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FOREWORD

The theme of the Thirteenth Conference on the Design of Experiments
in Army Research, Development and Testing, as suggested by Dr. Walter Foster,
was ""Design and Analysis for Engineering Experimentation'. This was a very
appropriate theme in the light of the recent activities of the two hosts for
the meeting. This conference was held at Fort Belvoir, Virginia, on 1-3
November 1967, and the U.S. Army Mobility Equipment Research and Development
Center served together with the U.S. Army Engineer Topographic Laboratories
as joint hosts. The Army Mathematics Steering Committee, sponsors of these
meetings on behalf of the Office of the Chief of Research and Development,
would like to thank these two agencies for so ably serving the conference in
this capacity. A large number of persons at Fort Belvoir helped with the
various details needed to run a meeting of this size. We would like to
express the thanks of the attendees for the many courtesies shown them. In
particular, their thanks are due to Mr. James B, Duff, Chairman on Local
Arrangements, for his excellent execution of the many detaila needed to
make the symposium run smoothly.

The invited speakers for the conference featured five nationally
known scientists, Their names and the titles of their addresses are noted
below:

Regression Analysis
Professor Francis J. Anscombe, Yale University

Some Comments on Matching
Professor K.A. Brownlee, University of Chicago

Some Statistical Methods in Machine Intelligence Research
Professor I.J. Good, Virginia Polytechnic Institute

Maximum Likelihood Estimation of Reliability
Dr. Frauk Proachan, Boeing Company

Data Analysis
Dr. M.B. Wilk, Bell Telephone Laboratories

In addition to these talks, there were 29 contributed papers which covered
a wide range of design and statistical problems. Following the banquet,
which was held at the Officers' Club, it was my pleasure to present the
Third Wilks Memorial Medal to Professor William G. Cochran of Harvard
University. We are pleased to be able to include in these Proceedings

Dr. Cochran's acceptance speech.

This volume of the Proceedings contains 26 of the papers which were
presented at this meeting. The Army Mathematics Steering Committee has
asked that these articles on modern principles on the design of experiments,
together with the application of these ideas, be made available in the form
of this technical manual. Members of this committee take this opportunity
to express their thanks to the many speakers and other research workera who
participated in the conference.
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The conference had an attendance of 173 acientists; and 71 organizeiions
were represented., Speakers and panelists came from Yale University, University
of Chicago, North Carolina State University at Raleigh, the National Institutes
of Health, Harvard Computing Center, University of North Carolina at Chapel Hill,
University of Georgia, Cornell University, University of Wisconsin, Boeing
Sclientific Research Laboratories, Stanford University, Duke University, Virginia
Polytechnic Institute, Stanford Research Insti‘ute, the National Acromautics

and Space Administration, Bell Telephone Laboratories, and fourteen Army
facilities.

Lieutenant Colonel John H. Cain, Deputy Commander of the U,S. Army Mobility
Equipment Research and Development Center, and Lieutenant Colonel William R.
Cordova, Deputy Commander of the U.S. Army Engineer Topographic Laboratories,
both welcomed members of the conference to Fort Belvoir. Their comments to
those in attendance contained many interesting statements about the work being
performed by the host installation. Their remarks are printed here for the
benefit of those who did not have an opportunity to attend the symposium.

The Chairman wishes to take this opportunity to thank members of his
Advisory Committee (Cuthbert Daniel, F.G, Dressel, Walter D, Foster, Fred
Frishman, Lawrence Gambino, Bernard Greenberg, Bernard Harris, Boyd Harsh-
barger, J.S., Hunter, William Kruskal, H.L, Lucas, Jr., Clifford Maloney, and
Frank Robertson) for their aesistance in formulating the agenda and their
help in selecting the invited speakers,

Frank E., Grubbs
Conference Chailrman
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WRT.COMR REMADYE

LTC John H. Cain

Good morning, ladies and gentlemen!

I am Colonel Cain, deputy commander of the U.S. Army Mobility Equipment
Research and Development Center, your co-host for this three-day meeting.
Speaking on behalf of Colonel 0'Donne!l, the Center's commanding officer, I
am happy to welcome you here today.

I want to thank the Army Mathematics Steering Committee for sponsoring
its 13th annual Conference on the Design of Experiments at the R&D Center.
It gives 80 many more of our people an opportunity to become acquainted with
the latest in gtatistical and mathematical methods for application in their
scientific and engineering work.

Since the R&D Center is both co-host and participant I would like to
take a few minutes to acquaint you briefly with its mission and facilitiee.

The Center [see the first of the following figures]) was for 20 years,
until two months ago today to be exact, the Engineer Research and Development
Laboratories. The change in name, however, in no way changed its location
in the Defense chaiir shown here. Now, as then, the Center 1s THE R&D agency

of the Mobility Equipment Command in St. Louis, a major sub-command of the
Army Materiel Command.

Our misaion [second figure] remains the same, and in each aspect, from
research thru engineering for procurement, the goal remains the ultimate in
nobility equipment for the Army.

To achisve this goal [third figure] the Center engages in R&D in some
13 arcas. You can see from the diversity of these fields of endeavor, that
a wide range is offered for design of experiments.

Our organization, as shown here [fourth figure] features four R&D
Laboratories: Military, Electro, and Mechanical Technology, and Intrusion
Detection and Sensor. The Engineering Laboratory prepares technical data
packages which give industry the specifications, drawings and other informa-
tion it needs to build quality mobility equipment in quantity.

Some 1400 ecientific, angineering and support personnel are employed
at the Center [last figure]. The main physical plant is just down the road
a piscs. Approximately 30 permanent structures on a 240-acrea site house of
the best R&D facilities in the country. Additional test facilities are
supplied at the 900 acre annex on Belvoir's North Area.

The Center, you will note has several tenants. One of these, the
U.8. Army Engineer Topographic Laboratories, is co-host for this confarence.

To give ETL a chance to add its walcome, I will close now with best
wishes to Chairman Dr. Frank E. Grubbs and to all of you for a lucky 13th.

il
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WELCOME REMARKS
LIC wWililiiam R, Cordova

Thank you Colonel Cain.

On behalf of Colonel Anderson, the Commanding Officer of the U.S. Army
Engineer Topographic Laboratories, I take pleasure in welcoming you this
morning.

I might begin by saying that we too have had a recent name change, prior
to 28 July 1967 being known as the U.S. Army Engineer, Geodesy, Intelligence
and Mapping Research and Development Agency, the acronym being GIMRADA.

The mission of USAETL 1is as follows:

The U.S. Army Engineer Topographic Laboratories (ETL) is a Class II
activity under the Chief of Engineers. It is the principal field activity
of the Corps of Engineerg for the accomplishment of research and development
of equipment, procedures and techniques in the specific field of geodesy,
military geography and mapping for application both to troop and to base
plant operations., The Chief of Engineers may assign work to these Laboratories
under research and development projects utilizing either RDT&E funds or other
appropriate funds.

Our research and development program ia Mapping and Geodesy includes
activities within the entire spectrum from bacic research through exploratory
development, advanced systems development and finally engineering development,
where a particular system or item is engineered for production and service uge.

Our primary goals are as follows:

a. Develop the capability to provide current and adequate 'Terrain
Data'" when and where needed for military purposes.

b. Minimize the geodesy and gravity portion of the error budget
of weapons and missiles systems.

¢, Maintain superiority in technology to be able to project the
state of art and to provide meaningful forecasts to customers.

The USAETL organization is comprised of two major technical operating
elements:

a. The Ressarch Institute, which conducts bssic and applied research
and individually oriented exploratory development involving the
disciplines related to mapping and geodstic sciences, is located in
GSA rental space in Alexandria, Virginia. I believe a number of you
know Mr, Larry Gambimo of the Research Institute who will be presenting




a paner at this session. f

b. Our Mapping and Geographic Sciences Laboratory, which conducts Lo
feasibility studies, design, development and tests and evaluation .

of systems, equipment and techniques in the specific fields of
mapping, geodesy and geographic sciences, 1s locited within the
MERDC area along with the Headquarters and support offices. We
currently have 28 trailera. The Chief of Engineers has approved
a site on the North Fort Belvoir Post for our new building which
we hope to get approved in the FY 69 budget.

I hope this very brief presentation has given you a general feel for
our mission, goals and work. If I can be of assistance to any of you, please
stop by my office.

Thank you very much. I hope you have an enjoyable and fruitful conference.
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THIRTEENTH CONFERENCE ON THE DESIGN OF EXPERIMENTS
IN ARMY RESEARCH, DEVELOPMENT AND TESTING :

1-3 November 1967

Wednesday, 1 November
0800-092¢ REGISTRATION - Main Lobby of Humphrey's Hall

) §
! 0900-0915 OPENING OF THE CONFERENCE - Auditorium of Humphrey's Hall &

James B. Duff, Chairman on Local Arrangements, U.S. Army ;?
Mobility Equipment Research & Development Center :

T WELCOME

Colonel Edwin T. O'Donnell, CE, Commanding Officer
U.S. Army Mobility Equipment Research & Development Center
and o
Colonel Edward G. Anderson, CE, Commanding Officer ;
U.S. Army Engineer Topographical Laboratories

0915-1130 GENERAL SESSION 1 - Auditorium*
Chairman: Dr, Walter D. Foster, Biomathematics Division,

U.S. Army Bilological Laboratories, Fort Detrick, Fraderick,
Maryland

REGRESSION ANALYSIS

Professor Francis J. Anscombe, Department of Statistics,
Yale University, New Haven, Connecticut

SOME COMMENTS ON MATCHING

\
Professor K.A. Brownlee, Statistics Research Center, University
of Chicago, Chicago, Illinois

1130-1300 LUNCH
1300-1500 CLINICAL SESSION A - Auditorium

Chairman: Joseph Weinstein, Electronics Components Laboratory,
U.5. Army Electronics Command, Fort Monmouth, New lJersey

Panalists:
Francis J. Anscombe, Yale University
Cuthbert Daniel, Private Consultant, New York, N.Y.
Frank E. Grubbs, U.S. Army Ballistic Ressarch Laboratories
William Kruskal, University of Chicago
H.L. Lucas, Jr., North Carolina State University
Clifford J. Maloney, National Institutes of Health

% f #All sessions of the conference will be held in Humphrey's Hall. Lunches will be
‘ | served in Mackenzie Hall.
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1300-1500

1300-1500

Wednesday (Continued)
ON METHODS OF OPTIMIZATION OF A MULTIOBJECTIVE SWRVEY

John C. Atkinaon, Harvard Computing Center, Madical Branch,
Boston, Massachugetts

COMPONENTS OF VARIANCE OF A LINEAR FUNCTION IN REPEATED TRIALS

Walter D. Foster, Biomathematics Division, U.S. Army
Biological Laboratories, Fort Detrick, Frederick, Maryland

TECHNICAL SESSION I - Room 2E

Chairman: Cyrus Martin, Quality Assurance Group, U.S. Army
Engineer Topographic Laboratories, Fort Belvoir, Virginia

THE DERIVATION OF THE OPERATING CHARACTERISTIC CURVE OF A SKIP
LOT SAMPLING PLAN :

Allen C. Endres, U.S. Army Ammunition Procurement and Supply
Agency, Joliet, Illinois

A MODEL FOR THE FORMULATION OF QUALITY INCENTIVE CLAUSES FOR ITEMS
PROCURED ACCORDING TN ACCEPTANCE CRITERIA INVOLVING SINGLE SAMPLING
PLANS BY ATTRIBUTES

Roger R. Rymer and Eugene Dutoit, Picatinny Arsenal, Dover,
Naw Jersay

OPTIMUM SAMPLING PLANS FOR GRADING BINOMIAL POPULATIONS
Paul B. Nickens, Surveillance and Reliability Laboratory,
Ballistic Resaarch Laboratories, Aberdeen Proving Ground,
Maryland
TECHNICAL SESSION II - Room 2F

Chairman: Frank Robertson, U.S., Army Mobility Equipment
Ressarch and Dsvelopment Center, Fort Belvoir, Virginia

METHODOLOGY OF ASSESSMENT OF BIOCELLULAR REACTIONS TO ABSORBED
ENERGY

George I. Lavin, Terminal Ballietic Lsboratory, U.S. Army
Ballistic Research Laboratories, Aberdeen Proving Ground,
Maryland

THE EFFECT OF INVENTORY FORECASTING UPON SUPPLY EFFECTIVENESS

Patsy Courtney, U.S. Army Aviation Materiel Command, St, Louis,
Missouri
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1500-1530

1530-1700

1530~1700

1730-1830
1830~

wAttendems will not be able to return to motsls unless they have thair owm
transportation.

Hedneaday (Continued)
THE ABBA SEQUENCE: A SEQUENTIAL PROCEDURE FOR fOMPARYSAM TESTING

Arthur Pillersdorf, Ballistic Research Laboratories, Aberdeen
Proving Ground, Marvland

BREAK
TECHNICAL SESSION III - Auditorium

Chairman: Gideon A, Culpepper, Missile Test and Evaluation
Control Division, White Sands Missile Range, New Mexico

ON EXPECTED PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT
ANALYSIS

P.A. Lachenbruch, School of Public Health, Department of
Biostatistics, University of North Carolina, Chapel Hill,
North Carolina
INTRA-PROFILE VARIANCE

Cluude F. Bridges, Institutional Research Division, Office
of Research, U.S. Military Academy, West Point, N.Y.

TECHNICAL SESSION IV = Room 2E

Chairman: Henry Ellner, Quality Assurance Directorate,
U.8., Army Materiel Command, Washington, D.C.

A STATISTICAL TEST OF TWO HYPOTHETICAL RELIABILITY GROWTH CURVES
OF THE LOGISTIC FORM IN THE DISCRETE CASE

William P. Henke, Resaarch Analyasis Corporation, McLean,
Virginia . '

ON FITTING OF THE WEIBULL DISTRIBUTION WITH NON-2ERO LOCATION
PARAMETERS AND SOME APPLICATIONS

Oskar M. Essenwanger, Physical Sciences Laboratory, Ressarch
and Development Division, Redstons Arsenal, Alabama

SOCIAL HOUR - Mackenzie Hall (Officer's Club)*
Banquet - (As above)

Presentation of the Samual S. Wilks Memorial Award




Thursday, 2 November
0830~1000 CLINICAL SESSION B - Auditorium

Chairman: A.C. Cohen, Department of Statistics, University
of Georgia, Athens, Georgila

! Panelists:

) Robert Bechhofer, Cormell University

Cuthbert Daniel, Private Consultant

Bernard Harris, Mathematics Research Center, U.S. Army
Henry Mann, Mathematics Research Center, U.S. Army
Frank Proschan, Boeing Scientific Research Laboratories
Herbert Solomon, Starfo.d University

DETERMINATION OF TBO BY WEIBULL PROBABILITY PARAMETERS FOR
REPATRABLE COMPONENTS

John L. Mundy, U.S. Army Aviation Materiel Command, St. Louis,
Missouri

' 0830-1000  TECHNICAL SESSION V - Room 2E

Chairman: RnymoquSchnell. U.S. Army Chemical Corps, Edgewood
Arsenal, Maryland

; A TECHNIQUE FOR INfERPRETING HIGH ORDER INTERACTIONS

Malvin O. Braaten and John Tonzetich, Duke University,

0 : Representing Shaw Air Force Base, South Carolina, and the

' ' North Carolina Operations Analysias Standby Unit, University
! ! of North Carolina, Chapel Hill, North Carolina

A SIMPLIFIED METHOD FOR FINDING OPTIMUM EXPERIMENTAL DESIGNS

Melvin O. Braaten, Duke University; Ray L. Miller, Jr., Shaw
Air Force Base, South Carolina; Fred W. Judge, Wood-ILvey
Systems Corporation, Winter Park, Florida. Representing
' _ Shaw Air Force Base, S.C., and the North Carolina Uperations
; - Analysis Standby Unit, University of North Carolina, Chapel
. Hill, North Carolina

| 0830-1000 TECHNICAL SESSION VI - Room 2F

Chairman: Erwin Biser, U.S, Army Electronics Command, Fort
Monmouth, New Jersey

- DEFINITIVE CALIBRATION OF AN AERIAL CAMERA IN ITS OPERATING
i ENVIRONMENT .

Lawrence A. Gambino, U.S. Army Topographic Laboratories,
Fort Belvoir, Virginia

avitl
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Thursday (Continued)

DESIGN AND ANALYSIS OF A STATISTICAL EXPERIMENT ON HIGH VOV.TACE

RREAVROLY IN VaCGUH

M.M. Chrepta, G.W. Taylor, and M.H. Zinn, U.5. Army Electronics
Command, Fort Monmouth, New Jersey

1000-1030 BREAK

1030-1130 TECHNICAL SESSION VII - Auditorium

Chairman: Henry Dihm, Advanced Systems Laboratory, Directorate }
of Research and Development, U.S. Army Missile Command,
Redstone Arsenal, Alabama :

A MODERATELY DISTRIBUTION FREE TECHNIQUE FOR SMALL SAMPLE RELIABILITY
ESTIMATION

Michael G, Billings, U.S. Army Chemical Corps, Dugway Proving
Ground, Utah

1030-1130 TECHNICAL SESSION VIII ~ Room 2E

Chairman: Agatha Wolman, U.S5. Army Strategy and Tactics Group,
Bethesda, Maryland

USE OF REFERENCE COMPONENT MIXTURE DESIGNS IN A CALIBRATION
APPLICATION

Raymond H. Myers, Department of Statistics, Virginia Polytechnic
Institute, Blacksburg, Virginia, &nd

Bernard J. Alley, U,S. Army Missile Command, Redstone Arsenal,
Alabama

1030-1130 TECHNICAL SESSION IX - Room 2F

Chairman: Joseph Mandelson, Quality Evaluation Divisionm,
Quality Assurance Directorate, U.S. Army Edgewood Arsenal,
Maryland

DEVELOPMENT OF AN IMPROVED MODEL FOR ACOUSTIC SOUND RANGING

Robert P. Lee, Atmospheric Sciences Office, U.S. Army Electronics
Command, White Sands Missile Range, New Mexico

AN EXPERIMENT ON THE METEOROLOGLCAL EFFECTS ON SOUND RANGING

William H,. Hatch: Atmospheric Sciences Office, U.S. Army
Electronics Command, White Sands Missile Range, New Mexico

1130-1300  LUNCH ;
’




Thursday (Continued)

1300~-1520 CLINICAL SESSION C - Auditorium
fLodwman: Uawnld Faocharae Reasarch Analvsia Corvoration.

- . el L oo Tl
FELe et o

McLean, Virginia

Panelists:

Robert Bechhofer, Cornell University .
0.P. Bruno, U.S. Army Ballistic Research Laboratcries !
A.C. Cohen, University of Georgia ]
Walter D. Foster, U.S. Army Biological Laboratories (
Boyd Harshbarger, Virginia Polytechnic Institute i i
H.L. Lucas, Jr., North Carolina State University ; ;
Herbert Solomon, Stanford University ' F

. i

PARAMETERS IN R&D IN RELATION TO COST/ACCURACY INVESTIGATICN

" Robert G. Conard, Systems Evaluation Branch, Advanced Systems
Laboratory, Research & Development Directorate, U.S. Army ﬁ
Missile Command, Redstone Arsenal, Alabama !

ON EXPERIMENTS CONCERNED WITH THE SAMPLING DISTRIBUTION OF f
LANCHESTER'S PARAMETERS i
B ]

David R. Howes, U.S. Army Strategy and Tactics Analysis Group, : }
Bethesda, Maryland : . n

1300-1520 TECHNICAL SESSION X - Room 2F

|
Chairman: William W, Wolman, Traffic Systems Division, Office ,
of Research and Development, Bureau of Public Roads, Washington, ;

D.C.
ESTIMATES OF P(Y < X) AND THEIR APPLICATION TO RELIABILITY i
PROBLEMS FOR BOTH CONTINUOUS AND QUANTAL RESPONSE DATA @
' i

Bernard Harris and J.D. Church, Mathematics Resecrch Center,
U.S. Army, University of Wisconsin, Madison, Wisconsin .
]

NUMBERS NEEDED FOR DETECTING IMPORTANT DIFFERENCES IN CHI-SQUARE
TESTS |
C.J. Maloney, Division of Biologics Standards, National Institutes ]

of Health, Bethesda, Maryland, and F.M. Wadley, Consultant, .
U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md. i

ON A STATISTICALLY CONSLISTENT ESTIMATE OF AN AVERAGE CUMULATIVE
QUANTAL RESPONSE FUNCTION

George W. Evans II, and Robert C. McCarty, Stanford Research
Institute, Menlo Park, California. Representing the U.S.
Army Research Office-Durham i

1300-1520 TECHNICAL SESSION XI - Room 2E

See next page '
!




1520-1550

1550-1700

0830-0915

0925-1200

Thursda ontinued

Chairman: Joseph M. Cameron, Statistical Engineering Labecratory.

Naiilonal bureau ot Standards, Gaithersburg, Maryland

DESIGNS OF EXPERIMENTS AS TELESCOPING SEQUENCES OF BLOCKS

Arthur G, Holms, National Aeronautics and Space Administyatcion,
Lewis Research Center, Cleveland, Ohio

ON A CLASS OF NONPARAMETRIC TESTS FOR INTERACTIONS IN FACTORIAL
EXPERIMENTS

P.K. Sen, School of Public Health, Department of Bicstatistice,
University of North Carolina, Chapel Hill, North Carolina

ON THE RANK MOD p OF THE DESIGN MATRIX OF A DIFFERENCE SET

Jessie MacWilliams, Bell Telephone Laboratories, Murray Hili,
New Jersey, and Henry B8, Mann, Mathematics Research Center,
U.S. Army, University of Wisconsin, Madison, Wisconsin

BREAK
GENERAL SESSION 2 - Auditorium

Chairman: Professor Boyd Harshbarger, Department of Statistics,
Virginia Polytechnic Institute, Blacksburg, Virginia

SOME STATISTICAL METHODS IN MACHINE INTELLIGENCE RESEARCH

Professor I.J. Good, Department of Statistics, Virginia
Polytechnic Institute, Blacksburg, Virginia

Friday, 3 November
GENERAL SE3SION 3 =~ Auditorium
OPEN MEETING OF THE AMSC SUBCOMMITTEE ON PROBABILITY AND STATISTICS
Presided over by: Dr. Walter D. Foster, Biometric Division,
U.S. Army Biological Laboratories, Fort Detrick, Frederick,
Maryland
GENERAL SESSION 4 - Auditorium
Chairman: Dr., Frank E. Grubbs, Chairman of the Conference,
Ballistic Redearch Laboratories, Aberdeen Proving Ground,
Maryland :
MAXIMUM LIKELIHOOD ESTIMATION OF RELIABILITY
Dr. Fraak Proschan, Mathematics Research Laboratory, Boeing

Scientific Research Laboratories, Headquarters, Offices the
Boeing Company, Sesttle, Washington

| e —————




Friday (Continued
BREAK '

DATA ANALYSIS (tentative title)

? Dr. M.B. Wilk, Statistics & Data Analysis Research Department,
Bell Telephone Laboratories, Murray Hill, New Jersey
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RECRESCION LNALI5I5 LN IHE COMPUTER AGE

F.J. Anscombe
Department of Statistice
Yale University
New Haven, Connecticut

1. INTRODUCTIGN. The commonly used methods of statistical analysis took
much of their present-day form in the period of rapid development of statistical
science between the two world wars. They were conditioned, more than perhaps is
generally realized, by the principal computing resource of that period, the
desk calculator. Thay give just about the bast return possible for the amount
of effort that a human being equipped with a desk calculator could reasonably
(or even a little unreasonably) bs expected to invest in & statistical analysis.

Now that our computing regources are enormously greatar, ws nsad not contenmt
ourselves with merely following the procedures suitable for the dask calculator.
Almost anything we might ask for can be had at very little cost. What can we

make use of? What sorts of calculations and output will give us most understanding,
least misunderstanding?

Our extended computing powers can affect statistical methods in two ways.
First, we are able to make better use of traditional methods, or of methods
closely related thereto. Above all, we can now afford to ask freely for scatter-
plots. These are tedious to construct by hand, but trivial with a computer. We
can also demand the calculation of residuals, to test agreement of the data
with assumptions underlying the method of analysis. We can afford to make
transformations of variables and repeaat analyses, to see if agreement is improved.

Second, we can consider methods of analysis that are radically different
from traditional methods and involve much hesavier computation. The great majority
of traditional statistical analysis comes under the heading of '"least squares"
== regression, analysis of variance, and analogous procedures liks the analysis
of contingency tables by x2. The least squares principle was originally advocated
by Laplace and Gauss & century and a half ago because they thought no other method
of combining observations would be computationally feasible. Now there are many
other possibilities, and these should be explored.

This paper has the modest purpose of illustrating a few features of atatia-
tical analyais in the computer age. A set of gunnery readings, to which
traditional regression analysis is applicable, 1s examined.

Section 2 contains & brief digression on computing. In seaction 3 traditional
regression methods ars exemplified in their modern guise. In section 4 a non~
traditional analysis is briefly reported.

This research was supported by the Aruy, Navy, Air Force and NASA under a
contract administered by the Office of Naval Research, Reproduction in wholae
or in part is permitted for any purposs of the United States Government,

.....
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Wilk's paper [5] further exemplifies the impact of the computer on
statistical analysie.

2. STATISTICAL COMPUTING. The computer has not so far had the prcfound
effect on atatistics that it -has had on some other fields of science and
technology. The reason is perhaps that good statistical analysis is done
in steps. " Methods must be adjusted to fit the data; the adequacy of o
theoretical descriptions of "models" must be assessed. This requires inter-
action between the investigator and the computer. Fixed program packages are
not altogether satisfactory, \

An explosive development of statistical science can be expected once
programming can really be done by any interested person, without a large
preliminary inveatment of time in mastering a computer language and without
much time spent in actual coding. What makes programming so tedious in
FORTRAN and other commonly used languages is the negotiation of arrays.
Arithmetical operations are required, not just on individual numbers, but
on whole vectors or matrices; and in these languages such operations must
be spelled out in loops. Succegsful attempts have been made to relieve the
intolerable tedium with special computing systems for vectors and matrices.

I have had access to an experimental implementation of Iverson's
programming language known as APL [3,4), at IBM's Thomas J. Watson Resecarch
Center, Yorktown Heights, N.Y. APL is running as a coding language for
computation in conversational mode through typewriter terminals. Though
the language was not originally developed for statistical work (but rather
for the precise and concise expression of any algorithms), it is in fact
well adapted to statistical purposes. Two salient reasons are:

(1) APL was designed at the outset to handle (almost indifferently)

\ . scalars, vectors, matrices and rectangular arrays in any number of dimensions.
‘ All the basic arithmetic operations can be performed on arrays just as well
as on scalars, without any loop written in the program. Programs in APL
therefore tend to contain few loops. The programmer 1is encouraged to think
of array operations as entities without a logically irrelevent internal
sequence; this 1s aesthetically pleasing, even illuminating.

(11) There is a high degree of consistency in APL. Syntax is governed
ruthlessly by a very few simple rules. Once the basic vocabulary is learned,
o the language is easy to remember. There is a remarkable absence of arbitrary
o features that require frequent reference to the manual. The language there-
fore has a peculiar dignity and reasonableness. One feels it 1s worth learnirg.

I have elsewhere [2] prepared a description of APL, with illustrations
of its use in statistical work. The above remarks are abstracted from that
article.

This implementation of APL as a computer coding language is not yet
aveilable for general use. Something like it must surely become available
eventually, hopefully soon., I am confident that it will have a profound
influence on the development of statistics. The computations mentioned
below were done through an APL terminal.




~we shall begin by considering a linear combination of the predictor variables,

3. LEAST-SQUARES RRGRESSION. The data used for this study of regression
methods were kindly supplied by Dr. Frank E. Grubbs, of the U.S. Army
Ballistic Research lLaboratories, Aberdeen Proving Ground. They relate to
some 175 mm. gun firings. In Table 1 we sme the following information for
35 rounds: Range (metres), Projectile Weight {1b.), Muzsle Velocity (f.p.s.),
and four itema of weather information taken at the maximum ordinate of the
trajectory, namely Temperature (deg. C), Air Densicy (kgm/1000), Range Wind
and Cross Wind (both in metres per second divided by 10)., The first 24 rounds
were fired on one day, between 13.07 and 15.13 hrs. The remaining 11 rounds
were fired the next day between 10.57 and 11.33 hrs.

Let us perform a regression analysis of Range as dependent variable on
the other six variables as predictors (or “independent" variables). As usual,

and then later consider the possibility of a nonlinear function.

The traditional first step in such a regression analysis is to calculate
the matrix of sums of squares and products of deviations of the seven given
variables from their means, and then perhaps note various correlation coefficients.
What 1is considerably more informative than the correlation coefficient between
two variables, and juat as easily obtained from the computer, is a scatter plot
of the two variables against each other. Bafore ever any regression is
calculated, a good deal of insight can be obtainad by looking at a few such
scatter plots, Here we should expact Muzzle Velocity to have a substantial
predictive effect on Range, as is verified by plotting these against each other.
S0 plots of the other predictor variables against Muzzls Velocity are of
interest. One such plot is shown in Figure 1%, where Cross Wind is the other
variable. We shall see that Muzzle Velocity and Cross Wind turm out to be

the only two effective predictors, and in rvetrospect this diagram is the most
revealing. .

The diagram shows more of tha relation between Cross Wind and Muz:la
Velocity than is conveyed by the simple correlation cosfficient (which happens
to be about 0.27). As that corralation coefficient indicates, the two variables
are only slightly related, so far as the calculation of linsar regression is
concerned. But if we should wish to calculate a nonlinear prediction surface
with these two variables, it becomes ralevant to notice that wheress the
abscissas (M.V.) are distributed rsther uniformly over an interval, the
ordinate (C.W.) are clustared in two bands with a aizable gap between. We
shall be able to estimate a quadrastic response to M,V., and also a cross-
product responge (interaction bstween both variables), relativaly well, but

*The plotting code in the figures is as follows: one observation is repre-
sented by a small circle, two coincident observations by a plus sign, threa

or more coincident obssrvations by a star. The axes are shown by cyosses;
zero is marked if it occurs.

No machine works perfectly all the time. When I ran off thesa figures
the terminal ghowed an occasional wobble in tha left margin. The fsult seemed
too trivial to warrant repetition on another tarminal.
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FIGURE 1.,  (ROSS WIND AGAINST MUZZLE VEIOCITY
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a quadratic response to C.W. less well than 1f the points in the diagram had
been more uniformly distributed between the same extremes.

The six predictor variables are apparently uncontrolled. There is no
indication of any deliberate variation in the Projectile Weight or Muzzle
Velocity. These could have been intentionally varied, but something approaching
an orthogonal pattern of joint varfation would presumably have been adopted.

The weather characteristics were apparently not deliberately varied either,
gince the rounds were fired in two short series one afternoon and the following
morning. We shall not therefore be surprised to find that some of the variables
have no detectable relation to the "dependent" variable Range, even though we
may believe that with wider variability and more numerous observations each
variable would be seen to have an effect.

In such a sitvation a step=by-step procedure of introducing one variable
at a time into the regression relation suggests itself. A simple computational
routine, easily programmed, goes like this. Each time a new predictor variable
is8 introduced, not only the dependent (Range) vector but all the other so-far-
unused predictor variables are replaced by their projections at right-angles
to the designated predictor vector. All these vectors become vectors of
residuals. By the eand of this process, if all the predictor variables are used,
the matrix of their values will have been completely orthogonalized -- but we
shall not necrssarily go this far. Each variable has been read to only limited
precision (Projectile Weight generally te 0.1 lb. apparently, Muzzle Velocity
tol f.p.s., Temparature to 0.1 deg. C, etc.) If at any stage the corresponding
vector of reeiduals shows little more variability than this round-off error, that
variable should be dropped from further consideration. Usually we shall wish
not to introduce any variable into the regression relation unloas its presence
causes a percaptible lowering of the residual mean square., (The objectives
of stepwise regression and possible methods of procedure have been discussed
in the literature -~ for references see [1].)

The single variable that shows most relation to Range is Muzzle Velocity,
and after regression on that has been performed the naxt most related variabla

is Cross Wind., The effects iay be summarized in the following analysis of
variance of Range: '

TABLE 2. Analysis of Variance of Range

Sum of squares D.JE. Mean aquars
Mugzzle Velonity 239416 . 1 239416
Cross Wind (after M.V.) B6169 1 86169
Residual 143946 32 4498
e —————— —
Total about mean 469532 34 13830

The corresponding formula for predicting Rangs is

9-227 (M.V.) - 19-5 (C.W.) - 7687. (1)
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That is about all that seems to be worth doing in the way of simple linear
regression on the available predictor varisbles. The further reduction in the
residual sum of squares due to introducing any of the other variables is slight.
(Each of the variables has a aubstantlally greater residual mean square, after
regression on M.V. and C.W., than would be caused merely by the apparent round-
off error in the readings, and so would be usable.)

At this stage it is advisable to make scatterplots of the Range residuals®
againgt (a) the fitted values for Range given by the expression (1) above, and
(b) each of the original six predictor variables in turn. The plot against
Cross Wind suggests a nonlinear dependence of Range on Cross Wind. This plot
and also the plot against Muzzle Velocity suggest that the reaidual variance
of Range is perhaps changing progressively with these variables.

Now if Range depends on Muzzle Velocity and Cross Wind, it .need not do
so merely linearly. In fact, theory suggests that C.W. should have a quadratic
effect., Three more "indepandent" variables were brought into consideration,
the squares of M.V, and of C.W. and their product. Of these new variablas,
only one, the square of C.W., has a mildly “significant" effect, after the
linear regression on M.V. and C,W, already performed. As we saw from Figure 1,
the peculiar distribution of the C.W. values does not permit ua to determine
the shape of the response of Range to C.W. very well, Since theory predicts a
quadratic effect we are encouraged to allow for it and replace the "Residual
line in Table 2 above by the following two lines:

TABLE 3., Detail in Analyais of Variance of Range

Sum of squaras D.£, Mean square
C.W, squarad (after M,V, and C.W,) 16360 1 16360
Reaidual 127587 31 4116

The corresponding formula for Range isg
9,224 (MLV.) ~ R.4 (C.W.)2 - 52,3 (C.W.) - 7645 (2)

The effect of Cross Wind is apparently to reduce Range by an amount proportional
to (C.W. + 3.1)2, The reduction is not proportional to the simple square of C.W.

Figures 2, 3, 4 show scatterplots of the new Range residuals (after
regression on M.V., C.W. and C.W, squared) againat fitted values, M.V., and
C.W., respectively, Thay are reasonably satisfactory. We are left with a
suggestion that the residual variance of Range is not constant, or possibly
that the distribution of the Ranga errors ls nonnormal (slightly leptokurtic).

"Rather than plot aimple residuals one may plot what are known as standardized
residuals, in which allowance is made for the different weights arising from
the least-squares fitting. In the present case, changing from simple to stan-
dardized residuals makes no perceptible difference in the scatterplots.
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Sometimes in regression studies it is profitable to conafder maling
Sinupic iiansfiormations ot the variables. Here, Range and Muzzle Velocity
have such small percentage variabilities that no modest power transformation
of them, such as asquaring or taking logarithms or reciprucals, can noticeably
affect the behavior of their residuals. In the absence of some suggestion
from theory of a more drastic transformation, we do not pursue the idea.

What have computer facilities done for this regression study that was
not available to the desk calculator operator? Any desk calculator man who
was willing to contemplate six independent variables in regression, using
traditional procedures, would no doubt have reached much the same conclusions,
What we have gained, in addition to ease and apeed, 1s some assurance, based on
liberal inspection of scatterplots (only a few of which are reproduced here),
that our final regression relation fits the data fairly well. That assurance
was not provided by desk-calculator practices. When we examine the goodness
of fit of a regression relation in this way, we sometimes find clear evidence
that a different sort of regression relation ought to be tried instead. Here,
on the contrary, the evidence supports the sort of regrasssion relation we
began with., What wa first think of is not always bad!

4, UNORTHODOX REGRESSION. The method of least squares would be a
theoretically parfect means of eliciting information from the observations
if we could know that the form of the regression relation being fitted was
corract and that the "error" part of the dependent variable, the part not
explained by the regression relation, was a random variable independently
normally distributed with zero mean and constant variance. When these ideal
conditions are not satisfied, the least squares results will be to some extent
misleading. Much has been said about least squares estimates' having minimum
variance smong unbiased linear estimates, indanendently of a normality assump-
tion, but there is no longar today any good reason for restricting attention
to linear estimates. If sume method of analysis were known to be better, we
should be prepared to use it.

It is widely believed that if the ideal conditions are not grossly
violated the least squares method is adequate. One way to check whether this
is =0 is to perform an optimal analysis under weaker conditions, to see wheather
percaptibly different results are obtained., Various kinds of weaker analysis
have besen suggested. In [1] I have proposed a particular way of weakening the
normaiity assumption. Instead of assuming that the error part of the dependent
variable is normally distrihuted with constant variance, we assume that the
srrors ars independently distributed iu a common distribution belonging to a
family having one shape parameter, say &, When o = O the distribution is normal.
When o > 0 the distribution is what Karl Psarson called Type VII, with longer
tails than the normal, having the same shape a# a Student distribution. If o

is a scale paramaier, we sgsume that the errors ¢ have & density function of
the form

Ao (L + c(e/a)?) Mo,

where A and C dapend on o, If o < O the distribution im what Pearson called
Type II, having shorter taila than thglnotmal distribution and a finite range,
(For further datails see [1], whare ¢ ° is denoted by m.)
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The suggested method of fitting a regression relation under this weaker
ccoumption shout the ddetriburion of the arrara 1a tn investigare the 1ikeli-
hood function, which involves the regression coefficients and also the two
nuisance parameters, @ and 0. It is suggested that the likelihood function
should be integrated with respect to suitable prior distributions fur o aud
0, yielding a marginal likelihood function of just the regression coefficients;

and the latter should if pogsible be approximated by a multi-variate Student
density.

This procedure has been carried out for the above gun firings, with the
following particulaxrs. A simple linear regression on Muzzle Velocity and
Cross Wind was considered, without a term in C.W. squared. The nuisance
parameters ¢ and o were taken to have independent prior distributions, uniform
over the whole real line for Jno, uniform over the interval (-0.25, 0.75) for
a. That interval for o was chosen as including.the more plausible values for
6 —= the maximum likelihood estimate of o turns out to be about 0.12 =~ and
should be broad enough to bring out the qualitative features of this type of
analysia. (We should be back at the method of least squares if o were restricted
to the single value 0.) Orthogonal independent variables were used as follows:

xl - (M.V-) - 300906.
x2 - (,C.W.) - 0o068666 (MlVo) + 209c550

Our task 1s to f£it the linear relation
E(Range) = Bo + lel + azxz .

Our previous least gquares analysis gave the estimates (equivalent to
relation (1) above

A

= 20139.1, 8, = 7.89, 52 - -19.48. (3)

Bo
The estimated variauce matrix of these three quantities was diagonal, with
diagonal elements

129 1.17 19.81
based on the estimated residual variance having 32 degrees of freedom.

. oIn gur new analysis we find that the marginal likelihood function of
By» By» B, has its maximum at

80 = 20138.9’ Bl - 7-94’ Bz - -191055 (4)
The whole function is fairly well approximated by a multivariate Student

density with 33 degrees of freedom and the following estimated variance
matrix

128 0.6 6.0
0.6 1.14 0.28
6.0 0.28 21.77
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Comparing the new estimates (4) with the previous estimates (3). we snms
that Bc has changad by l2zz than 25 ui ics estimated standard error, Bl by less

than 5%, §2 by less than 10%, The changes in the estimated variance matrix ‘

and number of degrees of freedom are trivial. For most practical purposes, our
new analysis has given results indistinguishable from the least squares analysis.

Now if the assumption of normally distributed errors with constant variance,
underlying the method of least squares, is false, our weaker assumption of a
Type VII - Type II system with & in the range (~0.25, 0.75) may also be false.

In particular, the distribution of errors could be skew. But the Type VII -
Type II family of error distributions is far broader than the normal family.
If an assumption about distribution shape has an important influence on
conclusions, we might hope to detect this fact through what we have done,
The close agreement of the results of our two types of analysis strongly
suggeats that the least squares analysis of this particular body of data was
ggg much colored by the implied distribution assumption. Whether the same

comforting conclusion would usually be reached in studies of other bodies of
data I do not know.

REFERENCES

[1] F.J. ANSCOMBE. Topies in the investigation of linear relations fitted
by the method of least squares. (With discussion.) Journal of the Royal
Statistical Socliety, Series B, 29 (1967), 1-52.

[2) F.J. ANSCOMBE. Use of Iverson's language APL for statistical computing.
Yale University, Department of Statistics, Technical Report No. 4, 1968,

[3] A.D. FALKOFF and K.E. IVERSON. 239 APL Terminal System: Instructions
for Operation. IBM Corporation, Thomas J, Watson Research Center, 1966,

(4] K.E. IVERSON. A ProgrammiggrLanguage. Wiley, New York, 1962.

[5] M.B. WILK. (Paper on data analysis.) Thirteenth Conference on the Design
of Experiments in Army Research, Development and Testing.

13




SOME COMMENTS ON MATCHING*

K.A, Brownlee
University of Chicago
Chicago, Illinois

My toplc today 1s "matching" in situations where the response is of
the (0,1) type, firstly in an experimental situation and secondly in an
observational situation. In both cases I wish to advance the suggestion

that, frequently, to use a cliché, the game is not worth the candle (what-
ever that means).

In purely experimental work, in which the response is of the (0,1)
type, one may be tempted to use matching. I recall an experiment on weather
nodification (an activity to which I tend to refer, in general, as rain
faking) by Braham, Batten and Byers [l], with the cooperation of the U.S.
Air Force, A plane sought out single clouds in the Caribbean., A cloud
that looked as if it met certain specifications would be inspected, and 1f
it did then a randomized choice would be made as to whether it was to be
seeded. Following the result of the randomization, the plane would fly
through the cloud and either release the seeding agent or not, and then the

cloud would be observed for an appropriate period to see if it developed
radar echoes.,

After the completion of this period of observation, the plane would
then seek another cloud which met the specifications. This cloud would
receive the opposite treatment to that handed out to the firsgt cleud. Tha
two clouds then formed a matched palr, with responses as tabulatzd below.

Unseeded
+ -
+ fy By,
Seeded
- fa1 P2

If time permitted on that day, the plane would make a second mission, but
if time or gasoline ran out before the second membher of the second pair had
been found, then the first member of the second pair had to be abandoned.
Of course, it could also happen that on the plane's first flight it found
one cloud but failed to find snother before running out of gasoline.

The idea of using matched palrs, of course,was an intultive one based
on ideas analogous to those relevant to the concept of randomized blocks.
Just as the varlation between plots close together in the same block is

* This research was sponsvred by the Army Research Office, Office of Naval
Research, and Air Force Office of Scientific Research by Contract No.
Nonr-2121(23), NR 342-043,
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ronaidered likely to bz loss than that between plots in widely separated
blaocks, so it was supposed that clouds uii tht come dav ware more probable
to resemble each other than clouds on different days.

Sume work by Jane Worcester [2] is relevant to this. For example,
supposing that the variation from day to day is represented by equal unumbers
of days with probabilitles 0.4 and 0.6, and the effect of the treatment is to
increase those probabilities by 0.1 to 0.5 and 0.7, and, that a level of
significance o = 0.05 ig used, then for a power of 0.90 the sample sizes
necessary for paired and unpaired experiments are reported by Worcester to
be 811 and 845 respectively. The use of pairing thus decreases the necessary
sample aize by 4.0 per cent, a rather inconsequential amount, particularly
in the context of the experiment I have referred to, where the vse of pairs
reduced the number of observations quite appreciably,

1f the heterogeneity was more extreme, say equal numbers at probabilities
0.3 and 0.7, then the corresponding sample sizes would be B45 and 709, a
reduction of 16.1 per cent.

0f course, in reality the distribution of the probability from day to
day would not be a discrete distribution concentrated in equal proportions
at two points, but instead presumably a unimodal continuous distributionm,
with which the effect of heterogeneity would probably be quite modest.

The paired experiment had a further weakneas, namely ite integrity
was compromised if the observer who selacted the clouds was aware of which
treatment was applied to the first cloud. He would then know ahead of time
which treatment would be applied Lo the second cloud, and could select the
second cloud in accordance with his predelictions. The scientists running
the experiment maintained that the man selecting the clouds, in the front
of the plane, was unable to tell whether the seeding agent was releasad or
not, but nevertheless one wonders whether he could not tell, perhaps sub-
conciously, either from the behavior of the plane (for if the seeding agent
was released the plane was appreciably iighter), or from the behavior of
the other members of the crew.

The famous calculating horses were able, apparently, to respond to
imperceptible gestures on the purt of their human accomplice, and it is
conceivable that the human cloud selector was as sensitive as these horses.

In general, if matching is employed but actually is ineffective, then
the power of the experiment is asymptotically unchanged, but for small
samples the matching procedure seems less efficient. For example, for sample
slzes of 10 in the two independent samples, the table

A 0 10 110
B 5 5110

gives a two talled P value of 0.0326 of Fisher's exact test, but if the duta
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was to be analyzed as 10 pairs, it wculd have to be

A
+ -
+
B
- 0 51053
0 10 10

for which the two tailled P value is 0.0625,

This question of power when matching is ineffective is explored by L.H.
Youkeles [3]. His results show that this loss of power ceases to be appreciable
after the two sample sizes have reached 30.

I think that it is clear that the motivation to use matching is provided
by its analogy with the idea of randomized blocks. The prestige of this
procedure is so great that I rather uncritically assumed that matching would
be .better without thinking through what might happen., The general robustness
of the unmatched completely randomized procedure now seems to me to be preferable
to the hypothetical greater power of the matched design. It seems to me to be
a common failing of the consulting statistician to automatically recommend the
most complicated experimental design he can put over on his client without
considering whether it is in reality justified.

Turning to an observational situation, I have observed that in medical
and soclological investigations one or another form of "matching" is quite
frequently used. One form of matching is the formation of so-called "matched
pairs." One such study, which received a great deal of popular interest, is
part of a paper by E. Cuyler Hammond [4].

