought into consideration,
the squares of M.V. and of C.W. and their product. Of these new variables,
only one, the square of C.W., has a mildly "significant" effect, after the
linear regression on M.V. and C.W. already performed. As we saw from Figure 1,
the peculiar distribution of the C.W. values does not permit us to determine
the shape of the response of Range to C.W. very well. Since theory predicts a
quadratic effect we are encouraged to allow for it and replace the "Residual"
line in Table 2 above by the following two linesi

TABLE 3. Detail in Analysis of Variance of Range

Sum of squares D.f. Mean square

C.W. squared (after MV. and C.W,) 16360 1 16360

Residual 127587 31 4116

The corresponding formula for Range is

9.224 (M.V.) - 8.4 (C.W.)2 - 52.3 (C.W.) - 7645 (2)

The effect of Cross Wind is apparently to reduce Range by an amount proportional
to (C.W. + 3.1)2. The reduction is not proportional to the simple square of C.W.

Figures 2, 3, 4 show scatterplots of the new Range residuals (after
regression on M.V., C.W. and C.W. squared) against fitted values, M.V., and
C.W., respectively, They are reasonably satisfactory. We are left with a
suggestion that the residual variance of Range is not constant, or possibly
that the distribution of the Range errors is nonnormal (slightly leptokurtic).

*Rather than plot simple residuals one may plot what are known as standardized
residuals, in which allowance is made for the different weights arising from
the least-squares fitting. In the present case, changing from simple to scan-
dardized residuals makes no perceptible difference in the scatterplots.
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Sometimes in regression studies it is profitable to ConAidor mak4g

Z. .pa LLausiormatons ot the variables. Here, Range and Muzzle Velocity
have such small percentage variabilities that no modest power transformation
of thea, such as squaring nr taking logarithms or reciprocals, can noticeably
affect the behavior of their residuals. In the absence of some suggestion
from theory of a more drastic transformation, we do not pursue the idea.

What have computer facilities done for this regression study that was
not available to the desk calculator operator? Any desk calculator man who
was willing to contemplate six independent variables in regression, using
traditional procedures, would no doubt have reached much the same conclusions.
What we have gained, in addition to ease and speed, is some assurance, based on
liberal inspection of scatterplots (only a few of which are reproduced here),
that our final regression relation fits the data fairly well. That assurance
was not provided by desk-calculator practices. When we examine the goodness
of fit of a regression relation in this way, we sometimes find clear evidence
that a different sort of regression relation ought to be tried instead. Here,
on the contrary, the evidence supports the sort of regression relation we
began with. What we first think of is not always bad!

4. UNORTHODOX REGRESSION. The method of least squares would be a
theoretically perfect means of eliciting information from the observations
if we could know that the form of the regression relation being fitted was

correct and that the "error" part of the dependent variable, the part not
explained by the regression relation, was a random variable independently
normally distributed with sero mean and constant variance, When these ideal
conditions are not satisfied, the least squares results will be to some extent
misleading. Much has been said about least squares estimates' having minimum
variance among unbiased linear estimates, independently of a normality assump-
tion, but there is no longer today any good reason for restricting attention
to linear estimates. If some method of analysis were known to be better, we
should be prepared to use it.

It is widely believed that if the ideal conditions are not grossly
violated the least squares method is adequate. One way to check whether this
is so is to perform an optimal analysis under weaker conditions, to see whether
perceptibly different results are obtained, Various kinds of weaker analysis
have been suggested. In (1) 1 have proposed a particular way of weakening the
normality assumption. Instead of assuming that the error part of the dependent

variable is normally distributed with constant variance, we assume that the
errors are independently diatributed ii a comaon distribution belonging to a
family having one shape parameter, say a. When a a 0 the distribution is normal.
When a ) 0 the distribution is what Karl Pearson called Type VII, with longer
tails than the normal, having the same shape as a Student distribution. If a
is a scale parameLer, we assume that the errors c have a density function of
the form

Aa-1 (1 + C(C/a)2)
"z/ ,

where A and C depend on a. If a < 0 the distribution in what Pearson called
Type 1I, having shorter tails than thnormal distribution and a finite range.
(For further details see [1, where a- is denoted by m.)

8
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The suggested method of fitting a regression relation under this weaker

hood function, which involves the regression coefficients and also the two
nuisance parameters, a and a. It is suggested that the likelihood function
should be integrated with respect to suitable prior distributions fur Q and
a, yielding a marginal likelihood function of just the regression coefficients;
and the latter should if possible be approximated by a multi-variate Student
density.

This procedure has been carried out for the above gun firings, with the
following particulars. A simple linear regression on Muzzle Velocity and
Cross Wind was considered, without a term in C.W. squared. The nuisance
parameters a and a were taken to have independent prior distributions, uniform
over the whole real line for Ino, uniform over the interval (-0.25, 0.75) for
a. That interval for a was chosen as including the mote plausible values for
a -- the maximum likelihood estimate of a turns out to be about 0.12 -- and
should be broad enough to bring out the qualitative features of this type of
analysis. (We should be back at the method of least squares if a were restricted
to the single value 0.) Orthogonal independent variables were used as follows:

X - (M.V.) - 3009.6,

X = (C.W.) - 0.068666 (M.V.) + 209.55.

Our task is to fit the linear relation

E(Range) - 0 + 1X1 + 82X2

Our prev,ous least squares analysis gave the estimates (equivalent to
relation (1) above

00 - 20139.1, a1 - 7.89, 82 - -19.48. (3)

The estimated variance matrix of these three quantities was diagonal, with
diagonal elements

129 1.17 19.81

based on the estimated residual variance having 32 degrees of freedom.

A Jn gur new analysis we find that the marginal likelihood function of
0 ' 01 12 hasits maximum at

a0 . 20138.9, a1 . 7.94, 82 - -19.05. (4)

The whole function is fairly well approximated by a multivariate Student
density with 33 degrees of freedom and the following estimated variance
matrix

128 0.6 6.0
0.6 1.14 n.28
6.0 0.28 21.77

12



II

comparing the new estimates (4) with the previous estimates 3). we Po
that . .has chnaA hy cthri 2%uZ ics estimated standard error, 8i by less

than 5%, $ by less than 10%. The changes in the estimated variance matrix
and numbei of degrees of freedom are trivial. For most practical purposes, our
new analysis has given results indistinguishable from the least squares analysis.

Now if the assumption of normally distributed errors with constant variance,
underlying the method of least squares, is false, our weaker assumption of a
Type VII - Type II system with a in the range (-0.25, 0.75) may also be false.
In particular, the distribution of errors could be skew. But the Type VII -
Type II family of error distributions is far broader than the normal family.
If an assumption about distribution shape has an important influence on
conclusions, we might hope to detect this fact through what we have done.
The close agreement of the results of our two types of analysis strongly
suggests that the least squares analysis of this particular body of data was
not much colored by the implied distribution assumption. Whether the same
c omforting conclusion would usually be reached in studies of other bodies of
data I do not know.
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SOME COMMENTS ON DIATCHING

K.A. Brownlee
University of Chicago

Chicago, Illinois

My topic today is "matching" in situations where the response is of
the (0,I) type, firstly in an experimental situation and secondly In an
observational situation. In both cases I wish to advance the suggestion
that, frequently, to use a clichg, the game is not worth the candle (what-
ever that means).

In purely experimental work, in which the response is of the (0,I)
type, one may be tempted to use matching. I recall an experiment on weather
modification (an activity to which I tend to refer, in general, as rain
faking) by Braham, Batten and Byers [1, with the cooperation of the U.S.
Air Force. A plane sought out single clouds in the Caribbean. A cloud
that looked as if it met certain specifications would be inspected, and if
it did then a randomized choice would be made as to whether it was to be
seeded. Following the result of the randomization, the plane would fly
through the cloud and either release the seeding agent or not, and then the
cloud would be observed for an appropriate period to see if it developed
radar echoes.

After the completion of this period of observation, the plane would
then seek another cloud which met the specifications. This cloud would
receive the opposite treatment to that handed out to the first cloud. The
two clouds then formed a matched pair, with responses as tabulatnd below.

Unseeded

+

+ n11  n12

Seeded
n2 1  n22

If time permitted on that day, the plane would make a second mission, but
if time or gasoline ran out before the second member of the second pair had
been found, then the first member of the second pair had to be abandoned.
Of course, it could also happen that on the plane's first flight it found
one cloud but failed to find another before running out of gasoline.

The idea of using watched pairs, of course, was an intuitive one based
on ideas analogous to those relevant to the concept of randomized blocks.
Just as the variation between plots close together in the same block is

* This research was sponsored by the Army Research Office, Office of Naval
Research, and Air Force Office of Scientific Research by Contract No.
Nonr-2121(23), NR 342-043.
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I
SOnnidered likely to be less than that between plots in widely separated

blocks, so it was supposed tnat cloud u. thz n-e Any wAre more probable
to resemble each other than clouds on different days.

Some work by Jane Worcester [2] is relevant to this. For example,
supposing that the variation from day to day is represented by equal numbers
of days with probabilities 0.4 and 0.6, and the effect of the treatment is to
increase those probabilities by 0.1 to 0.5 and 0.7, and, that a level of
significance a - 0.05 is used, then for a power of 0.90 the sample sizes
neceusary for paired and unpaired experiments are reported by Worcester to
be 811 and 845 respectively. The use of pairing thus decreases the necessary
sample size by 4.0 per cent, a rather inconsequential amount, particularly
in the context of the experiment I have referred to, where the rse of pairs

reduced the number of observations quite appreciably. j
If the heterogeneity was more extreme, say equal numbers at probabilities

0.3 and 0.7, then the corresponding sample sizes would be 845 and 709, a
reduction of 16.1 per cent.

Of course, in reality the distribution of the probability from day to
day would not be a discrete distribution concentrated in equal proportions
at two points, but instead presumably a unimodal continuous distribution,
with which the effect of heterogeneity would probably be quite modest.

The paired experiment had a further weakness, namely its integrity
was compromised if the observer who selected the clouds was aware of which
treatment was applied to the first cloud. He would then know ahead of time
which treatment would be applied to the second cloud, and could select the
second cloud in accordance with his predelictions. The scientists running
the experiment maintained that the man selecting the clouds, in the front
of the plane, was unable to tell whether the seeding agent was released or
not, but nevertheless one wonders whether he could not tell, perhaps sub-
conciously, either from the behavior of the plane (for if the seeding agent
was released the plane was appreciably lighter), or from the behavior of
the other members of the crew.

The famous calculating horses were able, apparently, to respond to
imperceptible gestures on the part of their human accomplice, and it is
conceivable that the human cloud selector was as sensitive as these horses.

In general, if matching is employed but actually is ineffective, then
the power of the experiment is asymptotically unchanged, but for small
samples the matching procedure seems less efficient. For example, for sample
sizes of 10 in the two independent samples, the table

+

A 0 10 10

B 5 5 10

gives a two tailed P value of 0.0326 of Fisherts exact test, but if the deta

16



was to be analyzed as 10 pairs, it would have to be

A
+

+ 0 5 5
B

- 0 5 5

0 10 10

for which the two tailed P value is 0.0b25.

This question of power when matching is ineffective is explored by L.H.
Youkeles [3]. His results show that this loss of power ceases to be appreciable
after the two sample sizes have reached 30.

I think that it is clear that the motivation to use matching is provided
by its analogy with the idea of randomized blocks. The prestige of this
procedure is so great that I rather uncritically assumed that matching would
be-better without thinking through what might happen. The general robustness
of the unmatched completely randomized procedure now seems to me to be preferable
to the hypothetical greater power of the matched design. It seems to me to be
a common failing of the consulting statistician to automatically recommend the
most complicated experimental design he can put over on his client without
considering whether it is in reality justified.

Turning to an observational situation, I have observed that in medical
and sociological investigations one or another form of "matching" is quite
frequently used. One form of matching is the formation of so-called "matched
pairs." One such study, which received a great deal of popular interest, is
part of a paper by E. Cuyler Hammond (4].

Part of this paper contained a matched pair analysis and the procedure
is described in the following quotations:

".#.we decided to investigate the matter by studying the death
rates of cigarette smokers and nonsmokers who were alike in many
characteristics other than their smoking habits. This was accom-
plished by a matched pair analysis carried out as follows:

Two groups of subjects were identified: 1) men who never smoked
regularly and 2) men currently smoking 20 or more cigarettes a day
at enrollment in the study regardless of whether they also smoked
cigars or pipes. These two groups were then divided into 5-year
age groups. Within each age group, we matched men by pairs, each
pair ccnsisting of a nonsmoker and a cigarette smoker. The two men
in a pair had to be alike in all the following characteristics: race
(white, Negro, Mexican, Indian, or Oriental); heighti nativity (native-
born or foreign-born); residence (rural or urban); urban occupational
exposure to dusts, fumes, vapors, chemical, radioactivity, etc. (yes
or no); religion (Protestant, Catholic, Jewish, or none); education;
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marital status (single, married, widowed, divorced, or separated);
drinking of alcoholic beverages; sleep (under 6 huuts, 6-9 hours,
or 10 or more hours per night); usual amount of exercise (none or
some); severe nervous tension (yes or no); history of cancer other
than skin cancer (yes or no); and history of heart disease, stroke,
or high blood pressure (yes or no) ....

The matching procedure was carried out with an IBM 1410 computer.
The records for the nonsmokers were put on one magnetic tape and the
records for the cigarette smokers on another. The records in both
tapes were then sorted in order by the codes for all the variables
under consideration as described. Thus on both tapes the recurds
wera arranged in blocks, a block being defined as a group of records
identically coded in all the variables under consideration. By use
of random numbers, the records within each block were arranged in

random order. The 2 tapes were then compared block by block. Blocks
found on only one tape (i.u., the same number of cigarette smokers
as nonsmokers) were accepted as matching pairs. For example, if
a block of 2 cigarette smokers matched a block of 2 nonsmokers, then
2 matched pairs were identified, the first cigarette smoker and the
first nonsmoker being the first pair and the second cigarette smoker
and the second nonsmoker being the second pair. If the matched
blocks were of unequal length, then the excess records in the longer
blocth were discarded. For example, if a block of 5 cigarette smokers
matched a block of only 2, then the first 2 smokers formed matched
pairs with the 2 nonsmokers, and the last 3 smokers were discarded.
Thus the excess (discarded) records were selected at random since,
within each block, the records were arranged in random order....

With so many characteristics to be considered, many men could

not be matched. However, the computer found 36,975 matched pairs of
men (36,975 nonsmokers and 36,975 cigarette smokerm), such that the
2 men in each pair were Alike in all the specifications outlined.

...Of the 36,975 nonsmokers, 662 (1.8%) died and, of the 36,975
cigarette smokers, 1,385 (3.7Z) died between the start of the study
and September 30, 1962. This difference is statistically significant
(P 4 0.000001)."

The matching employed by Hammond is very complex: apart from smoking,
he employed 15 categorizations, some at two levels only and others at several
levels. The number of cells in this 17 dimensional lattice was 2 x 8 x 5 x 2
x 2 x I x 4 x 5 x 5 x 5 x 3 x 2 x 2 x 2 x 2 x 2 x 2 - 210 x 3 x 4 x 54 x 8

- 61 440 000. However, this overestimates the number of cells, as though
education was recorded in 5 categories, "The two men in a pair had to be in
the same education category as in adjacent categories."

Let us consider the case where matching is performed on only one categoriza-
tion at 2 levels. The population is thus cross-classified into a 2 x 2 table:
for convenience let tis continue to use smoking-nonsmoking as one of the
categorizations, represented by the symbols S and T, and baldness-nonbaldness
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as the other categorization, reprejented by B and C. Let tha proportion of

the population failing into the four classes be eS13 etc.

Suppose that we have a very large sample, so that sampling fluctuations

can be ignored, and let the death rates for each class be 0SB' etc. Then if

the sample size is N, then the number of bald smokers is NeSB, etc.

Table 1

Bald Nonbald
Proportion Proportion

Proportion of Deaths Proportion of Deaths

Smokers eSB SBOSB 0SC aSCOSC

Nonsmokers aT3 8TBTB 8TC eTCTC

Matching will consist in matching each bald smoker with a bald nonsmoker

(and analogously for the nonbald columns). Since in general eSB 0 eTB, there

will be an excess of smokers or an excess of nonsmokers in this category, and

the excess will be discarded by random selection. Thus if eSB > 0TB and

eSC > 0 TV the noemokers are left undisturbed, but the number of smokers will

be reduced to NeTS and NoTC and the numbers of deathe amongst smokers to

(NeTs OSB + NeTC OSC ).

The death rate for smokers in the matched sample, say DSM, will tbus be

D 6TBOSB + eTCOSC (1)
SM e 8TB + aTC

The death rate for nonsmokers in the matched sample, say DTM, will be

0TBOSB + TCOTC
D TM " TB + eTC

and this is, of course, the same am the death rate for nonsmokers in the

unmatched sample, say DTU. I

For the smokers, however, the death rate in the unmatched sample, say
D Sul in

D i SBOSB + 8SCOSC (3)Dsu 0 OSH + 0 8C

Now suppose that the ratio of smoker to nonsmoker death rates in the

unmatched sample is the same as in the matched sample, i.e.
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D u U" TM "4)

Note that this is a rather wemk condition. We arp not requiring that the
matched samples give the "right answer for the death rates in, e.g., the
smoking population, but merely that the ratio of death rates of smokers to
nonsmokers be the same in the matched sample as in the population.

The condition implied in equb!Aon (4) implies that

eSBSB + SC SC eTBSB + 6TCSC (5)

SB SC TB + 0TC

which in turn requires that

(SC " SB) (OSC6TB - 6SB TC) = 0. (6)

Thus the relationship betwena smokers and nonsmokers is the same in the matched
sample as in the original unmatched sample if either

(a) *sc "s- (7)

or ( a

(b) ____ (8)eTC 6TB

or (c) both (a) and (b) are simultaneously satisfied.

Condition (a) is that the death rate for bald smokers be the same as the
death rate for nonbald smokers; in other words, for smokers baldness or non-
baldness does not affect the death rate.

Condition (b) is one form of the familiar independence criterion for two
cross categorizations, for example that the probability of baldness is the
same for smokers as for nonsmokers.

Condition (a) is asymmetrical in that it refers only to smokers. This
asymmetry occurs, of course, because the operation of matching, in the situation
assessed here, alters the relative numbers of bald and nonbald men in the
smoking group ouly, since the nonsmoking group is left unchanged by the matching
operation.

If the independence between smoking and baldness implied by (8) is not
satisfied, in the particular manner implied by the condition

sC 8 1 < eSB (9)

TC TB
then the smoking class determines the aie of the matched group for nonbald

20



people and the nonsmoking class determines the size of the matched group for
bald people. It is straightforward, but somewhat tedious, to show that (4)

rL 5=LALL-uI requires cnar

CTI 0 ' TC (10)

and

¢SB - tSC (11)

In other words the death rate for bald smokers must be the same as the death
rate for nonbald smokers and also the death rate for bald nonsmokers must be
the same as for nonbald nonsmokers.

These two results, (7) and (8), and (10) and (1.), both correspond to
commonsense. All death rates are in effect weighted averages. The unmatched
death rates are weighted averages using as weights the properties of each
category in the population. Equation (7) follows from the fact that if the
death rates in the two categories are equal it makes no difference what weights
are used. Equation (8) follows fr~om the fact that if the proportion bald/non-
bald is the same for the smokers as for the nonsmokers, then the matched sample
will have the same weights as the unmatched. Equations (10) and (11) are
similar to (8).

I should like to illustrate this with a small synthetic numerical example.
Imagine a population being matched, smokers against nonsmokers, according to
some factor such as baldness.

Suppose that the smokers number 110,000 of whom 100,000 are not bald
with a death rate of 1 per cent and 10,000 are bald with a death rate of 5
per cent. Then the overall death rate for smokers is the ratio of the total
number of deaths,

100,000 x 0.01 + 10,000 x 0.05 - 1000 + 500 = 1500

to the total number of smokers,

100,000 + 10,000 - 110,000.

Thus the death rate for smokers is

1100/110,000 - 1.36%.

Now suppose that the nonsmokers number 35,000, of whom 20,000 are not
bald witha death rate of 1 per cent and 15,000 are bald with a death rate
of 2 per cent. Then the death rate for nonsmokers is

20,000 x 0.01 + 15,000 x 0.02 500 143%.

20,000 + 15,000 35,000

This is one population the smokers have a slightly lower death rate than the
nonsmokers; the ratio of death rates is 1.36/1.43 - 0.95.

Now suppose that the smokers and nonsmokers are "mocched." For rhe nonbald
the device that does the matching will be able to select 20,000 smokers out of
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t.he 100,000 available, and theme will have an expected number 20,000 x 0.01
- 20 C : .a th,. Th.. tlaiL dmaw.~i; Lair. uL* iJJA1 Wil kt~tp itl .LLS UIIILCI~te

sample the 10,000 bald smokers who will have an expected number 10,000 x 0.05
- 500 deaths. Thus for smokers in the matched sample the death rate is

(200 + 5(J0)/(20,000 + 10,000) - 700/30,000 = 2.33%,

For nonbald nonsmokers the 20,000 in the population stay in the matched sample,
producing an expected number 20,000 x 0.01 - 200 deaths, but the bald non-
smokers are reduced in number to 10,000, for which the expected number of deaths
is 10,000 x 0.02 - 200. Thum for nonsmokers in the matched sample the death
rate is

(200 + 200)/(20,000 + 10,000) - 400/30,000 - 1.33%.

Thus in ou- matched sample the smokers have a somewhat higher death rate than
the nonsmokers, the ratio of death rates being 2.33/1.33 - 1.75. The direction
of this relationship between the death rates for smokers aud nonsmokers in a
matched sample is the reverse of what occurred in the population.

I think the reason that matching proves misleading in this observational
situation is that :t is a close relative of covariance analysis. We know that
in a purely experimental situation it is essential that the concommitant
variable be independent of the experimental treatments, and the save must hold
good in an observational situation. If the concommitant variable is not
independent of the treatments, then hideous fallacies may arise when we "adjust"
the response means. I chink the analogous bituation may arise in a discrete
matching situation: the frequencies of the matching criterion may be forced
into quitc unrcalistic distributions.

From another point of view, the matching procedure is forming a weighted
average for which the weights are quite unrealistic.

In other words, I believe that the matching procedure adds seriously to
the difficulties of extracting rigorous inference from observational data and
we should be quite hesitant about employing it.
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ON METHODS OF OPTIMIZATION OF A MULTIOBJECTIVE SURVEY

ionn L. AtkLinson
Harvard Computing Center

Boston, Masnaqhitetts

ABSTRACT. The Wound Data Project is a survey of wounded personnel in
which information is collected about the projectile or thermal agent causing
the wound, and the incurred physiological and phychological effects, together
with the hospital information. The experimental design is not under direct
control, since only those cases that do occur can be observed. The control
that can be exerted in such work consists of proper questionnaire design and
an attempt to continue observation until certain minimum numbers of cases
have occurred in designated categories. In this project, the number of
categories is in the hundreds, taaking it highly unlikely that the desired
number of cases will be observed in all categories. There is no ability to
control the level at which factors occur (e.g., projectile striking velocity).
The appropriate statistics to be used are largely those developed in fields
specializing in survey work such as epidemiology and social relations. In
fact, the computer system to be used for file manipulation in this project,
DATA-TEXT, is one developed by the Harvard School of Social Relations.

The areas to be investigated in this study are dictated by Army require-
ments, and information is now being recorded by the field team. The specific
questionnaires from which Hollerith cards will be punched are to be filled out
by the CONUS Team from this data. Adequate medical personnel are available
in the CONUS Team to insure proper medical interpretation of questions. Areas
in which advice is sought from the "clinical" panel include statistical pitfalls
in questionnaire design, and optimum selection of subjects where choices exist.
If subjects are selected with multiple wounds, individual variation is minimized
and direct comparison allowed between or among physical characteristics such as
penetrating ability. However, the physiological and phychological effects of
a particular wound are unmeasurable in the multiple wound case due to the
confounding. The proper target sample size would appear to be better defined
on attaining a pre-determined number of cases showing some set of characteristics,
rather than by merely observing some total number of cases without regard to
the information content of these cases. However, how to select the proper set,
or sets, of characteristics in a survey where many such combinations exist,
each for some different output of the survey, is difficult. Any selection based
on frequency of observed characteristics implies feedback from the evaluation
team (CONUS) to the collection team (SEA) which are physically separated by some
10,000 miles. The ability of the collection team to "collect" also depends upon
the vagaries of war.
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COMPONENTS OF VARIANCE OF A LINEAR FUNCTION
IN REPEATED TRIALS

Walter D. Foster
U.S. Army Biological Laboratories

Fort Detrick
Frederick, Maryland

ABSTRACT. The quality (Qi) of the i-th batch of a material diminishes

with time according to a function which is linear in its parameters, a

separate parameter set estimated fcr each batch., The quality of each batch

is extrapolated to a common future date, tfq by means of its time furction.

A weighted mean quality is computed, using the known amount of each batch

as the weight:
-w.IiQt/ wi

The problem is to find the variance of the weighted mean, V(k), given the

estimated parameters of each time function and the elapsed time to tf. In

case that the time functions have the form

Qi - Ai + Bi X + Ci Y

it is known in a special application that the batch-to-batch distribution

of the Ai is normal and independent of B and C. The bivariate distribution

of B and C has a high covariance, P - .87, with markedly skewed marginal

distributions, each in the positive direction. It has been acceptable to

write C in terms of B as

C-d+eB

for another application not discussed here.

The remainder of this paper was reproduced photographically from the author's
copy.
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In a manufacturing process, the quality, Qj, of the i-th batch of material

is measured periodically, because quality is known to deteriorate with time.

The deterioration function,

Qi - Ai + BiX + CiY,

is fitted to each batch, resulting in a unique set of statistics, (A, B, C)

for each batch. The variable X is time; Y is log(X + 1). The times of ob-

servation are not necessarily the same for each batch, nor is each batch manu-

factured at the same time. The quality of each batch is weighted by the amount

of each batch. It is the weighted average of quality, k, and its variance

which are required for a fLxed time, tf. The follotring schematic is illustra-

tive.

" - Batch A

Quality Batch B

S- Batch C

Time tf

Computatioally, it is straight forward to compute Q at time tf for each

batch and to continue over batches to compute

- ZwiQt/Zwi  and
& -Ew (Qi - -

V(&) 0EW ~i /'ITwi.

But this is not the problem. It is desired to find a formulation for V(%)

involving the distribution of the parameters of the deterioration functions.

The distribution of the Ai is known to be normal (with available estimates of

mean and variance) and independent of B and C. The bivariate distribution of

B and C while not known functionally has a high covariance, r - .87, with

markedly skewed marginal distributions.

Three cases are given as successive stages of a possible approach to

illustrate the form of a desired solution. General notation applicable to all
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three cases Includes the following:

Let Qij - J-th observation of quality on the i-th batch, i = 1--i, j - 1-j

and Qi. - quality of i-th batch averaged over the j observations

and Q.. - average quality averaged over all batches

Wi M amount of i-th batch, used as a weight factor

t - time of observation

CASE I

No deterioration of batch quality with time. All batches manufactured at

the same time with the same dates of surveillance. Variance of assay the same

for each batch. Pictorially,

Q* 'Batch A

-Batch B

- B -D Batch C

time

Let the random model,
QiJ m + Ci + eiJP

iJ* l---i,

with zero covariances represent quality so that

E(Qi.) which is estimated by

Qi, • Q iJ. also

Q.W EE w i Qij/ I wi .

Note that the previous computation for the variance of the mean, namely,

V(Q.,w) - Li(Qi. - w wi

neither partitions the source of variatioi nor uses the distribution of the para-

meters of the deterioration functions.
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The following reaults, assufaig1 LhaL the w~ are constant, are obtained from

the expected meoan squares which are well known to be given by the analysis of

variance model,

Source df E(MS)

Between Batches i-l a2 + ja2
2

Within Batches i(j-l) a2

from which we have

V(Qij - a2 +a2
2j 2

V(Q1.) - a 2/i + a 2and

V(Q..) - a /ij +a

When the amounts, ware known but not equal, the weighted mnean is

a m + E Wc /I + E J

with variance2 2 22
VQ.)-(a 2 + a 2/J) EW 2/(r wi)

if the covariances are ignored. The partition has a des~r9ble form.

CASE Il

The deterioration rate of each batch in time has the same loss coefficient

in the model,

Qija + c, -b + eijl

where as before all batches have the same date of manufacture and the same

datej of surveillance and the same variance of assay. The following figure

indicates i he nature of the problem:

Q A
B
C
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I
Thpri tho noi a 1 ,4 1,. t- -r" "IC -fD Is given by

Qi m+c - bt,
± L

and thf. weighted average quality of all batches at time, tf, 1

QO'W M wi(m + c bt )'i

- m - btf + EW e /EW i

with corresponding variances given by

V(Q,.) b" a2C 1/j + (tf - E)2/i±(t - i)2] + a02, and

V(Q.. ) 2 + a2/j)MW1
2 /(E )2 + (tf .) 2 a21±(tj - 2

which is partitioned and follows the components-of-variance sense.

CASE III

Let the deterioration function be representable by a linear function,

QiJ M M + ci + bIt + dit' + eiis

or by a non-linear function such as

J Qo(ri + l)/r 1 + ) 
I

whose covariances in both cases are non-zero. Further, the date of manufacture

of each batch is neither the same nor is the distribution of manufacture dates

constant. Finally, neither the number of surveillance periods or their dates

are necessarily the same from one batch to another. However, the variance of

assay is constant. A pictorial representation is given below.

Q B

tf time
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A continuation of the approach shown in Cases I and 11 whi le desirable may not

be tractable. The problem is not so much to estimate

Qia f i(tf) and

Q.w W zw fi(tf)/Zwi

which are readily computable as to formulate expressions of their partitioned

variances esLimable from the distributions of the model parameters in the

sense of Cases I and I.
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A MODEL

FOR OBTAINING THE OPERATING CHARACTERISTICS

OF A SKIP LOT SAMPLING PROCEDURE

Allen C. Endres

US Army Ammunition Procurement & Supply Agency

Joliet, Illinois

1.0 INTRODUCTION

Project SKIP is the name given to a ballistic testing procedure developed and

administered by the Quality Evaluation Division of the U.S. Army Ammunition Procurement

and Supply Agency. The need for such a procedure became evident when a study of

ballistic testing revealed substantial savings could be effected by properly lowering

ballistic test frequencies. The development of the methodology required to obtain

the operating characteristics of the plans covered by the procedure parallelled its

implementation at selected loading plants.

Fig. 1 depicts the essential steps of the flow diagram of Project SKIP.

The associated verbal transition matrix is contained in Fig. 2. It is seen that we

have a Markov model. Throughout the discussion the various seeps of the flow diagram

will be referred to as the states, i.e. qualification stato, restart state, etc.

The steaay state occupancy probability of a lot being in state i will be Pi We

shall use PI to denote the probability of entering state i on the next step. A

step is defined as the testing of the lot.
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2.0 METHOD OF DERIVING Pi AND P'
i

We shall first restrict ourselves to the case where only tested lots are

considered and temporarily ignore the skip lot possibilities in Step One and

Step Two. Let

Po - Prob (being in qualification state)

PNI - Prob (being in normal step one)

PN2 = Prob (being in normal step twu)

PNl* - Prob (being in retrial step one)

PN2* - Prob (being in retrial step two)

PR - Prob (being in restart state)

and p - Pr (lot meeting all ballistic tests' requirements except those concerned

with critical malfunctions)

y - Pr (critical malfunction)

hence:

(1) Po - P' + P' (l-Y) p ....... + P (1-y) 9p9

0 0-l y

( Po + P 1 (I-y) p +. ...... + 1 (i-y) p4 p

(2)~ PN-(-,I No Ip-(-)'

1-,Y -P

(3) PN2 w P N2

(4) PN"* - PN * (l-y) p +. ...... + PNI* (l.y)3 p3  1 PP I ly)p4j(4) PNI* Ni*i (i-y) p..

(5) PN2* - Ph* + PN2* (l-y) p + ...... + PN2* (l) p3 _ PN2* 1(_Y)T
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Define: PR, Probabilfty (being in restarL in process of testing for five

consecutive lots free of critical malfunctions while disregarding all other mal--

functions).

PR2 - Probability (being in restart and testing for ten consecutive lots

meeting all requirements).

(6) PR P RI + PR2

(7) + (1-y) +. ...... + PRI (lPy) R(7 R RI P R + "YI ' -,
(8) " P + q 2 (l-y) p +. ...... + P 2 (l-y)9  p9  ( y)O P 2Rs P 2 2 R? (1..... (1--¥)

We shall now investigate the derivation of the P'. P' - P- (being in 0 two

o

steps ago and rejecting a lot for reasons other than a critiral malfunction on the

last step) + Pr (being in NI* two steps ago and rejecting a lot for reasons other

than a critical malfunction on the last step) + Pr (being in N2* two steps ago and

rejecting the lot for reasons other than a critical malfunction on the last step)

P. (l.-p) (l-y) + PNl* (l-p) (1-Y) + PN2* (l-p) (1-Y)

Utilizing (1), (4) and (5) yields

(9) P() - ELY) P (1-0 (1-Y) + N1- [* '] (1-0 (p .Y)

Similar rnauning for P ' P' yields:
;roN PN!*, PN2' N2*' FiRl' R2

(10) PI P, (1-Y)10 pl0. PNI* (-y)# P" + PR2 (l-y)10 plO
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' NI* %- (\ NI

Lp

(12) PN2 ' PN12* p4 (I-y)4+ p 1 (-y) 5p5 + P'2 (1-Y) P

(13) PN2* - PN2 (1-p) (1-Y)

(14) P i - Y

(15) 2R2 - P I (I-Y) 5 + PR2 (l-y) (i-p) I1-(1-Y)1 ° p10 1
1 (-Y) p

~' Hoeera
Equations (9) through (15) define 7 equations in terms of the P. oevra

additional equation is needed since it can be shown that the coefficient matrix

is not of full rank. The needed equation is

E Pi - 1
i

It was found convenient to solve for P' and then relate the remaining Pi in terms
0

of P;. The steady state probabilities were then obtained by substitution in (1)

through (8).

3.0 INCORPORATION OF SKIP LOT POSSIBILITIES

The preceeding discussion neglected the skipping possibilities in N1 and N2 ,

A plausible approach to the skipping anomaly would be to obtain the expected ratio

of total to tested lots in the states of concern, multiply the original PN1 and PN2

by these ratios and then force the modified PNI' PN2' and the remaining Pi to

sum to one by normalization.

Let: X, - Number of lots tested in N1

2X a Number of lots skipped in N1

34



F,. + X] + Y.

then the ratio of interest is I XJ 1

X+

L I " 1X
taking expectation E I+E( )

Now E 5 X 2 (X2 ,X1 )Xl1 I X2 M0 X1

where P (X2 ,Xl) is the joint probability density function of X1 ,X2.

However P (X2 ,XI) - P (XjX1 ) P (XI)

5 X2
hence E LZ p (Xl) - P (X2 1 )Xl'I X2=0

5 P(X )  G
Z - E X2  P (X2 1X)Xl1-1 X1  X2=0

Define i) a skipped lot as a no-test

ii) a tested lot as a test

Then E X2 P (X2 ,X1) may, for a given Xl, be considered as the expected
X2 =-0

number of no-tests before the Xlst test. Hence X2 is distributed as a negative

binomial random varieble with expectation (Xl)

where q is the probability of a no-test

p is the probability of a test.
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Therefore E 5l P(XI) I Xiq) q/p. i
tt -

For N
1  

qmp-l/2 Therefore E [ Ind E L 1- 2.

A completely analagous procedure yields a ratio of 3 for N2. Hence PNl is multiplied

by 2 and PN2 by 3.

The total procedure is then

(1) Obtain Z P
io N1,N2

(2) Multiply PNI by 2 and PN2 by 3 and add these products to (1).
(3) Divide Po, P R' PNI*' PN2*' by the sum obtained in (2); also divide

2PNI and 3 PN2 by that sum.

(4) Each quoitient obtained in (3) is defined as P*.
±

and ZP* - 1.
ii

4.0 DERIVATION OF ACCEPTANCE PROBABILITY

Let:

- Expected proportation of accepted lots

A(1) PA " (Pi + P i) P*

where: Pti " Pr (lot tested and accepted in state i)

Psi " Pr (lot skipped and hence accepted in state i)
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Rpfprrin .... ia6 Lu we have:

STATE PLI Psi

o p(l-y) 0

N1  1/2 p(l-y) 1/2

N 2  1/3 p(l-y) 2/3

NJ* p(l-y) 0

N2, p(l-y) 0

R p(l-y) 0

which may be seen tield:

PA -P(l-Y) L+ P+P *+ PN2 * + / J + P  l + 2
2 

3

This formula together with an assumed y - .0002 was used to obtain Figure 3.

5.0 EXPECTED REDUCTION IN TESTING

The expec'ed reduction in testing is vs. p, the probability of
+ L

the lot meeting all ballistic tests' requirements not concerned with critical

malfunctions. The asymptote is the maximum reduction possible for y - .0002, and

was obtained by finding lim (P 1 ' P 2
"

p+J l - IN2
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FIGURE TWO
Causes of Transition from

State i to State j

F ..... O...... R1 R2 Ni Nis N2 'N2*

0 Reject the Critical 10 consecu-
lot. No malfunction. tive lots
critical accepted.
malfunction

R1 Critical 5 consecu-
malfunction, tive lots

without
critical
malfunction.

R2 Critical Reject the 10 consecu-
malfunction, lot. No tive lots

critical accepted.
malfunction.

Ni Critical Reject the 5 tested
malfunction, lot. No lots are

critical accepted.
malfunction

Nl* Reject the Critical l lots are
lot. No malfunction, accepted.
critical
malfunction

N2 Crytical Lot is neject tie
ui .. lunction. & ~suted. lot. No

critical
malfunction.

A20 Reject the Critical 4 lots are
lot. No malfunction, accepted.
critical
malfunction
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FIGURE 3
AQL a 1%

-- ZL-STD-4.1h

.8 ~CodeLete.

.. Correspondinzg

.7

A:::

T- I I 1f W4

.- 1

Percent Defective
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A MODEL FOR DFTFRMTWT( 07TAT fTh?

INCENTIVE PAYOFFS FOR PROCURMENT

Rcgcr RY-e. taid Eugene Dutoit
Picatiriny Arsenal
Dover, New Jersey

INTRODUCTION. The purpose of this paper is to formulate a model for the

preparation of Quality Incentive Clauses to be included in Government contracts,

The model will concern itself with those items which are procured according

to acceptance criteria involving single sampling plans by attributes.

A Quality Incentive Clause is an addition to a supply contract which is

designed to benefit both the contractor and the Government. The clause

provides for the payment of a bonus to the contractor if product quality is

above that designated as acceptable in the product specification.

Changes in product quality will be observed by selecting one or more

parameters which reflect item effectiveness; changes in the "relative AQL"

of these parameters with respect to the AQL's outlined in the product specifica-

tion will be used to indicate differences in quality level.

Finally, variations in AQL will be combined with a payoff factor to assign

a partial payoff for each parameter. This payoff factor is designed tr- adjust

for the relative importance of each parameter as well as the magnitude of the

quality measurement. The sum of the partial payoffs will indicate the total

payoff to which the contractor is entitled.

THE GENERAL MODEL. This section repres3ents an outline of the general

model proposed for formulating Quality Incentive Clauses. A brief explanation

of each of the major segments of the model is presented below. A more elaborate

discussion of the development of each of these segments will be presented in

a later section.

The remainder of this paper was photographically reproduced from the author's

copy.

43

.............--



i. !Ltna UoXLtrui FuufltLer.- Lnese parameters are usea to

measure the "incentive quality" of the item.

2. Ratio Weights.-Weights are assigned to all control parameters

to indicate the relative importance of each parameter in determining

item effectiveness.

3. Maximum Payoff.-This value represents the maximum amount

the purchasing agent is willing to pay for quality in the item.

4. Paoff Factors for Each Control Parameter.-The payoff factor

is a multiplier which transforms a given quality measurement into an

incentive payoff. It is designed to reflect both the magnitude and

importance of measured quality for each parameter.

5. Partial Payoffs for Each Control Parameter.-The partial

payoff is a, measure of that portion of final payoff which is attributable

to each control parameter.

6. Total Payoff.-This value represents the bonus payable to the

contractor on the basis of the indicated quality of the item.

DEVELOPMENT OF THE GENERAL MODEL

This section traces the development of the various segments of the

general model. Each major segment of the model is expanded and quantified

according to the basic assumptions of the model.

Selection of Control Parameters.-Although many parameters may contribute

to the performance of a particular item, it is desirable to select only

a few parameters to measure quality for incentive purposes. One or two

parameters are ideal; any more than three may be unwiedly and impractical.
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The parameters selected should be those which most clearly define item

effectiveness under operational conditions. Consequently, in addition

to minimizing the number of parameters selected, care must also be

taken to insure that all parameters which indicate effectiveness are

included. Thus, the number of parameters selected should be as re-

strictive as possible, yet comprehensive enough to include all

significant parameters.

Furthermore, it is important that parameter measurements be

compatible with acceptance tests as outlined in the product specification.

Parameters which require increased sample size or additional testing

in order to be measured satisfactorily are not desirable.

Assignment of Weights.-Weights will be assigned to each control parameter

in multiples of ten within the range 0 to 100 (10,20,30 ..... ,I00). For

example, consider a situation involving two parameters where it is felt

that parameter A is 1 1/2 times as important as parameter B. The weights

assigned would be Wa = 30; Wb - 20 or Wa = 60; Wb = 40. As long as the

ratio is maintained it does not matter which combination of weights is

selected.

Determination of Maximum Payoff,..-The maximum payoff (MPO) is selected as

that percentage of unit price the purchasing agent is willing to pay if

maximum incentive quality is obtained in all parameters.

Determination of Payoff Factors.-On the basis of the subjective-objective

decisions outlined above, a PAY OFF FACTOR (POF ) is determined for each

parameter. The P0F1 is a function of'

45
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(1) the individual weight of each parnmeter relative to the

combined weights of all parameters.

(2) maximum pay-off allowed in percent unit prict.

Develorment of POF :

Initially define a "quality point" as a measure of incentive

quality which will give a pev-off. In order to achieve the maximum

pay-off (14PO) incentive, the contractor must achieve the maximum

quality points (MQP) which have been assigned for each parameter.

Assuming a linear model where Zero "QP" would give Zero Pay-off, the

relationship between Pay-off (PO) and "QP" can be shown as figure 1 below:

MDrt

MbP

Figure 1

Since each parameter is weighted in its importance to item effective-

ness, it shall be defined that the maximum QY for each parameter be equal

to the weight assigned to each parameter (ie., if Wa = 40, Wb a 23;

Wa • 2Wb - therefore parameter Wa is twice as important as Wb and will

receive twice the number of quality points).

So, on an item basis:

(1) MQ@ a the sum of the weights for the parameters considered for

that item. N

MQP = WT *ZWI, where N is the number of parameters considered.
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(2) MFO Percentage of item unit urIrL_

Therefore Figure I becomes:

MPO -

POFI

WI WT

Figure 2

Parameter (I) with weight W, gives a pay-off factor (POFI).. POFI is,

a proportional part of MPO as expressed below:

POFI Ho)-(o) (W-0(WT) - (0) -
POFI - MO W-j

1 WT

Where POFT is a percentage.In a fractional form:

POFi - (MPo) (w)
WT 7 100 (1)

A verification of the relationship is given in the appendix.

Determination of Partial Payoff.-Using the payoff factor and the percentage

change in quality for each parameter (to be discussed in the next section)

a partial payoff may be computed for each parameter. Therefore, for each

parameter and its POFI, Figure 3 shows the corresponding partial payoff.

Maximum PF0 ----------------------- Parameter
(POF) (100%) 1

Soo0%

% Difference in AQL
Figure 3
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Th. arti. yo-uff for iarameter I (PPO is represented as:

PPOI - (POFI ) (% differen:e) (2)

where PPOI is a percentage of unit price.

Determination of Total Peyoff.-It follows that the total payoff (TPO)

is the sum of all partial payoffs or

Total Pay-off (TPO) = PPOI  (3)

If we have 100% difference in AQL for each parameter; then

TPO (%) MPO (%) - see Appendix for verification.

"MEASURING" INCENTIVE QUALITY
WHEN THE ACCEPTANCE NUMBER OF ALL PARAMETERS

IS FIVE OR GREATER

Incentive payoffs will be made on the basis of changes in quality.

For this model, these changes will be measured in terms of AQL. This

measuro is, in fact, a psuedo-AQL (AQIP).

As stated in the previous section, incentive quality is indicated

by the percentage difference. AQL, is the AQL for a parameter outlined

in the product specification. For brevity, AQLe is presented in the form

of the appropriate sampling plan as follows:

(AQL9 Icode letter; n, x, x + 1) where xi5 (h)

and: n = sample size

x a acceptance number

x.+ 1 • rejection number

All data is in accordance with MIL-STD-105D.
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When sampling is conducted according to the specification sampling

plan and the number of defects in the observed sample is some x'<x, then

for convenience AQLp is defined as follows:

(AQLp 1 code letter; N; x', x' + 1) (5)

code letter is the same as in (h)

where: n - sample size

x1 a acceptance number

x'+l = rejection number

All data is in accordance with MIL-STD-105D. AQLP can be determined

using MIL-STD-105D, a Thorndike Chart or Poisson Tables.

It is important to point out that the AQLp does not mean that the

process average is actually equal to the AQLp. The AQLp is a "dummy"

measure of quality. It merely says that --

if a sampling plan had been used with code letter <, sample

size N, decision criteria x', x' + I - then the AQL associated with this

plan is AQLp. It is the AQL of the sampling plan that has just been

passed,

The pseudo value is used in the incentive model to compute the

percentage change in AQLS or "the change in quality".

The percentage difference (%D) between AQLs and AQLp is computed by:

%DI  AQLs - A21 100 (6)

AQLs
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EZA4F CU DT1v.L4.LJUI'~ AQL AN~D D WHENp I
THE ACCEPTANCE NUMBER OF ALL PARAMETERS IS FIVE OR GREATER

Simple Case - one parameter considered.

Example: Consider a parameter with AQLS as follows (1.01 M; 315; 7,

8).1

If in sampling the number of defects observed is 3 then x' = 3.

Hence,. AQL, is defined according to equation (5) as (AQLp | M; 315; 3,

4).

Using MIL-STD-105D, AQLp - .h0

Therefore.: %D1 a AQL, - AQLp 100
AQLs

w (1.o0- .4o) 1oo
61.0

COMPLETE EXAMPLE FOR COMPUTING INCENTIVE PAYOFF
IN WHICH THE ACCEPTANCE NUMBER OF ALL PARAMETERS

IS 5 OR GREATER

Two significant parameters, A and B, have been selected for the

item in question. Subjective judgment indicates that Parameter A is

1-1/2 times au important as Parameter B.

Step Information Value Obtained Explanation

1 Weight for Parameter 30
A: Wa

2. Weight for Parameter 20

B: Wb'

Sum of Weights (WT): 50 30 + 20
Wa, + Wb
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I
Ste Information Value Obtained Explanation

Maximum Payoff: MPO 10% Subjective

Payoff Factor A (POFa):

(MPO) (wa) .06 (10) (30)

(wT) ' (50) (100)

6 Payoff Factor B (POFb):

(MPo) (Wb) .o4 (10) (20)

OTOY 0 (50) (100)

The incentive clause indicates that two parameters A and B,

will be used. Parameter A has an AQL, of 1.0%, POp a = .06.

Parameter B has an AQLa of .65%, POFb - .04, The size of

the lot for which a payoff is to be calculated is 15,000.

General Inspection level II is to be used.

The number of defectives found in the sample for

Parameter A was 3. (x' 3)

The number of defectives found in the sample for

Parameter B was 2. (x' w 2)

Step Information Value Obtained Explanation

7 Sampling Plan Code Letter M

Parameter A: AQLa; SS Product
Specification

(x, x+l) (1.0%; 315 (7,8))

Parameter B" AQL,; S Product
Specification

(x, X,-l) W%; 315 (5,6))

8 Pseudo AQL

Parameter A: AQL; .4o%
105-D

Parameter B: AQLp .25%
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Step Information Value Obtained Explanation

9 Percentage Difference (%D):

(AQLb - AQL) (100)

AQLs

Parameter A: %D 60% (1.0 - .4O) iO0
1.0

Parameter B: %D 62% 1.65 - .25)i00i .65

10 Partial Payoff (PPO) = (%D) (POF):

Parameter A: PPOa 3.6% (60) (.06)

Parameter B: PPOb 2.5% (62) (.04)

11 Total Payoff TPO - PPO + PPOb:

6.1% 3.6 + 2.5

"MEASURING" INCENTIVE QUALITY
WHEN THE ACCEPTANCE NUMBER OF AT LEAST ONE

PARAMETER IS LESS THAN FIVE

Choose the control parameter which has a sampling plan where X

is minimum less than five. The general approach to the problem will

be to determine from the requirements:

(AQL. loode letter; N; X, X+l) where X-.5. A second sampling

plan will be defined as:

(AQLsI N'; xA, Xa + 1) (7)

where Xa>X and N'/N is some whole number greater than one which

represents the cumulative number of lots that have to be sampled

before an incentive pay-off decision can be made. The conditions of

equation (7) can be satisfied by use of a standard Thorndike Chart or

Summation of Terms of Poisson's Exponential Binomial Limit.
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consider the specification sampling plan:
(AQL) 0.25% IN - 315; 2,3)

The AQL can also be expressed as fraction defective:

(A'QL s = .0025 1 N a 315; 2,3)
SIf an equivalent 5 - 6 plan (X a =5) is required, a Thorndike Chart

can be used. Defining the possibility of acceptance at the AQL to be .95-

N' (AQL expressed as fraction defective) - 2.6

or N' (.0025) a 2.6

N' w 1040 items

The AQL could have also been written as a percentage

N' (A (%)) - 260 (8)
N, w lOb0

The equivalent sampling plan expressed as equation (7) is;

(AQL 5 * .25% I N a I040; 5,6)
In general, equation (8) can be written for both the specification

sampling plan (N, X, X + .) ani thi second equivalent sampling plan

(00, Xa , Xa + 2):

(i): (N) (AQL6s) (Poisson factor X, X + 1) 100

S(M'x, x + 1) 100 (9)

(ii): (N) (AQL5) u (Poisson factor Xa Xa + .) 100

* (ITx, X + 1) 100

(tXa, X + 1)100

AQL
s

MR~-(1~. X + 2.) 100
AQL1
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or N'= I IX.1 X + 1) 1 00N (cx, x + 1) 100

From equation (9):

(IIx, x + 1) 100 - (N) (AQLs)

So that

N' - (lixa, Xa + i)
N (N) (AQLs) (10)

For convenience, modified Poisson factorn for all Xs, Xa + 1 can

be derived for a probability of acceptance of .95. The numerator of

equation (10) can be written as:

(IXa, Xa + 1) 100 * Zi, Equation (10) now becomes:
i N'- Zj

(N) (AQL ) (11)

Values of Zi for attribute sampling plans X, X + 1 are given below

in Table I

TABLE I

X.x +1 Zi

5 - 6 260

6 - 7 330

7 - 8 4oo

8 - 9 470

9 -10 540

10 - 11 620

i - 12 700

12 - 13 780

13 - h 850
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X2 X + 1 Zi

iii - !930

15 - 16 1000

16 - 17 1070

17 - 18 1170

18 - 19 1250

19 - 20 1320

20 - 21 4oo

By letting L equal the number of cumlative lots, such that N'/N is

a whole number:

L w I i w Zi

(N) (AQLBT where the value of Ii which is closest

to a whole number is chosen as the value of L.

Example:

Consider the specification sampling plan:

(AQL3 * .25% IN a 315; 2,3)

In this case:

(N) (AQLs) - (315) (.25) - 78.75

Therefore, applying equation (ii) and Table I:

15-6 - 260
7F5 - 3.30

16-7 0 ,,h2

7 .75 4.20

17-8 * 400 5

r7T779
18-9 - *7 .75 •5.9T

which is nearly a whole integer and corresponds to a 8-9 plan. Therefore

L - 6 lots will be accumulated before an incentive pay-off decision will

be made. If 6 lots of sample size 315 each are accumulated, then the
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adjusted 3ample size is:

N' = (L) (N) (12)

or N' (6) (315) - 1890

In summary - the original sampling plan is:

(AQL - .25% I 315; 2,3)

This is replaced with an equivalent plan by accumulating 6 lot

samples defined in accordance with equation (7):

(AOL = .25% 11850; 8,9)

Extention of this example by computing AQL and Payoff:

If 6 defects were encounterd (X' - 6, X' + 1 = 7) in 6 lots of

sampling (total N * 1890), the pseudo AQL (AQLp) can be determined as

follows. The definition of AQLP is the same as in the previous section if

(AQLO - .25% 1 1890; 8,9)

then (AQLp = 1 1890; 6,7)

It is known that

(N) (AQL s ) -.(Zi for X, X + 1 plan). If X, X + 1 and N are

known, then AQLg can be determined. This is also true for AQLP. In this

example, (x', X' + 1) a C6,7) and N' 1890. Applying equations (9) to this

situation:

(N') (AGLp) w (Zi for X', X1 +1 plan)

(N') (AQLp) u (Zi for 6,7 plan)

(1890) (AQI&) 330

A -~ .175%
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Ti; iebLL!LtIL percentage airrerence (%U) between AQLs and AQLp is:

%Di = (.250- .75) 100 - 30%
.250

Note: These adjustments must be made in the sampling plans of all

(pertanent) item control parameters. The following example (although

repetitious in part) will include the complete computation as well an

the TPO.

A COMPLETE EXAMPLE FOR CALCULATING PAYOFF WHEN
THE ACCEPTANCE NUMBER OF AT LEAST ONE PARAMETER IS LESS THAN 5

Parameter A: N = 32., (0 - 1); AQLs = .40; WA 30

B: N u 50, (1 - 2); AQLs = 1.00; WB - 20

MP0 1 0%

WT =WA + WB = 50

POFa = (oO) (WA) a (10) (30) o6

(WT) oo (50) (100)

POFb = (MPO) (WB) - (10) (20) - .04
(wN) (100) (50) (100)

Because both of the sampling plans have acceptance numbers less

than 5, the number of cumulative lots (samples) must be determined

in order to determine equivalent sampling plans:

li W Zi
() (AqLs)

Pla A has X as a minimum (X - 0):

(N) (AQs) - (32) (.4) 12.8

Referring to Table I:.

11 - 260 20.31 14 -
[ 12* F = 36.72

12 - 330 15 - 24012 .0 • 25.78 12- "42.19

13 400. 31.25 arbitrarily stop

12.7 
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12 u 25.78 is nearest to a whole number, W(26), therefore L 26 lots

will be accumulated. If 26 lots of sample size 32 are accumulated, the

adjusted sample size N' is:

N' = CL) (N) - (26) (32) - 832.

In summary - the original plan is:

(AQLs = .40 I 32; (0 - 1))

But Z2 of 330 (see Table I) corresponds to a 6 - 7 plan (i.e.; Xa = 6,

Xa + 1 - 7) so that the revised plan is:

(AQLs - .40 1832; (6 - 7)) for Parameter A

An appropriate adjustment must be made for Parameter B:

The original plan for Parameter B is:

(AQLs - 1.00150, 1 - 2)

Since L 26 lots will be accumulated, the adjusted sample size N' is:

N' ( (L) (N) - (26) (50) -1300

Since:

(N) .(Am,) uZi
(1300) 1.00) = Zi
Zi = 1300

Reference to Table I shows that Zi * 1320 corresponds with a 19 - 20

plan. The revised plan for Parameter B is therefore:

(AQLs - 1.00 11300; 19 - 20)

In actual sampling the following defects were counted:

Parameter A - 5 defects

Parameter B - 10 defects

The Puedo AQLs are conputed:

For Parameter A:

(N) (A Zi 5, X', + 6 for 5 -6 plan)
(832) (AN. ) -260 from Table I

AQLp -. 31%
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For Parameter B:

(N) (AQL,3u Zi (X' 10, X' + 1 =11 plan)
(1300) (RQL) - 620 from Table I

AQIp -,.8

Therefore:

%Da - .o0. 31 ) 100 - 22.5%

%- (*.co - .48) 100 5 52.0%
1.00

The Partial Pay-offs for each Parameter are:

PPOa  (POF ) (%Da)
(.o6 (22.5%)

* 1.35%

PpOb (o) ( %Db)
(.o (52%)
2.08%

Therefore the total pay-off awarded to the contractor after 26

lots were produced and sampled was:

TPO PPOa + PPOb
l 1.35% + 2.08%
1 3.43% of unit price

CONCLUSIONS

Although some effort has been expended in investigating the development

of quality incentive payoffs it is believed that this paper makes a significant

contribution in the area. This contribution is evidenced by the investigation

and extension of previously formulated concepts and the synthesis of standard

statistical techniques. In particular, an effort is made to make provision

for the following common situations which normally occur in actual acceptance

sampline plans:

1. Items having several parameters which contribute to overall effectiveness

in varying degrees.

2. Items/parameters with acceptance sampling plans specifying small
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._ p ..... ,,....; C 5, ,,!.A.u.i !Lie-rerLiy iaci, an expanded range of

quality measure (AQL and %D).
p

J. Items/parameters specifying sampling plans with an acceptance

number equal to zero.

Provisions for the above situations were established by defining a

procedure for selecting and weighting item parameters relating to effectiveness.

Furthermore, quality incentive pay-off decisions for sampling plans requiring

small acceptance numbers were incorporated into the model by cumulating the

results of several product lots.

The procedures presented in this paper are not considered to contribute

a sophisticated approach to formulating quality incentive plans. Intuitively,

the basic philosophical framework is believed to be workable, however the

overall model should certainly lend itself to further refinement and simplica-

tion. $ome restrictive features of the model which would be adaptable to

future work are:

(1) Restricted to single sampling by attributes.

(2) Limited to simple functioning items.

(3) Considerable subjective judgment involved in selection and

weighting of parameters.

(4 ) Loss of incentive impact due to complexity of special procedures

for cases in which C < 5.

(5) Undesirable time factor due to lot accumulation when acceptance

number is very small.

(6) Rounding error in ZeValues.
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I. Property:

POFI1= MPO (in terms of percentage)

Demonstration:

Wt Wl + W2 + fee + Wi + + Wn u W

Therefore:

Wl + W2 + ... + Wl + ... + WN
A Wt Wt Wt

It has been established: 
j

POF I  MPO (Wi) (in terms of percentage)wt

Expanding the summation:

or ZOF a MPO

11. Property:t

If thr percent difference between the specification AQL and the

pseudo AQL is 100 percent, then:

TPO u MPO (in percent)

Demonstration:

Z Z(POFI) (% difference)
X Z(POF1) (100%)

where POF1 is a fraction, therefore;

TPO (W) - (POaI) (in percent)
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But it has been shown in I that:

- (POF 1 ) MPO

Therefore:

TPO(W).PO(%W
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OuriILUM SAMPLING PLANS FOR GRADING BINOMIAL POPULATIONS

Paul B. Nickezne
U. S. Army Ballistic Research Laboratories

Aberdeen Proving Ground, Maryland

INTRODUCTION AND BACKGROUND. In the surveillance evaluation of

anmunition an important task is that of grading lots on the basis of
attribute characteristics of a sample drawn from larger populations. At

the present time, lots are placed into one of three grades based on the

performance of a random sample of n items chosen from the lot. It is of

obvious importance that the probability of misgrading a lot based on this

sample be made a minimum. The basis for the current grading procedure is a

BRL report written by Mr. A. Golub entitled "The Determination of Acceptance

Numbers for Placing a Lot from which a Single Sample is Drawn into One of

Three Grades" published in 1951. In this report, Mr. Golub maximizes the

probability of correct grading by differentiating expressions of the following
type 0 (?) p' qn- , setting the resulting values equal to zero and solving
for the c values (acceptance numbers).

Mr. Golub's report serves as a basis for the following paper in which

a different method of maximizing the probability of correct grading is

developed. A generalized solution is given and tables are developed for

lot classification into 2, 3, or 4 grades.

THEORETICAL DISCUSSION. In determining the original acceptability of

large quantities of manufactured products or in checking the reliability of

items which have been in storage for some time, groups of the product are

submitted for inspection (testing) in divisions called lot@. These lots

can often be characterized by a certain property, or set of properties of

the individual members of the lot. For example, a population of artillery

projectiles can be divided into those which are defective and those which

are not, a group of washer fittings can be divided into those which fit a

ive-inch setting and those which do not. We let x be a random variable

which asummes the value 0 if an individual in the lot has none of the

characterizing properties and 1 if the individual possesses one or more of

This article was reproduced photographically from the manuscript submitted by
the author.
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I
-' ;'a . p-F(xi , hen one Lot is defined to be a

lot with fraction defective p and an Itdividual which exhibits one or more

of the characterizing properties is called a defective item.

In dealing with large lots, it is frequently too expensive or time

consuming to examine or test each item in the lot. (In fact, where the

procedure calls for the destruction of the item, it is impossible to inspect

every item.) Thus, some type of sampling inspection plan must be devised.

One of the more common types of sampling plans is the so-called single-

sampling plan where the consumer selects a random sample of size 1i from

tha lot and if the number of defective items in the sample is less than

or equal to a given number c, the lot is accepted and if c + 1 or more

defectives Is foumd in the sample, the lot is rejected.

This concept can be readily extended to situations involving classification

of a lot into more than two classes, say, three, four, or any number up to k

classes or grades. Let us assume that for each of the k grades, an interval

has been determined much that, if the lot fraction dofoactive is in this

interval, the lot belongs to that grade. Theme intervals or levels can be

determined by a review of the specifications for the item or by considering

the requiremen-s established by the user or consumer for the reliability of

the item.

Now, let us suppose for convenience, that our' stockpile consists of

exactly 1.00 lots which have the corresponding fraction defectives;

YO M 0, Y, a .01, y2 a .02, ... y9 8 - .98, y99 w .99. ha of these lots is

selected at random and submitted to our sampling plan. We let p be the lot

fraction defective for this lot.

We now want to place this lot into one of, k grades in accordance with

the following: if the lot fraction defective is less than p1 (0 S p p

the lot is of Grade A quality; if the lot fraction defective is between

P1 and p2 (p. c p I P2 ), the lot is of Grade B quality; if the lot fraction

defective is between p2 and p3 (p2 4 p 5 p 3), the lot is of Grade C quality

and so on, out to the final grade, that is, if the lot fraction defective is

more than pk (Pk g p s 1), the lot is of Grade K quality.
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Our plan now calls for selecting a random sample of r. items from the

lot; _ (L=uLirg) each item in the oample and determining the number

of items (r) which are defective. The lot will then be placed into one uf

Lhe k grades using the following rule:

If 0 < r < c Place the lot in Grade A

If c1 + 1 < r _ c2  Place the lot in Grade B

If c2 + r 5 c3  Place the lot in Grade C

If ck_ 1 + 1< r < n Place the lot in Grade K

Under this set of conditions, we can use the formula of total

probability* to calculate the probability of placing a given lot into its

proper grade, or in other words, we are determining the probability of

correctly calling a Grade t lot its actual grade, Grade t. This gives

P w P (of placing the lot in the correct grade) -

P(p - 0) P{0 . r I c Ip 0) + P(p - .01) P{O_ r I cl p .011 +

+ P{p - pl} P(O . r . cI I p a pl} + P(p * P1 + .01} P(c I + 1 _ r . c2

p "' Pi + .01) + ,,, + P(p a p2 ) P{cl + 1 S r C 021 P " P2} + P{P p2 + .01)

P{c 2 + 1 1r . c3 p P2 
+ .01) + ,.. + P(p - p3} P(c 2 + 1 r _ c3 p P P3) +

+ P{P * Pk-l + .01) P(Ck-l + 1 S r S n I P Pk-1 + .01) + ... + P{p = .99)

Peckl + 1 4 r nI p n .9 9 ) (1)

Because the lot which was submitted to the plan was selected at random

from the 100 lots available in the stockpile, we know that

P{p - 01 - P{p = .01) = ... • P{p .99) - (2)100

The probability expressed in the second bracket of each product can be

written as the sun of a binomial probability function of the form

r0(  (p)r (1.p)n-r (3)

* B. V. Gnedenko, "The Theory of Probability", page 64.
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I
Using expressions (2) and (3), we can rewrite (1) in the following form.

el n Cln

S E (r) (o)r ( 1 ),-, (r) (.ol)r (. 9 9)n-r+... +r-0 r-O

c c
1 1 n 1 2 n

O---O ( )r ( 1 -p)n r + - r (r) ( 1+.01 ,)r (1-p .O )n-r + ... +

~C
2 ni 3 n10 r (+ ) (p)? (l-P2 ) + 0 r0 (r) (p2 +.O1)r (1 -P2 .o 1)n'r + ... +

c

2 n n- 1n ) , p ) -

_ E (r) (+)r ( 1 )P) r-

10 '100 rmc(r) (Pk+0) r (1-P2kTWOr.01+
2+

r-,c2+. r,,Ck 1+1

1 n n

n-r (4)"' o100-" Z (r) (.99), (.01)

In order to maximize the probability of putting a lot into the correct
category, we must maximize (4) with respect to ell c2  c , .,ck . However, _
obviously, we do not want to limit ourselves to the case where N (number of

lots in the stockpile) - 100, but rather want to generalize our approach so

that N can go to infinity and thus consider the case where p can assume any

value on the closed interval (0,11 with equal probability.

First, we must look briefly at the definition of a definite integral.

Consider a function f(p) which is continuous on the interval [a,b], (a 4 b),

except at one or more points of the form p - a + t/N, where t - 1,2, ... N(b-a)

and is everywhere non-negative on this interval. The graph of this function

(using three grades as an example) can be represented by the following sketch.
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f(p) N

(e e e

f (5

PO l 2 n- 2 Pn(eP

intprva - i. n ech sgmet coosepoits l, e .. •n acide A h4

which is equal to Axi

Since all the intervals are equal, (5) can be written as

b-ab
a p

PO1 f i  P2 -n- " - P=-1 fPn n b eiito

interval I each shegfoeof (4), the sum of which we are seekins to

C 2 2smximie wit +espect ) O AX , + 2 ... + .fk~l Ax (5)tn~. hu,

c
1p l1 ndP2 2

whichp is eqa to E-pn-Ldp+

0 rOp 1  r-nCl+l
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1c
. nl D n

(r) dp + + (r)pr(lp)n-rdp (7)

P rC 2+ 1 p_ rck 1+

with respect to c 1 , U2 , c3, ... ckl, we have maximized the probability of

placing a lot in the correct grade given that it was selected at random from

a population of lots whose fraction defective has a uniform distribution on

the unit interval. Thus, the use which we have made of integration is

equivalent to placing a uniform prior distrubtion on p, the true lot fraction

defective.

Our problem now becomes one of choosing those values of c1, c 2 , ... Ck-l

which maximize (7) for given values of Pl, P2' P3 ... Pk-I and n.

As an example for the case k-3 (3 grades) we can illustrate graphically

by "operating-characteristic" curves the area which we wish to be a maximum.

1.0 Probability of assigningGrade A

Probability of

Probability as utgning

of assigning Prob. of Grade C

correct grade

The area we wish
to maximize is
indicated by the

shaded area

0 Pi p2Pl P2

percent defective

We now express s in (7) as

c c c
Pi 1 n ni P2  2 n n-i 2

a (i) pi (i-p) n-idp + / E (i)p (lp)n-i dp /
0 i-0 0 i-cl+l 0 i-C+l

n i P3 '3 n P2 3 n -( i
(i) p+ .1 Z (i) p (lp)1-idp - E (i) p (l-p) dp 4..+

0 i-c2+l 0 i-c2 l 
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IIp

"I .i -i n " pi n-i)
/e W (ip (1-p), dp (J (±plp)d(8 4

Integrate by parts: U- p dv -(I-p) dp,

dualp11 d V -(n-1+1)

n i n-i l P l 1 -11+1
( i) (-j + / i i l)

01 0

Pi

(I)n-+1~' (1p 1  +6/p (1-P) dP}

n -1 ± n-i+1 p

aW1 {~ p1 lp + /p 1 (-) 4 dpl
0

Integrate by parts: i - p d 1p

:L-2 ( 1 n-i+2
du a (i-i) P dp V -0 ±2

Now Q (1) 1p~-~ +nI+ 1 41J- -~-

I _-1 + 2 (1-joni+ dp}
n-i+1 --+

which equals, after simplification

Q m ( p (1-p1  n1 (n4)p + (1-p ) n-1+2
i- -;-l41

D~l 0
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which can be written as

1 ~ - + _- (i-i) 1. -2 (1)-i+2d

Again integrate -. i-+.

du - (1-2) p1 3 d V a -
(n-1+3)

I n+1 1+ 1- -i+3
Qa 1~ Z j ) i (1_Pl)f+l i iL-..1 ) 11P +*

i-+ i n+1 n+3-i2lpf ] 0

n +1 U,

A1) UJ 1-2 P1-3 (-~n3id

which equals, after same simplification

i n+l t+ 3
Qu....L. (Jp -.p)lj.... +Lt L)-2 +-
n+1 1 1 n+1 1.2 p1  (1-p1) +

n+1

* I and, combining terms

- i n+1 ni-2
(j i (,_1 ,n+1j~ + 16- / 1-3 .n3-1.

n+I P. 1+ -)/P 1P, d

thsContinuing to evaluate the integral by integrating by parts, we

i-ii

n+1 (mj)p (1 -p) lj + 1~ (tl) - o (1nd
n 1n+1

(i j) P, (I-I1) fl +1 n+ +

n+1-j1 P -- (0) (1-p1) +1~ 0
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£ (11) +- 11 i ~ l l j (_Pln+l- j +-- 1 p1( +(1+--'i'
n+1 J-O J

iwo1

+"' ±-) -
nl j 0 P,(1p,,

1 1 (p (1.. j)flilJ

f Thus, finally we have

n- 1 n+ l (1- )fl-i
G() pl (Ip)n-dp r J P(1 (-pl)

0n4l j i'1

and we have conveniently gone from the integral of a binomial to the sun

of another binomial expansion.

Now, making use of this expression in the original "a" equation,

we have "

1P c n c__ C n+1 ( j
o z p () -p ) dp . n (111) p1  -
0 Iwo n =l J-i+l

I ( )pl (1.p)n-idp n+l (n+1 i k)-
0 p+ (. + (i+ (1)i (0 )fl+'J
0

All terms in the summation vanish (- 0) except for the last term when

J n+l, where we have 1" ()n+l (0)0 - 1

and I (i) p -dp

0 ISO n+l

P2 b n p (I pnlp I b n+1 (n;) j~-
r (I) 1e ~-d n+1 ! r P2 1P 2)n-
SIwi-a J'i+l
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And-usjthes expressions in our original expression (8), we

have

1Cl n+l (nC ,(~ 2 n+1I (*~) 2

n1E Ii 1~ n-i-

C3

n-i-1-j - 1 02 n+1 n+-j~ + .L. EI

g(+ P2) ti+1 n i-c -+1
n-I1+1 -il 2m21 ju--

n+I +I n~l- E n2  n+ n--I.)nl-
( f )JP3(1-pP3n+13 E J P

(1m)+I -MC +2niir- 1 (i- 1 )L+ ~

n E ~ ( nl) P nZ-
1m01+1j j(iI-n+I nl k 1. - +

(j1p 1 (1..p)i PZln~ E (1-2
mj ~ IU 2 4 j+ imc+ -+

t r ( j ) Pj(-,n~
(lP)+ i mck +l jisI lLu.+ il

722

.....................
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1 +1 n+
n+-- [ r (1'P) (1-p ) +lJ +j 1)pr
.. j=l i 1c+2 Ji ) P

'. ~~~- c 2 +1 n+l 1 3in~ nl
(1p)n+l- r (j 1 ) plJ (-P 1 ) n+lj 0+1 n+1 n+1 P3

iSCl+2 J-i i-c2+2 j-i

n+lj c +1 n+1 +
S(1-P 3)n~' z j p2J (l-P2)n+l-j + .. + n-rk_1

i-ci+2 i-i

+1 n+l n+l j
E .i

iack-,+2 Jul J)P-1(-k1

which can be written as

+ 2+1 c2 +1
a * l/n+1 [ - p(x t i; n+l, pl) + E p(x ? i; n+l, p2 ) - E

i-1 1•€1+2 iuc +2
11

3+1 3c +1

p(x k I; n+l, pl) + Z . p(x 1 I; n+l, p3) - 3+ p(x I i; n+l, p2) +
:I~u2+2 imc2+2

n+l
+ n-ck.1- E p(x ! i; n+l, P

i-e.1 +2

where p(z k ig n+l, p) is defined to be the probabi.lity that the random variable x
is greater than or equal i if it has the binomial distribution with parameters

n+j and to

We nov make use of any convenient table of cumulative binomial probabilities

for several different valmes of n. Thus, for a fixed sample size and given quality

levels, P11 P20 P31 "" pk-l we can, by use of a high-speed electronic computer,

compute values of s for every cI, c2, "' 
0k-I combination and choose that

combination which gives the maximum value of a.'
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GENERAL APPLIC.:IJNS AND EXAMPLES.

The classification of a lot into two grades is, for most situations,
equivalent to either accepting or rejecting the lot. For example, a

quality control analyst might be willing to accept as satisfactory a 102

defect rate for flash bulbs. Thus, if he took a sample of 20 bulbs from

one hour's production, the appropriate tablu indicates he would allow one
defective sample before rejecting that hour's output.

For the Case K - 3

Here, the purpose might be to place a given lot of artillery fuzes

whinh have been in storage for some time into one of three grades, Grade

A, indicating those lots acceptable for unrestricted usel Grade B, those

lots generally acceptable with certain restrictions; and Grade C, those

lots unacceptable for future use.

Given a sample size of 45 and prescribed quality levels of 15% and 302,
the appropriate table indicates we would allow 6 defects for a Grade A lot and

up to 13 defects for a Grade B lot.

For the Case K a 4
An example here might be the case where an electronics dealer would be

willing to pay x dollars for a lot of batteries which are of Grade A quality,

y dollars (y 4 x) for a lot of Grade B quality, x dollars (a < y < x) for a

lot of Grade C quality and reject as unacceptable, lots of Grade D quality.

If for a sample of size 200, the respective quality levels are 12

(Grade A), 10% (Grade B), and 252 (Grade C), the appropriate table calls for

acceptance numbers 2, 20, and 50.

FURTHR DUCONMDATIOI. The use of the uniform prior distribution is

a fairly conservative approach but would seem to have realistic applications

for newly manufactured items or items for which little t known of the

functioning characteristics.
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It would be interesting to consider some other prior distributions.