Part of this paper contained a matched pair analysis and the procedure
is described in the following quotationa:

",..we decided to investigate the matter by studying the death
rates of cigarette smokers and nonsmokers who were alike in many
characteristics other than their smoking habits. This was accom-
plished by a matched pair analysis carried out as follows:

Two groups of subjects were identified: 1) men who never smoked
regularly and 2) men currently smoking 20 or more cigarettes a day
at enrollment in the study regardless of whether they alaso smoked
cigars or plpes. These two groups were then divided into 5-year
age groups, Within each age group, we matched men by pairs, each
palr ccnsisting of a nonsmoker and a cigarette smoker. The two men
in a pair had to be alike in all the following characteristics: race
{(white, Negro, Mexican, Indian, or Oriental); height; nativity (native-
born or foreign-born); residence (rural or urban); urban occupational
exposure to dusts, fumes, vapors, chemical, radicactivity, ete. (yes
or no); religion (Protestant, Catholic, Jewish, or none); education;
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marital status (single, married, widowed, divorced, or separated);
drinking of alcoholic beverages; sleep (under & hours, 6-9 hours,
or 10 or more hours per night); usual amount of exercise (none or
some); severe nervoue tension (yes or no); history of cancer other
than skin cancer (yes or no); and history of heart disease, stroke,
or high blood pressure (yes or no)....

The matching procedure was carried out with an IBM 1410 computer.
The records for the nonsiokers were put on one magnetic tape and the
records for the cigarette smokers on another. The records in both
tapes were then sorted in order by the codes for all the variables
under conaideration as described., Thus on both tapes the records
were arranged in blocka, & block being defined as a group of records
identically coded in all the variables under consideration. By use
of random numbers, the records within each block were arranged in
random order. The 2 tapes were then compared block by block, Blocks
found on only one tape (i.4., the same numbar of cigarette smokers
as nonsmokers) were accepted as matching pairs. For example, if
a block of 2 cigarette smokers matched a block of 2 nonsmokers, then
2 matched pairs were identified, the firat cigarette smoker and the
first nonamoker being the first pair and the second cigarette smoker
and the second nonsmoker being the second pair. If the matched
blocks were of unequal length, then the excess records in the longer
blocl: were discarded. For example, if a block of 5 cigarette smokers
matched a block of only 2, thean tha firat 2 smokeras formed matched
pairs with the 2 nonsmokers, and the last 3 smokers were discarded.
Thuas the excess (discarded) records were selected at random since,
within each block, the records were arranged in random order....

With so many characteristics to be considered, many men could
not be matched, However, tha computer found 36,975 matched palrs of
men (36,975 nonamokers and 36,975 cigarette amokers), such that the
2 men in sach palr were alike in all the specifications outlined.

.+.0f the 36,975 nonsmokers, 662 (1.8%) died and, of the 36,975
cigarette smokers, 1,385 (3.7%) died between the start of the study

and Septembar 30, 1962. This diffaerence is statistically significant
(P < 0.000001)."

The matching employed by Hammond is very complex: apart from smoking,
he employed 15 categurizations, some at two levels only and others at several
levels. The number of cells in this 17 dimensiocnal luttice was 2 x 8 x 5 x 2
X2x2x4x5%x5x5x3x2x2x2x2x2x2=210x3x4x5 x8
= 61 440 000. However, this overestimates the number of cells, as though
education vas recorded in 5 categories, "The two men in a pair had to be in
tha same education catsgory as in adjacent categories."

Let ua consider the case where matching is performed on only one categoriza-
tion at 2 levels. The population is thus cross-classified into a 2 x 2 table:
for convenience let us continue to use smoking-nonsmoking as one of the
categorizations, represented by the symbols S and T, and baldness-nonbaldness
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as the other categorization, represented by B and C. Let the proportion of
the population falling into the four classes be 8gp? etc.

Suppose that we have a very large sample, so that sampling fluctuations
can be ignored, and let the death rates for each class be ¢SB’ ete. Then if

tha sample size is N, then the number of bald smokers 1is NeSB’ ete.

Table 1
Bald Nonbald
Proportion Proportion
Proportion of Deaths Proportion of Deaths
Smokers ®p %s8%sB O¢ 9sctsc
Nonsmokers eTB eTB¢TB eTC eTC¢TC

Matching will consist in matching each bald smoker with a bald nonamoker
(and analogously for the nonbald columns). Since in general eSB e eTB’ there

will be an excess of amokers or an excess of nonsmokers in this category, and
the excess will be discarded by random selection. Thus if eSB > BTB and

eSC » eTC' the noremokers are left undisturbed, but the number of snokers will
be reduced to NBTB and NBTC and the numbers of deathe amongst smokers to

(N8yg dgp + Nopg dg0)

The death rate for smokers in the matched sample, say DSM' will tbus be
Sr¥se * rctsc
sM™ T 6. +8 (L
TB TC

The death rate for nonsmokers in the matched sample, say DTM' will be

D

_ Orgtsp * Opctrc -
™ CHIE .

b

and this is, of course, the same as the death rate for nonsmokers in the
unmatched sample, say DTU' !

For the smokers, however, the death rate in the unmatched sample, say
Doy 18
su
_ %sm%se * ®sctsc @)
su OSB + esc

D

Now suppose that the ratio of smoker to nonsmoker death rates in the
unmatched sample is the same as in the matched sample, 1.e.

19




JD_. =N In ) P
Daul 7] M ITM v

Note that this 18 a rather weal condition. We are not requiring that the
matched samples give the "right' answer for the death rates in, e.g., the
smoking population, but merely that the ratlo of death rates of smokers to
nonsmokers be the same in the matched sample as in the population.

The condition implied in equa:lon (4) implies that
®sp%sm * %sc®sc . Pre%sm * Srcsc

- (5)
958 * %5c O * O1¢

which in turn requires that
(b5 ~ ¢gp? PPy ~ PspPrg? = O (6

Thus the relationship betwera smokers and nonsmokers is the same in the matched
sample ag inu the original unmatched sample if either

or ) 9
M g2 = 2 (8)
TC 8

or (c) both (a) and (b) are simultaneously satisfied.

Condition (a) is that the death rate for bald smokers be the same as the
death rate for nonbald umokers; in other words, for smokers baldness or non-
baldness does not affect the death rate.

Condition (b) is one form of the familiar independence criterion for two
croas categorizations, for example that the probability of baldness is the
same for smokers as for nonsmokers.

Condition (a) is asymmetrical in that it refers only to smokers. This
asymmetry occurs, of course, because the operation of matching, in the situation
assessed here, altaers the ralative numbers of bald and nonbald men in the

spoking group ouly, since the nonsmoking group is left unchanged by the matching
operation.

If the independence between smoking and baldness implied by (8) is not
satisfied, in the particular manner implied by the condition

] ]
= <l ®
TC T8

then the smoking class determines the vize of the matched group for nonbald
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people and the nongmoking class determines the size of the matched group for
bald people. It is straightforwuard, but somewhat tedious, to show that (4)
iu geucral requires cnat

= {10)

iy TC

and

% = %5c ° (11)

SB
In other words the death rate for bald smokers must be the same as the death
rate for nonbald smokers and also the death rate for bald nonsmokers must be
the same as for nonbald nonsmokers.

These two results, (7) and (8), and (10) and (l1), both correspond to
comunngense. All death rates are in effect weighted averages. The ummatched
death rates are weighted averages using as welghts the properties of each
category in the population. Equation (7) follows from the fact that if the
death rates in the two categories are equal it makes no difference what weights
are used. Equation (8) follows from the fact that if the proportion bald/non-
bald 1s the same for the smokers as for the nonsmokers, then the matched sample
will have the same weights as the unmatched. Equations (10) and (11) are
similar to (8).

I should like to illustrate this with a small synthetic numerical example.
Imagine a population being matched, smokers against nonsmokers, according te
some factor such as baldness.

Suppose that the smokers number 110,000 of whom 100,000 are not bald
with a death rate of 1 per cent and 10,000 are bald with a death rate of 5
per cent. Then the overall death rate for smokers is the ratio of the total
number of deaths,
100,000 x 0,01 + 10,000 x 0,05 = 1000 + 500 = 1500

to the total number of smokers,
100,000 + 10,00¢ = 110,000,

Thus the death rate for smokers is

1100/110,000 = 1,36%.

Now supprse that the nonsmokers number 35,000, of whom 20,000 are not
bald with.a death rate of 1 per cent and 15,000 are bald with a death rate
of 2 per cent, Then the death rate for nonsmokers is

20,000 x 0.01 + 15,000 x 0.02 _ __ 500 _ 1.43%
20,000 + 15,000 35,000 ) )

This is one populaticn the smokers have a slightly lower death rate than the
nunsmokers; the ratio of death rates is 1.36/1,43 = 0.95.

Now suppose that the smokers and nonsmokers are "meacched." For vhe nonbald
the device that does the matching will be able to select 20,000 smokers out of
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the 100,000 available, and these will have an expected number 20,000 x 0.01

= 280 diaths. The Jdevice that duce tue umLL.'u.;.us will ;\cep iu iis macched
sample the 10,000 bald smokers who will have an expected number 10,000 x 0.05
= 500 deaths. Thus for smokers in the matched sample the death rate is

(200 + 510)/(20,000 + 10,000) = 700/30,000 = 2.33%.

For nonbald nonsmokers the 20,000 in the population stay in the matched sample,
producing an expected number 20,000 x 0.01 = 200 deaths, but the bLald non-
smokers are reduced im number to 10,000, for which the expected number of deaths

is 10,000 x 0.02 = 200. Thus for nonsmokers in the matched eample the death
rate 1s

(200 + 200) /(20,000 + 10,000) = 409/30,000 = 1.33%.

Thus in ouv matched sample the smokers have a somewhat higher death rate than
the nonsmokers, the ratio of death rates being 2.33/1.33 = 1.75. The direction
of this relationship between the death rates for smokers aud nonsmokers in a
matched gample 48 the reverse of what occurred in the population.

I think the reason that matching proves misleading in this observational
situation is that it is a close relative of covariance analysis, We know that
in a purely experimental situation it is essential that the concommitant
variable be independent of the experimental treatments, and the sare must hold
good in an observationmal situation. If the concommitant variable is not
independent of the treatments, then hideous fallacies may arise when we "adjust"
the response means, I chink the enalogous situation may arise in a discrete
matching situation: the frequencies of tne matching criterion may be forced
into gquitc unrcaliatic digcvributions.

From another point of view, the matching procedure is forming a weighted
average for which the weilghts are quite unrealistic.

In other words, I believe that the matching procedure adds seriously to
the difficulties of extracting rigorous inference from observational data and
we should be quite hesitant about emyloying it.
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ABSTRACT. The Wound Data Project is a survey of wounded personnel in
which information is collected about the projectile or thermul agent causing
the wound, and the incurred physjological and phychological effects, together
with the hospital information, The experimental design is not under direct
control, since only those cases that do occur can be observed. The control
that can be exerted in such work consists of proper questionnaire design and
an attempt to continue observation until certain minimum numierg of cases
have occurred in designated categories. In this project, the number of
categories is in the hundreds, making it highly unlikely that the desired
number of cases will be observed in all categories. There 1s no ability to
control the level at which factors occur (e.g., projectile striking velocity).
The approprilate statistics to be used are largely those developed in fields
specializing in survey work such as epidemiology and social relatioms. In
fact, the computer system to be used for file manipulation in this project,
DATA~TEXT, 1is one developed by the Harvard School of Social Relationms.

The areas to be investigated in this study are dictated by Army require~
ments, and information is now being recorded by the field team. The specific !
questionnaires from which Hollerith cards will be punched are to be filled out |
by the CONUS Team from this data. Adequate medical personnel are available
in the CONUS Team to insure proper medical interpretation of questions. Areas
in which advice is sought from cthe "clinical" panel include statistical pitfalls
in questionnaire design, and optimum selection of subjects where choices exist.
If subjects are selected with multiple wounds, individual variation is minimized
and direct comparison allowed between or among physical characteristics such as
penetrating ability. However, the physiological and phychological effects of
a particular wound are unmeasurable in the multiple wound case due to the

confounding.

on attaining a pre-determined number of cases showing some set of characteristics,
rather than by merely observing some total number of cases without regard to

the information content of these cases. However, hov to select the proper set,

or sets, of characteristics in a survey where many such combinations exist,

each for some different output of the survey, is difficult. Any selection based
on frequency of observed characteristics implies feedback from the evaluation
team (CONUS) to the collection team (SEA) which are physically separated by some
10,000 miles.

the vagaries of war.

ON METHODS OF OPTIMIZATION OF A MULTIOBJECTIVE SURVEY

John C. Atkinson
Harvard Computing Center
Boston, Masaachusetts

The proper target sample size would appear to be better defined

The ability of the collection team to '"collect" also depends upon




COMPONENTS OF VARIANCE OF A LINEAR FUNCTION
IN REPEATED TRIALS

Walter D. Foster
U.S. Army Biological Laboratories
Fort Detrick
Frederick, Maryland

ABSTRACT. The quality (Qi) of the 1-th batch of a material diminishes
with time according to a function which is linear in its parameters, a
separate parameter set estimated fcr each batch. The quality of each batch
is extrapolated to a common future date, tes by means of its time furction.
A weighted mean quality is computed, using the known amount of each batch
ag the weight:

Q, = Iwy Q/ Iw
The problem is to find the variance of the weighted mean, V(Qw), glven the
estimated parameters of each time function and the elapsed time to teo In
case that the time functions have the form

Q =A +B X+C ¥

it is known in a special application that the batch-to-batch distribution
of the Ai is normal and independent of B and C. The bivariate distribution
of B and C has a high covariance, p » .87, with markedly skewed marginal
distributions, each in the positive direction. It has been acceptable to
write C in terms of B as

C=d+e8B

for another application not discussed here.

The remainder of this paper was reproduced photographically from the author's
copy.
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In a manufacturing process, the quality, Qi’ of the i-th batch of material
is measured periodically, because quality is known to deteriorate with time.
The deterioration function,

Q1 - Ai + BiX + C1

is fitted to each batch, resulting in a unique set of statistics, (A, B, C)
for each batch., The variable X is time; Y is log(X + 1). The times of ob-
servation are not necessarily the same for each batch, nor is each batch manu-

Y,

factured at the same time. The quality of each batch is weighted by the amount
of esch batch., It is the weighted average of quality, Qw’ and its variance
which are required for a fixed time, tes The following schematic is {llustra-

tive.

\- \
- Batch A

Quality \ = =~ Batch B
~+
" = — Batch €

Time t
Computationally, it is straight forward to compute Q at time tf for each
batch and to continue over batches to compute
éw - Z‘.wiQi/Zwi and
V@) = Zv, @ - 3%/,
; But this is not the problem., It iy desired to find a formulation for V(ﬁw)

involving the distribution of the parameters of the deterioration functions,

The distribution of the A, is known to be normal (with available estimates of

i
mean and variance) and independent of B and C. The bivariate distribution of
B and C while not knowm functionally has a high covariance, r = ,87, with
markedly skewed marginal distributiomns.

Three cases are given as successive stages of a possible approach to
illustrate the form of & desired solution. GCeneral notation applicable to all




three cases includeg the following;
Let Qij = j-th observation of quality on the i-th batch, i = l-=i, j = 1=

and Q1 = quality of i-th batch averaged over the j observationa

and Q.. = average quality averaged over all batches
w,o= amount of i«th batch, used as a weight factor

t

time of observation

CASE 1
No deterioration of batch quality with time. All batches manufactured at
the same time with the same dates of surveillance. Variance of assay the same
for each batch., Pictorially,

* ' d
Q Y y Batch A
— - - e Batch B
. L - o Batch C
time

Let the random model,

Qij = + Ci + eij’

L = lemed,

= l---§,
with zero covariances represent quality so that

E(Q1 ) = which 18 estimated by
Q =3 QiJ/J-; aleso
Q.. r vy Qij/j Ewi.

Note that the previous computation for the variance of the mean, namely,
"
'S
v(Q”w) = ow Q- Q"w) / Lwy o

m
w

neither partitions the source of variation nor uses the distribution of the para-
meters of the deterioration functions.
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The following results, assuwmlng ihat the w, are constant, are obtained from

i

the expected mean squares which are well known to be given by the anslysls of
variance model,

Source df EMS)

Betwean Batches i-1 02 + jcz

Within Batches 1(3=1) 02

from which we have

V(Qij) = 02 + ai

v(Q, ) = 02/1 + 0: and
" V(Qes) = ozlij + ci/j .

When the amounts, w,, are known but not equal, the weighted mean is

i

Q.. = 2, Qi/Z w,

=m+ Z wici/Ewi + vy geijljz w

with variance 2 2 2 2
V(Q.. ) = (g, + 0/3) T /(T W)

if the covariances are ignored. The partition has a desirgble form.

CASE Il
The deterioration rate of each batch in time has the same loss coefficient
in the modsl,

Qij =m+ ci «bt + eij'

where as before all batches have the same date of manufacture and the same
dates of surveilllance and the same variance of assay. The following figure
indicates ihe nature of the problem:

0 T
““1*——-‘—.___‘__--‘_"“ B
N.‘____c
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Then the analdew of ehe { th Latch ai o Lixed time, Tg» 18 glven by

Qio-m+c ~bt£

i

and the weighted average quality of all batches at time, t_, is

£
Q..w - zwi(m + e - btf)tw1
=m -~ btf + Zvicilﬂwi
with corresponding variances given by
v(Q,) = L1+ (e, = BP/as(e - D] + 0 2, and
v@..) =(a} + /pme2(a)? + (e, - E)zaz/uj(:j - B2

which is partitioned and follows the components-of-variance sense,

CASE III

Let the deterioration function be representable by a linear function,

1
Q1j =m+ ¢ + bit + dit + e

or by & non-linear function such as
t
Qij - Qoi(ri + l)lr1 + li)

19°

whose covariances in both cases are non-zero. Further, the date of manufacture
of each batch is neither the same nor i1a the distribution of manufacture dates
constant. Finally, neither the number of surveillance periods or their dates
are necessarily the same from one batch to another. However, the variance of
assay is constant. A pictorial reprasentation is given below.

—_—

\~

-
\ - .
~‘
-
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A continuation of the approach shown in Cases I and II while desirable may not
be tractable. The probiem is noi 50 much tc estimate

Qi' - fi(tf) and

Q. w " !:‘.wifi(t:f)/Zwi
which are readily computable as to formulate expressions of their partitioned
variances estimable from the distributions of the model parameters in the

sense of Cases I and II.
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A MODEL
FOR OBTAINING THE OPERATING CHARACTERISTICS
OF A SRIP LOT SAMPLING PROCEDURE
Allen C. Endres
US Army Ammunition Procurement & Supply Agency

Joliet, Illinois

1.0 INTRODUCTION

Project SKIP is the name given to a ballistic testing procedure developed and
administered by the Quality Evaluatlon Division of the U.S.IArmy Ammunition Frocurement
and Supply Agency. The need for such a procedure becameAevident when a study of
bullistic testing revealed substantial savings could be effected by properly lowering
ballistic test frequencies., The development of the methodology required to obtain
the operating characteristics of the plans covered by the grocedure parallelled its
implementation at selected loading plants.

Fig. 1 depicts the essentlal steps of the flow diagram of Project SKIP.

The assoclated verbal transition matrix is contained in Fig. 2. It is seen that we
have a Markov model. Throughout the discussion the various steps of the flow diagram
will be referred to as the states, 1.e. qualification stats, restart state, etc,

The steaay state occupancy probability of a lot being in state 1 will be Pj. We
shall use P] to denote the probability of entering state i on the next step. A

step is defined as the testing of the lot.
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2.0 METHOD OF DERIVING Py AND Pi

We shall first restrict ourselves to the case where only tested lots are
considered and temporarily ignore the skip lot possibilities in Step One and
Step Two. Let

P, = Prob (being in qualification state)

PNy = Prob (being in normal step one)

Py, = Prob (being in normal step two)

Pyix = Prob (being in retrial step one)

Pygx = Prob (being in retrial step two)

PR = Prob (being in restart state)

and p = Pr (lot meeting all ballistic tests' requirements except those concerned

with eritical malfunctions)
y = Pr (critical malfuncticn)

hence:

(1) Fo =P+ Py (1=y) p+ .0ouee + B} (1-v)3p?

l-(l"Y)IO p10
- p! e e
1-(1-y) p
(2) Pyy = Pl + PL (1=y) p+ .o + Py (L=y)® p* = Py 1-(1-y)> »p
| N N1 N1 N1 -0y 5
|
!
[ (4) Pypw = Priw * Puis (1) P+ vvens 4 Pliw (1-y)3 p3 = Plis (- 4 pt
1 (-v) p

(5) Pyow = Plow + Pliox (1-7) P+ covvue + Ploy (1=y)% p? = Proy i—%i—lgu ph
: -Y) p
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Define: Ppy = Probability (being ia restari in process of testing for five

consecutive lots free of critical malfunctions while disregarding all other mal-

functions).

Ppy = Probability (being in restart and testing for ten consecutive lots

meeting all requirements),

(6) PR = Pyy + Py

- P! 1 - ' o)l . P!
(7) Py = Ppy + Ppy (I-v) + covuns + Pry (=) Pa1

(8) Py = Pry + Ppy (1=v) p + .eieus + Ppy (1-1)% p?

We shall now investigate the derivation of the Pi. P; = P- (being in O two
steps ago and rejecting a lot for reasons other than a critiral malfunction on the
last step) + Pr (being in Nl* two steps ago and rejecting & lot for reasons other
than a critical malfunction on the last step) + Pr (being in N2¥% two steps ago and
rejecting the lot for reasons other than a critical malfunction on the last step)

Py (1-p) (1-v) + Pyywn (1-p) (1-y) + Pygw (1-p) (1-¥)
Utilizing (1), (4) and (5) ylelds

(9) P! =l 1-(=p)!0 plOF (1ep) (1-v) 4 Plyy flz(loy)® p' | (1=p) (L-y)
1—(1"Y) P l-(l"Y) P

+ Pyas i:il:llimﬂi (1-p) (L-y)
1-(1~v) p

Similar reasoning for P&l‘ PY1ws P&2' Pﬁz,, Pﬁl' Péz yielda:

' - P' Y10 10 1w} ml vyl0 10
(10) Pgi = PO (=) 17 p20+ Py (1-v)" p' + Pp, (1-v)°7 p
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(12) By, = Bloy PY (1-7)% By (1-)%5 + Py, (1-v) p
(13) Pyoy = By (1-p) (1-Y)

(14) Pﬁl =Y

(15) 2pp = Py (1-Y)® + Pp, (1-) (1-p) 1-(1-y)10 pl0
1-(1-y) p

Equations (9) through (15) define 7 equations in terms of the Pi. However an

additional equation is needed since it can be shown that the coefficient matrix

is not of full rank. The needed equation is

It was found convenient to solve for Pé and then relate the remaining Pi in terms
of P;. The steady state probabilities were then obtained by substitution in (1)

through (8).

3.0 INCORPORATION OF SKIP LOY POSSIBILITIES

The preceediny discussion neglected the skipping possibilities in Nl and NZ'
A plausible approach to the skipping anomaly would be to obtain the expected ratio
of total to tested lots in the states of concern, multiply the original Py, and Pyo

by these ratios and then force the modified PNl' PNZ’ and the remaining Pi to

§ sum to one by normalization.
Let: X1 = Number of lots tested in N;

X, = Number of lots skipped in Ng




then the ratic of interest is - ——_—
X X
1 1
e [ |
X + X X2
taking expectation E - - 1+ Els—
% X1
Now E |[—] = L = P (X3,%)
X1 X ~1 X0 X

where P (X5,X;) is the joint probability density function of X1,X2.

However P (X3,X;) = P (X2|X1) P (XD

Xz 5 L X
hence E|l-=] = I P (X)) I3 PA(xx)
X X, =1 X=0 %1
5 P(Xp) ®
-5 I Xy P (X]xp)
xl-l l X2'0
Define 1) a skipped lot as a no-test
11) a tested loé as a test
[--)
Then I Xz P (xz.xl) may, for a given X), be considered as the expected
X, =0
2

number of no-tests before the X,st test. Hence X, 1s distributed as a negative

binomial random vari:zble with expectation xlq
P
where q is the probability of a no-test

p 1s the probability of a test;
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- 7 \
Therefore El—-l - z —53 = q/p.
Ly ntoo % NP4
XZ Xl + x2
For N; qm=p=1/2 Therefore Ej]— =1 ond K = 2,
X X

A completely analagous procedure yields a ratio of 3 for NZ’ Hence PNl i8 multiplied
by 2 and PN2 by 3.
The total procedure is then

(1) Obtain I P,

1 Np,N,

(2) Multiply PNl by 2 and Py, by 3 and add these products to (1).

(3) Divide P,, PR’ PNi%» Pyaw? by the sum obtained in (2); alaso divide
2Py and 3 PNZ by that sum,

(4) Each quoitient obtained in (3) is defined as P%.

i

and IP% = ],
i i

4.0 DERIVATION OF ACCEPTANCE PROBABILITY

Let:

P, = Expected proportation of accepted lots

(1) PA = i (Pti + Psi) Pg

where: Pyy = Pr (lot tested and accepted in state 1)

Pgy = Pr (lot skipped and hence accepted in state 1)

36




AR R i i AT, e, e St

-

STATE Py r

S L
0 p(l-y) 0
Ny 1/2 p(1l~y) 1/2
Ny 1/3 p(1-v) 2/3
Ny« p(1l-y) 0
Nox p(1-y) 0
R p(1-y) 0

which may be seen to yield:

- - * * 3 * *
Py = p(l-v) P* + PR + P§1*+ PNZ* + 1/2 PNl + P§2 + fﬁi . 2 Pﬁz
2 3

This formula together with an assumed vy = ,0002 was used to obtain Figure 3.

5.0 EXPECTED REDUCTION IN TESTING
The expec“ed reduction in testing is]Pf, 2 Pﬁz vs. p, the probability of
-—-+——

2 3
the lot meeting all ballistic tests' requirements not concerned with critical

malfunctions. The asymptote 18 the maximum reduction possible for y = .0002, and

was obtained by finding lim (P*

* ),
pa1 N PN

3?7
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FIGURE TWO

Causes of Transition from
State 1 to State J

e
r;:h\ 0

R1 R2 N1 N1 N2 ‘N*
0 |Reject the [Critical 10 consecu-
lot. No nalfunction, tive lots '
ecritical accepted.
malfunction
Rl Critical 5 consecu-
malfunction,.| tive lots
without
eritical
malfunction.
R2 Critical Reject the |10 consecu~
malfunction.] lot. No tive lots
oritical accepted,
malfunction.
N1l Critical Reject the | 5 tested
malfunction. lot. No lots are
eritical accepted,
malfunction
N1* |Reject the |Critical L lots are
lot. No malfunction, agcepted.
eritical
malfunction
N2 Cr'tical Lot 1s Reject the
ek funetion, accupted, lot. No
eritical
malfunction.
N2* |Reject the [Critical L lots are
lot. No malfunction. accepted.
eritical
malfunction
40
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A MODEL FOR DETFRMTNTNf QIIATTTY
INCENTIVE PAYOFFS FOR PROCUREMENT

Reger Rymer and Eugene Dutoit
Picatinny Arsenel
Dover, New Jersey

INTRODUCTION. The purpose of this paper is to formulate & model for the
preparation of Quality Incentive Clauses to be included in Government contracts.
The model will concern itself with those iltems which are procured according

to acceptance criteria involving single sampling plans by attributes.

A Quality Incentive Clauge 13 an addition to & supply contract which is
designed to benefit both the contractor and the &overnment. The clause
provides for the payment of a honus to the contractor if product quality is
above that designated as acceptable in the product specification.

Changes in product quality will be obaserved by selecting one or more
parameters which reflect item effectiveness; changes in the "relative AQL"
of these parameters with respect to the AQL's outlined in the product specifice~
tion will be used to indicate differences in quality level,

Finally, variations in AQL will be combined with a puyoff factor to assign
a partial payoff for each parameter. This payoff factor is designed tn adjust
for the relative importance of each parameter as well as the msgnitude of the

quality measurement. The sum of the partial payoffs will indicate the total
payoff to which the contractor is entitled.

THE GENERAL MODEL. This section repreaents an outline of the general
model proposed for formulating Quality Incentive Clsuses. A brief explasnation
of each of the major segments of the model is presented below. A more elaborale

discussion of the development of each of these segments will be presented in
a later section.

The remainder of this paper was photographically reproduced from the author's
copy .
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1s litem Cumirul Furumeiers,-Tnese paramelers are used 1o

measure the "incentive quality" of the item.

2. Ratlo Weights.-Weights are assigned to all control parameters
to indicate the relative importance of each parameter in determining
item effectiveness,

3. Maximum Payoff,-This value represents the maximum amount

the purchasing agent is willing to pey for quality in the item,

L. Payoff Factors for Fach Control Parameter,-The payoff factor

is & multiplier which transforms a given qualit& measurement into an
incentive payoff. It is designed to reflect both the magnitude and
importance of measured quality for each parameter,

5. FPertial Payoffs for Each Control Parameter,-The partial
payoff ls & measure of that portion of final payoff which 1s attributable
to each control parameter,

6. Total Payoff.~-This value represents the bonus payable to the

contractor on the basis of the indicated quality of the item,

DEVELOPMENT OF THE GENERAL MODEL
This section traces the development of the various segments of the
general model. Each major segment of the model is expanded and quantified
according to the basic assumptions of the model.

Selection of Control Parameters,-Although many parameters may contribute

to the performance of a particular item, it is desirable to select only
& few parameters to measure quality for incentive purposes. One or two

parameters are ideal; any more then three may be unwiedly and impractical,
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The parameters selected should be those which most clearly define item
elfectiveness under operational conditions, Consequently, in addition
to minimizing the number of perameters selected, care must also be
taken to insure that all parameters which indicate effectiveness are
included. Thus, the number of parameters selected should be as re-
strictive as possible, yet comprehensive encugh to include all
significant parameters.

Furthermore, it is important thet parameter measurements be
compatible with acceptance tests as outlined invthe product specification,
Parameters which require increased sample size or additional testing
in order to be measured satisfactorily are not desirable,

Assignment of Weights,-Weights will be assigned to each conirol parameter
in multiples of ten within the range J to 100 (10,20,30 seses,100), For
example, consider a situation involving two parameters where it is felt
that parameter A is 1 1/2 times as important as parameter B, The weights
assigned would be Wy = 30; Wy = 20 or Wy = 603 Wp = 40. As long as the
retio is maintained it does not matter which combination of weights is

selected,

Determination of Maximum Peyoff.-The maximum payoff (MPO) is selected as

that percentage of unit price the purchasing agent is willing to pay 1f
maximum incentive quality i1s obtained in ell parameters,

Determination of Payoff Factors.-Un the basie of the subjective-objective
decisions outlined above, a PAY OFF FACTOR (POFI) 1s determined for each

parameter, The POFy is a function of:
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(1) the individual weight of eesch perameter relstive to the
combined weights of all parameters,

(2) maximum pay-off allowed in percent unit price,
Development of POF=.=

Initially define a "quality point" as a measure of incentive
quallty which will give a pey~off. 1In order to achieve the maximum
pay-off (MPO) incentive, the contractor must achleve the maximum
quality points (MQP) which have been assigned for each parameter,
Assunming & linenr model where Zero "QP" would give Zero Pay-off, the

relationship between Pay~off (PC) and "QP" can be shown as figure 1 below:

Figure 1

Since each parameter is weighted in its importance to iltem effective-
ness, it shall be defined that the maximum QP for each parameter be equal
! to the weight assigned to each parameter (ie,, if W = Lo, W, = 20
We = 2Wp - therefore parameter Wy is twice as important as Wy and will
receive twice the number of quality points).

So, on an item basis:
; (1) MQP = the sum of the weights for the parameters considered for
| that item,

! N
MQP = Wp =ZW1, where N is the number of parameters considered,

————
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{2) MPO = Percentage of item unit orire.

Trerefore Figure 1 becomes:

POF] = — — = =

v

\

Figure 2
Parameter (I) with weight Wy gives a pay-off fector (POFI).. POF; is

a proportional part of MPO as expressed below:

FOF; = SMPO) = (0) (w7)
Wm) - (O

PQF7 = MPO sz )
1 Wrp

Where POFy is a percentage.In a fractional form:
POFy = (MPO) (Wp)

TWe) 100
Wp) 100 (1)
A verification of the relationship is given in the appendix,

Determination of Partial Payoff.-Using the payoff factor and the percentage

change in quality for each parameter (to be discussed in the next section)
a partial payoff may be computed for each parameter, Therefore, for each

parameter and its POFI. Figure 3 shows the corresponding partial payoff,
A

L sl - - - - -— - — — -
Meximum PPO = ,)71 Parameter
(POFT) (100%) | 1
'
0
'
'
1
0 T A
% Difference in AQL
Figure 3
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The partial pay-uii for rarameter I (PPOI) is represented as:
PPOy = (POFy) (% difference) (2)

where PPO1 13 a percentage of unit price.

Determination of Total Payoff,-It follows that the total payoff (TPO)

is the sum of all partial payofgs or
Total Pay-off (TPO) =ZPPOI (3)
If we have 100% difference in AQL for each pamrameter; then
TPO (%) = MPO (%) - see Appendix for verification.
"MEASURING" INCENTIVE QUALITY
WHEN THE ACCEPTANCE NUMBER OF ALL PARAMETERS
IS FIVE OR GREATER
Incentive payoffs will be made on the basls of changes in quallty,.
For this model, these changes will be measured in terms of AQL. This
measure is, in fact, & psuedo-AQL (AQLP).
As stated in the previous section, incentive quality is indicated

by the percentage difference, AQL; is the AQL for a parameter outlined

in the product specification. For brevity, AQL; is presented in the form

of the appropriete sampling plan as follows:
(AQLg | code letter; n, x, x + 1) where x5 (4)
and: n = sample size
x = geceptance number
x.+ 1 = rejection number

All date is in accordance with MIL-STD~105D.
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When sempling is conducted according to the specification sampling
plan and the number of defects in the observed pample is scme x'«x, then
for convenience AQLp is defined as follows:

(AQLp | code letter; N; x', x' + 1) (5)

code letter is the same as in ()

where: n = gample size

x! = acceptance number
x'+l = rejection number

All data 1s in accordance with MIL-STD-lOSﬁ. AQLy can be determined
using MIL-STD=105D, a Thorndike Chart or Polsson Tables.

It is important to point out that the AQLP does not mean that the
process aversge is actually equal to the AQLy, The AQLy is a "dummy"
meesure of quality. It merely says that =-

if a sampling plan had been used with code letter o', sample
size N, decision criteria x', x' + 1 = then the AQL associated with this
plan is AQLyp., It is the AQL of the sampling plan that has Just been
passed,

The pseudo velue is used in the incentive model to compute the
percentage change in AQLg or "the change in quality",

The percentage difference (¥D) between AQLy and AQLy is computed by:

%Dy = AQLg - A 100 (6)
AQLg
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TAAMELE UrF DETERMLNLNG AQLp AND % DI WHEN
THE ACCEPTANCE NUMBER OF ALL PARAMETERS IS FIVE OR GREATER

Simple Case - one parameter considered.
Example: Consider a parameter with AQLg as follows (1,0| M; 315; T,
8).

If in sampling the number of defects observed is 3 then x' = 3.

Hence, AQLp is defined sccording to equation (5) as (AQLplM; 315; 3,
4), '
Using MIL-STD-105D, AQLp = 4o

Therefore: DT = AQLs = AQLp 100
AQLs

» (1,0 « ,40) 100
1.0

= 60%
COMPLETE EXAMPLE FOR COMPUTING INCENTIVE PAYOFF
IN WHICH THE ACCEPTANCE NUMBER OF ALL PARAMETERS
I8 5 OR GREATER
Two significant parameters, A and B, have been selected for the

item in question, Subjective Jjudgment indicates thet Parameter A ia

1-1/2 times as important as Parameter B.

Step Information Value Obtained Explanation
1l Weight for Parameter 30
A: Wy '
2. Weight for Parameter 20
B: Wy
3 Sum of Weights (Wp): 50 30 + 20
Wa +w'b
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Step Information Value Obteined Explanation

i Maximum Payoff: MPO 10% Subjective
5 Payoff Factor A (POFg):
(MPO)  (W,) .06 (10) (30)
Wp) 100 50] (100)
6 Payoff Factor B (POFy):
(MPO) (W) Ok (10) (20)
Wr) 100 50) (100)

The incentive clause indicates that two parameters A and B,
will be used, Parameter A has an AQLg of 1,0%, POFg = .06,
Parameter B has an AQLg of ,65%, POFy = .04, The size of
the lot for which a payoff is toc be calculated is 15,000,
General Inspection level II is to be used,

The number of defectives found in the sample for

Parameter A vas 3, (x' = 3)

The number of defectives found in the sample for

Parameter B was 2, (x' = 2)

Step Information Value Obtained Explanation
T Sampling Plan Code Letter M
Parameter A: AQLy; SB Product
Specification
(x, x+1) (1.,0%; 315 (7,8))
Parameter B: AQLg; 88 Product
. Specification
(%, x+l) #65%; 315 (5,6))
8 Pseudo AQL
Parsmeter At AQ.p ) JL0%
: 105=D
Parameter B: AQLy «25%
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Step Information Value Obtained Explanation
| 9 Percentage Difference (#D):
; (AQLs - AQLp) (100)
l { AQLg |
b
i , Paremeter A: %D 60% (1.0 = ,ho) 100 i
5 1.0 {
A |
: Parameter B: %D 62% .65 =~ ,25) 100 {
§ 265
‘ 10 Partinl Payoff (PPO) = (%D) (POF): |
Parameter A: FPO, 3.6% - (60) (,06)
i
; Parameter B: FPOy 2.5% (62) (.0h)
' 11 Total Payoff TPO = PPOg + PPOp:
B
6.1% 3.6 + 2,5

"MEASURING" TNCENTIVE QUALITY
WHEN THE ACCEPTANCE NUMBER OF AT LEAST ONE
PARAMETER IS8 LESS THAN FIVE

v T e T T

Choome the control parametsr which has a sampling plan where X

i minimum less than five, The general approach to the problem will

be to determine from the requirements:

(AQLg ) code letter; N; X, X+1) where X<5, A second sempling

VUV SSU P

plan will be defined as:

(AQLg | N'; Xg, Xg + 1) (1)

where X,>»X and N'/N is some whole number greater than one whieh

represents the cumulative number of lots thut have to be sampled

before an incentive pay~off decision can be made, The conditions of

equation (7) can be satisfied by use of a standard Thorndike Chart or

1 Summation of Terms of Poisson's Exponential Binomial Limit.

~
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Example

consider the gpecification samwpling plan:
(AQL.) = 0.25% | N = 315: 2,3)

The AQL can &lso be expresaed'as fraction defective:
(AQL, = .0025 | N = 315; 2,3)
If an equivalent 5 - 6 plan (xa = §5) is required, a Thorndike Chart
can be used. Defining the possibility of acceptance at the AQL to be .95 -

N' (AQL expressed as fraction defective) = 2,6
or N' (,0025) = 2,6
N' = 1040 items .
The AQL could have also been written as a percentage
N' (AQL (%)) = 260

(8)
N' = 1040

The equivalent sampling plan expressed as equation (7) is:
(AQr, = .25% | N = 1040; 5,6)
In general, equation (8) can be written for both the specification

sampling plan (N, X, X + 1) and the second eguivaient sampling plan
(N'. xa, X! +1): \

(1): (N) <AQL5) (Poisson factor X, X + 1) 100

(ﬂ'ﬁh X + l) 100 L (9)

(14): (W) (AQL') » (Poisson factor X X * 1) 100

(fol. X, + 1) 100

(1Tk‘, X, *+ 1)100

N! VFZAQLB ’
N " (X, X+ 1) 100
AQL,
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or N %,'_'zm_&:Tw_q
N T[%s X + 1) 100
From equation (9):
(Hx, x + 1) 100 = (N) (AQLg)

So that

—

be derived for a probability of acceptance of .95.

"= (llXg, Xg + 1)

W) (AQLg)

For convenience, modified Poisson factors for all Xg, Xag + 1 can

=2 =2

The numerator of

equation (10) can be written as:
(llx,, Xa + 1) 100 = 24, Equation (10) now becomes:

'.Zi

T TAaLs) (11)

Velues of 24 for attribute sampling plens X, X + 1 are glven below

bl
N

S
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—— e e w

B P

in Table I
TABLE I
N X+ E.i
5«6 260
6T 320
7T-8 Loo
8-9 L70
9 - 10 540
10 = 11 620
11 - 12 700
12 - 13 780
13 = 1b 850
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X, X+1 24

th - 18 930
15 - 16 1000
16 = 17 1070
17 - 18 1170
18 - 19 ' 1250
19 - 20 1320
20 - 21 1400

By letting L ejual the number of cumlatiVe'lota. such that N'/N is
a whole number:

L=ly =24
ZN5 ZAQL ) where the value of 14y which is c¢closest
8 i

to & whole number is chosen as the value of L.-
Example?
Consider the specification sampling plan:
(AQLy = .25% I N = 315; 2,3)
In this case: |
(N) (AQLg) = (315) (.25) = 78,75
Therefore, applying equation (11) and Table I:

15-6 = 260
78.75 = 3.30

1
6—7 = 30
T%._'FS » k.20

17.8 = 400
78,75 = 5.08 -

18-9 = LT0 '
73'??‘5 ¥ 5.9T°

which is nearly e whole integer and corresponds to a 8=9 plan, Therefore

L = 6 lots wlll be accumulated before an incentive pay-off decision will
be made., If 6 lots of sample size 315 each are accumulated, then the
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adjusted sample size is:
N = (1) (W) (12)
or N' = (6) (315) = 1890
In summary - the original sampling plen is:
(AQL = .25% | 315; 2,3)

2 i st S D BRGAT ray e NG

This is replaced with an equivalent plan by accumulating 6 lot

Ty o SRR

samples defined in accordance with equation (7): : '

(AQL = ,25% | 1850; 8,9) %

| ) : Extention of this example by computing AQLy, and Payoff:

It 6 defects were encountered (X' =6, X' + 1 = 7) in 6 lots of

ot i e Fe e =

sampling (total N = 1890), the pseudo AQL (AQLP) can be determined as

follows., The definition of AQLP is the same as in the'previous gsection 1if

, (AQLg = .25% | 1890; 8,9)
z then  (aQuy = 2 | 1890; 6,7)

BESD VRS

PR

It 15 known that
(N) (AQLg) = .(Z4 for X, X + 1 plan), If X, X + 1 and N are
known, then AQLg can be determined. This is also true for AQLP. In this

example, (X', X' + 1) = (6,7) end N' = 189C, Applying equations (9) to this k

situation: , S
(¥) (AQLp) = (zy for X', X' + 1 plan) |
(N') (AQLp) = (23 for 6,7 plan) | ' }
(1890) (AQLy) = 330
AQLy, = .175% A

—— -

S et e apr
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Th¢ iesuliani percentage airrerence (3D) between AQLs and AQLp is:
%D = (,250 — ,175) 100 = 30% *

+250 "

Note: These adjustments must be made in the sampling plans of all !

(pertanent) item control parameters. The following example (although :

repetitious in part) will include the complete computation as well as
the TPO.

A COMPLETE EXAMPLE FOR CALCULATING PAYOFF WHEN
THE ACCEPTANCE NUMBER OF AT LEAST ONE PARAMETER IS LESS THAN 5

Parameter At N = 32, (0 - 1); AQLg = ,L0; Wy = 30
B: N = 50, (1~ 2); AQLg = 1,005 Wp = 20 :
MPO = 10% |
Wp =Wy +Wp= 50

POFg = (MPO) (W) = (10) (30) = ,06
(wr) 100 T50) (100)

POF, = (MPO) (Wg) = (10) (20) = ,Ob

TWp) (100)  T50) (100) ;
Because both of the sampling plansg have acceptance numbers less /
than %, the number of cumulative lots (samples) must be determined
in order to determine equivalent sampling plans:

1 = 24
W) (ARLg)

Plan A has X as a ninimum (X = 0):
(N) (AQLg) = (32) (.b) = 12,8

Referring to Table I:

1) = 260 = 20,3 ' 1y = 470

1-22-:3' 3 JE._LE- 36.72
12. 2 ls = 540

13%3 = 25,78 et~ PRCRY
13 = 400, arbitrﬁrily stop
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12 = 25,78 1s nearest to a whole number, 25(26), therefore L = 26 lots

will be accumulated, If 26 lo@g of sample size 32 are accumulated, the
adjusted sample size N' is: _ ‘
N' = (L) (N) = (26) (32) = 832
In summary - the original plan is:
(AQLg = b0} 32; (0 =~ 1))
But Z, of 330 (see Table I) corresponds to & 6 - 7 plan (i.e.; X, = 6,
Xg + 1 = T) so that the revised plan is:
(AQL, = .40 | 832; (€ = 7)) for Parameter A
An appropriate adJustment must be made for Parameter B:
The original plen for Parameter B 1s:
(AQLg = 1,00 | 503 1 - 2)
Since g_:_gg lots will be accumulated, the adjusted sample size N' is:
N' = (L) (N) = (26) (50) = 1300
Since:
(N) (AQLg)
(1300) 8100 = 24
Z4 = 1300
Reference to Table I shows that Zy = 1320 corresponds with a 19 = 20
plan. The revised plan for Parameter B is therefore:
(AQLg = 1.00 §1300; 19 ~ 20)
In actual sampling the following defecis wére counted:
Parameter A - 5 defects |
Parameter B -« 10 defects
The Puuedo AQLg are computed:
For Parameter A:

(832) ( ) ="260 from Table I

(N) (AQL&)P- 24 (X* =5, X' +1 =6 for 5 - 6 plan)
AQLp = ,31%
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For Parameter B:
(N) (AQL,) = 24 (X' = 10, X' + 1 = 11 plan)
(1300) (AQy) = 620 from Table I
AQLP = -)48%

Therefore:

%D = 0’40 - 031) 100 = 22-5’ :

e T ;

%Dy, = (1,00 - ,48) 100 = 52,0%
1,00

The Partial Pey-offs for each Parameter are:

PPOg = (POF,) (%Dqa)
= (.06) (22.5%)
= 1,356
PPOL = (POFy,) (#Dy)
% = (,0b4) (52%
= 2,08%

Therefore the total pay-off awarded to the contractior after 26
lots were produced and sempled was:

TPO = PPO, + FPOy,
= 1.35% + 2,08%
= 3,43% of unit price

CONCLUSIONS

Although some effort has been expended in investigating the development
of quality incentive payoffs it is believed that this paper makes a significant
contribution in the area. This contribution 1s evidenced by the investigation
and extension of previously formulated concepts and the synthesls of standaxrd
atatistical techniques, In particular, an effort 1s made to make provision
for the following common situations which normelly occur in actual acceptance
sampline plans: |

1. Items having several parameters which contribute to overall effectiveness
in varying degrees. .

2. TItems/parameters with acceptance sampling plans specifying small
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bers {4.2.; C 5) which luberently lack an expanded range of
quality measure (AQLp and %D).

3. Items/parameters specifying sampling plans with an acceptance
number equal to zero.

Provisions for the above situations were established by defining a
procedure for selecting and weighting item parameters relating to effectiveness.
Furthermore, quality incentive pay-off decisions for sampling plans requiring
small acceptance numbers were incorporated into the model by cumulating the
results of several product lots.

The procedures presented in this paper are not considered to contribute
a sophiaticated approach to formulating quality incentive plans. Intuitively,
the basic philosophical framework is believed to be workable, however the
overall model should certainly lend itself to further refinement and simplica-
tion. 8Some restrictive features of the model which would be adaptable to
future wofk are:

(1) Restricted to single sampling by attributes.

(2) Limited to simple functioning items.

(3) Considerable subjective judgment involved in selection and
welghting of parameters,

(4) Loss of incentive impact due to complexity of special procedures
for cases in which C < 5.

(5) Undesirable time factor due to lot accumulation when acceptance
number 1s very small.

(6) Rounding error in Z values.
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APPENDTY

Property:
:E:POFI = MPO (in terms of percentage)
Demonstration:
Wt=W1+W2+...+w1+...+wn-_2w1
Therefore:

wl+w2+uo+W1+--.+WNIl
Ve W W W

It has been established:

POFy = MPO (W1) "(in terms of percentage)

L
?POFJ_ -ﬁ:upo (W)
- W

Expanding the summation:

POF = MPO [(WJ_ + W2 + ane wl *ooen + wn)]

" (Ve Wy W W)

<
or ‘ZFOF = MPO

Property:
If the percent difference between the specification AQL and the

pseudo AQL 1s 100 percent, then:

TPO » MPO (in percent)
Demonstration:
TP0 (%) = Hrpo
= Z(POF1) (% aifference)
= J(PoF1) (100%)
where POFy is o fraction, therefore;

TPO (%) = > (POFy) (in p;rcent)
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But it has been shown in 1 that:
(POFl) = MPO
Therefore:

TPO (%) = MPO (%)
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UFLLMUM SAMPLING PLANS FOR GRADING BINOMIAL POPULATIONS

Paul B. Nickens
U, S. Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

INTRODUCTION AND BACKGROUND., In the surveillance evaluation of
amnunition an important task 1s that of grading lots on the basis of
attribute characteristics of a sample drawn from larger populations. At
the present tima, lots are placed into one of three grades based on the
performance of a random sample of n items chosen from the lot. It is of
obvious importance that the probability of misgrading a lot based on this
sample be made & minimum, The basis for the current grading procedure 1s a
BRL report written by Mr. A. Golub entitled "The Determination of Acceptance
Numbers for Placing a Lot from which a Single Sample is Drawn into One of
Three Grades'" published in 1951. In this report, Mr. Golub maximizes the
probability of correct grading by differentiating expressions of tha following
type 120 (2) p1 q“'i, satting the resulting values equal to zero and solving
for the ¢ values (acceptance numbers),

Mr. Golub's report serves as a basis for the following paper in which
a different method of maximizing the probability of correct grading is

devaloped., A generalized solution is given and tables are developed for
lot classification inte 2, 3, or 4 grades, ‘

THEORETICAL DISCUSSION. In determining the original acceptability of
large quantities of manufactured products or in checking the reliability of
iteme which have been in storage for some time, groups of the product are
submitted for inapection (teating) in divisions called lots. These lots
can often be characterized by a certain property, or set of properties of
the individual members of the lot. For example, a population of artillery
projectilas can be divided into those which are defective and thoss which
are not, a group of washer fittings can be divided into thoss which fit a
five~inch setting and those which do not. We let x be a random variable
which assumss the value 0 if an individual in the lot has none of the
characterising properties and 1 if the individual possesses one or more of

This article was reproduced photographically from the manuscript submitted by
the author.
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I£ ¥& wuw lei p=F(x=i), then the Lot 18 defined to be a
lot with fraction defective p and an individual which exhibits one or more
of the characterizing properties 1s called a defective item,

In dealing with large lots, it is frequently too expensive or time

consuming to examine or test each item in the lot. (In fact, where the

procedure calls for the destruction of the item, it is impossible to inspect

every item.) Thus, some type of sampling inspection plan must be devised.

One of the more common types of sampling plans is the so~called single-
sampling plan where the consumer selects a random semple of size n from
tha lot and if the numbar of defective items in the sample is less than
or equal to a given number ¢, the lot is accepted and if c + 1 or more
defectives is found in the sample, the lot is rejected.

This concapt can be readily extended to situations involving classification
of a lot into more than two classes, say, thres, four, or any number up to k
classues or grades. Lat us assume that for each of tha k grades, an interval
has been determined such that, if the lot fraction dafactive is in this
interval, the lot belongs to that gradu., These intervals or levels can be
determined by a reviaw of the specifications for tha item or by conaidering

the requiremen-s established by the user or consumer for the reliability of
the item.

Now, lat us suppose for convenience, that our atockpile consists of
sexactly 100 lots which have the corresponding fraction defectives;

yo - 0, yl - 001; yz - .o‘. X ygs - 098; ygg w ,99, One of these lots 18

salected at random and submitted to our sampling plan. We let p be the lot
fraction defective for this lot.

We now want to place thias lot into one of k gradss in accordance with
the following: if the lot fraction defective is less than Py (0 sp s pl).
the lot is of Grade A quality; if the lot fraction defective ils betwesen
Py and Py (p1 <p s pz). the lot is of Grade B quality; if the lot fraction
defective is between p2 and p3 (p2 <p s p3). the lot is of Grade C quality
snd 80 on, out to the final grade, that is, if the lot fraction defective is»
more than Py (pk_1 <p 5 1), the lot is of Grade K quality.
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OQur plan now calls for selecting a random sample of . items from the '

lor, inspesting

asting {iesting) each item in the vample and determining the number
of items (r) which are defective. The lot will then be placed into one of
ihe k grades using the following rule:

If0sr =< ¢ Place the lot in Grade A
If c1 +1<rc¢g ¢, Place the lot in Grade B
If ¢y +l<rs cq Place the lot in Grade C
Ife y+lsrsn Place the lot in Grade K

Under this set of conditions, we can use the formula of total
probability® to calculate the probability of placing a given lot into its
proper grade, or in other words, we are determining the probability of
correctly calling a Grade t lot its actual grade, Grade t, This gives

P = P {of placing the lot in the correct gradel =
P{p-O}P{OerCllp-O}+P(p-.01}P{05r5c1|p-.01}+
o #Plpmp }POs TS Q) lp= Pyl +Plp=p, + 0L} Ple; + 151 c21
p=pyt 01} + ey +Pip = pz) P{c1 tlsrse, lp = pz} +Pp= py *+ .01}
Pley+1srsc,|pepy+ 011+ ... #+Plp=pb Ploy +1srsc,|pmpyd+
eos *P{pmp,_, + .01} Ple, ;*+1srsnm |p= Py * D1} + .00 + Pip = .99}
Ple, ,+lsrsn |p = .99} (1)

Bacause the lot which was submitted to the plan was selected at random
from the 100 lots available in the stockpile, we know that

P{p» 0} = P{p= .01}~ ... =P{p~ .99} = T%E @

The probability expressed in the gecond bracket of each product can be
written as the sum of & binomial probability function of the form

g ® @F @-p™F (3)

% B. V. Gnedenko, "The Theory of Probability", page 64.
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Using expressions (2) and (3), we can rewrite (1) in the following form.

€ © n

In order to maximize the probability of putting a lot into the correct
category, we must maximize (4) with respect to s Cp» Cqs evs €y However,
cbviously, we do not want to limit ourselves to the case whare N (number of
lots in the stockpile) = 100, but rather want to generalize our approach so
that N can go to infinity and thus consider the case where p can assume any
value on the closed interval [0,1] with equal probability.

Firat, we must look briefly at the definition of a definite integral.
Consider a function #(p) which is continuous on the interval {a,b]l, (a < b),
axcept at one or more pointe of the form p = a + t/N, where t = 1,2, ... N(b-n)
and is everywhere non-negative on this intexrval. The graph of this function
(using three grades as an example) can be represented by the following sketch.

66

n
Pagis £ () @F O"T4gls I (@ CODF (VT4
=0 r=0
[~ c
1l n 2 n
1 r n-r 1 r n-r
== I (r) (p,)" Q-p) + === L (r) (p,+.01)" (l~p,~.01) + e +
00 1 i 100 rmc 41 1 1
c c
2 n 3 n
1 r n~-r 1 r n-r
Jas L (r) (p,)" (1-p,) + == I (r) (p,+.01)" (1-p,-.01) + 0+
100 r-c1+1 2 2 100 r-c2+1 2 2
c
3 n n n
4 £ (r) (p.)~ -t X r
P} (1=pa) LR R I (r) (p,_,+.01)" (1~p, .-.01) +
100 _—t 3 3 100 = +1 k-1 k~1
2 k-1
n n
et T L (r) (.99F (.o1™T ()
r-ck_1+1

o 2 e e i S

e e




© et A

A P e T T e e e S T i S T e A

e o g ot o S i

L}

11" :

£ (p)

ﬁ{?l) | f(e
fle .
\w f(en-z)
1 ! i
I I Ax Ax!
! . -1 " Th .
oy | o BT ™ g % o), L
| I i |
! ' i
t ! | [} l
€ & 7T en-2 ®n-1 enb
a P
Pg Py Py Phe3 Ppe2 Pp-1 P

We now divide [a,b] into N equal intervals, with the length of each

interval = Axi. In each segment choose points €y €y +o0 € and consider the
sum f(el) Axl + f(ez) Ax2 S f(en) Axn (5)

n
which is equal to L f(ei) Axt

i=1

Since all the intervals are equal, (5) can be written as

n b=g 0 .
izl f(ei) Axi ” 151 f(ei) and by definition (6)
lim n lim bea O

n+e b f(ei) bx, = ne = I f(ei) = £(p) dp

Axi+o i=] Axi»o im]

This is exactly the form of (4), the sum of which we are seeking to

maximize with respect to €19 Cgs Cqp vee Cym1? if we let n+e, Thus, if
we maximize

c
pl cl n r n-r p2 2 n r _
s = ,/’ I () p (1-p)" dp + ’//’ I (r) p*(1-p)™ Tdp +
0 r=0 Py r=c,+l
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3 ZJ (n r,. _.n-r 2 S \n-T
r) p (i-p) dp + ... + ’//’ I (r) pr -p)" “dp
Py r-c2+l Pl t-ck<1+l

with respect to €19 Cgs Cqs ree O gy We have maximized the probability of
placing a lot in the correct grade given that it was selected at random from
a population of lots whose fraction defective has a uniform distribution on
the unit interval. Thus, the use which we have made of integration is
equivalent to placing a uniform prior distrubtion on p, the true lot fraction
defective.

Our problem now becomes one of choosing those values of Cqs Cgp ves G g
which maximize (7) for given values of Pys Pps» Py *ee Ppq and n.

As an example for the case k=3 (3 grades) we can illustrate graphically
by "operating-charscteristic" curves the area which we wish to be a maximum,

1.0 Probability of assigning

Grade A
1T
AT
Probability of
Probability ;eu;gnéng
of assigning Prob. of 1 rade
correct grade Gra

The area we wish
i to maximize is
-t ) indicated by the
- ghaded area

percent defective

We now express s in (7) us

c c c

P P P
1 1 n _ 2 2 n - 1 2
o=/ W aele+s /S 1 @ anle- /S

0 i=0 0 1-c1+1 0 i-oi+1
a . P3 3 o i P23 on .
@t ) lapr S Wi/ 0 o
0 jme, +1 0 jme, +1
2 2
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n n . . p!:-l - n i
X @t ™l - Sk @ b a-p™tap
0 i-qk_1+l 0 1-ck_1+1
Py on n 01

Let Q = / @t ™ = @ S ot @™ le
0

Integrate by parts: u = p1 dv = (l-p)n_id
~i+]
1-1 T e e
du=1p" “dp v (n-1+1)
n-i+1 4Pl Py 1-1 n~i+1
n- i+1 0 3 n-i+l

1
1 ~-i+ i :I.+1
(1) == plJl (1~pl)rl . o/ —yy) pt™ (1-p)* Hap)

P
n . 1
=1 _ 1ogly -t i 1-1 qoyn-itl
=) =T P G-py) + o/ P (1-p) dp}

n-i+1
Integrate by parts: 1 = p:"“l dv = (l-p)“-H
~1+2
=24 -p)"°
we e o
Now Q = (1) 1 epi* 4 Lo =l 3 g™ ‘*zlpl
ow Q n-1+1 py Upy A=1+1 n~1+2 P (e
i /1 1-1 2 (Qepy® 2405
nA+l J ni+2 P Gip dp
which aquals, after simplification
n+l n+l
I i o AR=i¥l 1 - 1-1 ¢y, yn-it2
Qe a+l (1) pl (1 Pl) iy (1-1) pl 1 Pl) +
+1
-1 O n-1+2
1 40 / p (1 F)
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which can be written as

i n+l n+l
- - 1 3j ntl-j , i-1 1-2 i+2
Q i+l jEi-l ( 1 Pl (‘l-p ) * ol n+l (1-1) / ? ’1 p)n

Again integrate

i-2 n- 1+2

by parts: u=p dv = (1-p) dp
n-1i+3
du= (1-2) p'"p v m - 2P
i n+l n+1 B
R 3 n+1-j - i 1 1 i-2 . n-i+3
J=i=1
n+l
1n+3—:l
iody (-1 0/ =2 173 (1p)
which equals, after some simplification
i n+l n+l .
A ] nkl=§ _ 1 . i=2 . \od3=1
Q= - n+l in_ ( J ) Pl (1~ P ) n+l (1-2) Pl (1 Pl) +
n+l
i-3 n+3-1
2 -2 / o7 a-p™he
and, combining terms
.- =i b PRI (00 Ok | 1-2 i-3 n+3= 1
R SR U= (12)/p (1-p)

Continuing to evaluate the integral by integrating by parts, we

come to this term

i n+l P1
Qe == 1 (§) plj (1-p, yrH=d +;:1' (ntl) 0/ ° (-p)p

n«l'lJl
ol Pl
. 1 ntl 4 n+l- ntl +1 _0 1 nil
';ﬁJEIU)Pz (-p)™ - e 0y ™ 0 S5 (T
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I R+l nt+l-] 1

3=0

1 i o1 -
o e B p amep™i

« 1 0tl nHl 3 n+l-j
e L EC3) w7 ™

Thus, finally we have

Pl .
1 ntl n}- n+l-j

nood n-i
0/ Mot a-p™le = oy

i
) py? (1-p))
and we have conveniently gone from the integral of a binomial to the sum
of another binomial expansion.

Now, making use of this exprassion in the original "s" equation,

we have T

P
e n i n-i, .1 0§ ™l o n+l-3
S B anTe - B T ot ) (ep

1 - n+l  pe) -
S Dot am™e s p 5 G @ @

All terms in the summation vanish (= 0) except for the last term when
1 n+l 0. 1
J = n+l, where we have oo g (1) (0) =FT

/l S n=1 ol
and § 5o WP (A-p)" Tdp = o

&)

b n ¢ n=i 1 b n+l  pel
ot ot ap™ipe < 2" O 3 epy™
0  iwa B ea getdl 2 TR
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And .ueing these expressions in our original expression (8), we
have '

] ca :

1 ntl g4 - 2 ntl  p4l

se 0t Mpdaey™e A 2 T e
im0 j=mi+l 1-c1ﬂ1 j-i+1»

' c
ntl-) , L g0

c
n+l-y 2 o+l n4l 1
ntl 1-c2+1

. 3 -
(I-Pz) a+l 1-2 . j-f-.-l (3 ) Pl (1 Pl)
1

¢ +
R I U G DB TR CE Y

n+l imc L gmidl

n+l-j PR

ntl

n+l J
(1) p,y (1-py)
Jui+l

+1 +1-
9:—9-“:-!- - —L % l\z (njl) Pk-lj (1-Pk-1)n '1
nt+l Ml jag gt geitl

I nel el +1- €2 ntl o+l 4
o 4k i p)t ™ T by (e,
1

1
ne nﬂl

- €2 otl o4l +1- 3 nfl
(1-p™id - 1ot app™ie 1 T

fmc 4l Jeitl fme 4l =idl

- 3 ntl el -
it Py (1-p3)“+1 J. g (g, -p™ 4
fmcy bl gmitl

2 e e e g e et AT

- -l -I

n+l-j ]
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¢1+l n+l c,+1 n+l
n+l 3 aHl-j 2 ’ ntl 4
s= = I r (3) py (-py) + 'z I (3)p
AT 1= R 1 1 1ec ¥2 f=i ?
€, +1 n+l Cytl nt+l
- 2 n+l - 3 n+l
™ 3 e e aep™ e T T (T
:l.-¢:1+2 =1 i-c2+2 J=i
¢+l n+l
- n+l -
(l-ps)n."l j - e z ( j ) sz (l"pz)n+1 J o+ ne + n"ck_l
i-c2+2 =1
n+l ntl  n+l -
1~ek_1+2 =i
which can be written as
s~ 1/ovl [ T p(x 21 ntl, pl) + I p(x 21; n+l, pz) - I
im} 1-c1+2 i-c1+2
e+l c3+1
P(x 24 n+l, p)+ I  plx2i;nt, Py) - I p(x21;oH, p,) +
1-c2+2 1-c2+2
+ “?1 (x > 1; n+l )]
s n- - - p(x - s 0 ] p -
k-1 mc,_#2 g k=1

vhare p(x 2 1} n+l, pt) is defined to be the probsbility that the random variable x
is greacer than or equal i if it has the binomial distribution with parameters
n+l and P

We now make use of any convenlent table of cumulstive binomial probabilities
for several different values of n. Thus, for a fixed sample size and given quality
lavels, Pys Pge Pgr +oo Pp_y We can, by use of a high~spead electronic computer,
compute values of s for every €10 Cgp e &y combination and choose that
combination which gives the maximum value of s. |
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GENERAL APPLICi IONS AND EXAMPLES,

For the Case K = 2
The classification of a lot inte two grades is, for most situations,

esquivalent to either accepting or rejecting the lot. For example, a

quality control analyst might be willing to mccept as satisfactory a 10%
defect rate for flash bulbs. Thus, if he took a sample of 20 bulbs from
one hour's production, the appropriate tablu indicates he would allow one

defactive sample before rejucting that hour's output, >

or_th K =
Here, the purpose might be to place a given lot of artillery fuzes
which have been in storage for some time into ona of three grades, Grade

; E A, indicating thome lots acceptable for unrestricted use} Grade B, those 1
: lots generally acceptable with certain restrictions; and Grndn C, those
lots wnacceptable for future use.
‘ Given a sample size of 45 and prescribed quality lavals of 15% and 30%,
the appropriate table indicates we would allow 6 defects for a Grade A lot and
- up to 13 defects for a Crade B lot.
N Zor the Case K = & ..
' An example here might be tha case whers an slactronics dealer would be
willing to pay x dollars for a lot of batteries which are of Grade A quality,
y dollars (y < x) for a lot of Grade B quality, z dollars (x <y < x) for a
lot of Grade C quality and reject as unacceptabls, lots of Grade D quality.

If for a sample of sixe 200, the respactive quality levels ars 12
(Grade A), 10% (Grade B), and 25X (Grade C), the appropriats table calla for %
acceptance numbeys 2, 20, and 50.

FURTHER RECOMMENDATIONS, The use of the uniform prior distribution is

a fairly conservative approach but would sesm to have realistic applications :
for newly manufacturad items or items for which little is known of the !

functioning characteristics.




—

i m e

& g T

It would be interesting to consider some other prior distributioms.
A simple cne, which seems both reasonable and easy to handle mathematically
would be to assume p is uniformly distributed on the intervel [0, 0.50}, i.e.,
assume that no lot is more than 502 defective and guard against misgrading
any lot with fraction defective between 0 and 50X with equal protection.
Another interesting distribution to considex would be

£ (p) = 2 (1-p) 0spsl
=0 otharvise

This distribution sssumes lots with p almost zaro are most likely in
the atockpile, lots with p almost equal one are quite rare and tha
probability that & < p < b increases linearly as a and b ‘ncrease.
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APPENDIX

TABLES'OF ACCEPTANCE NUMBERS
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[

SAMPLE SIZE

T 10 15 20 25 30 35 o) L5 50
.01 0 0 0 0 0 0 0 Q 0
.02 0 0 0 o Nl 0 0 0 o
.03 0 0 aQ ) 0- 0 0 0 0
.ok ) 0 0 0 0 a 0 1 1
.05 0 ) 0 0 0 1 1 1 1
.06 0 0 0 4 1 1 1 2 2
.07 0 0 0 1 1 b 2 2 2
.08 ol 0 1 1 1 2 2 3 3
.09 0 0 11 2 2 3 3 3
.10 o} 0 1 1 2 2 3 3 4
W11 0 1 1 2 2 3 3 L L
A2 0 1 1 2 3 3 N 4 5
.13 0 1 2 2 3 4 N 5 6
W1k 0 1 2 3 3 L 5 5 6
.15 1 1 2 3 L 4 5 6 7
.16 1 1 2 3 4 5. 5 6 T
W17 1 2 2 3 4 5 6 T 8
.18 1 -2 3 L i 5 6 7 8
.19 12 3 4 5 6 T 8 9
.20 1 2 3 4 5 6 T 8 *g
21 1 2 3 4 - 5 6 8 9 10
.22 1 2 4 5 6 T 8 9 10
.23 1 3 L 5 3 7 8 9 11
- 2 3 in 5 6 8 9 10 11
25 2 3 i 5 7 8 9 10 - 12
.26 2 3 N é T 8 10 1 12
.27 2 3 5 6 T 9 10 11 13
.2 2 3 5 6 8 9 10 12 13
.29 2 h 5 6 8 9 11 12 14
.30 2 I 5 7 8 10 11 13 1k
31 2 I 5 7 9 . 10 12 13 15
.32 2 N 6 7 9 10 12 1k 15
.33 3 N 6 8 9 11 12 1h 16
o34 3 L 6 ) 9 11 13 15 16
. 35 3 5 6 8 10 12 13 15 17
.36 3 5 7 8 10 12 1k 16 17
.37 3 5 T 9 10 12 14 16 18
.38 3 5 T 9 11 13 AN 16 18
.39 3 5 7 9 11 13 15 17 19
LU0 - 3 5 7 9 11 13 15 17 19
L4l 3 6 8 10 12 1k 16 18 20
L2 L 6 8 10 12 14 16 18 20
.43 4 [ 8 10 12 14 17 19 21
Bl 4 6 8 10 13 15 17 19 21
R L K 8 11 13 15 17 20 22
k6 N 6 9 11 13 16 18 20 22
A7 b 7 9. 11 14 16 18 21 23
48 in 7 9 11 1k 16 19 21 23
49 in 1 9 12 1k 17 19 22 24
.50 b 7 9 12 14 17 19 22 24
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.30 11,12 11,12 11,l2 12,13 12,13 12,13

.31 11,12 11,12 12,13 12,13 12,13 12,13 12,13
.32 11,13 11,13 12,13 12,13 12,13 12,13 13,1k
.33 10,14 11,14 12,13 12.13 .12,13 13,14 13,14
.34 10,14 11,24 12,1k 12,14 13,04 13,14 13,14
.35 10,15 11,15 11,15 12, "1k 13,14 13,14 13,1k
.36 10,15 11,15 11,15 12.15 12,15 13,15 1b,15
.37 10,16 11,16 11,16 12,16 12,15 13,15 14,15
.38 10,16 11,16 11,16 12,16 12,16 13,16 13,16
.39 10,17 11.17 11,17 12,17 12.17 13,17 13,16
ko 10,17 10,17 11,17 11,17 12,17 13,17 13,17
a1 10,28 10,18 11,18 11,18 12,18 12,18 13,18
k2 10,18 10,18 11,18 11,18 12,18 12.18 13,18
43 10,19 10,19 11,19 11,19 12,19 12,19 13,19
Lk 10,19 10.19 11,19 11,19 12,19 12,19 13,19
b5 10,20 10,2¢ 11,20 11,20 12,20 12,20 13,20
6 10,20 10,20 11,20 11,20 12,20 12,20 13,20
AT 10,21 10,21 11,21 11,21 12,21 12,21 13,21
.48 10,21 10,21 11,21 11,21 12,21 12,21 13,21
b9 10,22 10,22 11,22 11,22 12,22 12,22 13,22
.50 10, 22 10 22 11,22 11,22 12,22 12,22 13,22
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THREE GRADES N=50

Pl
A7 .18 .19 .20 .21 .22 23

-3 ~3
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-
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N~ ~3 33
v w wlelata
3 b e e e

PPN
= O OO \D -7 O

. e w e
7S OO N
W=

i e . o gu g
L d
o
w

7,8

8,9 8,9

8,7 8,9 8,9

8,9 8,9 9,10. 9,10

8,9 9,10 9,10 9,10 9,10

8,10 9,10 9,10 9,10 10,11 10,11

8,11 9,10 9,10 10,11 10,11 10,11 10,11
8,11 9,11 9,11 10,11 10,113 10,11 1,12
8,12 8,12 9,12 10,12 10,11 11,12 11,12
8,13 8,12 9,12 10,12 11,12 | 11,12 11,12
8,13 8,13 9,13 10,23 10,13 11,12 11,12
8,14 8,14 9,1k 9,13 10,13 11,13 12,13
8,14 8,14 9,14 9,14 10,14 11,1)4 11,14
8,15 8,15 9,15 9,15 10,15 10,1l 11,14
8,15 8,15 9,15 9,15 10,15 10,15 11,15
8,16 8,16 9,16 9,16 10,16 10,16 11,16
8,16 8,16 9,16 9,16 10,16 10,16 11,16
8,17 8,17 9,17 9,17 10,17 10,17 11,17
8,17 8,17 9,17 9,17 10,17 10,17 11,17
8,18 8,18 9,18 9,18 10,18 10,18 11,18
8,18 8,18 9,18 9,18 10,18 10,18 11,18
8,19 8,19 9,19 9,19 10,19 10,19 11,19
8,19 8,19 9,19 9,19 10,19 10,19 11,19
8,20 8,20 9,20 9,20 10,20 10,20 11,20
8,20 2,20 9,20 9,20 10,20 10,20 11,20
8,21 8,21 9,21 9,21 10,21 10,21 11,21
8,21 8,21 9,21 9,21 10,21 10,21 11,21
8,22 8,22 9,22 9,22 10,22 10,22 11,22
8,22 8,22 9,22 9,22 10,22 10,22 11,22
8,23 8,23 9,23 g.a3 10,23 10,23 11,23
8,23 8,23 9,23 9,23 16,23 10,23 11,23
8,24 8,24 9,2k 9,24 10,24 10,24 11,24
8,24 8,24 9,24 9,24 10,24 10,24 11,24
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0

T ol

L A .

——L L ITRARIN LT

FMOPIMINIR A & Saemom  an =
JAanEn IAAMED n=3zyv

P1

P2 .2h 225 .26 .27 .28 .29 .30
.02

.03

.0l

.05

'06

IOT

-08

u09

.10

.11

.12

.13

tlh

.15

.16

AT

018

.19

.20

21

.22

.23

-2“

.25 11,12

.26 11,12 11,12

27 11,12 12,13 12,13

.28 12,13 12,13 12,13 12,13

.29 12,13 12,23 12,13 13,1k 13,1k

.30 12,13 12,13 13,14 13,1k 13,14 13,1k

.31 12,14 13,14 13,14 13,14 13,1k 1h,15 1h,15
) 12,15 12,14 13,14 13,14 1h,15 1h,15 14,15
.33 12,15 12,15 13,15 1h,15. 1hk,15 1k,15 15,16
.3k 11,16 12,16 13,16 14,15 14,15 1h,15 15,16
.35 11,17 12,17 13,16 13,16 14,16 15,16 15,16
.36 11,17 12,17 12,17 13,17 14,17 15,16 15,16
.37 11,18 12,18 12,18 13,18 14,17 1b,27 15,17
.38 11,18 12,18 12,18 13,18 14,18 1h,18 15,18
.39 11,19 12,1 12,19 13,19 13,19 1k,19 15,18
) 11,19 12,19 12,19 13,19 13,19 14,19 15,19
A1 11,260 12,20 12,20 13,20 33,20 14,20 14,20
L2 11,20 12,20 12,20 13,20 13,20 14,20 1k,20
A3 11,21 12,21 12,21 13,21 13,21 1k,21 14,21
Al 11,21 12,21 12,21 13,21 13,21 1ik,21 14,21
5 11,22 12,22 12,22 13,22 13,22 1h,22 1h,22
L6 11,22 12,22 12,22 13,22 13,22 1k,22 1L,22
A7 11,23 12,23 12,23 13,23 13,23 1h,23 1h,23
48 11,23 12,23 12,23 13,23 13,23 1h,23 1k,23
g 1,24 12,24 12,24 13,24 13,24k 1b,2h  1h,2l
.50 11,24 12,24 12,24 13,24 13,24 ah,2h  1b,2k
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FOUR GRADES N=50

: ACCEPT. | . ACCEPT, ACCEPT,
P Pl P2 P3 NOS. Pl P2 P3 " NOS. Pl P2 P3 pmog.
3 +01.05 .10 0,2,51005 .10 .15 2,4,6] .10 .20 .25 B,10.11
{ ' .15 g,1,7 .20 2,k4,9 .30 L,9,2k
{ .20 0,1,9 .25  2,L,12 <35 L,9,17
' .25  0,1,12 .30 2,414 b0 k,9,19
§ .30  0,1,14 .35 2,4,17 U5 4,922
: .35  0,1,17 b0 2,4,19 .50 L4,9,2)
§ .Llo 0,1,19 ’hs 231‘:22
; A5 0,1,02 .50 2,424 .25 .30 4,12,13
{ .50  0,1,2L .35 4,12,17
. .15 .20 1,7,.8 40 L,12,19
.10 ,15 0,5,6 .25 1,7,12 A5 4,12,22
.20 0,4,9 .30 1,7,14 .50 4,12,24 -
: .25  0,4,12 $35  1,7,17
30 0,4 1k ). 40 1,7,19 .30 .35 14,15,16
.35 0,4,I7 A5 1,717,022 L0 k4,15,29
.4 .1&0 0.&,19 050 1.732)4 .hs h,lh‘a&"
i ' A5 0,422 50 L,1k4 24
: 50  0,k,24 20 .25 1,10,11
. 30 1,9,14( .15 .20 .25 7,9,10
: .15 .20 0,7,8 .35 1,9,17 30 7,8,14
; 25 U,7,12 Lo 1,9,19( +35 Ta8’17
: .30-  0,7,14 b5 1,9,22 Lo 7,8,19
I +35 0,7,17 -50 1,9,21# ~L‘5 7;8r22
; _ 40 0,7,19 - .50 7,8,24
! b5 0,7,22 .25 .30 1,12,13 : .
f .50 0,7,24 .35 1,12,17 .25 .30 T,12,13
; A0 1,12,19 :35 T,12,17
; . .20 .25 0,10,11 A5 1,12,00 Lo 712,29
! »30  0,9,14 .50 1,12,24 A5 712,02
; ' »35 0,9,17 ' , 50 T,12,24
i . 4o, 0,9,19 .30 .35 lnlSslé
l 45 0,9,22 L0 1,15,19 30 .35 7,15,16
‘ .50  0,9,24 A5 114,22 Lo 7,15,19
; 50 1,14,2)4 45 T,1k,22
) .25 .30 0,12,13 50 T,1k,24
: .35 0,12,17
.o 0,12,19 : \20 .25 ,30 10,12,13
W45 0,12,221 .10 .15 .20 5,7,8 .35 10,11,17
.50 0,12,24 25 5,6,12 .50 10,1119
.30 5,6,14 45 10,11,22
.30 .35 0,15,16 +35  5,6,17 .50 10,11,24
ko 0,15,19 A0 5,6,19
: 45 0,14,22 45 5,6,22 © .30 .35 9,15,16
; .50 0,1k,24 50 5,6,24 40 9,14,19
i 45 9,1k 22
4 ' 50 9,14,24

}\
'; 101




FOUR GRADES N=60

ACCEPT. ACCEPT. ACCEPT. |
Pl P2 P3 NOS. Pl P2 _P3 NOS. Pl P2 P3 NOS. :
.01 .05 .10 0,2,5.05 .10 .15 2,5,81.10 .20 .25 5,12,13 .
.15  0,2,8 20 2,5,11 .30 5,11,17 l
.20 0,2,11 .25 2,5,1k .35 5,11,20 :
.25 0,2,14 .30 2,5,17 b0 5,11,23
.30 0,2,17 .35 2,5,20 45 5,11,26 ,
.35 0,2,20 L0 2,5,23 .50 5,11,29 ;
40  0,2,23 A5 2,5,26 g
.45 0,2,26 .50 2,5,29 .25 .30 5,15,16 ;
.50 0,2,29 .35 5,14,20
15,20 2,9,10 Lo 5,14,23
.10 .15 0,5,8 .25 2,8,1h L5 5,1L4,26
.20  0,5,11 .30 2,8,17 .50 5,1L,2
.25 0,5,1k4 .35 2,8,20
.30 0,5,17 A0 2,8,23 .30 .35 5,18,19
.35 0,5,20 L5 2,8,26 k0 5,18,23
.40 0,5,23 50 2,8,29 .45 5,17,26 !
. A5 0,5,26 50 5,17,29 I
.50 0,5,29 .20 .25 2,12,13
.30 2,11,17].15 .20 .25 9,11,13 |
.15 .20 0,9,10 .35 2,11,20 - .30 9,10,17 i
.25 0,8,14 40 2,11,23 .35  9,10,20 |
.30 0,8,17 A5 2,11,26 40 9,10,23 ;
.35 0,8,20 .50 2,11,29 45 9,10,26
4o 0,8,23 .50  9,10,29 !
45 0,8,26 .25 .30 2,15,16 !
.50 0,8,29 .35 2,14,20 .25 .3 8,15,16 i
L0 2,14,23 .35  8,14,20 -
.20 .25 0,12,13 45 2,14,26 Lo 8,1h,23 f
.30 0,11,17 .50 2,1k4,29 A5 8,1k4,26 |
.35 0,11,20 .50 8,1h,29
.40 0,11,23 .30 .35 2,18,19
45 0,11,26 b0 2,18,23 .30 .35 8,18,19
.50 0,11,29 L5 2,17,26 o 8,17,23
.50 2,17,29 .45 B,17,26
.25 .30 0,15,16 .50  8,17,29
.35 0,14,20
L0 0,1k4,23 20 .25 .30 12,1h4,16
.45 0,14,26f .20 .15 .20 5,8,10 .35 12,13,20
.50 0,14,29 .25 5,8,1k 4o 12,13,23
.30 5,8,17 W45 12,13,26
.30 .35 0,18,19 .35 5,8,20 .50 12,13,29
.40 0,18,23 40 5,8,23
45 0,17,26 45 5,8,26 .30 .35 11,18,19
.50 0,17,29 .50 5,8,29 o 11,17,23
' b5 11,17,26
.50 11,17,29




FOUR GRALES N=7T0

ACCEPT. ACCEPT. ACCEPT. :
_PL P2 P3 NOS. P1 P2 P3 NOS. PL P2 P3  NOS. /
.01 .05 .10 0,3,6 .05 .10 .15 3,6,9] .10 .20 .25 6,1h4,16 -
.15 0,2,10 .20 3,6,13 .30 6,13,20 i
.20 0,2,13 .25  3,6,17 : .3 6,13,24 3
.25 0,2,17 .30 3,6,20 4o 6,13,27 i
»30  0,2,20 35 3,6,2k4 45 6,13,31
.35 0,2,24 L0 3,6,27 .50 6,13,3L4
40 0,2,27 U5 3,6,31
.45 0,2,31 .50  3,6,34 .25 .30 6,18,19
.50  0,2,34 .35 6,17,2k4
W15 .20 2,10,12 Lo 6,17,27
10 .15 0,6,9 .25 2,10,17 A5 6,17,31
.20  0,6,17 .35 2,10,2L
.30 0,6,20 .bo 2,10,27 .30 .35 6,22,23
.35 0,6,24 45 2,10,31 40 6,20,27
Lo 0,6,27 .50 2,10,34 u45  6,20,31
45 0,6,31 .50 6,20,34
.50 0,6,3k .20 .25 2,1k4,16
-30 2,13,20 015 .20 -25 10 ’13.16
.15 .20 0,10,12 .35 2,13,24 .30 10,12,20
.25 0,10,17 W40 2,13,27 .35 10,12,2L
.30 0,10,20 A5 2,13,31 40 10,12,27
.35 0,10,2L 50 2,13,34 45 10,12,31
L0 0,10,27 .50 10,12,34
.45 0,10,31 .25 .30 2,18,19 )
.50 0,10,34 .35 2,17,2k4 .25 .30 10,18,19
Lo 2,17,27 .35 10,1T7,24
.20 .25 0,14,16 45 2,17,31 40 10,17,27
.30 0,13,20 .50 2,17,3k4 45 10,17,31
.35 0,13,2h .50 10,17,34
40 0,13,27 «30 .35 2,22,23
45 0,13,31 U0 2,20,27 .30 .35 10,22,23
-~ .50 0,13,34 45 2,20,31 L0 10,20,27
' .50 2,20,34 45 10,20,31
.25 .30 0,18,19 50 10,20,3k4
'35 0)17-2)'. *
ko 0,17,27 ' .20 .25 .30 1k,17,19
45 o0,17,31 .10 .15 .20 6,10,12 .35 1L,16,24
.50 0,17,3k4 25 6,9,17 Ao 14,16,27
.30 6,9,20 A5 14,16,31
.30 .35 0,22,23 .35 6,9,24 .50 1h4,16,34
4o 0,20,27 L0 6,9,27
W45 0,20,31 45 6,9,31 .30 .35 13,21,22
.50 0,20,34 .50  6,9,34 40 13,20,27
45 13,20,31
.50 13,20,3k
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FOUR GRADES N=80

ACCEET. |

106

ACCEPT ACCETT
_P1__P2__P3_NOS. PL P2 P3 NOS. P1 P2 P3 NOS.
.01 .05 .10 o0,3,7].05 .10 .15 3,7,11[.10 .20 .25 T,16,18

.15 0,3,11 .20 3,7,15 .30 17,15,23
.20 0,3,15 25 3,7,19 .35 T1,15,27
.25 0,3,19 .30 3,7,23 b0 7,15,31
.36 0,3,23 «35  3,7T,27 A5 7,15,35
-35 0|3|27 ‘ho 3’7.31 '50 7l15I39
L0 0,3,31 b5 3,7,35
‘hs 0’3,35 050 3’7'39 025 030 7’20,2
.50 0,3,39 35 T7,19,2
.15 .20 3,12,14 ko 7,19,3
.10 .15 0,7,11 .25 3,13,19 A5 7,19,3
.20 0,7,15 .30 " 3,11,23 .50 T,19,3
.25  0,7,19 .35 3,11,27
.30  0,7,23 b0 3,11,31 .30 .35 7,24,2
.35 0,7,27 U5 3,11,35 40 T7,23,3
40 0,7,31 .50 3,11,39 A5 T7,23,3
45 0,7,35 .50  1T1,23,39
.50 0,7,39 .20 .25 3,16,18
.30 3,15,23|.15 .20 .25 12,15,18
A5 .20 0,12,1k .35 3,15,27 .30 12,14,23
.25 0,11,19 Ao 3,15,31 .35 12,1k,27
.30 0,11,23 .45 3,15,35 Lo 12,14,31
.35 0,11,27 | .50 3,15,39 45 12,14,35
.40 0,11,31 «50 12,1L4,39
U5 0,11,35 .25 .30 3,20,22 .
.50 0,11,39 <35 3,19,27 .25 .30 11,20,22
.40 3,19,31 .35 11,19,27
.20 .25 0,16,18 45 3,19,35 40 11,19,3
.30 0,15,23 .50 3,19,39 45 11,19,35
«35 0,15,27 ‘ .50 - 11,19,39
.bo 0,15,31 .30 .35 3,24,26
.45 0,15,35 LU0 3,23,31 .30 .35 11,2h4,26
.50 0,15,39 .45 3,23,35 40 11,23,31
.50 3,23,39 A5 11,23,35
.25 .30 0,20,22 .50 11,23,39
«35 0,19,27
.40 0,19,31 .20 .25 .30 16,19,22
.45 0,19,35 [.20 .15 .20 T,12,1k .35 16,18,27
.50 0,1939 .25 T,11,19 L0 16,18,
.30 T7,11,23 .45 16,18,35
.30 .35 0,2k,26 «35  T,11,27 .50 16,18,39
.40 0,23,31 40 T,11,31
""5 0’23'35 -1‘5 7311,35 -30 -35 15'21“26
.50 0,23,39 .50 T,11,39 b0 15,23,31
. .45 15,23,35
«90 15,23,39
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FOUR GRADES N=G0

105

ACCEPT ACCEPT. ACCEPT
PL P2 P3 NOS. Pl P2 P3 NOS. PlL P2 P3 NOS.
.01 .05 .10 o,4,8].05 .10 .15 &,8,12] .10 .20 .25 8,15,21

15 0,3,13 .20  4,8,17 .30 8,17,26
.20 0,3,17 .25  L4,8,22 .35 8,17,31
.25  0,3,22 .30 k4,8,26 .40 8,17,35
'30 0’3'26 335 h,B,Sl -hs 8,17,1‘0
.35 0,3,31 Lo 4,8,35 .50 8,17,4b
.0 0,3,35 k5 L,8,k0
45 0,3,40 .50 L4,8,44 .25 .30 8,23,25
.50 0,3,bk .35 8,222,311
.15 .20 3,13,16 40 8,22,35
.10 .15 0,8,12 .25 3,13,22 U5 8,22,40
.20  0,8,17 .30 3,13,26 .50  8,22,4u
.25 0,8,22 .35 3,13,31
.30 0,8,26 b0 3,13,35 .30 .35 8,27,29
.35 0,8,31 U5 3,13,40 .40 8,26,35
Lo 0,8,35 .50 3,13,hd 45 8,26,k0
45 0,8,40 .50 8,26,4k
.50 0,8,Lk .20 .25 3,18,21
.30 3,17,26| .15 .20 .25 13,17,21
.15 .20 0,13,16 «35 3,17,31 .30 13,17,26
.25 0,13,22 b0 3,17,35 .35 13,16,31
.30 0,13,26 U5 3,17,40 A0 13,16,35
.35 0,13,31 50 3,17,44 .45 . 13,16,k40
4o 0,13,35 .50 13,16,U4
.45 0,13,40 .25 .30 3,23,25
.50 0,13,4k .35 3,22,31 .25 .30 13,23,25
4o 3,22,35 .35 13,22,31
.20 .25 0,18,21 45 3,22,40 .40 13,22,35
.30 0,17,26 .50 3,22,4k 45 13,22,b40
<35 0,17,31 .50 13,22,u44
40 0,17,35 .30 .35 3,27,29
A5 0,17,40 .40 3,26,35 .30 .35 13,27,29
.50 0,17,Lb U5 3,26,40 ko 13,26,35
.50 3,26,4k W45 13,26,L0
.25 .30 0,23,25 .50 13,26,L4
.35 0,22,31
.40 0,22,35 .20 .25 .30 18,23,25
.45 0,22,k0 [.10 .15 .20 8,13,16 .35 18,22,31
.50 0,22,44 .25 8,12,22 L0 18,22,35
.30 8,12,26 U5 18,22,k40
.30 .35 0,27,29 .35 8,12,31 .50 18,22,Lk
.40 0,26,35 o 8,12,35
.45 0,26,k0 45 8,12,40 .30 .35 17,27,29
.50 0,26,uk .50 8,124k .40 27,26,35
.45 17,26,40
.50 17,26,ub




FOUR GRADES k=100

ACCEPT. ACCEPT. ACCEPT, ;
P1 P2 P3  XNOS. P1 P2 P3 NOS. P1 P2 P3 NOS. :
,01 .05 .10 0,4,9].05 .10 .15 “54.9,1k[ .10 .20 .25 9,2u,23 !