A simple one, which seems both reasonable and easy to handle mathematically

I would be to assume p is uniformly distributed on the interval [0, 0.501, I.e.,

assume that no lot is more than 502 defective and guard against misgrading

any lot with fraction defective between 0 and 50Z with equal protection.

Another interesting distribution to consider would be

f (p) -2 (1-p) 0 S p S<I,:

- 0 otherwise

This distribution &so es lots with p almost zero are most likely in

the stockpile, lots with p almost equal one are quite rare and the

probability that a s p 1 b increases linearly as a and b :Incrcase.
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I
...... .. .SAMPLE SIZE

0 .> 20 25 30 35 40 45 50
.01 0 0 0 0 0 0 0 0 0
.02 0 0 0 0 .0 0 0 u 0
.03 0 0 a 0 0 0 0 0 0

.05 0 0 0 0 1 1 2 2 1o6 0 o 0 0 1 1 1 2 2

.07 0 0 0 1 1 1 2 2 2

.08 0 0 1 1 2 2 2 3 3

.09 0 0 1 1 2 2 3 3 3

.10 0 0 1 1 2 2 3 3 4

.11 0 1 1 2 3 3 4 4

.12 0 1 1 2 3 3 4 4 5

.13 0 1 2 2 3 4 5 6.14 0 1 2 3 3 4 5 5 6
-15 1 1 2 3 4 4 5 6 7
.16 1 1 2 3 4 5 5 6 7
.17 1 2 2 3 4 5 6 7 8
.18 1 2 3 4 4 5 6 7 8
.19 1 2 3 4 5 6 7 8 9
.20 1 2 3 4 5 6 7 8 9
.21 1 2 3 4 5 6 8 9 10
.22 1 2 4 5 6 T 8 9 10
.23 1 3 4 5 6 T 8 9 11
.24 2 3 4 5 6 8 9 10 11
.25 2 3 4 5 T 8 9 10 12
.26 2 3 4 6 T 8 1o .11 12
.27 2 3 5 6 7 9 10 11 13
.28 2 3 5 6 8 9 10 12 13
.29 2 4 5 6 8 9 11 12 14
.30 2 4 5 7 8 1o 11 13 14
.31 2 4 5 7 9 10 12 13 15
.32 2 4 6 7 9 10 12 14 15
.33 3 4 6 8 9 11 12 14 16
.34 3 4 6 l 9 11 13 15 16
.35 3 5 6 8 10 12 13 15 17
.36 3 5 7 8 10 12 14 16 17
.37 3 5 7 9 10 12 14 16 18
.38 3 5 7 9 1, 13 14 16 .8
.39 3 5 7 9 11 13 15 17 19
.4o 3 5 7 9 11 13 15 17 19
.41 3 6 8 10 12 14 16 18 20
.42 4 6 8 1o 12 14 16 18 20
.43 4 6 8 1o 12 14 17 19 21
.44 4 6 8 1o 33 15 17 19 2.
.145 4 .6 8 11 13 15 17 20 22
.46 4 6 9 11 13 16 18 20 22
.47 4 7 9. 11 14 16 18 21 23
. 4 7 9 11. 14 16 19 21 23
.49 4 7 9 12 14 17 19 22 24
.50 4 T 9 12 14 17 19 2. 24
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THREE GRADES N-oo

iP 2 .0 1 .0 2 .0 3 .0 .4 .0 5 - 0 6 - A0 T .0 8 .0 9 . 3 0 . 1 1 .I L 1 3 . 1 4 .1 5

Ii.03 0,1 0,1
.:.0 4 0 .1 0 , 1 0 ,iIlj

.. 05 0,1 0,1 0,1 0,1
.06 0,i 0,1 0j ,i ,0I
• 07 0,1 0,1 0,1 0,1 0,i 0,1

Ii.08 0,1 0,i Oi l ,i , 0 , l ,
.09 0,i 0,i 0,i 0,i 0,i 0,i 0,i 0,i

.10 ,i 0,i 0,I O' 0, 1 ,I 0,1 0,1 0,i 0,

.12 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 ,1 0 , 1 0 , 1 0 , 1 0 , 1 0 .1

S.13 0,1 0,1 0,1 0,1 0,1 0 .1 0,1 0,1 0,1 0,1 0,1 0,1
•.14 0,1 0,I 0,1 0,1 0,i 0,i 0,1 0,1 0,1 0,1 0,i 0,i 0,1
!!.15 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0, i 0,1 0,1 0,1
i!.16 0 , 1 0 , 1 0 , 1 0 , 1 0 ,i 0 , 1 0 , 1 , 1 0 , 1 0 ,i 0 , 1 o .1 0,I 0 ,i 0 , l

• 17 0,1 0,1 0 .1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
il. 8 o 'l o 'l o ,1 o 'l o 'l o 'l o 'l o 'i o ,I o ,1 o 'i o 'l o 'i o , o , 1

'.19 0,i 0,i 0,i 0,i O,1 0 1 0,i 0,i 0,i 0,i 0,i 0,i 0,i 0,i 0,i I
.20 0,1 0, 1 0, 1 0,1 0,1 0 ,1 0,1 0,i 0 ,1 0,1 0 ,1 0,1 0,1 0 ,1 0 1 '
.21 0,1 0,1 0,1 0,1 0,1 0,1 0,I' 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
.22 0,1 0,1 0,1 0,1 0,1 0,1 ,1 0,1 0,1 0,1 0,1 0,i 0,1 0,1 0,1
23 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 o .1 0,1 0,1 0.1 0,1
.4 ,2 0,2 0,2 0,2 ,2 0,2 0,1 0,1 0,1 0,1 0 ,1 0,1 0,I 0,o' ,
25 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,1 0,1 0,1 12 1,2

•26 0,2 0,2 ,2 0,2 ,2 0,2 0,2 0,2 ,2 0,2 0,2 0,2 1,2 1,2 1,2
.27 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 ,2 0,2 0,2 0,2 1,2 1,2 1,2
.28 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0 2 0,2 0,2 0,2 0,2 0,2 12 1,2
.9 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0 2 0,2 0,2 1,2 ,2
.30 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 U2 1,2 ,2'
.31 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 1,2 ,2
• 3 2 0, 2 0 ,2 0 , 2 0 ,2 0, 2 0, 2 0 , 2 0 ,2 0 ,2 0, 2 0, 2 0, 2 0 ,2 1, 2 1 ,2 '

33 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 03 0,3 0,2 1,2 ,2
• 34 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0 3 03 0,3 0,3 1,3 1,3

35 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 l,3
.36 0,3 0,3 03 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 1,3
.37 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 1,3
.38 0,3 0,3 0,3 0,3 0,3 0,3 0,3 03 0,3 0,3 03 0,3 0,3 0,3 1,3
•39 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,0 0,3 03 0,3 0,3 0,3 1,3
• 40 0,3 0,3 0,3 0 3 0,3 03 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 1 3
.41 0,3 0 3 0,3 0 3 0,3 0,3 0, 3 0 3 0,3 0,3 0,3 0,3 0,3 0,3 1,3
42 o,4 o,4 o,4 o,4 0,4 0,4 0,4 0,4 0,4 o,4 o,4 o,4 0,3 0,4 1,4

.:43 0,4, 0,4 0,4 0, 4 O,4 0,4 0,4 0,4 0,4 0,4, 0,4 0,4 0,3 0,4 1,.4
44 o5,4 o,4 o, 4~ o 04o 0,4 o,4 oh 4~ 0, 0.4 0, ). 0.3 0,4 3.,4

i .O~ 0, O~ 0, O~ O~ 0, O~ O~ 0, O~ 0, 0,3 0 1,4
.467 o,4 o,4 0,4 0,4 0,4 0,4 o,4 o,4 0:4 0,4 o,4 o,4 0,3 0,4 1,4
.-84T~ 0,4 0, o, o, o, 0, o, o, 0 , , , 0,3 0,4 1,4
.49 10,4 O0 4 0,4 o,4 o,4 0,4 0,'4 0,4 0,4 0,4 0,4 0,4 0,3 0,4 1,4

.5 0 0, 4 0 , 4 0 , 4 0, 4 0 ,4 0 , 4 0 ,4 0 , 4 0 , 4 0, 4 0 , 4 o ,4 0 ,3 0, 4 1, 4 '

....... . ....



TQ GADES N=10

P2 .16 .17 .. 8 .19.20 .21 .;-P 5) .2 . .

.03
0 4

.05
06

.07

.08

.09

.10

.11

.12

.13.14

.15

.16

.17 0,1

.18 0,1 0,1

.19 0,1 0,1 0,1

.20 0,1 0,1 1,2 1,2

.21 0,1 1,2 1,2 1,2 1,2

.22 1,2 1,2 1,2 1,2 1,2 1,2
•23 1,2 1,2 1,2 1,2 1,2 1,2 1,2
• 24 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
.25 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
•26 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
.27 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
.28 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2.29 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 2,3 2,3, 30 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 2,3 2,3 2,3 2,3.31 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 2,3 2,3 2,3 2,3 2,3 2,3.32 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 2,3 2,3 2,3 2,3 2,3 2,3 2,3.33 1,2 1,2 1,2 1,2 1,2 1,2 1,2 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3.34 1,3 1,2 1,2 1,2 1,2 1,2 2,3 2,3 2,3 2,3 2,3 2,3 2,3 ',3 2,3.35 1,3 1,3 1,3 1,3 1,2 1,2 2,3 2,3 2,3 2,3 2,3 2,3 2,3 ,3 2,3.36 1,3 1,3 1,3 1,3 1,3 a,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 ,3 2,337 1,3 1,3 1,3 1,3 1,3 1,3 2,3 2,3 2,3 2,3 2,3 2,3 23, 2 3 2,3.38 1,3 1,3 1,3 1,3 1,3 1,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 ',3 2,3
39 1,3 1,3 1,3 1,3 1,3 1,3 2.3 2,3 2,3 2,3 2,3 2,3 2,, '',3 2,3.o 1,3 1,3 1,3 1,3 1,3 1,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3.41 1,3 1,3 1,3 1,3 1,3 1,3 2,3 2,3 2,3 2,3 2,3 2,3 2,,3 2,3 2,3.42 1,4 1,4 1,4 1,4 1,3 1,3 1,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3.43 1,4 1,4 1,4 1,4 1,4 1,4 1,4 2,4 2,3 2,3 2,3 2,3 2,3 2,3 2,3.44 11,4 1,4 1,4 1,4 1,4 1,4 1,4 2,4 2,4 2,4 2, 4 2,4 2,4 2,3 3,4. 1,4 1,4 1,4 1,4 1,4 1,4 1,4 2,4 2,4 2,4 2,4 2,4 2,4 2,4 3,4.46 1,4 1,14 1,4 1,4 1,4 1,4 1,4 2, 4 2,4 2,4 2,4 2,4 2,4 2,4 3,4

.147 1,14 1,4 1,14 1,14 1,4 1,4 1,14 2,14 2,4 2,14 2,4 2,14 2,4 2,4 3,4.48 1,4 1,4 1,4 1,4 1,4 1,4 1,4 2,4 2, 2,4 2,C4 2,4 2,4 2,4 3,4
49 1,14 1,14 1,14 1,14 1,4 1,4 1,14 2,14 2,14 2,14 2,14 2,14 2,14 2,4 3,4.50 1,4 1,4 1,4 1,4 1,4 1,4 1,4 2,4 2,4 2,4 2,4 2,4 2,4 2,4 3,4

80



THREE GRADES N'15

P2 .01 .02. .o .o5 .06 .01 .08 .09 .10 .11 .12 .13 .114
.02 0,1
.03 0,1 0,1
.o4 0,1 0,1 0,1
.05 0,1 0,1 0,1 0,1
.06 0,1 0,1 0,1 0, 0,1.07 0,1 0,1 0,1 0,1 0,1 0,1

.09 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1

.12 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1

.13 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1

.i 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 1,2

.15 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 1,2 1,2 1,2

.16 O,i 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 1,2 1,2 1,2 1,2 1,2

.17 0,2 0,2 0,2 0,2 0,2 0,1 0,1 0,1 0,1 1,2 1,2 1,2 1,2 1,2 1,2

.18 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

.19 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

.20 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 1,2

.21 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 1,2

.22 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 1,2

.23 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,2 1,2 1,2 1,2 1,2 1,2 1,2

.24 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 1,3 1,3 1,3 1,2 1,2 2,3

.25 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 1,3 1,3 1,3 1,3 1,3 2,3

.26 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 1,3 1,3 1,3 1,3 1,3 2,3

.27 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 1,3 1,3 1,3 1,3 1,3 2,3

.28 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 1,3 1,3 1,3 1,3 1,3 2,3

.29 0,4 0,4 0,4 0,4 o,4 0,4 0,4 0,4 0,4 1,4 1,4 1,3 1,3 1,3 1,3

.3o 0,4 0,4 0, 0,4 0,4o 0,4 0,4 0,4 0,4 014 1,4 1,4 1,4 1,4 1,4

.33 0,1 0,4 0,4 o,4 0,4 0,4 0,4 o,4 0, 4 14 1,4 1,4 1,4 1,4 1,W
•32 o,4 4 ,4 0,4 0o,4 0,4 0, 4 o,4 0,4 o,4 o,4 1,4 1,4 1,4 1,4 1, 4
.35 0 , o,4 o,4 o,5 o,4 0,5 0, 0,5 0, 1,4 1,4 1,5 1,5 1,1.
.34 o,5 0,5 0,5 o,4 0,4 0,4 0,4 0,4 0,4 0,5 1,4 1,5 1,5 1,5 1,5
.37 0,5 0,5 0,5 0,5 0,95 0,5 0,95 0,5 0,5 0,5 1,5 1,5 1,5 1,5 1,I
•36 0,5 0,5 0,5 0,5 0, 5 0,5 0,5 0,5 0 , 0, 5 1, 5 1,5 1,5 1.5 1,5
39 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 1,5 1,5

.38 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 1,5 1,5

.314 0,5 0,6 0,6 0,6 0,6 0,6 01 0 0,5 0,6 1,6 1,5 1,6 1,6 2,5

.42 0,5 0,6 0,6 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1,6 1,5 1*5 1,6 1,5

.1 0,6 0,6 0,6 o,6 0,6 0,6 0,6 0,6 0,6 0,6 1,6 1,6 1,6 1,6 1,6

.142 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 1,6 1,6 1,6 1,6 1,6

.43 0,6 0,6 o,60 o,6 ,6 o,6 o,6 o,6 o,6 0,6 1,6 1,6 1,6 1,6 1,6

.44 0,6 0,6 0,6 0,6 o,6 0,6 0,6 0,6 0,6 0,6 1,6 1,6 1,6 1,6 1,6

.47 0,7 0,7 0,7 o,6 o ,7 ,7 0,7 0 6o,7 0,7 1, 61,6 1,6 1,6 1,6

.46 0,6 0,6 0,6 0,6 0,6 0,6 0,7 0,6 0,6 0,6 1,7 1,6 1,6 1,6 1,6.47 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 1.7 1,6 1.7 1.6 1,6

.4 o7 ,7 0,7 0,T 0,7 0,7 Oil 097 0,7 0,7 0,7 1,7 1,7 1,7 197 1,7

.49 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 1,7 1,7

.50 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 1,7 1,7

.81



THREE GRADES N-15

P1
P2 .16 .l7 .18 .i9 .20 .21 .22 .23 .24 .25 .26 .2T .28 .29 .30
.02
.03
.o4
.05r .o6
.06

.09

.10
.11
.12
.13
.14
.15
.16
.17 1,2
.18 1,2 1,2
.19 1,2 1,2 1,2
.20 1,2 1,2 1,2 2,3
.21 1,2 1,2 2,a 2,3 2,3
.22 1,2 2,3 2, 2,3 2,3 2,3
.23 2,3 2,3 2,3 2,3 2,3 2,3 2,3
.24 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
.25 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
.26 2,3 2,3 2,3 2,3 2.3 2,3 2,3 2,3 2,3 3,4
.27 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 3,4 3,4 3.4
.28 2,3 2,3 2,3 2,3 2,3 2,3 2,3 3,N 3 4 3 4 3,4 3,
.29 2,3 2,3 2,3 2, 2,3 3, 4 3,4 3, 4 3, 4 3,4 3,4 3,4 3,4
.30 2,4 2,3 2,3 2,3 2,5 3,5 3,4 3,5 3,4 3,4 3,43 43 4 3,4 3,4
.31 2,5 2,5 2,5 23 2, 34 3,4 3,4 3, 34 3:4, 34 3,4 3, 3,4
.32 2,5 2,4 2,5 2,5 2,5 3,5 3,5 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4
33 2,5 2,4 2,5 2,5 2,54 3,4 3, 3,5 3, 3 3,5 3,4 3,5 3,5 3,5
.3 2,6 2,6 2,4 2,5 2,4 3,5 3,5 3,4 3'5 3,5 3,4 3,4 3,5 3,4 4,5
.3 2,6 2,6 2,6 2,6 2,6 3,6 3,4 363,6 3 3 3,4 3 , 4,5 4, 4,5
•36 1,6 2,5 2,6 2,5 2,5 3,6 3,6 3,6 3,6 3,4 3,6 3,6 4,6 4,5 4,5
.37 1,6 2,5 2,5 2,5 2, 3,5 3, 5 3, 3,5 3,6 3 ,6 ,5 4,5 4,5 4,5
.38 1,5 2,5 2,6 2,5 2,5 3,5 3,53 3,5 3,5 3,5 4,5 4, 4,5
.2 1 2,5 2,6 2,5 2,5 3,5 3 3,5 3,6 3,5 3,5 ,, 4,5 4,5 4,6
•.40 1,5 2,6 2,5 2,5 2,5 3,5 3,5 3,5 3,5 3,5 3,5 4,5 4,5 4,5 4,5
.412 1,6 2,6 2,5 2,5 295 3,5 3,5 3,5 3,5 3,5 3,5 4;,5 4,5 4,5 4,5

.42 1,6 2,6 2,7 2,6 2 2,6 2,6 3,6 3,6 3,6 3,6 3,6 4,6 4,6 4,6

.435 1,6 2,6 2,6 2 ,6 2,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 4,,6 4, 5,,6

.446 1,6 2,6 2,6 2,6 2,6 2,6 2,6 3,6 3.6 3.6 3,6 3,6 4,6 4,6 4.6
45 . 1& 6 2,6 2,6 2,6 2,6 2,6 2,6 3,6 3.6 3,6 3,6 3,6 4,6 4,6 4,6

.48 1,7 2,7 2,7 2,7 2,7 2,7 2,7 3,7 3,7 3,7 3,7 3,6 4,7 4,7 4,6

.49 1,7 2,7 2,7 2,7 2,7 2,7 2.' 3,7 3,7 3.7 3,7 3,7 4 ,7 4,7 4,

.50 1,7 2,7 2,T 2,7 2,T 297 2,1 397 3,7 3,7 3,7 3,7 3,7 4,7 4,7
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THREE GRADES N,20

P2,
P2 .01 .02 .03 .x4 .05 .06 .07 .8 .09 .10 .11 .12 .13 .14 . 5
.02 0,1
.03 0,1 0,1
.0x4 0,1 G,1 0,1
.05 0,1 0,1 0,1 0,1.o6 o,l o,l o.1L o,l oi[l.06 0,1 0,i 0,1 0,1 0,1 i

.07 0,1 0,1 0,1 Cl 0,1 0,1

.08 0,1 0,1 0,1 0,1 0, Ol Ol

.09 0,1 0,1 0,1 0, 0,1 0,1 0,1 0,1• i0 0 , I 0 ,1 0 , i O 'l 0 i v , I , i 0 ,iO l '

.11 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 1,2

.12 0,1 0,1 0,1 0,1 0,1 0,1 0,l 0,1 1,2 1,2 1,2

.13 0,2 0,2 0,2 0,2 0,1 0,1 0,1 1,2 1,2 1,2 1,2 1,P

.14 0,2 0,2 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 1,2 J.,2

.15 0,2 0,2 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

.16 0,2 0,2 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 2,3 2,3

.l7 0,2 0,2 0,2 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 2,3 2,3 2,3

.18 0,3 0,3 0,3 0,3 0,3 0,3 0,3 1,2 1,2 1,2 1,2 2,3 2,3 2,3 2,3

.19 0,3 0.3 0,3 0,3 0,3 0,3 .0,3 1,3 1,3 1.3 2,3 2.3 2,3 2,3 2,3

.20 0,3 0,3 0,3 0,3 0,3 -0,3 0,3 1,3 1,3 1,3 2,3 2,3 2o3 2,3 2,3

.21 0,3 0,3 0,3 0,3 0,3 0,3 0,3 1,3 1,3 1,3 1,3 2,3 2,3 2,3 2,3

.22 0,4 O h o,4 o,4 0,4 0,4 o,4 1,3 1,3 1,3 1,3 2,3 2,3 2,3 2,3

.23 0,4 n,4 o,4 o,0 4 o0,4 0,4 0,1 ,4 1,4 1,4 1 ,4 2,3 2,3 3

.24 o,4 0,4 0,o4 0,4 0,4 o,4 0,4 1,4 1,4 1,4 24 2,4 2, 4 2,4 2,3

.25 O,k 0,4 ,1 0, 4 0,4 o,4 0,14 ,4 1,14 i,4 1,4 2,4 2,4 2,4 2,4

.26 0.4 0,4 o,4 0,4 0,4 o,4 0,4 1,4 1,14 .,4 1,4 2,4 2,.4 2,4 2,4

.27 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1,5 I,5 1,5 1,5 1,5 2,4 2,4 2,4

.28 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 1,5 1,5 2,5 2,5 2,5.29 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 1,5 1,5 2,5 2,5 2,5

.30 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 1,5 1,5 2,5 2,5 2,5

.31 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 1,5 1,5 2,5' 2,5 2,5

.32 0,6 0,6 0,6 c,6 0,6 o,6 0,6 1,6 1,6 1,6 1,6 1,6 2,6 2,6 2,6

.33 0,6 0, 6 0,6 0,6 0,6 0,6 0,6 1,6 2,6 1,6 1,6 1,6 2,6 2,6 2,6

.34 0,6 0,6 0,6 0,6 0,6 0,6 0,6 1,6 1,6 1,6 1,6 1,6 2,6 2,6 2,6

.35 0,6 0,6 0,6 0,6 0,6 0,6 0,6 1,6 1,6 1,6 1,6 1,6 2,6 2,6 2,6

.36 0,7 0,7 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 1,7 1,7 2,7 2,6 2,6

.37 0,7 0,7 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 1,7 1,7 2,7 2,7 2,7

.38 0,7 0,7 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 1,7 1,7 2,7 2,7 2,7
39 0,7 0,7 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 1,7 1,7 27 2,7 2,7
.40 0,7 0,7 0,7 0,7 0,1 0,7 0,7 1,7 1,7 1,7 1,7 1,7 2,7 2,7 2,7.41 0,8 0,8 0,8 o,b 0,o 0,8 0,8 1,8 1,8 1,8 1,8 1,8 2,8 2,8 2,8
.42 0,8 0,8 0,8 0,8 0,8 0,8 0,8 1,8 1,8 1,8 1,8 1,8 2,8 2,8 2,8.43 o,8 o,8 0,8 0,8 0,8 0,8 0,8 ,8 1,8 1,8 1,8 1,8 2,8 2,8 2,8
4 0,8 0,8 0,8 0,8 0,8 0,8 0,8 1,8 1,8 1,8 1,8 1,8 2,8 2,8 2,8

.45 0,8 0,8 0,8 0,8 0,8 0,8 0,8 1,8 1,8 1,8 1,8 1,8 2,8 2,8 2,8

.46 0,9 09 0,9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 1,9 1,9 2 19 2,9 2,9
S.47 0,9 0,9 0,9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 1,9 1,9 2,9 2,9 2,9
.48 0,9 0,9 0,9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 1,9 1,V 2,9 2,9 2,9.49 0,9 0,9 0,9 09 019 0,9 0,9 1,9 1,9 1,9 1,9 1,9 2,9 2,9 2,9..50 0,9 0,9 0,9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 1,9 1,9 2,9 2,9 2,9
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II

THREE GRADES N-20

Pi
P2 .16 .17 .18 .19 .20 -P .22 .23 .24  .25 .26 .27- .28 .29 .30
02

.03

.05o06

.07

.08

.09

.10
.11
.12

.114

.15

.16

.17 2,3

.18 2,3 2,3

.19 2,3 2,3 2,3

.20 2,3 2,3 2,3 3,4

.21 2,3 2,3 3,1 4 3, 4 3,1 4

.22 2,3 2,3 3,14 31 4 3,14 3,4

.23 P,3 3,14 3,14 3,14 3,14 3,14 3,14
.24 2,3 3,4 3,4 3,4 3,4 3,4 3,4 3,4
.25 2,14 3 4 3,4 3,14 3,4 3,4 3,4 3,4 4,5
.26 2,4 3,4 3,14 3,14 3,4 3,4 2,4 4,5 4,5 14,5
.27 2,14 3,14 3,14 3,14 3,14 3,14 4 5 4,5 4,5 4,5 4,5
.28 2,5 3,1:4 3,1:4 3,4 3,4 4,5 4:,5 4,5 14,5 4,5 4,5 4,5
.29 2,5 3,5 3,5 3,5 14,5 15,5 ,5 4,5 4, 5 4,5 4,5 ,5 14,5
.30 2,5 3,5 3,5 3,5 5 14 ,5 4,5 4,,5 14,5 4,5 4,5 5,6 5,6
.31 2 ,5 3, 5 3,5 3,5 4 , ,54 54,5 4,5 4,s ,5 14,5 5,6 5,6 5,6 5,6
.32 2,6 3,6 3,5 3,5 3,5 4,5 1, . 5 4,5 14,5 5,6 5,6 5,6 5,6 5,6
.33 2,6 3,6 3,6 3,6 3,6 4,6 4 ,5 4,5 4,5 5,6 5,6 5,6 5,6 5,6 5,6
.34 2,6 3,6 3,6 3,6 3,6 4,6 :,6 4,6 5,6 5,6 5,6 5,6 56 5,6 5,6
35 2,6 3,6 3,6 3,6 3,6 4,6 4,6 46 46 5,6 5:,6 5:,6 5,6 5,6 5,6

.36 2,6 3,6 3,6 3,6 3,6 3,6 ,6 :,6 4,6 5,6 5,6 5 ,6 5,6 5,6 5,6

.37 2,7 3,7 3,7 3,7 3,7 3,7 4,7 4,6 4,6 5 ,6 5,6 5,6 5 ,6 5,6 5,6

.38 2,7 2,7 3,7 3,7 3,7 3.7 .,7 4,7 4,7 4,7 5,7 5,6 5,6 5,6 6,7

.39 2,7 2,7 3,7 3,7 3,7 3,7 .,7 4,7 4,7 4,7 5,7 5,7 5:,7 6,7 6,(

.40 2,7 2,7 3,7 3,7 3,7 3,7 ,7 ,7 4,7 4,7 5,7 5,7 5,7 6,7 6,7

.1 2,8 2,8 3,8 3,8 3,8 3,8 4,84,8 47 4,7 5,7 5,7 5,7 5,7 6,7

.42 2,8 2,8 3,8 3,8 3,8 3,8 4,8 4,8 4,8 4,8 5,8 5,8 5,7 5,7 6,7

.43 2,8 2,8 3,8 3,8 3,8 3,8 4,8 1 ,8 14,8 4,8 5,8 5,8 5,8 5,8 6,8

.144 2,8 2,8 3,8 3,8 3,8 3,8 14,8 1 ,8 .,8 4,8 4,8 5,8 5,8 5,8 .,8

.45 2, 2,98 3,8 3,98 ,8 3,8 4,8 4,8 8 , 14,8 4,8 5,8 5,8 5,8 6,8

.16 2,9 2,9 3,9 3,9 3,9 3,9 1,9 1,9 1,9 1,9 1,9 5,89 5,9 5,8 5,8

.147 2,9 2,9 3,9 3,9 3,9 3,9 4,9 4,9 4,9 4,9 4,9 5,9 5,9 5,9 5,9

.48 2.,9 2,9 3,9 3,9 3,9 3,9 4,9 4,9 4,9 4,9 4,9 5,9 5,9 5,9 5,9

.49 2,9 2,9 3,9 3,9 3,9 3,9 4,9 4,9 4,9 4,9 4,9 5,9 5,9 5,9 5,9

.50 2,9 2,9 3,9 3,9 3,9 3,9 4,9 4,9 4,9 4,9 4,9 5,9 5,9 5,9 5,9
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II

THREE GADE8 Nm25

P1.1P2 .01 .02 .0 4_.o5.06 .-. 08 .09 .10 .11. .12 13 .14 .15.02 0,1 0,. .0. .
.03 0,1 0,1.04 0,i 0,1 0,i

.05 0,1 0,1 0,1 0,1

.06 0,i 0,1 0,1 0,1 0,1

.08 0,1 0,1 0,1 0,1 0,1 0,1 0,1

.09 0,1 0,1 0,1 0,1 0,1 0,1 0,1 1,2

.10 0,1 0,1 0,1 0,1 0,1 0,1 1,2 1,2 1,2..

.11 0,2 0,2 0,2 0,2 0,1 0,1 1,2 1,2 1,2 1,2

.12 0,2 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 1,2 2,
•13 0,2 0,2 0,2 0,2 0,2 1,2 1,2 12, 1,2 1,2 2,3 2,3 2,
.1 0,3 0,3 0,2 0,2 0,2 1,2 1,2 1,2 1,2 2,3 2,3 2,3 2,3
15 0,3 0,3 0,3 0,3 0,3 1,3 1,3 1,2 1,2 2,3 2,3 2,3 2,3 2,3
•16 0,3 0,3 0,3 0,3 0,3 0,3 1,3 1,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
.17 0,3 0,3 0,3 0,3 0,3 0,3 1,3 1,3 1,3 2,3 2,3 2,3 2,3 2,3 3,4
S.1 0,4 0, 0,4 0,4 0,o4 0,o4 1,3 1,3 1, 2,3 2,3 2,3 2,3 3,4 3,4
.20 0,4 0,4 0,4 c,4 o,4 o,4 1,4 1,4 1,4 2,4 2, 24 3,,4 3,4 3,4
.21 0,4 4 o,4 0,14 0,o4 0,o4 1,14 1,4 1, 4 2,14 2,4 2, 4 3,4 3,4 .3,4
.22 0,5 0,5 0,5 0,5 0,5 0,5 1,3 1,5 1,5 2,5 2,4 2,:4 3,4 3, 4 3, 4.23 0,5 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 2,$ 2,5 2,5 3,5 3,4 3, 4.42 0,5 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 2,5 2,5 2,5 2,5 3,5 3,5
•25 0,5 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 2,5 2,5 2,5 2,5 3,5 3,5.26 0,6 0,6 0,6 o,6 0,6 0,6 1,6 1,6 1,6 1,6 2,6 2,6 2,6 3,6 3,5
.27 .,6 0,6 o0,6 o,6 o,6 0,6 1,6 1,6 1,6 1,6 2,6 2,6 2,6 3,6 3,6
.28 0,6 0,6 o,6 0,6 0,6 0,6 1,6 1,6 1,6 1,6 2,6 2,6 2,6 3,6 3,6
•29 0,6 0,6 0,6 0,6 0,6 0,6 1,6 1,6 1,6 1,6 2,6 2,6 2,6 3,6 3,6
.30 0,7 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 1,7 2,7 2,7 2,7 3,7 3,7.31 0,7 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 1,7 2,T 2,7 2,7 3,7 3,7
.32 0,7 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 1,7 2,7 2,7 2,7 3,7 3,7
.33 0,8 0,8 0,8 0,8 0,8 0,8 1,8 1,8 1,8 1,8 2,8 2,8 2,8 3,8 3,7.34 0,8 0,8 0,8 0,8 0,8 0,8 1,8 1,8 1,8 1,8 2,8 2,8 2,8 3,8 3,8.35 0,8 0,8 0,8 0,8 0,8 0,8 1,8 1,8 1,8 1,8 2,8 2,8 2,8 3,8 3,8
.36 0,8 0,8 o,8 0,8 o,8 0o,8 1,8 1,8 1,8 1,8 2,8 2 F 2,8 3,8 3,8.37 0,9 0,9 0,9 0,9 0,9 0,9 1,9 i,9 1,9 1,9 2,9 2,9 2,9 3,9 3,9
.38 0,9 0,9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 1,9 2,9 2,9 2,9 3,9 3,9.39 0,9 0,9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 1,9 2,9 2,9 2,9 3,9 3,9.40 0,9 0,9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 1,9 2,9 2,9 2,9 3,9 3,9.41 0,10 0,10 0,10 0,10 0,10 0,10 1,10 I,1O 1,10 I,10 2,10 2,10 2,10 3,10 3,10
.42 0,10 0,10 0,10 0,10 0,10 0,10 1,10 1,10 1,10 1,10 2,10 2,10 2,10 3,10 3,10
.43 0,10 0,10 0,10 0,10 0,10 0,10 1,10 1,10 1,10 1,10 2,10 2,10 2,10 3,10 3,10
.144 0,10 0,10 0,10 0,10 0,10 0,10 1,10 1,10 1,10 1,10 2,10 2,10 2,10 3,10 3,10.45 O,11 0,11 0,1I o,11 o,11 0,11 lol 1,11 1,11 1,11 2,11 2,11 2,13. 3,11 3,11
.46 0,11 0,11 o,11 O,1 0,11 0,11 1,11 1,11 1,11 1,11 2,11 2,11 2,11 3,11 3,11.T7 0,11 0,11 0,11 0,11 0,11 0,11 1,11 1,11 1,11 1,11 2,11 2,11 2,11 3,11 3,11
.8 0,11 0,11 0,11 0,11 0,11 0,11 1,11 1,11 1,11 1,11 2,11 2,11 2,11 3,11 3,11
•49 0,12 0,12 0,12 0,12 0,12 0,12 1,12 1,12 1,12 1,12 2,12 2,12 2,12 3.12 3,12
.50 0,12 0,12 0,12 0,12 0,12 012 1,12 1,12 1,12 1,12 2,12 2,12 2,12 3,12 3,12

I 85

S.~.... . . . . . . .....



THREE GRADES Nw25

P1
P2 .16 .17 .18 .19 .20 .21 .22 .23 2.4 .25 2.6 .27 .28 ,P9 An
.02
.03

.05

.06

.07

.08

.09

.10

.11

.12

.13
.14
.15
.16

.7 3,4
.18 3,14 3,4
.9 3,4 3,4 3,4
.20 3,4 3,4 3,4 3,4
.21 3,4 3,4 3,4 4,5 4,5
.22 3,4 3,4 4,5 4 ,5 4:,5 4,5
.23 3,4 4,5 4,5 4:5 4,5 4,5 4,5
.4 4,5 4.5 4,5 4,5 4,5 4,5 4,5 5.6

.25 3,5 4,5 4,5 .5 4 ,5 4,5 5,6 5,6 5,6
26 3,5 4,5 4,s 4,5 4,5 5,6 5,6 5,6 5,6 5,6.27 3,6 4,6 4,5 4,5 5,6 5,6 5,6 5,6 5.6 5,6 5,6

.28 3,6 4,6 4,6 4,6 5,6 5,6 5,6 5,6 5,6 5,6 5,6 6,7.29 3,6 4;,6 4,,6 4 ,6 5,6 5,6 5,6 5,6 5,6 5,6 6,7 6,7 6.7
30 3.7 3.7 4.6 4 ,6 5,6 5,6 5,6 5,6 5,6 6,7 6,7 6,7 6,7 6,7

.31 3.7 3,7 4,7T 4.7 4,7 5,7 5,6 5,6 6,7 6.7 6,7 6,7 6,676,

.3 3,7 3,7 4,7 4,7 4,7 5,7 5,7 6,7 6,7 6,7 6,7 6,T 6,7 6,7 7,8.33 3.T 3,7 4,7 4.7 4.7 5.7 5,T 5.7 6.7 6.7 6.7 6,T 67 6.7 7,8

.34 3,8 3,8 4,8 4,8 4,8 5,8 5,7 5,7 6,7 6,7 6,7 6,T 6,7 7,8 7,8
•35 3,8 3,8 4,8 4,8 48 5, 5 5,8 5,8 6,6 .7 6 6,7 6,7 6,78 78
• 36 3,8 3,8 4,8 4,8 4 ,8 4.,8 5,8 5,8 5,8 6,8 6.8 7,8 T,8 T,8 TO

.3 , , 9 9E9 4,.8 5,8 5,8 5,8 6,8 68 8 7 8 7,87,
.37 3.9 3,9 4,9 4.9 ., TO T
.38 3,9 3,9 .,9 4,9 4 ,9 4,9 5,9 5,9 5,9 6,9 6,8 6,8 7,8 7,8 7,8
•.40 3,9 3,9 4 ,9 4,9 4,9 4.,9 5,9 5,9 5,9 6,9 6 9 6,9 7,9 7.9 7,9

41 3,10 3,10 4,10 4,10 4:,10 4,10 5,10 5,10 5,10 6,10 6,9 6,9 6,9 7,9 7,9
.42 3,10 3,10 4,10 4,10 4,10 4,10 5,10 5,10 5,10 6,10 6,10 6,10 6,10 7,10 7,9
.43 3,10 3,11 4,lo 4,O 4,11 4,10 5,10 5,10 5,10 5,11 6,10 6,10 6,10 7,10 7,10

.46 3,11 3,1 4, 11 4,11 4,11 4,11 5,11 5,11 5,11 5,11 6,11 6,11 6,11 7,11 7,10

.46 3,11 3,11 4,11 4 ,11 4 ,11 4,11 5,11 5,11 5,11 5,11 6,11 6,11 6,11 7,11 7,11

.AT 3,11 3,11 4,11 4,11 4,11 4,11 5,11 5,11 5,11 5,11 6,11 6,11 6,11 7,11 7,11•.48 3,11 3,11 4,11 4,11 4,1n 4,11 5,11 5,11 5,11 5,n1 6,11 6,11 6.11 T,11 7,11

.49 3,12 3,12 4,12 4,12 4,12 4,12 5,13 5,12 5,12 5,12 6,12 6,12 6,12 7,12 7,12

.50 3,12 3,12 14,12 4,12 4,12 4,12 5,12 5,12 5,12 5,12 6,12 6,12 6,12 7,12 7,12
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THREE GR~ADES N=30 1
P2 .01 .02 .03 04 .05 .06 -.07 .08 .09 .lO .11 .12 .13 14 .15

.02 0,1
n3 0,1 0,1

.05 0,1 0,1 0,1 0,1.06 0,i 0,i 0,I 0,i 0,i l

.07 0,1 0,1 0,1 0,1 0,1 0,1

.08 0,1 0,1 0,1 0,1 0,1 1,2 1,2

.09 0,2 0,2 0,2 0,1 1,2 1,2 1,2 1,2 J.

.10 0,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2

.11 0,L 0,2 0,2 0,2 1,2 1,2 1,2 1,2 1,2 2,3

.12 0,3 0,3 0,3 0,3 1,2 1,2 1,2 1,2 2,3 2,3 2,3

.13 0,3 0,3 0,3 0,3 1,3 1,3 1,3 2,3 2,3 2,3 2,3 2,3

.114 0,3 0,3 0,3 0,3 0,3 1,3 1,3 2,3 2,3 2,3 2,3 2,3 3,4

.15 0,4 o,4 o, 0, 4 0,3 1,3 1,3 2,3 2,3 2,3 2,3 3,4 3,4 3,4

.16 o,4 o,4 o,4 o,4 0,4 j,4 1,4 2,4 2,3 2,3 3,4 3,4 3,4 3,4 3,4

.18 0,4 o4 0,4 0,4 o,4 1,4 1,4 1,4 2,4 2,4 3,4 3,4 3,4 3,4 4,5

.19 0,5 0,5 0,5 .0,5 0,5 1,5 1,5 1,5 2,5 2,5 3,4 3,4 3,4 3:4 4,5

.20 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 2,5 2,5 3,5 3,5 3,5 4,5 4,5

.21 0,5 0,5 0, 5 0,5 0,5 1,5 1,5 1,5 2,5 2,5 2,5 3,5 3,5 4,5 4,5

.22 0,6 0,6 0,6 0,6 0,6 1,6 1,6 1,6 2,6 2,6 2,6 3,6 3,5 4,5 4,5

.23 0,6 0,6 0,6 o,6 0,6 1,6 1,6 1,6 2,6 2,6 2,6 3,6 3,6 46 4,6

.24 0,6 0,6 0,6 0,6 0,6 1,6 1,6 1,6 2,6 2,6 2,6 3,6 3,6 3,6 4,6

.25 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 2,7 2,7 2,7 3,7 3,7 3,6 4,6

.26 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 2,7 2,7 2,7 3,7 3,7 3,'7 4,7

.27 0,7 0,7 0,7 0,7 0,7 1,7 1,7 1,7 2,7 2,7 2,7 3,7 3,7 3,7 4,7

.28 0,8 0,8 0,8 0,8 0,8 1,8 1,8 1,8 2,8 2,8 2,8 3,8 3,8 3,8 4,7

.29 0,8 0,8 0,8 0,8 0,8 1,8 1,8 1,8 2,8 2,8 2,8 3,8 3,8 3,8 4,8

.30 O,G 0,8 0,8 0,8 0,8 1,8 1,8 1,8 2,8 2,8 2,8 3,8 3,8 3,8 4,8

.31 0,9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 2,9 2,9 2,9 3,9 3,9 3,9 4,9

.32 0,9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 2,9 2,9 2,9 3,9 3,9 3,9 4,9

.33 0,9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 2,9 2,9 2,9 3,9 3,9 3,9 4,9

.34 0.9 0,9 0,9 0,9 0,9 1,9 1,9 1,9 2,9 2,9 2,9 3,9 3,9 3,9 4,9

.35 0,10 0,10 0,10 0,10 0,10 1,10 1,10 1,10 2,10 2,10 2,10 3,10 3,10 3,10 4,10

.36 0,10 0,10 0,10 0,10 0,10 1,10 1,10 1,10 2,10 2,10 2,10 3,10 3,10 3,10 4,10

.37 0,10 0,10 0,10 0,10 0,10 1,10 1,10 1,10 2,10 2,10 2,10 3,10 3,10 3,10 4,10

.38 0,11 0,11 0,11 0,11 0,11 1,11 1,11 1,11 2,11 2,11 2,11 3,11 3,11 3,11 4,11

.39 0,11 0,11 0,11 0,11 0,11 1,11 1,11 1,11 2,11 2,11 2,11 3,11 3,11 3,11 4,11

.140 0,11 0,11 0,11 0,11 0,11 1,11 1,11 1,11 2,11 2,11 2,11 3,11 3,11 3,11 4,11

.41 0,12 0,12 0,12 0,12 0,12 1,12 1,12 1,12 2,12 2,12 2,12 3,12 3,2.2 3,12 4,12

.42 0,12 0,12 0,12 0,12 0,12 1,12 1,12 1,12 2,12 2,12 2,12 3,12 3,12 3,12 4,1

.143 0,12 0,12 0,12 0,12 0,12 1,12 1,12 1,12 2,12 2,12 2,12 3,12 3,12 3,12 4,12

.44 0,13 0,13 0,13 0,13 0,13 1,13 1,13 1,13 2,13 2,13 2,13 3,13 3,13 3,13 4,13

.•45 0,13 0,13 0,13 0,13 0,13 1,13 1,13 1,13 2,13 2,13 2,13 3,13 3,13 3,13 4,13

.-46 0,13 0,13 0,13 0,13 0,13 1,13 1,13 1,13 2,13 2,13 2,13 3,13 3,13 3,13 4,13

.47 0,14 o,14 0,14 0,14 0,14 1,14 1,14 1,14 2,14 2,14 2,14 3,14 3,14 3,1 4,114

.48 0,14 0,14 0,14 0,14 0,14 1,114 1,14 1,14 2,14 2,1.4 2,14 3,14 3,14 3,14 4,14

.91 0,14 0,14 0,14 0,14 0,14 1,14 1,14 1,14 2,14 2,,14 2,14 3,14 3,14 3,14 4,14

.50 0,,14 o,14 0,14 0,14 0,14 1,14 1,14 1,14 2,14 2,14 2,14 3,14 3,14 3,14 4,14
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THREE GRADES N=30

P1
P21 -1 ,, -1 -In .2C .. 22 .23 .4 . .62. .2T .28 .29 .30
.02
.03
.0).
.05
.06

.08

.09

.10

.11

.12

.13

.15.16

.17 14,5
.18 14,5 4,5
.19 4,5 4,5 4,5
.20 4,5 4,5 14.,5 4 ,5
.21 4,5 4,5 4,5 5,6 5,6
.22 4,5 4., 5,6 5,6 5,6 5,6
.P.3 ,5 5,6 5,6 5,6 5,6 5,6 5.6
.24 4,6 5,6 5,6 5,6 5,6 5,6 6,7 6,7
.25 .,6 5,6 5,6 5,6 5,6 6.7 6,7 6,7 T
.26 It,7 5,7 5,6 5,6 6,7 6,7 6,7 6,7 6,7 6,7
.27 4,7 4,7 5,7 5,7 6,7 6,7 6,7 6,7 6,7 6,7 7,8.28 4,7 ,7 5,7 5,7 6,7 6,7 6,7 6,7 6,7 7,8 7,8 7,8
.29 4,8 :,8 5,8 5,8 6,7 6,7 6,7 6,7 7,8 7,8 7,8 7,8 7,8

430 4,8 ,8 5,8 5,8 5,8 6,8 6,7 7,8 7,8 7,8 7.8 7,8 7,8 8,9
.314A 4,8 5,8 5,8 5,8 6,8 6 .8 7,8 T,8 7,8 7,8 7,8 8,9 8,9 8,
.32 49 4,9 5,9 5,9 5,9 6,9 .8T6,8 7,8 7,8 7.8 8,9 8,9 8,9 8,9
.33 4, 9 1,9 5,9 5,9 5,9 6,9 6,8 6,9 7,9 7,8 8,9 8,9 8.9 8,9 8.9
.314 :9 4,9 5,9 5,9 5,9 6,9 6,9 6,9 7,9 7,9 8,9 8,9 8,9 8,9 8,9

35 4,i0 4,0 5,10 5,10 5,10 6,10 6,10 6,10 7,9 7,9 8,9 8,9 8,9 8,9 9,10
36 4,0 A 4,10 5,10 5,10 5,10 6,10 6,10 6,10 7,10 T,10 7,10 8,9 8,9 9,10 9,10

.37 0i40 4,10 4,i0 5,10 5,10 5,10 6,10 6,10 7,10 T,10 7,10 8,10 8,10 9,10 9,10

.38 4,11 4,11 4,11 5,11 5,11 5,11 6,11 6,11 7,11 7,11 7,10 8,10 8,10 9,10 9,10

.39 4,11 4,11 4,1 5,11 5,11 5,11 6,11 6,11 7,11 7,11 7,11 8,11 8,11 8,11 9,10

.140 11 4,11 4,11 5,11 5,11 5,11 6 11 6,11"6,11 7,11 7,12 8,11 8,11 8,11 9,11

.Ikl 4,12 ,12 4,12 5,12 5,12 5,12 6,12 6,12 6,12 7,12 7,12 7,12 8,11 8,11 9,11
,1,. 1,12 4,12 4,12 5,12 5,12 5,12 6 12 6,12 6,12 7,12 7,12 7,12 8,12 8,12 9,12
.43 4,12 4,12 4,12 5,12 5,12 5.12 6,12 6,12 6,12 7,12 7,12 7,12 8,12 8,12 8,12
•44 4 ,13 4,13 4,13 5,13 5,13 5,13 6,13 6,13 6,13 7,13 7,13 7,13 8,13 8,12 8,12
.45 4,13-4,13 4,13 5,13 5,13 5,13 6,13 6,13 6,13 7,13 7,13 7,13 8,13 8,13 8,13
.146 4,13 4,13 4,13 5,13 5,13 5,13 6,13 6,13 6,13 7,13 7,13 7,13 8,13 8,13 8,13
47 4 14 4,114 4,14 14 5,1 4 5,14 1 6,14 6,14 6,14 7,14 7,14 7,14 8,14 8,13 8,13

.148 4,114 4,11414,14 5:i14 5,i14 5,.L4 6,114 6,14 6,1147,1147,14 7,114 8,1148B,14 8,i14
.49 144 14 4 144,114 5,1914 5,114 6,114 6,14 6,114 7,114 7,114 7,114 8,.4 8,14 8,14
.50 4,114 4,114 4,114 5,114 5,114 5,114 6,14 6,14 6,.14 7,114 7,114 7,14 8,14 8,114 8,J-4
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THREE GRADES ]Nu35

02 nl .0 3 .4 .0 .06 .0T, .08- .09 .10 .11 .12 .23 .14 .12,

.03 0,1 0,3

.0 O ,I 
,,i 

ui
305 0,1 0,1 0,1 0,1o06 0,1 0,i 0,i 0,i 0,i

•07 0,1 0,1 0,1 0,5 1,2 1,2
.08 0,2 0,2 0,2 0,1 1,2 1,2 1,2
.09 0,2 0,2 0, 1,2 1,P 1,2 1,2 1,2i.10 0,2 0,2 0,2 0,2 1,2 1,2 1,2 2,3 2,3

3. 0,3 0,3 0,3 0,3 1,3 1,2 2.3 P,3 2,3 253
.12 0.3 0,3 0,3 0,3 1, 1,6 2,3 2,3 2,3 2,3 3,4
.13 0,4 0,4 0,7 0,4 1,3 1,3 2,3 2,3 2,3 3,4 3,4 3,4 , ..14 O,h o,4 0,4 0,4 1,4 1,4 2,4 2,4 2,3 3,4 3,4 3,4 3,4

.15 o,4 o,4 o,4 o,4 1,4 1,4 2,4 2,4 3,4 3,4 3,4 3,7 34 4,5
16 0,5 0,5 0,5 0,5 1,5 1,5 1,5 2,4 2, 3,4 3, 4,5 4,5 4,5
.17 0,5 0,5 0,5 0,5 1,5 1,5 1,5 2,5 2,5 3,5 3,4 4,5 4,5 4,5 4.5
18 0,5 0,5 0,5 05 1,5 1,5 1,5 2,5 2,5 35, 3,5 4,5 4, 4,5 4 ,5.19 o,6 o,6 o,6 o,6 1,6 1,6 1,6 2,6 2,6 3,6 3,5 41 4:5 4:3 5,6
.20 0,6 o6 0, 6 16 1,6 1,6 2,6 9,6 3,6 3,6 4,6 4,6 4,9 5,6
.21 o,6 o,6 o,6 o,6 1,6 1.6 1,6 2,6 2,6 3,6 3,6 3,6 4,6 4,6 .,6.22 0,7 0,7 0,7 0,7 1,7 1,7 1,7 2,7 2,7 3,7 3,7 3,7 4, ,6 5,6

23 0,7 0,7 0,7 0,7 1,7 17 1,7 2,7 2,7 3,7 3,7 3,7 4,T 4,7 4,7
.4 0 0,80 0,10,8 1,8 1.8 3,8 38 8 2,8 ,8 3,7 4,T 4,7 5,7
.2 0, 0, 8 0,8 1,8 1,8 1,8 2,8 2,8 2,8 3,8 38 4,8 4,8 5,8
.26 0,8 0,8 0,8 0,8 1,8 1.,8 1,8 2,8 2,8 2,8 3, 3,8 4,8 4,8 4,8
.27 0,9 0,9 0,9 0,9 1,9 1,9 1,9 2,9 2,9 2,9 3,9 3,9 4,9 4.9 4,9
.28 0,19 0,9 0,9 0,9 1,9 1,9 1,129 2,1 2,2 2,9 3,9 3,9 4,9 4,9 4,9
.39 0,9 0,9 0,9 0,9 1,9 1,9 1,9 2,9 2,9 2,92 3,1 3,2 9 4 ,9 4,9
.30 O,1O 0,10 0,10 0,10 1,10 1,10 1,10 2,10 2,130 2,10 3,10 3,10 4,13 4,lo 1,i4
.31 0,10 0,10 0,10 0,10 1,10 1,10 1,10 2,10 2,10 2,13 3,10 3,10 4,10 4,10 4,'0
.32 0,10 0,10 0,10 0,10 1,10 1,10 1,10 2,10 2,10 2,10 3,10 3,13 4,lO ,13 4,10
.33 011 0,11 0,11 0,11 1,11 1,11 1,11 2,11 2,11 2,11 3,14 3,11 4,14 4,11 4,11
.34 0,11 0,11 0,31 0,11 1,11 1,11 1,11 2,11 2,11 2,11 3,11 3,11 4,11 4,11 4,11
.35 0,12 0,1 0,12 0,12 1,12 1,14 1,12 2,12 2,12 2,12 3,14 3,12 4,12 4,14 4,14
.36 0,12 0,15 0,15 0,12 1,12 1,12 1,15 2,15 2,12 2,15 3,12 3,12 4,12 4,12 4,12
-3T 0,15 0,15 0,15 0,2 1,12 1,15 1,12 2,15 2,15 2,15 3,12 3,15 4,12 412 4,12
.38 0,13 0,13 0,13 0,13 1,13 1,13 1,13 2,13 2,13 2,13 3,13 3,13 4,13 4,13 4,13
.39 0,13 0,13 0,13 0,13 1,13 1,13 1,13 2,13 2,13 2,13 3,13 3,13 4,13 4,13 4,13
.48 0,16 0,16 0,13 0,13 ,13 1,13 1,13 2,13 2,13 2,13 3,13 3,13 4,13 4,13 4,13.41i o,14 o,14 o,14 o,14 1,14 i, 1,14 2,14 2 1.,4 2,14 3,14 3,14 4 z4 4,14 4,14
.42 0,14 0,14 0,14+ 0,i 4 1 i4 ,14+ 1,14 2,14 2,14 2,:14 3,14 3,14 4 14 4,24 4,14
.43 o,14 0,iA o,14 o:14 1,14 1,14 1,14 2,14 2,14 2,41 3,14 3,14 4114 4,14 4,14
.44 0,15 0,15 0,15 0,15 1,15 1,15 1,15 2,15 2,15 2,15 3,15 3,15 4oi5 415 4,15
• 45 0,15 0,15 0,15 0,1 1,15 1,15 1,15 2,15 2,15 2.15 3,15 3,15 4,15 4,15 4.15
.4.6 o,16 o,16 o,16 0,16 3,16 1,16 1,16 2,16 2,16 2,16 3,16 3,16 4,16 4,16 4,16
.4 7 0,16 0,16 o,16 o,16 1,16 1,16 1,16 2,16 2,16 2,16 3,16 3,16 4,16 4.,16 4,16
.48 0,16 0,16 0,16 0,16 1,16 1,17 1,17 2,16 2,17 2,16 3,16 3,16 4,16 4,16 4,16
.59 0,1T 0,17 0,17 0,17 1,17 1,17 1,17 2,17 2,17 2,17 3,17 3,17 4,17 4,17 4,1T.50 0,17 0,17 0,17 0,17 1,17 I,17 1,17 2,17 2,17 2,1T 3,17 3,17 4,I7 4,17 4,IT

I.
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I
THREE GRADES N-35

P2 .16 .17 .18 .19 .20 .21 .22 .23
.02
.03
.o4
.05
.06
.07
.08
.09
.10
.11
.12
.13
.i14
.15
.16
.17 4,5
.18 5,6 5,6
.19 5,6 5,6 5,6
.20 5,6 5,6 5,6 5,6.
.21 5.6 5,6 5,6 6,7 6.7
.22 5,6 5,6 6,7 6,7 6,7 6,7
.23 5,7 6,7 6,7 6,7 6,7 6,7 7,8
.24 5,7 6,7 6,7 6,7 6,7 7,8 7,8 7,8
.25 5:8 5,7 6,7 6,7 7,8 7,8 7,8 7,8
.26 5,8 5,8 6,8 6,8 7,8 7,8 7,8 7,8
.27 5,8 5,8 6,8 6,8 7,8 7,8 7,8 7,8
.28 5,9 5,9 6,9 6,9 7,8 7,8 7,8 8,9
.29 5,9 5,9 6,9 6,9 7,9 7,9 8,9 8,9
.30 5,10 5,10 6,io 6,10 6,9 7,9 7,9 8,9
.31 5,10 5,10 5,10 6,30 6,10 7,10 7,10 8,9
.32 5,10 5,10 5,10 6,1o 6,10 7,10 7,10 8,10
.33 5,11 5,11 5,11 6,11 6,11 7,11 7,11 8,10
.35 5,11 5,11 5,11 6,11 6,11 7,11 7,11 7,11
.35 5,12 5,12 5,12 6,12 6,11 7,11 7,11 7,11
.36 5,12 5,12 5,12 6,12 6,12 7,12 7,12 7,12
.37 5,12 5,12 5,12 6,12 6,12 7,12 7,12 7,13
.38 5,13 5,13 5,13 6,13 6,13 7,13 7,13 7,13
.39 5,13 5,13 5,13 6,13 6,13 6,13 7,13 7,13
.41 5,13 5,13 5,13 6,13 6,13 6,13 7,13 7,13
.41 5,14 5,14 5,14 6,14 6,14 6,14 7,14 7,14
.42 5,14 5,14 5,14 6,14 6,14 6,14 7,14 7,14
.43 5,14 5,14 5,15 6,14 6,14 6,14 7,15 7,14.145 5,15 5,15 5,15 6,15 6,1 6,15 7,15 7,15
.45 5,15 5,15 5,15 6,15 6,15 6,15 7,15 7,15
.46 5,16 5,16 5,16 6,16 6,i6 6,16 7,16 7,16
.48 5,16 5,16 5,16 6,16 6,16 6,16 7,16 7,16
.49 5,17 5,17 5,17 6,17 6,17 6,17 7,17 7,17
.50 5,17 5,17 5,17 6,17 6,17 6,17 7,17 7,17
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THREE GRADES N=35
{P1

P2 .24 .25 .26 .27 .28 .29 .30

.02

.03

.14

.05

o16

OT
.08

.19

.20

.12

.13
' .14;' .1 5

,!: ,16 ..

1 .18 '

.20 7,8

.26 7,8 8,9

.27 8,9 8,9 8,9

.28 8,9 8,9 8,9 8,9

.29 8,9 8,9 8,9 9,10 9,10

.30 8,9 8,9 9,10 9,10 9,10 9,10

.31 8,9 8,9 9,10 9,10 9,10 9,10 9,10

.32 8,10 9,1.0 9,10 9,10 9,10 9,10 10,11

.33 8,10 9,10 9,10 9,10 9,10 .0,i.1 10,11

.34 8,11 8,11 9,10 9,10 10,11 10,11 10,11

.35 8,11 8,11 9,11 9,11 10,11 10,1 10,11

.36 8,12 8,12 9,11 9,11 10,11 10,11 10,11

.37 8,12 8,12 9,12 9,12 10,12 10,11 10,11

.38 8,13 8,12 9,12 9,12 9,12 10,12 11,12

.39 8,13 8,13 8,13 9,13 9,13 10,13 10,12

.40 8,13 8,13 8,13 9,13 9,13 10,13 10,13

.41 8,14 8,14 8,14 9,14 9,14 10,13 10,13

.42 8,14 8,14 8,14 9,14 9,14 lO,14 i0,14

.43 8,14 8,14 8,14 9,14 9,14 lO,14 l,14

.44 8,15 8,15 8,15 9,15 9,15 9,15 10,15

.45 8,16 8,15 8,15 9,15 9,15 9,15 10,15

.46 8,16 8,16 ,16 9,16 9,16 9,15 10,15

.48 8,16 8,16 8,16 9,16 9,16 9,16 10,16

.48 8,16 8,16 8,16 9,16 9,16 9,16 10,16

.59 8,17 8,17 8,17 9,17 9,17 9,17 10,17
•50 8,17 8,17 .8,17 9,17 917 9,17 10,17

~91



IMIRVR npAnvs NmmhA

P1
P2 .01 .02 .03 .04 .05 .o6 o7 o.3 o9_ .1o al .12 .13 .i4 .15

,C2 0,1
.03 0,1 0,1
.Oh4 0,1 0,2. 0,3.

.05 0,1 0,1 0,1 0,1

.06 0,1 0,1 0,1 0,1 1,2

.07 0,2 0,2 0,1 1,2 1,2 1,2

.08 0,2 0,2 0,2 1,2 1,2 1,2 1,2S.09 0,3 0,3 0,2 1,2 1,2 1,2 2,3 2,3

.10 0,3 0,3 0,3 1,3 1,3 2,3 2,3 2,3 2,3

.11 0,3 0,3 0,3 1,3 1,3 2,3 2,3 2,3 2,3 3,4

.12 o,4 o,4 o,4 1,4 1,4 2,4 2,3 2,3 3,4 3,4 3,4
• 13 0,4 0,4 0,4 1,4 1,4 1,4 2,4 3,4 3,4 3,4 3,4 4,5
.14 0,5 0,5 0,5 0,5 1,5 1,5 2,4 2,4 3,4 3,4 4,5 4,r 4,5

.15 0,5 0,5 0,5 0,5 1,5 1,5 2,5 2,5 3,5 3,4 4,5 )4,. 4,5 4,5

.16 0,5 0,5 0,5 0,5 1,5 1,5 2,5 2,5 3,5 3,5 4,5 4,5 4,5 5,6 5,6

.17 0,6 0,6 0,6 0,6 1,6 1,6 2,6 2,6 3,6 3,6 4,5 4,5 5,6 5,6 5,6

.18 o,6 o,6 o,6 o,6 1,6 1,6 2,6 2,6 3,6 3,6 4,6 4,6 5,6 5,6 5,6

.19 0,7 0,7 0,7 0,7 1,7 1,7 2,7 2,7 3,7 3,7 4,6 4,6 5,6 5,6 5,6

.21 0,7 0,8 0,7 0,7 1,7 1,7 2,7 2,7 3,7 3,7 4,7 4,7 5,7 5,6 6,7

.21 0,8 0,8 0,8 0,8 1,8 1,8 2,8 2,7 3,7 3,7 4,7 4,7 5,7 5,7 6,7

.22 0,8 0,8 0,8 0,8 1,8 1,8 2,8 2,8 3,8 3,8 3,8 4,8 4,8 5,8 6,7

.r3 0,8 0,8 0,8 0,8 1,3 1,8 2,8 2,8 3,8 3,8 3,8 4,8 4,8 5,8 5,8

.24 0,9 0,9 0,9 0,9 1,9 1,9 2,9 2,9 3,9 3,9 3,9 4,9 4,9 5,9 5,8

.25 0,9 0,9 0,9 0,9 1,9 1,9 2,9 2,9 3,9 3,9 3,9 4,9 4,9 5,9 5,9

.26 0,10 0,10 0,10 0,10 1,10 1,10 2,10 2,10 3,10 3,10 3,10 4,10 4,10 5,9 5,9

.27 0,10 0,10 0,10 0,10 1,10 1,10 2,10 2,10 3,10 3,10 3,10 4,10 4,1O 5,10 5,10

.28 0,10 0,10 0,10 0,10 1,10 1,10 2,10 2,10 3,10 3,10 3,10 4,1O 4,10 5,10 5,10

.29 0,11 0,11 0,11 0,11 1,11 1,11 2,11 2,11 3,11 3,11 3,.1 4,11 4,11 5,11 5,11

.30 0,11 0,11 0,11 0,11 1,11 1,11 2,11 2,11 3,11 3,11 3,11 4,11 4,11 5,11 5,11

.31 0,12 0,12 0,12 0,12 1,12 1,12 2,12 2,12 3,12 3,12 3,12 4,12 4,12 5,12 5,12

.32 0,12 0,12 0,12 0,12 1,12 1,12 2,12 2,12 3,12 3,12 3,12 4,12 4,12 5,12 5,12

.33 0,12 0,12 0,12 0,12 1,12 1,12 2,12 2,12 3,12 3,12 3,12 4,12 4,12 5,12 5,12

.34 0,13 0,13 0,13 0,13 1,13 1,13 2,13 2,13 3,13 3,13 3,13 4,13 4,3.3 5,13 5,13

.35 0,13 0,13 0,13 0,13 1,13 1,13 2,13 2,13 3,13 3,13 3,13 4,13 4,13 5,13 5,13

.36 o,14 0,14 0,14 o,14 1,14 1,14 2,14 2,14 3,14 3,14 3,14 4,14 4,14 5,14 5,14

.37 0,14 0,14 0,14 0,14 1,14 1,14 2,14 2,14 3,14 3,14 3,14 4,14 4,14 5,14 5,14

.38 0,15 0,15 0,15 0,15 1,15 1,15 2,15 2,15 3,15 3,15 3,15 4,15 4,15 5,15 5,15

.39 0,15 0,15 0,15 0,15 1,15 1,15 2,15 2,15 3,15 3,15 3,15 4,15 4,15 5,15 5,15

.40 0,15 0,15 0,15 0,15 1,15 1,15 2,15 2,15 3,15 3,15 3,15 4,15 4,15 5,15 5,15

.41 0,16 0,16 o,16 0,16 1,16 1,16 2,16 2,16 3,16 3,16 3,16 4,16 4,16 5,16 5,16

.42 0,16 0,16 0,16 0,16 1,16 1,16 2,16 2,16 3,16 3,16 3,16 4,16 4,16 5,16 5,16

.43 0,17 0,17 0,17 0,17 1,17 1,17 2,17 2,17 3,17 3,17 3,17 4,17 4,17 5,17 5,17

.44 0,17 0,17 0,17 0,17 1,17 1,17 2,17 2,17 3,17 3,17 3,17 4,17 4,17 5,17 5,17

.45 0,17 0,17 0,17 0,17 1,17 1,17 2,17 2,17 3,17 3,17 3,17 4,17 4,17 5,17 5,17

.46 0,18 0,18 0,18 0,18 1,18 1,18 2,18 2,18 3,18 3,18 3,18 4,18 4,18 5,18 5,18

.47 0,18 0.18 0,18 0,18 i,±.8 1,18 2,18 2,18 3,18 3,18 3,18 4,18 4,18 5,18 5,18

.48 0,19 0,19 0,19 0,19 1,19 1,19 2,19 2,19 3,19 3,19 3,19 4,19 4,19 5,19 5,19

.59 0,19 0,19 0,19 0,19 1,19 1,L9 2,19 2,19 3,19 3,19 3,19 4,19 4,19 5,19 5,19

.50 0,19 01,19 0,19 0,19 1,19 1,19 2,19 2,19 3,19 3,19 3,19 ,19 4,19 ,19 5,19
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THREE aRADPS Mahn

P1
Pp .16 .17 .18 .19 .20 .21 .22 .2i
.02
.03
.04

.05

.06

.07

.08

.09

.10

.11

.12

.13

.14

.15

.16

•17 5,6
.18 5,6 6,7
.19 6,7 6,7 6,7
.20 6,7 6,7 6,7 6,7
..? 6,7 6,7 6,7 7,8 7,8
.22 6,7 6,7 7,8 7,8 7,8 7,8
.23 6,8 7,8 7,8 7,8 7,8 7,8 8,9
.24 6,8 6,8 7,8 7,8 7,8 8,9 8,9 8,9
.25 6,9 6,9 7,8 7,8 8,9 8,9 8,9 8,9
.26 6,9 6,9 7,9 7,9 8,9 8,9 8,9 8,9
.27 6,10 6,10 7,10 7,9 8,9 8,9 8,9 9,10
.28 6,10 6,10 7,10 7,10 8,10 8,10 9,101 9,10
.29 6,11 6,11 6,11 7,11 7,10 8,10 9,10 9,10
.30 6,11 6,11 6,11 7,11 7,11 8,11 9,11 9,10
.31 5,12 6,12 6,12 7,12 7,11 8,11 8,11 9,11
.32 5,12 6,12 6,12 7,12 7,12 8,12 8,12 9,12
.33 5,12 6,12 6,12 7,12 1,12 8,12 8,12 9,12
.34 5,13 6,13 6,13 7,13 7,13 8,13 8,13 9,13
.35 5,13 6,13 6,13 7,13 7,13 8,13 8,13 9,13
.36 5,14 6,14 6,14 7,14 7,14 8,14 8,14 8,14
.37 5,14 6,14 6,14 7,14 7,14 8,14 8,14 8,14
.38 9,15 6,15 6,15 7,15 7,15 8,15 8,14 8,14
.39 5,15 6,15 6,15 7,15 7,15 8,15 8,15 8,15
.40 5,15 6,15 6,15 7,15 7,15 8,15 8,15 8,15
.41 5,16 6,16 6,16 7,16 7,16 8,16 8,16 8,16
.42 5,16 6,16 6,16 7,16 716 b,16 8,16 8,16
.43 5,17 6,17 6,17 7,17 7,17 8,17 8,17 8,17
.44 5,17 6,17 6,17 7,17 7,17 8,17 8,17 8,17
.45 5,17 6,17 6,17 7,17 7,17 8,17 8,17 8,17
.46 5,18 6,18 6,18 7,18 7,18 8,18 8,18 8,18
.47 5,18 6,18 6,18 7,18 7,18 8,18 8,18 8,18
.48 5,19 6,19 6,19 7,19 7,19 8,19 8,19 8,19
.49 5,19 6,19 6,19 7,19 7,19 8,19 8,19 8,19
.50 5,19 6,19 6,19 7,19 7,19 8,19 3,19 8,19
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THREE GRADE X-40

P2 .24 .25 .26 .2 .8; .2 -.2 9 .
:. 03

.04

.05

.06i! .07
o08
.09
• 10
.11
.12
.13
14
.15
.16
-17
18
.19
.20
.21
.22
.23
.24
.25 8,9
.26 9,10 9,10
.27 9,10 9,10 9,10.28 9,10 9,10 9.10 10,11.29 9,10 9,10 10,11 10,11 10,11.30 9,10 10,11 10,11 20011 10,11 12.31 0,11 100,111 11,12.34 9,13 10,12 0, 1 11,12 11,12 11,12 12,13.35 9,13 10,1 10,13 11,12 11,12 12,12 12,13
.33 9,12 10,12 10,12 1,1 3 11, 12 1 12,13
34 9,13 11 0,1 11,12 11,12 1213 12,1339 9,15 94513 0,15 10, 1 2,1 11,15 12,13
S 9,13 9,1 10,15 10,1 11,13 11,15 12,15.36 9,16 9,16 0,16 0,16 11,13 1 1 ,16 12,15.32 9,14 9,16 10,16 10,16 11,16 11,16 1213.43 9,17 9,17 10,14 10,17 11,1? 11,16 12 1* k 9,17 9,17 10,17 10,17 1017 11,17 11,1?.43 9,17 9,17 10,17 10,17 10,17 11,14 11,17

.40 9,1 ,1 10,17 I01 0 1 1,i15 12,14
.46 9,17 9,15 1015 1018 10,18 11,18 11,15.4' 9,18 9,18 10,18 10,18 0,18 11,18 11
.48 9,19 9,19 0,19 I10,19 10,19 11,19 11,1949 9,19 9,19 10.19 10,19 10,19 11,19 11,19

.50 9,19 9,19 10,19 10,19 10,19 11,19 11,19
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THREE GRADES N-45

P1
P2 .01 .02 .03 .04 .05 .06 .07 .08 .09 .1o .11 .12 .14 .15
.02 0,1
.03 0,1 0,1 ,.
.o4 0,l 0,I 0,1
.05 0,1 0,1 0,1 0,1

.07 0,2 0,1 0,2 1,2 1,2

.07 0,2 0,2 0,2 3,2 1,2 1,2

.08 0,3 0,3 0,2 1,2 1,2 2,3 2,3

.09 0,3 0,3 0,3 1,: 2,3 2,3 2,3 2,3

.10 0,3 0,3 0,3 1,3 1,3 2,3 2,3 3,4 3,4

.11 o,4 0,4 o,4 1,4 1,4 2,4 2,3 3,4 3,4 3,4

.12 0,4 0,4 o,4 1,4 1,4 2,4 2,4 3,4 3,4 3,4 4,5

.13 0,5 0,5 0,5 1,5 1,5 2,5 2,5 3,4 3,4 4,5 4,5 4,5

.14 0,5 0,5 0,5 1,5 1,5 2,5 2,5 3,5 4,5 4,5 4,5 4,5 5,6

.15 0,6 0,6 0,6 1,6 1,6 2,6 2,6 3,6 3,5 4,5 4,5 5,6 5,6 5,6

.16 0,6 0,6 0,6 1,6 1,6 2,6 2,6 3,6 3,6 4,6 5,6 5,6 5,6 5,6 6,7

.17 0,7 0,7 0,7 1,7 1,7 2,7 2,7 3,7 3,7 4,6 4,6 5,6 5,6 6,7 6,7

.18 0,7 0,7 0,7 1,7 1,7 2,7 2,7 3,7 3,7 4,7 4,7 5,7 5,6 6,7 6,7

.19 0,8 0,8 0,8 1,8 1,8 2,8 2,8 3,8 3,8 4,8 4,7 5,7 5,7 6,7 6,7

.20 0,8 0,8 0,8 1,8 1,8 2,8 2,8 3,8 " A 4,8 4,8 5,8 5,8 6,7 6,7

.21 0,9 0,9 0,9 1,9 1,9 2,9 2,9 3,9 3.,9 4,9 4,8 5,8 5,8 6,8 6,8

.22 0,9 0,9 0,9 1,9 1,9 2,9 2,9 3,9 3,9 4,9 4,9 5,9 5,9 6,9 6,9

.23 0,9 0,9 0,9 1,9 1,9 2,9 2,9 3,9 3,9 3,9 4,9 4,9 5,9 6,9 6,9

.24 0,10 0,10 0,10 1,10 1,10 2,10 -,10 3,10 3,10 3,10 4,10 4,10 5,10 5,10 6,10

.25 0,10 0,10 0,10 1,10 1,10 2,10 2,10 3,10 3,10 3,10 4,10 4,10 5,10 5,10 6,10

.26 0,11 0,11 0,11 1,11 1,11 2,11 2,11 3,11 3,11 3,11 4,11 4,11 5,11 5,11 6,11

.27 0,11 0,11 0,11 1,11 1,11 2,11 2,11 3,11 3,11 3,11 4,11 4,11 5,11 5,11 6,11

.28 0,12 0,12 0,12 1,12 1,12 2,12 2,12 3,12 3,12 3,12 4,12 4,12 5,12 5,12 6,12

.29 0,12 0,12 0,12 1,12 1,12 2,12 2,12 3,12 3,12 3,12 4,12 4,12 5,12 5,12 6,12

.30 0,13 0,13 0,13 1,13 1,13 2,1%', 2,13 3,13 3,13 3,13 4,13 4,13 5,13 5,13 6,13

.31 0,13 0,13 0,13 1,13 1,13 2,13 2,13 3,13 3,13 3,13 4,13 4,13 5,13 5,13 6,13

.32 o,14 o,14 0,14 1,14 1,14 2,14 2,14 3,14 3,14 3,14 4,14 4,14 5,14 5,14 6,14

.33 0,14 o,14 o,14 1,14 1,14 2,14 2,14 3,14 3,14 3,114 4,14 4,14 5,14 5,14 6,14

.34 0,15 0,15 0,15 1,15 1,15 2,15 2,15 3,15 3,15 3,15 4,15 4,15 5,15 5,15 6,15

.35 0,15 0,15 0,15 1,15 1,15 2,15 2,15 3,15 3,15 3,15 4,15 4,15 5,15 5,15 6,15

.36 0,16 0,16 0,16 1,16 1,16 2,16 2,16 3,16 3,16 3,16 4,16 4,16 5,16 5,16 6,16

.37 0,16 0,16 0,16 1,16 1,16 2,16 2,16 3,16 3,16 3,16 4,16 4,16 5,16 5,16 6,16

.38 o,16 0,16 0,16 1,16 1,16 2,16 2,16 3,16 3,16 3,16 4,16 4,16 5,16 5,16 6,16

.39 0,17 0,17 0,17 1,17 J,17 2,17 2,17 3,17 3,17 3,17 4,,17 4,17 5,17 5,17 6,17

.40 0,17 0,17 0,17 1,17 1,17 2,17 2,17 3,17 3,17 3,17 4,17 4,17 5,17 5,17 6,17

.41 0,18 0,18 0,18 1,18 148 2,18 2,18 3,18 3,18 3,18 4,18 4,18 5,18 9,18 6,18

.42 0,18 0,18 0,18 1,18 1,18 2,18 2,18 3,18 3,18 3,18 4,18 4,18 5,18 5,18 6,18

.43 0,19 0,19 0,19 1,19 1,19 2,19 2,19 3,19 3,19 3,19 4,19 4,19 5,19 5,19 6,19

.44 0,19 0,19 0,19 1,19 1,19 2,19 2,19 3,19 3,19 3,19 4,19 4,19 5,19 5,19 6,19

.45 0,20 0,20 0,20 1,20 1,20 2,20 2,20 3,20 3,20 3,20 4,20.4,20 5,20 5,20 6,20

.46 0,20 0,20 0,20 1,20 1,20 2,20 2,20 3,20 3,20 3,20 4,20 4,20 5,20 5,20 6,20

,47 0,21 0,21 0,21 1,21 1,21 2,21 2,21 3,21 3,21 3,21 4,21 4,21 5,21 5,21 6,21

.48 0,22 0,21 0,22 1,21 1,21 2,21 2,22 3,21 3,21 3,21 4,21 4,22 5,21 5,21 6,21

.49 0,22 0,22 0,22 1,22 1,22 2,22 2,22 3,22 3,22 3,22 4,22 4,22 5,22 5,22 6,22

.90 0,22 0,22 0,22 1,22 1,22 2,22 2,22 3,22 3,22 322 4,22 4,22 5,22 5,22
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I
P2 .16 .17 .18 .9i .20 .21 .22 .23
.02
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.13
.14
.15
.16
•17 6,7