.15 0o,L,1b .20 4,9,19 .30 9,19,29
.20 0,4,15 .25  h,9,2k .35 9,19,34 ;
.25  0,h,2h .30 L4,9,29 L0 9,19,39 ¢
'30 Olh!29 -35 ha9a3h -]*5 9919:14)4 l
.35  0,h,34 Lk h,9,39 .50  9,19,49 :
L0 0,4,39 45 U9, 4k
45 0,4, bk .50 L4,9,k49 .25 .30 9,25,28
.50 0,449 .35 9,2h4,34
.15 .20 4,15,19 L0 9,24,39
.10 .15 0,9,1h .25 L,1L,2h 45  9,2h4,kh
.20 0,9,19 .30 L,14,29 50 9,24,49
.25  0,9,2k .35 L,14,3h4
.30 0,9,29 b0 b1k, 39 .30 .35 9,29,33
.35 0,9,34 45 Lyl Nk b0 9,29,39
L0 0,9,39 .50  b,1k,k49 L5 9,29,bk4
.45 0,9,ub .50 9,29,49
.50  0,9,49 .20 .25 h,20,23
.30 4,19,291.15 .20 .25 15,19,23
.15 .20 0,15,19 .35 4,19,34 .30 15,19,29
25 0,1h,2L W40 14,19,39 .35 15,19,34
.30 0,14,29 45 4,19,Lk L40 15,19,39
.35 0,143k .50 4,19,L9 .45 15,194k
Lo 0,14,39 .50 15,19,49
A5 0,1k,0b .25 .30 L,25,28
.50 0,1L,L9 .35 h,24,34 .25 .30 15,25,28
.40 4,2h,39 .35 15,24,3k4
.20 .25 0,20,23 A5 b2k hb b0 15,24,39
.30 0,19,29 .50 L,2k,L3 L5 15,244k
.35 0,19,34 .50 15,2k,L9
40 0,19,39 .30 .35 4,29,33
45 0,19,L4 Lo 4,29,39 .30 .35 14,29,33
.50 0,19,49 U5 4,294 .40 14,29,39
.50 L4,29,L49 45 1h,29 bk
.25 ,30 0,25,28 .50 1bL,29,k49 '
.35 0,24,3L
Lo 0,24,39 .20 .25 .30 19,24,28
L5 0,2h,4k }.10 .15 .20 9,15,19 .35 19,23,34
.50 0,2L,k9 .25 9,lk,2h .40 19,23,39
.30 9,1k4,29 .45 19,23,4k
.30 .35 0,29,33 .35 9,14,34 .50 19,23,49
b0 0,29,39 b0 9,1L4,39
U5 0,29,uk U5 9,14 ,LL .36 .35 19,29,33 '
.50 0,29,49 50 9,14,49 .40 19,29,39
45 19,2944
.50 19,29,49
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FOUR GRADES N=125

ACCEPT. CCEPT. ACCEPT,
PL P2 P3 NOS. PL P2 P3 NOS. Pl P2 P3 NOS.
.01 .05 .10 0,5,11].05 .10 .15 5,12,17}.10 .20 .25 11,25,29
.15  0,5,18 .20 5,11,2k4 ,30 11,24,36
.20 0,5,2k .25 5,11,30 .35 11,2k,L43
.25 0,5,30 .30 5,11,36 .40 11,2h4,49
.30 0,5,36 .35  5,11,43 45 11,24,55
.35 0,5,43 .40  5,11,L9 .50 11,24,61
.40 0,5,49 45 5,11,55
.45 0,5,55 .50 5,11,61 .25 .30 11,31,36
.50 0,5,61 .35 11,31,43
.15 .20 5,18,23 40 11,3149
.10 .15 0,11,18 .25 5,18,30 .45 11,31,55
.20 0,11,04 .30 5,18,36 .50 11,31,61
-25 0’11330 -35 5]18'1‘3
.30 0,11,3 L0 5,18,k49 .30 .35 11,37,k2
.35 0,11,43 45 5,18,55 .40 11,37,L49
40 0,11,49 .50 5,18,61 45 11,37,55
.45 0,11,55 .50 11,37,61
.50 0,11,61 20 .25 5,25,29
. .30 5,24,36 |.15 .20 .25 18,24,29
.15 .20 0,18,23 .35 5,2h,u3 .30 18,24,36
.25 0,18,30 40 5,2k4,k49 .35 18,2k4,43
.30 0,18,36 .45 5,24,55 b0 18,2L4,L49
.35 0,18,43 .50  §,24,61 .45 18,24,55
Lo 0,18,4 : .50 18,2L,61
.45 0,18,55 .25 .30 5,31,3%
.50 0,18,61 .35 5,31,43 .25 .30 18,31,36
AC 5,31,49 .35 18,31,43
.20 .25 0,25,29 45 5,31,55 .40 18,31,49
.30. 0,24,36 .50 5,31,61 b5 18,31,55
.35 0,2k,43 .50 18,31,61
.40 0,24,49 .30 .35 5,37,k
.45 0,2L4,55 40 5,37,49 .30 .35 18,37,b2
.50 0,24,61 45 5,37,55 L0 18,37,4%
.50 5,37,61 .45 18,37,55
.25 .30 0,31,36 .50 18,37,61
.35 0,31,43
W40 0,31,49 .20 .25 .30 24,30,36
45 0,31,55 (.10 .15 .20 12,18,23 .35 24,30,43
.50 0,31,61 .25 11,18,30 Lo 24,30,k
.30 11,18,36 .45 24,30,55
.30 .35 0,37,k2 .35 11,18,L43 .50 24,30,61
40 0,37,49 +40 11,18,49
.45 0,37,55 45 11,18,55 .30 .35 2k,37,k2
.50 0,37,61 .50 11,18,61 , Lo 2h4,37,49
45 24,37,55
.50 2L,37,61
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FOUR GRADES N=150 :
[}
ACCEPT, ACCEPT. ACCEP!. r
Pl P2 P3 NOS. PL P2 P3 NoS. Pl P2 P3 NOS. 1
.01 .05 .10 0,6,14| .05 .10 .15 6,1k,21[.10 .20 .25 1%,29,36 :
- .15 0,6,21 .20  6,1h4,29 .30 1b4,29,4l
.20 0,6,29 .25  6,1h,36 .35 1L,29,51
.25 0,6,36 .30 6,1k, bk L0 1L,29,59 ]
.30 0,6,L44 .35 6,14,51 45 1k4,29,66 :
.35 0,6,51 Lo 6,14,59 .50 .4,29,7h !
.40 0,6,59 A5 6,1h,66 I
.45  0,6,66 .50  6,1hL,Th .25 .30 14,37,43 :
.50  0,6,7" .35 1k,37,5). ;
.15 .20 6,22,29 40 14,37,59 i
.10 .15 0,14,21 25 6,22,36 b5 1L,37,66 l
.20 0,1L4,29 30 6,22, .50 14,37,k :
, .25 0,14,36 35 6,22,51 ,
: .30 0,14,k Mo 6,22,59 .30 .35 1b,ki,51 |
f .35 0,14,51 A5 6,22,66 40 14,44,59
; Lo 0,14,59 .50 6,22,k 45 1k, L4 ,66 f
3 45 0,14,66 : 50 1h,hL,Th i
; .50 0,1L,T4 .20 .25 6,29,36
i .30 6,29,uk) .15 .20 .25 21,29,36
; 15 .20 0,22,29 .35 6,29,51 .30 21,29,Lk #
i 25 0,22,3 .40 6,29,59 «35 21,29,51 |
_ .30 0,22,kk 45 6,29,66 Lo 21,29,59 |
.35 0,22,51 .50 6,29,Th M5 21,29,66 f i
i .40 0,22,59 .50 21,29,Th ; {
l 45 0,22,66 .25 .30 6,37,43 . }
L .50 0,22,Th .35 6,37,51 .25 .30 21,37,43 :
| A0 6,37,59 35 21,37,51 {
{ .20 .25 0,29,36 45 6,37,66 .40 21,37,59 :
.30 0,29,Ly .50 6,37,7h .45 21,37,66 , !
«35 0,29,51 .50 21,37,7T4 : i
o .40 0,29,59 .30 .35 6,hh,51
- 45 0.29.66 50 6.kk.59 .30 .35 21,4k,51 |
- .50 0,29,7 45 6,LL,66 4o 21,k4k4,59 ‘ !
; 50 6,Lb,TU : 45 21,44 ,66 !
| .25 .30 0,37,4 .50 21,447k :
| .35 0,37,5
; 40 0,37,5 .20 .25 .30 29,37,k3
- .45 0,37,64 .10 .15 .20 1L,22,29 +35 29,37,51 .
- .50 0,37,7T .25 1b4,22,36 40 29,37,59 :
. »30 1h,22,44 .45 29,37,66 !
.30 .35 O,lb,s. .35 1h,22,51 .50 29,37,Th o
| .40 0,uk,5 ko 1k,22,59 -
s 45 0,44,6 U5 1k,22,66 .30 .35 29,Lb,51 ( !
. .50 0,bbh.T .50 1k4,22,7h 40 29,4459
P 145 29,LL,66
o .50 29,44, 7L ! !
. )
!
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FOUR GRADES N=200

. . e o e =

ACCEPT. ACCEPT. ACCEPT
Pl P2 P3 NOS. PL_DP2 P35 NOS. Pl P2 P3 NOS.
01 .05 L10TTTGTISTTI0E 110 1B 5,18, 3810 30 5t 19,39,53
.15 1,9,29 .20 9,19,39 .30 19,39,59
.20 1,9,39 .25 9,19,49 .35 19,39,69
25 1,8,43 . .30 8,19,59 W40 19,39,79
.30 1,9,5% .35 "9,19,69 .45 19,39,89
.35  1,9,69 .40 9,19,79 .50 19,39,89
40 1,9,79 .45 9,19,89
.45 1,9,89 .50  9,19,99 .25 .30 19,49,59
.50 1,9,99 .35 19,49,69
15 .20 9,29,39 .40 19,49,79
.10 .15 1,19,29 .25, 9,29,49 45 19,4989
.20 1,19,39 .30 9,29,59 .50 19,149,099
.25 1,19,u9 .35 9,249,869
.30 1,19,59 .40 9,29,79 .30 .35 19,59,89
.35 1,19,69 .45 9,29,89 .40 19,59,79
40 1,19,79 .50  9,29,99 W45 19,59,89
45 1,19,89 .50 18,59,99
.50 1,19,99 .20 .25  9,39,49
30 9,38,59,15 .20 .25 29,39,uq
.15 .20 1,29,39 .35 9,39,89 .30 29,39,59
.25 1,29,u49 .40 9,39,79 .35 29,39,89
.30 1,29,58] . 45 9,39,89 .40 29,38,79
.35 1,29,69 .50  9,39,99 .45 29,39,89
JH0 1,29,79 .50 29,39,99
+451,29,89) | .25 .30 g,us,s9 '
.50 1,29,99 .35  9,49,69 25 .30 29,u49,59
\ 40 9,49,79 .35 29,498,69
20 .25 1,39,u8| 45 9,49,89 40 29,498,798
.30 1,39,59 .50 9,49,99 .45 29,u49,89
.35 1,39,69 .50 29,49,99
W40 1,39,79 .30 .35 9,59,60
45 1,39,89 40 9,59,79 .30 .35 29,59,69
.50 1,39,99 45 9,59,80 .40 29,59,79
: .50 9,539,989 .45 29,59, 89
.25 .30 1,49,59 _ . .50 29,59,99
-85 1,40,69] .10 .15 ,20 1g,29,39
40 1,48,79 +25 19,29,49/.20 .25 .30 39,49,59
W45 1,u49,89 .30 19,29,59 .35 39,49,69
V50 1,49,99 .35 19,29,69 .40 39,49,79
W40 19,28,79 45 39,u8,89
.30 .35 1,59,69 45 19,29,89 .50 39,49,99
40 1,59,79 .50 19,29,99
45 1,59,89 .30 .35 39,59,59
.50 1,59,99 .40 39,59,79
45 39,59,89
.50 39,59,99
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FOUR GRADES N=300

"ACCEPT. ACCEPT. ACCEYT.
Pl P2 P3 NOS, P2  P3  NOS. Pl P2 P3 NOS.
.01 .05 .10 2,1n,29 10 .15 14,29,44 10 .90 .25 29,59,74
<15 2,14,ub .20 14,29,59 .30 29,59,89
.20 2,1v,59 .25 14,29,7u .35 29,59,104
+25  2,14,74 .30 14,29,89 40 29,859,119
.30 2,1u4,89 .35 14,29,104 W45 29,59,134
.35 2,14,104 40 14,29,119 .50 29,59,149
L4000 2,14,119 .45 14,29,134
45 2,14%,134 .50 14,29,149 .25 .30 29,7u4,89
.50 2,14,1ud _ .35 29,74,104
15 .20 14,44,59 40 29,74,119
.10 .15 2,29,uu L2514 ,L4,Tu 45 29,754,134
.20 2,29,59 | .30 1u,u4,89 .50 29,74,1u48
.25 2,29,7& .35 1u,uu,104
.30 2,29,88 L4000 14,4u4,119 .30 .35 29,89,10u
.35 2,29,104 J45 1, 44,134 L40 29,89,119
40 2,29,119 .50 1h,U44,149 .45 29,89,134
.45 2,29,134 ' .50 29,89,1u9
.50 2,29,1u49 .20 .25 14,59,7u4
.30 14,59,89 [ 15 .20 .25 L4,58,74
J15 .20 2,444,589, .35 1u4,59,104 .30 44,59,89
W25 2,H4,74 J40 14,59,119 .35 uy4,59,104
.30 2,u44,88 W45 14,59,13y W40 u4,59,119
35  2,4k4,104 .50 14,538,149 A5 b4, 59,134
LU0 2,u4,119 .50  4u4,59,149
W45 2,454,184 .25 .30 14,74,89
.50 2,u44,1u49 .35  1h4,7u4,104 .25 .30 u4,74,89
40 1,744,119 .35 44, 74,104
.20 .25 2,59,7u L45 1h,7u,134 40 by, 74,119
.30 2,59,89 ,50  1W,7u4,1u9 45 by, 74,134
.35 2,59,104 .50 44,74,149
.40 2,59,119 .30 .35 14,89,104
.45 2,59,134 L0 14,89,119 .30 .35 4u4,89,104
.50 2,59,1ud L5 14,89,134 .40 44,89,119
.50 1u4,89,1u49 45 Ly, 89,134
.25 .30 2,74,89 .50 u44,89,149
.35 2,74,104 \15 .20 29,44,59
40 2,74,119 .25 29,44,74 1,20 .25 .30 59,74,89
W45 2,74,134 .30 29,44,89 .35 59,74,104
.50 2,74,1u49 <35 29,44,104 40 59,74,119
" .40 29,444,119 45 59,74,134
.30 .35 2,89,104 W45 29,44,134 «50 59,74,149
.40 2,89,119 .50 20,44 ,149|
L45 7 2,89,184 .30 .35 69,89,10u
.50 2,89,1u49 .40 59,89,119
.45  59,89,134
.50 59,89,149
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THE ABBA SEQUENCE:

A PROCEDURE FOR COMPARISON TESTING

Arthur Pillersdorf
Terminal Ballistics Division
Ballistic Research Laboratory

Aberdeen Proving Ground, Maryland

This paper introduces, if not a novel* concept, certainly a new
acronym: ABBA, more precisely, A-B~B-A.

ABBA is an acronym and, as will be seen shortly, & mnemonic term.
The ABBA sequence is discussed here as an alternative to the AB method.
The latter term describes an accepted and effective comparison procedure -
repeated alternation. 1t §s the sequential procedure usually followed in
comparing representative items of two batches, A and B. The two syllables
formed by the letter sequence A-B-B-A, may be vocalized, although “ABBA"
is not an English word. The letters, ABBA however, show the critical
difference in the implied pattern. In contrast to-the unidirectional
A-B-A-B, etc., ABBA is an iterative doubling back. In a sequence of four

operations, let two each be applied to two populations, A and B, Then the
sequence looks 1ike:

(2)

o & — >
jon jw N W

SUMS ;

(NOTE: The numbers in the columns, the k's are, strictly
speaking, ordinal rather than cardinal numbers,)

e Tearned at this Confersnce, at the lunch table, to be exact, that what

we call the ABBA sequence was applied at the National Bureau of Standards
many years ago.
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The A-B comparison process {c not periodic or cyclic. It starts

at the left and moves right; then again at the left, thence {0 the right,

(b)

et — >
ol v @™

SUMS :

The purpose of the ABBA sequence is to improve confidence 1imits,
These confidence 1imits are not of the fiducial, or statistical variety.
Rather, these 1imits are of the human variety, and refer to the confidence
of three groups in the experimental data of mutual fnterest. These groups
are: the experimenters, the technicians and, of course, the statisticians.

~ The procedurs we propose will be recognized in its fundamental logic

as related to the statistical principle of blocking. This blocking principle
is exemplified in Latin and Graeco=-Roman squares or similar planned arrays*
of experiments] data. It 1s our view that our procedure 1s a prior fundamen-
tal, It tells how to obtain the data which is later treated better, from
the siatistical viewpoint, The experiential basis of the proposal may be
singularly our own, but we doubt this very much,

Our underlying postulates are thase:

1. Measuring a physical property, injecting a chemical, or shooting
a sample of amunition is equivalent, sui generis, to experimental treatment,

Hence, plural measurements (treatments) and population samples are combina-
tions.

¥Sge, Tor example, the Youden rectangle concept.

112




2. The uncertainties of temperament, temperature, and time, give
rise to sources of error, bias, and sequential or cumulative effects,

3, Firing a gun, of any caliber, inserts heat int. a dynamic system,
Thermal energy transfer may cause changes in such kinetic parameters as
velocity, yawing motion, or recoiling motion, These effects are known in
ballistics. Hence, we view each shot as a treatment,

4, Planting seeds in each of several plots (= sampling each grourd
lot) is also a treatment, Let all its' seeds be planted first in one plot,
and then its' seeds be planted in the second area of soil. Our view is
that the seed of the first plot was "treated" differently. It might be in
colder soil longer, or have more time to absorb initial moisture. Also,
during the planting of Plot 1, the "planter" may have lost or increased its
tension. The "planter" may be a human being, or a mechanical device in-
corporating control cables and springs. Tension is sti1l tension,

5. Therefore, it is desirable that similar times shall have elapsed
during the seeding (treatment) of all three plots of ground,

6. As a first approximation, the sums of the ordinal integers, in
plain English - the step numbers, should be as nearly equal as we choese.
The equalities may be required at any time during or after the experiment
(see (a) on the first page of this article).

7. A first choice is that the sums of the ordinal numbers (the
cumulative sum of the sequential positions) at the end of an experimental
interval shall be equal. If columns are lots and rows are samples, then
the sums 6f columns A, B, etc. (:k{) should be equal*,

¥EpTTogue: We were pleased to hear Dr, Youden recall how he had once worked

on this equality of column sums and had found the attempt had been

made for another purpose in an old math book,
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8. More generally, we may prefer that the total time intervals of
the preceding treatments, or sequence summations, are equal. This would
mean that the sums of the columns across as many rows, from the second row
to the last, should be equal. We shall see that we can have this half the
time,

From the foregoing, a basic value judgment can be inferred. In an
ABAB comparison, the time iatervals within a column are equal. These are
the time intervals between successive samples within the group or lot. The
test samples of A:-1, 3, 5, and B:~2, 4, 6, have equal chances of something
going wrong, intime, within the groups, A and B, But the environment, equip-
ment and personnel are also subject to error-random or otherwise. We choose
to equalize the error sources - time, temperature, and, psychologically,
temperament. These may affect the sample behavior more than its standby time.

Finally, 1f we study the array in (d) below, we see a singular difference
between ABBA and ABAB. Both are alike in that samples precede and follow the
others, one treatment at a time (A-1 precedes B-2; B-2 follows Al; and precedes
A-3, etc.). But in the ABBA sequence, equal members of treatments in both
columns precede and follow another treatment (position or ordinal integer)

within the column, In brief (cf (d)), there are pairs in the columns.

Our value judgment of vertical pairing for achieving better balance,
{.e., less cumulative, sequential bias, is supported by C, C. L§ (1):

"The criterion for balanced sequences is that every treatment is
preceded nr followed by 211 the other treatments, the same number of times.®
The foregning 1s cited as an advantage of alternate pairing with only

two populations or lots (A and B), With three or more lots, (columns), the .
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. pairing is found only in the extreme or "doubling-back" columns. i.s.,

under A and C only:

(¢c)

N |
mle:cn—n[)
N =
jl~ o o0 N |
N =t
mloto-hwln

Ik

ON_THE ASPECT OF SAMPLE SIZE

If the sample number per iot, r, is very large, the difference in the
sums of the ordinal numbers under A and B (zki) becomes relatively small.
If the total number is forty, twenty samples per column, or lot, then dalet*
40 or <40 = Aﬂiﬁll = 820, Since every element in the B column 1s one greater
than that in the same row in A, EA; + 20 = IB,, and IA, » 400, £B; = 420.
The final difference, 20, is only 5 percent of the A,  For N = 60, the
percentage difference is even less. Hence, for the final cumulative effect,
an A-B-A-B may be just as good as an ABBA sequence., But, who has tested or
compared thirty pairs of experimental Nike-Hercuies motors in one day? -
under “steady-state" conditions? - with a priori certainity that the experi-
ment will be completed?

The advantage of ABBA comes when there are interruptions, either
unforeseen or scheduled,

THE ABBA SEQUENCE AND THE DIAGONAL SEQUENCE
As indicated previously, the ABBA sequence has several features of

interest. For two samples, usually a standard and an experimental sample,

*See Dalet N and the ABBA Sequence, below.
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the ABBA sequence is an iteration of the staggered diagonal cycle. This

is seer in the following array:

A B
1 2 |
‘ 3 |
5 6
9 10
12 n

tky 39 »

In the two column array above, starting at A and ending at B is the i
first swing. Starting the next cycle at B, the 2nd column, and completing
the cycle by advancing to the next vacancy in the row, terminates at A. If

we have. a series of columns, k, equal in number to the rows, r, we can have

a staggered cycling sequence which provides a diagonal of starting points,

| e.g.:

o CASE 5 X §

[ “ 8 ¢ D E

| ] 2 3 4 &

o 10 6 7 8 9

| 14 B N 12 13 (e)

o 18 19 20 16 WV
| 22 3 4 2

; —— —

Iky 65 65 66 65 65

The diagonal (1, 6, 11, 16, 21) gives us an r X k square,
Thus, 1f r = k, even if r is odd, we can attain the desired equality
of finzl column sums. This staggered cycling, or diagonal inception of
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each succeeding row,is found in Youden's rectangle.
For ihuse who may 1nsist on the repeated alternating cycle (A-B, A-B),

for whatever reasons, the following 15 reassuring: A two~population ABBA

sequence is nearly a repeated A-B. View the second and third (under B) as
one sample (of two ftems) and the éshrth and fifth steps (under A) as the
other sample of two items. We are then testing alternate pairs. The
difference is that we begin with singleton A (A1), and end with singleton
B (BN). when the sample number for A equals that of B.

(Recall: A B
(singleton) 1 2) na
nB'n (4 3)
(5 6 ()
e 8 7)

(9 10 (singleton)

Note that the ABBA sequences of (d) and (f) above, give equal sums of the
ordinal numbers at every even-numbered row. This equality holds for any
number of columns.

1f, as 1s often the case, r 1s much greater than k, we have another
problem, We can form successive k by k squares, as a choice. Then, at the
very best, we have a series of squares, at least 3 x 3. In these 3 x 3
squares the ordinal sums are equal only every third row. I[f such a series
of odd-sided squares has a total number of rows which {s even, it would of
course be better to use ABBA, Then every second row is equal, including
the last. If both r and k are odd and r doesn't divide into k, what do we
do? Let k= 3, r=5, A3 by 3 diagonal, plus a doublet (ABC - CBA) gives
equal sums at stage r = 3 and r = 5 (g) or at r« 2 and r = § (h),
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| CASE 3 X 5: i
o € A B ¢ ® & B ¢ f
’ ;4- 1 2 3 1 2 3
6 4 5 6 5 4 ,

s 3 1 1 & 3 |

ky- 15 15 15 % 15 16 |

LI NI P 12 10 M :

15 14 13 ¥ 1B B f

y- 40 40 40 0 4 40 f

Here we have the compromise or combination of diagonal and ABBA cycles.

DALET N AND THE ABBA SEQUENCE
. A new symbol is appropriate for indicating the sum of the ordinal

nunbers of the total samples available for an experiment. The symbol we

1 propose is « , dalet*, Dalet is a triangle, like its Greek descendant,
. delta, but dalet points from right to left. It is applicable to both letter
_ <N and to number <10 as a symbol of summation,

. The sum of an arithmetic progression of the integers from zero to an

indefinite integer, N, is obtained from the equation: ‘

i . {=N X l
- I MR an (ay '

i ' i=1

Hence, dalet N, or dalet any number is a “triangular number" in Pascals

| Triangle. The symbol dalet and equation (1) are usefu) for determining if

the sums of the columns of ordinal numbers can be equalized.

o ' ¥ dalet (proncunced dah-let) is the name of the ancient Hebrew letter which
‘o is fourth in the alphabet, It is the precursor of the Greek “delta.” \
o ‘ Dalet means "a tent flap." Later, 1t came to mean “a door.* i
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Let us distribute the N integers from one to N. in rows (r) and

coiumns (k), with equal numbers of integers in each column. Then <N, or

“dalet" N = 55—155-:-11 (2)

In two columns of ten rows, the arithmetic progression, 1 to 20,
sums to: 2 « 10 ({&=JU* 1y 5 270, (@20 = 210), (3)

To determine if there can be equality of sums of individual columns,

of equal rows each, 1t is necessary to use formula (2) and let k be odd:

Then 2|k'* o r (ke+1) implies 2|k or 2|r (kr+1). (4)
But 2 does not divide into k (2 / Kk);
oo 2| (kr+1), and some integer, S = IILI;Etlll . (5)

S0 thatw kS (6)
o g|!£.£§£:ll (7)

An array of odd-numbered columns gives a sum that yields an {integer

quotient regardless of whether rows are odd or even.
K|k « % o (kre) (8)

If the rows (r) are odd, and the columns (k) are even, then

k d L) () does not divide into ...ete.) . (9)

If kr is even, then kr+l is odd and 2 ] kr+1, since 2|kr and 2 } ¢

(r is odd); then
!L1§£311 . 1s not an integer.

¥ alb s @ divides into b.
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Therefore, odd rows do not automatically yield equal sums of columns,
if the columns be even, Examples:

1 2 ] 2 3 4
L] 3 8 7 6 5
5 6 9 10 N 12
1w 1 1 15 W W

17 18 19 20

-2-}9 is not an integer.

<20 = 210 -."'_"_g.‘:k_"'l).

The reader will note that the foregoing treatment applies to the case

of equal sample rumbers, or rows, however small, for each population sample

or column, The same procedure, however, can be applied to a group of unequal

samples, {.0.,
1. Deterwmine N, the total number of samples,

2. Detarmine «a i,

3, Divide by k, the number of columns or populations or lots, I the

quotient is an integer, the sums of the ordinal numbers can ba equal for all
columns or lots. |

ON _CASES OF UNEQUAL SAMPLE SIZES
For statistical inferences based on application of Student's t and

the t«like (t*) statistics, it has been shown that both statistics have the -

same valus when two samples are of the same size. The mathematical
exprassion for df* (degrees of freedom for the t-like or t* statistic)
simplifies considerably when " = Ny Further, when the two groups are of
equal size, the value of df* reduces to 2(n - 1), wholesomely large, 1f the

var'lancesm of the two groups s,z and 522 are oqunm. This 1s taken to

Wmﬂy. this is the estimate of the variance with df = n = 1,
2) These comments can be explored in Reference 1 (L1).
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mean that when group variances are unequal it is even more desirable to
have gruups Of equai size, In a planned experiment, therefore, hope for
equal numbers of samples.

Let us suppose, however, that the samples are small in number, and of
unequal size. This situation happens when the test items are expensive,
experimental, or exotic., Another reason for unequal numbers of observations
of samples may be the exigencies of time. What is the simplest rule for any
number of plots, blocks, or columns, when the numbers of rows or samples per
lot are unequal? A uniform procedure would be to start with the sample of
largest number,

CASE 5 = 4 - 3 shows how the equality of final sums requires abandoning
a partial square (a) with its diagonal 3 X 3 array:

@ Ao 8 ¢ ® A B ¢
1 1
2 3 2 3
‘ 4 5 6 6 4 5
9 7 8 7 8 9
RS | R oo
Ek1 27 27 24 26 26 - 26

Note that <N is divisible by k.
Case b, fllustrates that the use of dalet* or «N, here « 12, {s the
first order of business. Second is the injunction evident in Case a. also, =

use up the surplus first!

¥Precursor of the Greek lotter delta is this ancient Hebrew form of the
letter "dalet® (modern type T ).
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ON EXPECTED PROBABILITIES OF MISCLASSIFXCATION
TR N™rAanm

IN DISCRININANLI ANALYSLS, NECESSARY SAMPLE SIZE, AND
A RELATION WITH THE MULTIPLE CCRRELATION COEFFICIENT

o AT N

Peter A, Lachenbruch
Department of Biostatistics
University of North Caraolina
Chapel Hill, North Carolins

INTRODUCTION AND SUMMARY. When a sample discriminant function is
computed, it is desired to estimate the chance of misclassification using this
discriminant function. This is often done by classifying the sample using
the sample discriminant function or by computing #(-D/2) where ¢ is the
cumulative normal distribution, and D* is Mahalanobis' distance. When the
sample dis_ciminant function is applied to a new sample, the observed

probabilities of misclassification are usually found to be greater than thoss
computed from the initial sample.

The purposes of this paper asre to show that this increase in the
probabilities of misclassification are directly related to the "shrinkage"

of R? in new langlcl and that these are related to the unbiased estimation
of Mahalanobis'3? using D2,

DISCRIMINANT ANALYSIS. Discriminant analysis provides a method of
obtaining a function of a set of p multivariate observaticns which provides
maximum separation betwasn groups. In this paper we shall bs concerned only
with the case of two groups. Let T denote the first population,r, the secound,
X w (xl, xz,...,xp)' be a column vector of observations, My the mean vector

in the kth group (k = 1,2), I the common covariance matrix, and gk and §
the sample means and covariances. '

It is well known that the sample discriminant function for discriminating
two groups is

w D(x) = (x = (1/2)(E, +&))' sT'E - X)

which is conditionslly (on ;1' Ez, and S) normally distributed and has mean
(in the kth group),

The remainder of this article was reproduced photographically from the author's
copy . !
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and variance (in either group),
: - = -1, ~1,- =
(3) Vp = &) ST B 8T (X, k).
If it is known that the chance of an individual, randomly selected
from the population, has probability q of belonging to group 1 and l-q of
belonging to group 2, then the clagsification rule that is used is "classify

y if

x into "

q
(4) D (x) + log — > 0
s
1~q

and into LY otherwise."

q
In this paper we will assume q = .5 80 log —— = 0,
1-q

If x is multivariate normally distributed, then the probability of

misclassifying x conditional on Xy ;2’ and 8 is

(5) Pl = P(D.® < OI_:_c c “1)

or Pz-P(D.® >03_cﬂ2) .
Pl, is given by R
(6) P, = 0(-D (y,) /D)

and a similar .xprcui'on holds for Py vhere ¢ is the cumulative normal
distribution. ,
Estimating Di(p'k) by Dk -~ ut D.Q;kq) /r.k and VD by

L] 2 ' [ .
vy = 121 gk(D.(xku)-Dk)z/ (n1+n2-2) is equivalent to estimating By by By

and I by 8.
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Thus we obtain

9) " pdomop-p2/2 /) - 8(-N/?) = D&
+ !/ 2

where D? = (21722)' 3"1(21—52) is Muhalanobis®' distance. This is a biased

e¢stimate of P1 and gives too favorable an estimate of Pl'

Thus, in general, we ghould expect to find a higher rate of mis-

clasgification when applying the s&mple discriminant function to new data

than indicated by ¢(-D/2).

It is of some interest to consider the expectation of D (g ) and

VD over repeated samples of size n and n,. We shall need the expectationé

of §:1 and §—1§§f1. Lachenbruch and Mickey [1965] have shown that

n_4n,~-2

O R ey R
n1+n2-p-3
and ' ( X ¢ )2
. ’ n.4n,-3) (n 4n,=2 ;
n(g'%;gfl) - g’l a2 "1 72 - cz;fl
(n1+n2-p-2)(n1+n2-p~3)(n1+n2-p-5)
Now,
(9) E(D (y)) = tr E(D, (1)) ) '

= tr B((x)-%,) (K5 (R +5,)) 8™,

= tr E{((il-ie)ﬁk'*iagi+Hiagé)E: ¢ ?

(n,-n,)

el - 's[ ]L - ) BN ymmp) ie,

k)

L T -
. [_(‘_‘-1,"-2) E Q) kL P(“z"“;’] ¢,

2 2n1nz ;
Co |
c p(n,-n’) : '
Y [62(_1)k+1 L ] . : 3
2 nn,
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Similerly, we have for

(10) BV = H(E, %) '8 187 Gy -Ep))

er B(E, X)) (3%, 's 758

R SN |
tr E((x,-%,) (x,-%,) 'E ")C,

. At .l'— L =
"{{(3‘-1'-“-2’(!-1'32) + (nl + nzlf'-}-t- 3‘32

p(n1+n2)]

-1
= Gy Cuymug) 2 Ty np) +

"y

Thus,

n,4m, -2 p(n,-n )
(11) E(D‘('u'k)) = 12 [62(-1)k+1 - ._....z.-—.l_-]
2(n1+n2-p—3) n,n,

p(n,+n,) _(n1+n2-3)(n1+n2-2)2-

E(Vp) = {62 + . .
n 0y (n1+n2—p-2)(n1fn2—p-3)(nl+n2-p-5)
Although D (x) is normally distributed conditionally om 21, _532
snd S, it {8 not unconditionally normally distributed, For ny and n, suffi-
ciently large, the unconditional distribution is very close to normal.

Thus.'cbnsidering the values of
(1?) ) P, = #(E(-D (uy)) V.EZVVD5 )- i
and By = 8(ECD ) [ RV )

will supply approximate values of P1 and P2 for samples of sizes "y and n,.

There are three error ratés of interest:

(a) The error rate for the particular sample disecriminant
function. This 18 given by (6).
(b) The expected error rate over all samples of size UTRT

Thie is given by (12), 126
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(¢) The error rate that would hold if we knew the parameters
of the distribution. This is given by &(-8/2),
Some properties of equations (9), (10), and (12) are of interest.
Pivet, 1f ny = nyi [B(D,(n))| > 82/2. For large ny, n,, E(B,(k)) + s2/2(-1)**1,
In general, the variance of the sample discriminant function is always
greater than the veriance of the pophlation discriminant function.
The progerties of C1 and C2 imply that
8) If n =ny, |E(Ds(uk)|//§?V;T < §/2,
b) If nlln2 is large or n2/n1 is large and § is small, then
one of IE(Ds(uk))I/{ETV;) will be > 6/2 and the other will
be < §/2,
c) In most circumstances we will have |E(D.(uk))|//E?V;) < §/2,
80 we may conclude that the probability of misclassification
in either group is grearer than the optimum, ¢(-6/2),
Tsble 1 gives examples of the ratio E(D'(pk))/ﬁETV;) for various

values of ¢, ny, 0, and p.

Tsble 1, Ratios Used in Calculating Error Rates

P o n & RGNV 0N sz
2 6 1 .3086 © =,3086 .5

2 6 4 1377 -.7377 1.0

2 4 20 1 ,2189 -.5108 .5

2 4 20 4 V7747 o =949 1.0

4 12 12 1 .3368 % -.3368 .5

4 12 12 b .8051 -.8051 1.0

4 20 1 .0586 =5277 5

4 4 .20 4 .6102 . =.9153 1.0
10 30 30 ) .3478 . =378 5
10 30 30 4 .8313 - -.8313 1.0
10- 10 50 1 0605 -,5448 .5
10 10 50 I .6300 -.9450 1.0 .
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Finally, we note that we may use the unbiased estimate of &2 based

58 oy

on D? to obtain

7NN
{ : (13) "E(D (uy)) = D2/2 - C; p/my

SRR

—
E(D,(r))) = -D?/2 + C; p/n,

/v\ - (nl'h:g::i) (n1+n2-2)
(nl'.'nz'P'z) (nl""l'lz-p"j)

D

Thus we obtain an estimate of Pl for the discriminant function

based on samples of size LAY
A\ §
-(D2/2 - :
By - 8(-(52/2 - Cp/ny) / A | !
which is always greater than ¢(~D/2).
Sample Size for Discpiminant Functions ¥

The sbove results may be used to determine the sampla size re-

i k quired to obtain error zates within a given tolerance of the optimum, ’ N
The question we ask is "How large should n, and n, be for the
sample discriminant function to have an errcr rate within y of the opti-

% ; » ‘ num value?"' The answer depends on p, v, and §2, For equal sample sizes

) the results arze given in table 2.

From table 3, we see that y = ,1 yields very small sample sizes,
’ : vhile y.- +01 causes large samples to be taken. The larger the separation
! between the groups ,t;l:maller the sample size needed. As p increases, ths

' sample size also :lncreaaei, but the ratio n/p decresses for fixed 5% and i

o " {
7 ! i Because of the non-linear relation bntwcen.nl. Ny Py 62 and ii’ ¢ l
; é $> for y = .1 we find that a larger sample is needed for A2 = 4 than for f |
| ._ 6 = 1. ‘ i
.

!
P
i ‘
%
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Table 2. Minimum Sample Size, n(~n;=n,), in Each Group Required for Expected
Exicor Raie, Pl, to be Within y of Optimum Errcor Rate, Pl'
for Various Number of Parameters, p.

NP -

MK I e, e

P §2 P Y ¥, n
2 1 .309 .1 .395 5
4 159 .1 . 256 5
9 067 .1 151 5
1 .309 .05 .356 9
4 .159 .05 . 206 8
9 067 .05 111 7
1 . 309 .01 .318 47
4 .159 .01 .169 12
v 9 .067 .01 .077 22
4 1 . 309 .1 .403 7
i 4 .159 1 (245 8
9 ,067 1 .154 b
1 .309 .05 .358 15
& .150 .05 . 206 13
9 ,067 .05 .116 10
1 .309 .01 .318 89
4 ,159 .01 .169 56
v 9 .067 .01 .077 37
6 1 .309 1 407 9
& ,159 1 253 10
9 .067 W1 157 9
1 . 309 .05 .357 22
4 .159 .05 . 206 18
9 067 .05 113 1%
1 .309 01 319 130
: 4 159 .01 169 8o
v 9 .067 .01 077 s1
8 1 .309 .1 403 12
4 .159 .1 . 258 12
9 067 1 159 11
1 .309 .05 .358 28
4 .159 .05 ,208 22
9 067 .05 .115 17
1 . 309 ,01 319 172
4 159 ,01 169 104
¢ 9 .067 01 077 66
10 1 .309 1 ,406 14
4 .159 1 .253 15
9 ,067 W1 .160 13
1 .309 ,05 .358 35
4 .159 .05 .208 27
9 067 .05 L1117 20
1 .309 .01 319 213
4 159 .01 169 129
{ 9 067 .01 ,077 81
20 1 ,309 .1 . 406 26
4 \159 .1 L2256 27
9 .067 .1 .163 23
1 .309 .05 .358 67
4 .159 05 .209 51
9 ,067 .05 ,116 38
1 ,309 .01 319 421
4 .159 .01 169 250
v 9 067 .01 077 154
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The Regression Analogy

Pisher (1936) shows that by parforming a regression analysis with
the dependent variable equal to nzl(n1+n2) in the first group and -nll (n1+nz)
in the second, the regression coefficlents obtained are proportional to
the discriminant cnefficients, In fact, this is true for any two distinct
values of the dependent variable, See e.g,, Cramer (1967), The analysis of

variance of this regression yields the same F as the D? analysis does. Thus,

2 -pe
R n1+n2p1

(14) Fw e
. 1-R? P .
and
(15) 7 = D2 e B 172
. P (nl-mz) (n1+n2-2)

ars two ways of expresaing the same F with p and n1+n2-p-1 degrees of

freedom. Thus

2
(ny+n,) (ny+n,-2) 1-R?

(16)

which is equivalent to
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an 0 . R (nltnz)(n1+u2 2) g
-R2 i

1-R nln2 &

ﬁ

or &
p? ¥

R2 = 4

PR e SRR

, ytny) (y#ny-2)

n18

These relations will be useful lateT.
| Shrinkage
In using a set of regression coefflclents computed from a sample
for prediction purposes, it is found that the correlation between predicted )
and observed values in a new sample is less than R. This phencmenon is
well-known ae the "shrinkage" of the multiple correlation coefficient, A
number of methods have been proposed to deal with the problem of obtaining

estimates of the "shrunken" R2, There are at least two correlations of

interest. First, the population multiple correlation coefficient p? that

would hold if we knew the parameters of the population. This value is the

proportion of the varlance that can be accounted for by the independent
variables, The other quantity,which Lachenbruch and Mickey (1965) refer to
as p:. the Prediction Currelation Coefficien;. is the correlation between
the sample regression line and the dependent variable..

The following relation holda:

(18) e < p? < E(R?), .

2

P
Approximate unblased estimation of o2 from R? can be done easily

and methods of doing this will be discussed in the next section, Estimation

of p; is a more difficult problem which can be handled fairly well by a
technique described in Lachenbruch and Mickey. (1965),
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An exact formula for estimating p? is given by Olkin and Pratt (1958).

Letting R: denote the estimate, they show that '
19) B2 - 1 -2 (1R2)R(1, 15k pHD) , 1-R7)

n-p-1

13 an unbiased estimate of p? where n = ny + n, » P = number of variables
and F(*) is the confluent hypergeometric function.
A firat order approximation to an unbiased estimate was given by
Wherry (193D and is easler to work with:
(1-R?) (p-1)
(20) R = R? = ————
[+] (]
n-p
We will use formula (20) in the ensuing work.
Estimation of Pl and P2
A number of methods for estimating P1 and P2 have been suggested
[Lachenbruch and Mickey (1960]., For this paper, we shall be concerned with
methods based on D2, Okamoto (1963) has given an approximation based on
Ny, By and 63, the theoretical distance between the populations,
Equations (17) suggest that one might estimate a "shrunk" D? by
R2 (n1+n2) (n1+n2-2)

(21) D? = —& .
< ~p2
1 Rc nyn,

From (20) we obtain

an o - p? n,4n,-p ) (p-l)(n1+n2)(n1+n2-2) ;
¢ n1+n2-1 (n1+n2-1}nln2

Table 3 gives values of the multiplier of D snd the correction

term for some combinations of n =Ny, =n, and p.
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Table 3. Multiplier and Constant Terms for "Shrunk" Estimate of D2

o B _multiplier ___ correction term
20 2 97 .10
50 2 .99- .02
100 - 2 994 . .002
20 4 .92 .29
50 4 97 .12
100 4 .98 .06
20 10 7 .88
50 10 91 .36
100 10 95 18

Thus, 1f D> = 1,0, n = 20, p = 10, ng » 77 - .88 w ~,11 which illustrates
one of the drawbacks of using unbissed estimation for D2, If n = 100, but
other values ware the same, we would have Dé ®« .95~ 18 = .77, Whan 02 is
small, and the number of parameters is large relative to the numbar of ob-
servationa, the value of D: may be negative,

In anhlnbfuch and Mickey (1968), it is noted that an unbiased estimate
of §2 based on D? may be obtained from the non-central F distribution. This

io snother candidate for the value of D: and ite value is given by

41, p- +
) O i KA L4

n1+n2-2 “1“2

Equations (22) and (23) agree asymptotically as they should,
The difference between them is due to the approximation used to obtain

equation (22), and to the fact that the R? computed from the discriminant

analysis is based on ‘only two possible’ valuas of the depandent variable.
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DISCUSSION. When the population parameters are known, it is easy
to show that the probabilities of misclassification are given by $(-68/2)
where 62 1s Mahalanobis' distance between populatlons. Thus, the probabi-
lities of misclassification increase as 62 decreases. Okamoto's work
indicates that this ralation holds when estimates ara used for the popula-
tion parameters. Since D? is an overestimate of &2, ¢(-D/2) will always
underoltimnto the true probabilities of miacln-uification. Similarly, the
flct that R? is an overestimate for p? and p2 and the correspondence with
D2 throush the ¥ statistic indicate the rclggionlhip between the shrinkage
of R? and the increase of probabilities of misclassification.
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INTRA-PROFILE VARIANCE*
(INTRA-INDIVIDUAL VARIANCE)

Claude F. Bridges®¥
Instituticnal Regearch Division
Office of Research
United States Military Academy
West Point, New York

This discussgion does 1.0t present a sophisticated new statistic, rather
attention is called to an easily obtained but seidom used type of significant
difference between specimen, ind{viduals or groups. The title, intra-profile
variance, should be meaningful to counselors, phychologists, and statisticians
in the education and personnel fields. The comparable sub~title may be more
weaningful to atatisticians and researchers in other fields. The applications
discussed are in the personnel areas, but the profile variance statistic could
be made applicable whenever several characteristics or attributes of individual
specimen, components, or other unite are being measured,

Table 1 1llustrates the individual differsnces which the proposed statistic
reflecta. Individuals "o" and "*" both have ths same average standard score
on the four characteristics measured by xl, xz, and Xq and Xuo but are quite

different individuals. The difference in consistency of relative level in the
four distributions suggests that there may be a difference in the predictability
of parformance for the two and that the quantification of such intra-individual
characteristics might prove useful.

My initial interest in this problem stemmed from some remarke made by

Irving Lorge in 1947, He thought that, especiolly for soms groups of parsonality
factors, consistency in level might be indicative of adjustment. Dr. Lorge
hypothesizad that statistical rapresentation of such intra-individual differences
would, for some purposas at least, prove to contribute significantly to more
valid predictions than thuse based solaly upon inter~individual differances.

In some types of situations high intra~individual variability might bs more
desirable, in others being at about the same leval, “consistent across the board,"
could lead to greater predictihility of performance.

Howaver, the concept is not au new as was originally thought. In checking
the literature this was found to be yet anothar area which had been investigated
by Clark Hull in 1927. In an articls entitled, "Variability in Amount of
Different Traits Possessad by The Individual," he compared the variability among

*This is & further analysis of & concept repnited at the Septembar 1966 conference
of the Military Testing Association end at the March 1967 special session of the
Psychomatric Soclety.

**Any views exprsssed in this paper are those of the author. They should not bs

interpreted as reflecting the views of the United States Milicary Academy or the
Department of the Army.
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different persons in trait measures with the variability in a single individual
on these same traits. (Hull: 1927) He found the amount of variability within
single individuals to be about 80 percemt of the amount of variability among
different individuals. Apparently a significant gource of differences bstween
individuals is being ignored when using one composite, or weighted averags, of
an individual's scores, for measurement, prediction, or decision making purposes.

Research by psychologists, educators and statisticians concerned with
personnel problems has evidenced increased interest im intra-individual
differences such as those fudicated by variability among measures of different
attributes of an individual and by the more complete profile or pattern analysis
techniques. Much of this interest results from inczeased recognition that the
interrelationships within an individual of a group of measures may be quite
different from the interrelationships between these neasures in the general
population, Current moderator variable research has found in some situations
a variable that successfully identifies subgroups within a population for which
the interrelationships among variables differ significantly.

While complete pattern or profile analysis techniques entail several
relatively complex problems, a statistic representing intra-profile, or intra-
individual, variance is easily obtainad.

When Ssz = intra-profile variance; n = number of tests, factors, subtasts
or other characteristics measured and raported on compavabie scales; and Ix2 =
the sum of the squares of the deviations of an individual's scores on each
variable from his mean score on all n variables, then: ‘

2 .
sp?p = -2—2— (1

If IX = sum of one man's scores on all n variables, and :xz = the scores
squared and added, the gross score formula would be:

2 2
sp%p = 9_22‘.._;_12_1)_ (2)
n

When beta weights for cowparably scaled scores on the different abilities or
traits are available, these could be used tu obtain s measure of intra-profile
variance that should have more validity. The deviation formula for weighted
intra-profile variance would be:

2
2 Iix
0w " TW (3

The corresponding grosg score formula would be:

2 _ wm)?

2 ININX
(zw)y

L)

sD (4)
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If the beta weights are not available, but other useful bases for weighting
each scale in proporticn to its importance in a given performance are
available, such judgment derived weighte might be ugad in this formula.

e Ak ety g

Although the Unitsd States Military Acadamy, Weast Polat, curremtly
compares favorably with the best universities in the effectiveness with ]
which academic performance is predicted, this still means that only 50 percent :
of the factors that make for differences in level of academic performance are
being measured. Though proud of our reletive success, we would like to reduce :
the variance not predictable currently, |

e e A

Appropriate basic data were available on the 843 cadeta who entered USMA
in July 1964 and completed enough of the first year at USMA to have academic
grades; B16 remained one year and 789 remained one snd one-half years. Table °
2 shows, for the 843 cadets, the correlation coefficients between the fullowing:

(1) the academic average earied at USMA--"Acad Av";

(2) the vweighted average of Scholastic Aptitude Test-Verbal, SAT-
Mathematics, College Entrance Examination Board Mathematics
Achievement, CEEB English Composition, and High School Rank
standard score,wthe five components of the academic potential
battery, "Acad Pot";

(3) the standard devistion of the waighted scores on these five
componentaw-the "SDPW" intra-profile statistic;

(4) the Academic Achievement Index, a statistic reflecting the
academic average with measured academic potential held constant
(partialed out) and thus identifying over-achievers, par-achievers,
and under-achievers~-"AAI,"

- re—

TABLE 2. Selected Correlation Coefficients®

TAcad Av + SDPW = -.06
FAcad Pot . SDPW = =,23
Tacad Av * Acad Pot = .68
TAAT - SDPW = .12
StashPW om AAL = .21 (f = 1.56; .10 > P > ,05)
et&\AT on SDiW = .17 ' (f = 0.86; P > .10)
'BAcad Av * Acad Pot, SDPW = .69

*Means and ltindlrd dévintiona on each variasble are given in Talle 3.
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Even with a population of 843, simply adding the SDPW ro the regression 1
equation did not significantly increase the validity with which level of i
academic achievement was predicted. However, inspection of the AAI line-of-~ ;
means revealed the marked tendency for the 241 cadets with a SDPW of 70 or 3
more to be over-achievers. In fact, the 15 cadets with SDPW's greater than {f
160 had a mean Academic Average more than one standard deviation above that !
predicted from their meagured academic potential. The 602 cadets with AAI's 2
of 69 or less tended to be under-achievers relative to the acedemic achievement e
predicted from their composite academic potential score. Hence the possibility
was explored that the SDPW would serve as a moderator variable (an executive
variable) tc identify two groups in which the interrelationships of the
variables involved were sufficiently different that different equations for
the two groups would yleld mere valid predictions.

For the total group of 843 cadets, the multiple correlation of the five
regular academic potential components with the Academic Average was .694; for
the 602 cadets with SUPW's of less than 70, the independently computed multiple
correletion was .695; for the 241 whose SDPW's were 70 or more, the multiple
correlation was .693., The beta weights in all three equations were almost
identical. The hypothesis that the interrelationships among these variables

were the same for two groups identified by a critical SDPW of 69.5 could not
be rejected.

Although neither of the above approaches successfully utilized intra-
profile variance, Table 3 shows clearly that the cadets who made the most
of their objectively-measured academic potential had significantly higher
intra~proiile variance on the five component measures. Parhaps the individual
differences model for multiple regression proposed by Dr. Cleary (1966) and
diascriminant function analyses will show how to use the statistic iu this
instance. At any rate, the ease with which thia statistic can be obtained,
along with othar statisticul data at no extra cost, would seem to warrant its
incorporation into the mndel for validity studies. This would be especially
true when there is reason to hypothesize that high intra-individual variance

would be deairable or when acrosa-the-board consistency in performance ia
desired.

Several other applications of this statistic may be useful., In the
military persounel situation, intra-individual differences may be of considerabls
utility. In general, a man who is rather uniformly high in all aresas of his
military specialty might be conasiderad to be more valuable to his service, in
the series of successive assigiumants throughout his military career, than would
a man who ia very high in some areas snd very low in others. One of the latter
men might work out well in one assignment and be a cowplete failure in others,
Thus, the utility a soldier's weighted intra-profile variance on pertinent
measures of his abilities seems to warrant investigation. In the physical
and biological sciences and technologies as well as in the behavioral aclences




. : TABLE 3
CHARACTERISTICS OF SELECTED GROUPS OF CADETS
ENTERING USMA IN 1964

i W S iy L

Acadenic Academic :
Group N Potential Academic Achievement SDP SDI'W ;
* Score Average Index(AAIL) !
M 8 M 8 | M SO |M SDIM SD ;
"Over—-achievers" |218 605 59 2,559 .113 [ 622 48 {70 33173 40

(Top 27% on AAL)

"paz-achisvers" |379 600 53 | 2,413 .107 | 501 35 |66 27167 31 ;
(Middle 46%) i

"Under-achisvers" | 219 601 55 2.272 .113 | 375 50 162 24163 29 §
(Bottom 27% on i

AMI) :
Total 1 year 816 602 55 2.415 ,152 | 500 100 |66 28|68 33

Total with grades | 643 599 56 2,406 .158 | 300 100 |66 28 |67 33

N
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and technologies an intra-profile vea.isnce type of statistic might be fouad
ugeful. For example, reasonably accuriate estimation of the probability

of failure of a separate component or unit of equipment usually is possible.
However, considerable difficulty often is encountered when using standard
statistical techniques to estimate the composite failure probability of a
complex assembly of a large number of these component unite.  An exploratory
approach might baegin by comparing the distributions of the weighted intrsa~
profile variance, of each component unit's significant characteriatics
measured under standard conditions, for component units at different levels
on the best avallable reliability statistic. Where adequately detailed
records are aviilable, data on the past success and fellure of complex
assemblies might be compared with distributions of the intra-profile variance
of the characteristice of all of its component units, including intra-profile
variance of the component units'® intra-profile variances. An appropriate
model for such an investigation could be developed by quality control
rasearchers for a specific type of equipment.
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A STATISTTICAL TEST OF TWO HYPOTHETICAL RELIABILITY
GROWTH CURVFES OF THE LOGISTLC FORM IN THE DISCRETE CASE

William P. Henke
Research Analysis Corporation
McLean, Virginia

ABSTRACT. This paper demonstrates & mathematical method by which curves
can be developed useable as a tool for aid in solving the problem of monitoring
reliability growth; and also {llustrates how statistical tests of hypotheses
may be conducted in conjunction with these growth curves.

The growth curves discussed are applicable for use where units are under-
going development phases; specifically where it 1s desired to periodically
assess the actual veliability growth of these units for comparison with hypothatical
reliability growth curves.

The unique facet of these growth curves as presented herein Jlies in their
uge. 8Since their application is directed towards the improved development of
a unit type, this development is dependent upon the reliability achieved as a
result of improvements made on previously tested units. The reliability, or
probability of success, at each stage of development is independent and varies
from stage to stage.

A curve embodying the assumptions necegsary for the measurement of reliability
growth during development is termed the Logistic curve. Two such curves are
plotted, representing two alternative hypothetical growth patterns based on
specified values of a unit's inherent reliability. From the observed sample of
proportion of successes (Relirbility) accumulated at gome trial of the development
program, a selection is made of the true curve of the unit or group of units that
just finished the test. If the upper growth curve is actually true of the
population from which the sample of unite is randomly drawn, a small risk, a ,
is desired that the sample would be so poor as to bring rejection of this curve.
Likewise if the lower growth curve is true, a very small risk, R, is desired
that the sample will be so good as to bring erroneous acceptance of the upper
curve.

The subject curves have been found useful in the past to study population
growth, learning and developmental processes. The application of the Logistic
Growth Curve concept in assessing reliabllity has only recently been directed
toward the engineering development of expensive electronic components. Prior
to this use, extensive literature search had not revealed its application for
this purpose.

The concept of reliability growth during the development stages is one
which should be emphasized throughout governmental and industrial circles. The
growth pattern concept, saving time and money, can also assist in creating a
better understanding between the consumer and the producer regarding their
mutual problems, through the joint visual monitoring of a statistically sound
method of reliability assessment.

The remainder of this article was reproduced photographically from the author's
copy.
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Introduction

Reliebility evalustion is as essential a task during the development
of & unit as it is during the production of the unit. During development,
reliabllity is directly affected By & necessary and thorough knowledge of
the use and capebilities of the proposed unit. Continuous reliability
design analyses and englineering changes on the unit cause a developmentel
growth pattern which must be ldentified. This identification is necessary
in order that a trend cen be predicted and the relisbility requiremant can
be q,umtli'bltively specified for use in the evaluetion of the unit during
the production, This developmental growth patteru ls dependant upon the
realisbility achieved as o result oflim(provemnts made on previcusly tested
wnits. A mathematlical functicn which has been found ugeful in the past to
descride population growth, learning mdldavulopmentu.l processes, and more
recently to fit the ensineering' developmantal growth pattern of mechanical
and alectronic components is the S-shaped growth funotion presented herein
a8 the reliability growth model.

During the reliability development phese, the first unit is put to
tc_n‘b. Ite performance is judged s fallure or success, Subsequsntly, the
unit's reliability is wssessed, an analysis is made of its performance and
flesign improvements are made. These improvements are built into another
unit (or the same unit if no damsge was done on the first test) vhich then
undergoes the same process; that is, testing for fallure or success. Agsin
improvements are made snd the oycle ls repesated. By such & procedure, it
is intended that relisbility will grow from soms low initial velus (state-
of-the-art) to a higher target value at the end of the program.
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The Problem

It is not unusual that although the inherent reliebility of a
unit is growing properly, the "sample values of tested units" may vary
enough to present a poor reliability picture, "Sample values of units"
here means that the one unit tested was only one out of many (of &
population) that could have been tested. Thus evéh ir rolidbilitviiu
high, a rash of failures in a sample can occur and cast doubia upon
the inherent relisbility. Of courée, it cdn also happen that a unit
with low inherent reliability will by chance produce a high number of
#successes in a sample, possibly resulting in wrongfullacceptanea of
the unit as being satisfactory. It ic againet thease possibilitiei of
error that reliabiiity statisticians direct themsalves vwhen de;igning
nmeaningful test programs. ' l

Two reliability growth curves are plotted on Figure.l, rupreaenting
twvo alternative specified values of & unit's inherent reliability, From
the cbaerved sample of proportion of successes (Reliability) accumulated
at some trial of the developmenf program, we wish to choose betwsaen
which curve is true of the unit or group of ﬁnitl that Jul? finished
the test, If Lhe upper growth curvalis actually true of the population_
from which the sample of units is randomly drawn, we only want a small
risk, «, that the sample would be 80 poor a8 to bring rejection of
this curve. Likewise if the lower growth curve is trus, wo want a
very small risk, B, thuat the ll@ple will be 50 good a3 to Lring cor-
roneous acceptance of the upper curve., Thesec two risks are usually

specified by the experienced englneer or manager who must also conaider

‘such things es delivery time, cost, availability of test equipment ;nd
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. which may bs written as:

many othes facets which contribute towards the profit picture of an

industry,

Mathematical Derivations

The Growth Function

S-shaped curves of growth functions have been arrived at by many
learned pecple as cited in the references on growth, However, Herbert
K. Weiss (1] in a reliability sense by the method of maximum likelihood,
arrived at S-ghaped growth curves by starting with the assumptions that
each fallure source in a system has a perameter fallure rate and that a
conatant probability exists that each failure source will be properly
discoverad and corrected by way ofldevelopmant engineering, A, Hald
(2], arrived at the same form of the curve through the use of differential
equations, This section wili goncern iteself with characterizing processes
by differential equations from which reliability growth will be derived,

Iet x denote time or the magnitude of a growth factor which in-
fluences the aize of y of the observed phenocmenon, Then the differ-
ential coefficient dy/dx denotes the rate of growth; i,e., the 1ncgc¢le

per unit of time, At this point, the growth process can bh‘ehuractniized
vy '

% = £(x,¥),

which indicates the growth rate depends both on time (x) and of the size

obtained (y). We shall only deal with specisl cases of the types

$ = 2(v)atx),

%*v) - s(x)ax
in Aifferential notation. ’
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Integration yields _
Fiy) = o(x) o (@)
Thus by means of (2) y is determined as a function of x.

To apply '(‘1) to a specific case, we teke the situation whereby the
growth rate is proportionsl to the achieved reliability R, and o a
function of time, g(t) as: l

ﬁ% « Rg(t) ' ' ' L (3)
resrranging terms and using differential notation we cbtain: |

s RLOETTORE-T | (1)
Bince |

§§ « d InR, we hve from (L)

B -RE o RN
vﬁ;lch is called the 1ogu1thmtc differential coefficient to be used
f\lll‘thu'. . I
Introducing R = 1, R, A = R, and R(A ~ R) in “(3),\« obtein the
following four differentiel equations:

2! gﬁt %) | ' -
R . y . . (6)
& E 3?;\53)‘5?35.(&5;2{5. ]

whare A denotes the meximum value of R, 7

The four equations respectively 1ndic.ute that 'u.t & gliven time, the
reliability growth rate (1) depends on time but ia independent of the
sise reached, (2) is proportional to the size reached and to a function
. of the time, (3) is proportional to the "remaining size;" that is, the
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maximum size minus the size reached. and a functian of the time  ond
(4} is proportional to both the size reached and the remaining size
as well as a function of the time. '

We must study the character, or form, of the fourth differential
equation from equation (6) which is:

&R« R(A-B) g (t), (OsRsA), A = constant, ' (1)

which is set up under the important assumptions which are worthy of
repeating: At & given number of trials, the reliability growth rate,
dR/dt is & function of: .

1) the numbér of triels, t,

2) the growth, R, reached at a number of trials t, and

3) the remaining growth (A=R) to the maximum possidle relisbil.

ity value ).
By intr.oduction of the loga.rithxlnic differential coefficient as in

equation (5) we shall derive the relisbility growth function,

Dividing (T) by R and substituting in(5) , we get:
4 1nR

SR 4 Ry(t) = alt). o @

Solving (T) for.R:
1 dR .

RemeE aE | e

Substituting (9) into (8)

a i:R (k-R)S(‘ﬂ dt g(t) = ag(t),

or d 1nR . d In éL - 32 - h'(t). . | . | l ‘,' A(lO)
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d1ln () -R)_ 1 A b AR
at - R) ax - R gg = - (x =R) at_ °
Multiplsing (10) by dt and integrating ylelds:
1R - 1n() - R) = AG(t).

Solving for R:

-AG T
which includes a constant of integration, and may be determined from a
given value of (t, R). .

By introducing special functions for g(t) such as: .
- gy(t) =B +B t 4B, t°

gy(t) = By + B/t + B/t

one can obtain & number of examples of frequently applied growth curves.
For the felia.bility growth teats of the discrete case presented in this
thesis, 1t 1s sufficient to essume g(t) = B, Therefore, equation /11)

can be written as:

vhere A = e'h; a is a constant of integration,

For B > 0, equation {12)1is an increasing function of t having '
the ssymptote A, Bince O< R <) and O ¢ )\ € 1, the desired S-shaped

reliabiliity growth function is obtﬁneé:

1
1 +Ao'“.

15¢

() .

. (12)

(13)







Figure 2 shows the growth function given in (13) as the S-shaped curve

with horizontal asympototes at R = 0, and R =\ .

Tﬁe Critical Region

In designing statistical tests of hypotheses, it is necessary to
lpeciryl the size of the 'critice.l or rejection reglon oo, ¢« 18 defined as
the Type I error of the test and it ia the probability that the null
hypothesis will be rejected when it is actually true. The procedure of
caleulating the critical region when applying the reliability growth
function is f.o find the acceptance number of successes "a" such that

'Y
o ‘tEO Ri' n

where R n is the relisbility, or probability of getting i successes

1)
in n trials, Thus we must develop & probebility for each of the'gn
permutations and sum these to some minimum acceptance number "a" of
successes, which equals or Just exceeds o, The acceptance number of
successes, obtained from the o.b_o've summation of probabvilities when .
divided by 1ts corresponding n, gives the proportion successful (a/n),
which when plotted on the same graph as the reliability grouwih curvil ’
outlines the critical ;'egion. .

The probabllities of each of the permuto.tions can be computed by
the powerful device of generating functions e outlined by Uspensky [3]

‘l'he ;enera.ting funetion, ¢ (e), for this _problem is:

n B
¢ (‘) "1:1 <Ri g+ Ql) ""11-:1 Ri g ’

_where the coefficients R; will give both the permutations and the

.
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provabilities involiving 1 successes indicated by the exponent of the
dunqrw variable E, This equation can easily be computed recursively,
giving the permutafions and their probabilities at any Kth stage of
the development prograﬁ:

P (8) =Py (8) " (R & + Q)

0 1 2
"o, k18 P, g 8t P k1§ e

X-1.
*Fea, k1 8

(Re § + @)

- o] 1 - K
PO,Kg +P1’K§ +P2,Kg+““l(,l(g ’
where P8 M ig the proba'bilify of § successes in M trials, Then the
, .

eritical region is found by finding the minimum acceptance number, "a,"

which satisfies:

a
R
asﬁo 1,0,

and dividing this number by its corresponding n, to get the probabilities
which, when plotted, cutline the critical regibn.

For example, if n = 3 the recursion becomes:
3 .
8 (R.1 g+ Q)= (Ry g+ czl)_(n,2 £+ Q) (Ry €+ Q)
- 0 1 2 . 3
Bo,3 8 * R 38 *Ryg 8 +Ry g8
= (9 % §) €7+ (RiQ + QR0 + Q%K) €

2
+ (R1R26)3 * R) QR o,lazn3) £” + (R1R2R3) g3,
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Lo -0, iC5E berwe ace now individually evaluated and
the coefficiénts of the dummy variable gi are summed from the go term
through the §3 term. When the summation equals or Just exceeds the
preaasigned ¢ value, the =xponent of g‘ is divided by 3. This pro-
portign is then plotted to outline the critical region for n = 3,

Testing One Growth Curve Against an Alternative

The mathematical model for this problem is based on the assumption
that at each ith (discrete) trial in a development program the relia-
bility, R:l.’ of the unit is given by the growth curve:

1
R, & o= s where A and B are constants,
LT s A

Two curves are considered; the upper (desired growth) and Jclhe lower
(undesired growth).

The upper growth curve, our hypothesis, is determined by the initial
eurrent state-of-the-art reliability which is given to be Ry, the de-
sired or target reliability which is a specified value HN-ut program's-
end, and the total number of trials for the entire develupment program,
i=N.

The lower growth curve, the altefnative, 12 determined in the same
manner as the upper curve, with Ré being the minimum permiuibie J.evel.
and Rk being the minimum target 1evel.a.t i =N trials. '

A single unit is to be tested at each ith stage of the development
program, registering either o fallure or success. Even ir' the upper
lpecif:!.ed Ri curve is a true characteristic of the unit, the random

variations of sampling units will produce observed proportions of suc-
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cesses 1o each ith test which will deviate quite widely from the trena

of the basic growth curve, BEach "path" or "random walk"” of the ob~
served proportion successful depends on the permutation of successes,

8, and fallures, F, that can result in sampling units when the specified
Ri is the probability of success and Q1=l-OO-Ri the probability of

failure at each 1th trial, The total possible random walks or permu-

tations of failures and successes is 2“.

Types of Error
In designing gtatistical tests of hypotheses, it is necessary to

specify the size of the critical or rejection region ms o} also called

the producer's risk. Thus we must develop a probability for each of

the above permutations and sum these to some minimum ecceptance number,
"a," of successes which just exceeds probabllity o. When "a" is divided

by its corresponding n, the proportions cbtained outline the critical
region,

However, if some lower, undesirsble growth curve, which does not
reach target RN' is actually true of our system there is some risk or
chance f, that the observed proportion will not fall in the rejection

region, resulting in erroneous acceptance of the system,

S8ince the « error (Type I) is predetermined, we will show the
derivation of the B error (Type II).

1, Use the upper growth curve Ri" for a given o value to cal-

culate the acceptance number of successes "a" such that: .

8
1-0 1'n .
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where R 1s the total probability of "i" successes in n {rials con-

i,n
sisting al) possible permutations.

2. Use the number of successes "a" obtained from the first step,
upplying to the lower growth curve to calculate § values such that
_ . .
; '1‘_:‘ R:l n . |
The calculation can be conceptually diagrummed as below (although
in actuality we are dea.;.ing with discrete distributions):

lover growth curve upper' growth curve

a

. Number of Buccessos
Relationship of o and 8 error calculations
Figure3
It should be noted that the errors of o and § pertain only to

gach value of n, No attempt has been made to evaluate the overall error
for the declsion procedure, nemely, we do not know what i1s the probability
of accepting or rejecting R or R', independent of the number of items

tusted.,

Construction of Growth Curves
Calculgtion Instruction: For upper growth curves

1. At each i'B (d4screte) trial in o development program the
relisbility Ri' of the unit is gilven by the growth curve: '
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R, ® .
1 l + Ae“Bi (lh)
The conatants A and B can be obtained in tho following manners
For A, let 1 = 0, we have
1l 1
R, = — AW ) (35)
0 1 4 ae B0 Ry
For B, let 1 = N, we have
1
i 16
RN ). + Ae BN (16)

Substituting the value of A in (15) into, (1.6) we have

1
-R
«BN
1+ \~§gg) e

RN-

that is

2, Assign & number N (=5, 10, 15, ...N) to 1 4in formula (14) to

calculate its corresponding RN which will make up the body of the table
of upper-growth-curve-values.

Similarly we can obtain the values of lower growth curves,
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Due to ever Inerousing passoucer and freipght alr travel and resultunt
need for more rapid <urn around of equipment, a contract was let to e boud-
ing material manufacturor to develop a considerably more effective, but more
expensive metallic broke lining, evaluate it, and measure 1ts effect on the
braking system of the aifreralt. At o given breking horsepower in ft. lba/aec.,
the criterie for determining ouccoss S or failure ¥ of the material are two-folad:

1. The maximum wear of the lining is not to exceed .=~ 1nché/, and

2. The maximum wear of the bell (brake drum) is not to exceed
=== inch A/

Any brake lining which could nol meet these two criteris were classified
as rejects (failure), since these criteria are considered to be critical
defects, 1f exceeded. No previously tested linings can be retested.

A pre-deslgn meeting was hold with attendees representing managenent,
the customer, enginearing, purchasing and reliability. 8inece the reliabllity
of thia lining was of prime Importnnce, reliability chalred the meoting.

The most significant points mede in the meeting were that the cost of the
matallic material required is extremely high, mnd the requlred reliability
was .993; that is, on the average the customer was willing to live with
seven lining fallures in 1000. It was also mutually agreed that & six

percent probablility of rejecting the material wes allowed when the sample

Y '
Clagsified information, in thousauds 6f an inch, with breking applied
for x hours. .
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showed poor material coming from & good lot. This is known as the
producer’'s risk (a‘crror). The inltial current state-of-the-art
reliability of the brake lining was given to be 20 percent. The un-
desired or alternative initial reliability was given to be 19 percent,
with the alternative final reliability value being .935. This value
of .935 was chosen since a review of thes.g values for this combination
of .935 and ,993 indicated that the power of the tést (1.00 -gf)
was Bt a desirable level, considering the cost of the material and the
alphe error. The beta error was an elght percent probebllity of
accepting the material wiien the sample showed good material coming
from a bad lot.

There were four critical environmental tests which the braking
material was required to pass. These were:

1, Humidity

2, Temperature

3. Shock

L, vibration

A success in one particular environment does not mean that the

specific lining would have passed in another environment. It wee

decided that since two brake linings were required to simulate a braking

system, the linings for two shoas at a time would be manufactured, tested

two at & time on each of the four environmental tusts and their re-~

liability eveluated and growth structure monitored. The total‘manufuctured

sanmple size due to cost, was allowed to be T2 pairs of shoes.

154

© ks




S U YRR SNSRI Sl

The test results up to and including test number LO are shown in

Trble 1 and are plotted on Figura 4.

‘Table 1 ¢

BRAKE BONDING MATERIAL
TEST DATA SHEET

Number Nunber Cumulative Cumulative Proportion

ol Tests of Nurber of of Successes

‘Plir ) guccesses Buccesses ' g Reliability 2
i 1 hE 25
8 4] 1 2

12 3 b +33

16 3 T QAN

20 e 9 A5

2h 3 12 .50

28 2 L4 .io

32 1 15 4T

36 2 1T AT

ko 2 19 A48

Figure 4 illustrates the test results given in Table 1 plotted in
increments of four pairs of linings, the ypper desired reliability growth
curve, RN’ the alternative lower undeslrable reliability growth curve, Rl'v’
and the critical or reject region. As can be seen, the rellebility was not
growing as desired, so the mn.nufncturins and teating were halted after test

number 4O, A very strict enalysis was ordered of the design before authoriza-

tion was given to proceed further.

- -
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Conclusions:

The concept of reliability growth dwing the development stages is one
vhich should be emphesized throughout governmental and industrisl circles. The
growth pattern, saving time and money, can also create a better understanding
by the consumer and the producer of their problems through the visual monitor=-
ing of statistically sound methods of assessment. The producer snd consumer
should get together before development to understand and agree on the following
items related to the nmonitoring of the to-be-developed unit's reliebility:

1. The current state-of-the-art reliability.

2. The desired finel reliability velue at program'e end.

3. The alternative, or undesired, reliability values corresponding to

steps 1 and 2, '

b, The inspection size and final inspection size.

5. Null hypothesis and slternative(s).

6. Alpha error, beta error and power of the test.

Thus & thorough knowledge of the ability and use of the subject ltems will
be overlapped with a sound statistical technique for use in assessing the pro-
posed item during development.

¥hen choosing reliablility curves of the type presented herein for use in
describing the grovth pattern of a particular item in development, care must
be taken in selecting proper combinations of sample sgize and pre-assigned alpha
values. Snall alphe values will tend to be equalled or exceeded rather quickly
when the sample size is quite small, say 1.0 or less. For lerger sample sizes,
the values' of elpha are not es quickly equalled or exceeded, and when exceeded,
the cumuative probabilities closel& approximate the preassigned alpha values.
Of course, the power of the test (i.00 - Beta) will assist the choice of the

proper ccmbinations df alpha and tie sample size.
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PROGRAMMING THE GROWTH MODEL

Introduction

The reliability growth model program was written in Fortran IV
language and was run on the IBM 7040 computer, The program is flexible
in the sense that positive or negative step sizes are permitted in
choosing sequences of upper or lower curves, It is also possible to
skip certain curves in a sequence of upper or lower curves, The.pro-
gram will run approximately twenty minutes on the 70L0 for 60 combi-
nations of uppar and lower reliability growth curves and 50 different
values for sample size, The program listing is included for use.by
those wanting to generate curves, critical regions and B errors.

Please note the program statement nunhers are included 1n brackets
to the right of the eppropriste statements.

Description
The reliability growth program calculstes the quantities Probabilityi,

i =1, ... , n outlining the critical regions corresponding to different
values of the Type I or « error, ) i=1, ... y n, and the corre-
gponding Type II or B error represented by the quantities Si’ i=1,
««s N, When given the following:

1. various inspection sizes of 1 components ranging from O to

a teval of N of components,

2, a reliability R which represents the expected reliability

iupper




level for the inspection size of i components; i.e, the observed re-
liabllity Ri (ratio of number of accepted components to the accumulated
total number i of components which have been inspected at a given
stage of time) i3 not to fall within the eritical region determined by -

the volue of the Type I error, «, and the value of Ri end,
upper

" < Ri which represents an alterna-
dower upper

tive reliability level for inspection sizes of 1 components such that;

3., a reliability R

if the observed reliasbility R, for the ihspection size of 1 components

i

1s less than Ri » ¥e wish to calculate the probability B of com-
lower

mitting a Type IZ or B error, where P is defined as the probebility
that the observed reliability Ri does not full within the eritical reglion
determined by Ri and the specified value of o, but in actuality the
upper
expected reliability at the given state is given by Ri
lower

= a3/1, Frab, = au/i

The quantities Prob, = al/i, Prob, = ae/i, Prob

1 3
computed for the four choices of Uyy Qpy evey Qp of o for each in-
spection size 1 represent the proportion of the number of successes al
or reliable compénents to the number 4 of components which have bteen
inapected at the given stage, Therefore, Prdbl, Probe,..., Probn at

any given stage of inspection of lots of 1 components will be functions

of R ard of @)y Ogy evey respectively, The quantities Beta 19

1upper

Beta s ey Beta represent the Type II or P errors which are functions
respectively of the values 81, 85 sse, B of number of successes com-
puted przviocusly in the determination of Probl, Prdba, veoy Probn end

functions also of Ri .
lower

(vhere & s sevy 8 BTE the different values of "a" corresponding
to the f% ghoices “1’ Uy seey ap OF 0.)
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The inpal to the prorram is specified by various ceombinations of RO’
RN’ Ré, R& and various inspectlon sizes 1 of components where,
RO, RN are initial and target reliabilities respectively which are
used to comrute the ardinate points R on the upper growth curve
iupper
corresponding to the abscissa points i representing inspection size and
Ré, R&, are initial and target reliabilities respectively which are

used to compule the ordinate points Ri on the lower growth curve

corresponding to the abscissa pointa wiiz;rrepresent inspection size 1.
The initial inspection size, the step betweca inspection sizes,

and the largest inspection siz or total N of compenents may be vﬁried

without altering the program. Also the values of o may be varled

where the notation convention ay <y < aq <o is to be observed. In

choosing various combinations of Ro, RN, Ré, R& any initial values of

RN’ Rﬁ may be chosen, a step for simulianeously increasing RN’ Rﬁ may

be chosen, and the number of steps desired may be chosen. Similarly

the initial values for Ro, Ré, the step size, and the number of steps

desired may be specified,
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List of Symbols

Fortran Notatlon

Statistical Notation

Description

HRO

HRN

ROUL

:> ROLI

RNLI

e

0

Ty

R
0

Py

nitial 0

R! -
Onitial hFo

RNinitial-hRN

Rﬁinitigl-hRN

166

Btep size between succeeding
values of R. (must be the sane
as step sizg between succeeding

values of Ré).

Step size between succeeding
values of (must be the same
a8 step slze between succeeding
values of Rﬁ).

if Ro is the smallest
initial

value of R, which is used in

the specif?ed combinations of

values Ro, RN’ Ré, R&, then

ROUL is equivelent to Ro -hR .
initial "0

if Ré is the smallest
initial
velue of Ro‘ which 45 used in

the specified combinations of
values Ro, RN, Ré, Rﬁ, then
ROLI is equivalent to R}

Oinitial

if RN is the smallest
initial
value of RN which is used in the

specified combinations of values
Ry RN’ Ré, Rﬁ, then RNUY 1s equiv-

| alent to Ruinitial-hRN'

ir Rﬁ is the smallest
initial
value of Rﬁ which 15 used in the

specified combinations of values
Rgs RN’ Ré, R&, then RNLI is

equivalent to RNinitial-hP '




Fortran Notat;on

Statistical Notation

Description

IRO
IBN

MAXTRI, XMAX
HTRI

INTRL

ITRT

ALPHA (1)
ALPHA (2)
ALPHA fs;
ALPHA (n
AU
AL

B

BL

TRIALS, NTRILS

Linttia)

RRR R
=TV

. B

167

total number of glven values
for Ro (must be the same as

total nunber of given values
for Rb)o

totel number of given values
for Ry (must be the same as

total number of given values for

Ry

largest number of components
(inspection size) considered

step size between succeeding
inspection lots.

iinitial is the inltiel or

smallest lot which is to be
sampled,

number of inspection sizes to
be sampled,

specified values of o such
that oy < 2y < d3 < o

A= (1-120)/12o

A'= (1.Rb)/r¢6

Ry (l-RN)

RN (l'Ro)

R! (1-R!)
B'= (-1/N) loge——ﬁ-N?——ﬁ_—_-;-lg—y

number of components 1 Iin
inspection size being con-
sidered at given stage in
sequential sampling procedure,

B = (-1/N) log,




Fortran Notation

Statistical Notation

Descripticn

RIV
RIL

Q1
QL

BETA (1)

BETA (2)
BETA (3)
BETA (n)

PROB (1)

PROB (2)
" PROB (3)

PROB (n)

upper

i1awer

Y

Beta

Beta2

' Beta

Be‘l‘.a.n

Prob, = al/i |

Prob, = a,/i
Proby = a3/:l.

Prob_ = a /i

168

R = 1/(1 + Ae”Bl)

1upper

R, = 1/(1 + Ate"P'Y
lower

Q 1R

Y=1-%

Type II or B errors corre-
sponding to a3 s 03. o,

Answers printed out for values
@y Ups as, o of o dencting

ratio of critical region to
number inspected,

P |




,‘)
i
\.

EFrocedure

The procedure 1s as follows:

(?l; 02,

5.
outline

6'
Ry B,

Choose a particular combluation of valiues R, Ra, Res Rﬁ.

Cheose a particular inspection size i and final size N.
Choose a particular combination of « velues.
Find the numbers 8ys 83 By &, for the given values of

Q3, dn-

Divide the a's in step 4 by . n to get the probabilities which
the cxitical region.

Find the corresponding B values for each combination of

o, and 1,
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Fortran Program T.isting
(Stetement Numbers in Brackets)

DLOGIC, MAP, FILES

GROWTH FULIST, REF, DD

DIMENSION RUI(501),RIL(501).QIU(50L),QIL({501 ), TERMI(50L ), TERML(50
1),ALPHA(4 ), PROB(4 ), BETA(S ), TRIALS({501)

READ (5,1001)ROUI, ROLT, RNUT, RNLI, HROU, HROL, HRNU, HRNL, IR0, IRN, MAXTR (10]
I,INTRI HTRI,(AI..PHA(I),Iul,rJ-)

FORMAT(BFS5,3, 213, 16, I5, Fls ,0/bF5..3) [1001]

INITIALIZE RELIABILLTY VALUES

ROU=ROUI
ROL=ROLI

DO 200). Ilel,IRO
ROU=ROU+HROU
ROL=ROL+HROL

CALCULATE CONSTANTS A AND B FOR USE IN SOLVING FOR R(I)

AU:EI.O-ROU /ROU

AL=(1,0-ROL)/ROL

RNU=RNUI

RNL=RNLI

DO 2002 I2el,IRN

RNU=RNU+HRNU

RNL=RNL+HRNL

PRINT 4015, ROU,ROL, RNU, RNL

F(}F/!D)MT (1O0xUHROU«, F5.3, 1L0x4HROLx, F5 . 3, ).0x4 HRNU+, F'5 . 3, LOX4HRNL=, F5.  [4015)
3

XMAX =MAXTRI

Bul-é-l.o/nmx *Amc‘snou*zl.o-nwg)/ mu*él.o-nouggz

BL=(~1,0/XMAX Y#ALOG( (ROI#(1,0-RNL) } /(RNL*(1,0-ROL) ) }

WRITE §6,1002 ROU, RNU, ROL, RNL, (ALPHA(X),I=1,4), (ALPHA(J),J=1, %)

FORMAT(1HL 53X2LHCRITICAL REGION CURVES///35X18HUPPER GROWTH CU (1002]

RVE, 32X18HL.OVER GROWTH CURVE//30XLHRO =,6.3,8X4HRN =,}6.3,22XUHRO
«,F6.3,8X4HRN «,F6,3//9XOHNUMBER OF , 15X22HPROBABILITY OF SUCCESS,
29XL9HTYPE II(RETA) ERROR/11XSHTRIALS, U4(2X6HALPHAx,FS.3),1X, 4(2X6H

AIPHA=,F5,3))

PTRIAL=INTRI

Do 2003 Ignl,MAXTRI

TRIALS(I3)=I3

CALCULATE UPPER AND LOWER REIIABILITY VALUES, R(I)

HHE Y AR A e e

CALCULATE Q VALUES, Q(I)

QIU§I33=1.0-RIU213
QIL(I3)=1,0-RIL{13
PI3=13
IF(PL3.NE,PTRIAL) GO TO 2003
PTRIAL=PTRIAL+HTRI

SUMJxl.0

SUML=1.0

BETA(1)=1.0
170
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IALPHA=L
DO 5000 I-1,I3

SUM FPROBS OF ZERO SUCCESSES

BUMU=-SUMU*QTU( 1
SUML=SUML*OTL( I [5000]

COMPARE SUM OF PROBS OF ZERO SUCCESSES WITH ALPHA VALUES

IF( SUMU-ALPHA(TALPHA ) )5025, 5020, 5020 i [5010)
PROB({ IALPHA }=0,0 {5020])
BETA(IALPHA +1)=BETA( TALPHA) _ \
IALPHA=TALPHA+L ' v

IF( IALPHA <4 )5010,5010,132
CALCULATE BETA VALUES

BETA(IALPHA ) =BETA( TALPHA ) - SUML [5025)

DO 5040 I=1,I3 [5030]
TERMU§I§=SUMU .

TERML( I )=SUML _ [5040]
K3=13-1

IF (K3,EQ.0) GO TO 5120

™0 5080 K=1,K3

J=K

DO 5050 I-1,I3 :
TERMU( I ) =TERMU( X J*RTU(T) /QTU(J)

SUM PROBS OF (ZERO SUCCESSES AND MIDDLE TERM BUCCESSES)

SUMU=SUMU+TERMU (L)

TERML( I ) = TERML( I }*RIL(J ) /QIL(J)

J=J+1

IF(J.0D.I3)J=1 |

CONTINUE [5050)

COMPARE SUM OF MIDDLE TERM PROBS OF SUCCESSES PLUS SUM OF ZERO
SUGCESSES (PROBS OF) WITH ALPHA VALUES

IF(SUMU-ALPHA(LALPHA) )5075,5070, 5070 ‘[5060)
PK~K [5070]
PROB( IALPHA ) =PK/TRIALS(I3)

BETAEIALPHA& )-BETA{IALPHA)

IALPHA-TALPHA +1

IF(IALPHA-L )5060,5060, 132 ,

DO 5G78 L=1,13 . (5075]
CALCULATE BETA VALUES

BETA( IALPHA ) -BETA( IALPHA ) ~TERML(L) : ’ - [5078)
CONTINVE [5080)
RTERMU=1.0 [5120)
RTERML.1 .0

DO 5090 I.1,13

RTFRMU=RTERMU*RIU(I3) (5090)
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SUM PROBS OF ALL SUCCESSES
SUMU=SUMU+RTERMU

COMPARE SUM OF PROBS OF (ZERO,MIDDLE TERMS, AND ALL SUCCESSES)
WITH ALPHA VALUES '

IF(SUMU-ALPHA( TALPHA ) )3105,5110, 5110
PK=I3

PROB( TALPIA ) =PX /TRIALS(13)

BETA( IALPHA+1 ) =BETA( IALPHA )
IF(IALPHA.L )5100,5100,132

WRITE §6,1003)TRIALS(I),(PROB(I),I:l
FORMAT F16.0,F12.5,3F13.5,1x,uF13.53
GO TO 2003

WRLTE §6,IOOM)TRIALS(I),IALPHA
FORMAT( /F16,0, 5X, 20HCONDITIONS ON ALPHA(,Il,38H) NOT SATISFIED AF'
ER SUMMING OF TERMS)

L), (BETA(J),J=1,4)

CHECK TO SEE WHICH ALPHA VALUE WAS NOT EXCEEDED

IF(IALPHA-1)2003, 2003, 141
IF(IALPHA-2)151,151,152
WRITE gG,IOOS)PROB(L),BETASl)
FORMAT(16X,F12.5, 40X, F13.5
GO TO 2003
IF(IALPHA-3) 161,161,162
WRITE (6,1006)PROB(1),PROB(2),BETA(1), BETA(2)
FORMAT(16X,F12.5,F13.5,27X, 2F13.5)
GO TO 2003
WRITE §6,1007)(PROB(I),I=l,3),(BETA(£),I=l,3)
FORMAT(16X,F12.5,2F13.5,14X,3F13.5)
CONTINUE
WRITE $6,1009)
FORMAT(1H1 S5OX25HRELIABILITY GROWTH CURVES///35XL8HUPPER GROWTH CU
RVE, 32X18HLOWER GROWTH CURVE//30X2HRIL6X2HQI30X2HRI16X2HQI//
GXOHNUMBER OF /11X6HTRIALS)
WRITE (6,1008)(TRIALS(I), RIU(I),QIU(I),RIL(I),QIL(I),I=1,MAXTRI)
FORMAT(F16,0, 10X, F7.5,12X,F7.5,25X%,F7.5,10X,F7.5)
CONTINUE
CONTINUE
60 T0 10
END
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{5100]
5110)

[132)
[1003)

(3105)
[2004]

[141)
[151]
[1005)

[152]
[161)]
[1006]

[162]
[1007]
(2003)

[2009]

[1008])
[2002)
(2001]




Hend Calculations

In order to ascertain the validity of the program logic, hand cal-
culations were performed and compared with the computer run as given
in Table 2, Due to the high alpha values, the example used is not recom-
mended for other then comparing with hand calculations. As will be seen,
the hand calculation ends at n = 3 due to cumbersome calculations for
n>3,

The hand calculations proceed as follows:

1, Calculate Ri and Qi values for the upper growth curve,

2. For a purticular n, calculate probabilities of successes from zero

successes through all successes.

3. Compare the probabilities calculated in step two above, with
the preassigned alpha values,

4, If the probsbilities in step 3 are equal to, or exceed alpha,

determine the number of successes of the term which determined if the

alpha was met or exceeded, end divide this number by n,
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The uctual hand calculations follow:

3

UPPER_GROWTH CURVE

R, = +25, Ry = .90, N = 10, Ri'm
A=22 _1.00=3.0
o
B = - log Bo (100 - Byl | .3297
N e By O Ry) o
N T A 1eae® R Q
3297 0 1 3.0 4,0 250 750
" 3297 .T2913 " 3.15739 32672 ,68328
" 650k 51716 " 2,55148 .39193 60807
" 9891 37191 " 2,11157 L7358 52642
LOWER GROWIH CUKVE
Ry =2, Ry = .8, N=10, Ril';—i_e-'ﬁ
Ael
B = ,2773
B B e B A 1ea™ R Q
2773 0 1 L 5 .200 .800
" 2773 15782 . " k.03128 24806 ,T5194
Woosshs S35 " 3.20740  .30327  .69673
" 8318  .u3s26 " 2,74104 36483 63517

Comparison with Table 2 shows the hand calculated values of R:I. -and G),1 to

closely approximate the values printed out by the computer; the difference

being the computer retains more decimal places than used in the' hand cal-

culations.

175




S g et e i e

e e e T VR TR TS MYt s 2 e 4

The salsulation of the "Prohahilitien of Success" as outlined in the
main body of Teble? follows, using probabilities from the upper growth

curve;

Alpha
n
i Expansion: W (R, g + 60 .70 .80 ,
A pgeston: T (R €+ Q) £ g0 80 .0
1 R e . Q e
.31672 + .68328 51’. % % %
2 BB, €+ (R,Q + RQ,) € + @, §°
JAek + (,268 + ,193) + 15 %. % .;. ;:;_
3 RRR, g3 + [(Ranaq1)+(nlnaqz)+(nlnaq3)];2
O T(RQQ,H(RQ, 0 ) 4R, 00,0
0
YRyt
059 + [.1268 + ,0912 + ,0653)
1 2 2

+ (.1958 + ,1410 + .1014] + .2187 3 X 3 §-

It mast be remembered that the summation of probabilitles begins with zero
successes to the numhber of successes which‘ determines that the alpha of
interest has been squalled or exceeded,

The Beta values proceed as i‘ol]:cnu » working with the lower gr_owth
curve values of lii and QL beginning with th'e "a" value detarﬁned from the

probabilities. of success calculations:

Alpha
n
L E Ry, 60 00 80 .90
1 8Sum terms from O successes to l _ 1.000

Bum terms from ) success to 1 24805 24805 .24805
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5
Iz
18

Sun terms from 1 success to 2
(Ry3, + R Q) ¢t + RyR, e
(.228 + .173) ¢* + 075 €% M6 MTE 76

Sum terms from 2 successes to 2 ‘ B 075

Sum terms from 1 success to 3

[(Ry9 Q) +(R,%,0)+(R,,9,)] €
+(RyRy% ) +(RyRyQ, ) +(RyR,Q,)) g2+RlR2R3§3
[,101 + .145 + ,110) €1 +

[.083 + .063 + ,0u8) ge + ,027 g3 - 667

Sum terms from 2 success=s to 3

; 2 3
[(R,RQ }+(R Ry ) +(R)R,3,)] €7 + RyRyR, 8
[.083 + .063 + O8] €2 + 027 £° = 221 221 .221
Taus the loglic of the computer program listing is proven to be valid

since ths hand calculations agree with the résults chown in Table 2. and

Table 2 .is an exact copy of a computer runm,

1,
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ON FITTING OF THE WEIBULL DISTRIBUTION WITH
NON~-ZERO LOCATION PARAMETER AND SOME APPLICATIONS

Ogkar M. Ezsenwanger
Aerophysics Branch
Physical Sciences Laboratory
Regsearch and Development Directorate
U.S, Army Missile Command
Redstone Arsenal, Alabama

ABSTRACT. The Weibull distribution is difficult to fit when the
location parameter is different from zero.

Although for engineering problems a graphical method for determination
of the parameters exist, an application to numerous data samples is very

time consumiug and elaborate, moreover when the location parameter is
different from zero.

Two methods are presented, applicable to computer usage. One method
is based upon the moments of the distribution and the second upon a curve
fitting procedure. Although neither method utilizes the maximum likelihood

principle, application in practical engineering problems may be quite
adequate.

Examples of applicatiorn are given, and the analytical curves from the
two methods are compared with observed distributions. Emphasis is placed

on close approximation of the 90, 95 and 99% value of wind speed and win
shear distributions. .

I. INTRODUCTION. The Weibull distribution (1) has become very popular
for many statistical problems in recent times. This is understandable if
one considers that this distribution offers several conveniences.