.18 6,7 6,7

.19 6,7 7,8 7,8

.20 7,8 7,8 7,8 7,8

.21 7,8 7,8 7,8 8,9 8,9

.22 7,8 7,8 8,9 8,9 8,9 8,9

.23 7,9 7,9 8,9 8,9 8,9 9,10 9,10

.24 7,10 7,9 8,9 8,9 9,10 9,10 9,10 9,10

.25 7,10 7,10 8,10 9,10 9,10 9,10 9,10 9,10

.26 6,11 7,11 8,10 8,10 9,10 9,10 9,10 10,11

.27 6,11 7,11 7,11 8,11 9,11 9,10 10,11 10,11

.28 6,12 7,12 7,12 8,11 9,11 9,11 10,11 10,11

.29 6,12 7,12 7,12 8.12 8,12 9,12 10,12 10,11

.30 6,13 7,13 7,13 8,13 8,12 9,12 10,12 10,12

.31 6,13 7,13 7,13 8,13 8,13 9,13 9,13 10,13

.32 6,14 7,14 7,14 8,14 8,014 9,13 9,13 10,13
.33 6,14 7,14 7,14 8,14 8,14 9,14 9,14 10,14
.34. 6,15 7,15 7,15 8,15 8,15 9,14 9,14 10,14
.35 6,15 7,15 7,15 8,15 8,15 9,15 9,15 10,15
.36 6,16 7,16 7,16 8,15 8,15 9,15 9,15 10,15
.37 6,16 7,16 7,16 8,16 8,16 9,16 9,16 10,16
.38 6,16 7,16 7,16 8,16 8,16 9,16 9,16 10,16
.39 6,17 7,17 7,17 8,1T 8,17 9,17 9,17 10,17
.10 6,17 7,17 7,17 8,17 8,17 9,17 9,17 10,17
.41 6,18 7,18 7,18 8,18 8,18 9,18 9,18 10,18
.42 6,18 7,18 7,18 8,18 8,18 9,18 9,18 10,18
.43 6,19 7,19 7,19 8,19 8,19 9,19 9,19 9,19
.44 6,19 7,19 7,19 8,19 8,19 9,19 9,19 9,19
.45 6,20 7,20 7,20 8,20 8,20 9,20 9,20 9,20
.46 6,20 7,20 7,20 8,20 8,20 9,20 9,20 9,20
.47 6,21 7,21 7,21 8,21 8,21 9,21 9,21 9,21
.148 6,21 7,21 7,21 8,21 8,21 9,21 9,21 9,21
.49 6,22 7,22 7,22 8,22 8,22 9,22 9,22 9,22
.50 6,22 7,22 7,22 8,22 8,22 9,22 9,22 9,22
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THREE GRADES N=45

P2 .24 .25 .26 .27 .28 .29 .30
.02
.03
04
.05
.06
.07
.08
.09
.10

.12

.13

.14

.15

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25 10,11

.26 1.0,11 10,11

.27 10,11 10,11 11,12

.28 10,11 11,12 11,12 11,12

.29 11,12 11,12 11,12 11,12 12,13

.30 11,12 11,12 11,12 12,13 12,13 12,13

.33. 11,12 11,12 12,13 12,13 12,13 12,13 12,13

.32 11,13 11,13 12,13 12,13 12,13 12,13 13,14

.33 10,14 11,14 12,13 .12,14 12,13 13,14 13,1 4

.34 10,14 11,14 12,15 12,14 13,14 13,14 13,14

.35 10,15 11,15 11,15 12,14 13,15 13,14 13,15

.36 10,15 11,15 11,15 12,15 12,15 13,15 14,15

.37 10,6 11,16 11,16 12,16 12,15 13,15 13,15

.38 i0,16 11,16 11,16 12,16 12,16 13,16 13,16

.39 10,17 11,17 11,17 12,17 12,17 13,17 13,16

.4o 10,17 10,18 11,17 11,17 12,17 13,17 13,17

.42 10,18 10,18 11,18 11,18 12,18 12,18 13,18

.42 10,18 10,18 11,18 11,18 12,18 12,18 13,18

.43 10,19 10,19 11,19 11,19 12,19 12,19 13,19

.44 10,19 10,19 11,19 11,19 12,19 12,19 13,19
5 10,20 10,20 11,20 11,20 12,20 12,20 13,20.46 10,20 10,20 11,20 11,20 12,20 12,20 13,20

.47 10,21 10,21 11,21 11,21 12,21 12,21 13,21
.48 10,21 10,21 11,21 11,21 12,21 12,21 13,21
.49 10,22 10,22 11,22 11,22 12,22 12,22 13,22
.50 10,22 10,22 11,22 11,22 12,22 12,22 13,22

97



• ' " THREE GRADES N-50

I.a
P2 .01 .02 .03 .04.8 .o9 .10.11 .12 .13 .14 .15

.02 0,2.03 0,1 0 ,i1.
" o4. o,1 o,l o,1 l
i .05 0,1 0,1 0,1 1.2

o..6 o,2 0,2 1,2 1,2 1,2
'".07 0,2 0,2 1,2 1,2 12 2,3

.08 0,3 0,3 0,3 1,3 2,3 2,3 2,3

.09 0,3 0,3 0,3 1,3 2,3 2,3 2,3 3,4
1004 o,4 o, 1,4 2,4 2,3 3,4 3,4 3,4

.11 o:4 o,4 o,4 1,4 2,4 2,4 3,4 3,4 3,4 4,5

.12 0,5 0,5 05 1,5 1,5 2,5 3,5 3,4 4,5 4,5 4,5

.13 o,6 o,6 o,6 1,5 1,5 2,5 3,5 3,5 4,5 4,5 4,5 5,6

.14 o,6 o,6 o,6 1,6 1,6 2,6 3,6 3,6 4,5 4,5 5,6 5,6 5,6.15 0,7 0,T 0,7 1,7 1,7 2,6 3,6 3,6 4,6 5,6 5,6 5,6 6,7 6,7

.16 0,7 0,7 0,7 1,T 1,7 2,7 2,7 3,7 4,7 4,7 5,6 6,7 6,7 6,7 6,7

.17 o,8 o,8 o,8 1,8 1,8 2,8 2,8 3,7 4,7 4,T 5,7 6,7 6,7 6,7 7,8.18 0,8 0,8 0,8 1,6 1,8 2o8 2,8 3,8 4,8 4,,8 5,8 5,8 6,T TO 7,8

.19 0,9 0,9 0,9 .,9 1,9 2,9 2,9 3,9 4,9 4,8 5,8 5,8 6,8 7,8 7,8

.20 0,9 0,9 0,9 1,9 1,9 .2,9 2,9 3,9 3,9 4.,9 5,9 5,9 6,9 7,8 7,8

.21 0,10 0,10 0,10 1,10 1,10 2,10 2,10 3,10 3,10 4,10 5,10 5,9 6,9 6,9 7,9

.22 0,10 0,10 0,10 1,10 1,10 2,10 2,10 3,10 3,10 4,10 5,10 5,10 6,10 6,10 7,10

.23 0,11 0,11 0,11 1,11 1,11 2,11 2,11 3,11 3,11 4,11 5,11 ,u 6,11 6,10 7,10

.24 0,11 0,11 0,11 1,11 1,11 2,11 2,11 3,11 3,11 4,11 5,11 5,11 6,11 6,11 7,11

.25 0,12 0,12 0,12 1,12 1,12 2,12 2,12 3,12 3,12 4,12 4,12 5,12 6,12 6,12 7,12

.26 0,12 0,12 0,12 1,12 1,12 2,12 2,12 3,12 3,12 4,12 4,12 5,12 6,12 6,12 7,12

.27 0,13 0,13 0,13 1,13 1,13 2,13 2,13 3,13 3,13 4,13 4,13 5,13 6,13 6,13 7,13
•.28 013 0,13 0,13 1,13 1,13 2,13 2,13 3,13 3,13 4,13 4,13 5,13 6,13 6,13 7,13
.29 o,14 o,14 0,14 1,14 1,14 2,14 2,14 3,14 3,14 4,14 4,14 5,14 6,14 6,14 7,14
.3o 0,1 0 0,14 1,14 1,14 2,14 2,14 3,14 3,14 4,14 4,14 ,14 6 ,14 6,147,14
.31 0,15 0,15 0,15 1,15 1,15 2,15 2,15 3,15 3,15 4,15 4,15 5,15 6,15 6,15 7,i5
.32 0,15 U,15 0,15 1,15 1,15 2,15 2,15 3,15 3,15 4,15 4,51 5,15 6,15 6,15 7,15
.33 o,16 o,16 0,16 1,16 1,16 2,16 2,16 3,16 3,16 4,16 4,16 5,16 6,16 6,16 7,16
.34 0,.6 0,16 o,16 1,16 1,16 2,16 2,16 3,16 3,16 4,16 4,16 5,16 6,16 6,16 7,16
.35 0,17 0,17 1,17 1,17 2,17 2,17 3,17 3,17 4,17 4,17 5,17 6,17 6,17 7,17
.36 0,17 0,1T 0,17 1,17 1,17 2,17 2,17 3,17 3,17 4,17 4,17 5,17 6,1.7 6,17 7,17
.3 0,18 0,18 0,18 1,18 1,18 2,18 2,18 3,18 3,18 4,18 4,18 5,18 6,18 6,18 7,18
.3 0,18 0,18 0,10 1,18 1,18 2,18 2,18 3,18 3,18 4,18 4,18 5,13 6,18 6,18 7,18
.3 0,19 0,19 0,19 1,19 1,19 2,19 2,19 3,19 3,19 4,19 4,19 5,19 6,19 6,19 7,19
.4 0,19 0,19 0,19 1,19 1,19 2,19 2,19 3,19 3,19 4,19 4,19 5,19 6,19 6,19 7,19
.4 0,20 0,20 0,20 1,20 1,20 2,20 2,20 3,20 3,20 4,20 4,20 5,20 6,20 6,20 7,20
.4 0,20 0,20 0,20 1,20 1,20 2,20 2,20 3,20 3,20 4,20 4,20 5,20 6,20 6,20 7,20
.4 0,21 0,21 0,21 1,21 1,21 2,21 2,21 3,21 3,21 4,21 4,21 5,21 6,21 6,21 7,21
.4 0,21 0,21 0,21 1,21 1,21 2,21 2,21 3,21 3,21 4,21 4,21 5,21 6,21 6,21 7,21
•.4 0,22 0,22 0,22 1,22 1,22 2,22 2,22 3,22 3,22 4,22 4,22 5,22 6,22 6,22 7,22
.4 0,22 0,22 0,22 1,22 1,22 2,22 2,22 3,22 3,22 4,22 4,22 5,22 6,22 6,22 7,22
.'4 0,23 0,23 0,23 1,23 1,23 2,23 2,23 3,23 3,23 4,23 4,23 5,23 6,23 6,23 7,23
.4 0,23 0,23 0,23 1,23 1,23 2,23 2,23 3,23 3,23 4,23 4,23 5,23 6,23 6,23 7,23
.4 0,24 0,24 0,24 1,24 1,24 2,24 2,24 3,24 3,24 4,24 4,24 5,24 6,24 6,24 7,24
.50 0,24 0,24 0,24 1,24 1,24 2,24 2,24 3,24 3,24 4,24 4,24 5,24 6,24 6,24 7,24
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THREE GRADES N=50

P2 .16 .17 .18 ,i9 Pi
.8 .9 .20 .21 .22 .2

.03

.04

.05

.06
.07
.08
.09
.10

.12
.13
14
.15
16

.17 7,8

.18 7,8 7,8

.19 7,8 8,9 8,9
.20 8,9 8,9 8,9 8,9.21 8,9 8,9 8,9 9,10 9,10.22 8,9 8,9 9,10 9,10 9,10 9,10
.23 8,10 8,10 9,10 9,10 9,10 10,11 10,11.24 7,11 8,11 9,10 9,10 10,11 ioii 10,11 10,11.25 7,11 8,11 9,11 9,11 10,11 10,11 10,11 11,12.26 7,12 8,12 8,12 9,12 10,12 10,11 11,12 11,12.2' 7,13 8,13 8,12 9,12 10,12 11,12 . 11,12 11,12.28 7,13 8,13 8,13 9,13 10,13 10,13 11,12 11,12.29 7,14 8,14 8,14 9,14 9,13 10,13 11,13 12,13.30 7,14 8,14 8,14 9,14 9,14 10,14 11,14 11,14.31 7,15 8,15 8,15 9,15 9,15 10,15 10,14 11,14.32 7,15 8,15 8,15 9,15 9,15 10,15 10,15 11,15.33 7,16 8,16 8,16 9,16 9,16 10,16 1,16 11,16•34 7,16 8,16 8,16 9,16 9,16 i0,16 10,16 11,16.35 7,17 8,17 8,17 9,17 9,17 10,iT 10,17 11,17.36 7,17 8,17 8,17 9,17 9,17 10,17 10,17 11,17.37 7,18 8,18 8,18 9,18 9,18 10,18 10,18 11,18.38 7,18 8,18 8,18 9,18 9,18 10,18 10,18 i1,18.39 7,19 8,19 8,19 9,19 9,19 10,19 10,19 11,19.4o 7,19 8,19 8,19 9,19 9,19 10,19 10,19 11,19.41 7,20 8,20 8,20 9,20 9,20 10,20 10,20 11,20.42 7,20 8,20 2,20 9,20 9,20 10,20 10,20 11,20.43 7,21 8,21 8,21 9,21 9,21 10,21 10,21 11,21.44 7,21 8,21 8,21 9,21 9,21 10,21 10,21 11,21.45 7,22 8,22 8,22 9,22 9,22 10,22 10,22 11,22.46 7,22 8,22 8,22 9,22 9,22 10,22 10,22 11.22.47 7,23 8,23 8,23 9,23 9,23 10,23 10,23 11,23.48 7,23 8,23 8,23 9,23 9,23 10,23 10,23 11,23.49 7,24 8,24 8,24 9,24 9,24 10,24 10,24 11,24.50 7,24 8,24 8,24 9,24 9,24 10,24 10,24 11,24
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rI

Pf-

j'n:z'. ."ri. UJ

P2 .24 .25 .26 ; 28 .22 .30
.02
.03
o 04
.05
.o6
.07

K .08
.09
.10.11

.12

.13
.14
.15
.16
.17
.18
.19
.20
.21
.22
.23
.24
.25 11,12
.26 11,12 11,12
.27 11,12 12,13 12,13
.28 12,13 12,13 12,13 12,13
.29 12,13 12,13 12,13 13,14 13,14
.30 12,13 12,13 13,14 13,14 13,14 13,14
.31 12,14 13,14 13,14 13,14 13,14 14,15 14,15
.32 12,15 12,14 13,14 13,14 14,15 14,15 14,15
.33 12,15 12,15 13,15 14,15, 14,15 14,15 15,16
.34 11,16 12,16 13,16 14,15 14,15 14,15 15,16
.35 11,17 12,17 13,16 13,16 14,16 15,16 15,16
.36 11,17 12,17 12,17 13,17 14,17 15,16 15.16
.37 11,18 12,18 12,18 13,18 14,17 14,17 15,17
.38 11,18 12,18 12,18 13,18 1,8 14,18 15,18
.39 11,19 12,19 12,19 13,19 13.19 11.19 15,18
.40 11,19 12,19 12,19 13,19 13,19 14,19 15,19
.141 11,20 12,20 12,20 13,20 13,20 14,20 14,20
.142 11,20 12,20 12,20 13,20 13,20 14,20 14,20
.43 11,21 12,21 12,21 13,21 13,21 14,21 14,21
.44 11,21 12,21 12,21 13,21 13,21 14,21 14,21
.145 11,22 12,22 12,22 13,22 13,22 14,22 114,22
.46 11,22 32,22 12,22 13,22 13,22 14,22 14,22
.A7 11,23 12,23 12,23 13,23 13,23 14,23 14,23
.148 11,23 12,23 12,23 13,23 13,23 14,23 14,23
.49 11,24 12,24 12,24 13,24 13,24 114,24 14,24
.50 11,24 12,24 12,24 13,24 13,24 .4,24 14,24

I
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I I

FOUR GRADES N=50

ACCEPT. ACCEPT. ACCEPT.Pi P2 P3 NOS. Pl ?2 P3 NOS. P1 P2 P3 Nos..o1 .05 .10 0,2,4 .05 .10 .15 2,4,6 .10 .20 .25 4,10,11
.15 0,1,7 .20 2,4,9 .30 4,9,.14 '.20 0,1,9 .25 2,4,12 .35 4,9,17.25 0,1,12 .30 2,4,14 .40 4,9,19.30 0,1,14 .35 2,4,17 .45 4,9,22.35 0,1,17 .40 2,4,19 .50 4,9,24.40 0,1,19 .45 2,4,22
.45 0,1,22 .50 2,4,24 .25 .30 4,12,13.50 0,1,24 .35 4,12,17

.15 .20 1,7,8 .40 4,12,19.10 .15 0,5,6 .25 1,7,12 .45 4,12,22.20 0,4,9 .30 1,7,14 .50 4,12,24-
.25 0,4,12 .35 1,7,17.30 0,4, .40 1,7,19 .30 .35 4,15,16
.35 0, 4,7 .45 1,7,22 .40 4,15,19.40 0,4,19 .50 1,7,24 .45 4,14 2.45 0,o4,22 .50 4,:.4,24
.50 0,4,24 .20 .25 1,10,1i

.30 1,9,14 .15 .20 .25 7,9,10..15 .20 0,7,8 .35 1,9,17 .30 7,8,14.25 0,7,12 .40 1,9,19 .35 7,8,17•30. 0,T,14 .45 1,9,22 .40 7,8,19.35 0,7,17 .50 1,9,24 .45 7,8,22.40 0,7,19 .50 7,8,24
.45 0,7,22 .25 .30 1,12,13
.50 0,7,24 .35 1,12,17 .25 .30 7,12,13

.40 1,12,19 .35 7,12,17.20 .25 0,10,11 .45 1,12,22 .40 7,12,19.30 0,9,14 .50 1,12,24 .45 7,12,22
.35 0,9,17 .50 7,12,24
.40, 0,9,19 .30 .35 1,15,16.45 0,9,22 .40 1,15,19 .30 .35 7,15,16.50 0,9,24 .45 1,14,22 .40 7,15,19

.50 1,14,24 .45 7,14,22.25 .30 0,12,13 .50 7,14,24
.35 0,12,17
.40 012,19 .20 .25 .30 10,12,13.45 0,12,22 .10 .15 .20 5 7,8 .35 10,11,17.50 0,12,24 .25 5,4,12 .40 10,11,19

.30 5,6,14 .45 10,11,22.30 .35 0,15,16 .35 5,6,17 .50 10,11,24.40 0,15,19 .40 5,6,19.45 0,14,22 .45 5,6,22 .30 .35 9,15,L6.50 0,14,24 .50 5,6,24 .4o 9,14,19
.45 9,14,22
.50 9,14,24
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FOUR GRADES Nw60

ACCEPT. ACCEPT. ACCEPT.
Pl P2 P3 NOS. P1 P2 P3 NOS. P1 P2 P3 NOS.
.01 .05 .10 0,2,5 .05 .10 .15 2,5,8 .10 .20 .25 5,12,13

.15 0,2,8 .20 2,5,11 .30 5,11,1T

.20 0,2,11 .25 2,5,14 .35 5,11,20

.25 0,2,14 .30 2,5,17 .40 5,11,23

.30 0,2,1'f .35 2,5,20 .45 5,11,26

.35 0,2,20 .40 2,5,23 .50 5,11,29
•140 0,2,23 .45 2,5,26
.45 0,2,26 .50 2,5,29 .25 .30 5,15,16
.50 0,2,29 .35 5,114,20

.15 .20 2,9,10 .4o 5,14,23
.10 .15 0,5,8 .25 2,8,14 .45 5,14,26

.20 0,5,11 .30 2,8,17 .50 5,14,29

.25 0,5,14 .35 2,8,20

.30 0,5,17 .40 2,8,23 .30 .35 5,18,19

.35 0,5,20 .45 2,8,26 .40 5,18,23

.4o 0,5,23 .50 2,8,29 .45 5,17,26

.45 0,5,26 .50 5,17,29

.50 0,5,29 .20 .25 2,12,13
.30 2,11,17 .15 .20 .25 9,11,13

.15 .20 0,9,10 .35 2,11,20 .30 9,10,17
.25 0,8,14 40 2,11,23 .35 9,10,20
.30 0,8,17 .45 2,11,26 .AO 9,10,23
.35 0,8,20 .50 2,11,29 .45 9,10,26
.10 0,8,23 .50 9,10,29
.145 0,8,26 .25 .30 2,15,16
.50 0,8,29 .35 2,14,20 .25 .30 8,15,16

.40 2,14,23 .35 8,14,20
.20 .25 0,12,13 .45 2,14,26 .4O 8,14,23

.30 0,11,17 .50 2,14,29 .45 8,14,26

.35 0,11,20 .50 8,14,29

.4o 0,11,23 .30 .35 2,18,19

.45 0,11,26 .40 2,18,23 .30 .35 8,18,19

.50 0,11,29 .45 2,17,26 .40 8,17,23
.50 2,17,29 .45 8,17,26

.25 .30 0,15,16 .50 8,17,29
.35 o,14,20
.1O 0,14,23 .20 .25 .30 12,14,16
.45 0,14,26 .10 .15 .20 5,8,10 .35 12,13,20
.50 0,14,29 .25 5,8,14 .4o 12,13,23

.30 5,8,17 .45 12,13,26
.30 .35 0,18,19 .35 5,8,20 .50 12,13,29

.40 0,18,23 .40 5,8,23

.45 0,17,26 .45 5,8,26 .30 .35 11,18,19

.50 0,17,29 .50 5,8,29 .4o 11,17,23
.4h5 11,17,26
.50 11,17,29
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FOUR GRAuks N=70

ACCEPT. ACCEPT. ACCEPT.
PI P2 P3 NOS. PI P2 P3 NOS. P1 P2 P3 NOS.

.01 .or .10 0,3,6 .05 .10 .15 3,6,9 .10 .20 .25 6,14,i
.15 0,2,10 .20 3,6,13 .30 6,13,20 j
.20 0,2,13 .25 3,6,17 .35 6,13,24
.25 0,2,17 .30 3,6,20 .4o 6,13,27 A
.30 0,2,20 .35 3,6,24 .45 6,13,31
.35 0,2,24 .4o 3,6,27 .50 6,13,34
.40 0,2,27 .45 3,6,31
.45 0,2,31 .50 3,6,34 .25 .30 6,18,19
.50 0,2,34 .35 6,17,24

.15 .20 2,10,12 .4o 6,17,27
.10 .15 0,6,9 .25 2,10,17 .45 6,17,31

.20 0,6,17 .35 2,10,24

.30 0,6,20 .40 2,10,27 .30 .35 6,22,23

.35 0,6,24 .45 2,10,31 .4O 6,20,27

.4o 0,6,27 .50 2,10,34 .45 6,20,31

.45 0,6,31 .50 6,20,34

.50 0,6,34 .20 .25 2,14,16
.30 2,13,20 .15 .20 .25 10,13,16

.15 .20 0,10,12 .35 2,13,24 .30 10,12,20
.25 0,10,17 .40 2,13,27 .35 10,12,24
.30 0,10,20 .45 2,13,31 .40 10,12,27
.35 0,10,24 .50 2,13,34 .45 10,12,31
.4O 0,10,27 .50 10,12,34
.45 0,10,31 .25 .30 2,18,19
.50 0,10,34 .35 2,17,24 .25 .30 10,18,19

.40 2,17,27 .35 10,17,24
.20 .25 o,14,16 .45 2,17,31 .40 10,17,27

.30 0,13,20 .50 2,17,34 .45 10,17,31

.35 0,13,24 .50 10,17,34

.40 0,13,27 .30 .35 2,22,23

.45 0,13,31 .4O 2,20,27 .30 .35 10,22,23

.50 0,13,34 .45 2,20,31 .4O 10,20,27
.50 2,20,34 .45 10,20,31

.25 .30 0,18,19 .50 10,20,34
.35 0,1724
.40 0,17,27 .20 .25 .30 14,17,19
.45 0,17,31 .10 .15 .20 6,10,12 .35 14,16,24
.50 0,17,34 .25 6,9,17 .4o 14,16,27

.30 6,9,20 .45 1i,16,31
.30 .35 0,22,23 .35 6,9,24 .50 14,16,34

.40 0,20,27 .40 .6,9,27

.45 0,20,31 .45 6,9,31 .30 .35 13,21,22

.50 0,20,34 .50 6,9,34 .4O 13,20,27
.45 13,20,31
.50 13,20,34
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FOUR GRADES N-80

ACCEPT. AC .T. ACCEPT.
P1 P2 P3 NOS. Pl P2 P3 NOS. P1 P2 P3 NOS.
.01 .05 .10 0,3.7 .05 .10 .15 3,7.11 .10 .20 .25 7,16,18

.15 0,3,11 .20 3,7,15 .30 7,15,23

.20 0,3,15 .25 3,7,19 .35 7,15,27

.25 0,3,19 .30 3,7,23 .40 7,15,31

.30 0,3,23 .35 3,7,27 .45 7,15,35

.35 0,3,27 .40 3,7,31 .50 7,15,39

.40 0,3,31 .45 3,7,35

.45 0,3,35 .50 3,7,39 .25 .30 7,20,22

.50 0,3,39 .35 7,19,27
.15 .20 3,12,14 .40 7,19,31

•10 .15 0,7,11 .25 3,11,19 .45 7,19,35
.20 0,7,15 .30 3,11,23 .50 7,19,39
.25 0,7,19 .35 3,11,27
.30 0,7,23 .40 3,11,31 .30 .35 7,24,26
.35 0,7,27 .45 3,11,35 .40 7,23,31
.40 0,7,31 .50 3,11,39 .45 7,23,35
.45 0,7,35 .50 7,23,39
•50 0,7,39 .20 .25 3,16,18

.30 3,15,23 .15 .20 .25 12,15,18
.15 .20 0,12,14 .35 3,15,27 .30 12,14,23

.25 0,11,19 .40 3,15,31 .35 12,14,27

.30 0,11,23 .45 3,15,35 .10 12,14,31

.35 0,11,27 .50 3,15,39 .45 12,14,35

.140 0,11,31 .50 12,14,39

.45 0,11,35 .25 .30 3,20,22

.50 0,11,39 .35 3,19,27 .25 .30 11,20,22
.140 3,19,31 .35 11,19,27

.20 .25 0,16,18 .45 3,19,35 .40 11,19,31
.30 0,15,23 .50 3,19,39 .45 11,19,35
•35 0,15,27 .50 11,19,39
.40 0,15,31 .30 .35 3,24,26
.45 0,15,35 .40 3,23,31 .30 .35 11,24,26
.50 0,15,39 .45 3,23,35 .4o 11,23,31

.50 3,23,39 .45 11,23,35
.25 .30 0,20,22 .50 11,23,39

.35 0,19,27

.4o 0,19,31 .20 .M5 .30 16,19,22
.145 0,19,35 '.10 .15 .20 7,12,14 .35 16,18,27
.50 0,1939 .25 7,11,19 .40 16,18,31

.30 7,11,23 .45 16,18,35
.30 .35 0,24,26 .35 7,11,27 .50 16,18,39

.o0 0,23,31 .40 7,11,31

.45 0,23,35 .45 7,11,35 .30 .35 15,24,26

.50 0,23,39 .50 7,11,39 .40 15,23,31
.45 15,23,35
.50 15,23,39
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I

FOUR GRADES N=90 I
ACCEPT. ACCET. ACCEPT.

P1 P2 P3 NOS. P1 P2 P3 NOS. P P2 P3 NOS.

.01 .05 .10 0,4,8 .05 .10 .15 4,8,12 .10 .20 .25 8,18,21

.15 0,3,13 .20 4,8,17 .30 8,17,26

.20 0,3,17 .25 4,8,22 .35 8,17,31

.25 0,3,22 .30 4,8,26 .40 8,17,35

.30 0,3,26 .35 4,8,31 .45 8,17,40

.35 0,3,31 .40 4,8,35 .50 8,17,44

.40 0,3,35 .45 4,8,4o

.45 0,3,40 .50 4,8,44 .25 .30 8,23,25

.50 0,3,44 .35 8,22,31
.15 .20 3,13,16 .40 8,22,35

.10 .15 0,8,12 .25 3,13,22 .45 8,22,40
.20 0,8,17 .30 3,13,26 .50 8,22,44
.25 0,8,22 .35 3,13,31
.30 0,8,26 .40 3,13,35 .30 .35 8,27,29
.35 0,8,31 .45 3,13,40 .40 8,26,35
.4O 0,8,35 .50 3,13,44 .45 8,26,40
.45 0,8,40 .50 8,26,44
.50 0,8,44 .20 .25 3,18,21

.30 3,17,26 .15 .20 .25 13,17,21
.15 .20 0,13,16 .35 3,17,31 .30 13,17,26

.25 0,13,22 .40 3,17,35 .35 13,16,31

.30 0,13,26 .45 3,17,40 .40 13,16,35

.35 0,13,31 .50 3,17,44 .45. 13,16,40

.4o 0,13,35 .50 13,16,44

.45 0,13,40 .25 .30 3,23,25

.50 0,13,44 .35 3,22,31 .25 .30 13,23,25
.40 3,22,35 .35 13,22,31

.20 .25 0,18,21 .45 3,22,40 .40 13,22,35
.30 0,17,26 .50 3,22,44 .45 13,22,40
•35 0,17,31 .50 13,22,44
.4o 0,17,35 .30 .35 3,27,29
.45 0,17,40 .40 3,26,35 .30 .35 13,27,29
.50 0,1T,44 .45 3,26,40 .40 13,26,35

.50 3,26,44 .45 13,26,40
.25 .30 0,23,25 .50 13,26,44

.35 0,22,31

.40 0,22,35 .20 .25 .30 18,23,25

.45 0,22,40 i0 .15 .20 8,13,16 .35 18,22,31

.50 0,22,44 .25 8,12,22 .40 18,22,35
.30 8,12,26 .45 18,22,40

.30 .35 0,27,29 .35 6,12,31 .50 38,22,44
.40 0,26,35 .40 8,12,35
.45 0,26,40 .45 8,12,40 .30 .35 17,27,29
.50 0,26,44 .50 8,12,44 .4o 17,26,35

.45 17,26,40

.50 17,26,44
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I
FOUR GRADES N=1O0

ACCEPT. ACCEPT. ACCEPT.

P1 P2 P3 N O3. P2 P3 NOS6 ! I P

.01 .05 .10 0,4,9 .05 .10 .15 4,9,14 .10 .20 25 9,2u,23

.15 0,4,14 .20 4,9,19 .30 9,19,29

.20 0,4,19 .25 4,9,24 .35 9,19,34

.25 0,4,24 .30 4,9,29 .40 9,19,39

.30 0,4,29 .35 4,9,34 .45 9,19,44
435 0,4,34 .40 4,9,39 .50 9,19,49

.40 0,4,39 .45 4,9,44

.45 0,4,44 .50 4,9,49 .25 .30 9,25,28

.50 0,4,49 .35 9,24,34

.15 .20 4,15,19 .40 9,24,39

.10 .15 0,9,14 .25 4,14,24 .45 9,24,44

.20 0,9,19 .30 4,14,29 .50 9,24,49

.25 0,9,24 .35 4,14,34

.30 0,9,29 .40 4,14,39 .30 .35 9,29,33

.35 0,9,34 .45 4,14,44 .40 9,29,39

.40 0,9,39 .50 4,14,49 .45 9,29,44

.45 0,9,44 .50 9,29,49

.50 0,9,49 .20 .25 4,20,23
.30 4,19,29 .15 .20 .25 15,19,23

.•15 .20 0,15,19 .35 4,19,34 .30 15,19,29

.25 0,14,24 .40 4,19,39 .35 15,19,34

.30 0,14,29 .45 4,19,44 .40 15,19,39

.35 0,14,34 .50 4,19,49 .45 15,19,44

.40 0,14,39 .50 15,19,49

.45 o,14,44 .25 .30 4,25,28

.50 o,14,49 .35 4,24,34 .25 .30 15,25,28
.40 4,24,39 .35 15,24,34

.20 .25 0,20,23 .45 4,24,144 .40 15,24,39

.30 0,19,29 .50 4,24,49 .45 15,24,44

.35 0,19,34 .50 15,24,49

.40 0,19,39 .30 .35 4,29,33

.45 0,19,44 .40 4,29,39 .30 .35 14,29,33

.50 0,19,49 .45 4,29,44 .40 14,29,39
.50 4,29,49 .45 14,29,44

.25 .30 0,25,28 .50 14,29,49

•35 0,24,34
.40 0,24,39 .20 .25 .30 19,24,28

.45 0,24,44 .10 .15 .20 9,15,19 .35 19,23,34

.50 0,24,49 .25 9,14,24 .40 19,23,39
.30 9,14,29 .45 19,23,44

.30 .35 0,29,33 .35 9,14,34 .50 19,23,49
.40 0,29,39 .40 9,14,39
.45 0,29,44 .45 9,14,44 .30 .35 19,29,33

.50 0,29,49 .50 9,14,49 .40 19,29,39
.245 19,29,44
.50 19,29,49
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FOUR GRADES N=125

ACCEPT. 'CCEPT. ACCEPT.
P1 P2 P3 NOS. P1 P2 P3 NOS. P1 P2 P3 NOS.

.01 .05 .10 0,5,11 .05 .10 .15 5,12,17 .10 .20 .25 11,25,29
.15 0,5,18 .20 5,11,24 .30 11,24,36
.20 0,5,24 .25 5,11,30 .35 11,24,43
.25 0,5,30 .30 5,11,36 .40 11,24,49
.30 0,5,36 .35 5,11,43 .45 11,24,55
.35 0,5,43 .40 5,11,49 .50 11,24,61
.40 0,5,49 .45 5,11,55
.45 0,5,55 .50 5,11,61 .25 .30 11,31,36
.50 0,5,61 .35 11,31,43

.15 .20 5,18,23 .40 11,31,49
.10 .15 0,11,18 .25 5,18,30 .45 11,31,55

.20 0,11, 14 .30 5,18,36 .50 11,31,61

.25 0,11,30 .35 5,18,43

.30 0,11,36 .40 5,18,49 .30 .35 11,37,42
35 0,11,43 .45 5,18,55 .40 11,37,49

.40 0,11,49 .50 5,18,61 .45 11,37,55.45 0,11,55 .50 11,37,61

.50 0,11,61 .20 .25 5,25,29
.30 5,24,36 .15 .20 .25 18,24,29

".15 .20 0,18,23 .35 5,24,43 .30 18,24,36
.1 .25 0,18,30 .40 5,24,49 .35 18,24,43

.30 0,18,36 .40 5,24,55 .40 18,24,49

.35 0,18,43 .50 5,24,61 .45 18,24,5

.40 0,18,49 .50 18,24,61

.45 0,18,55 .25 .30 5,31,36: .50 0,18,61 .35 5,31,43 .25 .30 18,31,36

.4C 5,31,49 .35 18,31,43
.20 .25 0,25,29 .45 5,31,55 .40 18,31,49

S.30. 0,24,36 .50 5,31,61 .45 18,31,55

.35 0,24,43 .50 18,31,61

.40 0,24,49 .30 .35 5,37,42•45 0,24,55 .40 5,37,49 .30 .35 18,37,42

.50 0,24,61 .45 5,37,55 .40 18,37,49
.50 5,37,61 .45 18,37,55

•.25 .30 0,31,36 .50 18,37,61

.35 0,31,43

.40 0,31,49 .20 .25 .30 24,30,36
•.45 0,31,55 .10 .15 .20 12,18,23 .35 24,30,43

.50 0,31,61 .25 11,18,30 .40 24,30,49
.30 11,18,36 .45 24,30,55

•30 .35 0,37,42 .35 11,18,43 .50 24,30,63

.40 0,37,49 .40 11,18,49

.45 0,37,55 .45 11,18,55 .30 .35 24,37,42
•.50 0,37,61 .50 ii,18,61 .40 24,37,49

.45 24,37,55

.50 24,37,61
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FOUR GRADES N=150

ACCEPT. ACCEPT. ACCEPT.
P1 P2 P3 NOS. P1 P2 P3 NOS. P1 P2 P3 NOS.
.01 .05 .10 0,6,14 .05 .10 .15 6,14,21 .10 .20 .25 7,29,36

.15 0,6,21 .20 6,14,29 .30 14,29,44

.20 0,6,29 .25 6,114,36 .35 14,29,51

.25 0,6,36 .30 6,14,44 .40 14,29,59

.30 0,6,44 .35 6,14,51 .45 14,29,66

.35 0,6,51 .40 6,14,59 .50 .4,29,74

.40 0,6,59 .45 6,14,66

.45 0,6,66 .50 6,14,74 .25 .30 14,37,43

.50 0,6,7" .35 14,37,5.
.15 .20 6,22,29 .40 14,37,59

.10 .15 o,14,21 .25 6,22,36 .45 14,37,66
.20 0,14,29 .30 6,22,44 .50 14,37,7b
.25 0,14,36 .35 6,22,51
.30 0,14,44 .A0 6,22,59 .30 .35 14,44,51
.35 0,14,51 .45 6,22,66 .40 14,44,59
.A0 o,14,59 .50 6,22,74 .45 14,44,66
.45 0,14,66 .50 14,44,74
.50 0,14,74 .20 .25 6,29,36

.30 6,29,44 .15 .20 .25 21,29,36
.15 .20 0,22,29 .35 6,29,51 .30 21,29,44

.25 0,22,36 .40 6,29,59 .35 21,29,51

.30 0,22,44 .45 6,29,66 .40 21,29,59

.35 0,22,51 .50 6,29,74 .45 21,29,66

.140 0,22,59 .50 21,29,74

.45 0,22,66 .25 .30 6,37,43

.50 0,22,74 .35 6,37,51 .25 .30 21,37,43
.40 6,37,59 .35 21,37,51

.20 .25 0,29,36 .45 6,37,66 .40 21,37,59
.30 0,29,44 .50 6,37,74 .45 21,37,66
.35 0,29,51 .50 21,37,74
.4o 0,29,59 .30 .35 6,44,51
.45 0,29,66 .4O 6,44,59 .30 .35 21,44,51
.50 0,29,74 .45 6,44,66 .40 21,44,59

.50 6,44,74 .145 21,44,66
.25 .30 0,37,4 .50 21,44,74

.35 0,37,5

.40 0,37,5 .20 .25 .30 29,37,43
•45 0,37,6 .10 .15 .20 14,22,29 .35 29,37,51
.50 0,37,71 .25 14,22,36 .40 29,37,59

.30 14,22,44 .45 29,37,66
.30 .35 0,44,51 .35 14,22,51 .50 29,37,74

.40 0,44,3 .. 40 14,22,59

.45 o,44,66 .45 14,22,66 .30 .35 29,44,51

.50 o,414.7 .50 14,22,74 .40 29,44,59
.45 29,44,66
.50 29,44,74

108 lo, Ii



I

FOUR GRADES N=200

ACCEPT. ACCEPT. ACCEPTP1 P2 P3 NOS. P1P2 P3 N0S P. P2 P3 NOS..01 .05 .10 1,9,19 .05 .10 .15 9,19,29 .10 .20 .25 19,39,4.5 1,9,29 .20 9,19,39 .30 19,39,59.20 ,9,39 .25 9,19,49 .35 19,39,69.25 1,9,49 .30 9,19,59 .40 19,39,79.30 1,9,59 .35 9,19,69 .45 19,39,89235 1,9,69 .40 9,19,79 .50 19,39, 9
.40 1,9,79 .45 9,19,89.45 1,9,89 .50 9,19,99 .25 .30 19,49,59
.50 1,9,99 .35 19,49,69

.15 .20 9,29,39 .40 19,49,79.10 .25 1,19,29 .25 9,29,49 .35 19,49,89

20 1,19,29 .30 9,29,59 .50 19,49,99
.25 1,19,49 .35 9,29,69
.30 1,19,59 .40 9,29,79 .30 .35 19,59,9

:35 1,19,691 .45 9,29,89 .40 19,59,79
.40 1,19,79 .50 9,29,99 .45 19,59,89
.45 1,19,89 .50 19,59,99
.50 1,19,99 .20 .25 9,39,49

.30 9,39,59 15 .20 .25 29,39,49.15 .20 1,29,39 .35 9,39,69 .30 29,39,59.25 1,29,49 .40 9,39,79 .35 29,39,69
.30 1,29,59 .45 9,39,89 .40 29,39,79.35 1,29,69 .50 9,39,99 .45 29,39,89.40 1,29,79 .50
.45 1,29,89 .25 .30 9,49,59.50 1,29,99 .35 9,49,69 .25 .30 29,49,59

.40 9,49,79 .35 29,49,69.20 .25 1,39,49 .45 9,49,89 .40 29,49,79
.30 1,39,59 .50 9,49,9g .45 29,49,89
.35 1,39,69 

.50 29,49,99
.40 1,39,79 .30 .35 9,59,69.45 1,39,89 .40 9,59,79 .30 .35 29,59,69.50 1,39,99 .45 9,59,89 .40 29,59,79

-2S .30 1,49,59 .50 9,59,99 .45 29,59,89.50 29,59,99
.35 1,49,69 .10 .I5 .20 19,29,39.40 1,49,79 .25 19,29,49 .20 .25 .30 39,49,59.45 1,49,89 .30 19,29,59 .35 39,49,69.50 1,49,99 .35 29,29,69 .40 39,49,79

.40 19,29,79 .45 39,49,89.30 .35 1,59,69 .45 19,29,89 .50 39,49,99.40 2,59,79 .50 19,29,99
.45 1,59,89 

.30 .35 39,59,69.50 1,59,99 
.40 39,59,79

.45 39,59,89

.50 39,59,99
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FOUR GRADES N=300

ACCEPT. ACCEPT.

P1 P2 P3 NOS. Pl P2 P3 NOS. P1 P2 P3 NOS.
.01 .05 .10 2,1i ,29 .05 .0 .15 14,29,44 . . . f .25 2.59,74--

.15 2,14,44 .20 14,29,59 .30 29,59,89

.20 2,1t,59 .25 14,29,74 .35 29,59,104

.25 2,14,74 .30 14,29,89 .40 29,59,119

.30 2,14,89 .35 14,29,104 .45 29,59,134

.35 2,14,104 .40 14,29,119 .50 29,59,149

.40 2,14,11 .45 14,29,134

.45 2,14,134 .50 14,29,149 .25 .30 29,74,89

.50 2,14,14 .35 29,74,104
.15 .20 14,44,59 .40 29,74,119

.10 .15 2,29,44 .25 14,44,74 .45 29,74,134
.20 2,29,59 .30 14,44,89 .50 29,74,149
.25 2,29,74 .35 14,44,10
.30 2,29,89 .40 14,44,119 .30 .35 29,89,104
.35 2,29,10 .45 14,44,134 .40 29,89,119
.40 2,29,11 .50 14,44,149 .45 29,89,134
.45 2,29,134 .50 29,89,149
.50 2,29,149 .20 .25 14,59,74

.30 14,59,89 .15 .20 .25 44,59,74
.15 .20 2,44,59. .35 14,59,104 .30 44,59,89

.25 2,44,74 .40 14,59,119 .35 U4,59,104

.30 2,44,89 .45 14,59,134 .40 44,59,119

.35 2,44,104 .50 14,59,149 .45 44,59,134

.40 2,44,119 .50 44,59,149

.45 2,44,134 .25 .30 14,74,89

.50 2,44,149 .35 14,74,104 .25 .30 44,74,89
.40 14,74,119 .35 44,74,104

.20 .25 2,59,74 .45 14,74,134 .40 44,74,119
.30 2,59,89 .50 14,74,149 .45 44,74,134
.35 2,59,104 .50 44,74,149
.40 2,59,119 .30 .35 14,89,10
.45 2,59,134 .40 14,89,119 .30 .35 44,89,104
.50 2,59,149 .45 14,89,134 .40 44,89,119

.50 14,89,149 .45 44,89,134
.25 .30 2,74,89 .50 44,89,149

.35 2,74,10 .10 .15 .20 29,44,59

.40 2,74,119 .25 29,44,74 .20 .25 .30 59,74,89

.45 2,74,134 .30 29,44,89 .35 59,74,104

.50 2,74,149 .35 29,44,104 .40 59,74,119
.40 29,44,119 .45 59,74,134

.30 .35 2,89,104 .45 29,44,134 .50 59,74,149
.40 2,89,119 .50 29,44,149
.45 2,89,134 .30 .35 59,89,104
.50 2,89,149 .40 59,89,119

.45 59,89,134

.50 59,89,149
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THE ABBA SEQUENCE:

A PROCEDURE FOR COMPARISON TESTING

Arthur Pllersdorf
Terminal Ballistics Division
Ballistic Research Laboratory

Aberdeen Proving Ground, Maryland

This paper introduces, if not a novel* concept, certainly a new

acronym: ABBA, more precisely, A-B-B-A.

ABBA is an acronym and, as will be seen shortly, a mnemonic term.

The ABBA sequence is discussed here as an alternative to the AB method.

The latter term describes an accepted and effective comparison procedure -

repeated alternation. It is the sequential procedure usually followed in

comparing representative items of two batches, A and B. The two syllables

formed by the letter sequence A-B-B-A, may be vocalized, although "ABBA"

is not an English word. The letters, ABBA however, show the critical

difference in the implied pattern. In contrast to the unidirectional

A-B-A-B, etc., ABBA is an iterative doubling back In a sequence of four

operations, let two each be applied to two populations, A and B. Then the

sequence looks like:

A B

1 2 (a)

SUMS: 5 5

(NOTE: The numbers in the columns, the ktIs are, strictly

speaking, ordinal rather than cardinal numbers.)

*We learned at this Conference, at the lunch table, to be exact, that what
we call the ABBA sequence was applied at the National Bureau of Standards
many years ago.
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The A-B comparison process is not periodic or cyclic. It starts I
at t hs left a-d moves right; then again at the left, thence to the right,

viz.:

A B
1 2
3 4 (b)

SUMS: 4

The purpose of the AIM sequence is to improve confidence limits.

These confidence limits are not of the fiducial, or statistical variety.

Rather, these limits are of the human variety, and refer to the confidence

of three groups in the experimental data of mutual Interest. These groups

are: the experimenters, the technicians and, of course, the statisticians.

The procedure we propose will be recognized in its fundamental logic

as related to the statistical principle of blocking. This blocking principle

is exemplified in Latin and Graeco-Roman squares or similar planned arrays*

of experimental data. It is our view that our procedure is a prior fundamen-

tal. It tells how to obtain the data which is later treated better, from

the statistical viewpoint. The experiential basis of the proposal my be

singularly our own, but we doubt this very much.

Our underlying postulates are these:

1. Measuring a physical property, injecting a chemical, or shooting

a sample of amunition is equivalent, sut generis, to experimental treatment.

Hence, plural measurements (treatments) and population samples are combina-

tions.
'see, for eumle, the Youden rectangle concept.
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2. The uncertainties of temperament, temperature, and time, give

rise to sources of error, bias, and sequential or cumulative effects.

3. Firing a gun, of any caliber, inserts heat int., a dynamic system.

Thermal energy transfer may cause changes in such kinetic parameters as

velocity, yawing motion, or recoiling motion. These effects are known in

ballistics. Hence, we view each shot as a treatment.

4. Planting seeds in each of several plots (2 sampling each ground

lot) is also a treatment. Let all its' seeds be planted first in one plot,

and then its' seeds be planted in the second area of soil. Our view is

that the seed of the first plot was "treated" differently. It might be in

colder soil longer, or have more time to absorb initial moisture. Also,

during the planting of Plot 1, the "planter" may have lost or increased its

tension. The "planter" may be a human being, or a mechanical device in-

corporating control cables and springs. Tension is still tension.

5. Therefore, 'it is desirable that similar times shall have elapsed

during the seeding (treatment) of all three plots of ground.

6. As a first approximation, the sums of the ordinal integers, in

plain English - the step numbers, should be as nearly equal as we choose.

The equalities may be required at any time during or after the experiment

(see (a) on the first page of this article).

7. A first choice is that the sums of the ordinal numbers (the

cumulative sum of the sequential positions) at the end of an experimental

interval shall be equal. If columns are lots and rows are samples, then

the sums of columns A, B, etc. (Sk ) should be equal*.

WEpilogue: We were pleased to hear Dr. Youden recall how he had once worked
on this equality of column sums and had found the attempt had been
made for another purpose in an old math book.
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8. More generally, we may prefer that the total time intervals of

the preceding treatments, or sequence summations, are equal. This would

mean that the sums of the columns across as many rows, from the second row

to the last, should be equal. We shall see that we can have this half the

time.

From the foregoing, a basic value judgment can be inferred. In an

ABAB comparison, the time intervals within a column are equal. These are

the tinv Intervals between successive samples within the group or lot. The

test samples of A:-I, 3, 5, and B:-2, 4, 6, have equal chances of something

going wrong, intime, within the groups, A and B, But the environment, equip-

ment and personnel are also subject to error-random or otherwise. We choose

to equalize the error sources - time, temperature, and, psychologically,

temperament. These nmy affect the sample behavior more than its standby time.

Finally, if we study the array in (d) below, we see a singular difference

between ABBA and ABAB. Both are alike in that samples precede and follow the

others, one treatment at a time (A-l precedes B-2; B-2 follows Al; and precedes

A-3, etc.). But In the ABBA sequence, equal members of treatments In both

columns precede and follow another treatment (position or ordinal integer)

within the column. In brief (cf (d)), there are pairs in the columns.

Our value judgment of vertical pairing for achieving better balance,

I.e., less cumulative, sequential bias, is supported by C. C. Li (1):

"The criterion for balanced sequences is that every treatment is

preceded nr followed by all the other treatments, the same number of times."

The foregoing is cited as an advantage of alternate pairing with only

two populations or lots (A and B). With three or more lots, (columns), the
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pairing is found only in the extreme or "doublinq-back" columns: 1.'.;

under A and C only:

A B C

1 2 3

6 5 4 (c)

7 8 9

12 11 10

Ek1  26 26 26

ON THE ASPECT OF SAMPLE SIZE

If the sample number per 'ot, r, is very large, the difference in the

sums of the ordinal numbers under A and B (Ekt) becomes relatively small.

If the total number is forty, twenty samples per column, or lot, then dalet*

40 or <40 -4411 . 820. Since every element In the B column Is one greater

than that in the same row in A, ZA1 + 20 a EB, and EA m 400, ZBi - 420.

The final difference, 20, is only 5 percent of the 1At. For N w 60, the

percentage difference is even less. Hence, for the final cumulative effect,

an A-B-A-B may be just as good as an ABBA sequence. But, who has tested or

compared thirty pairs of experimental Nike-Hercules motors In one day? -

under "steady-state" conditions? - with a priori certainity that the experi-

ment will be completed?

The advantage of ABBA comes when there are interruptions, either

unforeseen or scheduled.

THE ABBA SEQUENCE AND THE DIAGONAL SEQUENCE

As indicated previously, the ABBA sequence has several features of

interest. For two samples, usually a standard and an experimental sample,

*See Dalet N and the ABBA Sequence, below.
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the ABBA sequence is an iteration of the staggered diagonal cycle. This

is seen in the following array:

A B

1 2

4 3

5 6
8 7 (d)

9 10

12 11
zkt  39 39

In the two column array above, starting at A and ending at B is the

first swing. Starting the next cycle at B, the 2nd column, and completing

the cycle by advancing to the next vacancy in the row, terminates at A. If

we havea series of columns, k, equal in number to the rows, r, we can have

a staggered cycling sequence which provides a diagonal of starting points,

e.g.:

CASE 5 X 5

A B C D E
1 2 3 4 5

10 5 7 8 9

14 15 11 12 13 •e)

18 19 20 16 17

22 23 24 25 21
-k 65 65 65 65 65

The diagonal (1, 6, 11, 16, 21) gives us an r X k square.

Thus, if r a k, even if r is odd, we can attain the desired equality

of finl column sums. This staggered cycling, or diagonal inception of

116



I
each succeeding row, is found in Youden's rectangle. ii

Fc- Lhuse who my insist on the repeated alternating cycle (A-B, A.B),

for whatever reasons, the following is reassuring: A two-population A.BA

sequence is nearly a repeated A-B. View the second and third (under B) as

one sample (of two items) and the fturth and fifth steps (under A) as the

other sample of two items. We are then testing alternate pairs. The

difference is that we begin with singleton A (Al), and end with singleton

B (ON), when the sample number for A equals that of B.

(Recall: A B

(singleton) 1 2) PA"

'B" (4 3)

(5 6) 'A" (f)
"" (8 7)

(9 10 (singleton)

Note that the ABBA sequences of (d) and (f) above, give equal sums of the

ordinal numbers at every even-numbered row. This equality holds for any

number of columns.

If, as is often the case, r is much greater than k, we have another

problem. We can form successive k by k squares, as a choice. Then, at the

very best, we have a series of squares, at least 3 x 3. In these 3 x 3

squares the ordinal sums are equal only every third row. If such a series

of odd-sided squares has a total number of rows which is even, it would of

course be better to use ABA. Then every second row is equal, Including

the last. If both r and k are odd and r doesn't divide into k, what do we

do? Let k a 3, r - 5. A 3 by 3 diagonal, plus a doublet (ABC - CBA) gives

equal sums at stage r 3 and r 5 (g) or at r 2 and r 5 (h).
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CASE 3 X 5:

(g) A C (h) A
1 2 3 1 2 3

6 4 5 6 5 4

8 9 7 7 8 9

Ek1 , 15 15 15 14 15 16

10 11 12 12 10 11

15 14 13 14 15 13

k 40 40 40 40 40 40

Here we have the compromise or combination of diagonal and ABBA cycles.

DALET N AND THE ABBA SEQUENCE

A new symbol is appropriate for indicating the sum of the ordinal

numbers of the total samples available for an experiment. The symbol we

propose is . ,dalet*. Dalet Is a triangle, like its Greek descendant,

delta, but dalet points from right to left. It it applicable to both letter

-N and to number <10 as a symbol of summation.

The sum of an aritlhmetic progression of the integers from zero to an

indefinite integer, N, is obtained from the equation:

t N
*' '- N (1;

1

Hence, dalet N, or dalet any number is a "triangular number" in Pascals

Triangle. The symbol dalet and equation (1) are useful for determining if

the sums of the columns of ordinal numbers can be equalized.

d omie (pronounced dah-let) is the name of the ancient Hebrew letter which
is fourth In the alphabet. It is the precursor of the Greek "delta."
Dalet means Na tent flap.' Later, it came to mean 4a door."
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Let us distribute the N inteqers from one to N. in rnmw (r) an.

columns (k), with equal numbers of integers in each column. Then -4N, or

"dalet" N - kr (kr + I) (2)

In two columns of ten rows, the arithmetic progression, 1 to 20,

sums to: 2 . 10 ((2 * 10) + I) or 210. (-a20 a 210). (3)

To determine if there can be equality of sums of individual columns,

of equal rows each, It is necessary to use formula (2) and let k be odd:

Then 21k** . r (kr+l) implies 21k or 21r (kr+l). (4)

But 2 does not divide into k (2 4 k);

.. 2jr (kr+l), and some integer, S w [r.(kEl)] (5)

So that.4- k e S (6)

..klkr (kr+l) (7)

An array of odd-numbered columns gives a sum that yields an integer

quotient regardless of whether rows are odd or even.

klk .r • (kr+l) (8)

If the rows (r) are odd, and the columns (k) are even, then

k ( . Ck does not divide into ...etc.) . (9)

If kr Is even, then kr+l is odd and 2 1 kr4l, since 2Ikr and 2 1 r

(r is odd); then

r (kr+l) is not an integer.

" alb : a divides into b.
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if the columns be even. Examoleg,

1 2 1 2 3 4

4 3 8 7 6 5
5 6 9 10 11 12
10 11 16 15 14 13

17 18 19 20
.a0 10•rk (rk+l) 210

420 n 210 a is not an integer.

The reader will note that the foregoing treatment applies to the case

of equal sample rumbers, or rows, however small, for each population sample

or column. The same procedure, however, can be applied to a group of unequal
simples, i.e.,

1. Determine N, the total number of samples.

2. Determine -4N.

3. Divide by k, the number of columns or populations or lots. If the

quotient is an integer, the sums of the ordinal numbers can be equal for all

columns or lots.

ON CASES OF UNEQUAL SAMPLE SIZES

For statistical inferences based on application of Student's t and

the t-like (t*) statistics, it has been shown that both statistics have the

sum value when two samples are of the same size. The mathematical

expression for df* (degrees of freedom for the t-like or t* statistic)

simplifies considerably when n, a n2 . Further, when the two groups are of

equal stze, the value of df* reduces to 2(n - I), wholesomely large, If the

variances(1) of the tw groups $12 and S22 are equal (2). This Is taken to

/orl precrsely, this Is the estimate of the variance with dt n - 1.
These comments can be explored in Reference 1 (Li).
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mean that when group variances are unequal it is even more desirable to

;sav grvupb Uf equai size. in a planned experiment, therefore, hope for

equal numbers of samples,

Let us suppose, however, that the samples are small in number, and of

unequal size. This situation happens when the test items are expensive,

experimental, or exotic. Another reason for unequal numbers of observations

of samples may be the exigencies of time. What is the simplest rule for any

number of plots, blocks, or columns, when the numbers of rows or samples per

lot are unequal? A uniform procedure would be to start with the sample of

largest number,

CASE 5 - 4 - 3 shows how the equality of final sums requires abandoning

a partial square (a) with its diagonal 3 X 3 array:

(a)A B C (b)A S C

1 1

2 3 2 3
4 5 6 6 4. 5
9 7 8 7 8 9

11 12 10 10 11 12
k 27 27 24 26 26 26

Note that N is divisible by k.

Case b. illustrates that the use of dalet* or 4N, here -12, is the

first order of business. Second is the injunction evident in Case a. also, -

use up the surplus first!

rcursor o the Greek letter delta is this ancient Hebrew form of the
letter "daletu (modern type "T ).
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M1
ON EXPECTED PROBABILITIES OF MISCLASSIFICATION
T... : ~i Am ALY518, NECESSARY SAMPLE SIZE, AND-

A RELATION WITH THE MULTIPLE CORRELATION COEFFICIENT

Peter A. Lachembruch
Department of Biostatistics
University of North Carolina
Chapel Hill, North Carolina

INTRODUCTION AND SUMMARY. When a sample discriminant function is
computed, il is desired to esTimate the chance of misclassification usin this
discriminant function. This is often done by classifying the sample using
the sample discriminant function or by computing 0(-D/2) where 0 is the
cumulative normal distribution, and D4 is Mahalanobis' distance. When the
sample dis.-.Iminant function is applied to a new sample, the observed
probabilities of misclassification are usually found to be greater than thost
computed from the initial sample.

The purposes of this paper are to show that this increase in the
probabilities of misclassification are directly related to the "shrinkage"
of R2 in new samplea and that these are related to the unbiased estimation
of Mahalanobis8| using D2.

DISCRIMI!ALI ANALYSIS. Discriminant analysis provides a method of
obtaining a function of a set of p multivariate observations which provides
maximum separation between groups. In this paper wo shall be concerned only
with the case of two groups. Let Widenote the first populationw 2 the second,
x ' (x I x2..*,Xp)O be a column vector of observations, 1k the mean vector

in the kth group (k - 1,2), E the comon covarianee matrix, and k and S

the sample means and covarianoes.

It is wall known that the sample discriminant function for discriminatinS
two groups is

(1) D (x) - (x (1/2) + )I'+S"2(x -X'

which is conditionally (on x and S) normally distributed and has mean

(in the kth group),

The remainder of this article was reproduced photo sraphically from the author's
copy.
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(2),

and varl -ce (in either group),

' ( ) V~~D " ,-i2)' - s- 1-)

If it is known that the chance of an individual, randomly selected

from the population, has probability *q of belonging to group 1 and l-q of

belonging to group 2, then the claqsification rule that is used is "classify

x into 1, if

q

(4) DeW) + log- 0
l-q

and into W2 otherwise." q

In this paper we will assume q - .5 so log 0 .
l-q

If x is multivariate normally distributed, then the probability of

misclassifying x conditional on ;,1 ;2, and 9 is

(5) Pl a P(%(X < 01.E, C l)

or P2 aP(D() 
• 0xri 2 )

P1 is given by

(6) #l('DeK1)/4

and a similar expression holds for P2 1 where 9 is the cumulative normal

distribution.

Estimating DS(k) by D-plDs(ka)/nk and VDby

0-1
2

D * ime 12 is equivalent to estimating . by.

and E by S.
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ius we obtain

(7) P t -(-D 2"2 DI = - (-n l9 .

wherp D2 -10 ji_ 2 ) is HMAalanobis" distance. This is a biased
estimate of P1 and gives too favorable an estimate 

of P1 "

Thus, in general, we should expect to find a higher rate of mis-
classification when applying the sample discriminant function to now data

than indicated by 0(-D/2).

It is of some interest to consider the expectation of D,(I) and
VD over repeated samples of size n1 and n2 . We shall need the expectations

of S and S- - Lachenbruch and Mickey [1965J have shown that

,:.~ ~ (g . - 1)  _ . ci Z

n pn-3 ~
nl+n2 -P-3

and

E(IEs- 1 (n1 +n2 -3) (n+n 2-2) 2  -
(ni+n2 -p-2) (n +n2 -p-3) (n +n2-p-5)

Now,

(9) L(Ds( k))" tr E(De(C))

- tr E (

' =- 2 - .l - ( k+l S
t, =( ( 1 i ) k " 14 j ) 7" Cl

1 2'-1)2nln 2 )

i - C1 f 62 (1  k4. "  P(n'2 1 '1)J

2 I ' 2'
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Similarly, we have for

(10) E(VD) - )'S-Irs- ,

tr E((x_-_ 2 )(x_-_ 2 )'_S_ )

t.r E ( (_1- 2) (j1-j_2) I-1 ) C2

(I.L-z2) QL-R2) ' + C + 1 _ -]C2

C2 ( ) l- 2) + nn2

Thus,

(11) HDs ft n.7'"2" 2_ {82_lk+l P(n 2-n 1}

() (U(k)) 2 (nl+n 2-P-3) n I(-I)

E(VD )  -{ P n n2 "( l 2") n " 2 2)62 + 1- 2_ .

('n2 ' +n p2)(n+n 2 -p-3)(nl+n2-P-5)

Although De(x) is normally distributed conditionally on R 2

and S' it is not unconditionally normally distributed. For n1 anid n2 suffi-

ciently large, the unconditional distribution is very close to normal.

Thus. considering the values of

(12) p1 " *(E('Ds I))/ )

and T2 -(E/ .EAVD)

will supply approximate values of P1 and P2 for samples of sizes a and n

There are three error rates of interest:

(a) The error rate for the particular sample discriminant

function. This is given by (6).

(b) The expected error rate over all samples of size ni, n2.

This is given by (12). 126
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(c) The error rate that would hold if we knew the parameters

of the distribution. Thin is given by t(-6/2).

Some properties of equations (9), (10), and (12) are of interest.

First, if nI - n 2 IE(De(pk))I > 82/2. For large n., n20 E(Dg(pk)) . 82/2(1)k

In gefleral, the variance of the sample discriminant functinn is always

greater than the variance of the population discriminant function.

The properties of C1 and C2 imply that

a) IIECk)I/ TE(VT < 6/2.

b) If n1/n2 is large or n2/nI is large and 5 is small, then

one of IE(Ds(k))I/.VD will be > 6/2 and the other will

be c 8/2.

c) In most circumstances we will have tE(Ds(Vk))/E(VD) < 6/2,

so we may conclude that the probability of misclassification

in either group is greaQar than the optimu, §(-6/2).

Table 1 gives examples of the ratio E(Ds( k))/t--VD) for various

values of 6, nl, n2 and p.

Table 1. Ratios Used in Calculating Error Rates

12 (Da (ii))/' '(VD) E(s(U2))//( 6/2

2 6 6 1 .3086 -,3Q86 .5
2 6 6 4 .7377 -.7377 1.0

2 4 20 1 .2189 -.5108 .5

2 4 20 4 .7747 -.9469 1.0

4 12 12 1 .3368 -.3368 .5

4 12 12 . 4 .8051 -.8051 1.0

4 4 20 1 .0586 -.5277 .5

4 4 20 4 .6102 -.9153 1.0
10 30 30 i .3478 -.3478 .5

10 30 30 4 .8313 -.8313 1.0

0 10 50 1 .0605 -.5448 .5

10 10 50 4 .6300 -.9450 1.0
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Finally, we note that we may uie the unbiased estimate of 62 based

on Dto obtain

(13 2/2-C p/n51 11

E(D ( _ ) D2 /2 + C /

(n +n D 12 (n 1 +n2 -2)
D(n 1 +n2 -p-2) (nl+n2 -P-5)

Thus we obtain an estimate of P~ for the discriminant function

based on samples of site n1 , in2 :

P 0(-(D2 /2 -CPn)/

which in always greater than 0(-D/2).

Sample Size for Discriminant Functions

The above results may be used to determine the sample size re-

quired to obtain error rates within a given tolerancs of the optinum.

The question we ask is "How large should n 1 and n 2 be for the

@ample discriminant function to have an error rote within y of the opti-

mam value?" The answer depends on p, y, and 62. For equal sample size.

the results are given in table 2.

From table 2, we see that y -. 1 yields very small sample sizes,

while y *.01 causes large sample. to be taken. The larger the separation
the

between the groups ,/smaller the sample size needed. As p increnses, the

sample size also increases, but the ratio n/p decreases for fixed 62 ani

'V.

. Because of the non-linear relation between.n1 , n2,p 82 and PL

for y - .1 we find that a larger sample is needed for 62 *4 thtan for

62 1.
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Table 2. Minimum Sample Size, n(-nIan2 ), in Each Group Required for Expected

Eairor Rate, PI to be Within y of Optimum Error Rate, P19

for Various Number of Parameters, p.

p 42 P y

2 1 .309 .1 .395 5
4 .159 .1 .256 5

9 .067 .1 .151 5
1 .309 .05 .356 9
4 .159 .05 .206 8
9 .067 ..05 .111 7
1 .309 .01 .318 47
4 .159 .01 .169 32
9 .067 .01 .077 22

4 1 .309 .1 .403 7
4 .159 .1 .245 a
9 .067 .1 .154 7
1 .309 .05 .358 15
4 .159 .05 .206 13
9 .067 .05 .116 10
1 .309 .01 .318 89

4 .159 .01 .169 56
9 .067 .01 .077 37

6 1 .309 .1 .407 9
4 ,159 .1 .253 10
9 .067 .1 .157 9
1 .309 .05 .357 22
4 .159 .05 .206 18
9 .067 .05 .113 14
1 .309 .01 .319 130
4 .159 .01 .169 17
9 .067 .01 .077 51

8 1 .309 .1 .403 12

4 .159 .1 .258 12
9 .067 .1 .159 11
1 .309 .05 .358 28
4 .159 .05 .208 22

9 .067 .05 .115 17
1 .309 ,01 .319 172

4 .159 .01 .169 104
9 .067 .01 077 66

20 1 .309 .1 .406 14
4 .159 .1 .253 15
9 .067 .1 .160 13
1 .309 .05 .358 35

I 4 .159 .05 .208 27
9 .067 .05 .117 20
1 .309 .01 .319 213
4 .159 ;01 .169 129
9 .067 .01 .077 81

20 1 .309 .1 .406 26
4 J159 ,1 .;256 27
9 .067 .1 .163 23
1 .309 .05 .358 67

i4 .159 .05 .209 51
9 .067 .05 .116 38
1 .309 .01 .319 421

S4 .159 .01 .169 250
9 .067 .01 .077 154

.............................................. ,.............. .... ...
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The Re~resion Analoav

Visher (1936) shows that by performing a regression analysis with

the dependent variable equal to n2 /(n 1 +n2 ) in the first group and -nl1(n en2)

in the second, the regression coefficients obtained are proportional to

the discrimi.nant enefficients. In fact, this is true for any two distinct

values of the dependent variable. See e.g., Cramer (1967). The analysis of
variance of this regression yields the same F as the D2 analysis does. Thus,

Ia nu2-P-1

(14) 7 - 2
1-l p

and

(15) 'Y D 2  Yn+2 pl ~ 2
p (n&'n2) (n1'n 2-2)

are two ways of expressing the some F with p and n1+n2-P-l degrees of

freedom. Thus

(16) D2 nn 2  * 2

(n&12) (n+nf2-2) 1-R2

which is equivalent to
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P2 (n 1 n 2) ('1i+12_2)

(17) D2
1-R2  nIn 2

or
D2

R2
(n l f2) (n +n2-2)

119+

These relations will be useful late'r.

Shrinkaj

In using a set of regression coefficients computed from a sample

for prediction purposes, it is found that the correlation between predicted

and observed values in a new sample is less than R. This phenomenon is

well-known an the "shrinkage" of the multiple correlation coefficient.. A

number of methods have been proposed to deal with the problem of obtaining

estimates of the "shrunken" R2 . There are at least two correlations of

interest. First, the population multiple correlation coefficient p2 that

would hold if we knew the parameters of the population. This value is the

proportion of the variance that can be accounted for by the independent

variables. The other quantity, which Lachenbruch and Mickey (1965) refer to

as p2, the Prediction Correlation Coefficient, is the correlation between
p

the sample regression li,'e and the dependent variable.

The following relation holds:

(18) 2 < p2 < E,(R2).

Approximate unbiased estimation of pP from R2 can be done easily

and methods of doing this will be discussed in the next section. Estimation

of p2 is a more difficult problem which can be handled fairly well by a

technique described in Lachenbruch and Mickey. (1965).
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An exact formula for estimating p2 is given by Olkin and Pratt (1958).

Letting R2 denote the estimate, they show that

(19) R2 1 -3 (l-R2)F(1,1;h(n-p+I),I-R2)n-p-i

is an unbiased estimate of P2 where n - nI + n2 , p = number of variables

and F() is the confluent hypergeoietric function.

A first' order approximation to an unbiased estimate was given by

Wherry (193D and is easier to work with:

(0-(l-R 2 )(p-l)(20) R c - R2

We will use formula (20) in the ensuing work.

Estimation of Pand_

A number of methods for estimating PI and P2 have been suggested

[Lachenbruch and Mickey (1943. Par this paper, we shall be concerned with

methods based on D2 . Okamoto (1963)has given an approximation based on

i, n2 and 62, the theoretical distance between the populations.

Equations (17) suggest that one might estimate a "shrunk" D
2 by

(2 (n +n2) (n+n 2-2)1:21) -
C 1-R2  nn

c 12

From (20) we obtain

(22) D2 - D2 nl+n-P- (p-) (nI+n2) (nI+n2-2)

n1 4n 2 -1 (n1+n2-l) nln2

Table 3 gives values of the multiplier of D mod the correction

term for some combinations of n1 - n2 - n, and p.
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Table 3. Multiplier and Constant Terms for "Shrunk" Estimate of D
2

m 0 multipliar correction term

20 2 .97 .10

50 2 .99- .02

100. 2 .99+ .002

20 4 .92 .29

50 4 .97 .12

100 4 .98 .06

20 10 .77 .88

50 10 091 .36

100 10 .95 .18

Thus, if D2  1.0, n - 20, p- 10, D2 77 - o88 -- ,11 which illustrates

one of the drawbacks of using unbiased *etimation for D2. If n a 100, but

other values were the same, we would have D2 a .95 - .18 a .77. When D2 is

small, and the number of parameters is large relative to the number of ob-

servations, the value of D2 may be negative.