The distribution form
X=y, B

F) =1 - e~ CoD (1)
shows 3 parameters, B determining the shape, 5 defining the scale and Y
establishing the location of reference. The popularity of this distribution
is based upon a number of attractive features. The distribution is versatile
and can assume various types of other distributions. The application does
not neceasarily require a specific statistical model, although in life testing
a typical case of utilization arises. It is a cumulative distribution, whare
the threshold can be readily computed directly rather than by an elaborate
process of integration as in most other types of distributions. Its three
paraneters make it more adaptable to many empirical frequency distributinns

in comparison with two parameter fittings. Difficulties arise, however, if
all 3 parameters must be determined.

Usually it is assumed that Y = O and then no problems exist for
adequate fitting of the digtribution. Maximum likelihood (2, 3} or other
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methods (4) are readily available. Limitation to a 2 parameter fit restricts
the utilization of the distribution and does not render its full capacity.
Curve fitting 1in rather difficult, however, if vy 4 0. Two methods are
therefore presented in the following, by which the y cam be ucicrmiznzd 4n
objective ways, although the methods are not based upon the maximum likelihood
principie, For many engincering applications. however, the two methods, which

can also be adapted for computer use, may be quite satisfactory.

One method is derived for the moments fit and doves not need the
frequency distribution. The second metho.l requires a frequency distribution,
although not equal class intervals, as usually assumed by maximum likelihood
methods. This second method is based upon a curve fitting procedure.

II. THE MOMENTS FIT. A moments fit of a distribution is in most cases
very convenient. The moments of a distribution can be easily computed, and
it 1s not necessary that the total frequency distribution is known for a
moments fit. Usually an analytical solution for the parameter computation
can be derived. Unfortunately this form of explicit solution for the Weibull
distribution with v ¢ O is not trivial, as the B in the moments fit appears
implicit in the I'(n). Ome finds for the Weibull distribution

E(x)-;-e'n+7 2)
o® w82 (b - a%) @)
€y = 03 (¢ - 3ab + 2.3) (4)
where .
a=T 1+ %9 (5)
b-P(1+%) (6)
c-r(1+%) n

and €3 denotes the third moment with reference of the mean. This leads to

the squation
3
[+ S.b + %. (8)

-3,
Sz bt la
17 3T s )3

A

In equation (8) the 8 is the only unknown, although it appears in
implicit form. Tables for determining B can be found in a recent report by
the author (5). After the 8 has been obtained,

2
e2 -l 3 )
b-a
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Tables for the denominator with reference to B are given in the abovs
mentioned report (5). Finally

Y =x- 8+a (10)

The respective numerical vaiue of "a' has also been included in above
referenced tables (5). ;

Thus the moments method is relatively simple. Equation (8) can also
be adapted for solutions by high speed electronic computers with subsesquent
calculations of 9 and y.

The moments fit may have practical value in engineering applicationm.

IIZ. THE "STRAIGHT LINE" FIT. Reservations against the momentas fit
are largely based upon two objections. First, the moments fit is not always
& maximuw likelihood fit, which 1s the modern trend in statistics. Those who
oppose the moments fit for that reason will not use this type of solution,
although utilization may provide similar results for practical purposes.
Therefore no further discussion of this argument is necessary here. The
sacond objection is based upon the fact that 3 pieces of information from the
data is employed only, while more information may be available. This is true
especially when the frequency distribution is given or known,

Thus the angineers sometimes prefer graphical methods as demonstrated
e.g. by Plait (6) or Berrettoni (7)., The graphical method as introduced
by Berrettoni (7) attracts because of its simplicity for 2 parameters, when
y= 0, If vy ¢ 0, then the distribution becomes a curved line in log/log
paper instead of an easily determined straight line (see Figure at the end
of this article). As Berrettoni suggests, one must determine ¥y by trial.
With y koown, the Weibull distribution appears as a straight line in log/log
paper, and 8 and 6 can be obtained readily. The cumbersome procedure is to
determine y by this graphical method and make a judgment when the transformed
curve is considered a straight line.

By this method v can only be determined to a certain degree of accuracy, and
arguments about differences between moments and maximum likelihood fit becoma
the more irrelevant. The idea behind Berrettoni's method is certainly to
semploy more information on the distribution than given by the moments. It
must therefore be possible to derive an objective way of trial to determine
vy and at the same time bring the inaccuracy under a certain limit, which can
be arbitrarily selected.

In order to derive the equationa for this procedurs, start with the
transformed equation (1) with R, = 1~ F(x). Then

in [4n -,%;1 =Y =g in (x~y) -~ B i 6 (11)

The goal is a straight line. Thus

Y= az - &, (12)
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_the same time. Otherwise one would not find a straight line. One can there-

and
z = in (x-y) 13)
1f v = 0, then 2 = 21z {13a)

Y % 0 produces a curved line (see Figure at ond of article) and

- _ 2 n
y =a;z-a +az+ e 82 (14)
or in orthogonal functions
" Ab + Al ¢11 + Az @21 + s An ¢n1 (15)

Then the Y + y, if Aj + 0 for § > 2. To meet thie condition, a test is
necessary for Az only since all higher order coefficients must be zero at

fore restrict the computations to

1 n
Ay = S5 §Y1¢21-0 (16)
J

-

vhere z, in this orthogonalized system at equidistant intervals corresponds
to .
z, - in (xi -y) = inz 1 an

More details can be found in a separate report by the author (5), where
examples for the solution are given.

1V, COMPARISON OF METHODS. Before applications are presented it may be
adequate to discuss sone technical details and limitations of the two methods.

It has been previously stated that both methods ars not derived from
the maximum likelihood principle and may therefore be of no interest to the
theoretical statistician or may be considered as substitute methods, The
moments fit attracts as being straight forward with a relatively simple way
of computing the parameters. Only three moments need to be known. From the
sngineering point of view the "straight line method" comes closer to a
graphical type of solution and renders the better curve fitting. There is
no necessity of the frequency distribution being given in equal class intervals.

This is quite convenient, but the frequency distribution is required in contrast
to the moments fit.

One limitation can be found, however, in the exclusion of the F(x ) =0,
1
This leads to in(in 1) .n equation (1l1), which being infinity must be
eliminated. The question arisas therefore, how close to F(x ) can one go,
1
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or should the first x be omitted. In Table I a survey is given for 3 dara
samples, whiere ihe Welbputl distribution has been established as being
appropriate., The first column in Table I lists the parameters, which
Berrettoni (7) has derived by his graphical methcd., The second column
represents the moments solution. The subsequent columns reflect the para-
meters for the straight line method under various conditions.

It is self-explanatory that in the column "without F(x )" the origin
1 :
point has been omitted. The other columns show how the parameters change, L
if F(x y - 0.001; 0.0005 or 0.0001, It can be concluded that the Yy responds
1

gsomewhat to the change of the origin and with vy the other parameters will

vary (see especlally case 3)., It can be noted, too, that the solutions

without the F(x ) agree well with Berrettoni's results. The small differences
1

can easily be explained by inaccuracies between graphical and computational

methodas, Under the aspect that the graphical solution and tne straight line

method are not maximum likelihood solutions these small differences become :
even more insignificant.

In order to test the differences of the methods for significance, one
can apply the Kolmogorov-Smirnov Test (8)., None of the deviations proved
to be gtatistically significant, More details can be found in a forthcoming
article by the author (9).

Since case 3 displayed the largest differences, the cumulative distribution
was computed for variocus postulations and is surmarized in Table IL. The firsgt
column (after the variable x) contains the observed distribution. Berrettoni's
solution (7) follows next. Subsequently the computed frequency for the “"moments"
and the "straight line" method are listed. The underlining of numbers indicates
the maximum deviation for all presented curves in that particular line. This
example is quite typical. Although none of the differences to the observed
value reaches statistical significance at the 95% level, it can be seen that
the 3 methods approximate the observed distribution in specific ways. The
moments method reveals closer fitting towards the maximum values, while the
straight line procedure deviates less at the minimum values. The graphical
solution (Berrettoni) provides the maximum deviation in the center.

The other 6 columns, experimenting with varying Xy and the related
cumulative frequency as outlined in the heading lie somewhat in between axcept
for x, = 1.1 with F(x ) * 0.001, This condition exhibits the largest

1
deviation. It proves that the frequency of F(x ),should be kept as close
1

to zero as possible, although no specific value can be establisied.

V. APPLICATION TO WIND SPEED AND WIND SHEAR DATA. In an earlier article
the author has introduced the negative binomial digtribution which functions
quite setisfactorily for frequency distributions of wind speed (10). Cumulative
threshold values, however, are very cumbersome to compute for the negative
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binouial frequency distribution., The question was thus raised whether the
Waibull distribution may be an adequate replacement. Cumulative thresholds
can be eanily obtained from the Weibull distribution.

Table III displays typical results of fitting the Weibull distribution
to wind data. It can again be recognized that the moments fit approximates
closer the maximum wind speeds, while the straight line method adjusts better
to lower wind speeds. In general, the Kolmogorov-Smirnov test shows
statistically significant differences betweea observed and analytical values
computed frow the Weibull distribution (see details in 11). This proveu that !
the Weibull distribution is not the best suitable form to fit wind speed or
shear data. A limited application, however, turned out to be quite valuable.

The engineer is often faced with the problem to determine 90 - 99%
values when no detailed distribution is given. Since the moments fit of
the Weibull distribution has given good results for the maximum wind speeds,
an attempt was made to analytically determine the 90, 95 and 99% wind speed
and wind shear value and compare it with the observed. The results arc
presented in Tables IV thru VII.

In Table IV three methods are compared for computing 90, 95 and 99%
thresholds for wind speed and wind shear values. Montgcmery was selected,
ag it illustrates typical results. The three threshold values were
analytically computed, employing the negative binomial, bivariate and Weibull
distribution (moments fit). Analytical distributions for negative binomial
and bivariate distribution are described in detail in a receant report by the
author (10).

The thresholds were computed &t 1 km altitude intervals up to 31 km
for all montha. The {linear) correlation between observed and analytical
value was thus computed, as exhibited in the top part of Table IV. This
gives evidence that the Weibull distribution is equivalent to the negative
binomiai except for the wind shear and 997 threshold. The Weibull distribution
is even better than the bivariate distribution, which is generally agreed to
he the proper distribution form for wind speed and shear.

The central part of Table IV lists the mean of 4, the difference between
analytical and observed wind speed or shear. Although the observed values for
the wind speed appear to be systematically higher than the anmalytical values,
the bias is smallest for the Weibull distribution. No bias is exposed for
the wind shear.

The bottom part of Table IV deals with the standard deviation of the
difference 4. Again, the results are very favorable for the Weibull distribution
except for the 992 wind shear estimate.

Since correlation, mean values or standard deviations can sometimes be
nisleading, the frequency distributions nf the A are presented in Tables V,
VI, and VII.. This also gives..a survey on the maximum deviations to be expected
for the varioue analytical approaches. Table V contains the frequency )
distribution of A for the 90% threshold, where the Weibull distribution looks
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very good. Less than 5% of the data excssd t 2 m/onn for the ¥ t 3

et wind énl-‘l =
m/sec per km for the wind shear. This is entirely in the range of measurement
accuraciles.

The differences are higher for the 95% threshold of the wind speed, but
still under 10% of the data fell outside the above cited range. The amount is
far higher for the negative binomilal or the bivariate distribution. The wind

shear differences are equivalent for all three types of analytical forms in
the 95% thresholds.

Finally the frequency distribution of the differences A for the 99%
threshold 1s given. Although the range is extended compared with the previous
thresholds, the Weibull distribution displays still the smallest scatter of
all three methods for the wind and could be considered equivalent to the
negative binomial for the wind shear. This may be proof enough that the
Weibull distribution could be adequately used for practical purpose in the
analytical approximation of 90 to 99% thresholds.

VI. CONCLUSIONS. Two methods for fitting the Weibull distribution with
non-zero location parameter have been discussed. One method, based upon the
first 3 moments of the distribution, provides a simple way of obtaining the
basic inmput for determining the parameters of the Weibull distributionm,

although the solution necessitates a computer or table as derived by the
author (5).

A further method is based upon a curve fitting procedure. The property
of the Weibull distribution to delineate a straight line in log/log scale
for known location parameters is the fundamental principle employed in solving
for the parameters. The latter method requires that the frequency distribution
is known, although not at equidistant intervals. In turn, more information

(namely all known frequency points) is utilized by this curve fitting procedure
in contrast to the 3 moments only for the moments fit.

Both methods are suitable for determining the Weibull parameters without
electronic computers, while the iterative procedure for a maximum likelihood
solution cannot be processed without computer help., The moments fit, however,
needs the tables derived by the author (5) 1f no computer 1g available. Thus
both methods may prove beneficlal to the engineer for quick solution in limited
number of samples, although it is not vestricted to a small number.

It has been shown that the moments fit in most cases represents the
better fit towards the end of the maximum values, while the curve fitting
procedure puts more weight on the proper approximation of the minimum values,

Thie could be changed, however, by weighting the frequency points of the
distribution for the curve fitting method.

Finally an application of the Weibull distribution for wind and wind
shear data is shown. Although the Weibull distribution has limited application

for wind and wind shear, the moments fit proved to be satisfactory to represent
90 to 99% thresholds.
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%‘ TABLE I
% Comparison of Parameters Estimation for
! the Weibull Distribution
'y ! Straight line method with r(xz) equal to
[ _ Without ’(t:.)
; Case 1 Berrattoni Moments .001 .0005 .0001*
i y 3.0 2. 74 2,71 3.03 3.06 3,07
; ] 3.67 3.97 3.99 3.39 3.55 3.51
v p 1.8 2.00 2,00 1.76 1.7h 1,72
t a 10.b_
’ Cass £
7 3.6° 1. 3.63 2.82 2.92 3.03
] ’ : (-] 7:39 9-& 7. 15 3.06 7.% 7.82
1 ! ; B 1-7 2-25 1066 2.“ 2,02 1.‘%
l ; o« 29.96 -l
] G (x, = 1.0
Lo f 7 2,0 1.67 . 71 .83 97
;T ! i ] ‘hm ‘&.87 lh:59 6025 6 ” '5!23
b | 8 1.8 1.8% 1.69 2.52 2.46 2.ho
Lo } a 1.9 '
o
' 5 a 7 (‘l - 2.0)
. : ' 1.89 1.93 1.9%
| _,- : PRt .66 | b.6h
. :_' 1.3: 1.80 1.79
P
! | #) |
: | The limit was .0002 for case 1, .
. |
‘ {
H
g
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TABLE XI

romparison of Weibull Distribution for Various Methods

R e S n

* for Data of Berrsttoni's Tablu III (CFD in %)

R

Straight Line Method

ey

L2 n i s

e st e, e i ) 8w

e A T

N . :; = 1,1 ‘1 - 2.I0
X ~ Obs . DBerr. Hom Without 001  ,0005 .0001L .0O0L x .0003 .00OL .
1.0 - - - - S S
e.o_'.' - .00 .68 - 187 L70 1.u7-_-' .09 O 02
5 66 6l9 8.6 6 | M 7% T30 685 677 6T
5. . 38 38420 39,04 39,01 3@ 349 32,57 3TST. TS BT%6
7 7Tk 70,36 69.32 70,00 64.09" 6436 6h.55 68.65 68.72 68.72
9. . 81.9 B89.23 88.12 '8'8.'57'_ 87.17 87.26 . B7.29 88.01° 87.96 67,90
17 967 96.98 96kl 96,35 9109 IT.0B. 9T.03 S6AK 9637 (96.3
13 0 98.9 993 9905 '99.06  90.60 < 99.59 9936 99.17- 99.13 99.11
15 1000 99.88 9.8 99,80  99.9 99.95 99,96 99.84 . 99.83 99.82
. .= 99T 99.9 c e mli e 9T 99T
. The maximum dcvhtion__. are \_lndcrltud;
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; TABLE III {
E Wind Speed (m/sec) Comparison of Weibull Distribution !
i .CPD*) Observed Moments f£it Straight Line ncthéd
.0001 3,0 1.9 - 3.4
k .0100 20,4 19.b 17.9
f .0228 21.7 - 2.4 22.3
f .0500 25.6 26.1 27.3
§ 1000 | 31.6 30.3 32.6
o 11590 35.3 33.9 36.7
i : .5000 7.8 b7.5 : 50.7
- 810 61.9 61.5 63.2
SR 9000 65.8 654 66.5
9500 69.8 703 - 10.5
. B 9772 16.9 10 .3
SR .9900 80.6 _ 9.3 7.6
i ’. ,’ .9995 91.0 ' 91.5 86.6

*)CFD = cumulative frequency distribution
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90%
95%
99%

9%
99%

90%
95%

TABLE IV

Montgomery (June 1956 - May 1964)

(A1l Months Combinedy

Average Correlation Between (bserved and Analytical Thresholds

Wind
Neg. Bin, Biv. Wel, Neg. Bin,
.982 .996 .998 91T
984 +995 <997 .968
965 .985 9ok .940
Mean of A
- .50 1.36 -k .16
- .72 L6 - .66 .03
-1,14 -2.09 -1,01 -.63
Standard Deviation of A

1.51 1.57 .80 .53
1.65 1.93 1,07 T35
2.20 3.08 1.80 1.37

A = analytical = observed
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Wind Shear
Biv,
.986
97T
+90k

93

=2.59

1
2,07

Wei.
.991
976
914

.05
.10
-,02




Wel,

Biv,

Wind Shear

Neg. Bin.

Hﬁ .

TABLE V

Biv,

Frequency Distritution of A
Wind

Montgomery ( June 1956 = May 1964)

Neg. Bin,

PR e et it = B S 2 P rt e A e A e e R o e i o " i i M @ s ©
- - At i s

13
116
20k

13

2

15722&81

O 0N AO0E L o
: -t o

ito
-4

98765;43210123&.567890
o T ¢ 8 85 8 83 8 8 O
“2882288822882882828828838828888

””””””””””1111111111>

0000000000

7.65-4-’210 125.“56789

548

3712

3712

72
classee in m/sec for wind and m/sec per 1 km for wind shear

A = analytical = observed
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TABLE VI

Montgomery (Jure 1956 - May 1964)
95%

Frequency Distribution of A

Wind ) Wind Shear
Neg. Bin, Biv, Wel., = Neg. Bin, Biv,
< =10
=0.99 to 9,0 1 1
.8,|99 to "8.0 1 '
=7.99 to «7.,0 2 1
-6199 to '6.0 2 3 1
5,99 to «5,0 b 1 2
'h‘|99 to -uoo 6 2 1
=3.99 to =3,0 12 5 g : 2
=2.99 to «2,0 25 ] 1 h 3
«1,99 to =1,0 Eg 27 60 22 15
=0,99 to 0.0 1 97 207 148 114
Ol to 1,0 °' 86 123 64 148 197
1.0l to 2,0 21 ST 11l 23 17
2,01 to 3.0 () ‘ 25 . 3
3.01 to 4,0 2 10
4,01 to 5.0 .9
5,01 to 6.0 2
6.01 to 7.0 ' 2
.01l to 8.0 :
Ol to 9.0 3
9001 to 1000
> 10.0
N 372 3Te 3Te 348 348

A = analytical = observed

class interval in m/sec for wind and m/sec per km for wind shear
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TABLE VIX

Montgomery ( June 1956 = May 196%)

Frequency Distribution of A

3
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g =
L
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o
i
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s
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3
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>
=
L
-~
4
=
g
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0000000000000 O
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-
- 000 o o a o o
1 582282828282882232¢3883888¢8°
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PETPRITYTS Hdmsndcaa

o e i My A Sh T e | Bkt oA em S = " i e

et e Tz e B s Sate

3Te

3T2

372

A = analytical - observed

class interval {n m/sec for wind and m/sec per 1 km for wind shear
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COCHRAN ATADTEC 1567 WiLks MEMORIAL MEDAL

Professor William G, Cochran of Harvard University received the 1967
Samuel 5. Wilks Memorial Medal during the 13th Annual Conference on the Design
of Experiments in Army Regearch, Development and Testing, which was held at
Fort Belvoir, Virginia, 1-3 November 1967. Professor Cochran has long been
recognized as an international guthority for his outatanding contributions
to experimental atatistics, mathematical statistics, the design and analysis
of ccientific experiments, teaching activities, stimulation of research
workers and personal leadership in the world statistical community.

The Annual Design of Experiments Conferences are gponsored by the Army
Mathematics Steering Committee on behalf of the Office of the Chief of
Research and Development, Department of the Army.

The Wilks Award is given each year to a statistician and is based
primarily on his contributions, either recent or past, to the advancement
of scientific or technical knowledge in Army statistics, ingenious applica-
tion of such knowledge, or successful activity in the fostering of cooperative
scientific matters which coincidentally benefit the Army, the DOD, and the
Government, as did Samuel S. Wilks himself, .

The Award consists of h'mgdnl, with a profile of Professor Wilks and
the name of the Award on one side, and the seal of the American Statistical
Asgociation and the name of the recipient on the other side; an honorarium

related to the magnitude of the award funds donated by Mr. Rust; end a
citation.

With the approval of President Frederick Mosteller of the American
Statistical -Association (ASA), the Wilks Award Committee for 1967 consisted
of:

Professor Robert E, Bechhofer, Cornell University

Dr. Francis G. Dressel, Duke University and the Army Research 0ffice-

Durham )

Dr. Churchill Eisenhart, National Bureau of Standards

Professor Oscar Kempthorne, Iowa State University

Dr. Alexander M, Mood, U,S. Office of Education

Major General Leslie E. Simon (Ret.), Winter Park, Florida

Dr. Frank E. Grubbs, Ballistic Research Laboratories, Aberdeen Proving
Ground, Maryland - Chairman

Professor Cochran was born in Rutherglen, Scotland, and received MA
degrees from Glasgow University and Cambridge University. He was a
statistician working with the eminent R.A. Fisher at the Rothamsted Experi-
mental Station (England), 1934~1939; Professor of Mathematical Statistics,
Iowa University, 1939-1946; Associate Director of the Institute of Statistics,
University of North Carolina, 1946-~1948; Professor of Biostatistics, BSchool
of Hygiene and Public Health, The Johns Hopkins University, 1948-1957; and
has been Frofessor of Statistics at Harvard University since 1957.

In connection with professional societies and committee activities,
Professor Cochran has served as follows:
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| , President, 1953
| Editor of the Journal of the American Statistical Association, 1945-~1950
[
I
|

] Fellow, Institute of Mathematical Statistics:
Fresident, 1946

5 Fellow, American Public Health Association

Member, Biometric Socilety:
President, 1954,1955

' Honorary Fellow, Royal Statistical Soclety

Member, International Statistical Institute:
Vice-President, 1963-1967

S T L

Fellow, American Association for the Advancement of Science:
Vice-~President, 1966.

Committee activities: .
Chairman, Panel of Advisors on Sampling, U.S, Bureau of the Census
Chairman, Committee on Training in Epidemiclogy and Biometry, N.IL.H.

‘Member, Advisory Committee to Atomic Bomb Casualty Commission

Membar, Committee on Statistical Education, Inter—American Statistical
Institute.

? { Professor Cochran has published books as follows:

; : E.J. Russell, J.A, Voelcker, and W.G. Cochran, Fifty years of field

| experiments at the Woburn Experimental Station., Longmans, Green
| and Co., Londen, 1936.

i : W.G. Cochran and Gertrude M. Cox, BExperimental designs. John Wiley
o : and Sons, New York, 1950. Second edition, 1957. Japanese tzansla-
Lo ; tion, 1954. Spanish translstion, 1965.

: )

{ W.G. Cochran, Sampling techniques. Jchn Wiley and Sons, New York, 1953,

| Second editiom, 1963. Portuguese translation, 1965.
' W.G, Cochran, F. Mosteller and J.W., Tukey, Statistical problems of the
' Kinsey Report. American Statistical Association, Washington, D.C.,

1954,

State Univergity Press, 1967,

5 G.W. Snedecor and W.G. Cochran, Statistical methods, 6th edition. Iowe

|

1

1

i

|

! Professor Cochran is ths author of some eighty-five papers which form
} § the very basie for much of the wide-spread use of statistical techniques, and
]
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otherwise represent gome of the more significant and widely employed methodology
in the entire flald of theoretical and experimental statistics.

Indeed, statisticians throughout the world regard Profegsor Cochran as
a "glant" in the field due to his numerous and wide-spread basic contributions.

Professor Cochran's most recent honor is the presidency of the Inter-
national Institute., His work in design of experiments recently has dealt
with the efficient sequential determination of levels, and more recently he

has also been working on the design and analysis of observational studies.
His books have been translated into several languages.

The citation to Professor Cochran reads as follows:

"To Professor William G. Cochran - for continued research
on the statistical treatment of data, for his highly
fertile research on the design and analysis of experiments
and surveys, for his excellent books on the theory and
practice of statistical methodology, for his efforts in
the training of statisticians at all levels, and for his

contributions to national and international statistical
socleties."

Professor Cochran received the third Wilke Memorial Medal at the
banquet held in connection with the Thirteenth Conference on the Design

of Experiments. Dr. Frank E. Grubbs mede the presentation. The acceptance
remarks of Professor Cochran are printed below.

Chairman Grubbs, Ladles and Gentlemen;

I greatly appreciate this high honor. It is especially pleasing because
Sam Wilks was the first American dtatistician whom I ever met. This was in
1933, when I was a graduate student at Cambridge University. Sam came there
as a postdoctoral Iuternational Fellow, so that I enjoyed over 30 years of
his friendship, including working under Sat in 1944 in the Princeton Statistical
Research Group of the Office of Sclentific Research and Development.

An occasion like this naturally stimuiates reflection about one's past
work. I might mention one habit, common among statisticians, that has helped
me. In consulting, there are always times when I cannot answer tho question,
and times when I give an answer, but realize after the investigator has left
that I distorted his question in order to make it fit into some staandard
statistical mold. I like to make a note of the difficulty and, so far as my
albility permits, to see if anything constructive can be done about it.

This habit also protects effectively agalnst any tendency to develop a
swelled head. From time to time I see a new paper that presents the first
competent haudling of & problem of which .I have been ineffectively aware for
many years. Now my subconscious self is one of the most unpleasant cheracters
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1 have ever had to deal with. On such occasions it always surfaces and says,
"See, 1f you had any brains, or had paid a little attention to the advice that
I keep giving you subconscilously, you might have cleaned up this problem 20
years ago."

In thinking about the present state of work in statistics from the
viewpoint of allocation of resources, we seem now to be well provided with
research manpower in mathematical statistics. In fact, I have sometimes
tried to argue that there is too much research in mathematical statistics,
though when I do this, everybody jumps on me. In academic circles, the idea
:Pat one can have too much research on any subject is heresy of the worst

ind.

As an illustration, consider a problem that has arisen in the last 15
years. In the sampling of institutions like businesses, schools, hospitals,
and counties, that vary in size, there 1s need for a method of selecting a
sanmple without replacement and with probabilities proportional to measures
of the sizes of the units. There are two main difficulties. With the
sinplest methods of selection, it is impossible to compute from the sample
an unbiased estimate of the variance; with other methods, the estimate of
variance is 80 unstable that negative esatimates of variance can turn up.
Secondly, as the sample size increases, it becomes harder to keep the
probabilities proportional to sice.

The problem is important enough sc that under a system of planned
resource allocation one could justify assigning thres or four good men in
different places and preferably in different countries, to work on it
independently, Now Mr. Kanneth Brewer, Director of Methodology, Common=-
wealth Bureau of Census and Statistics, Canberra, Australia, is currently
spending some time with us at Harvard. One of his tasks 1s to prepare what
will be a highly useful comparative and critical review of the methods that
have been produced for sampling with probabilities proportional to size
without replacement. To date he has found in the literature not 3 or 4
mathods, but 34. Indeed, when the latest issue of any journal reaches my
desk these days, I hesitate to open it, in case it contains yet another
method which Mr, Brewer will have to compare with the current crop of 34.
It almost sounds like too much of a good thing.

In two other aspects of the health of our profession, however, the
situation seems less favorable. One aspect concerns mechanisms for ensuring
that new and useful statistical techniques are regularly explained to the
potential users in language that they can understand; the other, mechaniems
by which statisticians are regularly kept informed of unsolved statistical
problems encountersd by users, The difficulties in this kind of communication
are well known. Users have little time to devote to learning statistical
techniques and often very limited knowledge of mathematics and prohability;
wvork by statisticians on exposition carries little prestige; and the efforts
of the statistical profession in this area have been most sporadic and
voluntary, In this connection, I think that Sam Wilks, after his early years
of brilliant and productive ressarch, delibsrately chose to sacrifice his
future ressarch interests in order to concentrate on organizational problems
in the new field of statistics, including problems of communication with
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DETERMINATION OF TBO BY WEIBULL DISTRIBUTION
USING RFPATRABLE COMPONENTS

John L. Mundy
U.S. Army Aviation Materiel Command
St. Louils, Missouri

ABSTRACT.

1. The Army Aviation Command has found that a serious discrepancy exists
between the figures set by contractors for the life time of critical components
and for the Time Between Overhaul (TBO) for noncritical components and the
figures actually achieved in practice. For many components only 8% ever
reach their rated life time, and only 5% reach their TBO time.

2. In addition, it is necessary to determine the time required to break-
in systems, if any. This breakein time is sometimes referred to as bhurning-in.

3. To determine the statistical TBO, life timaes, and break-in periods,
as sat by actual fisld usage, the Weibull probability distribution was appliad.
The work of My, J.H.K., Kao was extended from non-replaceablu items to repairabls
items. Three-~phase life was used consisting of Infant Mortality, Catastrophic
or Random Failure period, and the Wearout psriod. The graphical trial and
error mathod of Mr. Kao was replaced by a Fortran computer prograx. In addition,
the iterative method was streamlined into a deterministic method. This
represents a major contribution which reduced the computer time by 85X.

4, PFlow charts of the operation have been prepared. The source of data
ia the DA Form 2410 and DA Form 2408-3.

ACKNOWLEDGEMENTS. Many AVCOM engineers contributed technical assistance
to this raport. Gratitude is due to Mr. Wm, Brabaon, R&D Division, Mr. J.K.
Gerdel, Special Studies Office, Mr. D. Rurchfield, Quality Assurance Office
and Mr. D. Fleming, Quality Assurance Office for Suporvisory support.

The lengthy Computer Flow Chart was prepared by Mr. M, Ploudre, R&D
Division.,

ValuuBl- programming assistance is being supplied by Mr. F. Blackshear,
Special Studies Office. :

The intricaclies of the TAERS operations were thorougly explained by

Mr. R. Jasse snd Mr, F, Grueninger, Directorate of Maintenance and Mr. M,
Christianer, General Engineering.

The essential 'hammer and nails' work of hand checking of calculations
was done by Mr. M. Ploudre, R&D Division, with the help of Mr. D. Carter,
R&D Division.
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CONTRIBUTIONS.
1. Use of TAERS to:
8. Break down Failure History to No. of Overhauls.
b. Break down Failure History tc No. of Repaira after overhaul.

¢. Break down Failure History to Age of item after "N" repairs
after "M" overhauls.

d. VUse of TAERS to report Unfailed as well as Failed Items,

2. Method for Identification of Pblty Distribution Composite, under
assumptions that composite consists of not more than 3 other Pblty
Distributions.

3. Determination of Burn-In, TBO or Finite Life for components, as
determined by f_inld usage, instead of engineers prior to fielding.

4. Two methods for Non~Graphical Determination of Weibull Shift Para-
meters (Gamma),

5. Complets Elimination of need of Kso Plotting Paper.

THE AUXILIARY WORK TAPE LAYOUT. The Army Aviation Command of St. Louis,
Mo. maintains & Validated Tepe File of DA 2410 forms received from the field.,
This form is completed by Repair-Personnel, and contains data concerning tha
rumoval and rapailr of componeats, This form is one of the class of forms,
kuown as TAERS, Presently about 12 million 2410 records which have baen

validated, are on fils,

From this taps, certain items were extracted. These items were combined
with other items from other tapes to create an suxiliary work tape, which
contgins all the itoms needed in this program. 'This work tape layout is
shown in Figure 1. This figure 1 shows one rscord on the tape. One record
will exist for each 2410 report.

This program will determine the 'Burn«~In" time, and the "'Time Betwean
Overhaul", (TBO) from field data. Tha field value of 180 will be comparad
with the Established TBO in columns 39«42; and it will also be compared with
values of compatitor's interchangeable parts. The interchangeable part
numbers are obtained from another program, and printed in columne 168-297.

Since this program analyzes the failure times of each component, the
four dates in columna 73-88 are very important.

The firat dats in 73-76 is the Date of First Installation of a new
serial number, (FID), This 1is obtained from Copy 6 of a 2410 record under
the condition that Copy 1 is missing, for the same Document Control No. in
Copy 6. Copy 6 is used for installation reperting, and Copy 1 is used for
removal reporting. Therefore, when an item is uew, and originally installed,
a Copy 6 will be made out before¢ Copy 1, under one document number. Later,
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vhen the component is removed, a Copy 6 will be found under a different j
conirol number. :

The mecond date, in 77-80, is the Date of Re-Imstallation (RID).

B T A i R i <

This Julian date (RID) is taken irom Copy 6, when a Copy 1, is present,
under the same document number.

=

The third Julian Date of importance is (ODNR) which is 0ff-Date, Not
Reinstalled. It is taken from Copy 1, if Copy 6 isg absent.

T R

The fourth and last Julian date needed is (ODYR) which is Off-Date '
; Yes ~ Reinstslled. It is taken from Copy 1, if Copy 6 is present.

After this suxiliary tape is created, two other data tapes are made
: from it, by various sortings and re-srrangements to facilitate programming.

One tape will contain records within 25 days to 390 days of the most

14

i recent record. Data within the first 25 days is deleted, to allow for delays
i in the mail. '
!
)
]

EFach tape is then sortad au shown in Fig. 2,

2. SORTING OPERATIONS ON THE WORK TAPE. Fig. 2 shows that the major

: grouping Ia by Part Number, followed by 3 minor groupings - Overhaul Group,
iV Age Group, and Equal Number of Repair Times. This is followed by aorting

| ; according to the time of failura.

; This program is the first that categorises the parts according to the
! numbar of o¢verhauls., This will determine the failure history of new parts,

: such as engines, compared to enginas which have been overhauled X-number of
; times.

Another first, within AVCOM, is the grouping of parts of the game age,
within the same set. This method will reveal whather failure rates are
constant, for components of different ages. This assumption of constant
faillure rate is made many times, for no other reason but that it is simple
to use, This analysis will check the validity of this assumption.

P DU

The lowsr right bar shows that unfailed items are also considered.
This is the first time that TAERS has baen used to report unfailed as well
as failed items, This method is presented next.

i =

. { .
l } ’ 3. HANDLING OF UNFAILED ITEMS. The first step is to identify those items
still in the aircraft.

. This is done by analysis of the 4 critical Julisn Dates previously a
| discussed. A sample set of these 4 dates for one serial numbered component i
' 1is shown below in Figure 3.
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FID ODYR RID ODNR
Doc. Control (Copy 6, date, Copy 1, date, Copy 6 date (Copy 1 date
Number when no 1) when have 6 when have 1 when no 6) ;
1 4(365) 0 0 0 f
—— — -
2 0 5(002) 5(003) 0 !
3 0 6(205) 6(206) 0
4 6(115)

v

Look at the FID or RID - item installation dnate. Then lovck at the ODRN, ;
to see if the item has been removed at a later date. :

In this set, the highest installation date is RID = 6(206).

This item has not baen removed at any date later than §(206), as shown
in the ODNR column, because the highest ODNR is 6(115).

Therefore, the test consists of 2 steps;

Step 1) Find the higheat instaliation date, whether 1% is FID, or RID.
In our sample, it is RID = 6(206).

Step 2) Test whether this RID is greater than the highest value of
"Off Date - Not Reinstalled," (ODNR). Here it is 6(115), so the answer is .
"Yes." This item is then treated as an "Unfailed Item." i

Note that this ODNR column would be all zeroes, for an Unfailed Item,
if all were complete. However, if a Copy 6 were deleted by the Validation
Tests, a number such as 6(115) would appear here.

After identification of an unfailed item, the number of houre logged in
this unfailed item (UFH) by the end of the caleudar periocd must be found.
This UFH is given by the following formula:

UFH = FFH-OFH

where OFH = Original Flying Hours, apnd FFH = Final Flying Hours. OFH is found D
by searching the 2408~3 data tap:. The file is entered with Tail Number of :

the Aircraft that the component was installed on, and searching for the record .
whose date 1¢ nearest to the date of component installation (RID)., From this 3
record, 1s raed the Number of Flying Hours on the aircraft at installation time.

FFH 18 found by again searching the 2408-3 data tape in a similar maaner,
But this ¢imr: a search is made for the record whose date is nearust to the

208
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data at the end of the test period, (DEP). One teat period will be for the
past year, and the other will go back to the oldest record in the file.

For each unfailed item a new record is generated, vesembling the record
that indicated an unfailed item. However, the number of unfailed hours is
entered on this record.

It must be noted, however, that in the analysis part of the program,
there is a condition on the acceptance of an unfailed item into the group of
failed itema. The item is included, if and only if, the number of unfailed

hours is equal to, or greater than the largest number of hours logged in a
component that failed.

So, 1f one Serial Number item operated for 20C hours, and then failed,
another serial number, with the same part number, cannot be called an unfailed
item untdl it has run at least 200 hours.

This pompletes the discussion of the data tape.

The next item to be discussed will be the Format which is the output
of the program.

4., OUTPUT FORMAT OF RESULTS. The output, Fig. 4 shows the desired values
that the program determines.

The header lists the interchangeable parts and information on the Prime
Part Number (i.e., the part number being analyzed.)

The objectives of the program are:

(1) The data TBO or Finite Life, and the Burn-In Time, which will be
compared with the Established Value by the Contractor.

(2) The next objective is the Composite Probsbility Demsity Distribution,

for ail 3 Life Phases: 1) Burn~In Time, 2) Random Fallure Phase and 3) Wearout
Thase,

It i8 necessary to find if the failure rate follows an exponential
digtribution (B=1) or a normal distribution (B=2.6) oz some other of the
Weibull family; Fig. 5. This distribution is a function of 3 parameters,
Gamma (g), which is the shift parameter, Beta (B), which is the shape para-
meter, and Eta (N), which 1s the characteristic Life parameter.

(3) Life characteristics are then found from the Weibull Distributions.
These are: Reliability, Harard Rate, Variance, Expectad Value, etc. An
example of Hazard Rate as a function of B 18 shown in Fig. 6. Fig. 7 shows
an Average Hazard Rate for am actual item.

5. MATHEMATICAL DEVELOPMENT. The determination of the first objective
will be presented. We want to determine the TBO, or Finite Life, and the
Buro-In rime. This will be presenced graphically. first. See Fig. 8.
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An ordered plot is made of all times of failure on the so-called Kao
Weibull Paper.

This graph paper has the acalasg chosen such that a plot of a straight
line on thia paper, yields the shaping parameter "B" of the Weibull p.d.f.
However, the original plot of the raw data will not yield straight line
segments. The linearization process will be discugsad later.

Now, assuming a plot, as shown on Fig. 8, the TBO, or Finite Life 1s
dafined as the intersection of the two tangent linea. The value is read
from the horisontal scale, indicated by the symbol Delta (8). This point

is indicated by the maximum positive, change of slopa beatween any two datau
points.®

Naxt, the Burn-In time will be determinad. (Turn the figure upside down).
Suppose that the failure points fell along this plot, This plot shows that
this component has & Burn-In time at Delta. Beyond the Burn-In time, the
failure rate gets much better, and becomes significantly less. This point

ia indicated by the Maximum NEGATIVE Rate of Change of Slops, between any
two points,

Now, that our lst objective has besn raached, the 2nd objective will be
deternmined. This is the identification of the type of the Weibull 3-Phase
Compogite Cumulative Probability Demsity Distribution.

r(:)-1—2 A, axp [(“‘: ]

The Weibull distribution ia 1d¢nti£1.d by the 3 parameters, Bsta, Ets,
snd Garma. The coefficienta A represent the proportion of failures in
sach phase.

o et e e A e e %

For a "Rao Plot" consisting of only ona straight line segment: (Fig. b}

(Beta =1)

Beta
£(t) = E::n t~-Canma ‘ , axp gt g:n.nll

A sat of 3 parameters is nasded for asach straight segmant of the plot.
There uway be & maximum of 3 straight line segments.

*Delta (8) may be found mathematicelly. It is the tims at which the proyuorti
of randon failures, indicated by the lowar straight section, is equal to th:
proportion wearout failures, indicated by the upper straight ssction. Ii is
equated below!

e e i b i e o T o i i ket s =

1-axp [~ (8| 0" =1 -amp (- (8]N)%
8 = exp l(n2 2n 32 -.33 2 N3>/(32 - BS)].

216 i
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T o e g o s+

Beta (the Shape Parameter) is found from the slope of each straight line
ssguent, (or Sub-population).

Eta, the characteriatic Life Parameter, denotes the failure age of 63.2%
of the items. From the graph, Eta can be read directly by entering the
Vertical Scale at 63.2, and progressing to the intersection of the straight
line segment. Then read Eta on the horizontal scale, directly under this
intersection. For computer purposes, the equations of the two lines involved
w4st be formulated. The equation for ETA turns out to be:

Beta + X)

Pta = exp |

where XX refers to the mean data point on the horizontal axis, and ¥ refers
to the mean data point on the vertical axis.

The exponential function is involved because the fX and YY values are
actually logarithmic valuss to the base "e"., Therefore, the anti-log must
be taken,

Gamma, the Shift-Parameter, is found by determination of the data-shift
used to convert non-linear data into linear date. This determination will
be discussed later. Fig. 9 shows that the final valus of Gamma should chack
with the valus of intercept on the horiszontal scale. The physical meaning
of Ganms is the time, bafore which, no failures had a chance of occurring.

The method fnr detarmination of Gamma follows:

wa. B
Px) = 1 - exp [ - 58] X,B,N > 0
vhers F(x) is the Cumulative Probability Distribution.
B
1-2(x) =exp [ - G0

i - o &R

2a[1/(1-P(x))] = [(x-g)/N]®

2n in [1/(1-F(x))] = B &n [(x-g)/N]
= B n (x-g) ~ B &n N.

This equation shows that a plot of the laft hand versus Ln(x-g) will
yvield a straight line, with a slops equal to B,

[P(x)] (100) = Percent Failure, or, in other words; - this is the parcent
of failures that we can expact in the time "X".

The y-intercept is [-B n(N)] is a measure of the Goodness-of-Fit of the

218

TR SN

N v T

e P e it A ¢ =

T e e e e e




e I i

i

S e h gt it e e

Weibull plot. It ecan he compared with a ganmatvrical Aaterminntion of [ _B man1,

[ -n
at the x~1 vertical line, which is the fn x = 0 line. See Fig. 9, that shows that
sample data for Gamma = 20.

The original data yilelded Curve A. Since this is not linear, the slopa,
Beta, cannot be determined yet.

The first guess of Gauma may be taken graphically by extending the curve
down to the horizontal axis. This gives Gamma = 1500 hrs. Since a computer
program does not have access to the graph, the first guess of Gamma is taken
to be (2/3)(Time of First Failure), i.e. (2/3)(Time of 1st Data).

To apply this first guess of Gamma, the value of 1500 hrs. is subtracted
from each time of failure.

Curve B is an example of a plot of data, which was adjusted for a value
of Gamma = 27.5, Hecto=hours. The fact that these two curves, (A and B)
have opposite curvatures indicate that the true value of Garmma lies somewhere
between 15. and 27.5. Further trials showed that Gamma = 20 1ie the value
that linearizes the curve. This is shown on Curve C.

SUCCESSIVE DETERMINATION OF GAMMA.

The equation that gives ua the next value of Gamma to tty 1s developed next.

Refer to curve A of Figure 9. It is known, in this cage, that if the
correct value of g = 20 would be subtracted from each X~value of cach data
point, the result is the linear Curve C. The problem is to set up an equation
which will first be developed for the simple case of only 3 data points,

DETERMINATION OF GAMMA FOR 3 IDEAL POINTS.

As geen on Figure 10, the point (Yz) is ideally located equidistant

between Yl and Y3.

In addition, there are only 3 points, which ig the simpleat case possibla.
The analysis is shown in Figure 10,

The difficulty with this equation is its sensitivity to xl or x3.
For example: If xl = 33.3, g = 8, and if x1 = 35,3, g = 28.

Also: 1) Always subtract off (2/3)(lst data pt) to get first guess for
8, to reduce sensitivity., 2) Reiterate. Also usa "g" equation in the form

2
B - ﬁ-x + .?E.d.--x.l_l
h Xa 1 x3 X3
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OETERMINATION OF GAMMA (g) FOR 3 IDEAL POINTS
Phase 2

Set the change of Slope 053) 0, and solve
for Gamma.

AS= Slope2-Slope 1= 0

L
in(xa-gy-gn(xz-g) Thfxz Q}QTHKX1-97 ,

But Y upper=Y lower:

B PO TR S
o 1n(§$:§) "17‘7373)

Take Anti-Ln of each side,

(x2-g)2 (x1-g)(x3-g)

2 2

2 XqX3=Xq0-X30*0

Xo -2.x29+g

1"

X, 2-x,

vhere xa nust be chosen opposite {o M o0 the Data Plane
g= 2—2—-—1—3 :
x - x - x i .
27173 .

Fig 11
221




OETERMINATION OF GAMMA (g) FOR ACTUAL CASE OF

1.

DIVIODE DATA INTO UPPER AND LOWER DATA,

WITH THE DIVIDING LINE TAKEN AS THE AVERAGE (xj)

x.= 21.5+3),+34,+38 ,+4) ,+44 +47 ,+5],+57 +64,
D 10. ’ )

43.4
SET xj: AVERAGE OF UPPER.
Xq= (44,+47,+451,457.464.)/5. = 52.6

SET Xy = AVERAGE OF LOWER.

xy= (27.5+31.434,+38.+41.)/5. = 34,3

NEXT, FIND x,(Yp):

Where YD= AVERAGE OF Y1 AND Y3.

YL= Y1 AND Yuz Y3 FOR CONVENIENCE

- g 12
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OETERMINATION OF GAMMA (g) FOR ACTUAL CASE OF
10. POINTS - Phase 2. -

FIND Y FOR x = 34.3, (X =1n34.3:3.54)

1, INTERPOLATE BY ORAWING CURVE IN THE FUNC-
TIONAL, OR KAO PLANE, THROUGH THE 3 POINTS
CLOSEST TO X, .

L
- THESE ARE x, = 31, Xo 34, and Xy 38.
X X y Y
31 '3.43 | 18 1,63
34 3.52 27 1.3
38 3.64 | 36 0.82

.2
YL- a+h(XL)+c(XL/

WHERE a, b and ¢ follow.