In Lachenbruch and Mickey (1968), it in noted that an unbiased estimate

of 42 based on D2 may be obtained from the non-central F distribution. This

io another candidate for the value of D2 and its value is given by
fo

(23) - D2 nI+n 2p-3 (nl+n2)P

n In2-2 nIn 2

Equations (22) and (23) agree asymptotically as they should,

The difference between them is due to the approximation used to obtain

equation (22)0 and to the fact that the R2 computed from the dieeriminant

analysis is based on'only two possible valuea of the dependent variable.
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DISCUSSION. When the population parameters are known, it it easy
to show that the probabilities of misclassification are given by 0(-6/2)
vhere 62 in ahalanobist distance between populations. Thus, the probabi-
lities of misclassification increase as 62 decreases. Okamoto's work
indicates that this relation holds when estimates are used for the popula-
tion parameters. Since D 2 is an overestimate of 62, 0(-D/2) will always
underestimate the true probabilities of misclassification. Similarly, the
fact that R2 is an overestimate for 02 and p2 and the correspondence with
D2 through the P statistic indicate the relationship between the shrinkage
of R2 and the increase of probabilities of misclassification.
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INTRA-PROFILE VARIANCE*
(INTRA-INDIVIDUAL VARIANCE)

Claude F. Bridges**
Institutional Research Diviulon

Office of Research
United States Military Academy

West Point, New York

This discussion does iot present a sophisticated new statistic, rather
attention is called to an easily obtained but seldom used type of significant
difference between specimen, individuals or groups. The title, intra-profile
variance, should be meaningful to counselors, phychologists, and statisticians
in the education and personnel fields. The comparable sub-title may be more
meaningful to statisticians and researchers in other fields. The applications
discussed are in the personnel areas, but the profile variance statistic could
be made applicable whenever several characteristics or attributes of individual
specimen, components, or other units are being measured.

Table I illustrates the individual differences which the proposed statistic
reflects. Individuals "o" and "*" both have the same average standard score
on the four characteristics measured by X , X2 0 and X3 end X4 , but are quite

different individuals. The difference in consistency of relative level in the
four distributions suggests that there may be a difference in the predictability
of performance for the two and that the quantification of such Intra-individual
characteristics might prove useful.

My initial interest in this problem stemed from some remarks made by
Irving Lorge in 1947. He thought that, especiolly for some groups of personality
factors, consistency in level might be indicative of adjustment. Dr. Lore
hypothesized that statistical representation of such intra-individual differences
would, for some purposes at least, prove to contribute significantly to more
valid predictions than those based solely upon inter-individual differences.
In some types of situations high intra-individual variability might be more
desirable, in others being at about the same level, "consistent across the board,"
could lead to greater predictability of performance.

However, the concept is not as new as was originally thought. In checking
the literature this was found to be yet another area which had been investigated
by Clark Hull in 1927. In an artlcJs entitled, "Variability in Amount of
Different Traits Possessed by The Individual," he compared the variability among

*This is a further analysis of a concept reported at the September 1966 conference

of the Military Testing Association and at the March 1967 special session of the
Psychometric Society.
**Any views expressed in this paper are those of the author. They should not be

interpreted as reflecting the views of the United States Military Academy or the
Department of the Army.
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TABLE I

EUXAPLE OF DIFFERENCES IN INTRA-PROPILIZ VARIANCE

Individual Mean SDP

0 +1 2.370 +1 0.25

Standard
Score

coemeaure Mean Relative

xl~ X& N N 4 n (I Lvel

3.0 . 0

2.5 . Very
High

1.5 . . ..-

1.0 High

0o0, .. Typical

-0.5 .....

-1.0 .... LoW

* -1.5 ....-

-2.0 .LO

-3,03S36 . .

-3.0 . • .
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different persons in trait measures with the variability in a single individual
on these same traits. (Hull: 1927) He found the amount of variability within
single individuals to be about 80 percent of the amount of variability among
different individuals. Apparently a significant source of differences between
individuals is being ignored when using one composite, or weighted average, of
an individual's scores, for measurement, prediction, or decision making purposes.

Research by psychologists, educators and statisticians concerned with
personnel problems has evidenced increased interest in intra-individual
differences such as those i.dicated by variability among measures of different
attributes of an individual and by the more complete profile or pattern analysis
techniques. Much of this interest results from increased recognition that the
interrelationships within an individual of a group of measures may be quite
different from the interrelationships between these measures in the general
population. Current moderator variable research has found in some situations
a variable that successfully identifies subgroups within a population for which
the interrelationships among variables differ significantly.

While complete pattern or profile analysis techniques entail several
relatively complex problems, a statistic representing intra-profile, or intra-
individual, variance is easily obtained.

When SD 2p w intra-profile variance; n - number of tests, factors, subtests
or other characteristics measured and reported on compavable scales; and EX2

the sum of the squares of the deviations of an individual's scores on each
variable from his mean score on all n variables, then;

x2
SD p a (1)

If EX - sum of one man's scores on all n variables, and EX 2 the scores
squared and added, the gross score formula would be:

S 2 p . E n 2 - UL ) 2

2 n 2 (2)
n

When beta weights for comparably scaled scores on the different abilities or
traits are available, these could be used to obtain a measure of intra-profile
variance that should have more validity. The deviation formula for weighted
intra-profile variance would be:

2 rrx 2

SD - - (3)

The corresponding gross score formula would be:

2 ~~w 2 
- 2

SD - wx) (4)
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If the beta weights are not available, but other useful bases for weighting '
each scale in proportion to its Importance in a ziven performance are
available, much Judgment derived weights right be used in this formula.

Although the United States Military Academy, West Point, currently
compares favorably with the best universities in the effect.venems with
which academic performance is predicted, this still means that only 50 percent
of the factors that make for differences in level of academic performance are
being measured. Though proud of our relative success, we would like to reduce
the variance not predictable currently.

Appropriate basic data were available on the 843 cadets who entered LUSMA
in July 1964 and completed enough of the first year at USMAL to have academic
grades; 816 remained one year and 789 remained one and one-half years. Table
2 shows, for the 843 cadets, the correlation coefficients between the following:

(1) the academic average earaed at USMA--"Acad Av";

(2) the weighted average of Scholastic Aptitude Test-Verbal, SAT-
Mathematics, College Entrance ExamLnation Board Mathematics
Achievement, CRIB English Composition, and High School Rank
standard score,w-the five components of the academic potential
battery, "Acad Pot";

(3) the standard deviation of the weighted scores on these five
componentaw-the "SDPI" intra-profile statistic;

(4) the Academic Achievement Index, a statistic reflecting the
academic average with measured academic potential held cotistant
(partialed out) and thus identifying over-achievers, par-schievere,
and under-achievers-AA .1t

TABLE 2. Selected Correlation Coefficients*

rAced Av . SDPW - -.06

rAced Pot . SDPW = -. 23

rAced Av A Lced Pot - .68

A SD PW- .12

5taSDPW on AAl - .21 (f a 1.56; .10 > P > .03)

aA on SDeI - .17 (f - 0.86; P > .10)

RAced Av Aced Pot, SDPW - .69

*Means and standard deviations on each variable are given in Table 3.
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Even with a population of 843, simply adding the SDPW to the regression
equation did not significantiy increase the validity with which level of
academic achievement was predicted. However, inspection of the AAI line-of-
means revealed the marked tendency for the 241 cadets with a SDPW of 70 or
more to be over-achievers. In fact, the 15 cadets with SDPW's greater than
160 had a mean Academic Average more than one standard deviation above that
predicted from their measured academic potential. The 602 cadets with AAI's
of 69 or less tended to be under-achievers relative to the academic achievement
predicted from their composite academic potential score. Hence the possibility
was explored that the SDPW would serve as a moderator variable (an executive
variable) to identify two groups in which the interrelationships of the
variables involved were sufficiently different that different equations for
the two groups would yield more valid predictions.

For the total group of 843 cadets, the multiple correlation of the five
regular academic potential components with the Academic Average was .694; for
the 602 cadets with SDPWts of less than 70, the independently computed multiple
correlation was .695; for the 241 whose SDPW's were 70 or more, the multiple
correlation was .693. The beta weights in all three equations were almost
identical. The hypothesis that the interrelationships among these variables
were the same for two groups identified by a critical SDPW of 69.5 could not
be rejected.

Although neither of the above approaches successfully utilized intra-
profile variance, Table 3 shows clearly that the cadets who made the most
of their objectively-neasured academic potential had significantly higher
intre-profile variance on the five component measures. Perhaps the individual
differences model for multiple regression proposed by Dr. Cleary (1966) and
discriminant function analyses will show how to use the statistic in this
instance. At any rate, the ease with which this statistic can be obtained,
along with other statistical data at no extra cost, would seem to warrant its
incorporation into the model for validity studies. This would be especially
true when there ts reason to hypothesize that high intra-individual variance
would be desirable or when across-the-board consistency in performance is
desired.

Several other applications of this statistic may be useful. In the
military personnel situation, intra-individual differences may be of considerable
utility. In general, a man who is rather uniformly high in all areas of his
military specialty might be considered to be more valuable to his service, in
the series of successive assiumeants throughout his military career, than would
a man who is very high in some areas and very low in others. One of the letter
men might work out well in one assignment and be a complete failure in others.
Thus, the utility a soldier's weighted intra-profile variance on pertinent
measures of his abilities seems to warrant investigation. In the pbysical

and biological sciences and technologies as well as in the behavioral sciences
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TABLE 3
CHARACTRISTICS OF SELECTED GROUPS OF CADETS

ENTERING USMA IN 1964

Academic Academic
Group N Potential Academic Achievement SDP SDPW

Score Average Index (AAI)

N SD M SD H SD H SDM SD
"Over-achievers" 218 605 59 2.559 .113 622 48 70 33 73 40
(Top 27% on MAI)

"Par-achievers" 379 600 53 2.413 .107 501 35 66 27 67 31
(Middle 46Z)

"Under-schievera" 219 601 55 2.272 .113 375 50 62 24 63 29
(Bottom 27% on

AA1)

Total 1 year 816 602 55 2.415 .152 500 100 66 28 68 33

Total with grades 643 599 56 2.406 .158 500 100 66 28 67 33
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and technologies an intra-profile vailance type of statistic might be found
useful. For example, reasonably accurate estimation of the probability
of failure of a separate component or unit of equipment usually is possible.
However, considerable dlfficulty often is encountered when using standard
statistical techniques to estimate the composite failure probability of a
complex assembly of a large number of these component units. An exploratory
approach might begin by comparing the distributions of the weighted intra- 4
profile vmriance, of each component unit's significant characteristics
measured under standard conditions, for componeat units at different levels
on the beat available reliability statistic. Where adequately detailed
records are available, data on the past success and failure of complex
assemblies might be compared with distributions of the intra-profile variance
of the characteristics of all of its component units, including intra-profile
variance of the component units' intra-profile variances. An appropriate
model for such an investigation could be developed by quality control
researchers for a specific type of equipment.
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A STATISTICAL TEST OF TWO HYPOTHETICAL RELIABILITY
GROWTH CURVES OF THE LOGISTIC FORM IN THE DISCRETE CASE

William P. Henke
Research Analysis Corporation

McLean, Virginia

ABSTRACT. This paper demonstrates a mathematical method by which curves
can be developed useable as a tool for aid in solving the problem of monitoring
reliability growth; and also illustrates how statistical tests of hypotheses
may be conducted in conjunction with these growth curves.

The growth curves discussed are applicable for use where units are under-
going development phases; specifically where it is desired to periodically
assess the actual reliability growth of these units for comparison with hypothetical
reliability growth curves.

The unique facet of these growth curves as presented herein %es in their
use. Since their application is directed towards the improved development of
a unit type, this development is dependent upon the reliability achieved as a
result of improvements made on previously tested units. The reliability, or
probability of success, at each stage of development is independent and varies
from stage to stage.

A curve embodying the assumptions necessary for the measurement of reliability
growth during development is termed the Logistic curve. Two such curves are
plotted, representing two alternative hypothetical growth patterns based on
specified values of a unit's inherent reliability. From the observed sample of
proportion of successes (Ralirbility) accumulated at some trial of the development
program, a selection is made of the true curve of the unit or group of units that
just finished the test. If the upper growth curve is actually true of the
population from which the sample of units is randomly drawn, a small risk, a
is desired that the sample would be so poor as to bring rejection of this curve.
Likewise if the lower growth curve is true, a very small risk, $, is desired
that the sample will be so good as to bring erroneous acceptance of the upper

, curve.

The subject curves have been found useful in the past to study population
growth, learning and developmental processes. The application of the Logistic
Growth Curve concept in assessing reliability has only recently been directed
toward the engineering development of expensive electronic components. Prior
to this use, extensive literature search had not revealed its application for
this purpose.

The concept of reliability growth during the development stages is one
which should be emphasized throughout governmental and industrial circles. The
growth pattern concept, saving time and money, can also assist in creating a
better understanding between the consumer and the producer regarding their
mutual problems, through the joint visual monitoring of a statistically sound
method of reliability assessment.

The remaivder of this article was reproduced photographically from the author's
copy.

143



)I

Introduction

Reliability evaluation is as essential a task during the development

of a unit as it is during the production of the unit. During development,

eliability it directly affected by a necessary and thorough knowledge of

the use and capabilities of the proposed unit. Continuous reliability

design analyses and engineering changes on the unit cause a developmental

growth pattern which must be identified. This identification is necessary

in order that a trend can be predicted and the reliability requirement can

be eantitativy ecified for use in the evalution of the unit during

the production. This developmental growth pattern is dependent upon the

reliability achieved a a result of improvements made o previously tested

units. A mathematical function vhich has been found useful in the past to

describe population growth, learning and developmental processes, and more

recently to fit the engineering developmental growth pattern of mechanical

end electronic components is the S-shaped growth function presented herein

as the reliability growth model.

During the reliability development phase, the first unit is put to

test. Its performance is judged a failure or success. SubseqLuently, the

unit's reliability is assessed, an analysis is made of its performance and

design improements are made. These inorovemants are built into another

unit (or the same unit if no damage was done on the first test) wrhich then

undergoes the sam process; that is) testing for failure or success. Again

improvements are made sad the cycle is repeated. By such a procedure, it

is intended that reliability will gow from some low initial value (state-

of-the-art) to a higher target value at the end of the program.
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The Problem

'9 It is not unusual that although the inherent reliability of a

unit is growing properly, the "sample values of tested units" may vary

enough to present a poor reliability picture. "Sample values of units"

here means that the one unit tested was only one out of many (of a

population) that could have been tested. Thus even if reliability is

high, a rash of failures in a sample can occur and cast doubcs upon

the inherent reliability. Of course, it can also happen that a unit

with low inherent reliability will by chance poduce a high number of

successes in a sample, possibly resulting in wrongful acceptance of

the unit as being satisfactory. It is against these possibilities of

error that reliability statisticians direct themselves when designing

meaningful test programs,

C) Two reliability growth curves are plotted on Figure 1, representing

two alternative specified values of a unit's inherent reliability. From

the observed sample of proportion of succeasem (Reliability) accimulated

at some trial of the development program, we wish to choose between

which curve is true of the unit or group or units that just finished

the test. If .he upper growth curve is actually true of the population

from which the sample of units is randomly drawn, we only want a small

risk, o, that the sample would be s poor as to bring rejection of

this curve. Likewise if the lower growth curve is true, w,. want a

very small ria, $, that the sample will be so gooi ao to brina cr-

roneous acceptance of the upper curve. These two risks aro usually

specified by the experienced engineer or manager who must also conaider

such things as delivery time, cost, availability of test equipment and
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many othes, facets which contribute towards the profit picture of ar.

industry.

Mathematical Derivations

* The Growth Function

$-shaped curves of growth functions have been arrived at by many

learned people as cited in the references on growth. However $ Herbert

K. Weiss R1J in a reliability sense by the method of maximum likelihoodp

arrived at S-shaped growth curves by starting with the assumptions that

each failure source in a system has a parameter failure rate and that a

constant probability exists that each failure source will be properly

discovered and corrected by way of development engineering. A. Held

C2]. arrived at the same form of the curve through the use of differential

equ.ations, This section will concern itself with characterizing processes

by differential equations from which reliability growth will be derived.

Let x denote time or the magnitude of a growth factor which in-

fluences the size of y of the observed phenomenon. Then the differ-

ential coefficient dy/dx denotes the rate of growth; ie., the increase

per unit of time. At this point, the growth process can b'e characterized

by:

*- f(xy),

which indicates the growth rate depends both on time (x) and of the size

obtained (y). We shall only deal with special cases of the types

- f()g(x),)

which ma be written as:

*g(x)dx
in differential notation.
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Integration yields

F(y) - 0(x) (2)

Thus by means of (2) y in determined as a function of x.

To apply 6.) to a specific case, we take the situation whereby the

growth rate in proportional to the achieved reliability R, and to a

function of time, g(t) as:

idl

rearranging terms and using differential notation we obtain:

q.g(t) dt -,g(t)*

ad ln1~, we have froum(4.

whtah is called the logarithmic differential coefficient to be used

further.

Introducing R - 1, R, - and R(% - H) in, (3),we obtain the

folloving four differential equations.

1.1 6(t~t
a '-R)g(t) (OgEh)(

where X denotes the maximum value of R.

The four equation. respectively indicate that at a given time, the

reliability prowth rate (1) depends on time but is independent of the

alse reached, (2) ia proportional to the size reached and to a function

of the .time (3) is proportional to the "remaining a el" that ii, the
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maximum size minus the size reached. and a funton nmthe + .--,

0 (4) is proportional to both the size reached and the remaining size

as well as a function of the time.

We must study the character, or form, of the fourth differential

equation from equation (6) which is:

.R(7-R) g (t), (oNR), - constant, (7)

which is set up under the important assumptions which are worthy of

repeating: At a given number of trials, the reliability growth.rate,

dR/dt is a function of:

1) the number of trials, t,

2) the growth, R;, reached at a number of trials t, and

* 3) the remaining growth (X-R) to the maximum possible reliabil.

ity value A.

By introduction of the logarithmic differential coefficient as in

equation (5) we shall derive the reliability grQwth function.

Dividing (7) by R and substituting in(5) , we geta

+ p4(t) Xg(t). (8)dt

Solving (7) for.R:

1 dR

Substituting (9) into (8)

d lnR 1 dRdiT- + '(N-R)g(t). T't ) -9 ~

dor d ln dlIn (i-B) (10)
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It4 nP'Itd l (X R) 1 -1 i

Multipljing (10) by dt and integrating yields.

1mB- ln. - R) - XG(t).

Solving for R:

Ru e.*AG~t) (Lt)

which includes a constant of integration, and may be determined frou a

given value of (t, R).

By introducing special functions for g(t) such as:

gl(t) B + B1 t + B2 t
2

and
2

g2(t) , Bo + /11t + B2/t

one can obtain a number of examples of frequently applied growth curves.

For the reliability growth tests of the discrete case presented in this

thesis, it is sufficient to assume g(t) -B. Thereforep equation !11)

can be written as:

1 + Ae - (12)

where A -e 1 is a conatant of integration. .

For B > 0, equation Z12) is an increasing function of t having

the asymptote A. Since 0 i R - X and 0 s X a 1, the desired S-shaped

reliability growth function is obtained:

1 t (1.3)
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Figure 2 shows the growth function given in (13) as the S-shaped curve

with horizontal asympototes at P =0, and rl •

The Critical Region

In designing statistical tests of hypotheses, it is necessary to

specify the size of the critical or rejection region or. a is defined as

the Type I error of the test and it in the probability that the null*

hypothesis will be rejected when it is actually true. The procedure of

calculating the critical region when applj!,ing the reliability growth

function is to find the acceptance number of successes "a" such that

a

tE Ri o a

where R i, n is thei reliability, or probability of getting I successes

in n trials. Thus we must develop a probability for each of the 2"

permutations and sum these to some minimum acceptance number "a" of

successes , which equals or just exceeds of. The acceptance nunber of

successes, obtained from the above summation of probabilities when

divided by its corresponding n, gives the proportion successful (a/n),

which when plotted on the same graph as the reliability gruwbh curves,

outlines the critical region.

The probabilities of each of the permutations can be computed by

the powerful device of generating functions as outlined by Uspensky (3]

The generating function, 0 (C), for this problem is:

Sn IO(CY)". (RC Q1); E i c#

where the coefficients R will give both the permutations an the
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prvuuaiities invoivang i succsses indicated by the exponent of the

dummy variable .. This equation can easily be computed recttrsively,

giving the permutations and their probabilities at any Kth stage of

the development program:

(Po, K-1 + P 12, P K- 2 +

* PK-1 '-1 K-i

K-i tK-Ji) (R K C + oK)

Po KO g o + P , K 91 + P2, K C2 + .... P 1, K

where P Is the probability of S successes in M trials. Then the
8, M

critical region is found by finding the minimum acceptance number, "a,9

which satisfies:

a

i-tO

and dividing this number by its correspondinG n, to got the probabilities

which, when plotted, outline the critical region.

For example, if n - 3 the recursion becomes:

3
n i C + Qj (R R1  4-+ )(I 4- Q2) (H3 C + Q3)i-I

0o 1i 2 + .R 3
SRO,3  + R1,3 9 + R2 ,3  +R 3,3

* 0II I I+ + R'-"1 -'Q)C 1 l23+ l23

(H R RIQ2113 + Q1 ~ 3  
2 + (RjR., 3 R
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... e -. 'i" T ti,,, a- .e uw individua.Ly eva.Luated and

t i 0
the coefficients of the dummy variable 9 are summed from the g term

through the term. When the summation equals or Just exceeds the

preassigned value, the exponent of i is divided by 3. This pro-

portion is then plotted to outline the critical region for n - 3.

Testing One Growth Curv Ainst an Alternative

The mathematical model for this problem is based on the assumption

that at each ith (discrete) trial in a development program the rella-

bility, HI * of the unit is given by the growth curve:

R 1 where A and B are constants.

1 + Ae

Two curves are considered; the upper (desired growth) and the lower

t(undesired growth).

The upper gowth curve# our hypothesis, is determined by the initial

Scurrent state-of-the-art reliability which is give n to be Re0, the de-

atF
sired or target reliability which is a specified value % N at program's.

end, and the total number of trials for the entire development program,

I=aN.

The lower growth curve, the alternative, is determined in the same

manner as the upper curve, with RI being the minimum permissible level

and RI being the minimum target level at i - N trials.

A single unit is to be tested at each i t  stage of the development

program, registering either a failure or success. Even if the upper

specified R1 curve is a true characteristic of the unit, the random

variations of sampling units will prbduce observed proportions of suc-
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cesses to each Ith test which will deviate quite widely from the trend
C.0 of the basic growth curve. Each "path" or "random walk" of the ob-

served proportion successful depends on the permutation of successea,

5, and failures, F, that can rdsult in sampling units when the specified

R is the probability of success and %=l.O0-R i  the probability of
thfailure at each i trial. The total possible random walks or permu-

tations of failures and successes is 2N .

types of Error

In designing statistical tests of hypotheses, it is necessary to

specify the size of the critical or rejection region as e; also called

the producer's risk. Thus we must develop a probability for each of

the above permutations and sum these to some minimum acceptance number,

"as" of successes which just exceeds probability c. When "a" is divided

by its corresponding n, the proportions obtained outline the critical

region.

However, if some lower, undesirable growth curve, which does not

reach target ., is actually true of our system there is some risk or

chance 0, that the observed proportion will not fall in the rejection

region, resulting in erroneous acceptance of the system.

Since the o error (Type I) is predetermined, we will show the

derivation of the 0 error (Type II).

1, Use the upper growth curve RI'a for a given a value to cal-

culate the acceptance number of successes "a" such that:

a
a E Ri

1.0 in

155



where R is the total.probability of "i" successes in n trials con-

slating all possible permutations.

2. Use the number of successes "a" obtained from the first steps

appying to the lower growth curve to calculate B values such that

In

P E R'n
1-a '

The calculation can be conceptually diagramed as below (although

in actuality we are dealing with discrete distributions):

lover growth curve upper growth curve

R1' R

0 ,n

Number of Successes

Relationship of c and p error calculations

Figure3

It should be noted that the errors of e and B pertain only to

each value of n, No attempt ha- been made to evaluate the overall error

for the decision procedure, namely, we do not know what is the probability

of accepting or rejecting R or R', independent of the number of items

teated.

Construction of Growth Curves

Calculation Instruction: For upper growth curves

1. At each ith (discrete) trial in a development program the

()0 reliability Pl , of the unit is given by the growth curve:
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' I + A -Bi ( 4)

The Conotnnts A And B can be obtained In the foll ing malnrl

For A, let 1 0, we have

A 1 A (3.5)
o l+AeW)

Fr Bp let i -N, we have

RN .+ Ae. N

Substituting the value of A in (15) into, (16) we have

1

1 + (LM eBN

that is

-IBN 10 (l RL) an

1 l O(l-N)

2. Assign a number X (w5, 10, 15, ...N) to i in formula (14) to

calculate its corresponding N which will make up the body of the table

of upper-growh-curve-vaiuea.

Similarly we can obtain the values of lower growth curves.
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Due to ever IncronaInii p ' 3.w.i,-eor and froight air travel and resultuant

need for more rapid *',:urn around of oquipm not, a contract was let to a bo;Ld-

ing nterial manufacturer to delveolop a considerably more effective, but more

expensive metallic brake linitig, evaluate it, and measure its effect on the

braking system of the aircraft. At a given braking horsepower in ft. lbs/sOc.,

the criteria for determininG succoe S or failure F of the materlal are two-fold:

1. The maximum woar of the li nine is not to exceed -- inch! / , and

2. The maximum woear of tho bell (brakse drum) is not to exceed

inch

Any brake lining which could not meet these two criteria were classified

as rejects (failure), since these criteria are considered to be critical

defects, if exceeded. No previously tested linings can be retested.

A pre-design meeting was hold with attendees representing management,

the customer, engineering, purchasing and reliability. Since the reliability

of this lining was of prime Importtince, reliability chaired'the meeting.

The most significant points made in the meeting were that the cost of the

metallic material required is extremely high, ana the required reliability

was .993; that is, on the average the customer was wil.ing to live with

seven lining failures in 1000. It was also mutually agreed that a six

percent probability of rejecting the material was allowed when the sample

Classified information, in thousands of an inch, with braking applied
for x hours.
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showed poor material coming from a good lot. This is known as the

producer's rick (*crror). 'he iniLial current state-of-the-art

reliability of the brake lining was given to be 20 percent. The un-

desired oz- alternative initial reliability was given to be 19 percent,

with the alternative final reliability value being .935. This value

of .935 was chosen since a review of theo.values for this combination

of .935 and .993 indicated that the power of the test (1.00 -,

was at a desirable level, considering the cost of the material and the

alpha error. The beta error was an eight percent probability of

accepting the material when the sample showed good material coming

from a bad lot.

There were four critical environmental test. which the braking

material was required to pass. These were:

1. Humidity

2. Temperature

3. Shook

4. Vibration

A success in one particular environment does not mean that the

specific lining would have passed in another environment. It was

decided that since two brake linings were required to simulate a braking

system, the linings for two shoes at a time would be manufactured, tested

two at a time on each of the four environmental tests and their re-

liability evaluated and growth structure monitored. The total manufactured

sample size due to cost, was allowed to be 72 pairs of shoes.
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The teat results up to and inc.udtng test number 40 are shown in

TThble 1 and ar plotted on Figure 4.

Table 1 

BRAKE BONDING MATERIAL
TST DATA SHUT

Number Number Cumulative Cumulative Proportion
of Tests of Number of of Successes

sucoesses Successes (Reliability)

4 1 . .25
8 0 1 .12

12 3 4 .33
163 7 .414
20 2 9 .45
24 3 12 .50
28 2 14
32 1 15 Z
36 2 17 .47
40 2 19 .48

Figure 4 illustrates the test results given in Table 3 plotted in

increments of four pairs of linings, the upper desired reliability growIth

OUve, V . the alternative lower undesirable reliability growth curve,

and the critical or reject region. As can bm seen, the reliability was not

growing as 4esired, so the manufcturing and testing were halted after test

nufber 40. A very strict analysis vas ordered of the design before authoriza-

tion was given to proceed further.
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Conclusions:

The concept of reliability growth dur-ing the deveLopmenit sages is une

which should be emphasi7ed1 t bromighout governmental and industrial circles. The

growth pattern, saving time and money, can also create a better understanding

by the consumer and the producer of their problems through the visual monitor-

ing of statistically sound methods of assessment. The producer and consumer

should get together before development to understand and agree on the following

items related to the monitoring of the to-be-developed unit's reliability:

1. The current state-of-the-art reliability.

2. The desired final reliability value at program's end.

3. The alternative, or undesired, reliability values corresponding to

steps I and 2.

h. The inspection size and final inspection size.

5. Null hypothesis and alternative(s).

6. Alpha error, beta error and power of the test.

Thus a thorough knowledge of the ability and use of the subject items will

be overlapped with a sound statistical technique for use in assessing the pro-

posed item during development.

When choosing reliability curves of the type presented herein for use in

describing the grov-th pattern of a particular item in development, care must

be taken ia selecting proper combinations of sample size and pre-assigned alpha

values. Small alpha values will tend to be equalled or exceeded rather quickly

when the sample size is quite small, say 10 or less. For larger sample sizes,

the values of alpha are not as quickly equalled or exceeded, and when exceeded,

the cumilative probabilities closely approximate the preassigned alpha values.

Of couise, the power of the test (1.00 - Beta) will assist the choice of the

proper ccmbinations df alpha and the sample size.
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PROGRAMMING THE GROWTH MODELI

Introduction

The reliability growth model-program was written in Fortran IV

language and was run on the IBM 7040 computer. The program is flexible

in the sense that positive or negative step sizes are permitted in

choosing sequences of upper or lower curves. It is also possible to

skip certain curves in a sequence of upper or lower curves. The pro-

gram will run approximately twenty Tilnute on the 70,0 for 60 combi-

nations of upper and lower reliability growth curves and 50 different

values for sample size. The prooram listing is included for use by

those wanting to generate curves, critical regions and S errors.

Please note the program statement numbers are included ia brackets

to the right of the appropriate statements;

Descri2tion

The reliability growth program calculates the quantities ProbabilitYi,

i = i, ... , n outlining the critical regions corresponding to different

values of the Type I or a error, cy., i = li ... , n, and the corre-

sponding Type II or 5 error represented by the quantities Si, i = 1,

n, when given the following:

1. various inspection sizes of i components ranging from 0 to

a tctal of N of components,

2. a reliability R which represents the expected reliability
'upper
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level for the inspection size of i components; i.e. the observed re-

liabili y Ri (ratio of number of accepted components to the accumulated

total nutber i of components which have been inspected at a given

stage of time) is not to fall within the critical region determined by

the value, of the Type I error, a, and the value of Riupper end,

3. a reliability R < R which represents an alterna-
lower upper

tive reliability level for inspection sizes of i components such that;

if the observed reliability Ri for the inspection size of i components

is less than R ,ower, we wish to calculate the probability 0 of com-

mitting a Type II or $ error, where $ is defined as the probability

that the observed reliability Ri does not full within the critical region

determined by Riupper and the specified value of a, but in actuality the

expected reliability at the given state is given by Rilower

The quantitieu Prob1 = al1/, Prob2 = a2 /i, Prob3 - a3/i, rob a/i

cwmputed for the four choices of a1, a2, ' n of a for each in-

spection size i represent the proportion of the number of successes a
1

or reliable components to the number i of components which have been

inspected at the given stage. Therefore, Probl, Prob2 ,..., Probn at

any given stage of inspection of lots of i components will be functions

of R and of a, , ... Pn respectively. The quantities Betal,
iupper 11c2

Beta2 , ... , Beta represent the Type II or 0 errors which are functions
n

respectively of the values a1) a2, ..., an of number of successes com-

puted prv.viousl , in the determination of Probl, Prob2 , '.., Probn and

functions also of Ri

lower

1. (where a1, a2, ... , a are the different values of "a" corresponding
to the four choices al, a2, '''' a of a.)
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The inL to the prorram is specified by various combinations of RO,

RN, , and various inspection sizes i of components where,

Pot RN are initial and target reliabilities respectively which are

used to com.,Lte -hc ordinate points R on the upper growth curve
•upper

corresponding to the abscissa points i representing inspection size and

R1t, R1, are initial and target reliabilities respectively which are

used to computQ the ordinate points Ri  on the lower growth curve
lower

corresponding to the abscissa points which represent inspection size i.

The initial inspection size, the step betwP-n inspection sizes,

and the largest inspection siz or total N of components may be varied

without alterin, , the program. Also the values of a may be varied

where the notation convention :I " (2 < c3 < On is to be observed. In

choosing various combinations of RO, N, R, R any initial values of

RN may be chosen, a step for simultaneously increasing %, R$ may

be chosen, and the nuiber of steps desired may be chosen. Similarly

the initial values for RO, Ro, the step size, and the number of steps

desired nay be specified.
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List of Symbols

Fortran Notation Statistical Notation Description

HRE No. Stcp size between succeeding
"0R values of R (must be the sare

as step sizR between succeeding
values of R,).

HRN h R Step size between succeeding
"N values of RN (must be the same

as step sizE between succeeding
values of )

ROUI R . h R0 if Ro is the smallest

value of R which is used in
the specified combinations of
values R , , Rol I%, then
ROUI is equivalent to ROinitialhRo•

ROLl 1' if R' is the smallest
Oinitial 0 initial

value of RO' which is used in

the specified combinations of
values %, RN 0 Rk, then

ROLl is equivalent to R -
initial"0

RNUI RNinitial-hX if R initial is the smallest

value of N which is used in the

specified combinations of values
Roo , RIO, %, then RNUI is equiv-
alent to R -h

RNLI -nta' if it is the smallest

value of N which is used in the

specified combinations of values
Ro RN, R6, 1, then RNLI is

equivalent to RNinitial- -
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Fortran Notation Statistical Notation Description

IR0 total number of given values
for R0 (must be the same as

total number of given values
for R).

IRN total number of" given values
for RN (must be the same as

total number of given values for

MAXTRI, XMAX N largest number of components
(inspection size) considered

HTRI hi  step size between succeeding
inspection lots.

INTRI initial iinitial is the initial or

smallest lot which is to be
sampled.

ITRT number of inspection sizes to
be sampled.

ALPHA (1) a 1 specified values of a such
ALPHA (2) 02tha~~a 2 a 3
ALPHA (3?) i 3 hat 01 < a2 < e3 < an
ALPHA (n) n

AU A A -(I-R)/RO

AL At At-' -R/o

BUB B a(-11N) loge 0R (1-%a)

RN (l-%)

BL B' B1= (-/1N) log 0

TRIALS, NTRILS i number of components i In
inspection size being con-
sidered at given stage in

sequential sampling procedure.
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Fortran Notation Statistical Notation Description

RIU R 'perNp - 1/(l + Ae 'B)
Ri~~ upper Rue

RIL Elo lower i/(l + A'e-E)

QZU Q, , 1.R

QIL Q4 we R -lRwe

BETA (i) Beta Type II or 0 errors corre-
spo ding to , f2' C3' Q2n

BETA (2) Beta2

BETA (3) Beta3

BETA (n) Beta

PEOB (1) Prob1 I al/i Answers printed out for values

=1' s2' 3' ,n of a denoting

ratio of critical region to
number inspected.

PIOB (2) Prob2 - a2/'

?ROB (3) Prob3 - a 3/1i

pROB (n) Prob - an/i
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Prcdure.

The procedure is as followG:

1. Choose a particular combina1Liun of values RoJ M,, &N , Rj.

2. Choose a particular inspection size i and final size N.

3. Choose a particular combination of a values.

4. Find the numbers al, a2 , a3, an for the given values of

(1 C2 ' P 3 j n '

5. Divide the a's in step 4 by n to get the probabilities which

outline the critical region.

6. Find the corresponding B values for each combination of

D
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Fortran Proaram Titnffi
(Statement Numbers in Brackets)I DLOGIC, MAP, FILES(Th GROWTH FULIST, REF, DD

DIMENSION RUI(501),RIL(501) .QIU(501),QIL(5o1.),TMu(5o1),TLrM(5o
1.),ALPHA(4),PROB(4),BETA(5),TnIALS(501)
WED (5,1001) Houx LI RNIUI HNLI J,HRLMTHNR,],A~i CO
IINTRI HTI (ALPA()z.,I.) HtTIO,,{NLIOINMXR (0

FORMT(AF5 .3,213, 16,15F1'../ 1475.3) (100iJ

INITIALIZE RELIABILIT VALUES

ROU..ROUI
ROL=ROLI
DO 200. l1.1,150
ROth.RUU+HROU
ROL=ROL+HROL

CALCULATE CONSTANITS A AN~D B FOR USE IN SOLVING FOR R(I)

AU ( 1.0-ROU )/ROU
AL=(1.0-ROL )/ROL

RN=RNII
RNL=RNLI
DO 2002 I2w4,IRN
RNU=RNt1+1RNU
I.NL.RNL+HRNL
PRINT 4l~O5,R0U,ROL,RNU,RNL
FORMAT (lOxZ4HRUUm, 75.3, 10xiHROL,75.3, JOx4HRNU.,75 3, 1C4HNL.,1 5. (4015]
3//)
XO4AX=-MAXTRI

L::U.( -1./XA *ALOG( ROU* (1ORU)/ .I*(1ORU)
BtC1/XA 0 *ALoOG(HOLj* .oL)/RNL*( 1.0-ROL))
WRITE (6,1002ROU,RNU,ROL,PNAPA i),x=1,4),(ALWHA(3),J.1,4)
FORMAT ( H). 53x2i*HcRITICAL REGION CTJRVS///35.X18HUPPER GROWTH CU; (?1002]
EVE, 32X18{LOWER GROWTH CTJRVE//3OXHRO .,F63,8X4ZRN .,F6.3,22x4HRo
., 76.3, 8x4HRN ,)F6.3 //9X9HN~UMBER 07,15X22HPROBABILITY OF SUJCCESS,

29X19HTYtPE Il( .ETA) EROR/l1X6HTEIALs, 4( 2X6HiALPHiA., 75.3),Lx, 4( p.6H

PTRIAL=INTRI
DO 2003 I~m1l MAXTRI
TRIALS( 13) .13

CAL CULATE UPPER AND LOWER RFJIABILITY VALUES, R: I)

PrUiI13 ).i./(1 .0+(AU* (2.Tl822>** (-BU*TEIALS( 13)))
RIL(13 =1 0./( 1.0+( AL* 2.T1822** (-BL~TmLS(13)))

CALCULATE Q VALUES, Q(I)

qIU(13 ) .1O-RIU( 13)
QIL( 13) =1.O-RIL( 13
P13-I3
IF(P1E3.NE.PTRIAL) GO TO 2003
PTRLAL.-PTRIAL+HI'RI

SU?4-1.*0

BLTA C ) =1.0
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IA LPIIA =l
DO 50U0 I=1I3U

SUIM FROBS OF ZER~O SUCCESSES

SIJNU-SUMULQ1L(fl (5000]

COMJWARP, SUIM OF PROB3S OF ZER~O SUCCESSES WITH~ ALPHA VALUES

IF( SUMU-APA(ALPlA))50O25j 5020, 5020 (50100]
?ROB(I.ALPHA)=O.O [5020]
BETA( IALPHA + ) -BETA( IALPHA)
IALPiA=IALPIIJA~l
IF (IALPILA -4)5010, 5010, 132

CALCULATE BETA VALUES

BETA (IALPHA) =B3ElA( LALPHA )-SnML (5025]
DO 5040 I=1, 3 (5030]
TERU( I) -. SUN

IF (K3,EQ-o) GO TO 5120
.-0 5080 Kd, K3

0 fDO 5050 1-1,13
TERMu(I )TEPiu(I)*Rru(JT)/ru(j)

SUM PHOBS OF (ZERO SUCCESSES AND MIEDDLE TERM SUCCESSES)

SUMUSUY+TRM1U( I)

J=J+1

CONTINUE (5050]

COMPARE SUM- OF IDDLE TERM PROBS Or, SUCCESSES PILUS SUM OF ZERO

SUCCESSES (PROBS OF) WITH ALPHA VALUES

IF(SrJMU-ALPHA(lAr~PHA) )507r5, 5070, 5070 lso6ol
Ph, x(5070]

PHOB ( IALPH-A ) =PK/TlilALS(I 3)
BETA ( ALPHiA+1)t.ETA(IALPHA)
lALPlIA.IALPHlA+l
iy(zALPHA-4)5O6O;o,560,132
DO 50d78 L-1,13 [5075)

CALCULATE BETA VALUES

BETA (IALP1A) =kEA(ALPlA) -MO(L) [5078)
CONTINUE [5080)
ATERMU4 .0 (5120)
RTERML-1.0
DO 5090 1 [530
RU=MW xunIU( ) 13)90
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SUM, PROSS OF ALL SUCCESSES

)SUMU=UMU+RTERM
COMPARE SUM OF PROBS OF (7EMo,IDDLE TERMS, AND ALL SUCCESSES)
WITH ALPHA VALUES

IF(SJMU-ALPHA(IALPiA))3105,5110, 5110 10
PK-I3 110
PROB( IALPIIA) =PK/TRIALS( 13)
BETA ( IALPH-A+4I) =IETA(IALPHA)
IALPHA dALPHA+l
IF(IALPHiA-4 )5100, 51OO0 132

WRITE (6,1OO3)TRTALS(I),(PROB(T)I2. 4),(BETA(J),jj1j4)(12

GO TO 2003
WRiTE (6,1004)TRIALS(I),IALPHA (3105)
FORMAT(/Fl6 .0,5X, 2OHCONDITIONS ON ALPHA(;,],38H) NOT rATISFIED AM' Cioo~ J
ER SUMMILNG OF TERMS)

CHECK TO SEE WHICH ALPHA VALUE WAS NOT EXCEEDED)

I.F( LALPHA-1.) 2003, 2003,141fl

WRITE (6, 1005 )PROB(I) BETA 3) [151)
FORMAT( ]6x,Fl2.5,4oxF13.5) (1005)
00OTO 2003

IF(IALPHA-3) 161,161 162 (152)
WRITE (6, 1006)PROE(15,PROB(2),BETA(l),BEETA(2) (1613
OIOAT(6x,F12.5,F3.5,27X,2F13 .5) [1006)

GO TO 2003
WRITE (6.,loo7()(PRoB(i),I=1,3),(BLTA(J),I=:,3) [107)
FORMAT (16x,F12.52FI.3.5,JJ4x,3Fl3.5) [07
CONTINU1E (2003)
WRITE (6,1009g)
FORMAT ( IH 50X25FURELIABILITY GROWTH CURVES///35x18HUPER GROWTH CU 11009)
RVE, 32X18{LOWER GROWTH CURVE//30X2H116X2! QI3ox2HEI16X2HQI//
9x9HNml.ER OF /iix6HTRIALS)
WHITE (611008)(TRIALS(I), R:U(I),QIU(I),iL(),QIL(),I1,,AxTi=)
FQRMAT(16., 1X, 75,2X,75,25XFT .5, 1OX,Frr.5) (2002)
CONTINUE (02
CONTINUE (2001]
GO TO 10
END
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liend Calculations

In order to ascertain the validity of the program logic, hand cal-

culations were performed and compared with the computer run as given

in Table 2. IAie to the high alpha values, the example used is not recom-

mended for other than comparing with hand calculations. As will be seen,

the hand calculation ends at n 3 due to cumbersome calculations for

n >3.

The hand calculations proceed as follows:

I. Calculate Ri and Qi values for the upper growth curve.

2. For a particular n, calculate probabilities of successes from zero

successes througti all successes.

3. Compare the probabilities calculated in step two above, with

the preassiened alpha values.

" If the probabilities in step 3 are equal to, or exceed alpha,

determine the number of successes of the term which determined if the

alpha was met or exceeded, and divide this number by n.
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The actual hand calculations follow:

UPPER GROWTH CURVE
R0 .= 25, .90, N a i0) R, - . Bi

I1+ Ae

A .0 -100 - 3.0
.00

1 R0 (1.00 - RN ,9
B - loge RN (1.00 Ro ".3297

i B E _ Bi A I+ Ae Bi  R

0 .3297 0 1 3.0 4.o .250 .750

1 " 03297 .71913 " 3,15739 .31672 .68328

2 " .659 .51716 2.55148 .39193 .60807

3 " .9891 .37191 2.31157 .47358 .52642

LOW1ER GROWTH CURiV2

1R0 .2# .8, u- 0, Ri '! 1RO -1 + WE=B

A.14

B - .2773

_L . Bi -Bi A I + Ae"Bi  R -

0 .2773 0 1 4 5 .200 .800

1 " .2773 ,75782 "4.03128 .24806 .75194

2 ,5545 .57435 3.29740 .30327 .69673

3 " .8318 .43526 2.74 04 .36483 .63517

Comparison with Tab.Le 2 shows the hand calculated values of R ,and , to

closely approximate the values printed out by the computer; the difference

being the computer retains more decimal places than used in the hand cal-

culations.

1
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. t "Prnhalhil ties of Success" as outlined in the

main body of Table2 follows, using probabilities from the upper growth

curve: Alpha

i xansion: It R .60 Z2 .8

'~~~ ~ -- - C= ,-

0 11 1 Q1 1
.31672 + .68328 0

.124+ + ..168 3) + .o 1 .5 2

3 2
F3 R0R +[(i

+ Q3QQ3t

.059 [ .1268 + .0912 + .0653)

+ C.1968 + .141o0+ .10114]+ .2187 2

It Yr st be remembered that the summation of probabilities begins with zero

successes to the number of successes which determines that the alpha of

interest has been aqialled or exceeded.

The Beta values proceed as follows, working wLth the lower growth

curve values of R and S beginning with the "a" value determined from the

probabilities. of success calculations:

I ~ 0:uc:s~e:to 1Alpha

1 Sum term from 0 successes to 1 1.000

Sum terms from I suc1es to 1 .24805 .24805 .24805
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L .60 .7 .80 Mo

2 Sum terms from, 1. wccess to 2

+ R102 ) C + R1R2  2

(.228 + .173) C. + .075 C2 .476 .476 .476

Su, terms from 2 successes to 2 .075

3 S*m terms fro 1 suCcess to 3

+[( ?ni3Q,1) i-(iRR 3Q.2)+(n 1 R2Q3 )) C ~2 RR Y 3

(.191 + .145 + .11o) +
2 366(.o83 + .o63 + .o8] + .027 C .667

Sum terms from 2 successes to 3

(a 2R3Ql)+('tln3 %;)+( 1 R 2 q3) ~2 + R1R2R3  3

2 3(.083 + .063 + .x48] C + .027 C - .221 .221 .221

Thus bhe logic of the computer program listing is proven to be valid

since the hand calculations agree with the results £ hown in Table .2 and

Table 2. is an exact copy of a computer run.
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ON FITTING OF THE WEIBULL DISTRIBUTION WITH
NON-ZERO LOCATION PARAMETER AND SOME APPLICATIONS

Oskar M. Easenwanger
Aerophysics Branch

Physical Sciences Laboratory
Research and Development Directorate

U.S. Army Missile Command
Redstone Arsenal, Alabama

ABSTRACT. The Weibull distribution is difficult to fit when the
location parameter is different from zero.

Although for engineering problems a graphical method for determination
of the parameters exist, an application to numerous data samples is very
time consumiug and elaborate, moreover when the location parameter is
different from zero.

Two methods are presented, applicable to computer usage. One method
is based upon the moments of the distribution and the second upon a curvefitting procedure. Although neither method utilizes the maximum likelihood
principle, application in practical engineering problems may be quite
adequate.

E-Aamples of application are given, and the analytical curves from the
two methods are compared with observed distributions. Emphasis is placed
on close approximation of the 90, 95 and 99Z value of wind speed and wind
shear distributions.

I. INTRODUCTION. The Weibull distribution (1) has become very popular
for many statistical problems in recent times. This is understandable if
one considers that this distribution offers several conveniences.

The distribution form

F(x) - I - e (1)

shows 3 parameters, B determining the shape, e defining the scale and y
establishing the location of reference. The popularity of this distribution

is based upon a number of attractive features. The distribution is versatile
and can assume various types of other distributions. The application does
not necessarily require a specific statistical model, although in life testing
a typical case of utilization arises. It is a cumulative distribution, where
the threshold can be readily computed directly rather than by an elaborate
process of integration as in most other types of distributions. Its three
parameters make it more adaptable to many empirical frequency distributi-ns
in comparison with two parameter fittingb. Difficulties arise, however, if
all 3 parameters must be determined.

Usually it is assumed that y w 0 and then no problems exist for
adequate fitting of the distribution. Maximum likelihood (2, 3) or other
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do

methods (4) are readily available. Limitation to a 2 parameter fit restricts
the utilization of the distribution and does not render its full capacity.,, r .... 4tt4n* in rather difficult, however, if y 0 0. Two methods are

therefore presented in the following, by which the y cou 1ua in
objective ways, although the methods are not based upon the maximum likelihood
principle. For mauy enginecring applceations. however, the two methods, which
can also be adapted for computer use, may be quite satisfactory,

One method is derived for the moments fit and does not need the
frequency distribution. The second metho.1 requires a frequency distribution,
although not equal class intervals, as usually assumed by maximum likelihood
methods. This second method is based upon a curve fitting procedure.

ver 11. ME MOMES FIT. A moments fit of a distribution is in most cases

veryvyonvenient. The moments of a distribution can be easily computed, and
it is not necessary that the total frequency distribution is known for a
moments fit. Usually an analytical solution for the parameter computation
can be derived. Unfortunately this form of explicit solution for the Weibull
distribution with Y 0 0 is not trivial, as the 8 in the moments fit appears
implicit in the F(n). One finds for the Weibull distribution

E 0 4 a+ Y (2)(x)

2 e2 (b - a2) (3)

33
r 3  

3 (c- 3sb+ 2a3) (4)

where

r (1 + )(5)

b r (i + (6)

C (+ (7)

and c3 denotes the third moment with reference of the mean. This leads to

the equation

A 3 c -3ab + 2a3

1 03 2 3/2A (b-a)

In equation (8) the 0 is the only unknown, although it appears in
implicit form. Tables for determining $ can be found in a recent report by
the author (5). After the 8 has been obtained,

e2 a2

(9)
b -

2
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Tables for the denominator with reference to 8 are given in the above
mentioned report (5). Finally

- x - 0. a (10)

The respective numerical value of "a" has also been included in above
referenced tables (5).

Thus the moments method is relatively simple. Equation (8) can also
be adapted for solutions by high speed electronic computers with subsequent
calculations of e and y.

The moments fit may have practical value in engineering application.

Ill. THE "STRAIGHT LINE" FIT. Reservations against the moments fit
are largely based upon two objections. First, the moments fit is not always
a maximum likelihood fit, which is the modern trend in statistics. Those who
oppose the moments fit for that reason will not use this type of solution,
although utilization may provide similar results for practical purposes.
Therefore no further discussion of this argument is necessary here. The
second objection is based upon the fact that 3 pieces of information from the
data is employed only, while more information may be available. This is true
especially when the frequency distribution is given or known.

Thus the engineers sometimes prefer graphical methods as demonstrated
e.g. by Plait (6) or Berrettoni (7). The graphical method as introduced
by Berrettoni (7) attracts because of its simplicity for 2 parameters, when
y - 0. If y 0 0, then the distribution becomes a curved line in log/log
paper instead of an easily determined straight line (see Figure at the end
of this article). As Berrettoni suggests, one must determine y by trial.
With y kuown, the Weibull distribution appears as a straight line in log/log
paper, and 0 and 8 can be obtained readily. The cumbersome procedure is to
determine y by this graphical method and make a judgment when the transformed

curve is considered a straight line.

By this method y can only be determined to a certain degree of accuracy, and
arguments about differences between moments and maximum likelihood fit become
the more irrelevant. The idea behind Berrettoni's method is certainly to
employ more information on the distribution than given by the moments. It
must therefore be possible to derive an objective way of trial to determine
y and at the same time bring the inaccuracy under a certain limit, which can
be arbitrarily selected.

In order to derive the equationA for this procedure, start with the
transformed equation (1) with F a 1 - F(x). Then

y

In [yn SL a A n (x-y) - I n 6 11
The goal is a straight line. Thus

Y a X-a 0(12)
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and

z k in (x-y) (13)

f - - ! .n

y @ 0 produces a nut-ud 14"e (see Figure at cnd of article) and

az a 2
2 + ... a z (14)Y~ 2 al a+n

or in orthogonal functions

Y, As + A1 I + A2 Z + ""An Oni (15)0 1 i 1  2  21+ fin

Then the Y + y, if A +0 for j > 2. To meet this condition, a test is

necessary for A2 only since all higher order coefficients must be zero at

the same time. Otherwise one would not find a straight line. One can there-
fore restrict the computations to

n

A2m&!__ I i* 2±mO (16)
j

where t : in this orthogonalized system at equidistant intervals corresponds

to
zi  Int (x -  A) n t z'i (17)

More details can be found in a separate report by the author (5), where
examples for the solution are given.

IV. COMPARISON OF METHODS. Before applications are presented it may be
adequate to discuss some technical details and limitations of the two methods.

It has been previously stated that both methods are not derived from
the maximum likelihood principle and may therefore be of no interest to the
theoretical statistician or may be considered as substitute methods. The
moments fit attracts as being straight forward with a relatively simple way
of computing the parameters. Only three moments need to be known. From the
engineering point of view the "straight line method" comes closer to a
graphical type of solution and renders the better curve fitting. There is
no necessity of the frequency distrib-tton being given in equal class intervals.
This is quite convenient, but the frequency distribution is required in contrast
to the moments fit.

One limitation can be found, however, in the exclusion of the F ( 0.

This leads to Ln(in 1) &n equation (11), which being infinity must be
eliminated. The question arises therefore, how close to F can one go,

(x)
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I
or should the first x be omitted. In Table I a survey is given for 3 daAn
-=PICZ, W1,=Le- Lhe WeLDull aistribution has been established as being
appropriate. The first column in Table I lists the parameters, which
Berrettoni (7) has derived by his graphical method. The second column
represents the moments solution. The subsequent columns reflect the para-
meters for the straight line method under various conditions.

It is self-"planatory that in the column "without F (X" the origin

point has been omitted. The other columns show how the parameters change,
if F = 0.001; 0.0005 or 0.0001. It can be concluded that the y responds

somewhat to the change of the origin and with y the other parameters will

vary (see especially case 3). It can be noted, too, that the solutions
without the F agree well with Berrettoni's results. The small differences

can easily be explained by inaccuracies between graphical and computational
methods. Under the aspect that the graphical solution and tne straight line
method are not maximum likelihood solutions these small differences become
even more insignificant.

In order to test the difference4 of the methods for significance, onecan apply the Kolmogorov-Smlrnov Test (8), None of the deviations proved

to be statistically significant. More details can be found in a forthcoming
article by the author (9).

Since case 3 displayed the largest differences, the cumulative distribution
was computed for various postulations and is summarized in Table I. The first
column (after the variable x) contains the observed distribution. Berruttoni's
solution (7) follows next. Subsequently the computed frequency for the "moments"
and the "straight line" method are listed. The underlining of numbers indicates
the maximum deviation for all presented curves in that particular line. This
example is quite typical. Although none of the differences to the observed
value reaches statistical significance at the 95% level, it can be seen that
the 3 methods approximate the observed distribution in specific ways. The
moments method reveals closer fitting towards the maximum values, while the
straight line procedure deviates less at the minimum values. The graphical
solution (Berrettoni) provides the maximum deviation in the center.

The other 6 columns, experimenting with varying x1 and the related

cumulative frequency as outlined in the heading lie somewhat in between except
for x1 - 1.1 with F(x1) - 0.001. This condition exhibits the largest

deviation. It proves that the frequency of F (xI).hould be kept as close

to zero as pogsible, although no specific value can be established.

V. APPLICATION TO WIND SPEED AND WIND SHEAR DATA. In an earlier article
the author has introduced the negative binomial distribution which functions
quite satisfactorily for frequency distributions of wind speed (10). Cumulative
threshold values, however, are very cumbersome to compute for the negative
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binomial frequency distribution. The question was thus raised whether the
Weibull dintribution may be an adequate replacement. Cumulative thresholds
can be easily obtained from the Weibull distribution.

Table III displays typical results of fitting the Weibull distribution
to wind data. It can again be recognized that the moments fit approximates
closer the maximum wind speeds, while the straight line method adjusts better
to lower wind speeds. In general, the Kolmogorov-Smirnov test shows
statist-cally significant differences between observed and analytical values
computed from the Weibull distribution (see details in 11). This proven that
the Weibull distribution is not the best suitable form to fit wind speed or
shear data. A livited application, however, turned out to be quite valuable.

The engineer is often faced with the problem to determine 90 - 99%
values when no detailed distribution is given. Since the momenta fit of
the Weibull distribution has given good results for the maximum wind speeds,
an attempt was made to analytically determine the 90, 95 aud 99% wind speed
and wind shear value and compare it with the observed. The results are
presented in Tables IV thru VII.

In Table IV three methods are compared for computing 90, 95 and 99%
thresholds for wind speed and wind shear values. Montscmery was selected,
as it illustrates typical results. The three threshold values were
analytically computed, employing the negative binomial, bivariate and Weibull
distribution (moments fit). Analytical distributions for negative binomial
and bivariate distribution are described in detail in a recent report by the
author (10).

The thresholds were computed &t 1 kn altitude intervals up to 31 km
for all months. The (linear) correlation between observed and analytical
value was thus computed, as exhibited in the top part of Table IV. This
gives evidence that the Weibull distribution is equivalent to the negative
binomial except for the wind shear and 992 threshold. The Weibull distribution
is even better than the bivariate distribution, which is generally agreed to
be the proper distribution form for wind speed and shear.

The central part of Table IV lists the mean of A, the difference between
analytical and observed wind speed or shear. Although the observed values for
the wind speed appear to be systematically higher than the analytical values,
the bias is smallest for the Weibull distribution. No bias is exposed for
the wind shear.

The bottom part of Table IV deals with the standard deviation of the
difference A. Again, the results are very favorable for the Weibull distribution
except for the 992 wind shear estimate.

Since correlation, mean values or standard deviations can sometimes be
isleading, the frequency distributions nf the A are presented in Tables V,

VI, and VII., This also gives, a survey on the maximum deviations to be expected
for the various analytical approaches. Table V contains the frequency
distribution of A for the 9U% threshold, where the Weibull distribution looks
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very good. Less than 5% of the data ± raPA 1 -,-ch ..... ae iii '
m/sec per km for the wind shear. This is entirely in the range of measurement
accuracies.

The differences are higher for the 95% threshold of the wind speed, but
still under 10% of the data fell outside the above cited range. The amount is
far higher for the negative binomial or the bivariate distribution. The wind
shear differences are equivalent for all three types of analytical forms in
the 95% thresholds.

Finally the frequency distribution of the differences a for the 99%
threshold is given. Although the range is extended compared with the previous
thresholds, the Weibull distribution displays still the smallest scatter of
all three methods for the wind and could be considered equivalent to the
negative binomial for the wind shear. This may be proof enough that the
Weibull distribution could be adequately used for practical purpose in the
analytical approximation of 90 to 99% thresholds.

VI. CONCLUSIONS. Two methods for fitting the Weibull distribution with
non-zero location parameter have been discussed. One method, based upon the
first 3 moments of the distribution, provides a simple way of obtaining the
basic input for determining the parameters of the Weibull distribution,
although the solution necessitates a computer or table as derived by the
author (5).

A further method is based upon a curve fitting procedure. The property
of the Weibull distribution to delineate a straight line in log/log scale
for known location parameters is the fundamental principle employed in solving

for the parameters. The latter method requires that the frequency distribution
is known, although not at equidistant intervals. In turn, more information
(namely all known frequency points) Is utilized by this curve fitting procedure
in contrast to the 3 moments only for the moments fit.

Both methods are suitable for determining the Weibull parameters without
electronic computers, while the iterative procedure for a maximum likelihood
solution cannot be processed without computer help. The moments fit, however,
needs the tables derived by the author (5). if no computer is available. Thus
both methods may prove beneficial to the engineer for quick solution in limited
number of samples, although it is not restricted to a small number.

It has been shown that the moments fit in most cases represents the
better fit towards the end of the maximum values, while the curve fitting
procedure puts more weight on the proper approximation of the minimum values.
This could be changed, however, by weighting the frequency points of the
distribution for the curve fitting method.

Finally an application of the Weibull distribution for wind and wind
shear data is shown. Although the Weibull distribution has limited application
for wind and wind shear, the moments fit proved to be satisfactory to represent
90 to 99% thresholds.
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TABLI I
Coupmrson of Parmeters 'e3stimation for

the Veibull Distribution

Straight line method with I(x) equal to

without w x)

CaSe I lerrttoni Noment. .001 .0005 .0001

3.0 2.74 2.71 3.03 76 .07
3.67 3.97 3.99 3.59 3.5 3. a
1.8 2.00 2.00 1.76 1.7 j.T2

010.14 ________ ______Case it ,. . ._

7 3.6, 1. 3.63 2.82 2.9 3.03

7.9 9. 7.13 8.Q6 76 7.82
51.7 2.2n I ."6 m.6 2.02 1.98

29.96 j______
7 2.0 1.67 2.10 .71 .83

LOS 1.692.52 ~ 2.46 20
1.8 1.85 3.69 61

a _1-.9

(zL 2.0)

v1.89 1 193 (1.95
4 . 6 6  46

The lidt was .0002 for cae 1.
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!., TABLE UI

,, Loon of Weibull Distribution for VarLous Methods
,or Data of Borrettonia Tab1c III (CUD L n)

Straight Line Method

xm".1 x -2.0

X Ob .err. 'Mrn Without .001 .000 .0001 .001 x .000 .0001,

1.0 . .. .. .04 .01 .00 - i ,

2.0 - .oo .68 1.87 1.70 1.47- .09 .04 .02

3. 6.6 6.49 8.66 6.54 7.71 7.56 7.30 6.85 6.77 6,74

3..4 38.42 39.04 39,01 2 32.49 32.77 37.37. 37.51 5-. 6

7 71.4 70.36 69.32 70.00 64.36 64. 5j. 68.65 68.72 68.72

9 87.9 §2.21 88.12 88.37 87.17' 87.26 87.29 88.01 87.96 87,90.

11 96.7 96.98 96.141 ?6.35: 97.08 97.03. 96'.44 96.37 .96.32

13 98.9 99.34 99.15. 99.06 22.O 99.59 ..99.6 99.17 99.13 99.11

17 1.00.0 99.88 99.84 22.802 99.96 99.96 99.96. 9.84 .99.83 99..82

17 99.97 99.96 99. ,9.97

The mximum devletona are made rlied.
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TABLE III

Wind Speed (a/seec) Comparison of Weibull Diutribution

CFD* )  Observed Moments fit Straight Line Ketho1

.0001 3.0 11.9 3.4

.0100 20.4 19.4 17.9

.0228 21.7 22..4 22.3

.05o 25.6 26.1 27.3

.1000 31.6 30.3 32.6

.1590 3.3 3.9 36.7
S .5000 47.8 47.5 50.7

.8410 61.9 61.5 63.2

.9000 65.8 65.4 66.5

.9500 69.8 70.3 70.5

.9772 76.9 75.0 714.3

.9900 80.6 79.3 77.6

.9995 91.0 94..5 86.6

*)CFD " cumulative frequency distribution
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TABLE IV

Montgomery (June 1956 - May 1964)

(All Months Combined;

Average Correlation Between Observed and Analytical Thresholds

Wind Wind Shear

Neg. Bin. Biv. Wei. Neg. Bin. Biv. Wei.

90% .982 .996 .998 .977 .986 .991

95% .984 .995 •997 .968 .977 .976

99% .985 .985 .994 .94o .904 .914

Mean of A

-90% .50 1.36 - .44 .16 .93 .05

95% -. 72 .46 - .66 .03 .08 .10

99% -1.14 -2.09 -1.01 -.63 -2.59 -.02

Standard Deviation of ,

90% 1.51 1.57 .8o .53 .50 .33

95% 1.65 1.93 1.07 .73 .71 .65

99% 2.20 3.08 1.80 1.37 2.07 1.60

A = analytical - observed
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TABLE V

MontSomery (June 1956 - May 196)

90%

Frequency Distr1hution of A

Wind Wind Shear

Has. Bin. Biv. WeH. Na. Bin. Biv. Wei.

C -o10
-9.99 to -9.0 0
-8.99 to -8.0 0
.99 to -7.0 2

-6.99 to -6.o I I.
2.99to-5.0 2

.99 to -4.0 6 1
-3.99 to -3.0 6
-2.99 to -2.o 14 2 7
-1.99 to .I.o 5. 32 1 4
-0.99 to 0.0 174 37 252 116 5 132

.O to 1.0 83 132 68 204 203 209
S1.o to 2.0 22 94 8 13 128 3

2.01 to3 .0 4 59 1 2 11
3.01 to 4.0 3 22 1
4.01 to 5.0 8
5.o to 6.0 6
6.o to Z.0 5

.01 to .0 2
0 to 9.0 2

9.01 to 10.0
> 10.0

1372 372 I.72 348 31.8 34i8

A- analytical - observed

classes in m/sec for wind and m/sec per 1 km for wind shear

'
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TABLE VI

Montgomery (Jute 1956 - may 1964)

Frequency Distribution of a

Wind Wind Shear

Neg. Bin. Niv. Wei. Neg. Bin. Div. Wei.

'-10
-9.99 to -9.0 1 1
-8.99 to -8.o 1
-7.99 to -7.0 2 1
-6.99 to -6.0 2 3 1
-5.99 co -5.0 4 1 2
-4.99 to -4.0 6 2 1
-3.99 to -3.0 12 5 7 2
-2.99 to -2.0 25 5 18 3 3
-1.99 to -1.0 2 27 60 22 15 11
-0.99 to 0.0 1'4 97 207 1 114 134

.ol to 1.0 86 123 64 18 197 174
1.01 to 2.0 21 57 11 23 17 24
2.01 to 3.0 6 25 3 2
3.o to 4.0 2 10
4.o to 5.0 9
5.oi to 6.0 2
6.0Q to 7.0 2
9.01 to 8.0:01 to 9.0
9.01 to 10.0

> 10.0

N 372 372 372 348 8 3148

A = analytical - observed

clams interval in m/sec for wind and m/sea per km for wind shear
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TABLE VII

* Ioutgomery (June 96 - may 19a)

99%
v*requency Distribution of

WLU Wind 8hear
Neg. sin. DIV. Wei. Nes. Bi. Div. Wei.

< -10 1 8"9.99 to -9.o 1 4 2 3
-.99 to-8.0 3 4 0 2.799 to -7.0 6 10 2 0-6.99 to -6.0 0 1712 6
5-99 to -P.08 21 1 2 20 0
-99 to 3.0 12 26 21 9 549]2.99 to -2.o 9 2 30

.,01 to 1.0 0 7 1 1 99.0 to 0.0 *o 49

.01 to .0 100 70 1131 70 119.Otl043 37 42 88 18 841.01 to 2.0 19 24 21 14 312.01lto 3.0 13 12 4 20
3 .lo. 6 2 1 94,01 to .0 1 65.0Olto 6.0 12 026:l:0 1 1

8.01 to 9.0 1
9.01 to 10.0 0

>10.0 1 ,

3;372 372 372 3148 34~8 3

- analytical - observed

clais interval in m/sec for wind and m/eec per 1 i for wind shear
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At? A- -- 167Wii. MEMORIAL MEDAL

Profeusor William G. Cochran of Harvard University received the 1967
Samuel S. Wilke Memorial Medal during the 13th Annual Conference on the Design
of Experiments in Army Research, Development and Testing, which was held at
Fort Belvoirf*Virginia, 1-3 November 1967. Professor Cochran has long been
recognized as an international authority for his outstanding contributionsto experimental statistics, mathematical statistics, the design and analysis

of rcientific experiments, teaching activities, stimulation of research
workers and personal leadership in the world statistical community.

SThe Annual Design of Experiments Conferences are sponsored by the Army

Mathematics Steering Committee on behalf of the Office of the Chief of
Research and Development, Department of the Army.

The Wilke Award is given each year to a statistician and is based
primarily on his contributions, either recent or past, to the advancement
of scientific or technical knowledge in Army statistics, ingenious applica-
tion of such knowledge, or successful activity in the fostering of cooperative
scientific matters which coincidentally benefit the Army, the DOD, and the
Government, as did Samuel S. Wilke himself.

The Award consists of ainedal, with a profile of Professor Wilke and
the name of the Award on one side, and the seal of the American Statistical
Association and the name of the recipient on the other side; an honorarium
related to the magnitude of the award funds donated by Mr. Rust; and a
citation.

With the approval of President Frederick Mosteller of the American
Statistical-Association (ASA), the Wilke Award Committee for 1967 consisted
of:

Professor Robert E, Bechhofer, Cornell University
Dr. Francis G. Dressel, Duke University and the Army Research Office-

Durham
Dr. Churchill Eisenhart, National Bureau of Standards
Professor Oscar Kempthorne, Iowa State University
Dr. Alexander M. Mood, U.S. Office of Education
Major General Leslie E. Simon (Ret.), Winter Park, Florida
Dr. Frank E. Grubbs, Ballistic Research Laboratories, Aberdeen Proving

Ground, Maryland - Chairman

Professor Cochran was born in Rutherglen, Scotland, and received MA
degrees from Glasgow University and Cambridge University. He was a
statistician working with the eminent R.A. Fisher at the Rothamsted Experi-
mental Station (England), 1934-1939; Professor of Mathematical Statistics,
Iowa University, 1939-1946; Associate Director of the Institute of Statistics,
University of North Carolina, 1946-1948; Professor of Blostatistics, School
of Hygiene and Public Health, The Johns Hopkins University, 1948-1957; and
has been Professor of Statistics at Harvard University since 1957.

In connection with professional societies and committee activities,
Professor Cochran has served as follows:
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President, 1953
Editor of the Journal of the American Statistical Asaoci.ation, 1945-1950

Fellow, Institute of Mathematical Statistics:
President, 1946

Fellow, American Public Health Association

Member, Biometric Society:
President, 1954,1955

Honorary Fellow, Royal Statistical Society

Member, International Statistical Institute:
Vice-President, 1963-1967

Fellow, American Association for the Advancement of Science:
Vice-President, 1966.

Comnittee activities:

Chairman, Panel of Advisors on Sampling, U.S. Bureau of the Census

Chairman, Committee on Training in Epidemiology and Biometry, N.I.H.

-Member, Advisory Committee to Atomic Bomb Casualty Commission

Member, Committee on Statistical Education, Inter-American Statistical
Institute.

Professor Cochran has published books as follows:

E.J. Russell, J.A. Voelcker, and W.G. Cochran, Fifty years of field
experiments at the Woburn Experimental Station. Longmans, Green
and Co., London, 1936.

W.G. Cochran and Gertrude M. Cox, Experimental designs. John Wiley
and Sons, New York, 1950. Second edition, 1957. Japanese transla-
tion, 1954. panish translation, 1965.

W.G. Cochran, Sampling techniques. John Wiley and Sons, New York, 1953.
Second edition, 1963. Portuguese translation, 1965.

W.C. Cochran, F. Mosteller and J.W. Tukey, Statistical problems of the
Kinsey Report. American Statistical Association, Washington, D.C.,
1954.

G.W. Snedecor and W.G. Cochran, Statistical methdm, 6th edition. Iowa
State University Press, 1967.

Professor Cochran is the author of some eighty-five papers which formthe very basis for much of the wide-spread use of statistical techniques, and
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otherwise represent some of the more significant and widely employed methodology
in the entire field of theoretical and experimental statistics.

Indeed, statisticians throughout the world regard Professor Cochran as
a "giant" in the field due to his numerous and wide-spread basic contributions.

Professor Cochran's most recent honor is the presidency of the Inter-
national Institute. His work in design of experiments recently has dealt
with the efficient sequential determination of levels, and more recently he
has also been working on the design and analysis of observational studies.
His books have been translated into several languages.

The citation to Professor Cochran reads as follows:

"To Professor William G. Cochran - for continued research
on the statistical treatment of data, for his highly
fertile research on the design and analysis of experiments
and surveys, for his excellent books on the theory and
practice of statistical methodology, for his efforts in
the training of statintician, at all levels, and for his
contributions to national and international statistical
societies."

Professor Cochran received the third Wilke Memorial Medal at the
banquet held in connection with the Thirteenth Conference on the Design
of Experiments. Dr. Frank S. Grubbs made the presentation. The acceptance
remarks of Professor Cochran are printed below.

Chairman Grubbs, Ladies and Gentlemen;

I greatly appreciate this high honor. It is especially pleasing because
Sam Wilks was the first American itatistician whom I ever met. This was in
1933, when I was a graduate student at Cambridge University. Sam came there
as a postdoctoral International Fellow, so that I enjoyed over 30 years of
his friendship, including working under Saa in 1944 in the Princeton Statistical
Research Group of the Office of Scientific Research and Development.

An occasio:n like this naturally stimulates reflection about one's past
work. I might wention one habit, common among statisticians, that has helped
me. In consulting, there are always times when I cannot answer tho question,
and times when I give an answer, but realize after the investigator has left
that I distorted his question in order to make it fit into some standard
statistical mold. I like to make a note of the difficulty and, so far as my
ability permits, to see if anything constructive can be done about It.

This habit also protects effectively against any tendency to develop a
swelled head. From time to time I see a new paper that presents the first
competent handling of a problem of which 'have been ineffectively aware for
many years. Now my subconscious self is one of the most unpleasant characters
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I have ever had to deal with. On such occasions it always surfaces and says,
"See, if you had any brains, or had paid a little attention to the advice that
I keep giving you subconsciously, you might have cleaned up this problem 20
years ago."

In thinking about the present state of work in statistics from the
viewpoint of allocation of resources, we seem now to be well provided with
research manpower in mathematical statistics. In fact, I have sometimes
tried to argue that there is too much research in mathematical statistics,
though when I do this, everybody jumps on me. In academic circles, the idea
that one can have too much research on any subject is heresy of the worst
kind.

An an illustration, consider a problem that has arisen in the last 15
years. In the sampling of institutions like businesses, schools, hospitals,
and counties, that.vary in size, there is need for a method of selecting a
sample without replacement and with probabilities proportional to measures
of the sines of the units. There are two main difficulties. With the
simplest methods of selection, it is impossible to compute from the sample
an unbiased estimate of the variance; with other methods, the estimate of
variance is .so unstable that negative estimates of variance can turn up.
Secondly, as the sample size increases, it becomes harder to keep the
probabilities proportional to size.

The problem is important enough so that under a system of planned
resource allocation one could justify assigning three or four good men in
different places and preferably in different countries, to work on it
independently. Now Mr. Kanneth Brewer, Director of Methodology, Common-
wealth Bureau of Census and Statistics, Canberra, Australia, is currently
spending some time with us at Harvard. One of his tasks is to prepare what
will be a highly useful comparative and critical review of tho methods that
have been produced for sampling with probabilities proportional to size
without replacement. To date he has found in the literature not 3 or 4
methods, but 34. Indeed, when the latest issue of any journal reaches my
desk these days, I hesitate to open it, in case it contains yet another
method which Mr. Brewer will have to compare with the current crop of 34.
It almost sounds like too much of a good thing.