YL= 1.26

Fig 13
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DETERMINATION OF GAMMA (g) FOR ACTUAL CASE OF
10. POINTS - Phase 3,

P
e e e et e i Al i e e Y )

ran i P A TR L

: o ?1x2§3( 3,x 4V X)X (X -Xg) ¥ X Ko (X5-X))

§ [K2X3(X3 )+X1X3(X1 X3)+X X (X -X )]- 0 |

?- - ;

, 2 2 2 f

%% Y, (X +Y_ (X +Y, (X, " |

i b= _2( 3 A-) 3( lb 2 ) ( 3 ) :

| |

.- .
: ; Y (x =X, )+Y_(X -X, )+Y (X,-X,) .
N : c= 2 1 lV 3 27173 |
f
| ' ' |
| These are the equations for a parabollc fit
| through 3 points. | |
B ; Y= a + bX + cX° !

I
o ' Fig 14 [
B " ol
| - I
i

| E




I ux¢§
. DETERMINATION OF GAMMA (g) FOR ACTUAL CASE OF ?
? 10. POINTS - Phase 4 g‘
g | 3'
] SIMILAR TO THE METHOD-FOR FINDING Y , Y, ¢
;- IS FOUND FOR x = 52.6 (X ;= 1n52.6= 3.98)" :

- é
| !
: THE PARABOLA- IS DRAWN THROUGH THE 3 POINTS |
| CLOSEST TO 52,6 WHICH ARE SHOWN BELOY.

f

g X X y Y |

| 47 3.85 64. | -.02

ﬁ 51 3,93 73, | -.4

£ .

% 57 4.04 82, -.52

| Y A= 3,98

:" U- - 044 at U" 09

g (Y, +Y})

] YD= _——é_ s LZ?L—M = +,4] Im-uu-oanluu.

They are the valuss obtained after going turu

in ln 100
: - ures )

Fig 15
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OETERMINATION OF GAMMA (g) FOR ACTUAL CASE OF
10 POINTS ~ Phase 5

KNOWING Y = +,41; Xy IS FOUND BY ORAWING

A PARABOLA THROUGH THE 3, Y POINTS CLOSEST TO

Y= +.41. WOTE THAT THE ROLES OF X ANO Y ARE

REVERSED,
X.= a + bY. + cY‘2
-D 0 D o

THE CLOSEST POINTS ARE

Xp= 3.72 at Y, = +.41, and x4= 41,59

2. FINALLY

0T %, 50.0:
!"Tilfa" %%%T§¥l§§§3§i;%1§%*§l 0.8

This is the true value of Gamma.
" Fig 16
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Then use
2
rg --x‘;"_....x3.] + r.}zt—x":'...l_;:;_.JI.
¢ A 1 1]

Then average g - (ge + gh)/Z.

If double precision is available, the averaging may be eliminated.

It has beer found that we get better results, using lowest and average
of top half of the data, instead of average of the bottom half and (average
of top half). This insures that Gamma, (g) will be less than the lowest
data value of "X". A value of Gamma greater than the lowest data value of
"X", 1s erroneous and unacceptable due to the basic definition of Gamma.
Gamma 1s the value, below which no other failure, or X value can occur.

Another method will be discussed next. This second methuod is the
Average Rate of Change of Slope Method, (ARCS).
GAMMA ADJUS'™ENT BY AVERAGE RATE OF CHANGE OF SLOPES (ARCS)

1. In each life phass, find the Slope between each 2 points, in the
Kao Plane using n values, shovn in Fig. 17,

8y = (pyy = Y/ gy = Xp
2. Find the change of slope, between each two slopes, (RCS) = (st+1 - 81)/
(Xmid, ., - Xmid,).
i+l i N
3. VFind Average Rate of Change of Slope (ARCS) L RCS

ARCS =

1
N

Since this 1s the ARCS for the original data, for which there was no
adjuscment for Gamma, call this value ARCS (Gamma = 0), or ARCS(0).

4, Again use the method above to find ARCS (Gamma = first data point), or
ARCS(1). To do this, subtract this first (X-data) point from each succesaive
data point, to establish a new set of data, Then put these data into the Kao
Plane by taking the "&n" function shown in the sketch. Then find ARCS(1).

5. Next find ARCS (2/3). Subtract (2/3) of the first (X-data) point
from each data, to form a new set of data. Again put the data into the Kao
Plane. Then find ARCS (2/3).

6. Write a 3rd order equation through the plot of Gamma versus ARCS(A),
Gamma = 4AZ 4 bA + . Then solve for the velue of Gamma (Geuma = C), that
makes ARCS = 0. The value of C(Al, Az, Aa) is:

. ga(Az-Al) + 31(A3-A2) + 82(A1-A3)
XéAa(AS-Az) + A1A3 (Al—A5$7+ AlAz(A2~Ai) *

7. As the nevw Gamma is found, this new value of Gamma is subtracted from
each nf the X-values of the data points, to get the adjusted data points. Then
a new value is found for the Average Rate of Change of Slope (ARCS), to check
its approach to zero. If this ARCS is within #0.1 or if this new ARCE does
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not improve the previous ARCS by at least 20X, the iteration 1s complete.
The formula cdns. for stopping iteration are:
1) |ARCS| < .1

or
. 2) |ARCSi+1/ARCSi| > .8
N 3) (ARCS), ., > (ARCS), for ARCS, positive

4y (ARCS)1+1 < (ARCS)1 for ARCS, negative.

8. If these tests pass, the largest ARCS is dropped, and the iteration
is continued, using the three lowest values of ARCS with their three
corresponding values of Gamma. See the next Figure (18).

FINDING GAMMA (g) BY GEOMETRIC MEAN METHOD This method is an
improvement of Dubey's Method, found on Page 293 of Techuometrics, May 1967.

The firat step is the calculation of YﬁID using data values,
The Weibull Plot ig a plot of %n &n [1/(1~F(X))] = B in [(X-g)/N].

Taking the inverse in of each side gives:

y = tn [1/0-F0] = BB = aqep)®
where A = [1/N]B

The conatant "g' may be found by writing 3 equations, which are taken
from three data points since there are 3 unknowns: g, B, and N.

X, Fl(X); X, Fz(x); and X,, F3(x)
Yl - A(xl-g)B
Y, = A(X,-8)"
Y, = ACX,e)°
Then:

vy, - v,% = A2 (e)? () - xp0)

Now 1f Y, = v Y,Y, , the LHS = 0, and we can solve for "g".
2

. - 2 2 2
X %, - X8 -X8+38 (x3) ~2X.8 + 8

2
g[zx3 X, le -X.5 - X X

AR e TR e il ._é_‘ﬁ; N =

et priwmaryra A vo]
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SONV =V :3:9ym
{7 -2)%v'V +(Sy —ly)Cy !y + (2y-ty) Sy 2y
(£v-1v) 26 +(3y-€v)'6 +{Ty-2v)6 =2 :as3ym ‘0= YWAVD ‘O =SONV 1V
9 + (SOuY) 9 + ,(SOYV)0 = dwwog
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Let X3 = xMID’ which must correspond to IMID*

vyqY

Y * 12 Yin aF o) (R, 007

Yygrp » VTR (=Fp o M TT-En (1=Fyp )]

But we want to convert y,., to a value that a readable in the KAO
Plane, which is FMID'

Find FMID in terms of YMID®
Yygp =48 I7T qlx) ] vhere F(X) = F,_ (X) .

Solve for F(X).
SJMID 1
l—szs

Y.
1-F(X) = e MID

“Yu1ip

FMID(X) w l-g = 1~ axp ~ vV[~in (1-FLoﬁ51[:Zn (1~

Furen’!
Next find the corresponding xMIDY' by drawing a 3rd order curve
through the 3 closest points to yMIDK; using the KAO plane,

2
Xyrog = & * Pyrpg * Yook - .

Both Xyrp and Yyrp 8re KAO Plane values, as are all the X's, and ¥'s
in the following & b, and ¢ equations, that are double subscripts.

Where YM D" KAO Value of F Y = fn &n [1/(100-F

I MID® 'MID w1’

. X)1¥95Y33(Yg3~Ypp) + Xpp¥y ¥aq(Vy —¥qgq) + Xog¥y ¥yp (Yo -¥1)
- g ~————-———Z—A~ = " = [y
¥op¥a3(Tgav¥yp) + ¥y ¥aa (¥ ¥54) + ¥y, ¥5) (¥)p-¥yy) D

2

2., 2 2., 2 2.,
Xpp(¥ag ¥y 7) + Xyy gy ¥y ) + %13 (¥pp 53)

D

b
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) + xn(‘z
D

X330y, 337¥22) + %95 (%;;7¥33)

Then the data value of X, ... (Kao Value) is fuund by taking the
anti-¢n of XHID(Kao Values).

Xvip
xMID = e Kao

Then the value of Gamma 1is given by the aame formula Eqn A, used
in a previous method.
("um

g = - X =
Hyrp~ %%3 x

In the above formula, it has been found that the use of &n to the
base "e" values for the X's, gives a more exact value for g, but only if
the equation ig used repeatedly until no gignificant change cccurs.

This same concept of repeated usage must be applied to the equation
for "g", regardless of the method used, in order te find the true value for
W tt

g,

After determination of Gamma, all of the 3 Weibull paremeters are
complete. Next will be discussed the information obtained from the
Probabil .ty Distribution. Reliability is first.

Since there will be 3 values of each of the parameters, Gamma, Beta,
and Eta, the composite Reliability 1s given by the sum of 3 terms.

Tern 1 Term 2 Term 3
~ A Py — — . —~—
t-g, Bl t-8, BZ t-g, BS
R(t) = J exp ~ [-—] + Pexpew- [—--—] + Qexp - [
1 2 3

where 8, > 8, > 81 and J+P+Q=1,
where term 3 is set equal to Q for t < -2
14

term 2 is set equal to P for t <% 8
14

J = Percentage of Data Foints in Burn-In Phase
P = Percentage of Data Points in Catastrophic or Random Phase

Q = Percentage of Data Points in the Wearout Phaseé.
R(t) = 1 for t < 8,

A Plot 1s shown, Fig. 19.
Next, Hazar’ Rate and Reliable lLafe.
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COMPOSITE HAZARD RATE. The Hazard Rate H(t) 1s the Conditionai
Probability Density Function of Time to Failure, given that the itenm has
not failed prior to time (t). In other words:

H(t) dt = P[(t < T < tHdt) (T > t)]
It can also be stated as a ratio of Probabilities

P[(t < T < t+dt) N (T > t)]
H(t) dt = =¥ P(T > t)

vhere N means "Intersect'.

B,~1
H(t) = fict) « probability density fumction AiBi(t—si) i
R1(t5 reliability function Bi

A plot of Hazard rate for G,E. task A, Lot 3 is shown (Fig. 7) and a
composite Hazard Rate is shown in Fig. 20.

Other important parameters are the Expected Value of Time to Failure
and the Variance of the Time to Failure.

The Expected Value (E) and Variance (V) are given for each 1life phase.

E=g 14- Ni[Gamma (1/Bi +1)]; £+ =1,2,3,
2 2 1 2
V=N {Gamma CE— + 1) - Gemma Ci—‘+ nl*, 1=1,2,3.
i i

RELIABLE LIFE. The last parameters found is the Reliable Life, RL(C),
for a specified confidence level (C). The formula is given next.

C= I £(t) dt

RL
RL = (Gamma) + (Eta) (_an)I/Beta
RL is found for each component for confidence levels of .85, .90, and .95,

Composite Hazard Rate Evaluation - Synthetic Data

H=0, t« 8, »

By . B,-1
H=JB ()71 (tmg))"1" , g <t<g,,

- =By , (p_o yB9-1
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I

-B, Byl
H=Q 33 (Na) (t"a) ’ 53 <.
DATA
J = 294 P= 353 Q= ,353
31 = 3,75 32 = 621 53 - 3055
Nl = 1.34 “2 = 5.1 N3 = 5.1
5 " 5 P 10. 8y * 15,
t H t -}
035 0 14 .0470
.3675 15 .0433
7 2.46 16 .0038
8 7.53 17 +0223
9 16.5 18 0627
10 30.9 19 130
11 0797 20 231
12 +0613 30 3.8
13 0526 ' 50 32.6

6., PREPARATION OF TAERS COMPUTER Tégg. Layout for RD-2410 Work-Tape
for Weibull Interchangesbls Part Program.

1. Prepare RD-CH=47 Work Tape. -Save the program used to do this.
Table I, which follows Para 10, shows the location of each Variable on
the existing ADP-2410 Tape, (coutact Mr, C,P., Marquardt of AVCOM) and the
desired new location on the RD-CH~47 Work Tape.

2. All Variables, excapt as noted, must be taken from the ADP-2410
Tape, or calculated from data ou this same tape, Two exceptions ars the
Interchangeabla Part Numbers and their associsted Manufacturer's Code Number,
These are obtained from Program 25F6BEw4l, '"MDR Component Taers Activity List."
This program is available from Mr. Tom Gruenninger (phone extension 2170/
2176) at AVCOM,

3., The preparation of thase two tapss required only records from the
ADP-2410 Tape, that are coded 10, CH-47, Copy 1 and 6.

4. Identical information may 5. taken from Copy 1 or Copy 6, but NOT
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both, The copy number 1s found in column 37. The nndo Mg oo

Y :.ll: fuun(i
on the ADP-2410 Tape, in clumns 35-36. Any other code nullifies its record.

5. Only CH~47 records are to be used. This CH-47 will be found on
ADP-2410 Tape in columns 133-144.

6. The blocking factor is (301, x 1).

7. All data on the RD~CH~47 tape must be justified as indicated in

the Table, Fil1l al1l spaces to the left of Right Justified significant data
with zeroes,

8. Records with the following "Fail Code," must be omitted. (The
"Fail Code" is located on the ADP-2410 Tape, in columnas 264-266), Delete

records with Fail Code 0, 120, 130, 138, 256, 301, 446, 464, 300, 503, 530, 540,

950, 796, 797, 798, 799, 800, 801, 802, 803, 804.

9. Delete records with Inspection Action Code (IAC), column 273,
equal to "A". This letter “A" indicates that inspection revealed that
the item was serviceable without needing repair.

10. The Functional Group Coding must be entered incolumns 58-72.
It 1g obtained by reading the Federal Stock Number (FSN), in columns 186~
196 of the ADP-2410 Tape. With this FSN, search the Publication Tape,

(available from John Witmer, ext, 3221, AVCOM), to find the Functional
Group Coding. [Table I starts on the following page.]

Preparation of Recent CH~47 Tape (RDl-CH-é?-CGRZ and Preparation
of Older CH=47 Tape (RD1-CH-47~CGO0), Frox RD~2410 Work Tape.

11. After completion of the RD~2410 Work Tape, separate ii into
the two tapes named above, based on the Julian records dates, as follows.
From this workiug tape find the most recent date {(MDR) of 4 dates, whether
FID (Columns 73-76); RID (Columns 77-80); ODNR (81-84); or ODYR (85-88).
Prepare 2 tapes: RD1-CH-47~CCR will contain all records whose highest of
the 4 dates is between (MRD-25) and MRD-390. Tape RDL-CH-47-CGO will contain
records (MRD-390). The cut-off date (COD) 1is defined as (MRD-25), The COD
must be entered into the RD-2410 Work Tape, columns 44-47,

12, The following operations must be applied to each of these 2 tapes.

13. Sort by Component Part Number, Location 13-33, so that the
lowest number will he processed first.

l4. Sort by Interchangeable Part Numbers, within the "Part Number
Sort."

15. Sort by Number of Prior Overhauls such that zeroes, then 1's,
etc., will be processed first,
The location of PO is columns 93-94,
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TABLE 1

, New Location

Location On Oon RD-241C
Jarisble  ADP=2410 Teps ~ Work Yape = Justify
2ad Item Model 133-144 1-12 L

' Leave a BLANK
betwean CH and
&7
Component Part Number Reing Processed  143-165 13-3) L
Manufacturing Code for the Component '
Part Number Being Processed 166-170 ' 34-38 L
Established Tima Between Overhaul (TBO) .
or Established Finite Life (FL) 238-241 39-42 R
Calendar Group = Will be either "R Not found ox 43 2
weaning recent or an "0" mesning older this tape. It
' ‘4s determined by '
N the method ex- _ .

plained later,

in para 11,
Cut=0ff Julian Date (COD) ' '‘Not on Taps, hi=47 R

ses pars 1l. .
Functional Group Code ' N on Tape, A8=55 . R

‘ . . 8, pura 10, .

Component Serial Number 12-28 , 56-72 L
Ticst Installation Date (YID) .  This date is 7376 .

found in columns '
299-302, for copy , '
¢ 6, under the con-
dition that a copy
1 does NOT exist
for this control
_nunber,
If a copy 1 dces
' exist, then fill
-‘ - 73«76 with seroes.
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ariab

Date of Re~Inatall (RID)

New Location

- Location On On RD~-2410
, ADP-2410 Tape  Xork Tspe
This date is 77-80

found in columa

299-302, for copy

6, under the con~-

dition that a copy

1 does exist for

this control number,

1f a copy 1 does

- NOT exist for this
control number, £ill
77-80 with blanks.

Removal Date, Whea No In-lnntallatien Thia date is 81-84

Occurs (ODNR)

found in 299-

302, for copy 1
under the con=
dition the NO

copy 6 exists for
this control num=-
ber,

If a copy 6 exiats,
f1ll 81-84 with
blanks. '

Removal Date When In-!nntlllctlon This date is 85-88

Does Occur (ODYR)

Unfailed Plying Hours

found in 299-302,

. for copy 1 under
the condition that
copy 6 exists for
this control nume
ber.

This is not on 89~92
the ADP-2410
Tape. Ses parajd.

Number of Prior Overhauls (PO) 136-137 * o 93-94

Hours Usage 5ince New (USN) 123-127 95-99

Hours Usage Since Last Installed (ULI) 128-131 100-~103
7 L]
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PO located ADP tape 136-137
USN located ADP tape 123-127
ULI located ADP tape 120~131
USO located ADP tape 132-1133%

New Location

. Location On On RD-2410
Variable , ADP-2410 Tape Work Tapg
Hours Usage Since Overhaul (USO) ' 132-135 104~107
Age Group (AG), as a function of¢ Not on ADP tape., 108-~109

It is calcu-

lated es in Incl
1. It is repeated
here!

Is
PO =
zero or
lank?

IA = USN-ULL IA = USO-ULL

11f AG 1s zero or negative,

- -
AG = ( _1)(IA + 25.01)
( 50)
Round off to nearest integer.

set it = 1,

Failure Code of Component (IC) 264~266 110=-112
Failure Detected During (¥DD) 270 . 113
Effect on Mission (EOM) 2n : 114
Inspact & Action Code 2713 . Conus
Component Noun . 61-84 . 116-139
Standard Unit Price . 255~263 | 140-149
Organisation Ident Code 43-49 150-157
Bnd I;n- Serial Number, Tail NKumber 212-221 158167
Piret Ianterchangeable Part Number 1 Not on ADP- ' 168-188

4 - 2410 Tape. .

Use program
number 25F6BE-4],
"MDR COMPONENT
TAERS ACTIVITY
LIST." Contact
Tom Gruenninger
‘of AVCOM, (8ee
para 3)
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New Location

) » Location On On RD-2410
-, Yarlable  ADP=2410 Tape  Work Tape Justify

Manufacturer Code Numbsr 1, Related Not on ADP-2410 189=19) L

to Interchangeable Part Number 1 * Tape, Sec para 3

Second Interchangeable Part Number 2 Not on ADP-2410 194-214 L
Tape. See para 3

Manufacturer Code Number 2 Not on ADP-2410 215-219 L
Tape. See para 3

Third Interchangeable Part Number 3  Not on ADP-2410  220-240 A
Tape. See para 3

Msnufacturer Code Number 3 Not on ADP-2410  241-245 L

' ‘ ~ Taps. See para 3, -

Fourth Interchangeabla Part Number 4 Not on ADP-2410  246-266 L
Tape, See para 3 '

Manufacturer Code Number & Not on ADP-2410  267-)71 . L
Tape. See para 3 .

Fifth Intarchangeable Part Number 3 Not on ADP-2410- 272-292 L
‘Tape. See para 3

Manufacturer Code Number 5 Not on ADP-2410 293-297 L

. Tape, Ses para 3

Number of Repairs on each Serial ' 296~300 R

Nuaber (RN)

End of Tape Indicator . Not on ADP-2410 301 - R

Tape. See para 22

TS
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16. Within each overhsul group (P0), sort by Age Group (AG).
Requesti sort to allowa the loweat Age Group (1) to be set up to be
processed first,

Location of (AG) is columns 108«109,

17, Within (AG), sort by Serial Number, so that lowest Serial
Number is first.

Location of Serial Number is columns 57-72. This is Component
Serial Number. '

18, Within each (AG), count the number of records (RN), having the
same serial number., Insert this number into columns 58-60 on each (RN)
record. Then, within sach Age Group(AG), arrange the records so that those
records with the lowest (RN) will be processed first,

19. Find the Unfailed Items and the Flying Hours on each one, as
follows. !

Within each Serial Number Group, find the highest (RID), which is
in columns 77~80, and the highest (ODNR), which is in 81-84,

a. If this RID is greater than ODNR, then this record represents
an unfailed item. This is an item that has bean installed, but has not
failed. In general, ODNR will be blank or zeroes, when RID > ODNR.

, b. Now that we have found an unfailed item, we must find the
nunber of houra logged on thiw unfailed item, by the end of the calendar
period.

¢. This procedure is as follows:

(1) For the serial number of this unfailed item, pick off
the last inatallation date, (RID), from columns 77-80., Also pick off
the Tail Number from columns 58-67.

(2) With these 2 inputs, search the 2408-3 tape file to find
the hours logged (OFH), on the aircraft, at the time of inetallation (RID)
of the compunent. On the 2408«3 tape, the tail number is at Block 4,
Columas 14-23, Card “"A", and the Julian date (RID) is found at Block 11N,
Card "C", Columns 31~34; the OFH is at Block 11K, Card C, Columns 16-20.

(3) Then, to find the number of hours (FFH) on the component
at the end of the calendar period, (DEP), it is necessary to search the
2408-3 tape again for this tail number and DEP. The DEP cquals the:Cut-
off Date (COD), in columns 44~47 of the RD tape for the RD1-CH~47-CGR
tape, and is squal to COD less one year for the RD1-CH-47-CGO tape.

(4) The procedure is aimilar to the previous search, but (DEP)
is used instead of (RID), and FFH replaces OFH,

(5) Then the usage of hours for the unfailed item, (UFH) is
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given below:
UFH = FFH - OFH

(6) Knowing (UFH), a new recoxrd (an artificial 2410 record)
18 generated for the Unfailed Item. It is a reproduction of the record
in which the maximym (RID) was found, with the following changes, "a"
and "b", :
(a) The newly found value of UFH is put into columns
89~-92 of the RD tape.

(b) Replace the original ULI of columns 100-103 by 9999.
This is necessary to insure that the Unfailed Items will be processed at
the end of each Age Group.

20. Within each Age Group, sort by Usage since last installation,
(ULI) of columns 100-103. The lowest value of ULI must be processed first.

21. Within each Age Group, sort by UFH. The highest UFH must be
processed last.

22. On the last record enter "9' in column 301, following completion
of all sortings.

23, Print a listing of each tape.

24, Store each tape for future use, and notify this office of its
identification tag, and procedure for recall.

CONCLUSIONS This report shows that a test has been designed which
will analyze the effect of overhauls, repairs, modifications of design
(MWO), and engineering change proposals (ECP), for interchangeable items,
on Time Between Overhaul (TBO), Reliable Life, Reliability, Burn-In Time,
and Hazard Rate. These psrameters will adjuvdge contractor vompliance.

An assumption of Weibull's family of distributions is made.

A second assumption is that items having the same number of overhauls
and number of repairs, and age at the time of installationa, will have no
more than three drastic changes of failure rates. These sudden changes
characterize the three life phase: 1) Buru«In Time, 2) Random Failure
Phase, and 3) Wear Out Phase.

The program further tests the adequacy of the Army Reporting System
(TAERS) .

The major mathematiral contribution is the development of formulas
for the Welbull Probability Distribution parameters. As a result of this
development, it will no longer be necessary to laboriously plot data,
repeatedly in a trial and error program, to achieve graphical results.
The entire Fortran program is being computerized by the Research and
Development Divislon of RD&F Directorate, and the Special Studies Office
of AVCOM. The Automatic Data Processing Office of AVCOM i1s preparing
the data tape of the TAERS information.

243

i e e gl i,




A TECHNIQUE FOR INTERPRETING HIGH ORDER INTERACTIONS

Molvin 2, Braaten and John Tonzastich
Duke University
Representing
Shaw Air Force Base, South Carolina
and

North Carolina Operations Analysis Standby Unit
University of North Carolina
Chapel Hill, North Carolina

INTRODUCTION. The detection and interpretation of high order interactions
has been quite difficult in the recent past. This has been primarily due to
the large number of calculations required to evaluate all of the single~degree-
of-freedom contrasts in a typical experiment. Hence, short-cut formulae were

used which often permitted significant high order imteractioms to slip by
undetected.

The recent adveat of very high-speed, large-core, third-generation computers,
together with the availlability of good statistical packages has made adequate
evaluation of interactions feasible. The only remaining aspect of the problem
and the topic of this paper is the development of a logical and systematic
procedure for ferreting out ths essential pieces of information which will lead
to a valid interpretation of interaction.

«CONCEFT. The proposed procedure for isolating and interpreting high-order
interaction is based upon a sequential elimination of the factor levels which
are not primarily involved in the interaction. A least squares program is used
to fit coefficlents to a complete set of orthogonal contrasts among the treat-
ment levels of the factorial. 1In addition, similar analyses are developed on
subsets of the data., These subsats are those data within a given level of
each factor of the entire experiment.

The computeér ourput from a typlcal least-squares regression program is
normally displayed in ANOVA table form. Each single-degree-of-freedom contrast
is listed with an F test of its significance. These F tests are studied to
determine which factor levels are involved in a parkticular interaction. First,
the complete analysis is scanned for the highest significant interaction and
also for low order interactions which are not components of higher order inter-
actions. Subsequently, the subset analyses are studied to find which factor
levels contribute to the high order interaction. Once the contributing factors
are determined, the interaction can be resolved by graphical means.

FIELD AND TREATMENT DESIGNS OF THE EXPERIMENT. The procedures and techniques
discussed herecin can be readily adapted to a wide variety of field and treat-
ment designs. For purposes of example, however, a factorial experiment in a
randomized complete block field design is used. To put the example into comntext,
the analysis of variance table is given in Table 1. The 64 treatments of this

design are those of a 22 X 42 factorial treatment design. The 2~level factors
are temperature (T), 25°C, 28°C and relative humidity (H), 20%, 80X, The 4-level
factors are age (A), 28, 50, 70, 93 hours and populations (P), V, F, C, W of
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Drosophila melanica. Population V is from Norfolk, Virginia, F from Forest

Park, Missourl, C from Cliff, New Mexico and W from Walnut Creek, Arizona.
The yield variable throughout this example is the respiratory rate of samples
of ten Drosopnila melanica pupae.

Table 1. Factorial Arrangement of Treatments for a Four-Factor
Design (T,H,P,A).

Degrees of

Degrees of Freedom for

Source Freedom the Example
Blocks (B) b-1 3
Tamperature (T) t-1 1
Humidity (H) h~1 1
TH (t~1) (h-1) 1
Population (P) ' (p~1) 3
TP (t-1) (p~-1) 3
HP (h-1) (p-1) 3
THP (c~1) (h-1) (p-1) 3
Age (A) a~1 3
TA (t-1) (a-1) 3
. HA (h-1) (a-1) K}

THA (t-1) (h~1) (a-1) 3

PA (p-1) (a-1) 9
TPA (t-1) (p-1) (a-1) 9
HPA (h~1) (p-1) (a-1) 9
THPA (e-1) (h-1) (p-1) (a-1) 9
Brror (b-1) (thpa-1) 189

Single degree of freedom contrasts must be developed for the main effects
and interactions of the factorial model. First, contrasts are defined among
the four main effects and the blocks. For the 2-level factors the contrast
is sfmply +1 for the high-level and -1 for the low-level. For the 4-level
factors, however, three contrasts need to be defined for each factor. For
instence, our example has four populations, two of which are frum the arid
Southwest and two from the forested eastern half of the coutinent. Since
three orthogonal contrasts are needed and even though any set will suffice for
determination of sums of squares, a logical set of contrasts might be:

(lp 1) "10 -1)
(1r ‘ln ov 0)
(01 ov lo -1)
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whare tha firat voztor oontrasis ithe muu—acid populacions with the arid ones,
the second contrasts the non-arid populations and the third contrasts the arid
populations. These contrasts are represented respectively as Pl, P2 and P3.

When meaningful logical contrasts are not obvious, orthogonal polynomial
coefficients can be used with adequate resulcs since any set will produce the
correct sum-of-squares. For example, the following set of vectors were used
for the blocks contrasts as well as for age contragts:

(3, 1, -1, =3) linear
(1, -1,-1, 1) quadratic
(1, -3, 3, ~-1) cubic,

where the vectors are represented by Bl, B2 and B3 for blocks and by Al, A2
and A3 for ages.

Orthogonal single-degree~of-freedom interaction contrasts can be readily
developed by taking all possible products of the already defined main-effect
contrasts. For example, the 3 x 3 = 9 PA interaction contrasts are found by
multiplying the elements of each of the three contrast vectors for P with
each of the three contrast vectors for A. This procedure can be extended
directly to the higher order interactions as well; e.g., the nine TPA contrasts
may be developed by multiplying the T contrasts with each of the newly found
PA contrasts. Of course, interaction contrasts with blocks do not have to be
found because in the linear interaction model they all have expectation of
zero, Hence they are valid error components and they can be evaluated by

subtracting the blocks and treatments sum of squares from the total sum of
squares.

Once the orthogonal contrasts have been defined, they can be used as
independent variables in a multiple regression analysis. Most statistical

packages include a least-squares program which will accomplishk the necessary
calculations.

The abbreviated ANOVA table, Table 2, is the result of a regression analysis
of resplration rates upon the 66 orthogonal contrasts (3 for blocks and 63

for the treatments of the 22 X 42 factorial) . Only those contrasts with F
values greater than 4.00 are tabulated. The large array of significant inter-
action is particularly alarming, especially when a 4-factor interactiomn i1s
highly significant. The first reaction is, "Who missed a decimal point in a
couple of data cards?" Since this is not the case, an interpretation is
required. The various interactions can be broken into three general categories
for discussion. The first group is composed of the interactions which are not
components of the highest order interaction, the second is the highest order
interaction itself and the third group is composed of the lower order inter-
actions which are components of the highest order interaction.
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Table 2. Significant* Contrasts for the Complete 22 X 42

Experiment.
Contrasts F Statistic

Main Effects T 257.71
6.16

Pl 6.45

P3 30.02

Al 706.45

A2 452,66

A3 8.81

Interactions TAl 44,64
TA2 ’ 11.44

TA3 6.23

HP2 a.98

P1lAl 25.93

P3Al 7.70

THP1 11.05

THP2 8.15

THA3 12,77

HP2A1 _ 8.68

THP2A1 11.73

*(ontrasts with F less than 4.00 are not tabulated.

Interactions in the first group such as P3Al, which is not a component of
THP2A1l, can be easily resolved by graphical techniques. Considering that the
contrast P3 is the comparison of Cliff vs. Walnut and that P3Al does not irvolve
T or H, the mean respiration rate averaged over all temperature and humidity
levels was determined for the eight combinations of Cliff and Walnut with age.
These are plotted in Figure 1 with respiration rate on the ordinate and age
on the abscissa. While the lines for Cliff and Walonut are essentially parallel
at the younger ages, they do diverge considerably at age 93. This divergence,
of course, is what we detect by the significant F for P3Al. Thus we have
resolved P3Al.

A very basic part of the interpretation of high order interactions such as
THP2Al is identification of the particular levels of the effects which are
primary contributors to the interaction. To aid in detecting these critical
levels, sub analyses were performed on the 3-factor factorials within each
level of each main effect., For instance, an analysis was performed on the
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2 = 4% Zoceardal subest whara tamnaraturs ia 28°C. Takinz each factor in
turn we see the following:

v«____.__._,_.m_‘_

| : 1. Within temperature ieveis the Z5°C data uxhibit only two 2-factor
i : interactions while the 28°C data exhibit eight 2 and 3-factor
o interactiona. Tablae 3.
b : Table 3. Significant Contrasts for the 3-Factor Bxperiment within {
3 Temperature Lavels. ‘
i Contrast F Statistic

; ‘ 25°c 28°C

? Main Effects Pl 4.04

5 ' P3 7.79 27.63

- A 191,31 634.23
' A2 293.79 183.57 §
§ A3 17.1 |
| Interactions HP1 | . 15.64 |
% HP2 19,64 ;
; HAL 5.8 :
| § : HA3 12.59 :

| } P1AL 8.89 19.93

| ! P1A2 4.58

| l P3AL | . 5.98

| ! HP1AL i bt

! ; HP2A1 ' 23,27

: : 2. Within humidity levels we ses that both levels exhibit a considerable
b . number of interactions. Table 4.

! ; Table 4. Significant Contrasts for ths 3-Factor Experimente within
: Humidity Levels.

‘ i ; Contrasts P Statistic
i ! 202 R.H. 80% R.H.

§ Main Effects T 184,11 103,20
n 14,17 |
P2 17.59 -
P3 1713 14.28 ;
AL 560.85 253.30
A2 314.44 166,33
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Table 4. (Continued)

Interactions

Contrasts

A3
TPl
TP2
TAl
TA2
TA3
PlAl
P2Al
P3Al
TP1Al
TP2A1

F Statistic

20% R.U.
14.56
8.51

52.38
11.57

25.40
6.i1

5.39
5.74

gax R H,
4010
5.02
9.28

14.65
7.16

4.85

6.44

3. Within the populations we see that the Cliff and Walnut strains
exhibit only 2«factor interactions while the Virginia and Forest
Park strains are both involved in 3~factor interactions. Table 5.

Table 5. Significant Contrasts for the 3-Factor Experiments within

F Statdatic

Populations.
Contrast
Forest
Virginia Park
T 259,26 29,89
9,63
Al 886.49 129.71
A2 422,26 77.75
A3 7.93
TH 6.92
TAl 61,21 5.71
TA2 4,26
HAL 5.24
HA2 5.69
THAL 9.65
THA3 7.53
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| Cliff
81.89

163.06
108.71
4.2Y

10.74
6. 44

Walnut

74.67

119.71
125.47
7.22
4.86
10.63
4.86




4. Within the four age levels we find that ages 28, 50 and 70 are not

involved in 3-factor interactions while the 93 hour data have
sanificant 3-fanter intaractiona. Tahle 6.

Table 6., Significant Contrasts for the 3-Factor Experiment within
Age Levels.

Contrast P Statietic
' 28 hrs. 50 hrs. 70 hrs, 93 hrs.

T 7.13 57,67 151,93 79.95
H 6.94

1 , 26.64
P3 7.30 19,80
™ 6.96 6.92

HP2 11.64
THPL : 8.40
THP2 15,80

Thus, it appears that attention should be focused upon the 28°C, 93 hour
data from ths Forest Park and Virginia strains. The interacting 93 hour data
and the non-interacting 50 hour data are demonstrated graphically in Figure 2.
It is apparent from these two graphs that the Forest Park and Virginia strains
respond differently at the two humidity levels when the temperature is at
28%°c, Conversaly, when the temperature is at 25°C the response curves are
parallel. Thus, ws have rasolvaed the 4-factor intsraction.

The analyses within age levels indicated that the three youngest ages
were involved in only a very few iuteractions. Thus, we decided to reanalyse

the data as a 22 x 3 x 4 factorial by eliminating age 93 from the analysis.

The results of this analysis, given in Table 7, are quits enlightening. Only
two interactions, THA2 and TAl, are really significant, The third interactiom,
THP1l, has an ¥ of only 4.13 which 45 right at the critical valus of F and will
be ignored. We also note that the lowar order interaction, TAl, is a component
of THA2. The most striking result of this 22 x 3 x 4 analysis is the complete
disappearance of the 4=factor interaction which verifies that its significance’

is in fact dus to a failure of the 93 hour data to conform with tha data from all

threa other ages.

Table 7. Significant Coutrasts for the 4-Factor Experiment after Omitting
Data from Age Level 93.

Contrasts F Statistic
Main Effects T 178.40
H 4.20
P3 12.80
252
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FIGURE 2,
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Table 7. (Continuad)

Contrasts ¥ Statistic
Al 8.20
A2 145,60
Interactions TAL 61.51
THP1 4.13
THA2 13.88
The 22 x 3 x 4 analysis also points out an interaction of the third type;

namely a lower order interaction, THA2, which is a component of a higher order
interaction, THP2Al. Because the 4-factor interaction invnlved age 93 and
*.gcause the interaction THA2 is significant througliout the remainder of the
e«xperiment, we should determine the implications of THA2. Populations are

not involved in THA2 so we can plot (Figure 3) the respiration rate, averaged
over populations, against age for the four ccmbinations of temperature and
humidity. The two 28°C curves are similar whereas the two 25°C curves are
quite divergent from aach other and also from the 28°C curves. This figure
quite adequately demongtrates tha respunse function for the three youngest
ages. Because the interactions with population were nonsignificant in the

22 % 3 x 4 analysis, wa can infer that the response curve of each population
is similar in shape to the response curves in Figure 3.

In conclusion, & procedure is outlined for isolating high-order inter-
actions and developing their logical interpretation. Procedurca are also
outlined for identifying and interpreting two types of lower order interaction,
those which are componente of the higher order interaction and those which
are not. The analysis is based on a least squares fit to single-degree-cf

fresdon contrasts and a subsequent graphical display of the significant contrasts.

The key to the methed, however, is the ability to isolate the critical factors

by taking advantage of the computers ability to easily and inexpensively reanalyze

various subsets of the data.
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A SIMPLIFIED METHOD FOR FINDING
OPTIMUM EXPERIMENTAL DESIGNS*

Melvin O. Braaten
Duke University
Durham, North Carolina

Ray L. Miller, Jr.
Tactical Air Reconnaissance Center
Shaw Air Force Base, South Carolina

Fred W, Judge
Wood-Ivey Systems Corporation
Winter Park, Florida

ABSTRACT. This paper presents a simplified method for determining an
optimum experximental configuration that most nearly satisfies the experimenter's
requirements.

Although the LaGrangian multiplier method can be used to find a specific
experimental design with nearly minimum variance subject to cost restrictions,
the experimenter's flexibility is limited and the calculations are laborious.
By use of the simple computer program given in this paper, the objective and
cost functions can be readily evaluated for numerous feasible combinations.

The distinct advantage of the latter technique is that the experimenter is able
to choose that design which most nearly fits his experimental needs.

INTRODUCTION. The success or failure of an experiment is normally
determined during the planning phase of the research. Success of a particular
experimental design 1s essentially dependent on the design's ability to test
adequately certain hypotheses or to estimate certain effects accurately. This
paper considers efficient experimental designs from the standpoint of optimum
choice of factor levels once the basic design type has been determined. An
exemplary problem is solved with the aid of a very simple computer program.

The basic design type, such as a completely random design, a randomized
complete block design, or a split-plot design, is determined to a large extent
by design restrictions. For instance, you can't change cameras in a reconnais-
sance aircraft during flight nor can pilots be switched. Similarly, it is not
usually possible to completely randomize aircraft apeeds or altitudes due to
obvious restrictions, both legal and technical. Because the basic design type
is usually prescribed in one way or another, we will restrict our attention
to selection of the number of levels of each of the component factors for a
split-plot design. Although a large number of combinations are essentially
equivalent, a very poor design may often be developed if the experiment is not
adequately planned. Since many experimental designs cannot be easily changed
during the conduct of the experiment, great care needs to be exercised during
the design. If a change is made late in the experimental process, a considerable

*Research partially supported by the North Carolina Operations Analysis Standby
Unit, UNC, Chapel Hill, North Carolina
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....... effort and loas ui efiiciency is usually experilenced.

The mere fact that we are concerning ourselves with an optimum design
suggests that some trade-offs must be made. Usually these trade-offs are
precision versus the cost of performing the experiment. The objective
functions with which we are normally concerned are not expressed in common
vnits. This considerably complicates matters when we get to the point where
we wish to solve for an optimum solution. The objective functions of design
efficiency are normally expressed in terms of variance components and the
design parameters. The cost function, on the other hand, is typically a
function of dollar or hour cost and of the design parameters. An ideal design,
of course,would be one which minimized the cost function. Naturally some
compromise must be made. Hence, a combination of design parameters must be
found that gives near minimum variance (or at least a tolerable variance) for
the smallest cost consistent with design needs.

METHOD, To develop a desirable design, several assential steps must be
followed. For purpose of this presentation, we will first outline a systematic
procedure in seven major steps. Subsequently, we will follow this procedure
through to completion with an example from reconnaissance research. The
assential steps are:

1. State the hypotheses to be tested and identify the effects to be
estimated.
2. Develop a lineer mathematical model cf the yield variable in terms
of the factors of the design. Of course, this model must be such
that it will provide test statistics capable of testing the hypotheses .
stated in Step 1. PFurthermore, it must also provide estimators for
any affects that must be estimated.
3. Davelop an ANOVA table based on the model. Work out the expectatione
of the mean squares.,
4, Develop an odjectiva function for each hypothesis that is to be testad
and one for esch effect that is to bs estimated, These functions will
typically be functions of the design parametars and of the variance
components. Hence, a8 priori estimatas of the variance components must
be developad. Often thesc estimates can bs derived from similar
previously performed research prbojects.
5. Develop a cost function based on the project's design parameters and
their respective unit costs.
6. Solve the set of objective functions for an optimum solution. Since
the functions are antagonistic and require integer solutions, a
computerized evaluation of the objective functions for feasible
combinations of design parameters is recommended.
7. Select the combination of design parameters that most nsarly minimiges
the objectives functions within the budgetary restrictions of the
project. . '
An exampls from serial photographic reconnaissance will be used to demon-
strate this procedure. Only the identities of the aircraft and its cameras
have been changed for security purposes. Oh yss, the velocities and data are
also fictitious for the same reason. Saveral '"sophisticated" aircraft will be
available to fly photographic missions during this research period. Due to
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commitments we have s sorties assigned to this prodect. where a is momevhat 5
negotiable. One serious restrictions, however, is that a particular aircraft y
cannot be guaranteed for a fixed number of sorties. Thus, sorties will be §
considered as blocks. All alreraft will be fitted with an "Advanced, Modal i
Al-Mod 3" camera for this test. Each sortie can reliably produce 12 images iﬁ
of the target complex. We are interested in evaluating image quality at four
different velocities, namely slow, fast, very fast and full throttle (all :
after burners on). The latter one for obvious reasons. Hence, the four levela &
of speed are our treatments of primary interest. Since 12 images can be 3
secured during a sortie, the 4 velocities will be replicated 3 times within .
each sortie. The resulting photographic images are to be evaluated by p ‘
photographic interpreters. Each of the p lnterpreters will be required to

evaluate the images d times -~ on different days, of course, to avoid an among ‘
successlive - evaluations variance of zero, o

In this example, & number of tests of hypotheses are of interest. However, :
to simplify the presentation, we will only consider efficiency for the hypothesis, !
Tj - Tj' = 0, The basic design structure that we have just outlined will '

provide a test statistic for this hypothesis. Each of the individual measure-
ments upon the imagery can be described by the model:

Voguem = W ¥ By ¥ 1y T BTy F S Ty T vSigke Y Sqykm

1,0-0, a
1, 2, 3, 4
1, 2,3

1, .. p
1’ lll’ d’

B> "
(B I |

where y 1s a constant. g, is the effect of the ith sortie where the 8y v NID
(o, 032), and T is the effect of the jth velocity when er = 0. BTij is an

additional effect due to the specific combination of the jth speed during the

ith sortie where the Brid ~ NID(O, 083)' Gijk is a sampling error within the

ijk'h g:p(o, 062), Y, is the effect
due to the 2th interpreter where the Yy v NID(O,GY ). Ydijkl 18 an effect due
to the way the 2th interpreter evaluates the ijkth image where YGiijN NID(O.UY‘S
eijklm is a sampling error among conuecuti;e readings of the ith interpreter

on the ijkth image where eijklm LY NID(O,Ue ), and the ANOVA would appear (in

abbreviated form) as in Table 1.

same sortie-velocity combination where the §

%,

The first term of the model gives us a line for the overall mean with one
degree-of-freedom. Upon closer scrutiny, it i1s quite obvious that the next
four terms of the model define what is commonly referred to as a whole-plots
analysis in & split-plot experiment with the s sorties as blocks and v = 4
velocities as treatments. The model indicates that interaction betwean sorties
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and velocities is possible and that each sorties treatment combination is
replicated r times. 1In this case, however, r = 3 gince v¥r = 12, Noimally,
of course, the DlOCK Dy treatment interaction 1s assumed to be zero. In
this case, however, sorties cannot be considered to be true blocks aince
they are really another treatment; morsover in the real world, we wish to
estimate the component Gﬂfz. These firat five lines are thus the whole-plot

part of the analysis. The photo interpreters are the split-plot treatments
and this leads, in turn, to the three line split-plot analysis of photo
interpreters, photo interpreters by whole-plot treatments interactions, and
sampling error smong the split-plot units.

To simplify the discussion somewhat, we restricted our attention to
design optimization for the test of the hypothesis, Tj - TJ' = 0, This test

can be mady using a t-test; therefore, it is obvious that an optimum design
for this test can be achieved by minimizing the variance of the difference
between the T treatment means. Now the estimator for the contrast Tj - 11'

is Ti - Tj' - ;;%E- (Y.j... - Y.,'...) where the dot indicates summation over

that subscript. The sstimator Tj - 11'. vritten in terms of the model is

N

Tj - Tj' - ;%;E [szpd (rj - Tj‘) + rpd

8 ] r
El(BriJ -Btij') +pd 2 L <611k - Gij'k)

i iel k=l
s r P s T p d
+d £ ! I (Ysijkz - YGij'kz) + I I L I (e

- £ [] )]I
iml kel gul fe] kml ge] pey LJKi®  i)TREm

Now the variance of - rj' is:

N, 1 222 v 2,,22._ 2
v('r.1 'rJ)--—-—--—2222 [2rpd|v_1aet +2pdlr06+

sr'pd
2d2nrp 5762 + 2 srpd cezl. Or rewriting into the form of the EMS of the ANOVA

. 2 2 2 2 2
table Vv (Tj - Tj') - arpd [ac + dcYS +pd o+ rpd ;%I L ], If we knew

the actual values of the variance componants Ucz, 0762,-662, and 0812 we could
write out one of the objactive functions that we wish to minimize. A priori
estimates must be found, by argument if necessary, to evaluate the objective
function. For many problems estimates can be derived from previously conducted
sxperiments.