In two other aspects of the health of our profession, however, the
situation seems less favorable. One aspect concerns mechanisms for ensuring
that new and useful statistical techniques are regularly explained to the
potential users in language that they can understand; the other,, mechalims
by which statisticians are regularly kept informed of unsolved statistical
problems encountered by users. The difficulties in this kind of communication
are well known. Users have little time to devote to learning statistical
techniques and often very limited knowledge of mathematics and probability;
work by statisticians on exposition carries little prestige; and the efforts
of the statistical profession in this area have been most sporadic and
voluntary. In this connection, I think that Sam Wilke, after his early years
of brilliant and productive research, deliberately chose to sacrifice his
future research interests in order to concentrate on organizational problems
in the new field of statistics, including problems of communication with
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F. users, because he judged them so Important. For the same reaon I regard
. theme regular ennu colZnfasenoJ Pu --. -a...

Ressarct, Development and .esting a one of the most. useful activities in
statistics in this country. These conferences help to meet both needs thatI have mentioned. They provide an annual opportunity for describing newtechniques on a wide ran$g of topics by speakers skilled in this kind ofexposition, and also as occasion on which statisticians can learn aboutquestions raised by the users to which current research does not supply ananswer. Long may they continue.
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DETERMINATION OF TBO BY WEIBULL DISTRIBUTION
USING RRPATRABLE COMPONENTS

John L. Mundy
U.S. Army Aviation Materiel Command

St. Louis, Missouri

ABSTRACT.

1. The Army Aviation Command has found that a serious discrepancy exists
between the figures set by contractors for the life time of critical components
and for the Time Between Overhaul (TBO) for noncritical components and the
figures actually achieved in practice. For many components only 8% ever
reach their rated life time, and only 5% reach their TBO time.

i 2. In addition, it in necessary to determine the time required to break-

in systems, if any. This breaksin time is sometimes referred to as burning-in.

3. To determine the statistical TB0, life times, and break-in periods,
as set by actual field usage, the Weibull probability distribution was applied.
The work of Mr. J.H.K. Kao was extended from non-replaceable itms to repairable
items. Three-phase life was used consisting of Infant Mortality, Catastrophic
or Random Failure period, and the Wearout period. The graphical trial and
error method of Mr. Kao was replaced by a Fortran computer program. In addition,
the iterative method was streamlined into a deterministic method. This
represents a major contribution which reduced the computer time by 85Z.

4. Flow charts of the operation have been prepared. The source of data
is the DA Form 2410 and DA Form 2408-3.

ACKNOWLEDGEMENTS. Many AVCOM engineers contributed technical assistance
to this report. Gratitude is due to Mr. Wm. Brabson, R&D Division, Mr. J.K.
Gerdel, Special Studies Office, Mr. D. Burchfield, Quality Assurance Office
and Mr. D. Fleming, Quality Assurance Office for Suporvisory support.

The lengthy Computer Flow Chart was prepared by Mr. M. Ploudre, R&D
Division.

Valuable prograiming assistance is being supplied by Mr. F. Blackshear,
Special Studies Office.

The intricacies of the TAERS operations were thorougly explained by
Mr. R. Jaes and Mr. F. Grueninger, Directorate of Maintenance and Mr. M.
Christianer, General Engineering.

The essential 'hammer and nails' work of hand checking of calculations
was done by Mr. M. Ploudre, R&D Division, with the help of Mr. D. Carter,
R&D Division.
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CONTRIBUTIONS.

1. Use of TAMS to:

a. Break doan Failure History to No. of Overhauls.

b. Break down Failure History to, No. of Repairs after overhaul.

a. Break down Failure History to Age of item after "N" repairs
after '" overhauls.

d. Use of TARS to report Unfailed as well as Failed Items.

2. Method for Identification of Pblty Distribution Composite, under
assumptions that composite consists of not more than 3 other Pblty
Distributions.

3. Determination of Burn-In, TBO or Finite Life for components, as
determined by field usage, instead of engineers prior to fielding.

4. Two methods for Non-Graphical Determination of Woibull Shift Pars-
mters (Gam").

5. Complete Eliination of need of Kso Plotting Paper.

THE AUXILIARY WORK TAPE LAYOUT. The Army Aviation Command of St. Louis,
Mo. maindtains a Validated Tape Pile of DA 2410 forms received from the field.
This form is completed by Repair-Personnel, and contains data concerning the
removal and repair of components. This form is one of the class of forms,
known as TAERS. Presently about 12 million 2410 records which have been
validated, are on file.

From this tape, certain items war* extracted. These items were combined

with other items from other tapes to create an auxiliary work tape, which
contains all the items needed in this program. -This work tape layout is
shown in Figure 1. This figure 1 shows one record on the tape. One record
will exist for each 2410 report.

This program will determine the "Burn-In" tine, and the "Time Between
Overhaul", (TBO) from field data. The field value of ISO will be compared
with the Established TBO in columns 39w42 and it will also be compared with
values of competitor's interchangeable parts. The Interchangeable part
numbers are obtained from another program, and printed in columns 168-297.

Since this program analyses the failure times of each component, the
four dates in columns 73-88 are very important.

The first date in 73-76 is the Date of First Installation of a new
serial number, (FID). This is obtained from Copy 6 of a 2410 record under
the condition that Copy 1 is mIssing, for the same Document Control No. in
Copy 6. Copy 6 is used for installation reporting, and Copy 1 is used for
removal reporting. Therefore, when an item is uew, and originally installed,
a Copy 6 will be made out before Copy 1, under one document number. Later,
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when the component is removed, a Copy 6 will be found under a different
couLtro. nuimber.

The second date, in 77-80, is the Date of Re-Installation (RID).

dThis Julan date (RID) in taken from Copy 6, when a Copy 1, is present,, under the same document number.

The third Julian Date of importance is (ODNR) which in Off-Date, Not
Reinstalled. It is taken from Copy 1, if Copy 6 is absent.

The fourth and last Julian date needed is (ODYR) which is Off-Date
Yes - Reinstalled. It is taken from Copy 1, if Copy 6 is present.

After this auxiliary tape is created, two other data tapes are made
from it, by various sortings and re-arrangsements to facilitate programming.

One tape will contain records within 25 days to 390 days of the most
recent record. Data within the first 25 days is deleted, to allow for delays
in the mail.

Each tape is then sorted au shown in Fig. 2.

2. SORTTNG OPERATION$ ON THE WORK TAPE. Fig. 2 shows that the major
grouping is by Part Rumbero followe byT mi3or groupings - Overhaul Group,
Age Group, and Equal Number of Repair Times. This is followed by sorting
according to the time of failure.

This program is the first that categorises the parts according to the
number of Overhauls. This will determine the failure history of new parts,
such as engines, compared to engines which have been overhauled X-number of
times.

Another first, within AVCOM, is the grouping of parts of the same age,
within the same set. This method will reveal whether failure rates are
constant, for components of different ages. This assumption of constant
failure rate is made many times, for no other reason but that it is simple
to se. This analysis will check the validity of this assumption.

The lover right bar shows that unfailed items are also considered.
This is the first time that TAERS has been used to report unfailed as well
as failed items, This method is presented next.

3. HANDLING OF UNFAILED ITEMS. The first step is to identify those items
still in "tW aircraft.

This is done by analysis of the 4 critical Julian Dates previously
discussed. A sample set of these 4 dates for one serial numbered component
is shown below in Figure 3.
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FID ODYR RID ODNR
Doc. Control (Copy 6, date, Copy 1, date, Copy 6 date (Copy 1 date
Number when no 1) when have 6 when have 1 when no 6)

1 4(365) 0 0 0

2 0 5(002) 5(003) 0

3 0 6(205) 6(206) 0

4 6(115)

Look at the FID or RID - item installation dnte. Then look at the ODRN,
to see if the item has been removed at a later date.

In this set, the highest installation date is RID - 6(206).

This item has not been removed at any date later than 6(206), as shown
in the ODNR column, because the highest ODNR is 6(115).

Therefore, the test consists of 2 steps;

Step 1) Find the highest instaliation date, whether if, is FID, or RID.
In our sample, it is RID - 6(206).

Step 2) Test whether this RID is greater than the highest value of
"Off Date - Not Reinstalled," (ODNR). .ere it is 6(115), so the answer is
"Yes." This item is then treated as an "Unfailed Item."

Note that this ODN. column would be all zeroes, for an Unfailed Item,
if all were complete. However, if a Copy 6 were deleted by the Validation
Tests, a number such as 6(115) would appear here.

After identification of an unfailed item, the number of hours logged in
this unfailed item (UFH) by the end of the caleudar period must be found.
This UFH is given by the following formula:

UFE n FFH-OFH

where OFH - Original Flying Hours, apd FFH - Final Flying Hours. OFH is found
by searching the 2408-3 data tapL. The file is entered with Tail Number of
the Aircraft that the component waR installed on, and searching for the record
whose date is nearest to the date of component installation (RID). From this
record, is, read the Number of Flying Hours on the aircraft at installation time.

FF is found by again searching the 2408-3 data tape in a similar manner.
But this time a search is made for the record whose date is nearest to the
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data at the end of the test period, (DEP). One test period will be for the
past year, and the other will go back to the oldest record in the file.

For each unfailed item a new record is generated, resembling the record
that indicated an unfailed item. However, the number of unfailed hours is
entered on this record.

I.

It must be noted, however, that in the analysis part of the program,
there is a condition on the acceptance of an unfailed item into the group of
failed items. The item is included, if and only if, the number of unfailed
hours is equal to, or greater than the largest number of hours logged in a
component that failed.

So, if one Serial Number item operated for 200 hours, and then failed,
another serial number, with the same part number, cannot be called an unfailed
item until it has run at least 200 hours.

This completes the discussion of the data tape.

The next item to be discussed will be the Format which is the output
of the program.

4. OUTPUT FORMAT OF RESULTS. The output, Fig. 4 shows the desired values
that the program determines.

The header lists the interchangeable parts and information on the Prime

Part Number (i.e., the part number being analyzed.)

The objectives of the program are:

(1) The data TBO or Finite Life, and the Burn-l.n Time, which will be
compared with the Established Value by the Contractor.

(2) The aext objective is the Composite Probability Density Distribution,
for all 3 Life Phases: 1) Burn-In Time, 2) Random Failure Phase and 3) Wearout
rhase.

It is necessary to find if the failure rate follows an exponential
distribution (B-) or a normal distribution (B-2.6) or some other of the
Weibull family; Fig. 5. This distribution is a function of 3 parameters,
Gamma (g), which is the shift parameter, Beta (B), which is the shape para-
meter, and Eta (N), which is the characteristic Life parameter.

(3) Life characteristics are then found from the Weibull Distributions.
These are: Reliability, Hazard Rate, Variancc, Expectad Value, etc. An

example of Hazard Rate as a function of B is shown in Fig. 6. Fig. 7 shows
an Average Hazard Rate for an actual item.

5. MATHEKATICAL DEVELOPMENT, The determination of the first objective
will be presented. We want to determine the TBO, or Finite Life, and the
Burn-In time. This will be presented graphically. first. See Fig. 8.
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An ordered plot is made of all tiaes of failure an the so-called Kao
ibull sPaper.

li s graph paper has thescales chosen such that a plot of a straight
line-on this paper, yields the shaping parameter "B" of the Weibull p.d.f.
However, the original plot of the raw data will not yield straight line
segments. The linearization process will be discussed later.

Now, assuming a plot, as shown on Fig. 8, the TBO, or Finite Life Is
defined as the intersection of the two tangent lines. The value is read
from the horixontal scale, indicated by the symbol Delta (S). This point
is indicated by the maximum positive, change of slope between any two data
points, t

Nixt, the Burn-In time will be determined. (Turn the tigure upside down).

Suppose that the failure points fell along this plot. This plot shows that
this component has a Burn-In time at Delta. Beyond the Burn-In time, the
failure rate gets much better, and becomes significantly les. This point
is indicated by the Maxmaum NEGATIVE Rate of Change of Slope, between any
two points.

Now, that our lot objective, has been reached, the 2nd objective will be
determined. This is' the identification of the type of the Weibull 3-Phaue
Composite Cumulative Probability Density Distribution.

3

! i1-1

The Weibull distribution is Identified by the 3 parameters, Beta, Ets
and Game. The coefficients A represent the proportion of failures in
each pbase.

For a "Kao Plot" consisting of only one straight line segments (Fig. !?

f(t) - Beta Ct-Gem (Beta .) t-Gammaeta
Eta

A set of 3 parameters is needed for each straight segment of the plot.
There may be a maxim m of 3 straight line segments.

*Delta (8) may be found mathemtically. It is the tim at which the propot'..
of random failures, indicated by the lower straight section, is equal to dh..
proportion weerout failures, indicated by the upper straight section. IL it,
equated belowi

l-exp [-(S I Na)D2" -ep [-(S I N3 )
3 s]

suexp [( 2InN I 3 in N 8 )/(B - a)3.
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Beta (the Shape Parameter) is found from the slope of each straight line
segment, (or Sub-population).

Eta, the characteristic Life Parameter, denotes the failure age of 63.2%
of the items. From the graph, Eta can be read directly by entering the
Vertical Scale at 63.2, and progressing to the intersection of the straight
line segment. Then read Eta on the horizontal scale, directly under this
intersection. For computer purposes, the equations of the two lines involved I
ur~st be formulated. The equation for ETA turns out to be: 1

Itse - zp E[= t- iJ

where fi refers to the mean data point on the horizontal axis, and F refersto the mean data point on the vertical axis.

The exponential function is involved because the XX and fY values are
actually logarithmic values to the bass "a". Therefore, the anti-log must
be taken.

Gama, the Shift-Parameter, is found by determination of the data-shift
used to convert non-linear data into linear date. This determination will
be discussed later. Fig. 9 shows that the final value of Gamma should check
with the value of intercept on the horizontal scale. The physical meaning
of Game is the tie, before which, no failures had a chance of occurring.

The method for determination of Gamma followez ,

(x) - 1 - up I - (O-A) ] XB,N > 0

where F(z) is the Cumulative Probability Distribution.

1-1(x) - xp [ - (E!jL)3]
- exp (Z)B

Jn[ll1-M'x))) - [(x-I)/N]

in In ['/(l-'(x))] - B An [x0)/N)

- B In (x-&) - B An N.

This equation shows that a plot of the left hand versus %n(x-S) will
yield a straight line, with a slope equal to B.

[1(x)] (100) - Percent failure, or, in other worde| - this is the percent
of failures that we can expect in the tie "X".

The y-intercept is [-B In(N)] is a measure of the Goodness-of-Fit of the
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Weibull Diot. It can hP empar~ w1.71 aarva-v4.ai Am--4 ^s. r -a .t1v%1
at the x-1 vertical line, which is the 'n x - 0 line. See Fig- 9, that that
sample data for Gamma - 20.

The original data yielded Curve A. Since this is not linear, the slope,
Beta, cannot be determined yet.

The first guess of Gamma may be taken graphically by extending the curvedown to the horizontal axis. This gives Gama - 1500 hrs. Since a computer
program does not have access to the graph, the first guess of Gamma is taken
to be (2/3)(Time of First Failure), i.e. (2/3)(Time of 1st Data).

To apply this first guess of Gamma, the value of 1500 hrs. is subtracted
from each time of failure.

Curve B is an example of a plot of data, which was adjusted for a value
of Gamma - 27.5, Hecto-hours. The fact that these two curves, (A and B)
have opposite curvatures indicate that the true value of Gamma lies somewhere
between 15. and 27.5. Further trials showed that Gamma n 20 is the value
that linearizes the curve. This is shown on Curve C.

SUCCESSIVE DETERMINATION OF GAMMA.

The equation that gives us the next value of Gamma to try is developed next,

Refer to Curve A of Figure 9. It is known, in this case, that if the
correct value of g n 20 would be subtracted from each X-value of cach data
point, the result is the linear Curve C. The problem is to set up an equation
which will first be developed for the simple case of only 3 data points.

DETERMINATION OF GAMMA FOR 3 IDEAL POINTS.

As seen on Figure 10, the point (Y2) is ideally located equidistant
between Y1 and Y3.

In addition, there are only 3 points, which is the simplest case possible.

The analysis is shown in Figure 10.

The difficulty with this equation is its sensitivity to X or X3.

For example: if X 33.3, g - 8. and if X 1 - 35.3, g - 28.

Also: 1) Always subtract off (2/3)(lst data pt) to get first guess for
g, to reduce sensitivity. 2) Reiterate. Also use "s" equation in the form

gh - ,X l l 1
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LETERMINATION OF GAMMA (g) FOR 3 IDEAL POINTS
Phase 2

Set the change of Slope (AS) : 0, and solve
for Gamma.

AS= Slope2-Slope lx 0

Y unaer - -Y lower_
'Tnx3.g).ln~x 2.g )  = n.tx2.g).lnkXl.g

But Y upper-Y lower:

x1 -g x2 .g

Take Anti-Ln of each side.

(x2 -g)2 = (xl-g)(x 3 -g)

x2 2 -2 .x2g+g2 = xlx 3 -xlg-x 3 g+g2

x 22-x x3 = g(2x 2 .x1 -x 3 )

g"2 I  v ,ro miu t be chosen oypoite to Y= on the Data Plez"2x 1- x3
Fie 11
221



DETERMINATION OF GAMMA (g) FOR ACTUAL CASE OF
10. POINTS, Phase le

1. DIVIDE DATA INTO UPPER AND LOWER DATA.,
WvITH THE DIVIDING LINE TAKEN AS THE AVERASE ( 0

x 43.4

2. SET x AVERAGE OF UPPER.

X3(44.+47.+51.e'570+64.)/5. :52.6

3. SET x: AVERAGE OF LOWER.

x1: (27.5+31.+34.+38.+41.)/ 5. :34'.3

.4

4. NXT. FIND x (Y0)

Where YD= AVERAGE- OF Y AND Y3

YL: Y1 AND Y AyI3 FOR CONVENIENCE

F iji 12
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DETERMINATION OF GA-MMA (g) FOR ACTUAL CASE OF

10. POINTS - Phase 2.

FINO YL FOR x L 34.3, (x =1n34.3=3.54)

1. INTERPOLATE BY DRAWING CURVE IN THE FUNC-
TIONAL, OR KAO PLANE, THROUGH THE 3 POINTS
CLOSEST TO XL,

',*

THESEARE x1: 31, x2 = 34., and x3 = 38.

x X y Y

31 3.43 18 1.63

34. 3.52 27 1.3

38 3.64 36 0.82'

YL = a~b(X L)+c(XL 2

WHERE a, b and c follow.

Y L 1.26

Fig 13
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DETERMINATION OF GAMMA (g) FOR ACTUAL CASE OF
10. POINTS - Phase 3.

Y X X (X -x )+Y X X (X -x )+Y X x -X x
a= 12 3 32 2 13 1-3. 3 1221

[iY 2 X3 (X 3 X2 )X X3 (X1 X3 )+ XX2 (X " 1

b: x2~ 2 )Y(X 2. 2 )( 2. 2)

0

Y (X X)+Y (XX 2)+Y (XX x
C= 3 1232 3 2)2 21 3

These are the equations for a parabolic fit

through 3 points,

Yz a + bX +oX 2

Fig 14
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DETER.MINATION OF GAMMA (g) FOR ACTUAL CASE OF

10. POINTS - Phase 4

SIMILAR TO THE METHOD'FOR FINDING Y ,U
IS FOUND FOR XU= 52.6 (Xu: ln52.6= 3.9b)

THE PARABOLA IS DRAWN THROUGH THE 3 POINTS
CLOSEST TO 52.6 'HICH ARE SHOWVN BELOWV.

x x y Y

.47 3.85 64. -.02

51 3.93 73. -.4

57 4.04 82. -. 52

YU -.44 at X 3.98

(Y YL +)
Y0: 2 U,41 T are KAO slues,

MOW re the values obtained afte goim thrm

Fig 15
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DETERMINATION OF GAMMA (g),FOR ACTUAL CASE OF

10 POINTS - Phase 5

KNOWING YD: +.41; X IS FOUND BY DRAWING
0

A PARABOLA THROUGH THE 3. Y POINTS CLOSEST TO

Y = +.41. NOTE THAT THE ROLES OF X AND Y ARE
0

REVERSED.

" 2
xn a bY + CY

THE CLOSEST POINTS ARE

y- 36., Y: +.8

y2 = 46., Y= +.45
2e

y 55., Y- .2.

x z 3.72'at Y: +'41, and Xd 41.59c ~ 0d

2. FINJALLY

2x-X- 2)(41.59)-34.'3-52.6

This is the true value of Gamma.
rig 1.6
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Then use 
2 

2 1
9ge = X3] - - .

" Then average g ( + Sh)/2.

If double precision is available, the averaging may be eliminated.

It has been found that we get better results, using lowest and average
of top half of the data, instead of average of the bottom half and (average
of top half). This insures that Gamma, (g) will be less than the lowest
data value of "X'. A value of Gamma greater than the lowest data value of
"X ais erroneous and unacceptable due to the basic definition of Gamma.
Gamma is the value, below which no other failure, or X value can occur.

Another method will be discussed next. This second method is the
Average Rate of Change of Slope Method, (ARCS).

GAMMA ADJUSTMENT BY AVERAGE RATE OF CHANGE OF SLOPES (ARCS)

1. In each life phase, find the Slope between each 2 points, in the
Kno Plane using Ln values, shown in Fig. 17,

s. Fi (Y i+l - Yi)/(xi+ -Xi)

2. Find the change of slope, between each two slopes, (RCS) - (S±+1 - 8)/
(Xmidi+ 1 - Xmidi). N

N
3. Find Average Rate of Change of Slope (ARCS) E RCS1

ARCS 1 N

Since this is the ARCS for the original data, for which there wa no
adjuscment for Gamma, call this value ARCS (Gamma - 0), or ARCS(O).

4. Again use the method above to find ARCS (Gamma - first data point), or
ARCS(l). To do this, subtract this first (X-data) point from each successive
data point, to establish a new Ret of data. Then put these data into the Kao
Plane by taking the "In" function shown in the sketch. Then find ARCS(l).

5. Next find ARCS (2/3). Subtract (2/3) of the first (X-data) point
from each data, to form a new set of data. Again put the data into the Kao
Plane. Then find ARCS (2/3).

6. Write a 3rd order equation through the plot of Gamma versus ARCS(A),
Gamma - aA2 + bA + C. Then solve for the value of Gamma (Gamma - C), thatmakes ARCS - 0. The value of C(AI, A, A3) is:

3(A2-A1) + gI(A 3-A2) + g2(A,-A3)

, A 3 (A32) + A1A2 ('21A ' A

1. As the new Gamma is found, this new value of Gama is subtracted from
each of the X-values of the data points, to get the adjusted data points. Then
a new value is found for the Average Rate of Change of Slope (ARCS), to check
its approach to zero. If this ARCS is within '0.1 or if thiln new ARCS does
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I
no iprvethe prviu ARCSb at les 0,teieainis complete.

The formula cdns. for stopping iteration are:

1) IARCS1 < .1
2) I csil/ARCSi[ > .a

or
3) (ARCS)+ 1  (ARCS) 1  for ARCS1 posiive

or

4) (ARCS)i+1 < (ARCS)1 for ARCS, negative.

8. If these tests pass, the largest ARCS is dropped, and the iteration
is continued, using the three lowest values of ARCS with their three
corresponding values of Gamma. See the next Figure (18).

FINDING GAMMA Wg BY GEOMETRIC MEAN METHOD This method in an

improvement of Dubey'a Rethod, found on Page 293 of Techuometrics, Hay 1967.

The first step is the calculation of YMID using data values,

The Weibull Plot is a plot of In In (/(l-F(X))] - B In [(X-g)/N].

Taking the inverse An of each side gives;

y - An (I/(1-F(X))] B [ -] - A(X-g)B

where A - [1/NJ
B

The constant "g" may be found by writing 3 equations, which are taken
from three data points since there are 3 unknowns; g, B, and N.

Xl, F1 (X); X2, F2(X); and X3, p3(X)

Y1 - A(XIg)
2 2

Y3 A(X3 "g)
3

Then:

Y1Y2  ¥Y 32  [(Xl-8)8 (X2 -g)B 2(X3-9)2B

Now if Y3 * YIY2 , the LHS - 0, and we can solve for "g"..

(X1-g) (X2-g) - (X3-g)
2

X1 X2  X 1 g X2 g+g 2  ()2 2Xg +g 2

g[2XX3 - X1 - 2 ]X 2 x 1 X2
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2 1 ;2
3 1 2  

At2X 
3  X 

E
Let X3 - XMD, which must correspond to FMID'

YMID" ylYY2 in (1-FI(X))- ]H[n (1-F2(X))
- I

YMI - [-Ln (FLOw) ] ( Fn H )

But we want to convert to a value that a readable in the KAO
Plane, which is FMI .

"MID

Find FMID in terms of YMID'

I n (1) where F(X) - FMID(X)YMID "MI (X)(l. ()

Solve for F(X).

IMs D 1e " -Fx)

l-F(X) - MID

FMID(X) - l-e- ID - 1- exp - /I-in (I-FLowJ[-M n (1-FHIGH)]

Next find the corresponding XMIDK, by drawing a 3rd order curve
through the 3 closest points to YMIDK' using the KAO plane.

2XMIDK - a + bYMIDK + cYMDK

Both XMID and YMID are KAO Plane values, as are all the X's, and Y's

in the following ab, and c equations, that are double subscripts.

Where YMID - KAO Value of FMID; YMID - In In [l/(100-FMID)]

x 1 1 Y22Y 33(Y 33 -Y2 2) + x 22 Y11Y3 3 (Y 11-Y 33 ) + x 33 Y11Y22(Y22-Y1l) N
a - Y 33 (Y 33 py22) + Y11 ,33 Y11-Y33) + Y 1IY22 (.22-y ) D

x 22(Y32 -Y
2) + X33 (Y11 2-Y22 

) + X11(Y2 2 2-y332

D
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X 33 (Y 22- 1II) + XII1(Y 33 -Y22 ) +1X22 (YI1I-Y 33)

rD
Then the data value of 'ID (Kao Value) is fuund by taking the

anti-tn of XiD(Kao values).

XMID~e

Then the value of Gamma is given by the same formula Eqn A, used
in a previous method. 2

- XID. Xl_X3

In the above formula, it has been found that the use of Ln to the
base "e" values for the X's, gives a more exact value for s , but only if
the equation is used repeatedly until no significant change occurs.

This same concept of repeated usage must be applied to the equation
for "g", regardless of the method used, in order to find the true value for
itq
9.

After determination of Gamma, all of the 3 Weibull parameters are

complete. Next will be discussed the information obtained from the

Probabil.ty Distribution. Reliability is first.

Since there will be 3 values of each of the parameters, Gamma, Beta,

and Eta, the composite Reliability is given by the sum of 3 terms.

Term 1 Term 2 Term 3

t-g B1 t-g B2  t-g3 B3
R(t) J exp-[---] + P exp. [-- + Qexp ---

N1 N2 3

where 93 > g2 > g1 1 and J + P + Q -1,

where term 3 is set equal to Q for t < 93,

term 2 is set equal to P for t 1 82,

J - Percentage of Data Points in Burn-In Phase

P - Percentage of Data Points in Catastrophic or Random Phase

Q - Percentage of Data Points in the Wearout Phase.

R(t) -1 for t < g,

A Plot is shown, Fig. 19.

Next, I ,aar- &ite and Reliable Life.
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COMPOSITE HAZARD RATE. The Hazard Rate H(t) is the Conditional
Probability Density Function of Time to Failure, given that the ices has
not failed prior to time (t). In other words:

H~t) dt - P[(t < T < t+,dt) lCT > t)]

It can also be stated as a ratio of Probabilities
(t) dt P[(t T t+dt) t) (T > t)]

P(T > t)

where n means "Intersect".

fi(t) probability density function AiB i(t-gi)Bi -

Rt( t reliability function B
(Ni)

A plot of Hazard rate for G.E. task A, Lot 3 is shown (Fig. 7) and a
composite Hazard Rate is shown in Fig. 20.

Other important parameters are the Expected Value of Time to Failure
and the Variance of the Time to Failure.

The Expected Value (E) and Variance (V) are given for each life phase.

E w gi+ Ni (Gamma (1/Bi + 1)]; i- 1,2,3,

-
2  2 1) 2iV { N Game (7;+ 1) - Gamma + 1) 1- ,2,3{Gaa =- Cj+i )) , i - 1,2,3.

RELIABLE LIFE. The last parameters found is the Reliable Life, RL(C),
for a specified confidence level (C). The formula is given next.

c-J f(t) dt

RL

RL- (Gamma) + (Eta)(-ZnC)l/Eeta

RL is found for each component for confidence levels of .85, .90, and .95.

Composite Hazard Rate Evaluation - Synthetic Data

H-, t<g,

H - J B 1 (N 1) "B1 0 (t-gl)Bl-1 , < t < 921

H - PB2 (N2)
- B2 • (t-g2 ) B2-1 S 92 < t 4 93
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S-QB 3 03 ) - t- 3 ) B 1 3 t- .

DATA

J. .294 P - .353 Q .353

I I -3.75 B 2 .-621 3 -3.55

51 -1.34 a2 5.1 N3 -5.1

61 a5 ;2l0 83 15.

t t H

0-5 0 14 .0470

6 .3675 15 .0433

7 2.46 16 .0038

a 7.53 17 .0223

9 16.5 18 .0627

10 30.9 19 .130

11 .0797 20 .231

12 .0613 30 3.8

13 .0526 50 32.6

6. PREPARATION OF TARRS COMPUTER TARS. Layout for RD-2410 Work-Tape
for Weibull Interchangeable Part Program. "

1. Prepare RD-CH-47 Work Tape. -Save the program used to do this.
Table 1, which follows Pars 10, shows the location of each Variable on
the existing ADP-2410 Tape, (contact Mr. C.P. Marquardt of AVCOM) and the
desired new location on the RD-CH-47 Work Tape.

2. All Variables, except as noted, must be taken from the ADP-2410
Tape, or calculated from data on this sane tape. Two exceptions are the
Interchangeable Part Numbers and their associated Manufacturer's Code Number.
These are obtained from Program 25F6BE.41, 'MD! Component Tears Activity List."
This program i available from Mr., Tom Grusninger (phone extension 2170/
2176) at AVCOM.

3. The preparation of these two tapes required only records from the
ADP-2410 Tape, that are coded 10, CH-47, Copy 1 and 6.

4. Identical information may be taken from Copy 1 or Copy 6, but NOT
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both, The copy number is found in column 37. Tha -4- ,,, ... uunon the AIP-2410 Tape, in clumns 35-36. Any other code nullifies its record.
S. Only CH-47 records are Lo be used. This CH-47 will be found on

ADP-2410 Tape in columns 133-144.

6. The blocking factor is (301. X 1).

7. All data on the RD-CH-47 tape must be Justified as indicated inthe Table. Fill all spaces to the left of Right Justified significant datawith zeroes,

8. Records with the following "Fail Code," must be omitted. (The"Fall Code" is located on the ADP-2410 Tape, in columns 264-266). Deleterecords with Fail Code 0, 120, 130, 138, 256, 301, 446, 464, 300, 503, 530, 540,950, 796, 797, 798, 799, 800, 801, 802, 803, 804.

9. Delete records with Inspection Action Code (IAC), column 273,equal to "A". This letter "A" indicates that inspection revealed thatthe item was serviceable without needing repair.

10. The Functional Group Coding must be entered in columns 58-72.It is obtained by reading the Federal Stock Number (FSN), in columns 186-196 of the ADP-2410 Tape. With this FSN, search the Publication Tape,(available from John Witmer, ext. 3221, AVCOM), to find the FunctionalGroup Coding. [Table I starts on the following page.]

Preparation of Recent CH-47 Tape (RD1-CH-47-CGR) and Preparationof Older CH-47'Tape 0 Work Tap.

11. After completion of the RD-2410 Work Tape, separate it intothe two tapes named above, based on the Julian records dates, as follows.From this workiug tape find the most recent date (MDR) of 4 dates, whetherFID (Columns 73-76); RID (Columns 77-80); ODNR (81-84); or ODYR (85-88).Prepare 2 tapes: RDI-CH-47-CCR will contain all records whose highest ofthe 4 dates is between (MRD-25) and RD-390. Tape RDL-CH-47-CCO will contailrecords (MRD-390). The cut-off date (COD) is defined as (MRD-25). The CODmust be entered into the RD-2410 Work Tape, columns 44-47.

12. The following operations must be applied to each of these 2 tapes.
13. Sort by Component Part Number, Location 13-33, so that the

lowest number will be processed first.

14. Sort by Interchangeable Part Numbers, within the "Part Number
Sort."

15. Sort by Number of Prior Overhauls such that zeroes, then l's,
etc., will be processed first.

The location of PO is columns 93-94.
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TALE I

LE.Nev LocatioLocatlon Or On RD-2410
ViADP-2410 Tane Work Tans .._

Sad Item Model 133-144 1-12 L
Leave a IXK
between 0H end47

Component Part Number bing Processed 145-165 13-33 L

Manufacturing Code for the Component
Part lumber being Processed 166-170 34-38 L

Established Time la een Overhaul (Tb)
or Etablished finite Life (FL) 238-241 39-42'

Calendar Group - Vill be either "3" Not found ou 43 3.
oening roent or am "0" usamlu older this tape. It

'is determined by
the method ex-
plained later,
In par& 11.

Cut-Off Julian Date (COD) Not on Tape, 44-47
see para 11.

Functional Group Code N' 9U Tape, 48-55
u pare 10.

Component Serial Uimber 12-28 56-72 L

ir t installation De (no) . This date is 73-76 R
found in columns
299-302, for copy
6, under the con-
dition that a copy
I does EOM exist
for this contr6l
number.
If a copy I does
exist, then fill
73-74 with seosse.
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New Locatim
Location On On RD-2410
ADP-2410 Tape Work Tins!

Date of Re-Install (RID) This date is 77-00 3
found in columns
299-302, for copy
6, under the con-
dition that a copy
1 does exist for
this control number#
If a copy 1 does
NOT exist for this
control number, fill
77-80 with blanks.

Removal Date, When So a-Xnstallation This date is 61-84 B
Occurs (ODNi) found in 299-

302, for copy 1
under the con-
dition the NO
copy 6 exists for
this control num-
ber.
If a copy 6 exista,
fill 81-84 with
blanks.

Removal Date When RaItnstallation This date in 85-86 R
Does Occur (ODM) found in 299-302,

for copy 1 under
the condition that
copy 6 exists for
this control num-
ber.

Unfailed Plyini Hours This is not on 89-92 R
the ADP-2410
Tape..Sea parall.

Number of Prior Overhauls (10) 136-137 93-94 R

Hours Usage Since Neu (USX) 123-127 95-99 R

Hours Usage, Since Last InstaUlled (UI) 128-131 100-103 a
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Now Location

Locacion on On RD-2410
Variable ADP-2410 Tapei T Justif 

Hours Usage Since Overhaul (USO) 132-135 104-107 R

Age Group (AG), as a function afs Not on ADP tape. 100-109 1
PO located ADP tape 136-137 It is calcu-
USX located ADP tape 123-127 lated as in Incl
ULI located ADP tape 128-131 1. It is repeated
50 located ADP tops 132-135 here:

-Xo~ ~ ~ zer (& o )

50)
Round off to nearest integer.|
If AD Iso zero or negatives
let tZ -1. ,

Failure Code of Component (PC) 264-266' 110-112 R

Failure Detected During (MD) 270 113 R

ffect on Mission (EO!) 271 114 R

Inspect 6 Action Code 273 • 115 R

Component Noun 61-84 116-139 L

Standard Unit Price . 255-263 140-149 K

Organisatton Ident Code 43-49 150-157 L
a

Ead Item Serial limber, Tail Number 212-221 '158-167 L

Fret Interchangweble fact NUmber I Not on ADP- 168-188 L
2410 Tape.
Use program
number 25F6BE-41#
M'DR COMPONENT
TAERS ACTIVITY
LIST." Contact
Tom Gruenninser
of AVCOM, (Se
pars 3)
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New Location
Location On On RD-2410

..- __Va~ADP-24,10,Tnpe Work Tage Justfy

Honufacturer Code Number 1, Related Not on ADP-2410 189-193 L
to Interchangeable Part Number I Tape. See para 3

Second Interchangeable Part Nmber 2 Not on ADP-2410 194-214 L
Tape. See para 3

Manufacturer Code Number 2 Not on ADP-2410 215-219 L
Tape. See para 3

Third Interchangeable Part Number 3 Not on ADP-2410 220-240 L
Tape. See para 3

Manufacturer Code Number 3 Not on ADP-2410 241-245 L
Tape. See pare 3,

Fourth Interchangeable Part Number 4 Vot on ADP-2410 246-266 L
Tape. See pars 3

Manufacturer Code Number 4 Not on ADP-2410 267-171., L
Tape. See par& 3

Fifth Interchangeable Part Number 5 Not on ADP-2410 272-292 L
Tape. See pars 3

Manufacturer Code Number 5 Not on ADP-2410 293-297 L
Tape. Oee pars 3

Number of Repair@ on each Serial 298-300 R
Number (1)

Bad of Tape Indicator Not on ADP-2410 301 R
Tape. See pare 22
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16. Within each overhaul group (PO), sort by Age Group (AG).
Request sots to allows the lowest Age Group (1) to be set up to be
processed first.

Location of (AG) is columns 1084109.

17. Within (AG), sort by Serial Number, so that lowest Serial
Number is first.

Location of Serial Number is columns 57-72. This is Component
Serial Number.

18. Within each (AG), count the number of records (RN), having the
same serial number. Insert this number into columns 58-60 on each (RN)
record. Then, within each Age Group(AG), arrange the records so that those
records with the lowest (RN) will be processed first.

19. Find the Unfailed Items and the Flying Hours on each one, as
follows.

Within each Serial Number Group, find the highest (RID), which is
in columns 77-80, and thh highest (ODNR), which is in 81-84.

a. If this RID is greeter than ODNR, then this record represents
an unfailed item. This is an item that has been installed, but has not
failed. In general, ODNR will be blank or zeroes, when RID > ODNR.

b. Now that we have found an unfailed item, we must find the

number of hours logged on this unfailed item, by the end of the calendar
period.

c. This procedure is as follows:

(1) For the serial number of this unfailed item, pick off
the last installation date, (RID), from columns 77-80. Also pick off
the Tail Number from columns 58-67.

(2) With theme 2 inputs, search the 2408-3 tape file to find
the hours logged (OFH), on the aircraft, at the time of installation (RID)
of the component. On the 2408-3 tape, the tail number is at Block 4,
Columns 14-23, Card "A", and the Julian date (RID) is found at Block 11N,
Card "C", Columns 31-34; the OFIH is at Block 11K, Card C, Columns 16-20.

(3) Then, to find the number of hours (FFU) on the component
at the end of the calendar period, (DEP), it is necessary to search the
2408-3 tape again for this tail number and DEP. The DEP equals the.Cut-
off Date (COD), in columns 44-47 of the RD tape for the IDl-CH-47-CGR
tape, and is equal to COD less one year for the RDl-CH-47-CGO tape.

(4) The procedure is similar to the previous search, but (DEP)
is used instead of (RID), and FFH replaces OF.

(5) Then the usage of hours for the unfailed item, (UPH) is
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given below;

UFH - FVH - OFH

(6) Knowing (UFH), a new record (an artificial 2410 record)
is generated for the Unfailed Item. It is a reproduction of the record
in which the maximum (RID) was found, with the following changes, "a"
and "b".

(a) The newly found value of UFH is put into columns
89-92 of the RD tape,

(b) Replace the original ULI of columns 100-103 by 9999.
This is necessary to insure that the Unfailed Items will be processed at
the end of each Age Group.

20. Within each Age Group, sort by Usage since last installation,
(ULI) of columns 100-103. The lowest value of ULI must be processed first.

21. Within each Age Group, sort by UFH. The highest UPH must be
processed last.

22. On the last record enter "9" in column 301, following completion
of all sortings.

23. Print a listing of each tape.

24. Store each tape for future use, and notify this office of its
identification tag, and procedure for recall.

CONCLUSIONS This report shows that a test has been designed which
will analyze the effect of overhauls, repairs, modifications of design
(MWO), and engineering change proposals (ECP), for interchangeable items,
on Time Between Overhaul (TBO), Reliable Life, Reliability, Burn-In Time,
and Hazard Rate. These parameters will adjudge contractor compliance.
An assumption of Weibull's family of distributions is made.

A second assumption is that items having the same number of overhauls
and number of repairs, and age at the time of installations, will have no
more than three drastic changes of failure rates. These sudden changes
characterize the three life phase: 1) Burn'.In Time, 2) Random Failure
Phase, and 3) Wear Out Phase.

The program further tests the adequacy of the Army Reporting System
(TAERS).

The major mathematical contribution is the development of formulas
for the Weibull Probability Distribution parameters. As a result of this
development, it will no longer be necessary to laboriously plot data,
repeatedly in a trial and error program, to achieve graphical results.
The entire Fortran program is being computerized by the Research and
Development Division of RD&E Directorate, and the Special Studies Office
of AVCOM. The Automatic Data Processing Office of AVCOM is preparing
the data tape of the TAERS information.

243



r

A TECHNIQUE FOR INTERPRETING HIGH ORDER INTERACTIONS

-........ T....'.t . LB

Duke University
Representing

Shaw Air Force Base, South Carolina
and

North Carolina Operations Analysis Standby Unit
University of North Carolina
Chapel Hill, North Carolina

INTRODUCTION. The detection and interpretation of high order interactions
has been quite difficult in the recent past. This has been primarily due to
the large number of calculations required to evaluate all of the single-degree-
of-freedom contrasts in a typical experiment. Hence, short-cut formulae were
used which often permitted significant high order interactions to slip by
undetected.

The recent advent-of very high-speed, large--core, third-generation computers,
together with the availability of good statistical packages has made adequate
evaluation of interactions feasible. The only remaining aspect of the problem
and the topic of this paper is the development of a logical and systematic
procedure for ferreting out the essential pieces of information which will lead
to a valid interpretation of interaction.

, ONCEPT. The proposed procedure for isolating and interpreting high-order
interaction is based upon a sequential elimination of the factor levels which
are not primarily involved in the interaction, A least squares program is used
to fit coefficients to a complete set of orthogonal contrasts among the treat-
ment levels of the factorial. In addition, similar analyses are developed on
subsets of the data. These subsets are those data within a given level of
each factor of the entire experiment.

The computer output from a typical least-square3 regression program is
normally displayed in ANOVA table form. Each single-degree-of-freedom contrast
is listed with an F test of its significance. These F tests are studied to
determine which factor levels are involved in a particular interaction. First,
the complete analysis is scanned for the highest significant interaction and
also for low order interactions which are not components of higher order inter-
actions. Subsequently, the subset analyses are studied to find which factor
levels contribute to the high order intezaction. Once the contributing factors
are determined, the interaction can be resolved by graphical means.

FIELD AND TREATMENT DESIGNS OF THE EXPERIMENT. The procedures and techniques
discussed hercin can be readily adapted to a wide variety of field and treat-
ment designs. For purposes of example, however, a factorial experiment in a
randomized complete block field design is used. To put the example into context,
the analysis of variance table is given in Table 1. The 64 treatments of this

design are those of a 22 x 42 factorial treatment design. The 2-level factors
are temperature (T), 25C, 28*C and relative humidity (H), 20Z, 80. The 4-level
factors are age (A), 28, 50, 70, 93 hours and populations (P), V, F, C, W of
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Drosophila melanica. Population V is from Norfolk, Virginia, F from Forest
Park, Missouri, C from Cliff, New Mexico and W from Walnut Creek, Arizona.
The yieid variable throughout this example is the respiratory rate of samples
of ten Drosophila melanica pupae.

Table 1. Factorial Arrangement of Treatments for a Four-Factor
Design (T,H,P,A).

Degrees of
Degrees of Freedom for

Source Freedom the Example

Blocks (B) b-i 3

Temperature (T) t-1 1

Humidity (H) h-i 1
TH (t-1) (h-1) I

Population (P) (p-1) 3

TP (t-l) (p-i) 3

Hp (h-l)(p-i) 3
THP (i-l) (h-i) (p-1) 3
Age (A) a-I 3
TA (t-i) (a-i) 3

HA (h-1) Ca-i) 3
THA (t-l) (h-i) (a-l) 3
PA (p-i) (a-i) 9
TPA (t-I) (p-i) (a-1) 9

HPA (h-i) (p-i) (a-i) 9

THPA 9t-i) (h-i) (p-i) (a-I) 9

Error (b-i) (thpa-l) 189

Single degree of freedom contrasts must be developed for the main effects
and interactions of the factorial model. First, contrasts are defined among
the four main effects and the blocks. For the 2-level factors the contrast
is s!mply +1 for the high-level and -1 for the low-level. For the 4-level
factors, however, three contrasts need to be defined for each factor. For
instance, our example has four populations, two of which are from the arid
Southwest and two from the forested eastern half of the continent. Since
three orthogonal contrasts are needed and even though any net will suffice for
determination of sums of squares, a logical set of contrasts might be:

(i, -1 0, 0)
(0, 0, 1, -1)
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h. . .." . ..... AUL;--4LU vUpulaions wiTn Lne aria ones,
the second contrasts the non-arid populations and the third contrasts the arid
populations. These contrasts are represented respectively as P1, P2 and P3.

When meaningful logical contrasts are not obvious, orthogonal polynomial
coefficients can be used with adequate resulcs since any set will produce the
correct sum-of-squares. For example, the following set of vectors weze used
for the blocks contrasts as well as for age contrasts:

(3, 1, -1, -3) linear
(1, -1,-1, 1) quadratic
(1, -3, 3, -1) cubic,

where the vectors are represented by B1, B2 and B3 for blocks and by Al, A2
and A3 for ages.

Orthogonal single-degree-of-freedom interaction contrasts can be readily
developed by taking all possible products of the already defined main-effect
contrasts. For example, the 3 x 3 - 9 PA interaction contrasts are found by
multiplying the elements of each of the three contrast vectors for P with
each of the three contrast vectors for A. This procedure can be extended
directly to the higher order interactions as well; e.j., the nine TPA contrasts
may be developed by multiplying the T contrasts with each of the newly found
PA contrasts. Of course, interaction contrasts with blocks do not have to be
found because in the linear interaction model they all have expectation of
zero. Hence they are valid error components and they can be evaluated by
subtracting the blocks and treatments sum of squares from the total sum of
squares.

Once the orthogonal contrasts have been defined, they can be used as
independent variables in a multiple regression analysis. Most statistical
packages include a least-squares program which will accomplish the necessary
calculations.

The abbreviated ANOVA table, Table 2, is the result of a regression analysis
of respiration rates upon the 66 orthogonal contrasts (3 for blocks and 63

22 42
for the treatments of the 2 x 4 factorial). Only those contrasts with F
values greater than 4.00 are tabulated. The large array of significant inter-
action is particularly alarming, especially when a 4-factor interaction is
highly significant. The first reaction is, "Who missed a decimal point in a
couple of data cards?" Since this is not the case, an interpretation is
required. The various interactions can be broken into three general categories
for discussion. The first group is composed of the interactions which are not
components of the highest order interaction, the second is the highest order
interaction itself and the third group is composed of the lower order inter-
actions which are components of the highest order interaction.

2
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Table 2. Significant* Contrasts for the Complete 
22 x 42

Experiment.

Contrasts F Statistic

Main Effects T 257.i'l

H 6.16

P1 6.45

P3 30.02

Al 706.45

A2 452.66

A3 8.81

Interactions TA. 44.64

TA2 11.44

TA3 6.23

HP2 8.98

PlAl 25.93

P3AI 7.70

THP1 11.05

THP2 8.15

THA3 12.77

HP2A1 8.68

THP2A1 11.73

*(ontrasts with P less than 4.00 are not tabulated.

Interactions in the first group such as P3A1, which is not a component of
THP2A1, can be easily resolved by graphical techniques. Considering that the
contrast P3 is the comparison of Cliff vs. Walnut and that P3Al does not involve
T or H, the mean respiration rate averaged over all temperature and humidity
levels was determined for the eight combinations of Cliff and Walnut with age.
These are plotted in Figure 1 with respiration rate on the ordinate and age
on the abscissa. While the lines for Cliff and Walnut are essentially parallel
at the younger ages, they do diverge considerably at age 93. This divergence,
of course, is what we detect by the significant F for P3Al. Thus we have
resolved P3A1.

A very basic part of the interpretation of high order interactions such as
THP2A1 is identification of the particular levels of the effects which are
primary contributors to the interaction. To aid in detecting these critical
levels, sub analyses were performed on the 3-factor factorials within each
level of each main effect. For instance, an analysis was performed on the
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turn we see the following:

1. Within teperature levels the 25eC data mhib lt onQly two 2-factor
Interactions while the 280C data exhibit eight 2 and 3-factor
interaction*. Table 3.

Table 3. Significant Contrasts for the 3-Tactor Experiment within
Temperature Levels.

Contrast 7 Statistic

25'C 286C

Main Effects P1 4.04

P3 7.79 27.63

Al 191.31 634.23

A2 293.79 183.57

A3 17.11

Interactions BPI 15.64

HP2 19.64
HAl 5.84

HA3 12.59

PlAl 8.89 19.93

PIA2 4.58

P3A1 5.98

KPIAl 4.44
KP2Al 23.27

2. Within humidity levels we see that both levels exhibit a considerable
number of interactions. Table 4.

Table 4. Significant Contrasts for the 3-Factor Experimente within
Busadity Levels.

Contrasts I Statistic
202 R.N. 801 R.N.

Main Effects T 184.11 103.20

11 14.17

P2 17.59

P3 17.73 14.28

Al 560.85 253.30

,2 314.44 186.33
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Table 4. (Continued)
Contrasts 

F Statistic

20% RA, 807 P. H.
A3 14.56

Interactions TPI 8.51 4.10

TP2 5.02

TA 52.38 9.28

TA2 11.57

TA3 14.65

PIAl 25.40 7.16

P2A1 6.11

P3AI 4.85

TPA1 5.39

TP2Al 5.74 6.44

3. Within the populations we see that the Cliff and Walnut strains
exhibit only 2-factor interactions while the Virginia and Forest
Park strains are both involved in 3-factor interactions. Table 5.

Table 5. Significant Contrasts for the 3-Factor Experiments within
Populations.

Contrast F Statistic
Forest

Virginia Park Cliff Walnut

T 259.26 29.89 81.89 74.67

H 9.63

Al 886.49 129.71 163.06 119.71

A2 422.26 77.75 108.71 125.47

A3 7.93 4.29 7.22
TH 6.92 4.86

TA1 61.21 5.71 10.74 10.63

TA2 4.26 6.44 4.86

HA1 5.24

HA2 5.69

THA1 9.65

THA3 7.53
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4. Within the four age levels we find that ages 28, 50 and 70 are not
involjad in 3-factor interactions while the 93 hour data have
dmnff1~*te . -fao~tr nr ArAt'inna. TaheI 6.

Table 6. Significant Contrasts for the 3-Factor Experiment within
Age Levels.

Contrast F Statistic
o : d 28 hrs. 50 hrs. 70 hrs. 93 hrs.

: T 7.13 57.67 151.93 79.95

a 6.94

" 1 26.64

P3 7.30 19.80

TH 6.96 6.92

HP2 11.64

THPI 8.40

THP2 15.80

Thus, it appears that attention should be focused upon the 28C, 93 hour
data from the Forest Park and Virginia strains. The interacting 93 hour data
and the non-interacting 50 hour data are demonstrated graphically in Figure 2.
It is apparent from these two graph@ that the Forest Park and Virginia strains
respond differently at the two humidity levels when the temperature is at
289c. Conversely, when the temperature Is at 25% the response curves are
parallel. Thus, we have resolved the 4-factor interaction.

The analyses within age levels indicated that the three youngest ages
were involved in only a very few interactions. Thus, we decided to reanalyze

the data as a 22 x 3 x 4 factorial by eliminating age 93 from the analysis.
The results of this analysis, given in Table 7, are quite enlightening. Only
two interactions, THA2 and TA1, are really significant. The third interaction,
THPl, has an 7 of only 4.13 which , right at the critical value of F and will
be ignored. We also note that the lower order interaction, TAI, is a component
of TRA2. The most striking result of this 22 x 3 x 4 analysis is the complete
disappearance of the 4-factor interaction which verifies that its significance
is in fact due to a failure of the 93 hour data to conform with the data from all
three other aes.

Table 7. Significant Contrasts for the 4-Factor Experiment after Omitting

Data from Age Level 93.

Contrasts F Statistic

Main Effects T 178.40

li 4.20

P3 12.80
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FIGURE 2. GRAPHICAL DISFLAY OF THE 4-FACTOR INTERACTION THP2Al.
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Table 7.(CnintnwA)

Contrasts P Statistic

Al 8.20

A2 145.60

Interactions TAl 61.51

THP1 4.13

TH&2 13.88

The 22 x 3 x 4 analysis also points out an interaction of the third type;
namely a lower order interaction, THA2, which is a component of a higher order
Interaction, THP2A1. Because the 4-factor interaction involved age 93 and
'"cause the interaction THA2 is significant throughout the remainder of the

experiment, we should determine the implications of THA2. Populations are
not involved in THA2 to we can plot (Figure 3) the respiration rate, averaged
over populations, against age for the four combinations of temperature and
humidity. The two 28'C curves are similar whareas the two 25°C curves are

r quite divergent from each other and also from the 28*C curvcs. This figure
quite adequately demonstrates the respone function for the three youngest
&as. Because the interactions with population were nonaignificant in the

22 x 3 x 4 analysis, we can infer that the response curve of each population
is similar in shape to the responae curves in Figure 3.

In conclusion, a procedure is outlined for isolating high-order inter-
actions and developing their logical interpretation. Procedures are also
outlined for identifying and interpreting two types of lover ordet interaction,
those which are componente of the higher order interaction and those which
are not. The analysis is based on a least squares fit to single-degree-of
freedom contrasts and a subsequent graphical display of the significant contrasts.
The key to the method, however, is the ability to isolate the critical factors
by taking advantage of the computers ability to easily and inexpensively reanalyze
various subsets of the data.
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FIGURE 3 GRAPHICAL DISPLAY OF THE 3-FACTOR INTERACTION THA2
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A SIMPLIFIED METHOD FOR FINDING
OPTIMUM EXPERIMENTAL DESIGNS*

Melvin 0. Braaten
Duke University

Durham, North Carolina

Ray L. Miller, Jr.
Tactical Air Reconnaissance Center
Shaw Air Force Base, South Carolina

Fred W. Judge
Wood-Ivey Systems Corporation

Winter Park, Florida

ABSTRACT. This paper presents a simplified method for determining an
optimum experimental configuration that most nearly satisfies the experimenter's
requirements.

Although the LaGrangian multiplier method can be used to find a specific
experimental design with nearly minimum variance subject to cost restrictions,
the experimenter's flexibility is limited and the calculations are laborious.

By use of the simple computer program given in this paper, the objective and
cost functions can be readily evaluated for numerous feasible combinations.
The distinct advantage of the latter technique is that the experimenter is able
to choose that design which most nearly fits his experimental needs.

INTRODUCTION. The success or failure of an experiment is normally
determined during the planning phase of the research. Success of a particular

experimental design is essentially dependent on the design's ability to test
adequately certain hypotheses or to estimate certain effects accurately. This
paper considers efficient experimental designs from the standpoint of optimum
choice of factor levels once the basic design type has been determined. An
exemplary problem is solved with the aid of a very simple computer program.

The basic design type, such as a completely random design, a randomized
complete block design, or a split-plot design, is determined to a large extent
by design restrictions. For instance, you can't change cameras in a reconnais-
sance aircraft during flight nor can pilots be switched. Similarly, it is not
usually possible to completely randomize aircraft speeds or altitudes due to
obvious restrictions, both legal and technical. Because the basic design type
is usually prescribed in one way or another, we will restrict our attention
to selection of the number of levels of each of the component factors for a
split-plot design. Although a large number of combinations are essentially
equivalent, a very poor design may often be developed if the experiment is not
adequately planned. Since many experimental designs cannot be easily changed
during the conduct of the experiment, great care needs to be exercised during
the design, If a change is made late in the experimental process, a considerable

*Research partially supported by the North Carolina Operations Analysis Standby

Unit, UNC, Chapel Hill, North Carolina
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. . .. l£im A' =Z!iiuvy is usualiy experiencea.

The mere fact that we are concerning ourselves with an optimum design
suggests that some trade-offs must be made. Usually these trade-offs are
precision versus the cost of performing the experiment. The objective
functions with which we are normally concerned are not expressed in coion
vnits. This considerably complicates matters when we get to the point where
we wish to solve for an optimum solution. The objective functions of design
efficiency are normally expressed in terms of variance components and the
design parameters. The cost function, on the other hand, is typically a
function of dollar or hour cost and of the design parameters. An ideal design,
of courseswould be one which minimized the cost function. Naturally some
compromise must be made. Hence, a combination of design parameters must be
found that gives near minium variance (or at least a tolerable variance) for
the smallest cost consistent with design needs.

METHOD, To develop a desirable design, several essential steps must be
followe-d.For purpose of this presentation, we will first outline a systematic
procedure in sevenmajor steps. Subsequently, we will follow this procedure

through to completion with an example from reconnaissance research. The
essential steps are:

1. State the hypotheses to be tested and identify the effects to be
estimated.

2. Develop a linear mathematical model rf the yield variable in terms
of the factors of the design. Of course, this model must be such
that it will provide test statistics capable of testing the hypotheses
stated in Step 1. Furthermore, it must also provide estimators for
any effects that must be estimated.

3. Develop an ANOVA table based on the model. Work out the expectations
of the mean squares.

4. Develop an objective function for each hypothesis that is to be tested
and one for each effect that is to be estimated. These functions will
typically be functions of the design parameters and of the variance
components. Hence, a priori estimates of the variance components must
be developed. Often these estimates can be derived from similar
previously performed research projects.

5. Develop a cost function based on the project's design parameters and
their respective unit costs.

6. Solve the set of objective functions for an optimum solution. Since
the functions are antagonistic and require integer solutions, a
computerized evaluation of the objective functions for feasible
combinations of design parameters is recomended.

7. Select the combination of design parameters that most nearly minimize.
the objectives functions within the budgetary restrictions of the
project.

An example from aerial photographic reconnaissance will be used to demon-
strata this procedure. Only the identities of the aircraft and its cameras
have been changed for security purposes. Oh yes, the velocities and data are
aolo fictitious for the same reason. Several "sephisticated" aircraft will be
available to fly photographic missions during this research period. Due to
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commitments we have s sorties assianed to this nroject. where n Omev&WhAt
negotiable. One serious restrictions, however, is that a particular aircraft
cannot be guaranteed for a fixed number of sorties. Thus, sorties will be
considered as blocks. All aircraft will be fitted with an "Advanced, Model
Al-Mod 3" camera for this test. Each sortie can reliably produce 12 images
of the target complex. We are interested in evaluating image quality at four
different velocities, namely slow, fast, very fast and full throttle (all
after burners on). The latter one for obvious reasons. Hence, the four levels
of speed are our treatments of primary interest. Since 12 images can be
secured during a sortie, the 4 velocities will be replicated 3 times within
each sortie. The resulting photographic images are to be evaluated by p
photographic interpreters. Each of the p interpreters will be required to
evaluate the images d times - on different days, of course, to avoid an among
successive - evaluations variance of zero.

In this example, a number of tests of hypotheses are of interest. However,
to simplify the presentation, we will only consider efficiency for the hypothesis,
T- 0. The basic design structure that we have just outlined will

provide a test statistic for this hypothesis. Each of the individual measure-
ments upon the imagery can be described by the model:

Yijk m " + + 8ij + ijk 
+ Y + Y6ijkl + ijkm

i = 1,..., a
j " 1, 2, 3, 4
k * 1, 2, 3
I, ... , p

m -l, ... , d,

where is a constant. 0, is the effect of the ith sortie where the Bi  NID
2

(0, Go ), and T is the effect of the jth velocity when ETj .0. OT is an

additional effect due to the specific combination of the jth speed during the

ith sortie where the OT i NID(O, 2 is a sampling error within the
i ST ' ij k 2same sortie-velocity combination where the 6 P NID(O, a6 ). yZ is the effect

ujk 2
due to the Ith interpreter where the yk ND(0,a ). Yd is an effect due
to the way the Ith interpreter evaluates the ijkth image where 75ijk£6 NID(O,c 6 ).

C ijklm is a sampling error among consecutive readings of the Lth interpreter

on the ijkth image where c NID(O,a 2), and the ANOVA would appear (in

abbreviated form) as in Table 1.

The first term of the model give. us a line for the overall mean with one
degree-of-freedom. Upon closer ,crutiny, it is quite obvious that the next
four terms of the model define what is commonly referred to as a whole-plots
analysis in a split-plot experiment with the s sorties as blocks and v 4
velocities as treatments. The model indicates that interaction between sorties

259



and velocities is possible ind that each sorties treatment combination is

replicated r times. In this case, however, r - 3 since vXr = 12. Noxmally,
p oX CourGe, Ene CLOCK by treatment interaction ts assumed to be zero. In

this case, however, sorties cannot be considered to be true blocks since
they are really another treatment; moreover in the real world, we wish to
estimate the component a 2 . These first five lines are thus the whole-plot

part of the analysis. The photo interpreters are the split-plot treatments
and this leads, in turn, to the three line split-plot analysis of photo
interpreters, photo interpreters by whole-plot treatments interactions, and
sampling error among the split-plot units.

To simplify the discussion somewhat, we restricted our attention to
design optimization for the test of the hypothesis, T- Tj' 0. This test

can be mad4 using a t-test; therefore, it is obvious that an optimum design
for this test can be achieved by minimizing the variance of the difference
between the T treatment means. Now the estimator for the contrast Tj -

i. - Y ... ) where the dot indicates summation over
Sj irp _d '

that subscript. The estimator Tj - Tij', written in terme of the model is
s s r

T j 1 erpd - T ) + rpd ( -PT ') + pdE E 6.i . ,8--- iT 7rp '~ t1Ti ij iml k-1 ( i jk  6ijS

+da r p a r p d

+dE E E (yS ijkZ Y8 ij'k&)+ Ir pd E- Cei X
i-1 k-1 A- i ii 1 i El (kajkta miJ'a. m)]'

Now the variance of T is:

- ( T222d2 [2r 2p2d2e a C r 2 + 2p2d2sr a2

2 r 2 p) 2sr d 2v-1 OT +2dra

2d 2 .rp a6 2 + 2 srpd a 2]. Or rewriting into the form of the EMS of the ANOVA

ta~eVt -'2 2 2. 2 v 0  2 fwenw
tafile V((n - [C +doT +pd a +rpd v-I Ifwe kne

2 2 2 2
the actual values of the variance components ,I a o. p and a0r we could

write out one of the objective functions that we wish to minimize. A priori
estimates must be found, by argument if necessary, to evaluate the objective
function. For many problems estimates can be derived from previously conducted
experiments.

The other objective function that we now have to develop is the cost
function. This can also be developed from the mathematical model in terms of
the design parameters as, r, p, d, and v plus tho actual unit cost of each
additional level of the factors. Therefore, lets

C1  Cost for each sortie
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IJ
C2 - Cost for each photo interpreter. and
C3 m Cost of replicate photo interpretations.

Furthermore, since r and v are fixed, the cost for the experiment will be sC1
+ pC2 + svrpd C3. The two functions which we wish to minimize are thus:

2 2 2 2 2f1  - (a + d pad + 4 pd 21 3spd e +P 6 OT

and

f 2 ff  C1 + p C2 + 12 spd C3.
The objective functions f and f2 are antagonistic because f 1is a

decreasing function of the design parameters; whereas, f2 is an increasing

function. A method of evaluating these functions is obviously needed. An
often used, however quite unsatisfying, method is the LaGrangian Multiplier
method by which the variance function, fl, is minimized subject to the cost

function, f2, being equal to some fixed cost. Some criticisms of this method
are:

(1) It yields non-integer solutions.
(2) It usually requires the solution of very difficult equations.
(3) It does not reveal nearly optimal solutions.
(4) It does not reveal the solutions with considerably smaller variance

at only a moderate increase in cost.

A very simple computer program provides a means for finding an optimum
integer solution. In fact, all of the previously mentioned criticisms of the
LaGrangian multiplier method are avoided. The only apparent difficulties with
this computerized method appear to be:

(1) It requires some programming.
(2) The computer output must be scanned visually to find the design

parameter combinations that most nearly satisfy the objective functions.

The latter difficulty, of course, could be a very problematical task if
several antagonistic objective functions are to be evaluated simultaneously.
Even this task is not too difficult if isobars are drawn in various colors on
the computer output sheets.

An example of a simple complete Fortran (WATFOR) program which will
evaluate our example is:

lWATFOR is a Fortran IV compiler written for IB 360 computers by the University
of Waterloo, Waterloo, Ontario.

261



DIMENSION OUT (8), OUT2 (8)
fIP& Im II tPU YTIth Tm iyal

DO1 1"1, 10

7 FORMAT ('1')

WRITE (3, 7)

DO 1, L - 1, 10

DO 2, M- 1, S

OUT (H) - l*CS+L*CP+12*1*L*M*CD

2 OUT2 (M) - 2*('VE+M*VCD+L*M*VD+4*L*M*V2) / (3*1*L*M)

WRITE (3,4) OUT

I WRITE (3,5) OUT2

4 FORMAT ('01, 81 9.0)

5 FORMAT 8' ',819.3)

G0 TO 3

END

Just as a matter of interest, this program took less than three seconds
to compile and run on a WATFOR compiler with a 360/75 computer.

Table It is an example of a typical computer sheet. Lines, which represent
constant cost and constant variance, have been drawn through the tabulations
to aid in-locating the optimum combination of design parameters. The upper
element of a pair is the value of the cost function, whereas the lower element
is the value of the objective variance fnction. A wide variety of designs
with similar costs yield essentially the same precision for the desired test.
For instance the design with

s - 2, v - 4, r - 3, p - 10, and d = 1 is comparable to the design

a - 2, v - 4, r - 3, p - 4, and d * 5.

Either of these designs will meet the basic criteria for optimization. We might
ask, however, whether a better design exists that has essentially the same
variance, lower cost and more flexibility. The design with

a - 2, v - 4,r - 3, p - 5, and d - 2

has a similar variance and it costs only 75Z of either of the previously
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mentioned designs. The flexibility nf "cz J.-6!6a wuus. be considered
in making a final selectioa. Nonetheless, care should be exercised to ensure
that the design is not extremely sensitive to inadequate a priori estimates of
the varifnce componcnts in the objective function. This can be easily
accomplished by rerunning the program with a number of alternative sets of
A priori ertimates.

NOTE. Tables 1I, I1, and IV use the following a priori estimates:

a2. 2

a 2.2

02 - 0.5

Cost per sortie - $500

Cost per photo reading - $2

Fixed cost per photo interpreter - $200

Tables III and IV illustrate the flexibility that the experimental
planner can acquire by using this programming method. Table III hat; the design
parameters a - 7, v - 4, and r - 3; whereas Table IV has a - 8, v - 4, and r - 3.
Of all the combinations in Table III with variance of 0.9, the design with p - 4
and d - 1 has the smallest cost at $5980. From Table IV, however, the variance
can be maintained at 0.9 with A cost of only $5360 by using p - 2 and a * 8.
Not only can we realize cost savings, but we can also attain a alight reduction
in the variance. The design's flexibility as well as its insensitivity to
inadequate a priori estimates must necessarily affect the final choice from
the candidate designs.
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A DEFINITIVE CALIBRATION OF AN AERIAL CAMERA
IN ITS OPERATTNG ENVIRONMENT

Lawrence A. Gambino
Research Institute for Geodetic Sciences

U.S. Army Engineer Topographic Laboratories
Fort Belvoir, Virginia

INTRODUCTION. It should be appreciated that the calibration of an
aerial camera in its operating environment is more meaningful and effective
than a laboratory calibration. However, even though this principal has been
acknowledged by many scientists in this area of endeavor, the calibration of
aerial mapping cameras has almost universally been relegated to the laboratory.
In recent years, the ballistic camera has been used for recording flashes from
active earth bound satellites or recording reflecting type satellites, such
as the Echo Satellite, on photographic glass plates. The ballistic cameras
are successfully calibrated in their operating environment using the process
of stellar calibration. This has led to suggestions that the technique be
applied to aerial mapping cameras. A small amount of work has been expended
in calibrating aerial cameras using the stellar calibration technique. How-
ever, as with the laboratory methods, this technique still suffers from its
failure to simulate the typical operational utilisation and environment of
an aerial mapping camera' namely, photographing the ground thru a camera
window located on the underside of a fast moving aircraft.

The experimental design necessary to calibrate an aerial camera in its
operating environment requires extensive knowledge of the scientific disciplines
of analytical, aerial photogrammetry, optics, and first order regression
processes. It is not the purpose of this paper to explain in detail each of
these scientific areas, but we will briefly discuss each of the mathematical
models necessary to carry out the equipment.

The photogrammetric model we will adopt has been used successfully in
recent years for analytical, aerial triangulation. Also, extensive effort
has been expended to develop a mathematical model which describes the
displacement of photographic images due to imperfect lenses. Ore such model
is called the Thin Prism Model, and it is used to describe the radial and
tangential components of distortion. Alternative models have been derived,
such as Conrady's Model, in the year 1919. However, Conrady's model does
not agree exactly with the Thin Prism Model. In any case, there have been
many investigations through the years concerned with this aspect of optics
and, notably, a very recent investigation was carried out by D. Brown ill
whereby he developed a model. through extensive analytical, three dimensional
ray tracing through a thin prism. Brown derived an analytical expression
defining the relationship between the radial and tangential distortion induced
by a thin prism at any specified azimuth. This can be considered as an
extension to Conrady's Model.

A third model which we must adopt has been well defined for many years
and it describes the displacement of an image symmetrically about the
optical axis. It has been found that the distortion of a perfectly centered

The remainder of this article has been photographically reproduced from the

author's copy.
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lens composed of flawless elements is symmetric about the optLical axis.

This distortio' is commonly referred to as symmetric radial distortion.

With this all too brief narrative summary of photogrammatry and optics,
we mayconsider our final model to consist of three major components;
namely, symmetric radial distortion, decentering distortion, and the fundamental
projective equation, or colinearity equation. The colinearity equation describes
the fact that, with no distortion, the perspective, center of the lens,
an.image on the film and its corresponding point on the ground (object
space) all lie'on the same straight line.

We will develop the first order regression process which makes
practical the solution of a would be very large system of normal equations.
The first order regression process will encompass two sets of parameters
which will be referred to as-stationary and nonstationary parameters.
The.regression process..which simultaneously recovers.these sets of parameters
is referred to as Aerial 9MAC, an acronym for Simultaneous MultistationAnalytical Calibration. We will develop the SMAC process to provide for

the introduction of external or a priori information.associated with any
of the stati6nary and nonstationary parameters.

Via shall also discuss in brief the necessary requirements of a
photogrammetric test range so that the calibration experiment can yield
the best possible recovery of the meaningful parameters resulting from a
rigorous.data reduction process.

CALIBRATION RANGE

In order to carry out a definitive calibration of an aerial camera
in its operating environment,'we dust conduct the experiment by.flyng

- over spicial target ranges where the horizontal and'vertical position of
the targets are precisely known relative to each other.. A small make-shift
3.by 5 mi.e range is available in the McClure, Ohio, area.. Thig.range
was'used recently to conduct a SMAC experiment.- Ad a matter offact, the
range was turned into a night photogiammetric test range whereby 56, 500
watt, iodine quartz lamps were placed over the .survey markers. Unfortunately,
the final results of this experiment are not yet available at the writing
of this paper.

From our model, we will see that the X, Y, Z, position of each of these
precisely surveyed marks are taken as known quantities. Any small error
in their position will be smaller than the noise level of the film
measureefits at the ocale of the'photography. However, SMAC suffers the
disadvantage qf being inherently incapable of yielding a calibration of
elements of interior orientation (focal length and principal point) of
.the.camtra. It Is well known that the variations in the elements of interior.

... 270

..........



7]
;' 4

c c c

orientation are projectively equivalent to changes in the XC, yC, z
coordinates of the aircraft. On the other hand, when external information
is available, a SMAC reduction is possible, As LtaLed in the introduction,
the regression process will be developed whereby external information can
be introduced into SMAC. The necessary external information will come
from either electronic tracking devices, which will track the aircraft as
it flies over the teot rane, or from ballistic cameras observing a
flashing light on boord the aircraft if the range is a night photogrammetric
test range. In either case, the electronic tracking devices, or ballistic
cameras, situated around the test range, will provide the Xc, yc, Zc,
position of the aircraft from an independent data reduction process. Let
it suffice to say that with rigorous data reduction processes, it is possible
to recover the position of the aircraft to within 2 feet, especially since
we are considering excellent geometry.

Figure 1 illustrates the type of permanent photogrammetric test range
to be used in the future and Figure 2 illustrates the flight patterns
over this range.

In order to provide the reader with some idea of the accuracies
which we hope to achieve, we will say that the film measuring accuracy
should be close to 5 microns and then the estimated elements of interior
orientation are expected to have standard deviations of approximately 2
microns. The standard deviations of the calibrated functions of radial
and tangential distortion are also expected to be approximately 2 microns.
It should be appreciated that these accuracies are achievable with only the
most rigorous data reduction process, precision measuring devices, and an
accurately surveyed test range.

SYMMETRIC RADIAL DISTORTION

As stated previously, the distortion of aperfectly centered lens is
symmetric about the optical axis; that is, the distortion is symmetrical
about the principal point and thereforeis a function of radial distance
only.

Figure 3 will give the reader an idea of the photographic coordinate
system with which we are dealing. From. this figure, we obtain the concept
of what is meant by in'teftior orientation. The vector from the perspective
center to the image point is defined as follows:

- c 0 .fI
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Figure 1.Geometry of Photography and Simultaneous Tracking (SHIW4N).
Illutrates a Day Photogrammetric Teat Range.
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Figure 2. Cloverleaf Flight Path Over the Calibration Range.
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The quantity -f will be called the principal distance and it will be denoted
by the letter "c". Brown (3] has shown that the symmetric radial distortion
function inmL be one of two forms depending upon whether or not the
principal distance c is carred as an unknown in the'calibration process.
For our purposes in the SMAC reduction, we wish to carry this parameter as
an unknown quantity. Therefore, the distortion model we will adopt is as
follows:

6 K r +K 2 r
5 +K3 r

7 +..., (2)

where r is the radial distance from the principal point id the K's are the
coefficients of distortion. We will carry only three of these coefficients
in the SMAC reduction.

PICENTERING DISTORTION

The didtortion due to errors in lens centering introduces tangential
distortion and asymmetric'radial distortion. It should be appreciated
that *it takes appreciable skill and patience on the part of an optical
techniciah in aligning thelens to suppress-this 'distortion to-within the
five micron level. A perfectly centered lens means that the centers of
curvature of all optical surfaces are collinear, but this.goal.is never
achieved in practice. However, we will use a mathematical model which is
successfully being used tn the stellar calibration of numerous ballistic

" cameras and some aerial cameras. As stated previously, the model we will
adopt is that one developed by D. Brown [1] as an extended verigon of
Conrady's model.. Brown scanned Che literature for topics contern in de-
cerntrdd optical systems but found only a few refprence books which touched
upon this subject.' Most of these book@ and scientific papersq-published by

. various authors adopt the aforementioned thin- prism model..

The thin prism model describes'the phenomenon that there e*ists on the
photographic glass plate an axis passing through the principal point.along'
which the tangential distortion is maximum. At right angles to the axis
of maximum tangential distortion is an axis of zero tangential distortion.
The tangential distortiqn along.any other axis passing through the principal
point is proportional to that along the axis of maximum tangential distortiop,
the constant of proportionality being the cosine of the angle- between the
axis in question and the axis of maximum tangential distortton (Brown, Ref.
l] . "Ahalytically., .tb. model is restricted to tangential distortion while

ignoring the~radial component of decentering distortion. Brown shows that
the behavior'of radial distortion is precisely the same as that for tangential

Sdiqt~riion except for a 90* phase shift. Thus, the axis of maximum radial
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=IiAu wurresponas to the axis of zero tangential distortion and.
vice versa. At phase angles of 0 - 0o nW-, the radial and tangential
components are of equal magnitude for a specified radial distance
(Brown, Ref. [1]). The apgle e is the angle between the positive x-axis
and radius vector from the origin to the point whose coordinates are x, y,
and the angle 0 is the angle between the positive x-axis and axis of
maximum tangential distortion.

In order to circumvent the problem of finding a suitable

approximation for the angle 80 and the other parameters in the model for
decentering distortion, Brown recasts the extended expressions for
Conrady's model into the form

X = [PI (r2 + 2x2) + 2.P2 xy] R1+ P3r
2 + Pwr4 + ...] (3)x

Ay (2 P1 xy + P2 (r. + 2 y
2)] [1 + P3r

2 +.P4 r
4 +

where

P1 - J' sin So

P' il coaeP2 0

P3 " J2/J1

•P p .J3/31

and

r- (x2+y2)JA

In our experiment we wiil carry only three parimeters of decentering
distortion; namely, J1, :2 and Oo. This model should hold for any

nmber of decentered elements for short focal length aerial cameras.
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i PROJECTIVE FMUATIONS

We come finally to the projective equations which relate
corresponding vectors in image space (aerial photograph) with those in
object space (terrain). These equations are equivalent to another set
of equation known as the colinearity condition equations since they
describe the fact that the object point, the image point, and the
perspective center in the lens lie on the same straight line. These equations

* are fundamental to many photogrammetric problems. Figure 4 will enable.
the reader to gain some insight into the role played by the various
parameters in the colinearity equations for tilted photographs. The
role of the 3 x 3 matrix [M] shown in Figure 4 is that of an orthogonal
transformation from the photographic reference system (image space) to
the terrain system (object space) and vice versa. It represents three
sequential rotations in 3-space which when multiplied together in the
proper order, yields the 3 x 3 orthogonal matrix [M]. The matrix [M]

*i involves three more parameters which must be determined from our experiment.
These three angular parameters will be denoted as 4, W, K and are

* inherent in the matrix [] as follows:

A B C sn K coa-sin

(M] A V C' sin K COS K 0 0 -sin.w coW sin a cosa

D F 0 0 coo w sin 0

ir
(-cosccoaic-sinicsinwsina) (Coaiac-sinicsia4)cosoi) (ainmccosw))

(sinKCOse-COsicsinwsina) (-sin~csinci-cos~csinwcosi) (C&GKCOBW) (S5)

L (os'inm) (cosucoan) (sin) _J

If we now put together equation's (1) and (5) we will have our
colinearity equations which relate the coordinates of image points with
those of object space. Since the original projective equatiods include a.
scale factor, the colineurity equations.eliminate this parameter through
division of the first two matrix.equatione'by the third thereby yielding
tho. colinearity equations.. .

&jxl+ A L) + g(Y-yc) + C(Z-z 0 )I
p. D(X-Xc) + 'eyLYc) + F(z-z),'
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Figure 4. Tilted Photograph and Colinearity Equationsa
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y - yp + c A'x-x) + B-YYc) + C'(Z-Zc)
P D(X-Xc) + E(Y-YC) + 1(Z-zc)

As stated previously, we hava

c = principal distance (c -f)

x,y - coordinates of image points (undistorted)

x p,y - coordinates of principal point
p

XYZ - coordinates of points in object space

..XC,yc,zc - coordinates of the perspective center-of the lens
(aircraft position)

A B. C orthogonal orientation matrix defining the
rotational relationship between the x, y, z

[H] ' B' C axes of image space and the X, Y, Z axes of
object space.

At this point, we have all the necessary models to conduct the
experiment for the calibration of an aerial camera in its operating

.environment.

OBSERVATIONAL EOUATIONS ....

If.we now collect the various mddels wehave developed to
describe the undistorted values of.the Observid quantities, xIy, thenthe distorted i, 'f coordinates corrected for symmetric radial distortion

ind decentering distortion are as follows:

(x-xp) + p)+A (8)

(y (16 + +) yp.- Yp)'+ (9)

* ..... . .
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The terms for radial distortion in equation (8) and (9) are arrived
at from the fact that if only radial distortion exists in the lens,
then the correction to the measured points with respect to the
principal point in the photo coordinate system is

6x, =:x" 6 ,6y, 6

r, r

where

x (X - xp) and y" ( y

Therefore, the undistorted photo images with respect to the principal
point are

(xxp) - x'+x" X-tX" x(l+-) (Y-xp) (1
rr

and

(y-yp) - y+ 6y y+ 6 y'(l) (7-Y ) (1),

rr P r

which are the required radial distortion terms in (8) and (9).

The following unknowns are implicit in the'terms 8, A and A':

KI, Ki,-K 3 (coefficients of ra'dial distortion)

l, J22 Bo (coefficients and phase angle of decentering
1distortion)

XpI, yp (implicit in 6 and r where

r - [(Y - X )2 + (- yp)2]1/2
p p

The substitution of equations (8) and (9) into the colinearity equations
(6) and (7) introduces the coefficients of radial and decentering
distortion into the observational equation.. Therefore, we may express
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the colinearity equatioia (6) aiid (7) for the ith photograph and the jth
meacured point as

6 ij cD(I + ( j xp) + Ax = (10)
rij (10)j

and

Ej
(+ (yi)C~j -yp) + A - c -z (z

rij Yjj Fij

where

D A B C x xc

z A ' (12)
sij [  A c ij-

D E F Z C

In theme equations

x-- y are obtained by direct measurement,

are taken from recisely surveyed values, jth

j point o the t . photo,

Xi, Y Z are the camera station coordinates for the ith
.hotqogr apy

"" D,C,A DQ DE,Farethe 3 x 3 marixi. (NJ1, elemento of the •

" . .I t p h o t o .

280



ai, wi, Ki are the rotational elements of exterLor
orientation and they are explicit in the matrix
[M)i for the ith photo,

xp, Y,,, c are the elements of interior orientation
(xp, yp are also implicit in aij and rjj).

Finally, we see that each pair of film measurements gives us to two
independent equations involving fifteen parameters, nine of which will
be comion to all n photos and six of which are considered to be
changing from photo to photo. Thus, observational equations for all
n photos and all m measured images of precisely surveyed control points
constitute a 2mn system of equations in 6n + 9 unknowns.

THE LINEARIZED OBSERVATIONAL EQUATIONS

The pair of equations, (10) and (11), may be considered to be
of .the functional form:

C c c c-
fj (=XiJ 'yiJj ,j yjzj ,xi,Yi.Zi,oi,wilci, K1,KV2 ,K3 ,'JlJ26 8op y p C

(13)
f(iFjX,i,,C,COi,Wi,Ki,KlJ,K3,iJoX~pe K

~(.14)

In equations (13) and (14).the measured film coordinates are subjedt
to random errors. Atpresent, we will treat the parameters as
completely unknown quantities, Later, we will develop observation
equations generated by considering these parameters as observed quantities.
This means that we will develop a weight constraining procedure based
on how well these parameters are known. Because equations (13) and (14)
are nonlinear, we will linearize them using a Taylor's series expansion
keeping only the zero and first order terms. Therefore, we write

x ij !j + viii

(15)

Yij ." 
+  28j
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I
where 'i, denote the measured film coordinates for the J"

measured image on the ith photograph, and'v- , v are the
corresponding measuring residuals. Also, we elAc .

.. 0  +d60, wi W o+ 6Wi, Ki K + 6 i, (16)

i yc I )x" . ... O, (Z 00- 6z (17)

in which the superscript "Oo" are arbitrary approximations and the 's
are the unknown corrections to the approximations.. Further, we write

S1 I-r? 0 * 6KI, K2 mK20 + 6K2, K- K03
0 +6K.

MsJ0 + 0o W.060 + do,
1 V 2 J J0 0 +8j2 eJl 8. (18

and

the following form:

f ij fIVz( +Vi j, 71J+vlij, 410+601, , c°+ ) 0,

... (19)

*~i a( ~ ~ 01.~+~~j +6a~ got ,C
00+6c) -0

As stateA previously,"we will linearize these equations via Taylor's
series keeping only the zeruo and first order terms. Therefore, we at
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VjijIj'ij6Kj+ +b cb a+ +b 6 s

(20)
Vi+1,2 6K + . + 6c I 6a + +b6 6ZCri 1 iE i

2 1 j 2Ij 21 Zij2jI

where

(21)
C3z -YO 00 00. 00I

and

ii aK aK2 ac

(22)
~ ' a f 1 i 2 j f j .. a i

- ~-;W -,

lijE~iaz

21j 2 2ij !K2 . i4

(23)

;aaf1 ..2 af~.jj 8,f121

The partial deri'Vatives *in (22) and (23) are evaluated at the
aPr~iato K?~ K2 ec. adel 2jIn (22) resul-t from evaluating..
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equations (13) ani (14) at the measured point using these appioximetions.
We will not dariv4 the formulas for the partial derivattives since they
are straightfon---td and they do not add to the purpose of this report.

The linearized equations for the jth measured image on tb. ith
photo are put in the matrix form

-V'i + i + ij ii " ij (24)

where

* aI

.6 412:

hqa2 t m m 5)

i2 .. iii(2"' j's (2,1)." ""21Jt. .. 4
-~~~1 J .:

..The datrix equations (24)' and (25) iopres'ent the smallest matrix units

In the entire dev6lopmntj that is, they involve information from only
the jth measured point on the ith photograph. R.membering that ihe
measurements on all n photographs contribute to the solution of the nine
s etatonary parameters a9d that all m measured iiage on the ith photo
.7.ontribute to the solution of the six nonatattonary parameters per

". photo, we can expre1 the lneerised.equations for all u photographs al

.V' . | ,+ 
+ 

•

% • : 28



v j
v2 1 l B21  2 1  j = a

= = (27)

(2n,l) . (2n,9) • (2n,6) (2n,l)

nj nj nj nj

If in the next step we collect all equations generated by all
measured images, we have the matrix equations

v + Ed + Ed e (28)

in which

. .. v , B , B , 0 • , . 0

V2  B2  . . B2 . . 0
B..

(2=n,l) (2mn,9• (2mn,6n) .... •

V Bm  0 0 .'eB

(2 9)

6.W1 2.

(6n,1) - (2,m,l .

n 5

: " : ",285
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It is in the expanded matrix equations (27) and (29) that we see
the difference between the analytical aerial triangulation and camera

calibration problems.

In order to develop the rigor necessary for the complete calibration
effort we must consider the possibility of weighting the observed
quantities 70, 70.

WEIGHT MATRICES

'We shall denote the covariance matrix of the film coordinates

V -1. --.
ii ii

Ali.1 (30)
a 02

(2,2) 3 7? ""

Thus we allow the film coordinates for a given "point ID. be corr elated.
Let it suffice to say- that it is poisible to $et correlation between

'R4, , by conidering the calibration of the instrument with which
fi measurements are made and it Is also possible that correlation

may arise from calibrating cameras which do not-have flat fields. .In
any case, by employing the full covariance matrix Ai, we properly
propagate and preserve the informitional content of fle original observations
throighout the camera calibration effoxt.

We shall assume independence of film measurements of different
imageg Therefore, we may express the covariance and weight matrices for
the j point seen on all n photos as

• ' 286 .



Aij 0 • •0

0 A 0
2jAi (32)

(2a 2n) ,

, 0 0 . . . An~

and

W o . . . 0

0 w2J . . . 0

WwJ[. ,. (33)
(2n,2n) *

If, asbefore, we collect all equations generated by all measured images,
the corresponding covariance and weight matrices are

-A "4S 0 . ,

•o o2 .. .

and

,. 0

-w* *
' 0 W2 . 0

(2mn, 2tan.) , •. (35)

0 0 . , 'W
m

'- : -. 287



We are now in a position to state that equations (28), (34), and (35)
contain all the information provided by our original observation
equations. (10) and (11). However, we have not made provision for
overcoming a basic flaw in the camera calibration experiment; namely,
as stated previously, we cannot recover the elements of interior
'orientation of the camera (xp, y_, c) since these elements are projectively
equivalent to changes in the coordinates of the exposure station. Thus,
this is why we have stated that an external tracking system is necessary
for the calibration experiment. Therefore, we must now develop addi-
tional observation equations which will allow weight constraints to
be applied to Xc, Yc, Zc according to how well the tracking system
triangulates a camera station. Since we must develop at least three
additional observation equations, we will.develop complete flexibility
and write observation equations for all parameters included in the
adjustment. This means that we. will be able to incorporate into the
adjustment any a priori information concerning any, or all, of the
parameters involved'in the calibration experiment. The a priori information
may come, for example, from a previous calibration.

OBSERVATION EQUATIONS GENERATED BY ELEMENTS OF ORIENTATION. RADIAL AND
DECENTERING DISTORTION

In order to develop the flexibility of constraining the unknown
parameters to within prescribed limits by weighting,- we jmust develop
observation equations for allparameters involved in the calibration
problem. We shall assume that independent observations are available
for all parameters. Thus, using previous notations for observed
quantities, we wrLte for the elements'of interior.oarientation, .radial

.. and decentering distortion-parameters . -

x 7J + v J =  + V- o +v

* y

J o + V J +VJ , + v
1 2 0 0 0 e

*0

* where the v's are observationdl residuals. If we eliminate the adjusted
observations from equations (18) and (36),.wo arrive at the observation
-equations
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"17 - VIA XcC  X /I

Xp P p p Xp

00 p
• 6y P y p - y

p. p

v - 6c coo - cO c  (37) .

' C

00 0v 60 19° 0= 6o 0 C

0 0 0

The meanings of the superscripts are the same as before, but now we
have additional observed quantities and their residuals. As stated
previously, we must be able to enter a priori information concerning
the position of the camera station. If we proceed as we have done thus
far, we will write additional o servation equations for the elements of
exterior orientation for the ith photo as follows

a M- +oV0
Wi"a i ' i + voi  K'i K i + i V

(38)

x[. °' i °"• . , p

Now that we have-written observation equations for all parameters
involved In the experiment and have eliminated -the adjusted parea.

meters from (16) and (17),-we can express equa tions (37) and (38).
in matrix form as

V - = (3'9)

and

a " '(40)

respectively, where (40) is developed further for all n photographs
as follows:
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,- A (41)

where

(6n,1) (6n,l) (6n, 1)H •(42)

vZc 6ZC

Matrix equation (39), which involves observations on the stationary
parameters, is expanded as follows:

X xi

VY
(9,11 F P (9, (] (43)

i"~~ ( Pq''

0. 9

If we assume. that observations'on the stationary and nonstationary
parameters are independent of each other, the covariance and weight
matrices associated with the observational vectors (39) and (41) are

2 0 0xo

p

0 2 '" 0
A S - I (44)

(9,9) (9,9) (9,9)

0 0 ' • 0200 i
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for the stationary parameters and

A• 0 1 0 •• 0
o A~ o~ 0 W2 **o

A . . .. .. (45)
(6n,6n) * * * (6n,6n)

0 0 • n 0 0 W

for the nonstationary parameters. In (45),.we let A1 denote the
covariance matrix of the observations of the elements of exterior
orientation for the ith photograph and let W - A . It is not
necessary for these covariance and weight mairicel to be diagonal.
They can be completely filled without creating undue strein on the
computations.

At this stage, we have three matrix observation equations arising
from

1. Measured film coordinates,

2. Stationary parameters,

3. Nonstationary parameters.

We are now in a position to form normal equations.

NORMAL EQUATIONS

Writing the matrix observati6n equations as follows:

(4.6)

- 6's
t -. - . . fi ". . . " . " ' . , ;

• *. ". . .

we can. merge these matrix observations equations into the single matrix
equation
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I
-1 -- 6 (47)

which Ic reduced to

v+ B .(48)

.. The dimension of v is (2ran + 9 + 6n, 1); that of.B is
(2mn + 9 + 6n$ 6n+ 9), and F is (6n + 9, 1).. The dimension of the
discrepancy rectot -C in the same as V. In merging the covariance

and weight matri.ces of the three matrix observation equations., we
have

A 0 W 0 0

'(2rhe an BF:irn~ 2ran.mering then coaj

*,-' (9,9) ( , (W,W)(,

(6n,6n) ". (6n6n)

(6n,6 On', 6)

"hr (49)

S whire

rT- (2mn + 9 + 6n).

The coefficient matrix and constant column of the normal equations
can be formed by matrix multiplication as follows
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Brown [41 shown rh.n- thl ',, VLLULM V an. 0 5'....tar-eous-yleads to the minimization of the quadratic form of the residuals

B = W W .
(51)

If we use matrix equations (47) and (50) and realize that the structureof the B matrix is a column .mAtrix of matrices, we can write the normalequation system as

_ .B 0 . 0 01
FT 0 

-0 _ 0 1 0 1W00 0 -1 00

(52)
which, after multiplication, becomes

n n

,- 1 _ (53)

The individual matrix components of the normal equations (53) 'and their
dimensions are

6 Ni ). 6T w ,
i1 (9,9) (9,2mn) (2mn,2mn) (2mn,9)

(F Ci) . BO Wi"I.(9,1) (9,2m) ( 2mn,2mn) (2mn,1)
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N BT W B (54)
( 6n,6n) (6n,2mn) (2,wo,2mul) (2mn,l)

B T B W B(6n I) (6n.2mn) (2ma.2ma) (2ran,l)

(9,6n) (9,2mn) (2mn,2m) (2mn,6n)

where, as stated previously, the N and c portions of the normal
equations are quickly and simply formed by virture of the structure
of the t matrix. The genera. normal equations for the simultaneous
adjustment of all n photographs are diagrammatically given as follows:

(''---->9 + 6n eels . )

(-9 cols-->l (--- -.6n cols. --- Constant cols

n* e * I
.9rows ( E Ni)+~ W. , IT 1 1i)2 W IT

.. .. .. i - ..... tL*--. , . . .. -- -j l .. . . ... .

N1  N1+W1  0 . . . 0 , - W

-T 0 N24W 2 .' 0 62 - 0 2 £
6n rows 2-.-

N n. 0 " ' n_ "n

(55)

This is the first order regression scheme referred to earlier in the
report. This type of structured notmal equations wera succes'sfuly
solved by Brown [5]. Practically, a solutiou is poa.sible no matter how
large n may be and it is found that the cdmputati~ns increase only
linearly with n. In our camera calibration experiment, the largest
matrix-to be handled is of order 9. It is not out purpose to give full

'detelsl of the computation algorithm since these details are available:
.. in many of Brownts reports,.for example, reference [5]. Let it suffice

to say that in practice we' will handle approximately 20 photographs
selected from four passes over a test range, and that we hope to obtain
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at least 40 images on each photo. These images will be common to all 20
photographs. Therefore, we wi]. have 800 measured images contributing
dirpctly to the calibration uf Lhe stationary parameters whereas
40 measured Images will contribute to the determination of each set of

nonstationary parameters. The resulting normal equation aystem will be
of order 129 generated from 1600 observation equations, if only the
equations from the linearization are considered.

CONCLUSIONS

We consider SRAC to be a total system calibration since the
calibrated distortion pardmeters will include effects of the camera
window and the shockwave of the airstream upon the window. Also,
since the systemmatic errors tend to be independent from one frame to
the next, the estimates of the stationary parameters will not be unduly
influenced by these type errors. We feel that this represents the
actual conditions in practice and therefore, SMAC is a significantly
superior process as compared to one which might use single frames each
employing 10 times as many measured images as on a SMAC frame.

A by-product of the SAC reduction is the covariance matrix of
the adjusted parameters. This permits evaluation of error bounds of .the
calibrated functions of radial and decentering distortion along with those
of the parameters of exterior orientatio.

A quantitative calibration of existing decentering distortion in
a lens Is especially important since the practical limit of the length
of an analytical, aerial control extension project is heavily dependent
upon the elimination of the effects of decentering distortion.

In conclusion, then, we feel that a sMAC approach to the probl~m
of calibrating aerial cameras in their operating environment is both
feasible and practical, and that its potential value in other modes of
operation, such as stellar calibration& of aerial and ballistic cameras,
is yet to be realized. We hope to have the results of a SMAC
calibration in the near future; that is, both a stellar SMAC and an aerial
SMAC of at least two aerial mapping'cameras so that we will have a
comparison of three types.of calibration (laboratory, stellar, *aerial)
of the same'cameras. These comparisons should prove the effectiveness
of the aerial SMAC approach.
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I
DESIGN AND ARALISIS OF A STATISTICAL EVERIMNT

ON HIUH-VOLTAGN BRHAIOW IN VACUUM*

M. M. Chrepta, 0. W. Taylor, and M. B. Zinn

Electro-x Tubes Division
Electronic Components Laboratory

US Army Electronics Coamand, Fort Monmouth, N. J.

The problem of high-voltage breakdown in vacuum has been studied for
more than forty years. From these studies many conflicting theories have
evolved that still do not reliably define a breakdown criterion nor explain
the mechanisms involved in the process. High-voltage breakdown in vacuum
has received renewed interest in recent years because of the demands for
superpower radar syste n components, ion thrusters for space propulsion, and
high-energy particle accelerators.

The study of the factors that effect a high-voltage breakdown in vacuum
is being performed at this laboratory using statistically designed experi-
ments. Initially, the sixteen factors shown in Table I were defined as
probable contributors to the breakdown process:

TABE I - FACT ORSBFITING BR]AI.OWN

Inflexible Factors Flexible Factors

1. Cathode Material l2. Residual Gas Prusaure

2. Anode Material 13. Energy of Supply

3. Cathode Finish :i4. Contaminant

4. Anode Finish 15. Magnetic Field

5. Cathode Geometry 16. Electrode Spacing

6. Anode Geometry

7. Vehicle Bakeout

8. Envelope Material

The objective of this program is to analyze the significance of each of
these factors as vell as their interactions.

The first designed experiment was carried out using seven of the in-
flexible factors, each at two levels, in a e-3 plan (Table I) derived
f,'om Table M of Davies' Design and Analysis of Industrial Experiments:

*Sponsored by Advanced Research Projects Agency under US Army Electronics

Command Contract DA28-043 AMC-00394(E) ARPA Order No. 517 PROJECT DEFMDER
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TAXIE II FACTOR LEV=I POR IWUTIGATION

T1-7AL-4Mo304-SS
CATODE MATERIAL N OFHC Cu

TI-TAL -4Mp

ANODE MATERIAL OFHC ¢

CATHODE FINiSH < FINE

COARSE

ANODE FINISH < FINE

SpHKRE

CATHODE GEOMETRY <PLANE

SPHEREC_

ANODE GEOMETRY < PLANE

ASSENT

VEHICLE BAKEOUT PRESENT
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Table III shows the levels of each factor for each of the thirty-two
treatments. The minus sign in each treatment means that the factor is either
at the low level or absent from the treatmaw. la .406- -. 11m
factor is at the high level o? present in the treatment. The set is ortho-
gonal; each level of any factor is tested aqually against each of the other
factor level combinations:

TAE. III - 27-2 pLA

TREATMENT A B C D0 E FG

f + -+ - + "

be + . -

sad + - + + - - -
bed - + + +I- I +

abdt + + - + - + -

Ce - - + -+ - -
o, + .- - + +

bof - + - - + + -

abe + + +- + - '

def " ' + + + +-

- de + - - + + -
bae - + - + + -

abcdef + + ++ + + -

Gap + - + , +

boo - + + +
obfg + + -... + +

d --- + - - I+

- ' , + - + + - + +
bedfg - + + + - + +
abdo + + - + +

44-g - - + + +
ego + + - +

hog - + -- + - +

*obeafI + + + + + +
cdeg - - + + + - +

. ot, + - . . . .

dee + ++
...o'deg + +. + + + " +

The letter assignments, shown in Table IV, were carefully chosen so
that in the treatment and analysis of the results the effect of any two-
factor interaction involving the bakeout factor, D, would be clear of any
other main effect or two-factor interaction of interest:
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TABE IV -LETTR~ A8810?U4D

A - Anode Katerial

B - Cathode shape

C - Cathode Material

D - Balceout

E - Anode Shape

F - Anode Finish

G - Cathode Finish

The treatmnts were randomized and performed mt the test vehicle shown
in Fig. 1:

MAGNETIC FIELD
COI Icu (N1 )

le~ ACCESS PORT0

500 LITilSEC. Pool

ION PUMP REAr. NJ MRH

bUllHING

71000 JO00



Each treatment was carried out in this maner: The voltage was increased
in l0-kV steps, each step held for two inutes. During this procedure,
the microdisciarges (self-quenching pulses of cu:rrent), hydrogen evolutions,
X-radiation, visible radiation, and prebreakdovn current were onitored.
The voltage was increased in this stepwise manner until puffs of hydroGen
were detected by the mass spectrometer. This voltage was recorded. After
the gap was outgassed again, the increase of voltage was continued until
sparking occurred. This voltage was recorded as the first breakdown vol-
tage. This procedure was repeated for each treatment at six electrode
separations from 0.5 to 3.0 cm. During the application of voltages at each
gap setting, the sparking and gas evolution conditions the electrodes so
that higher Nmw.tages may be held off. These higher voltages were also re-
corded for the analysis.

Thus, we have three sets of yields of voltages that can be Incorporated
as the inputs to the design plan for alysis. These numbers inserted in
the boxes of the design table and treated with the signs shown will give
the deviation from the, average of the whole experiment for each factor and
factor interaction. The results can be obtained in a more systematic man-
ner by using the Yates Algorithm, which consists of repeatedly adding and
subtracting adjacent test results until the results for the mean, main
effects and two-factor interactions are obtained, as shown In Table V

TALE V - DEFINING RLATION

I v-ABDFGa-CDEFG a ABCE
YIELDS OF YATES ALGORITHM

I mean 12 ABE + 23 BDG- AF

2 13 FDE 24 ABDG ®

3 ( 14 ADE 25 EG

4 AB + CE 15 BDE 26 AEG

16 ABDE + CD 27 BEG

S

6 7B 17 < 28 A BEC+CG,

S ADD-PG 9. BG 30 ADEG

10 AE + SC 21 OG 32 ABDEG-EF

II BE + AC 22 ADG- OF
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T h n tablo Rhnws that we can vet seven main effects and six two-factor
interactions with D (the bakeout) plus the mean. The others may be used
for estimating error.

The analysis was carried out using the Yates Algorithm with inputs of
the voltages obtained. The results of this analysis indicated a low level
of confidence for the effects. Therefore, the voltages were plotW versus
distance to the one-half power, since these and many other experimental re-
sults have been found to follow this relationship. From these plots a slope
was calculated and used as inputs to the Yates program. This slope, using
the average of many points, smoothed out the values as well as the error
and gave more aignificant results.

These results are plotted on half-normal graph paper as shown in Fig. 2:

~30

29-
D

I[ |as
24 

A-ANODE MATERIAL
W 24- S-CATHODE GEOMETRY

- C-CATHODE MATERIAL
20 - D-AKEOUT

E-ANODE GEOMETRY
16 F-ANODE FINISH

G-CATHO E FINISH

0

4
00 __d_ L L_- L L-- _L±__ L _.L-- -, , J,

S 2 3 4 5 6 7 9 10 0 Io I 1 4 1 i6 1'7 Ii I9 20

COEFFICIENTS (kV)

Fig. 2 Half-normal plot of coefficients obtained
from the Yates Algorithm.

This graph is designed to give a strait line for any random process.
The order number represents the range of values, from smallest to largest,
corresponding to the coefficients obtained from the Yates analysis. Devi-
ations from a straight line indicate that the factor has a significant
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.niiuence on the distribution of the thirty-two values and that the values
are other than random. This plot shows that a straight line can be drawn
through most of the pointa that represent effects of Lhe factors with little
or no deviation from the average of the experiment. The points labeled A,
E, B, D, and AE+BC are real effects, and the significance is indicated by
the distance from the straight line. The AE+BC effect, however, does not
donate any information because the AE cannot be distinguished from the BC
effect. From this experiment these conclusions can immediately be drawn:

1. A, E (the anode material and geometry) are most important.

2. B (the cathode geometry) is important.

3. D (the bakeout factor) is important, but less than the above.

The level of the anode geometry factor that raised the breakdown vol-
tage is the spherical electrode. This might also be said for the cathode
geometry, but with less confidence. When the anode material was titanium
alloy, higher breakdown voltages were reached than when it was copper.
The bakeout factor, D, was pertinent to this experiment with the test ve-
hicle designed for this study. The two levels of bakeout were complete
.;ystem and electrode bakeout versus electrode only bakeout. The electrodes
were equipped with internal heaters for thiu purpose. The complete system
and electrode bakeout level is superior to electrode only bakeout for at-
taming higher breakdown voltages.

Along with the stati Aiical analysis, the results of the experiment
were analyzed as to the physical processes occurring in the highly stressed
electrode system. As previously stated, the hydrogen partial pressures
were monitored on the mass spectrometer. Large bursts of gas were coinci-
dent with sparking or breakdown. ALso, the superiority of spherical elec-
trodes in holding off higher voltages suggested a breakdown mechanism de-
pendent on the amount of gas present in the gap and the pumping conductance
of the electrode gap system caused by the shape and size of the eloctrodes
and the gap distance. A theory was proposed whereby the gas conductance
of the gap played a major part in the breakdown process. Simply stated,
small-Luea electrodes with a high-conductmice gap will hold off higher
voltages than large-area electrodes at the same gap spacing. To evaluate
this theory, a second statistically designed block-of-eight experiment was
derived. The objective of this experiment was to verify the gas pumping
conductance theory. The factors chosen were anode processing, cathode
proceL sing, and electrode size. The two levels of electrode processing
are hydrogen baked versus vacuum baked, and,for size, a 4" versus 4/3"
diameter Bruce plane, as shown in a. of Table VI. Because of the simplicivy
of this full factorial 2 experiment, it was decided to incorporate a trans-
verse magnetic field as a factor at the end of each treatment, as shown in
b. of Table VI. The treatment was repeated with magnetic field and then
again without magnetic field to show up any consistent difference between
the first and third breakdown voltages because of the application of the
m e ~eti c fileld: .. ...

I. M. J. Mulcahy, A. Watson, and W. R. Bell, 'High Voltage Breakdown Study,"

USAECOM Contract DA28-043 AMC-00394(E) ARPA Order No. 517 (1967).
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TABLE VI - FACTORS AND LVIZ fOR BWCK-QY-UGH NXflIMM

Is. without !Mtic Field

Factor Letter Level

Ande Processing A H LoW
Cathode Prouessing B
Electrode Size C a - Vacuum Baked I - Hydrogen Baked

b - Vacuum Baked I - Hydaogen Plaked
c - Large I - Smeall,

b. With Maenetic Field

Anode Processing A a - Vacuum Baked 1 - Hydrogen Baked
Cathode Processing B b - Vacuum Baked I - Hydrogen Baked
Electrode Size C c - Large 1 - Snail
Perpendicula,
Magnetic Field D d - Present I - Absent

This is now a complete 2' factorial experiment and can be analyzed separately

as two 20 erperiments, as shown in Table VIII

TABU VII - EDCPRIMNJAL OR=ER

Main Perpendicular
Order Descripton Block Fields

1 Anode 4-inch Bruce h-baked

Cathode 4-Inch Bruce h-baked

2 Anode /3-inch Bruce h-baked (1) d
Cathode 4/3-inch Bruce h-baked

3 Anode 4-inch Bruce vac-bekked
Cathode 4-Inch Bruce h-baked ac aed

4 Anode 4/3-inch Bruce vac-baked ab abd
,athode 4/3-inch Bruce vao-baked

5 Anode 4/3-inch Bruce h-baked b bd
Cathode 4/3-inch Bruce vac-baked

6 Anode 4-inch Bruce h-baked
Cathode 4-inch Bruce vac-baked

7 Anode 4-inch BIuce vac-baked
Cathode 4-inch Bruce ve-baked mbe abed

8 Anode 4/3-inch Bruce vac-baked
Cathode 4/3-inch Bruce h-baked a Sd
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1

£M' A*JwoLE. Performef si6.LJarLy to te etelvse voltage increase
procedure as described before. The resulting voltages are plotted versus
distance to the one-half power. In Fig, 3, first the average effect) g,
without magnetic field present, is plotted with the average effect, P1, with
magnetic field present. It can be seen juediately that the magnetic field
lowers the brekdown voltage except at the amllest spacing tested:

300

IS0

100-

0 0 A 06 0.8 I ! 10 4 1.6 1'6
GAP SEPARATION (ram)

Fig. 3 Breakd-3vn voltage versus gap separation
in centimeters to the one-half power for
average values with and without magnetic
field.

In Fig. 4, the effects of the factors A ,AE, and As are shown by sub-
tracting the values individually from the corresponding overall average
breakdown value, . The subscript 1 refers to the conditioned breakdown
value prior to applying magnetic field and 3 refers to the breakdown value
after application of magnetic field. The differences in these values are
indicative of a memory of the condl tions imposed by the magnetic field
after it was removed. Other main effects and two-factor interactions art
plotted similarly:
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agog
14

a 0 .1 0 0 5 1,1 L4 I. 0,e

GAP IPMATIO (om* )

Fig. B 3reakdovn voltage versus gap separation
in centisiters to the one-half power for
average values with factor A and two-
factor interaction AS.

From these curves, the principal conclusions that can be stated with
a good measure of confidence axe as follows:

1. The hydrogen-baking procedure permitted higher
breakdown voltages than did the vacuum-baking.
Tha magnetic field amplified this difference.

2. Large-area electrodes reduced the breakdown voltage,
which is consistent with the results obtined in
the first experiment. The magnetic field had no
effect in this case.

3. The combined effect of hydrogen-baking of the
cathode and using small electrodes raises the
breakdown voltage. This effect is amplified in
the presence of a magnetic field.

The results of these experiments, presented in this manner. show with
a good degree of confidence what can be expected when electrodes are do-
signed for high-voltage devices. These data are for copper electrodes.
Other materials of interest to vacuum component design engineers will be
similarly analyzed.

The next experiment (now being conducted) was designed as a full fae-
torial with six factors at two levels, as a result of soma three-factor
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interactions shoving up in the analysis of the block-of-eight experiment.
Ihle 4. dvn- in .c 4crt be. ,.-- -ii =:c= =U the innta - h

breakdown proce..

Different nuterials, as well as the other factors initially nmmed,
will be introduced into each succesuive experiment. The results of this
program will be compiled in the form of graphs and charts for the high-
voltage design engineer.
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I
IMPROVING BINOMIAL RELIABILITY ESTIMATES -

A MODERATELY DISTRIBUTION FREE TECHNIQUE FOR
SMALL SAMPLE RELIABILITY ESTIMATION

Michael G. Billings
C-E-I-R, Inc.

Dugway Proving Ground, Dugway, Utah

1. INTRODUCTION. The purpose of this article is to demonstrate how lower
confidence bounds for reliability obtained using the distribution free
binomial approach can be improved under fairly nonrestrictive assumptions
on the random variable involved. The technique to be described, referred
to hereafter as the MDF technique, is an extension of the result presented
at the 1966 Army Design Conference (see [1]).

2. THE MDF TECHNIQUE. Suppose that the random variable under consideration
is continuous (i.e. has an absolutely continuous distribution function) and
nonnegative with distribution function F(x) and density function Fl(x).
Suppose further that the mission for which the reliability is to be estimated
can be expressed as a number T in the domain of F(x), and suppose that the
reliability is to be estimated on the basis of a sample of n independent
systems from the population under investigation. The following Proposition
provides the basis for the MDF estimation technique.

Proposition 1. Let Y b, the number of mission failures in n trials.
For yE(0,1) let C(Y) be the solution to the equation

0fl _ ~)n-f
( ) [C(Y)]fEl- C(Y)] -=1- y.

f=O

Let M(Y) X T * where X is the (Y+l)th order statistic and T is theLe MY)- T I Xfy+I)

mission. Finally, let k(y,n) be determined by the equation

n*
I ()[k(y,n)C(O)lf (1 - k(1,n)C(f) n-f - I -,

f-O

where n* < n, 1 - k(y,n)C(n*) > 0 and 1 - k(y,n)C(n* + 1) 0. If F'(x)

is monotone nondecreasing on [O,X(Y+l)]1, then

Pr{l - y Y) 1 F(T)} > y.-ky)(M(Y)) -.

The proof of Proposition 1 is lengthy and is included in the Appendix.

The estimator 1 - C I will be called the MDF y--confidevce lower-kyn[M(y)

bound estimator for the reliability 1 - F(T).
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It is seen that for each Y the number 1 - C(Y) is simply the binomial

y-confidence lower bound estimator for the reliability based on Y failures
in n trials. Values of this estimator are tabulated for selected values
of n and y[2]. Precise determination of the number k(y,n) for each pair
(y,n) is most easily accomplished on a computer. Table 1 presents values of

k(y,n) for three confidence levels (.90, .95 and .99) for selected values of
n from 5 to 100. Values of k(y,n) intermediate to values of n given can be
obtained quite accurately by linear interpolation.

In an application of the MDF technique to a specific problem, a confidence
level y is chosen first; from the observed data one then determines the value

of M(Y) = Y+) where Y is the observed number of failures of the mission T
T

and X(y+l ) is the (Y+l)
th order statistic for the sample. The value C(Y) is

obtained from binomial reliability tables (1 - C(Y) is the lower y-confidence
bound estimate for the mission reliablity based on Y failures). Finally, the
value of k(y,n) is obtained from Table 1. Thus, for example, if Y - f, then

according to Proposition 1, 1 - k(y,n)*' U) is the MDF lower T-confidence

estimate of the reliability 1 - F(T) for the mission T.

Example 1. Suppose that for a given reliability estimation problem the
mission is T - 3.2 hours, and the times to failure for a sample of 15 systems
are given by (11.9, 5.8, 8.1, 13.2, 12.7, 12.6, 25.6, 20.2, 9.2, 20.6, 14.2,
17.8, 19.8, 28.1, 12.2}. Let the confidence level be y - .90, and suppose
ic can be assumed (see Example 3) that the probability density function for
the tim3 to failure random variable X is monotone nondecreasing on [O,X(y+l)],

where Y is the number of mission failures (i.e. X(y+l) - X(l) - 5.8). In

accordance with the above description, the MDF lower .90 confidence bound for
the mission reliability is obtained as follows; From the sample data, M(Y) -
M(O) - X(1)/3.2 - 1.81. From binomial reliability tables C(Y) - C(0) - .142.

By an interpolation in Table 1, k(.90, 15) is determined to be 1.17132.
Thus, according to Proposition 1, the MDF .90 confidence lower bound estimate
for 1 - F(T), the mission reliability, is

1 - 1.17132('J'42) - .9081.

(The corresponding binomial estimate is .8577.)

Example 2. Suppose circumstances are the same as for Example 1, except
that the deta are as follows: {0.9, 4.1, 4.6, 4.7, 7.1, 7.5, 7.9, 11.1, 11.1,
11.5, 15.9, 17.5, 18.1, 21.9, 22.31. Then

x
Y = 1, M(Y) ' M() - 2 - 1.28, C(Y) - C(l) - .7356

Y M() - ~l) 3.2

(from binomial reliability table with n - 15, y - .90) and, as before, k(.90,
15) - 1.17132. Thus, the MDF .90 confidence lower bound estimate for 1 - F3.2)
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2356is 1 - 1.17132(--~).3 .7844. (The corresponding hinomial estimate would

be .7644.)

3. APPLICABILITY OF THE TECHNIQUE. Whether the M]lF technique should be
applied to a given problem depends on the extent to which the analyst can
Justify the necessary assumptions regarding the problem and the distribution
function involved. Recall that Proposition 1 requires that the density
function F'(x) be monotone nondecreasing on the interval [OX(Y+l)]. This

is actually a stronger requirement than necessary for the validity of Proposition
I - it Is noted in the proof of Proposition 1 (Appendix) that the monotonicity

requirement is oaly used to guarantee that F(X ) ( ( 1)) F(T); however,

(Y+1) - T
this inequality is valid for a much larger class of distributions than that
characterized by the monotonicity (noniecreasing) of the density function.
Since no simple charact- 'zation of the more general class of distributions
appears to exist, the purposes of this paper are best served by confining
attention to class of distributions with density functions which are monotone
nondecreasing on [OX(Y+l)].

In a particular application then, the analyst must be able to justify the

use of the assumption that f(x) is monotone nondecreasing on [O,X(Y+l)].

Indications are that the technique is fairly insensitive to other than serious
departures from the assumption, and therefore that a relatively loose or
insensitive justification technique can be employed. Unfortunately, there
appears to be no specific test of the hypothesis that the density function
F'(x) is monotone nondecreasing on [OX(y+l) ] available at present. It is

possible that adaptations of certain existing tests, such as the test for
a nondecreasing failure rate proposed by Proschan [31, may lead to a suitable
test for MDF applications, This possibility is being investigated.

An approach wh'Ich seems reasonable in view of the apparent insensitivity
of the MDF technique to departures from the monotonicity assumption is the
following: On the basis of the data, one selects a known distribution function
F0 (x) which appears to be a reasonable candidate for the true distribution

function of the random variable Involved - and is reasonably representative
of the data over the In'terval [O,X(y+l)1. Thus, for example the analyst might

decide that a normal distribution with P and a equal to the sample mean and
sample variance respectively is not an inappropriate selection; again, one
might choose a Weibull and estimate the parameters graphically. Having selected
F (x), oze then would apply the Kolmogorov-Smirnov test, using the selected

distribution function in the null hypothesis: H0 :F(x) - F0 (x). If the null

hypothesis is not rejected, and if the selected function F0(x) has a monotone

nondecreasing first derivative (F'o(x)) on [OX(Y+I)], then one concludes

that it is possible to apply the MDF technique to estimate the reliability.
Note tLat application of the MDF technique in this case is less hazardous
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(more conservative) than using the hypothesized distribution function F0 x)

to estimate the reliability. Further, the MDF technique is a much simpler
method to apply than classical approaches which involve the hypothesized
distribution function F0 X) in the sense that one does not need to be

concerned about estimation of the parameters in F0 (x) and the associated

problems encountered in obtaining lower confidence bounds in terms of the
estimators.

Example 3. For the data from Example 1, suppose it is hypothesized

that the distribution function for this data is normal with v - 15.5, and
2a - 40.4 (15.5 and 40.4 are the mean and variance, respectively, of the
sample.) The Kolmogorov-Smirnov test of the hypothesis H0 *F(x) - F0(W,
where

2Fo(x) - 1 Ex - 80-1.5--
0 /,iT -0.4 80.8

would not reject H0 at any reasonable level of significance (max

IF n(x(j)- F0 (x(j)I - .179; the critical value for a - .20 is .266). Now

X l 5.8. Since F'0(x) - fo(x) is monotone nondecreasing on [0, 15.5],
(Y+l)0 0

it is not unreasonable to proceed as if F'(x) is monotone nondecreasing at
least on [0, 5.8] - [0, X(Y+l)] and to apply the MDF technique to estimate

the reliability for the mission T - 3.2 hours, as has been done in Example 1.

To the author's knowledge, there are no readily adaptable goodness of
fit type tests available for the situation in which censored data is involved.
In this case, justification for use of the NDF technique, or any other tech-
nique, must necessarily be based on past experience, on examination of the
censored data and, to a large Extent, on faith.

The next section discusse3 seven Monte Carlo studies which were conductad
to investigate the behavior of the MDF estimator. Three populations, Weibull,
Uniform and Exponential, were considered. The density function for the Weibull
population was monotone increasing on the interval [0, .35]; the density

function for the Uniform distribution is, of course, monotone nondecreasing
on its whole domain. However, the density function for the Exponential distribu-
tion is monotone decreasing on its whole domain, so that the MDF tachnique is
only an approximate technique for this case. It will be seen that, inspite
of the departure of the exponential case from the MDF requirement (monotone
nondecreasing density function), the MDF technique generally provided acceptable
results in the two Exponential studies conducted.

4. MONTE CARLO STUDIES. In order to obtain an indication of the behavior of
the MDF estimator and of the sensitivity of the MDr technique to departure
from the monotonicity assumption, seven Monte Carlo studies were conducted
as follows: Two studies were based on sampling from a Weibull population
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witn discribution fuLLuu ... -i-.005X 2 (
X .005,0 - 2). The mission considered was T - 3.2; since F(3.2) - .05,
the mission reliability was 1 - F(T) - .95. For.Weibull 1, 100 sets of
15 observations each were obtained; for Wetbull 2, 100 sets of 30 ubberva-
tions each were obtained.

Three studies were based on sampling from a population with the Uniform
distribution on [0,1]. For Uniform I and Uniform 2, the mission was T - .05
so that the true reliability was .95. Uniform 1 consisted of 100 sets of
n = 10 observations; Uniform 2 consisted of 100 sets of n - 20 observations.
For Uniform 3, the mission was T - .15 so that the true reliability was .85;
100 sets of n - 10 observations were drawn for Uniform 3.

Finally, two studies were based on sampling from an Exponential popula-

with distribution function F(x) = l-e (i.e. F'(x) - Xe , X - .01).
The mission considered was T = 5.129; as with the Weibull studies, since
F(5.129) - .05, the reliability was .95. For Exponential 1, 100 sets of
n - 20 observations were obtained; for Exponential 2, 100 sets of n - 45
observations were obtained.

For each set of observations in each of the seven studies, the MDF .90
lower confidence estimate was obtained as described in Section 3. Further-
more, for each set of observations in each study, the binomial .90 lower
confidence bound was determined. The results obtained by these two methods
of estimation are compared in summary form in Tables 2 and 3. Also, for
each set of observations in each study the MDF estimate was compared with the
binomial estimate for proximity (at the third decimal place) to the true
reliability. The results of this proximity evaluation are presented in
Table 4.

From Tables 2, 3 and 4 it is seen that use of the MDF technique
resultud in substantially better estimates of the true reliability than did
the binomial method in the five cases with the smallest sample sizes: Weibull
1 (n-15), Uniform 1 (n-10), Uniform 2.(n-20), Uniform 3 (n-l0) and Exponential
I (n-20), Further, in none of these cases did the observed proportion of
errors (estimates in excess of the true reliability) made uaing the MDF
technique exceed the allowable .10, despite the fact that the MDF technique
is only an approximate technique for the exponential case. Also, the magnitude
of the errors was relatively small in general, as indicated by the proximity
of the error median to the true reliability in each case.

Consider now the results of Weibull 2 and Exponential 2: Tables 2, 3 and
4 show that although the superiority of the MF technique is not as pronounced
in these csea as with the three smaller sample cases, it is nevertheless
evident; further, Table 3 and 4 indicates that the MDF provides better estimates
in these cases (Weibull 2, Exponential 2) often enough to justify at least
calculating the MDF estimate to determine whether it gives a larger value thon
the corresponding binomial estimate.

The MDF technique led to 12 erroneous estimates (>.95) in Exponential 2.
Although this proportion exceeds 1 - y - .10, it is seen from Table 2 that
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the degree of departure from tht rla ly u e.cessive in three
cases (.952, .953, .953). Further, only 5 of the erroneous estimates
exceeded the true reliability by more than .01. Again, it in pointed out

that the MDF technique is only approximate for the Exponential case. However,
it is clear that the 'ore nearly the Exponential distribution function involved
is approximated by a Uniform distribution function over the range of interest
(i.e. over the interval [OX(Y+l)]). the smaller will be the chance of obtaining

erroneous estimates.

To provide an indication of how the MDF technique compares with two other
commonly used estimation techniques, the following studies were conducted:
1) For each set of observations in Weibull 1 and Exponential 1, a .90 confi-
dence lower bound (for the reliability) was obtained using the method describad
by Epstein in [4] (which assumes Exponentiality) for the non-replacement
situation with data censored at the third order statistic. 2) The same technique,
with data censored at the fifth order statistic was used to obtain a .90
confidence lower bound (for the reliability) for each set of observations in
Exponential 2. The results of studies 1) and 2) are stumarized in Table 5.
3) For 33 randomly selected trials from Weibull 1 and 32 randomly selected
trials from WeibuXI 2 the technique described by Johns and Lieberman in [5),
with data censored at the seventh order statistic, was used to obtain .90
confidence lower bounds for the reliability. The results of these studies are
summarized in Table 6.
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TABLE 1. VALUES OF k(y,n) FOR SELECTED CONFIDENCE
LEVELS y AND SAMPLE SIZES n

n0 .95.
5 1.13222 1.10195 1.05967
6 1.14160 1.11117 1.06796

7 1.15o98 1.12o4o 1.07787
8 1.15595 1.12583 1.08310
9 1.16o93 1.13125 1.08958

10 1.16399 1.13369 1.09343
11 1.16706 1.13613 1.09729
12 1.16836 1.13857 1.09907
13 1.16956 1.14101 1.10086
14 1.17049 1.14198 1.10194
16 1.17215 1.14393 1.10441
18 1.17382 1.14588 1.10691
20 1.17548 1.14782 1.10928
22 1.17644 1.14887 1.11053
24 1.17739 1.14992 1.11179
26 1.17834 1.15097 1.11287
28 1.17910 1.15178 1.11337
30 1.17986 1.15259 1.11431
35 1.18177 1.15462 1.11691
40 '.18236 1..15529 1.11770

45 1.18296 1.15596 1.11850
50 1.18320 1.15626 1.11874

60 1.18367 1.15687 1.11974
70 2.18415 1.15740 1.12033
80 1.18477 1.15807 1.12089
90 1.18501 1.15835 1.12144
100 1.18525 1.15861 1.12176
200 1.18653 1.16004 1.12344
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TABLE 2 COMPARISON OF DISTRIBUTIONS OF BINOMIAL
AND MDF .90 CONFIDENCE -BOUNDS POn T.E
RELIABILITY FOR EACH MONTE CARLO STUDY

SUMMARY OF RESULTS

MDF
SAMPLE EERONE0USSTUDY SIZE -INTERVAL BINOMIAL MDF ESTIMATES

Welbull 15 .536 1 1
(.536,.6071 5 2(.607,.683] 11 4

(.683,.7643 35 12
(.764P.858J 48 42
(.858,.9003 0 29
(.900,.950 0 10

Welbull 2 30 .713 4 1 .951
(.713,.7513 2 1(.751P.7911 7 6
(.791,.8323 22 14
(.832s.876] 32 24
(.876,.9261 33 33
(.9263.9503 0 20
(.950,1.00 0 1

Uniftorm 1 10 (.448,.5503 8 1 .953
(.550,.663J 35 5 .955
(.663$.7941 57 23 .962
(.7940.850 0 20

(.85o,.900 0 23
(.900,.95o] 0 25
(.950,1.00 0 3
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TABLE 2. (Continued)

MDFSAMPLE 
ERRONEOUSSTUDY SIZE INTERVAL BINOIAL MDPUniform 1 10 (.448,.5501 8 1 .953

(.550,.663] 35 5 .955
(.663,.794] 57 23 .962
(.794, .850) 0 20
(.850,.9001 0 23
(.900.,.95o 0 25
(.950,1..001 0 3Uniform 2 20 .639 2 1 .951
(.639,.696] 2 0 .952
(.696,.755] 12 1 .952
(.755,.8193 51 19 .956
(.819,.8911 33 33 .958

(.891,.9503 0 40 .976
(.95o,1.oo 0 6

Exponential 20 .639 0 0( .63990 .951 .972
(.639,.696) 3 3 .952
(.696,.755] 21 4 .954
(.755,.8193 36 12 .956
(.819,.891J 40 28 .960(.891,.9503 0 45 .962
(.950,1.003 0 8 .969
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TABLE 2. (Continued)
MDF

SAMPLE ERRONEOUS

ST,,1Y SIZE INTERVAL BINOMIAL 'DF ESTIMATES
Exponential 45 1 .804 4 4 .952 .963

(.8o4,.83o3 6 1 .953.965
(.830,8583 18 11 .953 .965
(.858,.886) 35 18 .956 .967
(.886,.9163 25 26 .957 .972
(.916,.95o) 12 28 .96o

(.950,1.00) 0 12 .960

Unitozm 3* 10 .354 4 1 .859
(.354,.4483 20 5 .863
(.448,.550 24 13 .865
(.550s,.663] 35 31 .865
(.663,.7943 17 29 .885
(.794,.8503 0 16
(.850,.900 0 5
(.900,1.00 0 0

*The true reliability in this case was .850.
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TABLE 4. PROXIMITY* COMPARISON OF MDF AND BINOMIAL
LOWER .90 CONFIDENCE ESTIMATES

T.TECHNQUE
STUY --... ~MDF BINOMIAL TIE

Weibull 1 711 25 1

Weibull 2 59 40 1

Uniform 1 86 13 1

Uniform 2 80 19 1

Fxponential 1 85 12 3
Exponential 2 55 37 8

Uniform 3 67 31 2

*For example, in Weibull study 1, the 14DF technique gave an
estimate which was closer to the true reliability than the
corresponding binomial estimate in 74 instances, the binomial
method gave the closer estimate in 25 oases and there was one
tie.
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APPENDIX

This section presents a proof of Proposition I upon

which the MDF estimation technique is based. Proposition

2, which is proved in Reference 1, is restated here for

reference ease.

Proposition 2. Let a continuous nonnegative random

variable X have probability density function F'(x) and

distribution function F(x). Suppose that F'(x) is mono-

tone nondecreasing on an interval [0. p . If m ? 1 and

pp

Proposition 1. Let Y be the number of mission

failures in n trials. Let C(Y) be the solution to

(()c(y)Jk1 C(Y)]n-j . l-y; iet M(Y) " T
JM

where T is the mission; and let k(y,n) be determined

by the equation

C()tk(y,n)(O)Cl - k(yfn)C(f))n-' I - Y,

t-O

where n* , n, 1 - k(y,n)C(n*) > 0 and 1 - k(y,n)C(n* + i) 0 0.

If f(x) is monotone nondecreasing on tOX(y+I)), then

Pr(l - k(y,n)(CY3) e 1 - F(T)] > y.

Proof. We show that Pr(1 - k(y,n)(C.Y-) 1 - F(T)) & 1 - y.
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We have that 1- c(Y,n)(Y) 1 - F(T) - C(Y) >
-(T)+T). Ce1 i -) Let)1 Thus,

the probability that the MDF estimator actually exceeds

the reliability is equal to the probability that 1 -

exceeds the reliability by an amount hot less than k*F(T).

Thus, we want to show that Pr(l - R M 1 - F(T) + k*F(T))

1 - y. To do this, we consider two cases: Case 1: F(T) e

k(y,n)C(O); Case 2:PF(T) > k(y,n)C(0).

Case 1. F(T) e k(y,n)C(0).

Pr(l - W - I - F(T) + c*F(T))

- Pr(O failures and X(3 ) ;> [ jC(2)]T]

+ Pr(l failure and X(2) ([ i1T)

+ Pr(2 failures and X(3)  n [ F( T j

• k(yn)C(fn*),i

+ Prfn* failures and X(n,) F. L-..... JT-

+

Pr(n - I failures and X(n) '(>T) .

Now, Pr(Y failures and X(y+l) E [k(yn)C(Y)

- Pr(Y failures and F(X(Y+, ))
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Since F(T) k(y,n)C(O), F(T) <, I(y,n)C(Y) for Ye[O,1,2,

...n). Thus, PY-> 1, so that by Proposition 2

F(k~y.nCjYT) >1 ~yn)4S . F(T) = k(y,n)C(Y). Therefore,

Pr[Y failures and F(X(y+l) L kT

Pr[Y failures and F(X(y+1 )) k l(y,n)C(Y))

=Pr[Y failures and X(y+,) . k(y,n)C(Y)l

= Yc(T)E k(y,n)C(Y))rY

when Wy, n) C(Y) 1 1. e. f or n n*) . If k(Y, n) C(Y) >1

(i.e. for n > n*), Pr[Y failures and F(X(n-Y))

(Ck~~n)(Y)3T) 0. Hence,

Pr[I- 1 F(T) + k*F(T))

n) C(T) Y - k(ypr)C(Y) n-Y.

Now, F(T) ,k(Y,n)O(O). Thus,

E [F(T)]Y[l - k(y~n)C(y)3n-Y

famo

f'=0

By hypothesis, the stum on the right equals 1 -y; thus when
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Pr[1 - C)> 1- F(T) + lc*F(T)J

= Frtl - k(Y,n)(Cf(3Y 1 - F(T)] 1< Y.

Case 2. F'(T) >L 1(y, n) C(O). In this case there

exists f f* such that Fl(T) k(Y,n)C(fk) and F(T) >

* k(Y,n)C(f* - 1). We will thus have Pr(l

* 1 - F(T) + k*F(T)) =Pr(f* or fewer failures ) +

Dvrff* + 1 failure and X(~ 2  (Y nrS~*+1J]T]+ . +

* Pr(n* failures and X(n*l k(~)~nj

= : (nf)fP(T))f(1 - IF(T))l~ + z.(T
f=f

(1 - k(y,n)C(f))n- f- H(F(T)). The maximum value the

* second sum in 1H(V(T)) can take on occurs for F(T)

k(y,n) .C(f*), since F(T) < k(y,n)C(C) for f f *. Thus,

* H(F(T)) is dominated by the function G(F(T)), where

G(F(T)) - E (n)[F(T)]f(1 - F()nf+ E ()

f-f
[k(y,n)C(f*)3 (1 - k(y,n) ~~nC

Furthermore,

* = -T n(l F(T)3~ + z J)fF(T)f 1 1
C =1

*(n -f)F(T)fE1 F(T)] --
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--nti - F(T))~ ]- £(n) F(T))~~ I F(T)) ]n-f - nP(T)).

f=l

Now recall that for rctO,1,2,...,.C*) F(T) k(y,n)C(f*),

and C(f*) f */n. Thus, since lc(Y,ri) ;>,n(T

so that f~ nF(T) < 0 for fe(O,l,2,...,t*3. Hence

dFT))is negative; i.e. H(F(T)) is dominated by the

monotone decreasing function G(F(T)). The value of G(F(T))

when F(T) = k(y,n)C(O) is

G(k(y,n)C(0))= E-'[(~nCO][ k(Y,n)C(0))n-
rtrO

71*
+ E (nf)[k(y,f)C(17*))rCl - k(y fl)o(f)jn-f.

However, it is clear that when F(T) - l(y,n)C(O), f* = 0,

so that G(k(Y,,n)C(0)) - , f()[k(y..n)C(O)3 [1 - k-~)~)3

f-0

Thus H(F(T)) e ~(~nC0) By hypothesis, 0(k(Y,n)C(0))uu

I Y, and the theorem is proved.

326



THE DEVEOPMENT OF A PROBABALISTIC MODEL FOR
ACOUSTIC SOUND RANGING

Robert P. Lee
Atmospheric Sciences Laboratory

White Sands Missile Range, New Mexico

It was decided last year that the Environmental Sciences Division
'of the Atmospheric Sciences Laboratory at White Sands Missile Range

would study the possibility of improving acoustic sound ranging by
applying more elaborate meteorological corrections.

Accordingly, a very elaborate test was set up. Charges consist-
ing of two and one half pounds of TNT were to be exploded at twenty
mnute intervals and the resulting acoustic waves picked up by eight-
een broadband microphones placed so as to give various microphone
configurations. The outputs from these microphones were fed to three
manetic tape recorders, eight signals to one, five signals to each
of the other two. The locations for the microphones were laid out
very carefully and a final first order survey run to precisely de-
termine the microphone coordinates.

It was felt that the microphone coordinates were not in error
by more than one foot with respect to each other and to the firepoint.
By digitizing the analog tapes at one millisecond intervals, since
sound propagates approximately one foot per millisecond, the timng
and microphone location errors should be of the same order of magnitude,
It was hoped that this would remove timing and microphone placement
errors as sources of error but, if necessary the digitizing rate could
be increased ten-fold and more sophisticated methods could be used to
compensate for microphone placement errors.

Figure 1 shows the geometry of a six microphone acoustic ranging
array and the equations to be solved. A derivation of these equations
is given in the Appendix to "Probabalistic Model for Acoustic Sound
Rnging", MOM-5159, October 1967 by the author. Briefly, assuming
the wave front to be a plane wave at ten degrees centigrade with no
wind, the time difference, ti, in acoustic signal arrival times at
two adjacent microphones divided by s, the acoustic travel time bet-
ween these adjacent microphones, gives the cine of the angle, Gi,
between the normal to the plane wave and the normal to the microphone
array. Any two of these rays can then be solved for intersection
point. Five such rays will intersect at ten points. The average of
these ten points will give a preliminary location from which approxi-
mate distances, Hij to the midpoints between the microphones can be
calculated. Next, corrections for wind, temperature, and wave front
currature are applied to the ti and the computations repeated. For

This article was reproduced photographically from the author's copy.
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As the tapes were digitized, plotted, and first motion read, it be-
came evident that all was not well. Table I snows a tabulation of the
differences in signal arrival times at the five microphones (not in a
straight line) recorded at Van 6015. As mentioned above the analog sig-
nals were digitized at 1000 samples per second and first notion was, in
general, well defined. It was estimated that the one sigma tie reading
error should fall between one and two milliseconds. This is almost an
order of magnitude less than the seven to ten milliseconds rms variation
shown in Table 1. Table 2 summarizes the recordings made at another five
microphones during the same period of time at Van 6CG6. Again the rms
variation is too great. In addition, a statistical analysis will show
the essential randomness of these residuals.

A few moments reflection will show that nothing we have presented
so far will account for these results. The firing point and microphone
locations were fixed and errors in these would cause no variation in
the time recordings. Temperature changes would apply equally to all

*parts of the acoustic wave front and variations from microphone to
microphone should be highly correlated. The same should be true if
the wind across the array changed. During the time this data was as-
sembled, acoustic ray trace calculations were underway to find out if
the observed time differences could be checked by this method and to
study the effect of the ray path on the meteorological corrections to
be applied. Very typical results are shown in Table 3. Although c-
plate horizontal stratification was assumed in the winds and temperatures,
a ccon assption in acoustic ray tracing, due to the large azimuth
changes from one ray to another and varying distanceseah ray travels
a path characterized by different parameters. The effective temperature
for each path was obtained by dividing the distance from the fire point to
the microphone by the time as shown by acoustic ray tracing for the
sound to propagate between these two points and then determining a
mean temperature based on this propagation velocity. Similarly) the
wind displacement normal and parallel to the baseline for each incre-
ment of ray path was sned and divided by the elapsed time to give
the effective wind couponents.

Reexamining the equations of Figure 1 with the data from Table 3
in mind, it can be seen that implicit in these equations is the assump-
tion that there exists a unique temperature and a unique wind velocity
vector valid for the entire area in front of the microphone array and
that if these were exactly known proper corrections could be mBa for
wind and temperature. Table 3 indicates that in addition to errors in
estimating the effective temperature and effective wind component paral-
lel to the baseline (the wind comonent normal to the baseline does not
appear in the equations) and to random timing errors and microphone place-
ment errors, there exists errors due to the variations in effective
temperature and in both components of the effective wind velocity vector
from ray path to ray path.

I
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The ratio of the rms acoustic source location error in meters to
the rms gaussLan t mng error in milliseconds was examined by choosinga point in the XY planep calculating the acoustic propagation time to
each microphone, adding to thiF; elapfled t-ime a gaussian random number
(with zero mean and specified standard deviation), substituing the per-

turbed times into the sound ranging equations, and calculating the
apparent acoustic source location. After storing the source location
errors in X and Y and the timing errors, a new set of timing errors
was drawn and the process repeated until 100 samples had been produced.
The ratio of the rms output error to the rms input error was then
determined for that point in the XY plane. Calculations were made
at sufficient points to permit plotting the error contour curves
shown in Figure 2.

The effect of microphone placement errors was examined by gener-
ating two random numbers for each microphone location, one uniformly
distributed between 0 and 360 to represent the angle with the baseline,
the other with a gaussian distribution to represent the magnitude of
the microphone placement error. Microphone positions corresponding to
these errors in placement were calculated as were. the acoustic arrival
times to these new locations. These arrival times were than substituted
into the array equations, where they were used as if the microphone were
at the original locations. The resulting acoustic source locaton errors
were stored as well as the inpu'- microphone placement errors and the pro-
cess repeated until a sample of 100 had been determined. The ratio of

the rms acoustic source location error to the rme microphone placement
error was determined for enough points to permit drawing the contours
of Figure 3.

The equations for sound ranging assure that there is an effective
mean temperature over the entire area in front of the array. Since
temperature is a single number applied to the entire array, a bias
type of error results. It is only necessary to make a single conu-
tation at an point in the XY plane to determine the error in acoustic
source location per degree centigrade. This error has both magnitude
and direction. The error contours of Figure 4 are based on magnitude
only. There will also be a unique direction associated with each point
in the plane but no attempt has been made to plot this.

If it is assumed as indicated in Table 3 that each ray from the
acoustic source to a microphone encounters sliatly different atmoaphe-

ic conditions, then there will be small variations from ray path to
ray path in effective temperature. To obtain the error contours of
Figure 5, the mean temperature of 10OC for the entire array was per-
turbed for each ray be adding a random variation draVn from a gaussian
population having a mean zero and standard deviation of .1 oC. Acoustic
arrival times based on these perturbed temperatures were than plugged
back into the sound ranging equations and the error in acoustic source
location determined. Again a samplo of 100 such calculations for a
given point resulted in a reasonably stable ratio of rms error to rae
input error.

329



As with temoerature, the equations for sound ranging assum there
is an effective mean wind over the area between the acoustic source and

Vthe microphone arry. This is simplified by the fact that only the wind
conlonent parallel to the baseline enters into the correction equations.
That the wind conmpnent perpendicular to the baseline cancels out in
shown in the EM0M Report 5159 references earlier. Since only a single
number is involved the error is gias type error having magnitude and
direction at each point in the plane in front of the microphone. If
an error of one miter per second in assumed wind is used the error con-
tours (magnitude only) of Figure 6 result. There will be a unique
direction for each point in the plane. No attempt has been made to
show this.

When calculations are based on perturbed effective wind velocity
for each acoustic ray it is necessary consider variations in the wind
cmponent normal to the baseline as well as variations in the component
parallel to the baselin.. The procedure for producing the error calcu-
lations from which Figures 7 and 8 are derived resembles those using
temerature variations except that now the random numbers drawn repre-
sent compnent wind perturbations.

The Importance of including term representing the perturbations
in temperature and wind velocity over the area in front of the micro-
phone array can be seen by c aring Figure 4 with Figure 5 and Figure
6 with Figures 7 and 8. From the mapitude of the contours shown Is
obvious a small veriation from ray path to ray path in mean effective
wind or mean effective teoperature will have considerably pester effect
than a similar error in estimting the man effective wind or the mean
effective teperature. Figures 2 throug 8 indicate that the following
parmter variations produce approximately equivalent acoustic source
location errors: I

2 2.5 meter rms microphone placement errors
3 lOC error estimting effective temperature
L .10C rms variation from one path to another in effective

temperatre :

( ) 1 meter per second error in estimating the coMonent of the
effective wind parallel to the baseline

(6) .2 meter per second iw variation from one path to another
in the coMponent of the effective wind parallel to the base-,
line

(7) .1 meter per second rns variation from one path to another in
the cmponent of the effective wind normal to the baseline.

Since effects (4), (6) and (7) will show up as random variations
in acoustic arrival times at each of the microphones, they are suffi-
cient to account for the random variations shown in Tables 1 and 2.

Table 4 deserves special mention. Here three of the mim tim
ras rose to a peak beigt of. about 40 meters, the other three to a
peak height of approximtely 150 moters. With the large differences
in effective wind and effective tesperature between the two groups,
the equa&tons for sound ranging hav no Valid solution.
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ON EXPERIMENTS CONCERNED WIT THE SA14PLING DISTRIBUTION
OF LANCHESTER'S PARAMETERS

David R. Howes
U.S. Army Strategy and Tactics Analysis Group

Bethesda, Maryland

Research modeling activities of the past five years have led to the
construction of a number of computerized war gaming models, These are
simulations of combat carried on in more or less detail, and carried nut
under the guidance of player groups who prescr:Lbe computer input both at
the start of and during the simulation. Such i sWilation might represent
the activities of opposing Red and Blue Divisional forces accounted for down
to the company and battery level of resolution. The simulation proceeds in
accordance with player input and assessuent rules internal to the computer
which are generally probabilistic in nature.

It is often desired to use such gaming models to compare t'e relative
effectiveness of some aspect of organixation, tactics, equipment, supply, or
armament of a combat organisatiou. The procedure would be to game two or
more alternative possibilities and then somehow to compare the results obtained
from the game. In this case, the complex probabilistic nature of these models
raises questions of experimental design, since the outcome of a given Same
would vary over repeated trials.

In a deterministic war game, the problem of variability does not exist.
For example, consider the Lanchester "Laws" of combat. These are:

1. Lanchester'a first linear law:

dx -k 1

dt 12
dt 2

In this case, the attrition of the strength of the force x, dx/dt

is proportional to some environmental constant kl, unrelated to the strengths
of the combattants.

2. Lanchester's square law:

dx/dt a klY

dy/dt a k2X

F,.,re, the proportion is to the strength of the opponent.

3. Lanchester's second linear law:

dx/dt w k1xy
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:;dy/dt k kxY

The first and third l-Aw are both called linear since in both cases

dx/dy - kl/k2 (a constant)i1 2
therefore, the graph of x against y is linear.

In the case of a supposed Lanchester model experimental design would be
simple, It is only necessary to play a game through two time periods. This
will provide the data necessary to calculate kand k2 •

However, in probabilistic models the problem is far more complex. No
explicit mathematical model seems capable of being prescribed.

* In a recent paper, (1) David G. Smith has explored the possibility of
relating Lanchester Theory to the study of simulation results. The idea is
to suppose that the underlying process of warfare (or war simulation) is
reasonably depicted by a Lanchaester formulation, but that the results actually
observed in terms of measurable characteristics of war (in Smith's case,
casualties) are taken from sampling probability distribution around the pure
Lanohester form.

Giving Smith'. results for the linear law; using the sides with initial
strengths m and n:

A(m,n) Prob. that red will sustain next casualty.

P(xy,mn) Prob. that point xy, is reached from m,n.

P(R,m) Prob. of red win.

for dm/dt - - fl(m,n)

dn/dt - - 8f2 (mn)

(1) A(m,n) - pf2 (m,n)/[f (m,n) + pf2(m,n)] , p *

or in the case of the linear law

(2) A(m,n) - p/(1 + p)

and

P(x,y,r,s) - A(x,y+l) P(x,y+l,r,s) + 1 - A(x+l,y) P(x+l,yr,s) (3)

leading for the linear law:

) x 1_ (4)
P(xym,n) -+
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L ~ -i • ',-n ( n+1- (mn)

where I (n,m) - Incomplete Beta Functions and p -P

Smith has had some success in applying these formulations to the results of
war games.

In Smith's case, these results pertain to human casualties as simulated.
Supposing these to be of primary importance, he suggests the use of p as ameasure to the effectiveness of m over n. Since a measure of military effective-
ness is of great importance in operations research it is of interest to see
whether this approach can be extended to cover situations of greater complexity.

The first difficulty is that of estimating p in practical cases. Formula
(5) offers an apparent method since there the problem is one of a familiar
distribution parameter. H. Weiler in reference 2 provides methods of estimation.
However, this requires that the simulation continue until a side is annihilated.
Except in small-unit cases, this does not occur.

Equation (4) might seem to offer possibilities since it is independent
of the final outcome and might be amendable to the sort of treatment prescribed
for Bernoulli Process in Raffia and Schlaiffer (Reference 3). The details need
to be worked out.

Considerable practical difficulty surrounds the construction of an
experimental plan. Using an existing computerised war gaming model, such as
STAG's LEGION model, a very great variety of initial conditions can be arranged.
If these can be standardized on some basis, the problem might be reduced to one
as shown on the diagram.

,P1

m

/4

n

The space spanned by the m and n axes represents the strength of the m and n
forces. A point in the space such as P, represents a starting point for a
battle. The line leading from P, represents a possible course of battle,
subsequent strengths of the two sides.

If either of Lanchester's "linear" laws were a valid representation of
the process, the straight line leading from P4 would be descriptive. Also,
the initial point chosen, P, would be immaterial mince the laws of all possible
battles would be a family of parallel lines. (Battles, that is, between
opponents with relative effectiveness). In this case, it would be sufficient
to obtain an estimate of p, the slope of the line. A least squares estimate.
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based on all available points would suffice.

However, if the object of the experiment is to study the appropriateness
of the linear, as well as other models, there seems to be no prior reason for
preferring any particular starting point am an experimental tool, since it

might be argued that every P could be associated with a unique locus. Such

considerations would lead to the experimental designs

P1 3

M PI
H 12

Pll

P21 P22

n

Since the quarter space is unbounded, the design is arbitrarily large, not

an encouraging state of affairs.

If, on the other hand, one might suppose that the following condition cannot

reasonably exist.

2

aP

n

Hypothesis: Every point lies on a unique locus of battle (supposing m and n

to be true indices of force).

This suggests the following experimental design

P
2

PI~ P PSr 6p

But mince a axid n are interchangeble myutry would be expected suggesting the
following design:
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LI

P3P4

m

n

A drawback of this design seems to be that in the case of the linear law
or anything similar to it, the design is prejudicial toward starting
points close to the diagonal. To correct this, we might choose something
like:

P
P4P3
P2
P1

The experimental design also requires consideration of the six* of time
interval and number of internals to be followed from each origin.

The foregoing seems to indicate the need for considerable research

using war gaming models to invesuigate the merits of various models

concepts, and develop a methodology for conducting studies using these
models.
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ESTIMATES OF P(Y<X) AND THEIR APPLICATION TO RELIABILITY PROBLEMS
ro1l Dun B LOrIN±i'UU AND VaULn'.ku L"±A ,b'UIk IJA'IA

J.D. Church and Bernard Harris
Mathematics Research Center, U.S. Army

The University of Wisconsin
Madison, Wisconsin

1. Introduction. In this manuscript, we provide a brief summary of two papers,

which will be published in more complete form elsewhere.

We assume that X and Y are independent random variables with

cumulative distribution functions Fx(x) and GYM respectively. The

distribution of Y is assumed to be known and a random sample of n observations

distributed as X is obtained, say X1 , X2,...f Xn The objective is to

estimate P {Y<X)

Two models for this problem are studied. In both models, Fx(x) is

assumed to be an absolutely continuous cumulative distribution function. In

the case of the first model, the values of the random variables X,, X2 9..., Xn

are directly observed and we refer to this as the continuous model. In the second

model, n real numbers, y1, y,. ' n' are selected by the experimenter,

who then only acquires the information Xi <1 or Xi > Yi0 1= , ,..., n,

from his experiment. The case X= y can be ignored, sincoe this is an event

of probability zero as a consequence of the assumption that Fx(x) is absolutely

continuous. This model is referred to as the quantal response model.

In both models we will specifically assume that both X and Y are

normally distributed.
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2. Physical Background of the Problem. Suppose that X is the strength of a

component which is subjected to a stress Y . Then, the component fails

whenever X < Y and there is no failure when Y < X . In addition, the stresses

may be expensive to sample, such as might be the case in missile flights, but

the physical characteristics of the inissile system, such as the propulsive force,

angles of elevation, changes in atmospheric condition, and so on, may all have

known distributions, consequently the distribution of the stresses may be

calculated. Therefore, we have assumed that Gy(y) is known. In addition,

when the distribution of Y is known, this permits estimating P{Y<QX by

* laboratory experiments measuring the strengths of components without recourse to

extensive flight testing.

In view of this physical model, P{Y<K } is the probability that a component

whose strength is distributed by Fx(x) does not fail when subjected to the random

stress Y distributed by G (y) . Thus, it is natural to call P{Y<X) the

reliability of the component and we denote this by R and estimators will be

generally denoted by R.

3. A Summary of Results for the Continuous Model. When X and Y are both

normally distributed, we can take GYM to be the standard normal distribution

(y) . Then,

where 1A and T are the mean and variance of X respectively. Thus a natural ..

choice of estimator for R is
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n n

where X = , X, and s Y- (X.-X)Z. It can b qhnwnthat

" X1 1 
L = -1 "

V-s is asymptotically normally distributed with mean V and

variance

(3) 2 (z)

Thus V is a consistent estimator of ,I/(l+o 2 ) and by continuity, it follows

that R is a consistent estimator of R . From these remarks, one can readily

write down one and two-sided confidence intervals for R as follows:

(4) P{R > 0 (V-_-I(I-y);V), - ,

V < R < ovc~

where ; is obtained from (3) by replacing , a- on the right hand side of

(3) by the estimates X, s , Since 0n (4) and (5) are satisfactory

approximate confidence intervals for R. The asymptotic distribution of R is

given by

(6) PCV u-

4. A Summary of Results for the Quantal Responsa Model. For fixed

yl -s Y? <- .' ' S yn , not all equal, the likelihood function is given by
n y1 g. 71l'uF 1 -l-u

(7) L(&, 2) 0TT (-i Ci-( .) t I!:lu , (yi -u

where u 1 IIf X,: Y, and u = O if Xi > yi, i=, Z, n..n.

Analogously with (2), we propose to use

1422
Here 1 and M are the maximum likelihood estimates of and ar determined

from (7).
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Before stating a theorem on the existence of proper maximum likelihood

estimates of 4, a , that is _00< , <0 and 0 <0 <00, it is worthwhile to

exhibit the type of sample sequences which lead to improper estimates of R and

-. The sample sequence ui, i = 1, 2 ... , n is a collection of n ordered

ones and zeros, which we denote by u . If u = (0, 0, ... , 0) , this means that

no component failed, hence you are lead to conclude that the mean strength is

high (relative to y1, Y2 , ... I Yn) and in fact, the logical estimator .i- is + 0o.

Similarly if u = (1, 1, ... , 1) one is inclined to set ja = -00. Similarly,

if u = (1, 0, 1, 0, ... , 1, 0), the experiment suggests strongly that the

probability of failure does not change as the y's change. In fact, it appears

to be about , independent of the y 's . This should suggest that the variance

is very large and + 1* is the reasonable choice. Finally, the sequence

(0, 0, ... , 0, 1, ..., 1) suggests a very small variance, which it is reasonable

to take to be zero. These degenerate cases do not Invalidate the estimation of

R. In fact all but the last case can be treated as a binomial sample, in that

the probability of failure is essentially constant, that is, independent of

y 1t y2, ... I ,n , and the usual binomial estimates apply. In the last case,

X has a very sharply peaked distribution with almost all its mass located

between the last zero and the first one, and thus R can be readily estimated

since Gy(y) has been assumed known. From these intuitive considerations,

the following theorem is suggested.

Theorem A necessary and sufficient condition that ± and ; be fiLnite is that

the correlation between u and y = (yl, y2 , '' " y) is positive.

Intuitively, this says that the probability of a failure should appear to

increase as the y's increase.
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To obtain the estimates p.and rwe reparametrize by setcinq

w= andw2 Then, Lgiven by replacing p. and o- in
(7) by w,/ w, and l/ w. respectively is a strictly concave function and has

a unique maximumn which can be determined by any of a variety of numerical

methods'. Substituting in Rgives the estimate for R.
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II

DIFFERENCES FOR COUNT DATA l
F.M. Wadley, Consultant

U.S. Army Biological Laboratories
Fort Detrick, Frederick, Maryland

and

C.J. Maloney
Division of Biologics Stgndards

National Institutes of Health, Bethesda, Maryland

Chi-square tests are widely used in testing statistical questions where
an actual computed variance can be compared uith an expected variance defined
on the theory under test. Percentage counts nnd population counts fall in
this class; in the simplest model of each the expected variance is that of the
binomial and Poisson respectively. Chi-square is thus useful for enumerations,
but cannot be used directly for measurement statistics, with no theoretical
expectation for variance. Enumerations arise commonly in measuring biological
populations, in comparing alternative forms of treatment or in comparing
frequencies of accidents or other chance occurrences.

Where the actual internal variance on the model chosen exceeds the
theoretical variance, chi-squa~e tests may show a significance not borne out
by repeated work. Caution must thus be used, Suedecor (1956) shows procedure

in comparing population counts; of making sure the main experimental treatments
do not show significant internal chi-squares between subsamples (thus are
"homogeneous"). The main treatments can then be compared by chi-square. A
quick chi-square test will often be time-saving; if populations do not show
differences by chi-square, they will not show significant differences by any

S test.

While various forms of comparison of variances are carried out as chi-
square tests, the most frequent form is a somewhat approximate tnst of frequency
distributions. An actual distribution of numbers in several classes is compared
with counts expected by some &heory; or two or more sets of classes are compared
to *ee if they differ, with their average serving as the theoretical distribution.
The cioi-square is defined as the sum of ratioa (0-C)2 /C, where C is the calculated
aid 0 the observed number in each class. The test is related' to Poisson
expectation.

Holt4 et al (1967) have recently published an article on numbers required
for chi-square tests in forest insect work. They show formulae for estimating
the numbera which would bring a non-siguificant chi-square to significance if
the difference already found held up in further sampling. Examples used include
a comparison of actual frequencies to a negative binomial, and a 2 X 2 comparison
of sex differences in response to two attractants. Both are on insect data, and
both are suited to use of "two-tail" probabilities. "One-tail" odd. are adapted
where the interest is only in a difference in one direction.
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It would seem of more value to attempt to define numbers to detect a real
difference of a Siven size, If present, than to define numbers which would make
a certain observed difference significant. With greatly enlarged numbers
almost any trifling difference will test as significant. A useful aim is to
define numbers which will practically ensure detection of any important difference,
but will not waste effort in detecting unimportant differences. The level of
difference to be regarded as "unimportant" will depend on the experimental
problem.

A set of counts (Fleming & Baker2 , 1936) of Japanese beetle larvae on
individual squarq feet is available for study. Two areas of 375 square feet
each were defined, which seemed fairly homogeneous. The total count for each

area yielded averages of almost exactly 3 and 5 larvae per square foot
respectively.

Random samples of ten individual square feet were taken in each area.
Sample means were 2.9 and 4.9, with variances of 4 to 6. Chi-squaze between
the two totals was about 5, definitely significant at 5Z. In the Poisson the

variance equals the mean. Hence, in the plot with a population mean infestation
of 3 larvae per square foot, the variance will also be 3 in the absence of
additional factors inflating the variance, and the 5 per square foot plots will
have a variance of 5. Use of these theoretical Poisson errors in a t test
yielded a t of about 2.2, corresponding well to the equivalent chi-square tast.
In this case 10 unite of each were sufficient to show the observed difference
to be significant. This observed difference is very close to the true difference
In this case.

In further study, 20 samples of 7 units each were taken from each population.
Each sample was later expanded to 10, next to 12 and then to 26 units. Chi-
squares were calculated between the 20 pairs of samples in each case.

TABLE I

RESULTS OF TESTS

No. of Units
Nper some Number oZ Chi-squares

Significant Non-siznificant Marginal

7 11 8 1
10 14 5 1
12 16 4 0
26 19 1 0

The 7-unit samples are evidently near the level at which half will be

significant. With 7 pairs o± unitb, one from the 3 per square foot population,
one from the 5, the expected total will be 21 + 35 - 56 larvae. Using the
expected Poissou variance., the variance of the difference of the sample totals
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will also be approximately 56. On an individual squsre font basis this becomes
8; on a basis of means of 7 units, 1.14 (Snedecor, section 3.6). Actually,
8 square foot counts per sample meet the half significance level in theory.

As the observed results of Table I show, the number of significant chi--Y
squares varies as the number of square foot units per sample does. If we wish
to be quite sure to detect a difference as large as 2 larvae per square foot
in the rate of infestation it will be necessary to sample a large number of
units. The situation is diagramed below.

0 X diI

In a given but very large sample from two populations whose two counts
differ by d units, the observed difference, x, will be held close to the true
value, d, with high probability. At the same time, a test of signifibinca
evaluates the departure of x from zero, also with high probability since the
sample is large. Reversing the argument, we may choose the significonce test
probability level and also the probability level that x will be sufficiently
large to show significant departure from zero and then calculate how large
the sample must be. There is only one chance process involved--not two, one
with a true differes,ce d and one with zero difference. It is postulatei th&t
a true difference of d exists, so this is the one real chance process that
yields the observed value of x. The role of the test of eignificanco for zero
difference is solely to determine by bow large an interval the observed chance
variable x can fall short of the population mean d and yet yield a decision of
significance against the null hypothesis. Thus, in the actual experiment, that
value of sample size N is sought which ensures that the observed difference
will fall in the interval from d-x to infinity with the chosen probability.

The distribution of the difference of two Poisson variables when a true
difference exits is compl3x. 3 s5 But in most cases the normal approximation
will be entirely adequate and here the existence of a true difference does not
disturb the normality of the distribution. If, for example, a 95% confidence
level is chosen that, if a true difference of d units exists, the null hypothesis
will be rejected, then the value of N is so chosen that in only 5% of the trials,
the obberved difference will fall to the left of x in the diagram. The test
is hence a one-tailed test. The usual test becomes

x I - 2 d - x
1 0 2 - (1)

Sd Sd

where ;I and 32 are the means of the samples from the two areas in the field

being compared. d - 2 is the population difference we wish to detect. The
value of x is set by che null test significance level, as follows. If the usual
5% level is chosen, then

x 1 -x 2  x
t 2 - Sd (2)
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will be the t calculated on the null hypothesis. x is the observed difference
in sample means.

Hence x t S
2 d

From the diagram it is seen that from (1) and (2)

d - x + x - t1 
8 d + t2 Sd

(3)
or d -t 1 + t2)S d

The null hypothesis test of significance will be referred to standard t tables.
At the 5% two-tailed level of significance and infinite degrees of freedom
t05 a 1.96. But the t tables aru two-tailed, whereas what is wanted is a

onse-tailed level of performance (only too small an observed x will be judged
nonsignificant). Since the t distribution is symmetric, the value taken from
the tables at the 10% level is the 5% level for a oue-tailed test. This value
is 1.64. Substituting these values in equation (3) gives

2 a (1.96 + 1.64) 8d

or Sd- 2 + 3.6 - 0.56 (4)

This leads to a needed variance of (0.56) - 0.31 to be fairly sure (95%) of
detecting a difference at a 5% sign~ificance level.

The discussion above is an elaboration of the argument of Cochran1

(Appendix to Ladell, 1938). This treatment is reproduced in Cochran and Cox
for both one-tail and two-tail tests and with 80, 90, and 95% confidence that
the hypothesized true per cent treatment difference will yield a significant
test against the null hypothesis.

It remains to apply this result to our data to determine the size of the
sample needed to diqcriminate between two areas, one infested at a rate of 3
larvae per square foot and one at a rate of 5 larvae per square foot. If
equal numbers of one square foot units, sampled from each of the areas to be
compared for level of infestation, are examined, then the theoretical variance
of the difference between the means is:

V(d) - I
N

(Snedecor, section 7.10)

Ml + M2M1 + 2  3 +5 8or N = V-d w 26 (5)
or N- 0.31 0.31 2

That is, if we wish to discriminate between two fields where one has an
infestation rate of 3 larvae per square foot and the other 5 larvae per square
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foot, then 26 square feet will have to be examined for each. Of course, the
usual requirements for a random selection of the 26 units from the total area
of each field will have to be observed.

Practical workers will often have a good idea of the level of infestation
economically acceptable, and how much larger the infestation must be to make
treatment application worthwhile. Hence, the above approach should often prove
useful.

If, however, the infestation rate is taken as derived solely on the basis
of a preliminary trial, the formula can be modified to employ the estimated
variance from the preliminary trial. This might well be indicated if the.
investigator felt doubtful about accepting the applicability of the Poisson
variance in his work. Suppose a sample of 7 square foot units distributed at
random over each of the two areas is taken and that (the Poisson distribution
being applicable, as proved true in Fleming and Baker's data) the observed
variance of the difference turned out to be 1.14. What is desired is the mine
of trial needed to discriminate a difference of 2 larvae par square foot in the
infestation rate of the two areas. A basic formula is that the variance of a
mean is inversely proportional to the number of units in that mean (Snedecor,
section 3.6)

N1V( I ) - N 2V(62) - Constant, (6)

where 31 is the mean of Nl units and ;2 is the mean of N2 units from the same

basic population.

Hence 12 - 7(1.14) * (0.31) w 26. (7)

The answer in (7) is the same as that in (5) since, the Poisson formula applies
in practice. The approach represented by formula (6) is general, however.

It is only because the t-test applies both to equation (1) and equation
(2) that it could be used for both. In the general case (for non-normal base
distributions) equation (2) would be referred to the non-central form of the
applicable distribution.

Further, in the example we used, we only wanted a one-sided test, since
we specified which population would be larger, if one were. If instead we
had only wished to determine whether the fields could be considered equally
infested, and decided that such a conclusion would be acceptable unless the
infestation differed by at least two larvae per square foot, the t-probability
would be used for 5% significance to accommodate a difference in either
direction. Actually of course a reference to the normal table might well be
more convenient, where the one-tailed probability for 2.5% would be used to
obtain 95% confidence that a true difference of 2 larvae would be detected,
where either field could be the more heavily infested.

The theory is verified in Table I by the outcome with 26 units per sample;
the 95% expectation is met more exactly than usual. If a smaller difference
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is to be detected, a larger number per sample needed can be defined as is done
~.. a _"U t can be detecced by smaier sampie&. The ditterence
to be detected mLL be equated to 3 .60Sd (with the selected probability levels).

The general l1.a' of population per unit must be approximately known or some
preliminary information is needed, perhaps from partial samples because, in
the Poisson, the variance is equal to the mean.

The procedure is then to define approximately the level of population
and theoretical variance from preliminary samples, The difference to be detected
must be specified. This difference is then equated to 3.6 times the needed
standard error. With the variance of the mean thus defined, numbers can be
specified to yield this variance, and to give high confidence of detection of
the specified difference. Numbers are over three times as great as are required
for 50% confidence of detection, and still higher for higher confidence levels.

In addition to the comparison of two Poisson -ounts_ discussed in detail
above, count data arises in the comparison of percentages and4-n contingency
tables. Paulson and Wallace8 (1947) treat the case of choosing i sample size
for the comparison of two percentages. Przyborowski and Wilenski9 show that
when the percentage of successes in each of two series is small compared to the
number of observations in each series, the successes alone can be analyzed as
if they were observations on a binomial variate, and that the latter provides
an exact test for the ratio of parameters from two independent Poisson trials.
Hoe 7 (1945), however, showed that an exact test should rarely be needed The
power function for 2 X 2 tables was discussed by Pearson and Merrington.11
Clark and Downie1 2 (1966) provided charts for determining sample sizes for
discriminating two proportions at the 50, 80, and 95% probability level. Bennett
and HeulO (1960) give the power function for the exact test for the 2 X 2 table.
Halperin, Rogot, Gurian and Edererl3 have prepared tables from which sample
sizes required for comparative trials of two forms of repeated treatments can
be determined. While intended for medical trials, it is possible that their
results could be applied to a situation involving, say, periodic maintenance,
or to perennial crop culture or to a regimen for the maintenance of field
fertility.
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ON A STATISTICALLY CONSISTENT ESTIMATE
OF AN AVERAGE RESPONSE FUNCTION

G.Wo Evans II
University of Santa Clara and Stanford Research Institute

and
R.C. McCarty
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Menlo Park, California

ABSTRACT. A rule for selecting runs in a sensitivity test and a

method for analyzing the experimental reuults from those runs are

presented in this paper. The analysis techniques provide confidence

bond expeimeti le ayseieswhc r dnia noa

INTRODUCTON. A binomial (or Bernoulli) experiment i one involvius

the observations of a r andom variable which represents the outcomen of

xperimentbal runs. The outcoe of a run has only two attributes whiche
ilae referred to as Ao and no-go or am success and failure. A class of

elbinomial experiments, refs-trod to as sensitivity tests, may be described

', as having the following properties.

II1. The experiment involves many specimens which are identical insofar

, as the experimenter can distinguish.

i 2. During the experiment, each specimen is subjeacted to a stimulus

which is controlled and measurable.. This is a run of the experiment.

3. After the specimen has been subjected to the known stimulus, it is

observed to be in cite or the other of the two ,possible outcome states.

4. No specimen is subjected to a stimulus more than once.

The remainder of this article was reproduced photographically from the

author's copy.
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The object of a sensitivity test is tn determine the proba-

bility, as a function of the applied stimulus, that a specimen will

be in one of the two outcome atates. We emphasize that, in a sen-

uitivity test, a known amount of stimulus is applied, and then the

outcome is observed. There is another class of experiments, called

tests to destruction, which may be related to and are often con-

fusod with sbnsitivity tnsts. In tests Lo destruction, the applied

stimulus is measured that causes the specimen to reach a prescribed

state. This is basically a different type of experiment from a sen-

sitivity test even though the prescribed state of the specimen may

be labeled success and all other states labeled failuro, Thus, the

outcome state is known for each run and the random variable is the

amount of stimulus required to reach that state. Tests to destruction

are not binomial experiments since the observed random variable in

such experiments usually possesses a continuum of values. In a test

to destruction, one may ioek the density function f(i) for the random

variable T (the stimulus); and, if there is an equivalent sensitivity

test, in which one obtains an estimate for the probability of success

p(T) as a function of the amount of stimulus) then the following re-

lation exists

p(T) ft)t.
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However, given only experimental data for p(T) acquired from a sen-

sitivity test, no confidence can be stated for relating a density

function to the parameter T by trying to consider it to be the random

variable of a test to destruction. The reason for mentioning tests

to destruction is to warn the experimenter that analysis techniques

developed for them, those which assume a distribution for the stim-

ulus, are not directly applicable to sensitivity tests.

Often :n experiment can only be performed as a sensitivity test;

and even when it can be performed either as a sensitivity test or as

a test to destruction, sensitivity testing is chosen for reasons of

economy and expediency. For this reason, this paper is devoted to

developing a rule for selecting runs in a sensitivity test and to an

associated method of analysis.

Definitions and Notation. In a sensitivity test, an amount of stim-

ulus T is applied to the k-th specimen and the outcome
k

T(T k) is observed whore J(T k) can assume either the value 1, referred

to as go, or the value 0, referred to as ic-gq. More specifically,

we assume that there is a sequence 'of I values of stimulus T such that

To < T, < T2 
< 

d < TI 1

For each value T,, 0 i 1-1 Ni runs are performed, and

1-1

N Ni ()
i=O
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is the total number of runs for tbe s0.nsiti:ity test. Thus

) {0 for no-go (2)
T I for go

is the outcome of the J-th run, 1 & j N, for T=I'i. The number of

go's, nN(T) runs or I=T is given by

1 ji i
Ni

n Ni(T i E T 1,). (3)

The probability of 0 for T=T 1 is designated by p(T1 ), 0 < p(T) g 1;

and the expected number of go's for T=T given N runs is

E[nN (TI)] = Nip(Ti). (4)

An estimate of the probability of o N1), for p(Ti) is given by

n.(T N1p(T) E= 1i= 1 ll(T,). (5)

The standard deviation for the number of go's N (Ti) when perrorming

N runs is

a[n~i('r)J= ( NP( Ti)Ll-p( )J (6)

and is estimated by

aJ ( NiP (TI ) l- N (TiJ (7)
N iN i 1 N T7. 7

An estimate for the accuracy of Ni(T i) is obtained by knowing

that the standardized variable
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n. (T ) i)p(T i )
±z

a[n ('i )]T

is asymptotically normal for large N1 when n (T ) is a binomial

random variable. Thus, the cumulative probability P is approximated

by by n i( Tl  N p(T -2/
a[nb (T i )/T k e

or

P P(i)- -p < an (') }( "(T]k '; 8-T"/2dT (a)

k' a~nl (% )] is the confidence bound for the absolute difference ofgi

p(,r) and (r); and the right side of Eq. (8) is the confidence

(limit) with which the bound holds. Since there is no way of deter-

mining anN (T±) from experimental data, Eq. (8) is approximated by

A"k pTni(r S1 k 0-T/'/

A

where the not-tion P implies that an estimated confidence bound has

replaced the confidence bound in P. The value of k is determined by

aetting P equal to the desired level of confidence, say 0.95, and solv-

ing

1 k e-Td/2f e dT P
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for k. Usually, when i N Ti)j is usd in place of an (i

the Student T distribution is considered more appropriate for the

right side of Eq. (9), and the confidence bound is enlarged to ac-

comodate for the uncertainty involved from not knowing Co. However,

for purposes of presentation, we use the normal distribution approxi-

mation for the asymptotic property of the binomial random variable.

Using the probability of go p(T), the average of the probability

of . over a 2T interval of T, centered at T=T, is difined as

fTi-+T

i J.

Let N experimental runs be performed at each value

T IT + mA

where m = M,..,-1PQl...M and Ai f T/M, then an estimate for the

average probability is given by

A M M N

PMNI(T(T
(12)

Xn the partioular case when NJ= 1,

AAM
M(T,) = ('r j.jjZ I' (13)

i =PM, ( M m-M' i+m

where ('i ) = TI('i An equation similar to Eq, () can be de-

rived for the confidence and confidence bound for the absolute dif-

ference of .5(rT i) and M(TI). Define
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i.4

Min M(,r )- (r m) (14)
M= -M

then

a: Cn- ): = T (2M+1$M((1)[1 M(T,)3; (15)

and

P { T ---T PR I( .)( } = CFfn _ rf/2dT

Thus, in a sensitivity test one performs runs at various levels

of the sti,,*ulus T end observes the outcome (T), as defined in Eq. (2),

for each run. From the outcomes, one calculates statistics such as

n~ (T i) of Eq. (3) or nM(I) of Eq. (14) and then makes estimates for

the probability of go pN (,rI) using Eq. (5) or the average probability

of go pM('i) using Eq. (13). Finally, one makes estimates of the error

involved in these probabilities using Eq.. (9) or (16). When one fol-

lows the procedure that uses Eqs. (3), (5), and (9), he is following

an experimental design referred to as the Probit method. In following

this method, when evaluating p (T1 ) for

Ti = 'o + i AT, 0 1 I-1,

and when using N1 = 2M+1 for all i, the total number of runs is (2hM+1)I.

We present a method that uses Eqs. (13), (14)-and (16) which requires

2M+I runs at

Ti To + iM, -. AI T I : I+M-1.
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A Selection Rule. In every sensitivity test, the experimenter pos-

sesses either explicit or implicit information about the upper and

lower values, T U and T L, of the stimulur he will use in the experi-

ment and about the spacing AT between values of T at which he de-

sires estimates for the probability of go p(T). The values of TU)

TL and AT are determined by previous knowledge about the specimen,

by the total amount of time that can be devoted to the experiment,

by the experimental eqiiipment or some combination of these. For

example, AT may be determined by the ability to measure the stimulus.

T is always greater than or equal to zero, and T might be deter-

mined through the rationale that if it exceeds a prespecified amount

then the specimen is no longer of experimental interest. We assume

then that the values of TU, T L and AT are explicitly specified. In

addition) the experimenter must specify the confidence P and the con-

fiedence bound

b a -aCnN (T,)]

±for Ip(r± - iN i) or

2 Cnf (T (17)

for I (T1 ) - pM(Ti)1. Although the experimenter sometimes has addi-

tional information that greatly simplifies the selection of experl-

mental runs, he is often faced with only the information that 0

p() S I for T in an interval of length D(T) !i T - T and that this

interval lies in CTLTU. The exact length of D(T) and where it is
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r.'- not Known. The experimenter desires (T

for those r 's where

AA

b ; -pN(T i 1-b

or p () for those T Ps where

5 PM(Ti) 15

The object of the run selection rule is to acquire as much in-

formation as is possible about the value of T=T* such that ;T(T* ) = 1

and to remove from further consideration those values of T for which

;T(-) --A 1 or ;,(,r) - 0, In the following description we will assume

that the experimenter has chosen his measure of the stimulus so that

p(T) will be a monotonically increasing !unction of T. This is an

assumption since, in general, there is no guarantee that p(7) is mono-

tonic for any choice of .

To obtain a selection rule we desire to have a confidence P in

the selection of the interval of T which contains p(T*) * j. For

purposes of presentation, we use n specific value of P., namely, P.
A estimated

0.90. From PS, we determine theAconfidence bound bS as a function of

the sample size N as follows. Set

A 1 k e'T=/2d =0
PS -k

which implies that k A 1.65. Since

k
b S =  

S
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and sinco

~T

then the maximum value of occurs when a. takes on its maximum .;

vlue which is when PT(T) =

max i

Therefore a) )

-k 1 0.825 (s

Next, we determine the minimum value of NS so that the observation

A
from that sample size permit estimates pM(T) which prohibit (T)

froem assmig the value 1 with confidence Thus - < 0.25 for

some value of N8 f Setting ax w 0.25 and solving Eq. (10) for N.J

we obtain

Chosig 8 *ii~N (0.825)/(0.25)2 10.99

11give.s . 0,249 and 0.4
max1.

Therefore for N1 - 1, 01 TP ) < i for 0 5: -1 andp,',rr> for

From the preceding inequalities we see that the following run

selection rule is feasible. First set

T U L

and perform N (o) = 12 runs for
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S(0) T, + .A 1. 0,,.., 11 -( -

Let the outcomes of these runs be designated by J(t(0)). It these

r, outcomes do not include 7(T, (0 ) -,0 and (T 1 (0)) = 1, the experi-

menter should reconsider his experiment. Therefore, assume Tl(e0°))

= 0 and 1f(r11,)) = 1 in the remainder of this discussion. If ten

or more sequential outcomes are identical and one of these is at the

end value T0(0 ) or T1 1(), then remove that end value from further

consideratioiA. Next, choose values of T that are midway between the

consecutive values of T. 0
) and perform runs at these valueS Of To

Now, we possess outcomes for values of T for

() To() + iLr, i = O,,2,..., N ( I)-I

where

r T 1o)was not
TOW 0 Tf T() was } discarded,

and

N 31i ne3ither a nd value ol Tr (0) was discarded.

Again, check to see if there'are ten or more sequential J(T1 ) that

are alike where one of these (T is either I(T 0o()) or ( .(T1) )

If there are, remove from further consideration all but the nine iden-

tical (T()) which are next to an opposite outcome. Next, choosetia

new values of I' that are midway between the consecutive values of the

Ti () that were saved and make runs at these values of r. Now, we pON,

sees outcomes at
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Fj
T() T.(2) + iAT,, i=O,1,...,N8 (m)-l

where
AT, ~t
2 '

Check to see if there are ten or more sequential J(T (2) ) that are

identical and remove from further consideration all but the nine

which are next to an opposite outcome. This procedure of setting AT
t

ATt-1 /2, performing additional runs and casting out all but nine of

the identical sequential values of (Tt) is continued until
I

t

it one is planning to use the Probit method of analysis. For the

method of analysis described in the next section the stopping rule

is somewhat more complex and is given in that section.

A Method of Ana yia. This method of analysis is designed primarily

to acquire estimates p~r)for the average probability of go PT(T±)

and secondarily for an approximation p(T) for the probability of go

p(T), From the desired confidenoe P and confidenoe bound b, the value

of M is determined by first choosing k nuuh that

i~ -TS/2dT .

and, then, choosing M to be the smallest integer greater than or equal

to M' where

2M +1 '+)4

or

I k
s  I

2
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Assume now that for the specified values of 7, T L, TU and AT,

that the run selection rule has provided a set of outcomes ('r )

where

T= + iAT, - M - i - I + M-I

I Z' 1, and T.M = TC(t) from the solection rule. Using these values

of iT (r ), pM(T i ) is calculated b Eq. (13) for each 1, 0 : i : I-I.

The stopping rule for the selection rule when obtaining esti-

mates "pM(I) for the average probability of go T(T±) always con-

siders the requirement fur 2M+I outcomes TI(T) for equully spaced,

sequential values of T i with separation AT. Thus, if for any integer

t where At= a > AT, one can satisfy the two conditions:
t2

1. AT !AT and AT > ATt+p t~p- 1

and

2. N S(t+p) a 2M+4I and N < 2M+I

for some positive integer p where

iS ( t + p ) - 2PNs(t) - 2p + 1,

then one no longor removes identical outco aoS from further considera-

tion but per:rnrms runs at those values

Ti (t+P) . To ( t ) + iATt+p, i=O 1 ),.., (t+P)-I

for which rins have not already boon performed. If these conditions

are not soti.-fied then tho procedure is torminatod in the same manner

as for the Piobit method.
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From the I values of pT 4), a piece-wise linear approximation

p(T),

0r  for 0 < T < TT T

(I-) _ for' 71 (19)

for T > T J

is calculsated for p(T). This linear approximation is acquired by a

- least square fit of pM('i d

PIA-) 
-M

p (, -- Y ('r' i 0 <: 1 9 I-1,
m 2M+ 1 i+M°

A

to The least square procedure is to choose the value of i,

say'i=j, where p() T - and set T =T And T 0 =T Then
.1i 2' J-0 j+o,

0 for i < J-

p " - for ,-c Js 4+C
r r T - C1 for i > J+c

and p (' in calculated am

Mu-.pKOJ ( T i M-+ (Ti+m ,  o r. 1 1 -1.

Nexts calculate

C(c) - M - 1

for the admissible values of i, and then calculate

imO

fy performing these calculations for u 1,2,3,.,., a sequence
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j i .1

is generated, and the desired p (T) curvo is acquired from the choice

C of c which minimizes S " i.e.,

S cf Min{s (c))

The preceding calculations arc now repeated by replacing j by J+p

to obtain a sequence of minimized S p for p = 0,:I,±2,..., i e.)
J+P

Tho optimum solution for p(T) is that p J (T) for which p minimizes

the prc-ceding sequence,
I

Statistical Considerations. trhe statement of Eq. (16) is based on

the assumptions that (T) is the probability of a "inomial random

variable givon that p(T) is the probability of . binominl random vanr-
able and that p Mi) is a consistent- estimator of T"T)' To show that

T ( 1 ) is +he probability of a binomial random variable we need only

show that
T(,) I lf i+T" q(t)dt = 1- TT,)

T.T-T

where q(t) =l-p(t). Since

T(T) = 2 Ti-T p(t)dt

1 1 _S~j+TP~tid -Tthen

JT+ d L S .'jIiT ST1J+T p(t)dt
2Ti-T 2 -T i-T 2 T 4 -T
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I Ti+T  +T (T+iTi+ [1-p(t).]dt TiT q(t)dt q (Ti).
T - 2T T C T iT1 -T Ti-T

To show that pM(-ri) is a consistent estimator of pT(TI) we show

that PMN(T1 ), as defined by Eq. (12) with N replacing N , is a con-

sistent cstimator of

1 a _ T( i (T d' ( )
2Mi-l, p i+m 2T S T~d T (Tm=--M T CT

and by assuming that

a. p(T) is contiruous in T

a. p(r") - p(I') for all T T '

c. T > 0 is finite and AT T/M

d. p(O) = 0 and there exiats a T < < 

such that p(TU)=1

The expected value pM (T ) satisfies
MNi [,(i j "P( )

m E PM N i T i

for fixed T. Furthermore, for IV=0

- Em O,N(T i p(T 1,

and for 1.-1,
Lim A[P(T )] Fr )
M "_ Mi PTi(T

Thus, to sho.v consistency, we must still show that the variance of

PNNT i/ can be made sufficiently small by appropriate choices of M
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and N. To simplify notatiun, define

M
A r } (T +)

M=-M
then

-% 1 N

PM,N(Ti) NM+ 1 A

and
a2 i 1rL N 2 N

__2~l A j y,~ 2 [. N2I A 2
L N(2M+.1) N-J[ 1 h.

jJ=I 
jl

First consider the term

1 N 1 I N E[A]E E Aj ( 1 EEA71 J=1 =j=1 = 2M + I

then

2[ 1 N E'2 Aj
E Aj 1')

N7M+7j=1 j (4

Next consider

r 1  N ]1_jfF I N jN

EtI2M.i- JA Y1t N(2 1) j (M4Sj= J -.. - j=1 J=l

1 2 N N N
L -r7iy J= ][ =1(A2

) k+ E jZkA ]
k~j

= ( 2M.1 )2[ffAi k E(A)
=_ N' 11 E2

N + "NL

Thus

N 2

a2[ N2 1.1 Aj ~ ~ ~' E(A2 E- (
2M+1 11 , J

Now consider

ELA ) MM ME(-M L[ J (T+m = ~ (im) Z P(Tlm

m,-M m=-M j i+m =-M
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However, for p(T) continuous and monotonic,

M

M=-M im

where I-M !5 T*:r T iMand E2(A) (2NI+1) 2 p2('r 4").

The terin E(A~j) is evaluated as follows

m~M

F.A - Ej (T M) TI

E E 1 2 (T ) + T (T)
M=-M i~m M=-M J i+m n=-_M J n

n~fm
M M NI

-E P(T) + p(T*) E E p(r
M=-M I+Mm=-M n=-M ji~)

ngim

;since E[2( P(Ti) and 1 = 2M+J.. Write

NI M M
E E P(T )=2M E p('r ) 2M(2M+l)p(T*'),
s~-Mn=M i+n uM I+m
ngm

and
E(A A) =(2W1.1)p(T*) + 2M(2M+I)p2(T*)

Thus E(A2) E2(A ) (2M+1)[p(T"~) - p2(Tr)]

and

= ( ~ (~ )p(T*)[1-p(T*)]
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Finally, then, for any fixed value of M, 0 -' M <

oL i m  1 N
o 2  Z. Aj 0.

and, similarly, for any fixed value of N, I N N <

-'L i m  I N
So l L AJ =0.

These last two st~temnents show thRt for M=O,

Q1 ) N

J-=I

is a consistent estimator of p(T i), and that for N=l and for a fixed

value of T, 0 < T<

M
M .M+l (i+m)

is a consistent estimator of PT(T±).
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DESIGNS OF EXPERIMENTS AS TELESCOPING

SEQUENCES OF BLOCKS

Arthur G. Holms
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio

ABSTRACT, Sequencies of orthogonally blocked statistical designs
of experiments are presented for optimum seeking. The sequences are
such that observations froni the first block can be used to estimate the co-
efficients of a sirrple ;nodel and then be retained and combined with obser-
vations from new blocks so that ail acquired observations are used cumu-
latively to estimate models of sucressively greater generality. Such
blocks are said to form a "telescoping" sequence. Specific choices were
motivated by the problem of optimum seeking experiments in alloy devel-
opment.

The designs consist of full and fractionally replica.ted two-level fac-
torial experiments with four to eight factors. The sizes of the experiments
include 8, 16, 32, and 64 treatmerts.

INTRODUCTION. Optimum seeking experiments have been conducted
by NASA in developing improved engine materials 'or the supersonic trans-
port. The use of the designs pre.ented herewith for optimum seeking has
been discussed in reference 1. In addition to optimum seeking, the designs
could be used in many situations where the experimenting begins without
prior knowledge of the complexity needed for the rrodel.

The designs consist of two level fractional factorial experiments
performed as sequences of blocks. The designs are to be such that the
first block will be a small fraction of the full factorial, but.large enough
for estimating the parameters 6f a first degree model, Successive blocks

are to be such that all acquired data can be usezd cumulatively to estimate
models of successively greater generality, with block effects being un-
correlated with the parameter estimates. The sequences terminate in
designs that give estimates of first degree and two factor interaction co-
efficients and the estimates are free of aliases with other second degree
or lower order coefficients. Without considering blocking, Steve Webb
in reference 2 applied the terms expansible and contractible to related
sequences of designs.

Sequences of regular fractions were discussed in reference 3 by
Cuthbert Daniel. Sequences of irregular fractions were discussed by

This National Aeronautics ard Space Administration Technical Memorandum
X-52374 has been reproduced photographically.
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Peter John in reference 4. The general subject was explored further
by Sidney Adelman in reference 5.

Box and Hunter in reference 6 recoi-nmended thc uqe of sequences
of rotatable orthogonally blocked designs for optimum aeeking. These
properties require that the fractions be regular fractions, that is, the
number of treatments is I/2h times the number of treatments in a full
factorial experiment, where h is an integer. The designs to be pre-
sented are all regular fractions.

SYMBOLS.

b number of blocks

E() value of () if averaged over infinite number of observations

g number of independent variables (factors)

h fractional replicate contains 1 2 h times number of treatments
performed in full two-level factorial experiment

i index number for trials

j, k index number for independent variables

A g-h

R resolution level

Xj vector giving levels of xij, i 1. .... n

xij standardized level of t j

y response (observed variate)

unknown population parameter

Eerror

independent variable, j = 1, .... g

,2 variance of E
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SIZES OF ,,XPE-.IMENTS.

Degrees of Freedom for Lack of Fit. Consider the fitting of a

model equation to a 23 full factorial experiment. The appropriate equa-
tion is as follows:

E(Y) P 0 + P1xl + P2 x 2 
+ P3 x 3 + P12xlx 2 + P 1 3xlx 3

+ P2 3 x 2 x 3 + P123xlx2x 3  (1)

The equation ilustrates the notation. Main effects are designated by
symbols such as PI and P2. Two factor interactions are represented
by symbols such as The independent variates are represented Dy
lower case symbols such as x 1 and x2 .

The number of treatments minus the number of parameters esti-
mated is the degrees of freedom for lack of fit. The 23 experiment con-
tains 8 treatments, but the optimum seeking begins with a first degree
equation containing only four parameters, leaving four degrees of free-
dom for lack of fit. The final stage of optimum seeking includes the two
factor interactions so that only one degree of freedom would remain for
lack of fit (eq. (1)).

Some information on the lack of fit is always desirable. The de-
grees of freedom for lack of fit of the designs to be presented vary from
0 to 35, and designs are provided for numbers of factors varying from 4

to 8. With 9 factors the use of a regular fraction requires 128 treatments
of which 66 represent degrees of freedom for lack of fit. In other words,
an insistence on the use of regular fractions does not seem to be unduly
extravagant unless there are 9 or more factors. The use of irregular
fractions seems to be appropriate in situations involving 9 or more fac-
tors or for lesser numbers of factors, where the experimenting is very
expensive, and where the relative error is known to be small.

Resolution Levels. The factorial experiment with conditions fixed
at just two levels of g independent variables (factors) permits the esti-
mation of parameters representing the grand mean over the experiment,
the first-order effects of the factors, and the results of factors interact-
ing two at a time, three at a time, and in all combinations up to g at a
time. If a fraction 1 / 2 h of this experiment is performed, not all these
parameters can be estimated. True response functions in physical in-
vestigations are typically smooth enough that the higher order coefficients
of an approximating polynomial may be assumed to be negligible over a
small enough range of the experimentation. Accordingly, only the lower
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order coefficients need be estimated; however, they are allowed to be

biased by (aliased with) cefeficients of higher order inefractiuns because
such coefficients are assumed to be negligible.

Let the number of factors in the highest order interaction requiring
estimation be e, and let the number of factors in the lowest order inter-
action with which it is allowed to be aliased be c; then the required reso-
lution R of the destgn is defined (ref. 7) to be

.= e+ c

As a minimum requirement on the first-,order experiments, the
coefficients will be allowed to be aliased with only the coefficients of two-
factor or higher order interacticns. This requires that R = e+ c = 1+ Z = 3,
A somewhat improved design occurs if the first-order coefficients are
estimated clear of two-factor interactions. This requires that
R =e + c= I 3 =4.

For the interaction experiments, the estimates of two factor inter-
action coefficients should be allowed to be aliased only with higher order
interaction coefficients. This requires that R = e + c = 2 + 3 = 5.

The design of the interaction experiment (of resolution 5) is now
specified to be blocked into b blocks such that any one block will provide
a design of resolution 3 for the first-degree model. As a consequence of
this requirement, the experimenter may switch at any time from the
method of steepest ascekts to the method of local exploration by complet-
ing the b - 1 uncompleted blocks of the resolution 5 experiment,

Occasions could arise in which the experimenter would not wish to
proceed immediately from a minimum-size firstdegree design to the de-
sign for estimating all interaction coefficients. For example, a design
of only eight treatments hardly provides enough information to test the
validity of the first-degree model. The pee'formance of a second block of
eight treatments could lead to a much better decision. Also, the experi-
menter may have prior knowledge that certain interactions are negligible
so that he can stop short of the experiment that estimates all two-factor
intera.:tions. For these reasons, the designs and parameter estimates
are given for such intermediate size experiments.

Numbers of Factors and Block Sizes. The assumption was made
that a sequence of blocks should not terminate in a total experiment that
contained less than 16 treatments, that is, the assumption was made that
a completed experiment containing less than 16 experimental units is too
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smailfor any statistical assessment of validity. With 16 t3ibatments, the
smallest number of factors in the (efficient) unreplicated experiment is

four, and therefore no designs were investigated having less than four

independent variables.

As was shown in reference 3, the degrees of freedom efficiency of
regular fractions of two level factorial experiments of resolution 5 be-
comes and remains poor, and the experiment sizes become enormous', if
the number of factors exceeds 8. The investigation was therefore limited

to 4, 5, 6, 7, and 8 factors.

The regular fractional factorial first degree experiment on four
factors requires a minimum of 8 treatments, whereas the regular frac-
tional factorial first degree experiment with eight factors require a a
minimum of 16 treatments. Correspondingly, the sizes of the blocks are
limited to 8 and 16 treatments.

So that the experimenter will always get results on his "standard
conditions" first, the principal block will always be given as the first

block.

CONSTRUCTION OF DESIGNS AND ESTIMATES OF PARAMETERS.

Defining Contrasts. The mixed usage of Yated notation for treat-
ments and the special notation of the present work is illustrated by

table 1, The treatments are listed in the familiar Yates' notation and
Yates' order in the first column. The resulting dependent variates are

listed in the corresponding order in the second column. Lower case
symbols like xl, had been used for the independent variates. The full
set of levels of such a variate is a column vector of plus and minus ones
and is represented by the corresponding upper case symbol as shown by
the column headings. A column heading showing a product means that

elements from identical rows have been multiplied to produce a new
column with the same number of rows.

This rulk of multiplication leads to such relations as

(XlX 2 )(X2X 3X) = X1X0X3X4 = X1 X3X4

These operations are similar to the more popular terminology in which:

(AB)(BCD) = AICD = ACD

The present usage of symbols such as P0, P12' X0 ' XiX2 avoids

such ambiguities as I standing for both the grand mean and the identity

vector, and AB standing for both the interaction parameter Piz and
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the contras" vector XlX 2 .

The general rules for sequer.ces of blocked designs were given in
reference 3. Given now are rules that are much more narrowly stated.
The purpose of the narrow statement is to quickly and easily arrive ;,.t
a list of treatments and aliased parameters that will be in Yates' order
Thus, if the responses are listed in Yates' order then Yates' computa-
tional procedure will give estimates that will be in the order of easily
identified sets of aliased parameters. Actually, this narrowly stated
procedure results in no loss of generality, because the experimenter is
free to assign the symbols x l , x?, . . to his physical variables in any
order he chooses.

Although designs are given for numbers of factors from 4 to 8 and
block sizes of 8 ard 16, their construction will be illustrated by only an
example with 6 factors anct a block size c 8. For this block size the
first 8 rows of table I give treatment levels thai ran hb useu for the fac-
tors xl, x., and x3 . The design must be completed with orthogonal
levels of x4 , x 5 , and x 6 . For orthogonality the levels can only be
levels that already occur for columns from X to the product X1 X2 X3 .
Then multiplying the elements of a new' column by the elements from its
equal among the old columns will result in a column of plus ones, namely,
the X 0 column.

The first block is to be a 1/2 3 replicate of the 26 design. The
fractional replication is characterized by 23 defining contrasts of which
3 are independent, and the telescoping requires that some constraints be
placed on the 3 independent defining contrasts. From among the columns
from X1 to the product XIX2X 3 select 3 (as yet unspecified) columns
and call them U, V, and W. Then

X4 = U X5 V X6 W

UX4 - 4X 0 1 VX 5 .- X O 6 6X

The underlined items are the defining contrasts. Because they each con-
tain a column not contained in the others, they are independent, and because
there are three of them, they are all of the h = 3 independent defining con-
trasts. The group of defining contrasts is found by forming the products
of the independent contrasts in all possible combinations:
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UX 4

VX 5

WX 6

UVX4X5

UWX4X 6

VWX5X 6

UVWVX4X5X 6

UJX4UX 4 = X 0

The fact that a sequence of teLescoping designs is desired will im-
pose some constraints on the choice of U, V, and W in terms of X 1 ,

X 2 , and X 3 .

Defining contrasts are now to be considered for the two blocks that
will constitute a 2/8 replicate., The 16 treatment levels for x 1 , x 2 , x 3 ,
and N 4 are given in Yated order by table 1. The columns of levels of
x 5 and x 6 need to be identical with two of the columns from X, to

XlX?,X3X 4 of table 1. Let these coh-ns (as yet unspecified) be called
Y and Z, that is, X 5 = Y, X 6 =Z so that the independent defining con-
trasts for the 2/8 replicate are YX 5 and ZX 6 . The complete group of
defining contrasts is:

X0

YX 5

ZX 6

Y ZX5X 6

In Oie case of the 4/8 replicate, X 6 is set equal to one of the
product columns of a 2 5 experiment. The defining contrast is symbolized

by TX 6 ,

In summary, the groupii of as yet, ineompletely specified defining

contrasts are:
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1/8 replicate 2/8 replicate 4/8relicate
Xo) xU Xo
UX4  YX5  TX6
vx 5  ZX6
WX6  YZX 5X6

UvWX4 xX6

Some of the constraints of the design problem are that one of the
blocks of the 2/8 replicate must be identical to the 1/8 replicate, and
two of the blocks of the 4/B replicate must be identical to those of the
U/S replicate. Thus, for example, the treatment levels of XI, X2,
and X3 1 associated with K5 of the 2/8 replicate must have 8 points
of identity with the' reatment levels of Xl,1 XZ, and X3 ssociated.
with X5 in the 1/ 8 replicate.

These -identities are achieved by setting

Y V

or

Y=1JVX 4

and also

* or

Z =UWX4

For the 4/8 replicate, a necessary condition is that

T Z

or that

T =YZX5



Among the pteceding constraints, desirable choices would result
in TX6 having at least 5 symbols so that the 4/8 replicate would be of
resolution 5. Also, because each stage must be of resolution 3, all de-
fining contrasts must contain at least 3 symbols' The choices of U, V,
W. Y, and Z should be consistent with these objectives.

So that the first block will be a principle block (so that it will con-
tain a treatment with all factors at their " lowt levels) the defining con-
tracts must bc negative if they contain an odd number of symbols, and
positive if they contain an even number of symbols.

Suppose that U- -XIX 2 , V = -X 2 X3 and W = X1 X2X3 , Multi-
plying the resulting defining contrasts together in all combinations gives
the group for the 1/8 replicate as listed in table 8, The contrasts with
the larger numbers of symbols are desirab.e for the 2/8 replicate. They
are attained by selecting Y = UVX 4 , 'and Z: W, and the defining 'con-
traits for the 2/8 replicate are:

YX 5 = UVX 4 X5 = X I X 3 X4 X 5

ZX 6 = WX 6 = XIX2X3X 6

YZX5X6 = UVWX4X5X6 = X2X4X5X6

and these contrasts are listed as the 2/8 replicate in table 8. For the
4/8 replicate the choice was T = Z so that

TX 6  ZX6 = WX 6 = XIX 2 X3 X6

and the 4/8 replicate fails to be of resolution 5. The question arises
as to whether a better choice could have been made for the defining con-
trasts of the 1/8 replicate.

Achievement of the highest possible resolution number at each
stage of a sequence of telescoping designs would be helped if the total
number of symbols iz the group of defining contrasts were as large as
poosible. For a 1,2 h fraction with g factors the maximum number of
symbols was given in reference 5 as

A = g2
h 1

For the example of six factors with blocks of size 8, this number is:
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k eplicate / /4/

A 24 12 6

If a resolution 5 design is to be achieved at the 4/8 replicate, then
TX6 must contain at least 5 symbols. From the preceding table, the
number cannot exceed 6. The maximum total number of symbols for the
2/8 replicate is.12 so that the numbers of symbols might be distributed
among the contrasts as follows:

YX5 , zx 6, YzxSx 6

3 3 5
3 4 5
3 3 6

To have a resolution 3 design for the 1/8 replicate, all 7 defining
contrasts must contain at least 3 symbols, but the total number cannot
exceed 24. For the telescoping, three of the 7 defining contrasts must
be distributed according to one of the three preceding distributions of
symbols. Considering only the upper limit of 24, the possibilities are:

(3, 3, ., 33, 4, 5)

or

(3, 3., 3, 3, 3, 3, 6)

The multiplication of two defining contrasts each containing 3
symbols could result in defining contrasts of length 2, 4, or 6. Con-
trasts of length 2 would violate the condition that the design must be of
resolution 3. If 3 contrasts are of length three, the multiplication of
all pairwise combinations results in 3 contrasts at least of length 4.
Therefore the preceding combinations are not attainable, that is a tele-
scoping sequence cannot lead from a 1/8 replicate of resolution 3 to a
4/8 replicate of resolution 5. The sequence must be continued to the

full replicate.

Identification of Parameters Estimated by Yates' Contrasts. The
manner in which defining contrasts can be obtained for telescoping Be-
quences of orthogonal blocks has been illustrated. Reference 1 shows
how the defining contrasts were used to determine the detailed treat-
ments in Yates' order. Reference 1 also shows how the results of the
Yates' computation are identified with the appropriate sets of aliased
parameters.
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In the case nf the first-dcgree exp,'riments, if a two-factor inter-

a two-factor coefficient and a single-factor coefficient is estimated by a

single contrast), then the two-factor coefficient is assumed to be zeiro. _f
a contrast does not estimate any combination of two-factor or lower order
coefficients, the contrast will be given a name by lis :ing the lowest order
set of interaction coefficients that it does estimate. For example, table 17
lists a treatment bcde, and the 'ates' computation wuuld give an estimator
of P234 in the same row. From table 15 the full set of aliased parameters
can be shown to be P2 3 4 1 -P 2 4 5 ' P 1 4 7 ' P126 P3,4 5 71 "02356' P3 6 7 ' and

of which the lowest order set is 234' +P14 7 , +Pl26, +P 3 67' Those

parameters, the estimates of which are confounded with block effects, will

be identified by attaching an asterisk to the parameters.

PROPERTIES OF RECOMMENDED DESIGNS. The designs are identi-
fied by code numbers. For example, Plan 1/8; 7f, 8t/b; 2b means that the
design is a 1/8 replicate of a full factorial experiment with 7 factors, er-
ploying 8 treatments per block, and using 2 blocks. The order of presmnta-
tion of the designs (tables 2 to 29) is the order of increasing numbers of
factors. For a given number of factors, a sequence of designs with blocks
of 8 treatments is presented first, followed by a sequence of designs with
blocks of 16 treatments. Within any sequence, the order is the order of in-
creasing numbers of blocks. The properties of the designs are summarized
in table 30 and therefore table 30 serves as a "Table of Contents" for the
designs.

" Use of Resolution 4 Designs in Fitting First-Order Model. In gen-
eral, the use of the first-order model as a prediction equation, with coef-
ficients estimated from an experiment, requires the assumption that all
second-order parameters are zero. However, cixcumstances might arise
where the experimenter desired an approximate first-order predicting
equation and ignored the existence of possible nonzero two-factor inter-
actions. He might then prefer a resolution 4 design to a resolution 3 de-
sign because the estimates of the first-order coefficients would not be
aliased with (biased by) two-factor interactions.

Minimum-size designs of resolution 4 are shown for 4 factors by
table 2, for 5 factors by table 5, and for 6 factors by table 10. Minimum-
size designs of resolution 4 for 7 and 8 factors were given by Natrella
(ref. 8, p. 12-18), and these designs are also given in tables 28 and 29.
Unfortunately, no success was achieved in trying to include the designs
of tables 28 and, 29 in the telescoping sequences of 7- and 8-factor blocked
designs, that is, tables Z1 to 27. However, the designs of tables 28 ano
29-might be used for the very first trial of a Box-Wilson procedure, when
the experimenter believed that he would be so far from an optimum condi-
tion that a first-order model would be a good enough approximation.
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Aae. iiul tril 'ho. could move to a new design center and then elect

a design capable of being sequentially expanded by blocks into designs
of higher order, that is, the designs of tables 21 or 25.

Conditions for Using Resolution 3 and Resolution 4 Designs in
Estimating the Second-Order Model. If the expe:rimenter has prior
knowledge t L some of the two-factor interactiots are zero, he may
be able to choose the labels for his factors so that ti'e nonzero inter-
action parameters can be estimated from designs of less than resolu-
tion 5. The specific cases are listed:

Table 2. - Plan 1/2; 4f; 8t/b; lb. - I one of the factors (for ex-
ample xl) does not interact with the other factors, then all the remain-
ing interactions are estimable (table 2). If x, is noninteracting, the
estimated parameters are P0, PI, P2, P34, P3, P24, P23, and P4"

Table 5. - Plan 1/2; 5f; 8t/b; Zb. - The factor believed most
likely to interact with other factors should be labeled x 4 because the

plan (table 5) gives unconfounded estimates of P 1 4 ' P 2 4 . P3 4 0 and
04 s. If any one of x1 , X2 1 x3, or xs does not interact with the others
(for example, xl) then all the remaining two-factor interactions are
estimable and the estimated parameters are PO0' l, P2, P35- 3' PZ,

0 2 3 ' 5' P P4' P24' P3 4 5 ' P3 4 ' P2 4 5 0 (P2 3 4 + P14 5 ), and p4 5 . Under
previously stated assumptions, the estimates of P1 4 ' P 3 4 5 . and P245
are assumed to be nothing more than random error.

Table 10. - Plan 1/4; 6f; 8t/b; Zb. - If x1 does not interact with

any other factor, and if x 2 does not interact with x 4 , x 5 , and x6, then
the parameters estimated are as follows: PO, PI, PZ, P 3 6t P3, P451 P23,

06 ' 04 1 P3 5 1 P56' (012 4 + P156 + PZ35 + 0346), P3 4. P5 P4 6, and the
estimate of (P1 Z5 + P 1 4 6 + P2 3 4 + P3 5 6) is assumed to be random error

(table 10).

Table 1:1. - Plan 1/Z; 6f; 8t/b. 4b. - If the label x, had been given
to the most likely noninteracting factor in the design of table 10, the per-

formance of the two augmenting blocks of table 11 would result in a design
with all interactions estimable under the minimal assumptions that PIZ,

P 1 39 and P16 are zero.

Table 13. - Plan 1/4; 6f; 16t/b; lb. - Assume that there are two
groups of three factors aand that each factor does not interact within its
group. Give the factors within one group the labels x 1 , x 2, . and x6 and
label the factors of the other group x 3 , x 4 , and x 5 . Then all the non-
zero two-factor interaction coefficients (one factor from each group) are
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estimable and are P13' P14' P15 P2 3 ' P2 4' P2 5 ' P3 61 P4 6' and P56
(table 13).

Table 18. - Plan 1/4; 7f; 8t/b; 4b. - ThIs plan (tablc 18) becomes
a suitable second-order design under the assumptions that x 1 does not
interact with x 3 , X4 or x6, and that x2 , x5 , and x7 do not interact
with each other,

Table 21. - Plan 1/8; 7f; 16t/b; lb. - This plan (table 21) esti-
mates two-factor interactions ii xl is noninteracting, if x2 is noninter-
acting "-ish .. -- -'- nd -. , and if x5 is noninteracting with x4
and x6.

Table 22. - Plan 1/4; 7f; 16t/b; 2b. - This plan (table 22) esti-
mates all two-factor interactions if any one of x I , x 2 , x 4 , or x6 does

not interact with the other factors of this group.

Table 26. - Plan 1/8; 8f; 16t/b; 2b. - This plan (table 26) esti-
mates all interactions if x 8 is noninteracting with xi, xg, x 3, x 5 , and
x 7 , and if x 3 is noninteracting with x 1 , x 2 , x 4 , and x 6 . Thus the label
x 8 should be given to the least interacting variable, the label x 3 should
be given to the next least interacting variable, the labels x 3 , x 5 , and x 7
should be given to the variables least likely to interact with x 8 , and the
labels x 4 and x 6 should be given to the variables least likely to inter-
act with x 3 .

CHOICE OF BLOCK SIZE. The present investigation assumes that the
experimenter will wish to perform a block of treatments, analyze the
data, and then perform another block of treatments, and that the block
effects arise during the. interruption of the experimenting for analyzing
data (furnaces are overhauled, instruments are newly calibrated, etc.).
Under these assumptions, block sizes 8 and 16 are particularly appro-
priate for experiments on 4 to 8 factors. On the other hand, the physical
situation could limit the experimenter to smaller block sizes. Under
such limitations, other designs would have to be synthesized, and the
synthesis could be done according to rules already presented.

Another reason for using small block sizes is to protect against
the hazard of missing values. If through accident, the observations from
one or more treatments are missing from a block, the whole block could
be rerun, especially if it is small. On the other hand, only the missing
treatments need be run, if the experimenter can say thet no block effect
will arise between the new runs and the block from which observations
are missing. If the design is not severely fractionated (if the number of
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treatments is significantly larger than the number of parameters esti-
mated), methods of estimating for missing values inay be used (ref. 9
or 10).

Some attributes o the proposed designs are summarized in table 30.
In the case of 4 factors, all coefficients are estimdble from two blocks of
size 8 and a single block of size 16 is of no advantage in estimating the
parameters of a second-degree n.odel. In the case of 7 factors, the attain-
ment of a resolution 5 design requires 64 treatments for either blocks of
size 8 or size 16, so that there is no clear advantage is using blocks of
size 16. With 8 factors, the minimum first-order design requires 16
treatments, and this is the only block size presented for the problem with
8 factors. In the cases of 5 and 6 factors, the choice of a block size of 8
or 16 is particularly complex.

A comparison of the number of experimental units required in ex-
perimenting with block sizes of 8 and 16 for 5 and 6 factors is given in
table 31. The column headed "Total number of units required" shows that
for five factors, the break-even point for the two block sizes occurs at
three repetitions of the first-order experiments. For six factors, the
break-even point occurs for five repetitions of the first-degree experi-
ments. In other words, if the experimenter believes that he will perform
many cycles of experimenting with the method of steepest ascents, he
should use a block size of 8 because it uses a relatively smaller number
of experimental units. On the other hand, the block of size 16 uses a
relatively smaller number of experimental units in the method of local
exploration. The block size of 16 should be used if the experimenter
believes he will spend relatively few cycles of experiments with the
method of steepest ascents, less than three cycles with 5 factors or less
than five cycles with 6 factors.

Maximum economy could be sought with a mixed strategy. The ex-
perimenter could use the block of size 8 until his intuition told him that
the first-degree model might not be appropriate. He could then switch to
the block of size 16. Its greater number of degrees of freedom for "lack
of fit" would provide better information about the validity of the first-
degree model, and on switching to the method of local exploration, fewer
experimental units would be needed to complete the interaction model than

I if the smaller block had been used. Thus with five factors, one or two
experiments of the method of steepest ascents should be performed with
the small block size followed by a switch to the larger block. With six
factors, the break-even point is not reached until the fifth design center.
Furthermore, two blocks of size 8 (table 10) provide a resolution 4 do-
sign, whereas the single block of size 16 (table 13) is caly a resolution 3
design. With six factors, the best strategy might consist of using blocks
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design could be enlarged to that of table 10. If no new design center
were desired, the demign could then be augmented to that of table 11.
If the design of table 10 had not shown significant interactions, experi-
menting at a new design center could continue with the design of table 9,
but if significant interactions had been shown, the new experimenting
should begin with the design of table 13.

CONCLUDING REMARKS. Sequences of blocked designs of ex-
periments have been presented that are telescoping, in the sense that
the first block is a design for which main effects are measurable, and
that subsequent blocks, as they are added to the design, allow models
of successively greater generality to be fitted to all acquired observa-
tions at each stage. The sequences terminate in designs for which all
two factor interactions are measurable.
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aI
Table 2.A -PLAN 1/2; 4(; St/lb; lb -

R 4

xo  x2x3x4.]

Bl0ck Treatment Estimated effects

1 (1) 00
1 ad $1
I bd 02
I ab 012 "034

I cd 03
I ac 913 ' 024
I be 023 + 014
I abcd 04

aRefs. W(p. 484) and I (p. 12-1).

TABLE 3. .PLAN 1; 4f; St/b; 2b-

(Block confounding, X1 x 4.]

Block Treatment Estimated effects
(b)

2 a
2 b 02
1 ab 012

2 c 03
I ac O13
I be 023
2 abc 0123

2 d 04
I ad 014
I bd 024
2 abd 01:,4

I cd 034
2 aed 0]134
2 bad A234

I abed I I
aRefs. ]L(p. 429) and& (p. 1.-,0),

bAsterisk denotes confounding with

blocks.

396



I
TABLE 4. -PLAN 1/4; 5f; 8t/b; lb -

[xo  -x2x3x4  xIx 2x3x5
" -xix4x 5 ,]

Block ITreatment Estimated effects

1 () 0
I ae oi- "45
1 bde 02 " 034
1 abd 012 + 35

I ede 03 " 24
1 acd 013 4+ 025
I be "04 + 023 + 015
1 abee 05 "014

TABLE 5. - PLAN 1/2; 5f; et/b; 3) -

R=4

IX0 - X$X 2X3X5 ; block cofounding,
.X 2 x3 4 ,] ____

Block Treatment Estimated effects

(a)

1 ()0
I ae P,
2 be 2

2 b 12 +  # 5

2 ce 03
2 ae 013+25
1 be 23 + 15

I abee 06

2 d 4
2 ade 14
I bde 024
1 abd 1 2 4 + 345

I cde 0334
1 aed 134 + 1245

2 bed 03;34 + 0145
2 abcde 45

Asterisk denotes confounding with
blocks.
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I
TABLE 8. - DEFINING CONTRASTS, 6 FACTORS ON

BLOCKS OF 8 TREATMENTS

Source Defining contraste

1/8 Replicate 1/4 Replicate 1/2 Replicate

xxx 2X3X

Replix te
a lX r:$XO XIX2X3XS XIX2.X3XO

XX XXsX4 x 5 xX X4 X5

XX2 -xX iX

xxx: xx4x~x 8  xx~x 5;

TABLE 9.-PLAN 1/8; 61; 81/b; Ib-

R,.S

EXo .-X2X4' X2XSXSwxIxRx 6A xlx3~x5 - x~x6 . .xIVx
NX2X 4XS.6e1

Block Treatment Estimzated effects

1 00'I bt) uf
I f 14 - 05ll6
I bdef 02 " 035 " P14& b e " 'P 4 * P 1 2 * P 3 6

) 1 c et 0 3 " 2 5 0 4 6

01 acd. + 021 + 045
1i b d Pa5 + P23 + 016

11 abof g6 "0 15 P34 _
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TABLE 15.- DEFINING CONTRASTS WITH 7 FACTORS ON BLOCKS OF 8 TREATMENTS

f. Source Defining contrasts

J__ 1/16 Replicate 1/8 Replicate 1/4 Replicate 1/2 Replicate

4 "xIX2X4

A x xxx -x xxx2

! x7 XlXe3X7 Xi X3X7
2 2
F5 X2X3X4X5

22x x~x xxxx5
xx XlX3 X4 X6  X1 3X 4X6  XIVXX 4 X

x 2 2
x4x7 -x3x4x7x 2 2

xx6 x 2 5xSxx

,XsXgx -x~xsx xxx 7 -x~xsCx ~ x-xrxsx7xxxx,-~xxxxx

2 2

X7X7  "IXOX 7

X x, _, x X6 .X4X5X6
2"2"2

XV7 XX45 X2X4XdX7

22

TABLE 16. - PLAN 1/16; 7f; 8t/b; lb -

[Defing contrasts given by table 15,)

Block Treatment Estimated dfects

1 (1) 0o
1 adeg 01 - 24 - 35 61

1 bdfg 02l 14 -36 - 57
1 4 4' 01 2 +*037 + 0 5 6

1 cefg 03 " 0 15 - 06 -3 4 1
1 acdf "05 + 03 ' 460 + 27
1 bode -06 * 017+l * P45
14abog 3 l
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TfAv~g 20.- JJEFMGJI CONTRASTS~ WITH 7 FACTORS
I; ON BLOCKS OF 10 TREATMENTrS

Source Definifng coIntrust

1/8 Replicate 1/4 Replicate 1/2 Replicate

I XXXx 6  X1X[2X4X1

7 X2 Y2 4X7

5 7~ -X 2X?3X$'( 7 -XIX2XC3X5X7

xj1*71 -X3X4XIX6X, -X3X4XSXB'? -X3X4XSXX 7

TABLX 2 1-PLAN 1/8; 7f; 10t/b; lb -

(Dofining couftmtl given in
table 20.1

Block Tzeetmenj ZutliAtd effect.

I bi- 2-O

at 0

I abeg

2 abee -057
I dafg -1I &CE*dg 84 t
I We 02 Oe+ 3

I odef
g od
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TABLE 22. PLAN 1/4; ?f; 16t/b; 2b- R =4

[Defining contrasts given in table 20; block confounding, -XIX4X5 .]

Block Treatment Estimated effects Block Treatment Estimated effects
(b)

I 1 ) 0 2 eg 05
2 afg O3 1 aef 15

I bfg 02 2 bef 025

2 ab 012+046 i abeg -93?

1 cg 03 2 ce 0352 al1 acefg 32'7ef! 2 bcefg
I bef 923 2"csg P17/

2 abcg -057 1 abcs -07

2 dl 04 1 de g 045
1 ads Oi4 "026 2 d 145+"0256
2 bdg 024 + 916- 1 bde 0245 * 0156

1 abdf 06 2 abdefg 056

2 cdfg 034 1 odef "057

I aed 0134 + 0236 2 acdeg '247 " 0167

2 ' bad 0234 + 0136 1 bedag "0147 - 0267

I abcdfg 100 2 abcdef '147

bAsterisk denotes confounding with blocks.
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TABLE 26. - PLAN 1/8; 8f; 16t/b; 2b * R 3

(Defining contrat given in table 24; block confounding, -X1X4x5 .]

Block Treatment Estimated effects Block Treatment Estimated effects

___________(a)

1 (1) so 2 eg 05
2 afg 1 aet a1 5 + 7 8
I bgh a2 -a2 8  2 beh a25
2 " bfh 012  1 abefgh 3 7

1 dgh a3 "28  2 cath
2 ach 013 " 046  1 acegh -027
I bet -08 + 023  2 beefg -58 -, 17
2 abeg " " 18  I abc o

2 dt 04 . de 45

I af 04403 2 adse 0
2 bdfgh 4  I bdefh .a6.
I abdh -s8 2 lbdegh -03 4 7 - 0568 16

2 Odgh 034 + Pis I cdeh 0345" 0156 + 676
I acdfh p6  2 acdefgh 050
2 bed -048 1 bedeg -147 a3 7 -" 4 5 8
1 abct a0 2 abcdef -047

asterisk denotes confounding with blocks.
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TABLE 30.- ATTRIBUTES OF RECOMMENDED DESIGNS

Table Replication Factors, Treatments Number Resolution, Number of Number of
g per block of R two-factor estimable

blocks Interactions, two-factor

g(g - 1)/0 interactions
(a)

2 1/3 4 8 1 4 6 0
3 Full 4 8 2 5 a 6

4 1/4 5 8 1 3 10 0
5 .1/2 5 8 2 4 10 4
6 Full 5 8 4 5 10 10

1 1/2 5 16 1 5 10 10

5 1/a 6 8 1 3 15 0
10 1/4 6 0 2 4 15 I

11 1/2 6 8 4 4 15 9
1 Full 6 8 5 15 15

13 f/4 6 t6 1 3 15 9
14 1/2 6 1s 2 5 15 is

16 1/16 7 6 1 3 21 0

17 1/8 7 a a 3 21 0
16 1/4 7 6 4 3 21 11
19 1/2 7 8 8 5 21 21

21 1/6 7 16 1 3 21 I
22 1/4 7 16 2 4 21 15
23 1/2 7 16 4 5 21 21

25 1/16 8 16 1 3 28 0

20 1/3 8 16 2 3 28 11
27 1/4 a 16 4 5 28 2S

28 1/8 7 16 1 4 21 0

29 1/16 8 16 1 4 28 0

aOnly unconfoundod two-factor interaction estimators are eounted.
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TABLE 31.- COMPARISON OF TOTAL TREATMENTS (EXPEINMENTAL UNITS)

REQUIRED WHEN FIRST BLOCK IS PERFORMED TO ESTIMATE FIRST-ORDER

MODEL AT STATED NUMBER OF DESIGN CENTTJI S AND INTERACTION

EXPERIMENT I8 PERFORMED ONLY AT FINAL DESIGN CENTER

Factors Desin Treatments for Treatments for completion Total number of
centers first-order model of interaction model units required

for-
first- Blocks of Bl.cks of Blocks of Blacks of Blocks of Blocks of
order size S size I6 size a site 16 size 8 size 16
model .

5 1 to 24 0 32 1

5 1 is 16 34 0 40 $25i 3 $ 4 48 24 0 48 48 i

$.. 4 $3 64 24 0 55 6 4

16, 8 I 565 to 64 32

6 2 16 32 56 16 72 48
6 3 24 48 50 i6 80 04

a 4 32 04 58 16 8 80

6 5 40 80 16 96 96
6 6 48 96 5 16 104 112
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ON A CLASS OF NONPARAMETRIC TESTS FOR INTERACTIONS IN FACTORIAL EXPERIMENTS"

Pranab Kumar Sen
University of North Carolina at Chapel Hill

1. Sm-ry an intoduction. This paper deals with a class of permutationally

distribution-free aligned rank order tests for interactions in factorial experi-

ments replicated in complete blocks. The asymptotic power-efficiencies of the

proposed tests with respect to the classical analysis of variance test are also

studied.

Nonparametric analysis of variance tests, available in the literature,

mostly relate to one way or 'two way (without interaction) layouts. Though the

approach of Lehmann (1964) (see also Puri and Sen (1966)) can be adapted to con-

struct tests for interactions in factorial experiments, the necessity of avoiding

incompatibility of the unadjusted estimates as well as of estimating some functional

of the parent distribution ( appearing in the expression for the dispersion matrix

of the estimators) makep such tests only asymptotically distribution-free and

somewhat tedious to apply. In the present paper, the theory of aligned rank order

tests based on Chernoff-Savage (1958) type of statistics, developed in Sen (1960,

is further extended to provide suitable tests for interactions in factorial layouts

with equal number of observations per cell. Under certain permutational invariance

arguments the nonparametric structure of the proposed tests is established. These

tests are also free from the other two difficulties mentioned earlier. Further,

using a generalization of Chernoff-Savage (1958) theorem on the asymptotic normality

of rank order statistics to aligned observations, the asymptotic power-efficiencies

of the proposed tests (along with certain bounds are studied,

2. vasxy oqm. We shall consider in detail only the case of replicated

two factor experiments with one observation per call and indicate briefly the theory

* Work supported by the National Institute of Health, Public Health Service, Grant
C14-12868.
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a

for the case of several factors and/or observations per cell. The chance variable

Yjk associated with the yield of the plot placed in the ith replicate and receiv-

in& the combination of the Jth variety (or level of the first factor) and the k-th

treatment (or level of the second factor), is expressed, in accordance with the

usual fixed-effects model, as

(2.1) 7 iJk m I1 " j 'k + IJk + Uijkr im.1,.."n; , .p;kl..q.

vhsre tl ... p stand for the replication-effects 9lp...'V for the variety-effects,

for the tratmt-effects ill .. pq for the variety x treatment inter-

actin, and Uijkis are the residual error components. in (2.1), we may put

p q q P
(2.2) E _m0 E O, E 1 0,k' jl,...,p, and E-q j- 0 , kl ...#q.

ju k~ jul

It is assumad that (Ut1I,...,Up), i,....n are independent and identically dis-il ipq

tributed stochastic vectors having a comaon continuous (joint) cumulative distribu-

tion function (cdf) F(xllp..."xpq) which is symmetric in its pq arguments- this

includes the conventional assumption of independence and identity of distributions

of all the npq error components as a particular come. We want to test

(2.3) Ho: T Ex

against the set of alternatives that T is non-null. By means of the following

intra-block transformations, we eliminate the nuisance parameters Vies and Tk to.

Let us consider the p x q matrices

(2.4) Yi" (Yijk)' - (Ui), zi (Z1~k) and , ('ik' -l,...,n,

where we define
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(2.5) Zi  (1p "-I'l ,.p2)y.(1,, - 1' qq)1 i-l,...,n;

-p p ). p-q q-qq

(2.6) (1 It)U( 1 tqiI .. n

(O _p p -pqp qqZq

I being the identity matrix of order t and the (row) t-vector having all the t

elements equal to unity, t > 1. Then from (2.1) through (2.6), we obtain that

(2.7) ZT + - 3 l,...,n,

In the sequel, we shall work with the nuisance parameter-free model (2.7). Also,

we will only consider the case when pp q > 3. If either of them is less than 3,

the situation simplifies as follows. Suppose qw2, p > 2, then from (2.1) and (2.2)

we have Jl = "j2 - (say), iml, . .. , p, thus (2.3) reduces to Ho - ,....Ip a 0.

Again from (2.5) and (2.6), we have

(2.8) Zij 1  - Z Q 2 - Zij (say), aijl a - ij2 " ij (say) for all i-l,. ..,n.

It follows from lemna 3.1 (to be proved in section 3) that (eil,...,eip) are

symmetric dependent or interchangoable random variables for all iul,...,n. Con-

sequently, based on the met of observations fZij, J-l,...Op; il,...,n), the problem

of testing H ain (2.3) reduces to that of testing the interchangeability of

(Z l-l..Zip) (for all iag,..a.n), against shift alternatives. As such, the results

of Sen (1968 ) will directly apply, and the details are omitted. If pWqM2, we have

III "'12 "21 " 122 - I (say), and

(2.9) Zill • -z • "Zi2 1 * Z (say), i1l,...,n,
il 12

and it is also easily seen that the distribution of Z is symmetric about Ti. So

the problem of testing Ho in (2.3) reduces to that of testing the symmetry (about zero)

417
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I

of the distribution of Zi thiu La Lhe well known one sample location proheiem, and

hence, is not discussed.

3. De basic permutation principle. We define U and R (i-l,...,n) as in (2,4)

and (2.6), and let F*(3) be the joint cdf of Zi for i-l,...,n. Let J . (jl 1 .. ,,j)

be any permutation of (1,...,p) and 4, the set of all possible (pl) permutations,

so that J e J. Also let

(3.1) .p(4) - ( Cik) p,

where 8 is the usual Kroneeker delta. Now for any s . 1p(1) is non-singular

and has a unique reciprocal I( T) (say), which also belongs to the set

(Ip(4): 4e J. Further, it is sily seen that if Ip(l) and P(42) be defined
as in (3.1) for 6 J, J2 e 3, then p( J)Zp2) also belongs to (1 (1): j 6 .).

Thus the set Zp(J): j s j) forms a finite group of elementary transformations.

It can also be verified that

*(3.2) z(A)( - i )I (J*)m 1 . 10 if I (A)I(P) .WP ((p pfpop Op lop p pNP p .

Similarly, let k (k l*...kq) be any permutation of (l,...,q); the set of all

possible (ql) permutations is denoted by . A second group of elementary trans-

formation matrices is then defined by

(3.3) (q() k e K where q(i) ( ,.-,...,q

Let us then define a finite group of transformations (gi(ijk): I e Jk

by

(3.4 )
int()II (k), ic a3, k a K for iul, ... n.
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nIKFinally, the group of all th (p? trnfomtin i .4 is de..ned by

i. e.,

(3.5) rn

As before, we denote the cdfis of U and E by P and F7, respectively. Let now

be the class of all pq-variate continuous cdf's for which the pq variates are

interchangeable. By definition (in section 2), F e

LENZ4 3.1 If F e , * is 1-invariant.

PROOF. On defining U, p(i) and Iq(I) as in (2.4), (3.1) and (3.3), we let

(3.6) U.(1,k) - 1 (j) Ei.(k), L a J, k e K.

Since F c I, it remains invariant under row (or column) permutations. Hence,

(,k) has the same cdt F for all j e k e K. Now, from (2.6), (3.2) and (3.4),

we obtain that

*( - p >

. 7f .p)(lq A pLq).Jq'()

(3.7)- ( ' - , u-

IWp ptp p P P V .(X*u )(Zq

Thusm, the invarience of the cdf of W14) (under ) implies the invariance of
the cdfIt(Jb) under %. Hence the lemme.

Let now Z* be the npq-dimensional (luclidean) space of the sample point
n

z* *a (Z ,...,Zn). Then the finite group (IF*) of transformations in (3.4) and
'Vn -... %,n an

(3.5) maps the sample space onto itself, and under H in (2.3), the distribution
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of .is *-invariant. Thus, proceeding as in Hoeffding (1952, pp. 169-170), we

may prove the existence of similar size m. (0 < a < 1) tests for # in (2.3), valid

for all F c These tests are essentially conditional tests based on the considera-

tion of equiprobable all possible row and column permutations of the matrices

j 1 ,' . .,n, Such a conditional test is termed a permutation test. In this paper,

we shall study permutation tests based on a celebrated class of rank order statistics

due to Chernoff and Savage (1958).

4. Formulation of the rank order tests. Let c(u) be 1, or 0 according as u is

>, -or < 0, and let

n p q(4.1) RiJi" + E E tE c(Z..k-Zt rat-), i-l,...,n; Jl,...,p; k-l,...,q;

rl ow'l t1 ra

by virtue of the assumed continuity of F, ties among Zijk~a may be ignored, in

probability. We define a sequence of real numbers S - (S . , where

NN
(4.2) s U -J,,q(G/(N-l)), 1 <_ 0. <1;

the function Ji s defined as in Chernoff and Savage (1958) and is assumed to

satisfy the regularity conditions of theorem 1 of Chernoff and Savage (1958).

Let

n

(4.3) T" ,(TN IN 5S for i-l,...,p, kIl,...,q.

Also, loet

(4.4) . -A #A M
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q
(4.5) S IR S NR NR "S1,, N i k ZP MI NR- NRijk o JR I j w k jk,

for i1l,...,n; J-,...,p, k,l,...,q. Then, from (4.3), (4.4) and (4.5), we obtain

in
(4.6) 1 .Jk =  E Sgtjk, jil,...,p, k"l,...,q.

We denote by 1N' the permutational (conditional) probability measure induced by

the (piq?) n equally likely transformations in defined by (3.4) and (3.5).

Then, by simple argument. it follows that

(4.7) * -opxq

Also, let

1 n p q

(4.8) a 2( FN) p 1 E E Z (S1R )2
i-1 J-i k-l iJk

and let * stand for the symbol for Kronecker product of two square matrices. Then

by routine computations, we obtain that

(4.9) n (1p - piA p) 0 ( ,'q - P. ,

Thus considering the generalized inverse of the pq x pq matrix in (4.9) and employ-

ing it to construct a quadratic form in the elements of A, we derive the following

test statistic

' Np 
q

J-Ik-l
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which is analogous to the cl4assical parametric test based on the variance ratio

criterion [cf. Scheffe (1959)].

For small values of n, p and q, the exact permutation distribution of

can be obtained by considering the (plql)n (conditionally) equally likely row and

column permutations of the matrices Sm() ), il,...,n This procedure
i jkbecomes prohibitively laborious for large values of n, p or q. For this reason,

we consider the following large sample approach.

Let us denote the marginal cdf of .jk by Ftjkj(X) and the joint cdf of

(Z , ) by Lk for all jJ'"l,...,p; kk#-1,...,q. Let then

p q
(4.11) H(X) E E jk]()

pq Ck

*(4.12) a10(x IY) -qp(p-l) 17 Z I tjk.-j Ik("I Y) l
kal j %-ul

( )1 p q
(4. 13) H oIN'y) " ) E LJ jm;jk((qy);

p q

(41) (' )1 p-qql) -l P ffa q j~ft~~)

We denote by J(u) a lim J,(u)*. 0 < u < 1, and define

52 j2J(U)d3U
* 0

S, (4.15)

f J[H(x)]J[H(y)]d[H 1 (x,Y) + N0 1 (x,Y) - l 111(x,y)).
I .00 .00

Than, proceeding as in the proof of theorem 4.2 of Puni and Sen (1966) and

omitting the details, we obtain the follovinS theorem. j
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I
THEOREM 4.1 Under the conditions of theorem 1 of Chernoff and Savage (1958),

[U2 (P ) - 521 converses in probability to zero.

Now, if we assume that

(4.16) p(J[H(Zjk)1-J[H(Zj,k)]-J[H(Z jk) )]+J[H(Z - Constant) < 1,

for at least one pair of JN' and kkl, then as in theorem 4.! of Sen (1966b), it

can be shown that 52, defined by (4.15), is strictly positive. (4.16) will be

termed, in the sequel, as the non-degeneracy condition of the adf 1*. The main

theorem of this section is the following.

TIIEORNI 4.2 Under the conditions of theorem I of Chernoff and Save (1958). the

permutation distribution of c converses to a chi-square distribution with

-l)(q-1) degrees of freedom (d.f.).

PROOF. By vistue of (4.7), (4.9) and (4..10), it suffices to show that for any non-
p q

null A (a Z, E a~h converges in law (under Q)to a normalj-1 k-I I
distribution as n---n. Now, using (4.4), (4.5) (4.6) and the first two conditions

of theorem 1 of Chernoff and Savage (1958), we write

( n p  q ijkn " in Yni p(; Yni "£ £ ailk J(  , o s  .,
l(4.17) YI n t-I A pI kl

where to are linear functions of akta and they satisfy the constraints that
q k p

L- , Ja...,p nd E 1k " , l,...,q. We note that under W ¥,iiku 1ak Pomlk a' olkl ." N n

can have only p1q) (conditionally) equally likely values obtained by pormuting the

rows &nd columns of the matrix (RiJk jal,...,p, k,...,q' end Y

are all stochastically independent (under N) . Thus, it readily follows that

Si I -) * o, and
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I

P q P q R'.T
...... paI )  ,) 1 pa R-!-- '

E(Y2 i (P,) * E Ea) L i 2f~nil k jk" (p-l)(q-1) l lJu1lk-l J-1 W-1

(4.18)

q p R ik) q R 1  1 p q R ijk
A (L j) ( ) + E E J( (2

k- P -1 N-i q J-1 k-1 W~j-l k-1 Nl

Thus, by routine analysis, it follows as in theorem 4.1 that

In p q
(4.19) 1 Y ( )2 > ,

I Ji k-1

where 52 is defined by (4.15) and is positive by (4.16). Further, using the

growth condition of theorem I of Cheanoff and Savage (1958), it follows that

(4.20) L K(IYnjiI 2 51 ( k) < -, for someb >0.

Consequently, using the Brry-Essen theorem (of. C 4 , p. 288]), the asymptotic

normality of n follows from (4.19) and (4.20). Hence the theorem.

ly virtue of theorem 4.2, an asymptotically sies m(0 < . < 1) test for the

hypothesis of no interaction may be proposed as follows. If

I-I

x io(~l(.1,~ eect H. in (2.3),
(4.21)

(< , accept HO

whr 'M, is the upper 100A point of a chi-square distribution having t d.f.

S. A Mptotic efficiency of the test based on 4.It can be easily shown that

the test in (4.19) is consistent for any non-null Tm . For the study of
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the asymptotic efficiency of the test based on we shall therefore consider

the following sequence of Pitman-alternatives, specified by

(5.1) HN: T a N = ., A, A (Jk),

where I are real and finite and they satisfy

p q
(5.2) E ' 0, k-l,...,q; E N'k" 0 for J-1,. .. p.

-l jk kol j k

Thus, under (H),, the cdf of Z, (defined by (2.5),) is specified by F*(x -O )

(where z is a p x q matrix), and F*(x) is invariant under the row or column per-
mutations of x. Thus, the un.variate marginal cdf Ffjk)(x) (of Z i x ) is indepen-

dent of (Jk) and is denoted by H(x) [cf. (4.11)). 'imilarly, the bivariate

marginal cdf FtJkjk,](xy) will be independent of (J,kk') and is denoted by

H0 1 (x,y) (cf. (4.13)], jkjtk)(xy) will be independent of (JiJk) and is denoted

by U1 0 (x,y) (cf. (4.12)], and Ftjklj k,( y) will be independent of (J'j',kv)

and is denoted by H1 1 (x,y) [cf. (4.14)].

Now, for arbitary 1F*()p the asymptotic normality of N(I( E) (where

(,IN, jk)' PN, jk f JCH(x)]dFrjkl(x), jul,.. .,p, 1l,.. .,q) can be proved

along the same line as in the proof of theorem 5.1 of Son (1967 ) (with direct-

extension to the matrix case). We shall specifically consider the case whan (.)

holds. For this, ws define

(5.3) B(") T - J[H(x)ldH(x),dx

1 1

(5.4) A2  f J2 (u)du - [I J(u)du]2 ,
0 0
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(5.5) j A- ff J(x)]J[H(y)]dHij(x,y) (f J(u)du) 2 ],

for (ij) - (O,1), (1,a) and (1,I1), where IsI are defined earlier. Then, by theij
same technique as in theorem 5.1 of Sen (1967), we obtain that under V

(5.6) n'I(QH ) A A + o(1)

', ' 1 ID ( q a .,)A2(l-PIO-PO1+Pll)+o()

where ]B(H), A2,t p~eas are defined in (5.3)p (5.4) and (5.5 ). Again, using (4.15),

theorem 4.1 and some routine computations, it follows that under (%) in (5.1)

(5.) 0(jP .p, A2(l-plo-Pol'ipll) O

(5.6), (5.7), (5.8) and the asymptotic normality of ni 3', Jk lead to the following

theorem.

Z l0R5ltl 5,1 U (i) _________ho____ (ii) the conditions of theorem 1 of

Chagof f-and Savae (19581_hold and (iii) the conditions of lenMa 7.2 of Puri (1964)
hold SN, defined by (4.10O), has asymptotically a non-central chi-square distri.-

bution with - - d.. and the non-centrality parameter

p q
(5.9) /46 m- E Y. XkJED(H)/A2(l-pl.pol+pll).

Referring back to the model in (2.1), let oa be the variance of U and

pu be the correlation between any two UijS belonging to t:he same block. Let

(p-l)(q-l), (n-l)(pq-l) be the classical analysis of variance ratio teat statistic

for testing H0 in (2.3) when the parent cdt is assumed to be normal. Then, it can
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be shown that under (H)in (5. 1), QN -(p-1)(q-l) F(p.. 1)(q- 1 ), (n-l)(pq-1) has

asymptotically a non-central chi-square distribution with (p-1)(q-l) d.f. and the

non-centrality parameter

p q
(5.10) E Lp k/(

Let now 02 be the variance of e±jk, defined by (2.6). Then, after some simpliff-
a

cations, we obtain from (2.6) that

(5.11 - [pl)(q-l)/pq~ac2 (l-p ).

Consequently, from theorem 5.1, (5.10) and (5.11), we arrive at the following.

THOr .2 he the conditions of theorem 5.1 hold, the asymptotic relative

efficiency (A.R.E.) of the SNtest with respect co the classical analysis of

variance teat is siven by

We note that ty La the variance of the cdf H, and hence the second factor on the

right hand side of (5.12) resembles the usual efficiency factor for the well-known

Chernoff-Savage (1958) type of test statistics. Also, it follows from lemmas 4.4

and 4.5 of Sen (1968 ) that

where the *quality sign holds 1ff J - 1 (apart from an additive constant). Thus,

from (5.12) and (5.13), we obtain that
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(5.1,) "((', 1 ) (- ~ [1"2B2(H)/A2]

This leads to the followin8 corollary.

PO 52 A sufficient condition for to be at least as large!

U [B(Ha)/A2) is that pll< 1/(p-l)(q-l). nt a

we shall nov consider two special .- tatistCs,ormal Scores

and Wilcoxon scores statiticl. In the first casep ("0, defined by (4.2), is

the expected value of the %-th smallest observation of a sample of size 
N from a

standard normal distributious for oI1l...,N. Zn this case, it is well-known

(of. Chernoff and Svese (1958)] that a3(1(H)/All is greater than or equal 
to I,

where the equality sipn holds only 
when H is also normal. Thus, the minimum

A.L.R, of the normal scores test with 
respect to the classical analysis 

of variance

test is equal to I/ (I l(~~lp 1 ) >* On the other hand,

p q

for the class of parent cdgls for which p1 1 : l/(p-l)(q-l), the normal scores test

will be at least as efficient as the %-tit. In particular, if H(x) is normal,

1 1  
n l2pl)(q-) and 1, so that the normal scores test and the

03-test become asymptotically power equivalent. 
For Wilcoxon scores, Jj(-) ,

I S a S N. In this case, [fiD(H)/A
2 ] is known to be greater than or equal

to 0.864 for all H. Consequently, the A..,L of the Wilcoxon scores test with

respect to the %-tost is bounded below by

(5.15) 0p0O4M = -L l-(pl)(ql)ll]) > 0.432
Pq

For normal F, it is known that

6 .1 12;l) l~ (l)'- _____

(5. 1) p1o " n'  )l Sin' Si n
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and hence from (5.12), we obtain that for normal distributions the A.R.E. of the

Wilcoxon-scores teat with respect to the %-teat in given by

(51)3pq(5.17) 6... 1' .1 1 1  1

r(p-l)(q-l)C1 + (Sin-' 1 + Sin'I  + Sin "' C )

The following table illustrates the numerical va~ues of (5.17).

2 3 4 5 6 7 8 9 10 15 20
2 .955 .966 .965 .963 .962 .961 .960 .960 .959 .958 .957 .955

3 .975 .974 .972 .971 .961 .970 .970 .969 .968 .968 .966

4 .972 .971 .970 .970 .969 .969 .968 .967 .966 .965

5 .970 .969 .968 .968 .967 .967 .966 .965 .963

6 .969 .967 .966 .966 .966 .964 .964 .962

.7 .966 .966 .965 .965 .964 .963 .961

8 .965 .964 .964 .963 .962 .960

9 .964 .964 .962 .962 .960

10 .963 .962 .961 .959

15 .961 .960 .958
20 .959 .957

* ,955

Thus, the efficiency is bounded below by 3/r and may be as high as 0,975

f we have more than one observation per ecl, we may still work with the

aligned observations obtained by making adjustments for row, column and grand means.

The permutation argument is essentially the same (with p and q replaced by pr and

qr, respectively, r being the number of observations per cell). For more than two

factors, aumming over a subset of factors, we may arrive at the desired nuisance

parameter-free model and proceed as in this paper. For brevity, the details are

omitted.
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ON THE p-RANK OF THE DESIGN MATRIX OF A DIFFERENCE SET

F.J. "acWilliams and H.B. Mann
Mathematics Research Center, U.S. Army

The University of Wisconsin
Madison, Wisconsin

ABSTRACT. Let A be the incidence matrix of a block design constructed
from a relative difference set. Let r be the rank mod p of A where p is

p
a prime. In this paper we find inequalities for r and determine r completely'.p P
in some cases and in particular when A is the incidence matrix of the hyper-
planes of a projective or Euclidean geometry. An inequality for the p-rank
of arbitrary balanced incomplete block designs is also obtained.

INTRODUCTION. A difference set (vkAlh) in a group G of order v
relatl to a subgroup H of order h is a set of k elements al ...,I gk of
G such that the equation

-i
ggj go

has exactly X solutions for all gAH and no solution for geH, gol. If h - 1
then the set is called a difference set vk,X.

The blocks B=(s19 s Ok)

form a group divisible design with parameters 1 -0, O 2 X, which for

h - 1 reduces to a balanced incomplete block design.

Relative difference sets were first introduced by R.C. Bose (1942). The
general definition given here is due to A.T. Butson (1963).

The use of the incidence matrix of such a design, the design matrix of the
difference set, for short, as a check matrix of an error correcting code using
a majority rule decoding procedure was first proposed by L.D. Rudolph in a
master thesis (1964). These codes were extensively studied and practically
implemented by E.J. Weldon, Jr. (1966, 1967).

In all these codes the aJ.phabet consists of residues mod. p, a prime, or
more generally of the elements of a finite field with p8 elements, which we shall

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No.: DA-31-124-ARO-D-462.

The remainder of this MRC Technical Summary Report #803 has been reproduced
photographically from the author's manuscript.
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denote by GF(p ) * It is therefore of great practicel importance as well as of

theoretical interest to find the rank mod p of such a design natrix whil, w6 a".1

sonetimes call the p-rank of the difference seL.

In section I of this paper we shall prove a theorem which for Abelian groups

and for (p, v) .i I gives an upper bound for this p-rank and which In certain cases

determines it completely.

In the last three section we shall determine the p-rank for the incidence

matrices of the hyperplanes of EG(m,q) and PG(m,q) (the m-dimensional

Euclidean and projective geometries over GF(q) which can in fact also be

constructed as design matrices of difference sets. This p-rank has previously

been obtained in special cases by E. J. Weldon (1967) and MacWilliams (1966).

The formula proved in this paper has however already been conjectured by Rudolph

(1967).

Section 1. Let G be an Abelian group and S% the group ring of G over a

field F , whose characteristic is prime to the order v of G., We shall

extensively use the characters X of G and R and in particular the relations

(1) 2(g) = (v for g=l,
0 for g l

(2) zX(g) (v for
g0 for X# X,

If A=E agg then
g _1T -

(3) n nx(A) x( ) = g.VX

The notation is explained and fortrulas (1), (2), (3) are derived in

Mann (1965 pp 73-75). Note however that we are here writing the groups

mulqtplicatively0
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I

Let
A = ,ag

be an element of R. We associate with A the matrix (a g1) whose rows

and columns are labeled by the group elements. We wish to find the rank of

(a -1) , which we shall also call the rank of A.

To this purpose let

(x(g))

be a matrix whose rows are labeled by the v characters X &nd whose columns

are labeled by the v group elements g . The entry in row X and column g is

x(g)

We have

(4) (X(Q))(agg,-) (X(g-) )T = v diag(x(A))

lo prove this relation we apply (2) to the element in row X and column X'

of the 1. h. s. of (4) and obtain

-= E ()(*)(*1) vX(A) for X = X'

g g*, x(g)x'(*") = ,agx(x*x' 0 otherwise.

This proves (4). Setting A = 1 in (4) we see that the matrix (X(g)) is

non singular. Hence we have

Theorem 1. Let A = ag be an element of the groupringof an Abelian

group G of order v over a field P whose characteristic is prime to v . Then the

rank of A is equal to the number of characters X of G such that X(A)* 0.

Note that in theorem I the coefficients a are in F and )(A) is an elementg

of F(a) where a is a vth root of unity over F . We can however apply theorem 1

also to the group ring R of G over the domain J of integers. To this purpose

consider the field R(L v) where R is the field of rationals and v a primitlve vth
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root of unity over R Let j (4v) be the domain of integers of R(,v) . Let

f(x) be an lreducible factor mod p of the cyclotomic polynomial of order v

Then since 1, 4v " l,~1)l is an integral basis for J( v) we know (see
v V

Mann 1955 theorem 8. 1) that the ideal (fttv(p) of J(,v) is a prime ideal divisor

P of p. Every prime idea), divisor of p can be written in this form and

K~~v* 0(p) . Similarly if ,t is a root of f(x) over GF( p) then f(a) a 0 and

a is a primitive vth root of unity. Moreover the mapping v 0--p a is an

isomorphism " mapping the residues mod p into GF(p)(a) . Let a be the
p

group ring of G over G F ( p). Then the mapping a - a maps every
v

character X of R Into a character X of p in such a way that v(x(A)) X (A)

for every A = Z agg in particular

X(A) 0(P) X- X(A) =0.

Hence we have

Theorem Z. Jet A £ egg be an element of the aroupring of an Abeliain

crOUi a of orde v over the integers. Lge (v, p) a 1. Tjhfe p-rank of the

matrix, (a gg-I) is eaual to the number of characters X such that

X(A) 0 0 (p)

where p is a fixed prime ideal divisor of p in the field of vth roots of 'jnity,

For any set S in G we shall write

and S x S().

Let D be a difference set relative to the subgroup H of G Then by

definition

(6) D D(-I) k - xH + G,
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If x is any character of G then x (g) x (g is also a character and

X =x if and only if X is of order I or 2 that is to say x(g)z + for all g If

X(D)XiD(-I)-.. X(D)X(D) .0 then at most one of X(D), x(D) is distinct from 0 but both

are zero if x(D) : X (D) . Let t be the number of eloments of order 2 in G, tI

the number of elements of order Z in G/H and set v= v/h. We have to consider

the following cases;

number of X , number of X of order 1 or 2 X(D) 7(D)

x(H)= h, x(G) = v 1 1

y(H) = h, X(G) = 0 v-I t k-h

X(H) a 0, x(G) - 0 v-v t-t k

From this we get

OCrollary 2. 1. 1& D bea v, k, h, h relative difference et. Ie (p, v)

and = v/h L t be the number of elements of order Z in G,t th at in G/H.

Srp be the p-r.nk of D then

v-1 < r if k 0 (p), k- kh 0 (p),

-V l+1-t1v-+ < rp < if k 4 0 (p) , k-XhE 0 (p),

v-v 1+lvr -

r i - if k 0 (p), k-Xha 0 (p),p- 2

r u v if k 0(p), k-h 40 (p).

Moreover rp is eqial to its upper bound if (X(D), XD(-I), p) = 1 for all non

principal X

The last condition is always fulfilled if k 0 (p') k-Xh 0 (p because p

has no multiple factors in R(4) since (p, v) 1
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In the case of a ditterence set v, k, n w U N - -gn i.

k-X40( then r If k 0(p) and - if km0{(p) . ( v must
p 2 2

be odd otherwise k - X is a square)

Another difference sot v, k, X in which corollary Z. 1 gives the p-rank for all

p is the difference set D consisting of the quadratic residues mod q where, q

Is a prime and q. a 3( 4). In this case

x(D) * , x(D) + j( D) = -1
ro, rx 2 lq) q I

for every nonprincipal character X, If (q + 1)/4 0 O(p) then rp . g

If p is odd and qR- 2 p) and AaD+V+l we have, choosing -y El( 2) ,

AA(-1) 4[(q+y + (q-1 + 21)G]

Hence for every nonprincipal character x we have

X( A) X( A( -1) ) 0( p) .'

On the other hand

(x(IA) jx(A( -1),p) - (-yjP) =

and this means that one and only one of x( A) , X( A( -1)) is divisible by a fixed

prime divisor p of p . Also

00(p) for yl,

0A p) for - =I,

Now if M(A), M(D) denote the matrices of A and D respectively we have

M(A) ,M(D) + +1 1

where I is the identity. Hence

p-rank(M(D) + 2 if llp),
i if N lP)

The above result was communicated to one of the authors by A. M. Gleason.
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2
For difference sets D with parameter values v, k, X, where k - , = 0( p

the parameters v, k, X do not necessarily determine the D rank of D. Por

instance the difference set 31, 15, 7 constructed from the hyperplanes of PG( 2, 4)

by the method of section 2 has by theorem 3 the 2-rank 6, while the quadratic

residue difference set with the same parameters has as we have shown the 2-rank

16.

Section 2.

s m
Let q =p , p a prime andlet v =q -1. Let E be the field

GF( q) and let a denote a primitive vth root of unity over E. Then

a 4 GF(qm) and is a generator of the multiplicative group of GF(q ) .

The minimal polynomial f(x) of a over E is of degree m. In fact
mn-I qt'

(7) f(x) u (x - aq
to

,C,...,a m  is a basis of GF(qm) over GF(q) . Hence for 0<j v-1

we have

(8) Ot= yi ai
is0

The coordinates of the vector

yJ = Yjop0"' Yjm-1 )

will be called the coordinates of cd . The set of these vectors may be regarded

as the non-zero points of a Euclidean geometry EG( m, q) over E.

The points whose coordinates satisfy a non-homogeneous linear equation

(9) ti x =tX t t E t #00
I= M.m

rnno
are the q points of a hyperplane of EG( m, q). The exponents j of the

corresponding powers of a form a difference set D mod v relative to the subgroup

generated by (qm 1 )/(q-1) (Bose 1942)
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Let = (60, 1, .. to) be the vector defined by

a al if Jt D,

= 0 otherwise.
I .It

We shall say that 0 is the incidence vector of a Euclidean hyperplane (briefly

an E. H. vector). Every hyperplane of E. G. ( m, q) which does not contain the

origin corresponds to an E. H. vector and every incidence vector is a cyclic

permutation of 0_. We consider the circulant matrix whose first row is _ and

shall determine its p - rank in section 4 . ( This matrix is in fact the design

matrix of D of section 1. )

Let r u(qm-)/(q-l). We have ar a wt E and ar+= W 'F a,

r-1 r

Thus the coordinates of the points 1, t..., r1 represent all the points of a

projective geometry, PG( m-1, q).

The aj, O< J 5 r-1 whose coordinates satisfy a linear homogeneous

relation

1.(10)1I t iy' ,0 t i E

are the points of a hyperplane of PG(m-i, q). The corresponding values of j

form a difference set mod( qm l)/( q-1) . (Singer 1938, also Mann 1965 Theorem

6. 1) We wish to determine the p-rank of the design matrix N of this difference

set.

In order to be able to apply the same arguments to the projective and

Euclidean case we shall consider (q-l) repliuations of the incidence vector of

the difference set.

Let P.D. be the set of exponents J, 0 < j I v-1 such that the coordinates

of satisfy the equation (10) clearly j . P. D. iff J + r t P. D .

Let m(8O,..., evl) be the incidence vector of P.D. defined by
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I = if JP.D.

e =0 if j P.D.

We shall say that 9 is a P. H. (projective hyperplane) vector. The

vector 0 consists of q-1 replications of the same incidence vector of the

projective hyperplane defined by (10). Every projective hyperplane of PG( m-1, q)

is represented in this way by a P. H. vector and every P. H. vector is a cyclic

permutation of a.

Let M(I) be the circulant matrix with first row B . The first r rows

of M(e )consist of q-l repetitions of the design matrix N and the p-rank of

M(eG) is clearly equal to the p-rank of N. Hence instead of the p-rank of

N we shall determine the p -rank of M(_ ).

Section 3. We now consider again equation (8) and form the matrix

YO0 .'* Yv-l0

Q e

Yom-l"" Yv-I m-I

We consider Q as the check matrix of a code C The matrix Q has rank

m since the first m columns of Q form a unit matrix, Hence

the code with check matrix Q has rank v - m . If f(x) is the irreducible poly-

nomial for a over E and

f(x) zb 0  x+... +b m x m

then (8) shows that the v dimensional vector

(b0, bl.., bm P 0,. .. to)

and all its cyclic permutations are vectors of the code with check matrix Q

But these are precisely v-m independent vectors. Hence f(x) is the generator
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K' polynomial of the code C. Polynomials in the sense used here are residue

classes mod xv-l and must always be reduced mod. xV-l. Let

g(x) =b + bm ix+ + b xr
mIn - 0

which has qK as a root and let

(-)/g(x) Wh(x) a h0 + h-rXn+.. +h xv 'M

We have g(x) h(x)" 0(Vc!-l) hence

boh +bIh +... +bIhm 0

boh 1 +bIh 2 +.. b h 001 1 m hm+1

bh+ ... +bh .0

1 0 m m-1

This shows that the v dimensional vector

(hophli,, hv m , . . .0)

and all its cyclic permutations are orthogonal to the vectors of C Hence the

code generated by h( x) is in the code orthogonal to C and since its degree is

v-m it generates the whole code orthogonal to C that is to say the code generated

by Q.

To every linear form

al Yi
IWO

coresponds a v dimensional vector

3. " ( Uo,"", uv. 1)

where

Uj 0 a I~ y'j

The vector u is in the code generated by Q hence
V-i

UIX) E ux j 0O(h(x))
j 4o
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On the other hand if

VI1
u(x) = " u,x O( h(x))

i=0
then ( u0,...,UI) is in the code generated by Q. This shows that all

E. H vectors

ID = (80),...,Iev-1)

can be obtained by setting for some u(x) a s(x) h(x)

6j =I if U =t 0

aj = 0 otherwise.

Similarly all P. H. vectors e can be obtained by setting for some

u(x) =s(x) h(x)

8* =1 if u =0

j * 0 otherwise.

A moments reflection will show that

(12) D](x) = 1 j xJ= x j - (u -tM )
J =0 j =0 J --a

if e is an E.H.vector and

(13) D(x) e, j q
j=o o j=0 j0--0

if 6 is a P. H. vector.

By theorem 1 the rank of the design matrix of D equals the number of

vth roots of unity which are not roots of D(x) since the residue ring E[x]/( xV-l)

is isomorphic to the group ring of a cyclic group of order v.

For any polynomial f( x) we shall say that P is a non root of f( x) if

and only if P is a vth root of unity and f( P) 0 0. We will determine the rank

of D by choosing u(x) so that it will be possible to find the non roots of D(x)

from formulas (12) or (13) respectively.

Since g(x) "(xV-Ih( x) is prime to h(x) we can determine e( x) so that
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v-1
(14) e(x) = e x1-glx))

K0 V,( x))

We then have if 1 denotes a vth root of unity

(IS) I(P) -l if g(0) 0

S(p) .0 if g(0) *0

moreover the vector e u (6018,1 ... P e-1) is a vector of the row space of Q

Section 4. We first prove two lemmas.

Lemma 1 . Let g(x) be any diviaor of xV-1 and let h(x) =(xV-l)/g(x)

Let (v, p) a 1 q up -Let p denote generically a vth root of unity over

G..F.(q) . Let

I o

then

(16) a(p)d 1  iva

Proof: From the inversion formula ( 3) we hpve

The polynomLal x -I has no double roots over G. F. ( q) . Hence h( ) = 0 If

and only if g( ) *0 . But a(P) =0 if h(1) =0 and this yields(16)

Formula (16) is essentially due to Mattson and Solomon (1961)

Lemma 2. Let G be an Abelian group of order v over a field F whose

characterictic is prime to v . For each g let

vag Z I,
9 x

Let Au T a g then
g= x(A) mi

X 442
442



Proof: Setting V ) (g )we have on account of (2)

V(A) a2 V xg) #2
gt G gi Gx'

-v 21 xt X( g)=

This proves lemma 2.

Corollary. Let generically denote a vth root of unity over a field F

whose characteristic is prime to v . Put

vel i

Lot f(x) aixthen

f().

The corollary follows if we apply lemma 2 to the group ring of a cyclic

g roup of order v over a field F.

In particular the non roots of f( x) are precisely those vth roots of unity

Pfor which A 00.

Lemma 1 applied to e ( x) of ( 14) gives

From( (12) and( (13) we get choosing t = -1 in (1.2)

t =0

I1 iqql1

By the corollary to lemma 2 a- will be a non-zero of
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v-I

D( x) =Z(L I x if and only if the coefficient of -y in the expansion of

rn-i-i

t--O

is not 0 . Similarly, &-j will be a non-zero of D( x) = 6. xi if and only if

V J occurs in the expansiont of

m-1 qtq-(18) l-( qq-

tZ0

with a non-zero coefficient.

We shall carry out the calculations for the Euclidean case in detail. The

projective case can be treated in a similar way.

We may write
rn-i t m-l q- pl( p.+S-i)

(19) (l- 1 q -q- 1- q(p) G+p p
tZO to r-i t

The exponents occuring in the multinomial expansion of (1- A q ) p-1 are all
t .0

of the form
t1  te

(20) J q +e + Je q

where 0<t 1 <... <t < m -l and J +  + Je <p-I . Moreover the coefficients

of these powers of y are all prime to p . Two exponents of this type are distinct

if ti, ... te or Jl'. . . I J. arc distinct. Moreover every exponent of type ( 20)

occurs. Hence (17) becomes
pT s-i,.1

(21) 'Ny) = 1 - c i Z oi  Y i... , iVp

S-I
T"i +PT,+ .. +p T

- Cil... C2 s

where the sums arc extended over all numbers -r of the form (20) and the ci

are not 0. Hence we finally get

(22) ZN ) a zyr
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where the sum Is extended over all o > 0 of the form

23 j j, Zt< p-1 I=0... s-l.

i--0 jM0

and z #0.

Let Q ( p-1) be the number of partitions of all non-negative numbers

p-i into m non-negative summands. The number of numbers of the form ( 23)

is the number of terms in 22 and is given by

(OQM( p-1) )) - 1

and this is the number of non-roots of (12) . A similar argument shows that the

non-roots of D (x) in (13) are given by the element 1 and by all &_j such that
s-i rn-i iq tj

(24) J -- m-1 tP qj , Et =p-1.

The number of non roots of D *(x) in (13) is therefore

( Ia( p-l) +1

where Pm (p-i) is the number of partitions of p-i into m summands.

It is well known that

t (m + t -1 I (m + t - 1

P (t) t.m L " (mt )
Hence we have ( note that the projective geometry considered was (m-1) dimen-

sional)

Theorem 3. The p-rank of the incidence matrix of the hyperplanes of a m-dimen-

sional Euclidean or projective geometry over GF(p) ia

( mn+p-I +
m44
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where = +1 for the oroiective and c = -1 for the Euclidean gomet .

If p= t q, 0< t <q

then we put
c (p)= t ,

cq ( )

It is not difficult to verify from (23) that
(25) cq( opi)  (q -1)

for all I and that ( 23) represents all numbers < qm which satisfy 25.

Similarly (24) represents all J such that 0 < j < qm and

(Z6) C q( pi J) eq-I

for all values of i

Section 5. A part of theorem 2 can be generalized to balanced incomplete

block designs. We shall prove

Theorem 4. Let A be the incidence matrix of a balanced incomplete

block design with parameters v, k, X and let n = k - X. Let p be a divisor of

n. Then the p-rank of A is at most (v+E )/2 where E =0 if ka 0(p) and

1 1 otherwise.

We have

(27) AAT = n I + X X jJ(p),

where T is a v x v matrix all of whose elements are 1

If B, C are square matrices of order v over any field then (Mac Duffee

(1933), chapter I Corollary B. 3)

(38) rank(B) +rank(C)<v+ rank(BC)

We may consider A as a matrix over GF( p) . The matrix J has rank 1. Hence

the rank of the right side of (Z7) is. as defined in theorem 4 and theorem 4 follows.
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SOME STATISTICAL METHODS IN MACHINE INTELLIGENCE Kkt.aAKI

I. J. Cood
Department of Statistics

Virginia Polytechnic Institute
Blacksburg, Virginia

ABSTRACT. About a dozen examples are given of the use of statistical
methods in research on machine intelligence, mostly, though not all,
previously known, but not previously brought together. The topics include
the application of rationality to the research as a whole; the trading of
immediate gain for information; adaptive control without the identification
of a model, by using smoothing techniques; phoneme recognition using
distinctive features and their derivatives; the compiling of dictionaries;
"botryology" or concept formation by clump-finding; information retrieval;
medical diagnosis; game playing and its relationship to theorem proving;
design of an alphabet or of a vocabulary; and artificial neural networks.
Among the statistical themes that are emphasized are the estimation of
probabilities; the use of amounts of information and of evidence as substitutes
for utility when utility is difficult to estimate; decision trees; "evolving"
probabilities; and maximum, minimum, and minimax entropy in diagnosis. In
this survey of methods it has been necessary at several points to make do
with references to the literature.

I. INTRODUCTION. This paper is concerned with examples of statistical
methods in machine intelligence research and is not much concerned with non-
statistical methods. I believe that some of the ideas are new.

One meaning of "intelligence" is the ability to adapt to a wide variety
of circumstances in the attainment of some goal such as self-preservation.
In practice this will always involve many subgoals. This definition involves
both powers of perception and intellectual activity. I think we have gone
further in the mechanization of the intellect than of perception. Spiders
and bees seem to have better powers of perception than any machines to date
at least in their powers of pattern recognition. It is not clear whether
perception should be regarded as an attribute of intelligence but I shall
do so.

The work on machine intelligence is an attempt to extend the use of
computers into field@ where humans and many animals are still supreme,
especially into apparently and actually non-numerical fields, roughly
describable as "infoimation processing." Elementary information processing
could be defined as what can be done using punched cards, sorters, collators
and the like. Machine intelligence might then be roughly equated to advanced
information processing. Some people would insist that the programs or
machines must be adaptive. The subject is still in its infancy: as Oliver
Selfridge remarked "Artificial intelligence remains tainted with artificiality."

One aspect of intelligence is judgment. You say that a person has used
judgment when you don't know how he arrived at some opinion (19), This is
especially true when one is talking about one's own judgment. This could be

This article appeared in Volume 19 #2 pp. 101-110 of the Virginia Journal of.
Science. We would like to thank the Editors of this Journal for permission

to republish this article. 449



called the "Elementary-my-dear-Watson" effect. One approach to wataiut
intelligence is to discover how judgments are made and then to simulate them.
Machine intelligence research is therefore closely related to experimental
psychology. That is why there is a society, founded in the U.K., called
1"A is B", meaning "Artificial Intelligence and the Simulation of Behaviour."
About a third of the members are experimental psychologists.

Some examples of work on machine intelligence are:

Machine translation and, more generally, "Computational Linguistics."
Some aspects of information retrieval.
Game playing.
Theorem proving.
Musical composition and the graphic arts. [See (44), which book will

be based on an exhibition organized by the Institute for Contempo-
rary Arts.]

Probability estimation.
Classification in general.

Included in classification is "pattern recognition of which there are two kinds
(i) the recognition that an already specified pattern is present (properly
called "pattern recognition"), (ii) the sp6cification of new patterns, which
is also called the "theory and practice of clumps" or "botryology," from the
Greek OoTpos, a cluster of grapes. There are already 27 words beginning with
"botry" in Funk and Wanall's English dictionary so one more won't do any
harm. A good name is Important, there would be fewer professors oi history
if it were called "what happened."

Examples of classification are the recognition of printed and handwritten
characters, speech recognition including the categorization of phonemes, the
classification and recognition of fingerprints, medical diagnosis, and numerical
taxonomy. Rutowitz (50) gives a short survey.

Apart from the simulation of thought processes, there has also been some
work on the simulation of neural networks (for example, (4, 5, 11, 49)). This
work Is also related to the theory of reliable marhines made of unreliable
components (for exampie, (9, 40)), and borders on the assembly and subassembly
theories of mind (24, 34, 38).

It is possible to regard all statistical methods as an attempt to mechanize
intelligence, since they are concerned with the reduction of judgment to
calculation as far as possible. Perhaps machine intelligence is mainly
concerned with new kinds of applicationp of statistical methods.

An excellent introduction to machine intelligence research is (39).

11. EXAMPLES.

methods (i). As a first example of the application of statistical
methods, letrs consider the application of the principle of rationality to
the work on machine intelligence. The principle of rationality is the
recommendation to maximize expected utility. Let p be the probability that
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an "ultraintelligent machine" can be built for cost C, where by definition an
ultraintelligent machine is better at every intellectual activity than any
man; and let the value of this machine if IL can be built be u. Then it is
easily seen that Ip ul> C for almost all C, even if p is small. I have put
the moduli signs in here because, although it is clear that u is large it
is not clear whether it is positive or negative.

Good's Second Law is that when getting advice from consultants on whether
to undertake some project, it is important to get two different consultants,
one to estimate the probability of success and th. other to estimate the value
if the project is successful. If a single consul-:ant is asked to judge whether
to spend an amount C his answer is too much tied up with his own reputation.
If he thinks p is not large he might advise against the expenditure in order
to protect himself, regardless of the size of u.

I think this elementary point is important and often overlooked. It
shows that a little rationality can go a long way.

A division of responsibility between judge and jury is familiar in law
courts, but the jury is usually expected to return a definite verdict instead
of an estimated probability. It can also fail to reach agreement, of course.
The term of imprisonment of a suspect ought to depend officially on the
probability of guilt. Perhaps some day everyone will have to pass an examination
in the philosophy of probability before sitting on a jury, just as drivers of
cars in the United States have to take a written test.

Example (ii). The two-armed bandit. This problem apparently originated
in connection with the choice between two medical treatments (53). It is
relevant to adaptive control. Before discussing it I must first refer to
"dynamic programming."

When electronic computers were fairly new, "programming" became a vogue
word and therefore the expressions "linear programming", "mathematical
programming", and "dynamic programming" were introduced although they are
more logically called "linear planning", "mathematical planning", and "dynamic
(mathematical) planning" respectively since none of them has any necessary
connection with machine programming. Richard Bellman, who originated the
expression "dynamic programming" agrees with this remark. The improved
terminology enables one to speak for example of the programming of dynamic
planning.

Dynamic planning is concerned with decision situations in which the current
best decision cannot be conveniently worked out without working back from the
future. One has a decision tree which is often stochastic and the payoff depends
at least partly on where one ultimately ends up on the tree. For example, in
the game of chess, the strategy of the entire game really depends on analysis
of the end game. This sheds light on the appropriate strategy for the middle
game and that in its turn sheds light on the opening strategy. Thus dynamic
planning is in some respects hundreds of years old.

A good example of the use of dynamic planning is for the two-armed bandit
problem (3, 45, 46, 53, 54, 55, 56). In this problem we have a gambling
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machine with two arms or handles, we put in a stake and we can choose which of
the two arms to pull. Associated with each arm there is an unknown fixed
physical probability that we shall receive a certain fixed reward, LIe UuI
reward for both arms. (There was an electronic two-armed bandit at Rand
Corporation some years ago.) The question is, what is the best strategy?
There are various forms of this problem depending on whether the game is of
finite or infinite duration. If it is of infinite duration, it is more
realistic to discount the future at some rate although the infinite game has
also been considered without a discounting factor. When the game is infinite
and there is no diecounting factor, the object is to win in the largest
possible fraction of time in the long run. For this game the solution is the
following intuitively obvious one: Since there will ultimately be a very
high probability that we know which is the handle with the higher probability
of a payoff, we should pull this handle in a proportion of cases tending to one.
The other handle must be pulled in a proportion of cases tending to zero but
nevertheless in a number of cases tending to infinity. This form of the
problem is not of much practical interest, but, with discounting of the future,
it is a rather good model of a typical situation in which we have to decide
whether to go for short-term gains or to pay for additional information. It
is easy to express the problem of finding an optimal solution in terms of some
mathematical equations which, however, have never been solved explicitly. I
have discussed this problem several times with Dr. Michie of Edinburgh. About
seven years ago, he suggested that the information should be measured in terms
of Fisher's definition of amount of information with some suitable choice of
units, in order that the information could be interpreted as a cash value.
However we refuted this and we proposed that expected amount of information
in Shannon's sense or else expected weight of evidence might be better.* This
we have not yet refuted although in principle it would be quite easy to do so,
if the assumption is wrong, by means of a computer program. Michie did write
a program in 1960, for solving the dynamic planning equations numerically, but
it is not yet quite flexible enough to deal with this particular conjecture.
To be more specific, the conjecture is that the long-term financial value of
an act is the sum of its immediate expected financial value plus an amount
proportional to the expected amount of information or to the expected weight
of evidence. (Compare (36)). The expectations can be worked out provided
that we assume some initial distrubution for the physical probabilities p and q.

The two-armed bandit problem occurs when one is trying to decide whether
to adopt a certain medical treatment when there are two treatments to choose
between. The problem can of course be generalized to a Hindu-god bandit having
n arAs or even a continuous infinity.

The infinite game with discounting of the future is a simple model for
the strategy of scientific research, or even of adaptive behaviour generally,
and it is relevant to certain types of adaptive control strategy, as in the
next example.

In the application of the two-armed bandit problem to the choice of a
medical drug we are unfortunately involved with the ethics of experimenting

*The amount of information and the weight of evidence concerning H provided by
E are defined as I(H:E) - log [P(EIH)/P(E)] and W(H:E) - log [P(EIH)/P(EI not

H)] (see (14, 16) and references therein).
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I
on people. It would be possible though perhaps impracticable to draw lots
in order to select the patLents to be given the treatment currently thought
to be the less effective. This might be fair and would satisfy the statis-
tician's requirement for randomization.

Example (iii). Adaptive control: a non-identifying approach. (The
pole-balancer.)

A classical model of a control system Is x - f(x, U, t), where x is the

state variable (vector), u the control variable, f a known func:ion, and t

is time. There is also a loss function or loss functional. In adaptive
control, f is not usually entirely known, and u is chosen either in the light

of previous "runs" or in the light of the current run or both. Non-adaptive
control is rather like "dead reckoning" in navigation and so too is adaptive
control when it does not depend on the current run. A wel].-kno~m simple
example is the pole-balancing problem in which we have a pole hinged to the
top of a cart which runs along a finite straight track, with a eliff-edge
at each end. Our objective is to balance the pole for as long its possible
without falling over the edge of the cliff, to stay alive as long as possible
so to speak. A potential application, according to (10), is to the balancing
of a rocket on its launching pad.

cliff-edge I - cliff-edge

Suppose we measure y and 8 at discrete moments of time. At each such moment
we can apply a "bang-bang" control in which a constant force it. applied to
the cart either to the left or the right at our choice. We thlnk of the
state of the syst~m as a point in phase-space, with four coordiLates say
X 0 (y, , , ). (Strictly speaking, phase-space uses positions and momenta.)
Our "strategy" can be defined as a function from points x in phase-space to
controls u which take the values L and R. In this example u is a scalar.
The "cost" of our strategy can be defined in various ways, for example as a
decreasing function of the life-time of the system.

Even in the theory of adaptive control it is usually considered necessary
to identify the dynamics of the system (see, for example, (N)), But a juggler
can balance a stick without explicitly knowing any dynamicu, so It must be
possible to do the same with a machine. It might be expensive of course. Dr.
Donald Michie of Edinburgh proposed dividing the phase-space into a small
number (namely 5 x 5 x 3 x 3) of discrete cells or "boxes," aLnd recording
only which box the phase point is in at any moment rather than its exact
coordinates. Time is taken as discrete.

Each run provides information oi the form

xl' u) (,' U2"'"
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I
where each ui is L or R klert or r igiL1. ThIc d i2, each run for
learning an improved "strategy" (see below) for the control u as a function
of &. This learning might take place between runs, during runs or both.
You learn how to live as long as possible by experience gained iL previoun
incarnations. A strategy is a function fromX to u since we assume that
only the positions and velocities are relevant, i.e. there is no hysteresis
in the system, or if there is it in allowed for by weighting the past
exponentially. [Barnard, 1959, made a useful suggestion about weighting
the past. He suggested that if the current behaviour of a system changes
by an unusually large amount, then the past should temporarily be discounted
at an increased rate.]

We can define a strategy by imagining a little demon in each box.
A record is made by each demon whose box has been used, corresponding to each
of its uses., This record states whether the bang-bang control was L or R on
each occasion and also states the weighted average of life-times of the runs,
corresponding separately to L decisions and R decisions.

If the parameters of the system are unvarying, then given a large
enough sample it would ultimately become clear to each little demon whether
L or R was probably the better decision for him. Actually he could never be
quite certain and should occasionally make the apparently less good choice
merely in order to gather information, as in the two-armed bandit problem.

The mean life-time, or rather a decreasing function of it, is not
a very good cost function. To use it is too much like tvying to teach some-
one (or a machine) to play chess by discouraging any move in a game that he
happened to lose. It is far more efficient to make use ot sub-goals foi the
purpose of choosing positive and negative reinforcements. (Compare (19).)
If scores can be associated with the various cells or boxes, then a score
can be associated with the entire path, this time using a discounting of the
future.

Another point is this. If the dimensionality of the problem is much
more than 4 (whLch Is the number of dimensions of phase space in the pole-
balancing problem), the number of cells or boxes is apt to be extremely large,
and it will become difficult or impracticable to take a large enough sample.
In this case two different modifications of Michie's approach are possible.

(i) Suppuse we can make use of spacial continuity. Then each demon can make
use of the statistics acquired by surrounding demons, giving weights that tail
off according to the distance away of the other demons.

(ii) We can ignore continuity but treat the various cells by some extension
of a treatment of multidimensional contingency table, when estimating
probabilities (23).

If in method (ii) we were to categorize the life-times also into
say only two categories (above and below some threshold varying with the
state of the game but the same for all cells in any one run), then the data
would reduce to a multidimensional contingency table 2 x 2 x 5 x 5 x 3 x 3,
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I
and the methods of (23) could be direnrly nnnp1(A T chl #h1--f- rCfCr

to this u)rk now in greater detail.

Example (iv). EsLinaLlun of probabilities in multidimensional contintency
tables. Suppose that a man is toaching a machine to recognize patterns such as
letters of the alphabet, phonemes, diseases, or fingerprints. For diseasea the
information would be fed to the machine by punching up cards from long que:3tion-
naires. Thus for each object the machine has a list of attributes and alno the
name of the class to which the object belongs, as supplied by the instructor.
I shall assume that each attribute is descrete, such as yes-no, and has no
natural ordering or, if it has, the ordering can be ignored. This is true for
the twelve "distinctive features" of phonemes, due to Roman Jakobson, such as
voiced/unvoiced, strident/mellow, consonantal/nonconsonantal. Actually at
least some of these features can be expressed quantitatively and there are
reasons for thinking that we should also record the signs of their derivatives
with respect to time. This would increase the dimensionality of the problem
still further (29). We would be working in a discretized phase-space of at
most 24 dimensions.

Each object provides one entry in a multidimensional contingency table.
Owing to the high dimensionality, the frequency in most of the cells will be
0 or 1. There is then a problem of estimating the probability of each cell.
If we can do this we can obtain the likelihoods of' the various letters,
diseases, or crooks, on any future occasion,. corresponding to any set of
attributes. For phonemes we should also take into account polyphonemic
statistics and similarly in medical diagnosis the history of the set of symptoms
of a patient is relevant.

An approach to this problem of estimating probabilities is to use the
principle of maximum entropy, that is, to maximize - E P, log pi subject to

various linear constraints. These linear constraints are obtained by taking
marginal totals in a small enough number of dimensions to obtain adequately
large frequencies. Even without this, the principle generates null hypotheses
for consideration. For example, in two dimensions it generates the null
hypothesis of independence of rows and columns, a null hypothesis that every
statistician would entertain on grounds of simplicity and conventionality.
For a 2 x 2 x ... x 2 - 2m table, for which there is only one degree of freedom
when all the marginal totals are known, it generates the hypothesis that the
product of the probabilities on the black cells is equal to the product on the
white ones, when the table is regarded as a multidimensional chessboard, that
is, the highest-order interaction vanishes. (For m - 3 this hypothesis was
proposed as natural by Fisher. (See (2).) The equation ia of degree 2

m - 1,
but it always has exactly one positive solution,

For a d 1 x d2 x ... x dm table with all rth orde~r marginal totals given,

the principle of maximum entropy generates the null hypothesis that all rth
order and higher-order interactions vanish. This is true for more than one
definition of interaction. One definition is the discrete multidimensional
Fourier transform of the logarithms of the probabilities, but Goodman (33)
showed that a real but slightly more complicated defiiition could be used
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without upvetting the results. When the d's are all 2, the discrete Fourier
transform is real and agrees with the definition (59) of intregr -tiR uRad
in factorial experiments, as pointed out in (17). The result for any
contingency table can be expressed in terms of all the "embedded binary
cubes." Note that if we accept a null hypothesis we are in a position to
smooth the observations, that is, to "improve" them.

To allow for the finiteness of the sample a reasonable procedure is
to maximize some linear combination of the entropy and the log-likelihood
(23). This is equivalent to selecting the pi's at the mode of the final

(posterior) distribution if the initial density is proportional to H p i.

I think k - I is adequate, but that better would be a density of the form
If k pi T(k) dk by analogy with the work on Bayesian significance tests

for multinomial distributions (31). (This density is a function of the
entropy.)

Example (v). In work on mechanical translation it is necessary tomake special-purpose and general-purpose dictionaries. Various problems
of the following kind should then arise: what is the coverage of the
dictionary, that is, what is the probability that the next word met will
be one that is already in the dictionary? And what would be the coverage
if the sample on which the dictionary was based were doubled? These questions
can be answered by means of the theory of the sampling of species (15, 32). For
example, if nr is the number of distinct words represented r times in the

sample (that is, if nr is the frequency of the frequency r), then the coverage
is approximately 1 - nlI/N if n 1 is large, where N is the sample size. In

fact n1 always is larg? 1- . ctice, however large the sample. The expected

coverage if the samplc size is doubled is approximately 1 - (n1 - an2 + -j.

...)/N. One of the basic ideas in this theory was due to Turing (private
communication, 1940): its logic is extremely similar to that of the empirical
Bayes method and some of the smoothing techniques of the species-sampling

problem can be carried over into the empirical Bayes method for other prob Lems.
This statistical problem does not of course go to the heart of

mechanical translation but its solution should be known to all workers in
this field since the compilation of dictionaries is expensive and shou±d be
organized rationally.

ExMle (vi). Botryology, for example, in Information Retrieval.
Given computers of very great speed and capacity there are prospects of
automatic indexing of documents, an operation that normally requires rather
high-grade effort and is expensive. The index terms do not need to beexisting words: a clump of related words can be regarded as an index term.

One point in making use of clumps (or clusters) is to overcome the difficulty
arising from synonyms. Sometimes the discovery of such a clump will suggest
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words and documents, a variety of botryological procedures have been
suggested (see, for example, (21) and its references (6,47,52,58)), and some
of them have been tried on small collections of documents, such as a few
hundred. Most procedures suggested have involved a preliminary calculation
of a relevance or relatedness matrix, at least resembling a correlation or
covariance matrix of words or of documents. I think it is better ((24), pp.
52-54; (26), pp. 120 and 124) to work directly with the document-word
incidence matrix, In order to cut down on the amount of calculation. This
will be especially worth while when dealing with a sparse incidence matrix,
which is the usual situation. For an arbitrary real rectangular matrix
there is an interative procedure for obtaining the "singular vectors" which
is analogous to a well-known method for obtaining eigenvectors of a square
symmetric matrix. It can be used for component analysis (57). An elabora-
tion of it has been suggested for hierarchical botryology, together with a
significance test (26). The process should give clumps of index terms and
associated or conJugate clumps of documents. Similarly if we have an incidekae
matrix of symptoms and people, we can look for clumps of symptoms and conjugate
clumps of people. If the botryological calculations are sucessful we should
discover new diseases or complaints, or at least syndromes, together with the
people who suffer from them. (A syndrome is a collection of correlated symptoms
whose causal relationship is often poorly understood.)

Botryology can be regarded as the science of concept formulation. A
concept can often be thought of as a ciump cf previously existing concepts.

Example (vii). Speech recognition without tuition.

Different people use different phonewes and this is a source of difficulty
for any speech recognition machine. But even without tuition a machine might
be able to categorize the phonemes of a given speaker botryolopically. I shall
suppose that the distinctive-feature approach is used, possibly with time
derivatives, so that each speech sound will be represented by a binary vector
in m dimensions, where 12 < m < 24, A stretch of speech is to be converted
by the -achine into a seluence of sdy ,k bah vesor. Many of these vectors
will represent transitions between puLemes hiuce we cannot assume that
the problem of segmentation of the phonemes can be solved at the start. The
machine now has a binary matrix B with m rows and n columns. This can be
treated by a method which I call "crude convergence" which is an iterative
method of maximizing x'By where x and y are binary vectors (25), p. 120).
After convergence we could extract the two quarter-matrices, corresponding
respectively to the positive and to the negative components of these vectors,
and repeat the process. In this manner we might be able to obtain a dichotomous
dendroidal categorization of the type shown in the diagram. A slight geueralisa-
tion would allow polytomies.
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An alternative and more classical approach, which however would probably i
involve for more calculation, would be Lo start with the correlation or
covariance matrix of the n original vectors. In any case the "transition
phonemes" would mostly be too rare to be relevant, and those that were notrare might deserve to be called phonemes. To finish off the job would be

a problem like the solution of a simple substitution cipher, but many of
" the phonemes would be given only probabilistically.

It would be interesting to try this process both on human languages
and on the sounds made by dolphins and whales, which are linguistic for
all we know. Of course with unknown languages the transformation of the
speech into a sequence of phonemes is only a small step in the solution,
but a necessary one.

Example (viii). Medical diagnosis. If we can sqlve the probability
estimation problems we can of course apply Bayes' theorem in order to do
automatic medical diagnosib. If it is too difficult to obtain a really
good Bayesian model we can use a less good one and then interpret the
resulting Bayesian log-factors or weights of evidence as orthodox non-
Bayesian statistic. This is an example of the Bayes/non-Bayes compromise.
(See, for example, (25).)

Assuming a Bayesian model how do we choose between two "facets" for the
eliciting of a datum? This question, raised by Card (8), may be regarded
aw a special case of that of how to design an experiment. More generally
we might wish to decide between a number of facets and a number of treatments.
Theoretically we should use the principle of rationality. But utilitis are
often difficult to judge, so we might instead use measures of information,
evidence, or corroboration as if they were utilities (see, for example, (14),
p. 72; (16, 20, 37)).

The various possible diseases or complaints can be reaerded as hypo-
theses, H , H2, H3 ,..., but these unfortunately are not necessarily mutually

exclusive. (The same complication arises in chemical analysis.) At any
moment let us suppose we have current probabilities P(H1) - pl, P(Hu)Pm.

If we elicit a datum E these probabilities change to P(H1 IS) - ql "

P(3 Jr) - qm. A reasonable criterion of how well off we are in our diagnostic

work is the entropy -E qi log qt. The smaller the entropy the closer we

are to a complete diagnosis. So a possible criterion for the selection of
the facet is to arrange to minimize the expected entropy, assuming of course
that the expected cost (in time, effort, and danger to the patient) is the
same for the various alternative selections. (Otherwise we must allow for
this cost.)

It is interesting to note that it makes sense to maximize entropy when
estimating probabilities, but to minimize its expectation when planning an
experiment to obtain revised estimates of the probabilities. This sems
analogous to the fact that the physical entropy of isolated systems tends
to a maximum (the Second Law of Thermodynamics) whereas in the evolution of
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Law of Thermndynamics (28). Negative entropy, which includes food and social
order, can be regarded as a physical expression for utility, at leant a- an
approximation. Life fights a game against Death with negentropy as the prize.

More generally, when planning an experiment for which we intend to
estimate probabilities by maximizing entropy we could try to inimeize the
expected maximum entropy: that is to minimax the entropy. It is as if we were
playing a game against Nature, where we try to maximize utility interpreted
as negentropy, and Nature tries to minimize it. Minimaxing of expected loss
(i.e. maxim1nwing of expected utility) was proposed as a statisticel principle
by Abraham Wald and has been defended not as rational but as prudent by R.B.
Braithwaite. As far as I know the suggestion of minimaxing entropy is new
and, since it !mplies that Death rather chat Nature is an opponent, I think
it makes better sense than minima.xing expected loss.

The principle of minimizing (or minimaxing) expected entropy can be
derived from another principle, that of maximizing (or maximinning) expected
amount of information. Suppose that we have several hypotheses 1 0 2P ... ,

Rm (typically H and we wish to select an experimantal set-up for which the

possible results are E1 , E2 , ,.. , an (typically E1 ). The expected amount

of information from the experiment is

I(H:E = , log IN)
eP (

log P (Hi IE3) - gP (

where the colon denotes "provided by."

The second teo= does not depend on the experimental set-up. So maximizing

I, i I(Hi : Ej) is equivalent to maximizing - E [entropy of (HI, ... , I%)

conditional on E J, that is, it is equivalent to minimizing the expected final

entropy of (Hl, ... , Hm) by appropriate selection of the experimental set-up

(El, ... , E n).

Information is not an absolute measure of utility and should not be used
if we have a better measure. Alternatives are degrees of corroboration and
especially weight of evidence (for example, (14, 20)). We might then t-l to
maximize the expected weight of evidence (the vinculum denotes negation).:

WP(E Ii) (HlooMlo Ii, w i :  ) - l o pzj I~i "-7 o (H
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The second term is again independent of the experimental set- p. So the
imization r f j W(H1 : E ) is equivalent to minimizing ["odds entropy"

of the hypotheses conditional on the experimental set-up]

e: =E I "i p (Hi 2 j log o (Ri  i I

Another possibility is the expected logarithm of the"repeat rate":

log E (P (Hi1 IE

Information has the formal advantage over (weight of) evidence that, owing
to an additional additive property, the principle of maximizing expected
information is consistent when applied to a pair of completely independent
problems. (The logarithm of the repeat rate is also additive.) But since
nelther information nor evidence is exactly a utility, this formal advantage
of information over evidence is not decisive, and my view in that maximizing
expected weight of evidence is better at least when there are only two
hypotheses, and especially when the initial odds are difficult to estimate.
It breaks down when the weight of evidence is infinite, positive or negative,
but this is rare. Even when bacilli have been taken from a patient's blood
and have satisfied twenty criteria the weight of evidence is apt to be only
of the order of 6 bans (a Bayes factor of 106), and anyway (as Dr. Card
remarked in conversation) the patient might really be only a carrier of the
suspected disease. Nevertheless, in the acquisition of evidence, there is
sooner or later a law of diminishing returns. An advantage in using expected
weight of evideuce as a pseudo-utility is that it is independent of the
initial odds of the "null" hypothesis, which can often be judged only within
a fairly vioe interval. It is therefore a relevant mua.ure until we a-
confident that enough evidence has already been acquired, say until one of
-the diseases is at least 100 to 1 on. Similarly, when we use the principle
of minimum entropy in the design of an experiment and have difficulty in
ascribing sharp probabilities to the hypotheses, it is prudent to ascribe
those values of the probabilities, within the intervals in which they are
Judged to lie, in such a manner as to maximize our estimate of the entropy,
This proposal is another form of the principle of minimaxing expected entropy,
closely related to but not identical with the principle mentioned before.
Another two candidates for maximization in the design of an experiment are
(writing v for "or",- for "not", : for "provided by", I for "given", and /for
"as against"):

i P(H v Hn [P(Ni I Hi v Hi,) M /HW(ili,  : Z i) H

+ P (Hit. I U i.H1 Z, W(Hil Hi '~ I Hit)
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and

Ei, P (Hi v H i ,) j (W (Hi / Hi, : Ej) Hi}

,gj 1W (Hi, I H) : Ez Hit)

P (E H i
2 P (H1) (P (Ej I H1) -P (Ej Hit)] log p IH)

J'i'jP (E~ I H11

We could here give additional weight to the (i, i') term if it is especially
important to distinguish between hypotheses (diseases) i and i'. By trial

and error we might be able to decide what measure is beat to use.

In the above discussion I have ignored the hierarchical nature of many
pattern detection or diagnostic processio. These also produce statistical
problems associated with probabilistic decoding or regeneration (see, for
example, (24), pp. 37, 38, 57, 62, and 77).

Let us think of medical diagnosis as analogous to chemical analysis.
What we have is a stochastic design tree as in the diagram.

A diagnostic decision tree.

Each round node denotes a set of data and each square nods denotes a facet
and a cost. Associated with each set of data is a probability vector of
all possible diagnoses. If one of these probabilities exceeds say 0.99 we
have won, that Is, we have completed the diagnosis. Or we could measure the
value of an endpoint by the negentropy of the probability vector, or by one
of the other measures mentioned above. If we can estimate all the probabilities
sharply, then our optimal method of diagnosis would be performed by iterative"expectimaXing" (me* the next section), but if not then we could instead use
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iterative miximinning as in a game with an opponent.

Medical and chemical diagnosis are but two examples of the problem of
6recognition !A gemeral. We could clearly set up a model of the general

recognition process as a stochastic recognition tree, with iterative expecti-
maxing or minimaxing of the entropy as the basis of the optimal strategy,
while holding in mind that expectimaxing the utilities would in principle be
better if the utilities could be estimated. In some military applications,
in which the objects we wish to recognize a..e camouflaged, we might wish to
maximin the expected utilities when fighting a clever opponent.

Example (ix). Game-playipa and theorem-proving (see for example, Good
1968, Newell et al, 1959 where further references will be found). In the
Beal-von Neumann theory of games a "game of perfect information" is described
as "trivial." But in normal English usage, chess is far from being a trivial
game, and this might seem to show that, as far as chess is concerned, the von
Netmann theory of games is of rather tzivial application. But properly inter-
preted it does have an application, because in practice chess is a game involving
an element of luck (12). Personally I should define a non-trivial game as
one that is so complicated that its optimal strategy cannot be definitely
established and whose analysis therefore must depend on "evolving probabilities".
(See below.) This definition could be used whether or not the game is in
principle one of perfect information. In this sense a non-trivial same has
some analogy with classical statistical mechanics.

Generation 1

2

3

S" 4
" 5

" 6

Consider an analysis tree starting with a position 110. We must have
some rule for terminating the analysis at various positions n which are
andpoints of the tree. This is because the tree would usu&lly be too largo
if every variation were analyzed, although the number of possible games ofchess is admittedly not more than 103 0 00 0 , if the game is drawn when fifty

consecutive moves are played on each side without a capture or pawn move (13).
If we decide where to prune the tree and can evaluate the "evolving" expected
utility (sea below) of each end-point, then we can work backwards by iterative
m&ximinning to all other points on the tree, and thus decide what move to
make in position r0 .

In order to save space I shall discuss theorem-proving at the same time
game-playing. In theorem-proving, at any moment we have a collection of
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I
mathematical propositions. The collection of propositions at any moment is 'i
analogous to a chess position, and the transformation rules are analogous to
Lthe moves of the game. It there is a particular theorem that we are trying
to prove, then if we reach a "position" which includes that theorem as one of
its propositions we have "won the game." If there is nc particular theorem
we are trying to prove then the pay-off can be measured by whether v get g
interesting or useful propositions. The quantification of these aspects is
of course far from being formalized.

In theorem-proving we do not have an opponent, so instead of (iterative)
maximinning we use "expectimaxing" as Michie calls it.

Neither in chess nor in theorem-proving do we necessarily have a tree:
there can be closures so that we are dealing with a linear oriented graph.
But even for a graph we can number the "generations" according to their
distance from n0, the position currently under discussion.

Suppose we have some measure for the turbulence of a position, which is
inversely related to its quiesceice. A quiescent position is one in which
there are no obvious lines that urgently require analysis. We must also be
able to measure the superficial, shifting, or evolving probabilities of a
win, draw or loss at each position, for a game. These are the kind of
probabilities that change in the light of further thought without new empirical
information. For example, the evolving probability that the millionth digit
of ff is a 7 is 0.1 until we have completed the calculations. ((14), p. 49).
Evolving probabilities are not strictly consistent. In practical affairs
most probabilities are of this kind. (Compare (22).) For theorem-proving we
must have a measure of how close we are to the required theorem, or else an
evolving expected utility of each move.

The decision of whether to regard w as an andpoint depends on

(a) The depth of ff from iT0, more precisely on the probabilistic depth
- log P (ir I n 0), where P (w I0) is the probability that we shall reach fr
from no. The effective depth of the whole tree could be defined as -& P(r I W0 )
log P (w I r0) summed over all end-points of the tree. This is an incomplete
entropy since EP (f I ir) C 1. The value of storing an analysis of no perhaps
depends largely on P (na) times the effective depth of this analysis.

(b) The turbulence of w.

(c) The obviousness of the outcome at v.

(d) The size of the analysis tree as a whole. (The thresholds which
help to determine the tree size sed adjustment in the light of
a pilot analysis.)

(e) The time left on our clock and on the opponent's clock.

More precisely, (a), (b), and (c) could be allowed for by guessing

P (it n o). U (or $) -U (nr)
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where U (w) is tne superficial utility of r and U (7 $) is the utility of

Evaluation of quiescent positions. Every chess player is taught the
approximate values of the pieces at an early stage, P - 1, B - N - 3, R - 5,
Q - 9 1/2. These are not the only features of a position but they will serve
as an example. .I believe these values are proportional to the weights of
evidence in favor of winning rather than losing, a pawn being worth about
7 decibans in master chess (19). A machine can make use of a linear evaluation
function apnp + aBnB + , where np, aB,.., are thR numbers of pawns, bishops,

etc., and the coefficients a., a,... are to be determined. These coefficients

tan vary in the light of the machine'b experience. In other words the machine
can learn optimal values of the coefficients. (For example, (19).) The machine
can optimize the coefficients even without an instructor by analyzing positions
and minimaxing, and then choosing the coefficients so as to maximize the correla-
tion of the direct evaluation of positions and the "analyzed evaluation." (51).

If the various pawns, etc., are given separate identities, the machine
could discover, for example, that centre pawn. are more valuable than the
side pawns. If quadratic terms are included the machine can discover that two
bishops are worth more than bishop and knight. In other words, with quadratic
terms the machine can form new concepts. Any such new concept can be added to
a basic list of concepts as a single item. In this manner there is the
possibility of hiSher-level concepts being formed in later experience. It is
likely to be too expensive to use cubic terms from the start. A minimal concept
could be defined as a quadratic term in an evaluation function or as an inter-
action between known causative agents.

Before leaving the discussion of game-playing and theorem-proving I have
one further coment. As mentioned, theorem-proving involves getting from one
point of an oriented linear graph to another. But many of the steps are
reversible and it can pay to work both forwards and backwards. In fact it
can be proved under certain assumptions that for very difficult problems the
number of steps required if two-ended working is used, is apt to be about the
square root of the number required when working forward only (27).

Example (W). Desian of an alphabet of letters or phonemes for a known
languaze. and the choice of a vociabulary for teachlng, or for the design of an
artificial language for machines or men. Usually such designs are arrived at
purely intuitively and historically, but they could be given a statistical
basis, at least in part.

These designs should allow for the following things, for all of which
statistical data would be relevant (29):

(i) the rate of transmission of information;
(Ii) the cost of learning the alphabet or vocabulary;
(iiI) the cost o. errors arising out of confusion of symbols that are

not adequately distinct (60);
(iv) historical facts which influence (i), (ii), and (iII);
(v) generality of communication for example, it is useful if the

alphabets used for various languages are the same or similar;
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(vi) (for ordinarv alnhabepr) hp rplnArHlnnhf f th, .-1ph~tbzt t=

phonemes;
(vii) the cost of compiling dictionaries, and of making reference to

the" When Lhe vocabulary is too large to be completely learned;
(viii) the cost of asking for explanations of terms;
(ix) the cost of errors arising from guessing meanings when dictionaries

are not available or one is not willing to refer to one, or one
is unwilling to ask for an explanation.

Example (xi). Artificia. neural networks. (See for example (5, 24, 35,
42, 43). Many further references will be found In these.) An unlimited supply
of statistical problems can be generated by considering artificial neural
networks containing some random or pseudorandom features, but I shall not have
space to discuss these. One example is the construction of reliable circuits
using unreliable components. This is relevant to an understanding of the brain
since real neurons are unreliable at least in the sense that we lose many
thousands of them everyday (7). Another example of artificial neural networks
is the class of machines called "perceptrons."(49).

Then there is the assembly theory of the brain due to Hebb (34) and
Milner (38) and the modification known as the subassembly theory which I
have speculated about (24). One of the functions of the sub-assembly modifica-
tion is to aid the understanding of the unconscious mind as well as the
conscious mind. These theories are all intended to be speculative and suggestive
and it is a challenging problem to formulate them with enough precision to be
able to make predictions and physical models. Many of the problems here will
perhaps be too difficult to solve other than by very expensive simulation. In
order to raise enough funds for such work it might therefore be necessary to
rely on inconclusive arguments.

Conclusions. Machine intelligence research in a wide variety of fields
should make use of statistical methods and especially methods of probability
estimation; the principle of rationality (maximization of expected utility);
the use of amounts of inforftion and "weights of evidence" as substitutes for
utility when utility is difficult to estiate; decision trees such as those
occurring in game-playing; "evolving probabilities"; and maximum, minimum, and
minmax entropy.
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