The other objective function that we now have to develop is the cost
function. This can also be developed from the mathematicel model in terms of
the design paramaters s, r, p, d, and v plus the actual unit cost of each
additional lavel of the factors. Therefore, let:

c1 = Cost for each sortis
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C2 = Cost for each pnoto interpreter. and

C3 = Cost of replicate photo interpretations.

Furthermore, since r and v are fixed, the cost for the experiment will be sC1
+ pc2 + svrpd 03. The two functions which we wish to minimize are thus:

2 2 2 2 2
fl 3spd (uE +d Ty + pd g5 + 4 pd %pr ),

and

f2 =8C, +p C2 + 12 spd Cye

The objective functions fl and f2 are antagonistic because f1 is a '

decreaging function of the design parameters; whereas, f2 is an increasing

function. A method of evaluating these functions is obviously needed. An
often used, however quite unsatisfying, method is the LaGrangian Multiplier
method by which the variance function, fl’ is minimized subject to the cost

function, f2’ being equal to some fixed coat. Some criticisms of this method
are:

(1) It yields non-integer solutions.
(2) It usually requires the solution of very difficult equations.
(3) It does not reveal nearly optimal sclutions.

(4) It does not reveal the solutions with considerably smaller variance
at only a moderate increase in cost.

A very simple computer program provides a means for finding an optimum
integer solution, In fact, all of the previously mentioned criticlsms of the

LaGranglan muitiplier method are avoided. The only apparent difficulties with
this computerized method appear to be:

(1) It requires some programming.
(2) The computer output must be scanned visually to find the design
parameter combinations that most nearly satisfy the objective functions.

The latter difficulty, of course, could be a very problematical task if
several antagonistic objective functions are to be evaluated simultaneously.

Even this task is not too difficult if isobars are drawn in various colors on
the computer output sheets.

An example of a simple complete Fortran (WATFOR)l program which will
evaluate our example is:

lWATFOR is a Fortran IV compiler written for IBM 360 computers by the University
of Waterloo, Waterloo, Ontario.
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DIMENSION OUT (8), OUT2 (8)

LY ]

DDAN ne nn £ hig-d Lo L) tram
MM ) Wy VA g WAy Yy YWy Yy VMa

DO1 1le1, 10
7 TFORMAT ('1')
WRITE (3, 7)
DO1l,L=1, 10
D02, M=1, 8
OUT (M) = 1*CSHL*CP412%1ALMMACD
2 OUTZ (M) = 2%(VEHMAVCDHLAMAVDHNLAMAVET) / (3% 14L%M)
WRITE (3,4) OUT
1 WRITE (3,5) OUT2
4 TORMAT (*0', 8F 9.0)
5 PORMAT (' ', 8F 9.3)
GO TO 3
END

Just as a nattar of interest, this program took less than three lccbndn
to compile and run on a WATFOR compiler with a 360/75 computer.

Table Il is an example of a typical computer sheet. Lines, which represent
constant cost and constant variance, have been dravm through the tabulations
to aid in locating the optimum combination of design parameters. The upper
element of a pair is the value of the cost function, whereas the lower alement
is the valuc of the objsctive variance function. A wide variety of deaigns
with similar costs yisld assentially the same precision for the desirasd test.
For instance the design with

s=2, vel4, r=3, pwl0d, and d = 1 is comparable to the design

amw2, ved4, rm3, puib,andd=35,

Either of these designs will meet the basic criteria for optimization. We might
ask, however, whether a batter design exists that has esssentially the sama
variance, lower cost and more flexibility. The design with

s= 2, ve4, w3, puf, andd e 2

has a similar variance and it costs only 75X of either of the previously
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mentioned designs. The flexibility nf asch of thege desiyus musi be considered

in making a final selectiona. Nonetheless, care should be exercised to ensure
that the design is not extremely sensitive to inadequate a priori estimates of
the variance compeonents in the uvbjective function. This can be easily

accomplished by rerunning the program with a number of alternative sets of
a priori estimates.

NOTE. Tables II, III, and IV use the following a priori estimates:
oez -2
aY62 - 2
°B¢2 "2
9,2 = 0.5

Coat per sortie = $500
Cost per photo reading = $2
Fixed coat per photo interpreter = $200

Tables III and IV illustrate the flexibility that the experimental
platiner can acquire by using this programming method. Table III ha: the design
parameters ¢ = 7, v = 4, and r = 3; whereas Table IV has s = 8, v ~ 4, and r = 3,
Of all the combinations in Table III with variance of 0.9, the design with p = 4
and d = 1 has the smallest cost at $5980., From Table IV, however, the variance
can be maintained at 0.9 with a cost of only $5360 by uging p = 2 and 8 = §,
Not only can we realize cost savings, but we can alao attain a slight reduction
in the variance. The design's flexibility as well as its insensitivity to

inadequate a priori estimates must necessarily affect the final choice from
the candidate designs,
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A DEFINLTIVE CALIBRATION OF AN AERTAL CAMERA
IN ITS OPERATTING FNVIRONMENT

Lawrence A. Gambino
Research Institute for Geodetic Sciences
U.S. Army Engineer Topographic Laboratories
Fort Belvoir, Virginia

INTRODUCTION. It should be appreciated that the calibration of an
aerial camera in its operating enviromment is more meaningful and effective
than a laboratory calibration., However, even though this principal has been
acknowleadged by many scientists in this area of endeavor, the calibration of
aerial mapping cameras has almost universally been relegated to the laboratory.
In recent years, the ballistic camera has been used for recording flashes from
active earth bound satellites or recording reflecting type natellites, such
as the Echo Satellite, on photographbic glass plates. The ballistic cameras
are successfully calibrated in their operating environment using the process
of stellar calibration. This has led to suggestions that the technique be
applied to aerial mapping cameras. A small amount of work has been expendad
in calibrating aerial cameras using thne stellar calibration technique. How-
ever, as with the laburatory methods, this technique atill suffers from its
failure to simulate the typical operational utilization and enviromment of
an aerial mapping camera' namely, photographing the ground thru a camera
window located cn the underside of a fast moving aircraft.

The experimental design necegsary to calibrate an aerial camera in its
operating environmant requires extensive knowledge of the scientific disciplines
of analytical, aerial photogrammetry, optica, and first order regression
processes. It is not the purpose of this paper to explain in detail each of
these gcientific areas, but we will briefly disgcuss amach of the mathematical
models necessary to carry out the equipment,

The photogrammetric model we will adopt has been used successfully in
recent yzars for analytical, aerizl triangulation, Also, extensive effort
has been expended to develop a mathematical model which describes the
displacement of photugraphic images due to imperfect lenses. Ore such model
is called the Thin Prism Model, and it 18 used to describe the radial and
tangential components of distortion. Alternative uodels have been derived,
such as Conrady's Model, in the year 1919, However, Conrady's mcdel does
not agree exactly with the Thin Prism Model. In any case, there have been
nany investigations through the years concerned with this aspect of optics
and, notably, a very recent investigation wae carried out by D. Brown {1]
whereby he developed a model through extensive analytical, three dimensional
ray tracing through a thin prism. Prown derived an analytical expression
defining the relationship between the radial and tangential distortion induced

by a thin prism at any specified azimuth. This can be considered as an
extenaion to Conrady's Model.

A third model which we must adopt has been well defined for many years
and it degscribes the displacement of an image symmetrically about the
optical axis. It hes been found that the distortiou of a perfectly centerad

The remainder of this article has been photographically reproduced from the
author's copy.
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lens composed of flawless elements is symmetric about the optical axils,
This distortion is commonly referred to as symmetric radial distortion,

With this all too brief narrative summary of photogrammetry and optics,
we may.congider our final model to consist of three major components;
namely, symmetric radial distortion, decentering distortion, and the fundamental
projective equation, or colinearity equation. The colinearity equation describes
the fact that, with no distortion, the perspective center of the lens,
an. inage on the film and its corresponding point on the ground (object
space) all lie on the same straight line,

We will develop the first order regression process which makes
practical the solution of a would be very large system of normal equations.
The first order regression process will encompass two sets of parameters
which will be referred to as statfonary and nonstationary parameters.
The, regression process which simultaneously recovers.these sets of parameters
is referred to as Aerial 8MAC, an acronym for Simultaneous Multistation
Analytical Calibration. We will develop the SMAC process to provide for
the introduction of external or a priori information.associated with any
of the statidnary and nonatationary parameters.,

We shall also discuss in brief the necessary requirements of a
photogrammetric test range so that the calibration experiment can yield
the best possible recovery of the meaningful parameters resulting from a
rigorous data reduction process. . .

GALIBRATION RANGE

In order to carry out a definitive calibration of an aerial camera
in its operating -environment, - we must conduct the experiment by.flying
over special target ranges where the horizontal and vertical position of
the targets are precisely known relative to each other. A small mdke-shift
3 by 5 mile range is available in the McClure,” Ohio, area. This range
vas used recently to conduct & SMAC experiment.- Ad a matter of fact, the

. Tange was turned into a night photogrammetric test range whereby 56, 500

watt, ifodine quartz lamps were placed over the survey markers. Unfortunately,
the final results of this experiment are not yet available at the writing
of this paper. .

- From our model, we will Bee that the X, Y, Z, position of each of these .
precisely surveyed marks are taken as known quantities. Any small error
in their position will be smaller than the noise level of the film
_measuremefits' at the scale of the photography. However, SMAC suffers the
disadvantage of being inherently incapable of yielding a calibration of
elements of interior orientation (focal length and primcipal point) of
thu cnméra. It ie well known that the variations in the elements of interior .
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orientation are projectively equivalent to changes in the x°. ¢, z¢,
coordinates of the aircraft. On the other hand, when external information
1s available, a SMAC reduction is possible, As stated in the Introduction,
the regression process will be developed whereby external information can
be introduced into SMAC., The necessary external information will come

from either electronic tracking devices, which will track the aircraft as

it flies over the test ran,e, or from ballistlc cameras cbserving a

flashing light on board the aircraft if the range is a night photogrammetric
test range., In either case, the electronic tracking devices, or ballistic
cameras, situated around the test range, will provide the X¢, Y, ZC,
position of the aircraft from an independent data reduction process. Let

it suffice to say that with rigorous data reduction processes, it 1is possible
to recover the position of the alrcraft to within 2 feet, especlally since
we are considering excellent geometry.

Figure 1 illustrates the type of permanent photogrammetric test range
to be used in the future and Figure 2 1llustrates the flight patterns
over this range,

. In order to provide the reader with some i1dea of the accuracies
which we hope to achieve, we will say that the film measuring accuracy
should be close to 5 microns and then the estimated elements of interior
orlientation are expected to have standard deviations of approximately 2
micrens. The standard deviations of the calibrated functions of radial
and tangential distortion are also expected to be approximately 2 microns,
It should be appreciated that these accuracies are achievable with only the
most rigorous data reduction process, precision measuring devices,. and an
accurately surveyed test range.

SYMMETRIC RADIAL DISTORTION

As stated prévioﬁély,lthe distortion éf a'peffectly centered lens 15.
symmetric about the optical axis; that is, the distortion is symmetrical
about the principal point and therefore is a function of radial distance
only. ) . .

Figure 3 will give the reader an idea of the photographic coordinate
system with which we are dealing. From this figure, we obtain the concept
of what 1s meant by intetior orientation. The vector from the perspective
center to the image point is defined as follows: '

x - X¢ X" X
P
y - YC =]y - Yp | (1)

z - 2¢ 0-f"
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Geometry of Photography and Simultaneous Tracking
Illustrates a Day Photogrammetric Test Range.

JAY

| Cloverleaf ¥light Path Over the Calibration Range.
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The quantity -f will be called the principal distance and it will be denoted
by the letter "c". Brown [3] has shown that the symmetric radial distortion
function must be one of two forms depending upon whether or niot the
principal distance c is carred as an unknown in the ‘calibration process.

For our purposes in the SMAC reduction, we wish to carry this parameter as

an unknown quantity. Therefore, the distoition model we will adopt is as
follows: ' '

G-Kl r3+K2 r5+K3 r7.‘+ooo, : (2)

vhere r 1s the radial distance from the principal point md the K's are the
coefficients of distortion., We will carry only three of these coefficlents
in the SMAC reduction. .

DECENTERING DISTORTION

The distortion due to errors in lens centering introduces tangential
distortion and asymmetric'radial distortion. It should be appreciated
that it takes appreciable skill and patience on the part of an optical
techniciah in aligning the lens to suppress this ‘distortion to within the
five micron level. A perfectly centered lens means that the centers of
curvature of all optical surfaces are collinear, but -this goal is never
achieved in prgctice. However, we will use a mathematical model which is
successfully being used in the stellar calibration of numerous ballistic

. cameras and some aerial cameras. As stated previously, the model we will
- adopt is that one developed by D. Brown (1] as an extended vergion of -
" Conrady's model. Brown scanned the literature for topics conterning de-

centeréd optical systems but found only a few reference books which touched
upon this subject. Most of these books and scientific papers -published by

. various authors adopt the aforementiomed thim prism model,.

The thin prism model describes the phenomenon that there exists on the
photographic glass plate an axis passing through the principal point along*
which the tangential distortion is maximum. At right angles to ‘the axis
of maximum tangential distortion is an axis of zero tangential distortionm.
The tangential distortion along .any other axis passing through the principal

point is proportional to that along the axis of maximum tangential distortiop,

the constant of proportionality being the cosine of the angle-between the
axis in question and the axis of maximum tangential distortion (Brown, Ref,
[1)). ® Ahalytically, -the model 1s restricted to tangential distortion while
ignoring the radial component of decentering distortion. Brown shows that

the behavior vf radial distortion is precisely the same as that for tangential
) aigtér;idh except for a 90° phase shift. Thus, the axis of maximum radial
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distortion curresponds to the axis of zero tangential distortion and

vice versa, At phase angles of b - 6 _= n%% , the radial and tangential
components are of equal magnitude for & specified radial distance

(Brown, Ref. [1]). The apgle 6 is the angle between the positive x-axis
and radius vector from the origin to the point whose coordinates are x, y,

and the angle O, is the angle between the positive x-axis and axils of
maximum tangential distortion.

~ In order to circumvent the problem of finding a suitable
approximation for the anglz ©_ and the other parameters in the model for

decentering distortion, Brown recasts the extended expressions for
Conrady's model into the form '

o = [Py (22 + 2x%) + 2Py xy] (1 + Byr? + Pur® + .01 (3)
by = [2P) xy + Py (r2 + 2 y2)] (1 + Pgi? + Pyrt + ..., (4)
where
Pl " - Jl‘ Sin 80
Py = ' J, coa 8,
Py = Ja/J3
By o= .Jg/Jl

aﬁd' .

r= (x4 yz)yé R

In our experiment we will carry only three parameters of decentering
distortion; namely, J,, J, and e;. This model should hold for any
number of decentered elements for short focal length aerial cameras.
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PROJECTIVE EQUATIONS

We come finally to the projective equations which relate
corresponding vectors in image space (aerial photograph) with those in

. object space (terrain). These equations are equivalent to another set
- of equation known as the colinearity condition equations since they

describe the fact that the object point, the image point, and the
perspective center in the lens lie on the same straight line. These equations
are fundamental to many photogrammetric problems. Figure 4 will enable

the reader to gain some insight into the role played by the various

parameters in the colinearity equations for tilted photographs, The

role of the 3 x 3 matrix [M) shown in Figure 4 is that of an orthogonal
trsnsformation from the photographic reference system (image space) to

the terrain system (object space) and vice versa. It represents three
sequential rotations in 3-space which when multiplied together in the

proper order, yields the 3 x 3 orthogonal matrix [M]. The matrix [M])

involves three more parameters which must be determined from our experiment.
These three angular parameters will be denoted as a, w, ¢ and are

" inherent in the matrix [M] as follows:

A B C -cosksinc 0|1 0 0 cos a -sin a 0

‘(M) =] A” B“ C” sin k cos k 0 || 0 -sin.w cos w||sina cos a O

D E F. . 0. 0 1}{i0 cos wsinuw 0 0 1

(icosucoan-cinnlinmaina)'(cohnaina-sinnsinhcola) (sinrco;ﬁ)

-

- (tinxconu-cosnsinmsina) (-sinnsinu-cosnsinmcona) (coskcoam) gSi '

(coswsing) ' }' (coswcosa) ) (sinw)

. If we now put together equations (1) and (5) we will have our
colinearity equations which relate the coordinates of image points with
those of object space. Since the original projective equatiodis include a.
scale factor, the colinearity equations .eliminate this parameter through .
division of the first two matrix. equltlons by the third thereby yielding

'_thq colinearity equations _

D(X-XE) + E(Y-YC) + F(z-z%) '

Lt . » . ._ o o ' -'(‘.::."“.":..-‘:_ . . : .
x.xP“,AL_L) +B(YY)+9.(.L§E). S
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A (¥-X%) + B-(Y-Y®) + Cc”(2-2°)

y=y *ec @)
P D(X-X°) + E(Y-YS) + F(z-2%)
As stated previonsly, we havz ,
¢ = principal distance (¢ = -f)
X,y = coordinates of imagé points (undistorted)
xp,yp = coordiﬁates of prineipal poigt
X,Y,Z = coordinates of poiqts in ohject space
. X¢,Ye,Z2¢ = coordinates of the perspective center - of the lens
(aircraft position) .
A B C ortiiogonal orientation matfix defining the

. rotational relationship between the x, y, z
A” B” Cl~ axes of image space and the X, Y, Z axes of
object space. .

M}
D E ,F_J"

At this point, we have all the necessary nodels to conduct the
experiment for the calibration of an aerial camera in its operating

. .environment.

-

OBSERVATIONAL EQUATIONS

. If.we now colléct'the various models we have developed ro
describe the undistorted values of .the observéd quantities, x, y, then

the distorted ¥, ¥ coordinates corrected for symmetric radial distortion .

and decentering distortion are as follows :

' oxp)m QD Gox)bn, o ®
Ly - a+ %) 67'.- yp)'+ 4. ' o (9)
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The terms for radial distortion in equation (8) and (9) are arrived
at from the fact that if only radial distortion exists in the lens,
then the correction to the measured points with respect to the
principal point in the photo coordinate system is

vhere
x° = (?'— xp) and y- = (¥ - yp).

Therefore, the undistorted photo images with respect to the principal
point are

(x-g?) = x’+6x‘ =_x‘+¥f6 = x’(1+%) =V(X=xp) (1+%9

and
- - 4 ‘H - I‘ = - 6 = ' ‘6
& yp)- yHSy” =yl 8 =y (1) = (F-y) (1K),
which are the required radial distortion terms in (8) and (9). .-~

The following unknowns are implicié in ;Helferms s, Ax and A;:

. Ky, Kj, Ky (coefficlents of radial distortion)

Jy» Jy, 8o (coefficients and phase angle of decentering
_distortion)

Xps Yp {implicit in § and r where

L R AR ALLL

The substitution of equations.(B) and (9) into the colinearity equatidnsv

(6) and (7) introduces the coefficients of radial and decentering
distortion into the observational equation. Therefore, we may express

Los

279




B Pasial® Uit et

the colinearity equations {6) and (7) for the ith

meatured point as

S13 Dy
(1 + e ) (? - X ) + A =c J
Tiq 13 P %y Fﬂ

and

8,, E
i] 13
L+ —=) Fy4 ~y,) +4 uc -
rij yij Y.p yij ¢ Fij

"where
(3, 1 Ta s ¢ [x -xf]

N - - .Y - y©&
Eij _ A" B .C Yij Yi

[
Fij D E F zij Zi

In tﬁoae equations

19 748

photograph and the jth

(10)

Q11)

az)

Y

X are vbtained by direct measurement,

-

X, ,» ¥ ., 2 are taken from Eteciaely surveyed valuea, jth

13° 13 %43

point o the it photo,

i’ Yi‘ Z1 are the camera station coordinntes for the ith

photograph

A,B C,A; B‘C‘D E ,F. are_ the 3x3 matrixf [ujig‘eleﬁentg‘of.th '%;_* a

i“h photo
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0js Wy, Ky are the rotational elements of exterlor

oirlentation and they are explieit in the matrix
[M]i for the ith photo,

xp; ¥,» C are the elements of interior orientation
F (xp’ y, ere also implicit in 5ij and rij).

Finally, we see that each palr of film measurements glves us to two _
independent equations involving fifteen parameters, nine of which will
be common to'all n photos and six of which are considered to be
changing from photo to photo. Thus, observational equations for all

n photos and all m measuied images of precisely surveyed control points
constitute a 2mn system of equations in 6n + 9 unknowns.

THE LINEARIZED OBSERVATIONAL EQUATIONS

The pair of equations, (10) and (1l1), may be considered to be
of the functional form:

: — c L€ ,C
glciist1j’xj:Yj9zjtxi:Yiozi:ai:winKinkl:KzsxgiJl’Jzneosxpsyp’c) = 0

- (13)
f2<§11'ykj’xj'Yj’Zj’xg’Yi’zgfai’wi’Ki'Kl'Ké’stJl'Jz’eo’xp’yp'c> =0
R Sy

In equations (13) and (14) the measured film coordinates are subject

to random errors. At present, we will treat the parameters as .

completely unknown quantities, Later, we will develop observation
equations generated by considering these parameters as observed quantities,
This means that we will develop a welght constrdining procedure based

on how well thesa parameters are known. Because equations (13) and (14)
are nonlinear, we will linearize them using a Taylor's series expansion
keeping only the zero and first order terms. Therefore, we write

- = --o
13 " %y F Vg

(15)

= P
Vig ™ Yig T Vayy

281




~ in which the superscript "00" are arbitrary approximationa and the é's

and

vhere the superscript "00" and &'s have the same meaning as before,

_the following form: -

. As stated previously,” we will linearize these equations via Teylor's

X ) th
where ﬁgj, yi denote the measured film coordinates for the j ~

measured image on the ith photograph, and’ Vigqr Voqq 8TC the
corresponding measuring residuals. Also, we del _j

.-
. TR e v

. ﬁi - Ggo + Gui, Wy = wio + Gwi, Ki - Kgo + 6"1, (16)

and

€ o sxCy00 c ¢ _ (yCy00 e ,C = (2C)00°, c
Xy =(X)%% 8x7, ¥g (Yi) + Y7, 21 (zi) + 625, Q1)

are the unkncwn corrections to the approximations, . Further, we write
Ky = ¥° + 8K), Ky = K3° + 6K,, Ky = xa + Kg,

J

J, =300+ 83, I, - 330 + 83, % = 630 + d8,,

(18)

x, §;° + pr,, V" yg°.+'6yp, ¢ =c% + §e,

The gubstitution of (15), (16), (17), (18) into {13) and (14) ylelda.

flij - fl(’!gjwlij' ygj-wnj. ug°+6u1, u.‘ol N 'c°°+6c) = 0, .
' B o (19)

) ¢ 00 . 00

SRS ("° gy "1;1""’213' aHag, voe o) = 0 .

series keeping only the zerv and first order terms. Therefore, we get

‘e .
b
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.1 . .9 -lnl "6 -
MTTLITEL SLN o] ,8ctb], bat .., +blij5%E €44

113
(20)
il 4 59 scrbl 16 c .
v21j+b21j6K1 ce +bzijc5cl-bzij6ai+ +b21.162 _EZij
where
Elij - —fl(izj, ?gj, Kfo, ves , €00, ag°, ve ,(ZE)OD )
(21)
Ezij = _fz()_{gj’ ?gj’ K?o! LR H ] coo’ ago’ AL ’(Zg)oo)’
and
- o4 Lo My " %144
- 11 ok, P M T T v e Plyy o
(22)
. afu o aflij " . af
1 - j b2 " ——— bb o -—.Ej_
WY 7 e P T T e e DRy pyory
i - %y )
o P2y 2. Mgy T t44
21§ 3K, ’ "2i4 oKy "t Tagy de
(23)
“ a3y ., 'afzu C 9fyy .
b, ==, b, e g OT2dy
243 r P2ty AR e F & | e "
foy Ty oy
The partial deribatives‘in (22) and (23) are evaluated at Ehé T

approximatiovn K9°, K99, etc, and ¢
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squations (13) ani (i4) at the measured point using these appioximations.
We will not dsriv: the formulas for thec partial derivatives since they
are straightforw.id and they do not add to the purpose of thils report.

The linearized equations for the jﬂ" nulurad inage on tha 1th
photo are put in the matrix form

vy, "'"13 5+ 31_1 61 -y ' o (24)
. vhere

iy | b1y ‘leij.“-i"gij 4%,
Ve, " .~§ - 6- .
(2.i) .vzi.‘l (2, ;) bzij zij "'bzq (9 1) A

T o L ' - - | (25)
: . 8o e !
' 1 -t "
"lu 5?13 ’ i’113 i | €113

T ' ‘ .. 3 - . 3 - 01 -

e My B} BEIT O e I T Rl P
- (2,6) :lj 211 21,1 (5 1) . (z 1) | 243

. - _ $z ST

.
- . h -

'rho datrix nquat:lonu (24) and (25) roprcun: thu smallast matrix units
in the entire development; that is, they involve information from only
the 3t th peasured point on the ith photograph. Remembsring that the
measurements on all n photographs contribute to the solution oﬁ the nine
_stationary parameters apd that all m measured images on the 1i*" photo
contribute to the solution of the six nonstationary parametexrs per
photo, wa can express the linearized equations for all n photographs as

-
e o b e




omrey A 0 S TN T

v (;11 r;1j F;IJ
sz . éz'] . §2j CJ - Szj
A R IO . IV L T O ¢ .
(2n,1) ’ (2n,9) .. (2n,6) . (2n,1) .
vnj ﬁnj an snj

(27)

If in the next step we collect all equations generated by all

measured images, we have the matrix equations

v+BS+BSme

1n which
— . . -
* A Bl Bl e+ 0
V2 . Bz . 0. Bzo » v 0
Ny = y B.- , B = . '
. (zmn,]:) . (2m'9> .. ’ (zm'6n) . . ‘. . . e
v B 0 0+ B
m m m
- - -~ - L -
501 ~51—
Su £2
é Ll . E = . .
(6n,1) ‘e (2mn,1) *
62 €
n m , )
L' s e oed

285

(28)

(29)




o2 a:
=y 13744

CoAgy - . 2 (30)

. o

. S | HY,
nnq we shall denote the weight matrix of ﬁ:j' ?:j to be

' .- -1 . 3
wij Aij oo ‘ (31)

It is in the expanded matrix equations (27) and (29) that we see .
the difference between the analytical aeriel triangulation and camera
calibration problems.

In order to develop the rigor necessary for the complete calibration
effort we must consider the possibility of weighting the observed
quantities ¥°, yO,

WEIGHT MATRICES

‘We uhall denote the covariance matrix of the film coordinates

. @)

Thus we allow the film coordinates for a given point b be correlated,
Lat 1t suffice to say-that it is possible to get correlation between
ﬁz by considering the calibration of the instrument with which
‘ tii& measuraments are made and it 1s also possible that correlation
may arise from calibrating cameras which do not-'have flat fields. 'In
any case, by employing the full covariance matrix Ay4, we properly
propagate and presarva the informational content of the original obscrvations
throtghout the camera calibration effort,

We shall assume 1ndependnnue of film measurements of different

1m¢gegﬁ Therefore, we may express the covariance and weight matrices for
the § point seen on all n photos as A
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FAIJ 0 e « o (0
0 Azj s s e O
Aj ® . » ) . R (32)
(2a,20) * . .
0 0 . o« s A
n
. g
and
_wlj o " e o 0 -
0 sz « e » 0
WJ = . . . . (33)
(2“,2:‘) . . .
\ 0 o] « o s wnj

If, as before, we collect all ‘equations generated by all measured images,
the corresponding covarlance and weight matrices are

M 0 e 0T
) . o Az " e @ O N ' S .
- A wye * LY , T .(34)
. (2mn,2mm) | . e : L :
-0 0 LR '
m
L iy
and
wl .0 . . L] 0 1
- * 0 W e s o ()
W . n ] ¢2 .
(2mn,2mn) ¢ . . . (35)
0 0 . 0 e wm
- -
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equations

We are now in a position to state that equations (28), (34), and (33)
contain all the information provided by our original observation
equations- (10) and (11). However, we have not made provision for
overcoming a basic flaw #n the camera calibration experiment; namely,

as stated previously, we cannot recover the elements of interior
orientation of the camera (x_, y_., c) since these elements are projectively
equivalent to changes in thepcoogdinates of the exposure station. Thus,
this is why we have stated that an external tracking system is necessary
for the calibration experiment. Therefore, we must now develop addi-
tional observation equations which will allow welight constraints to

be applied to X, Y€, Z¢ according to how well the tracking system
triangulates a camera station., Since we must develop at least three
additional observation equations, we will.develop complete flexibility

and write observation equations for all parametexs included in the
adjustment. This means that we.will be able to incorporate into the
adjustment any a priori information concerning any, or all, of the
parameters involved in the calibration experiment. The a priori information
may come, for example, from a previous calibration.

OBSERVATION EQUATIONS GENERATED BY ELEMENTS OF ORIENTATION, RADIAI AND

DECENTERING DISTORTION
In order to develop the flexibility of constraining the unknown
parameters to within prescribed limits by welghting, we must develop
observation équations for all parameters involved in the calibration
problem, We shall assume that independent observations are avallable
for all parameters. Thus, using previous notations fox observed

o quantities, we write for the elements of inqerior~orientation,:rqdiél

and decentering distortion .parameters . T TR
N ; * ot o
. % !: + v, Yp = yg + Vy» cmC T Ve
. P e )
- KO - kO ’ . 3. .
) ' - 10 2 a®
Jy=J # le, J, = Jy +'vJ2, Bo “ ?o + ve ,

Q -

where the v's are observationdl residuals, If we eliminate the adjusted
observations from equations: (18) aund (36),.we arrive at the observation
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mpr— Ty tew N

R e o

" Now that we have-writtén observation. equétioné for all paramétéfs

: v eminbe i e Pt VA OB
haiaie Tk rmitm b >

T ALt it R

cO0 - 0 = ¢ (37)

- s e et = 2 Sy

The meanings of the superscripts are the same as before, but now we
have additional observed quantities and thelr residuals, As stated
previously, we must be able to enter a priori information concerning
the position of the camera station. If we proceed as we have done thus
far, we will write additional oBservation equations for the elements of
exterior orientation for the iF photo as follows

o, = a9 + ¥, o + V.o, Kk, =kl

i i 1 q = 0y 4 i Ky

. _ (38)
= °+v (Y°)°+v ) 25 = (2%

xg % ¥ gt

-

involved in the experiment and have eliminatéd the adjusted para~

meters from (16) and (17),-we can express equations (37) and (38)
in matrix form as

v-0=c¢ g (39)
and
LW mE (40)

respectively, where (40) is developed further for all n photographs
as follows:
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where

v =

(6n,1)

Vge
- n_

Vo A6

.5‘0.1
.5. Lo Gwl
(6ns1)
55
Zn-J

el
, e=|e
(6n,1) -
:
]

(41)

(42)

Matrix equation (39), which involves observations on the stationary
parameters, 1s expanded as follows:

Vx
P
v
ve| ¥p ,
9,1} « .
. 60-
o

(9,1)

=
9,1)

(43)

-

If we assume.that observations on the stationary and nonstétidhar§
parameters are iudependent of each other, the covariance and weight
matrices assoclated with the observational vectors (39) and (4l) are

A=
(9,9)

w2
o O
P
0 o
o
0o 0
e

e ¢ ¢« 0

q_ooo

(] L] L] 2
Y

[+]

-l

;oW
(9,9)
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computetions.

NORMAL EQUATIONS

for the stationary parameters and

- e -
3, SRR Wy 0 e .0 |
0 Az LI 0 0 w2 s o o 0
K w | e " . w w | e . . (45)
(6n,6n) | + - . (6n 6n) . e .
0 .0 oty I o o ° f * LA

for the nonstationary parameters. In (45), we let A4 denote the
covariunce matrix of the observations of the element< of exterior
orientation for the ith photograph and let W, = A=, It is not
necessary for these covariance and weight ma%riceg to be diagonal.
They can be completely filled without creating undue strasin on the

At this stage, we have three matrix observation equations arising
from .

1. Measured film coordinates,
2, Stationary parameters,

3. Nonstationary parameters.

e

We are now in a position to form normal equations.

Writing the matrix observation equations as follows:

v + §5,+ ﬁg L

Ma

v - & - (46)

.V e

oY
H .
[}

[ .
. .

we can merge these matrix observations equations into the single matrix
equation
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M 0 M1
D D [+] €
+|~-1 0 §|=]e¢
0 -1 ¢

Ny et L-—-

which i reduced to

V+B 3§ =c.

. The dimension of v is (2mn + Y + 6n, 1)3 that of B is
(2en + 9 + 6n, 6n + 9), and § 158 (6n + 9, 1), . The dimension of the
discrepancy vector € is the same as V.

4n

(48)

In merging the covariance

and weight matrices of the three matrix cbservation equations, we

have
A
'(2mn , 2mn).
A 0
@w,n) .
' 0
whére '

0

A
(9,9)

0

v oem

A
(6n,6n)

J .

, W
1 @&m @,n

W= (2mm + 9 + 6n),

. The coefficient matrix and constant column of the normal equations
can be formed by matrix multiplication as follows

LC@BIWE

s

§

BT

-w- EO

-A-I-
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(2mn,2mn)
.0:.

0

: W
(,9)

0

W

. (bn,6n)

49)

"(50)




Brown [41 shows thar the colution o5& £he veviors v and 0 simultanecusly

leads to the minimization of the quadratic form of the residuals

Wv. (51)

If we use matrix equations (47) and (50) and realize that the structure

of the B matrix is 3 column matrix of matrices, we can write the normal
equation system as

BT -1 d} W o o|ll|B # BT -1 d] W o olle
BT 0 _EJO Wollr ofl={3" o -Jo Woolle
00 W||o -1 0 0 Wlle
(52)
which, after multiplication, becomes
n o, A 1 . n 7]
(E N)+W! W § (2 &) -we
o N S I o
WoovRei] s A |

The individual matrix components of the normal edudtions'(53) and their
dimensions are : : : .-

(£ Nyyaw 4l W )
i=1 (9,9) (9,2mn) (2mn,2mn) (2mn, 9)
n . . '

(r )= 3f W €

il (9,1)  (9,2m) (2mn,2mn) (2mn,1)
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N = 8T W B, (54)
(6n,6n) (6n,2mn) (2wo,2un) (2mn,1)

e = BT W €
(6n,1) (6n,2mn) (2mn,2mn) (2mn, 1)

¥ =« 8 W B,
(9,6n) (9,2mn) (ern,Zmn) (2 ,6n)

where, as stated previously, the N and ¢ portions of the normal
equations are quicikly and simply formed by virture of the structure
of the B matrix., The general normal equations for the simultaneous
adjustment of all n photographs are diagrammatically given as follows:

€—-—9 + 6n cola )
&9 colg~?| ¢m—-6n cols - s ) Constant cols
4 Cn J | T B .
. 9 rows ( Z Ni)+ W Nl Nz e 4 . N 6 ( T E'- ) - i’ é
— L e s 1 codetmr
N Nl lN1+W1 0 LI Tt 0 61 81 - w] El
T R : " oo
i N NyHt, o0 0 0 of =| & - W, &
én rows |
A s -
l—.lT ' L] ] . .l. . °
N | 0 0« ¢ NV, [] 6 el - W. &
n n n X n . n n. cn *
\Jl - ' ..l - J b - J

(55)

This is the first order regression scheme referred to earlier in the
report. This type of structured normal equatlons were successfully
solved by Brown [5]. Practically, a solution is possible no matter how
large n may ‘be and it 1s found that the computati.ns increase only
linearly with n, In our camera calibration experiment, the largest
matrix to be handled is of order 9. It is not our purpose to give full
‘detaily of the computation algorithm since these details are available:
+ in many of Brown's reports,-for example, reference (5]. Let it suffice
to say that in practice we will handle approximately 20 photographs
selected from four passes over a test range, and that we hope to obtain
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at least 40 images on each photo. These images will be common to all 20
photographs, Therefore, we will have 800 measured images contributing
directly to the calibration ol the stationary parameters whereas

40 measured images will contrlbute to the determination of each set of
nonstationary parameters. The resulting normal equation system will be
of order 129 generated from 1600 observation equations, if only the
equations from the linearization are considered.

CONGLUSIONS

We consider SMAC to be a total system calibration since the
calibrated distortion pardmeters will include effects of the camera
window and the shockwave of the airstream upon the window. Also,
since the systemmatic errors tend to be independent from one frame to
the next, the estimates of the stationary parameters will not be unduly
influenced by these type errors. We feel that this represents the

- actual conditions in practice and therefore, SMAC is & significantly

superior process as compared to one which might use single frames each
employing 10 times as many measured images &8s on a SMAC frame.

A by-product of the SMAC reduction is the covariance matrix of
the adjusted parameters. This permits evaluation of error bounds of the

calibrated functions of radial and decentering distortion along with those :
‘of the parameters of exterior orientatiou,

A quantitative calibration of existing decentering distortion in '
a lens is especially important since the practical limit of the length
of an analytical, serial control extension project is heavily dapendent
upon the elimination of the effects of decentering distortion.

In conclusion, then, we feel that a SMAC approach to the problem
of calibrating aerial cameras in their operating environment is both
feasible and practical, and that its potential value in other modes of
operation, such as stellar calibrations of aerial and ballistic cameras,
is yet to be realized. We hope to have the results of a SMAC
calibration in the near future; that is, both & stellar SMAC and an aerial
SMAC of at least two aerial mapping’ cameras so that we wvill have a
comparison of three types of calibration (laboratory, stellar, "aerial)
of the same’'cameras. These comparisons ghould prove the effectiveness

.of the aerial SMAC approach.
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DESIGN AND ARALYSIS OF A S8TATISTICAL EXPERTIMENT
ON HIGH-VOLTAGR BREAKDOWN IN VACUUM*

M. M. Chrepta, G. W. Taylor, and M. H. Zinn

Electron Tubes Division
Electronic Components Laboratory
U8 Army Electronics Command, Fort Monmouth, N. J.

The problem of high-voltage breskdown in vecuum has been studied for
more than forty years. From these studies many conflicting theories have
evolved that still do not relimbly define & breakdown criterion nor explain
the mechanisms involved in the process. High-voltage breakdown in wvacuum
has received renewed interest in recent years because of the demands for
superpover radar system components, ion thrusters for space propulsion, and
high-energy particle accelerators.

The study o¢f the factors that effect a high-voltage breakdown in vecuum
is being performed at this laboratory using statistically designed experi~
ments. Initially, the sixteen factors shown in Table I vere defined as
probable contributors to the breakdown process:

TABLE I - FACTORS EFFECTING BREAKDOWN

Inflexible Factors Flexible Factoxs

1. Cathode Material 12. Residusl Gas Prussure
2« Anode Material 13, Energy of Supply

3. Cathode Finieh 1k, Conteminant

b, Anode Finish 15. Magnetic Field

5. Cathode Geometry 16. Electrode Spacing

6. Anode (eometry
T, Vehicle Bakeout
8. Envelope Material

The objective of this program is to analyze the significance of each of
these factors as well as theilr interactions.

The first designed experiment was carried out using seven of the in-
flexible factors, each at tvo levels, in a 27"? plan (Table II) derived

foom Table M of Davies' Design and Analysis of Industrial Experiments :

#Sponsored by Advanced Research Projects Agency under US Army Electronics
Command Contract DA28-043 AMC-00394(E) ARPA Order No. 517 PROJECT DEFZNDER
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TABLE II - FACTOR LEVELS FOR INVESTIGATION

T1-7AL-4Mo
304-S8
OFHC Cu

CATHODE MATERIAL <:::

304-5S

ANODE MATERIAL
T HC

ARS

CATHODE FiNi3H FINE

COARSE

F
ANODE FINISH FIN

H
CATHODE GEOMETRY
PLANE
PHERE
ANODE GEOMETRY PLANE

A
VEHICLE BAKEOUT PRESENT
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Table III shows the levels of cech factor for eech of the thirty-two
treatments. The minus sign in each treatment means that the factor is either
at the low level or apsent from the treatmant: the nlue ailan means tkat &he

factor 1s at the high level o present in the treutncnt. The set is ortho-

gonal; each level of any factor is tested aqually against eeach of the other
factor level combinations:

TARLE ITI - 272 pran

TREATMENT
(1)
asf
be !
ab
dt
ccd
bed
ab df
ce
ael
be f
[1X1)
tdet
ad ¢
bde

abcdef
fa
acQ
beg
abfg
dg
acd g
bedfyg
abdg
cofg
[IX]
heg
abaefg
cdeg
adefq
bdety
abcdeg

cCiD

]

tiafrlegtfafr|t|@

RN A R E AR RARE AR IR R AR AN RN
AE IR AR E RN ERARE AR AR AR d RN

AEARIES SR AC L L ARNERERE

il elal sl il o lalafel o] o] 11l oo idir (#ha]4] s 4] [+ >
el laial e [ofalolelelafoge o] o] afo{#i]o [ o] o | [+] s [0 |+F]:
AR SRR AR A AN R AN R A RN A L NN IR R R AL S5 SR N

APPSR RS S R N R S RSN A RN 2R g N
Fe RN RN S PN AR AR
EESRARAEA R IR SRS AR A 2R JE 2K N

E AR I SR BN AR RN N

The letter assignments, shown in Table 1V, were cerefully chosen so
that in the trestment and anulysis of the results the effect of any two-
factor interaction ianvolving the bakeout factor, D, would be clear of any
other main effect or two-factor interaction of interest:
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TABLE IV - LETTER ASSIGNMENT
= Anode Material

- Cathode 8hape

- Cathode Material
Bakeout

- Anode Shape

= Anode Finish

Q = M U o W >
]

= Cathode Finish

The treatments wvere randomized and performed 1n3the test vehicle shown
in Pig. 1: :

MAGNETIC FIELD
Hp /

coiL. (H,)
» T 'I. o
16’ ACCESS POR _.Cj <
AN
¢ rom?
500 LIT/SEC. b
ION PUMP REAR Hy » He /
PAKEANLE
FEED - THRY
BUSHING
FEED - THRY PROTECT IVE
BUSHING RESISTOR
prd ~ GENERATOR
H-——-——t
/
7,000 JOULE
CAPACITGR
- \ _~PRESSURE
BAN VESSEL
A=

Fig. 1 Test Vehicle
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Each treatment was carried out in this manner: The voltage was increased
in 10-kV steps, each step held for two minutes. During this procedure,

the microdischarges (self-quenching pulses of cuvrent) , hydrogen evolutions,
X-radiation, visible radiation, and prebreakdown current were monitored.
The voltage was incressed in this stepwise manner until puffs of hydrogen
were detected by the mass spectrometer. This voltage was recorded. After
the gap was outgassed again, the increase of voltage was continued until
sparking occurred. This voltage was recorded as the first breakdown vol-
tage. This procedure was repeated for each treatment at six elecirode
separations from 0.5 to 3.0 em. During the application of voltages at each
gap setting, the sparking and gas evolution conditions the electrodes so
that higher wvcltages may be held off. These higher voltages vere slso re-
corded for the analysis.

Thus, we have three sets of yields of voltages that cen be incorporated
as the inputs to the design plan for analysis. These numbers inserted in
the boxes of the design table and treated with the signs shown will give
the deviation from the, average of the vhole experiment for each facior and
factor interaction. The results can be obteined in a more systematic man-
ner by using the Yates Algorithm, which consists of repeatedly sdding and
subtracting adjacent test results until the results for the mean, main
effects and tvo~factor intersactions are obtained, s shown in Table Vi

TABLE V - DEFINING RELATION

I »-ABOFG* -CDEFG = ABCE
YIELDOS OF YATES ALGORITHM

| meen 12 ABE +(©) 23 BDG-AF
2 @ 13 [DE] 24 aB0G- (F
3 14 ' ADE 25 EG

4 AB 4+ CE 1S BDE 26 AEG

5 (0 6 ABDE +[CO) 27 BEG

6 [AD] - 17 © 28 A BEC +CG
7 [8D] 18 AG 29 DEG-CF

8 ABD-FG 19 86 30 ADEG

s ® 20 ABG - |DF 31 BOEG

10 AE + BC 21 32 ABDEG-EF
1

BE + AC 22 ADG- BF
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Thia tahle shows that we can vset seven main effects and six two-factor
interactions with D (the bakeout) plus the mean. The others may be used
{for estimating error.

The analysis was carried out using the Yates Algorithm with inputs of
the voltages obtained. The results of thie analysis indicated & lov lewvel
of confidence for the effects. Therefore, the voltages were plotied versus
distance to the one-half power, since these and many other experimental re-
sults have been found to follow this reletionship. From these plots a slope
vas calculated and used as inputs to the Yates program. This slope, using
the averege of many poinis, smoothed out the values as weil as the error
and gave more dignificant results.

These resultes are plotted on half-normal graph paper es shown in Fig. 2t

3r O‘
E
30t )
29}
§ 28}
g 26}
x 4k A~ ANODE MATERIAL
&« B—CATHODE GEOMETRY
§ r C~CATHODE MATERIAL
S 20 D=BAKEOUT
o E~ANODE GEOMETRY
18} F—ANODE FINISH
b 0--CATHODE FINISH
= Q
'._.
of
0 ! 1 L L - L 1 1 A ] L ] L 1 l ] 1 J
0| 2 8 4 8 & T & 9 10 Ul 12 I3 (418 16 |7 18 18 20

COEFFICIENTS (kV)

Fig. 2 Half-normal plot of ccefficlents obtained
from the Yates Algorithm.

Thie graph is designed to give a straigrt line for any random process.
The order number represents the range of values, from smallest tc largest,
corresponding to the coefficients obtained from the Yates analysis. Devi-
stions from & straight line indicate that the factor has a significant
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iniiuence on the distribution of the thirty-two values and that the values
are other than random. This plot shows that a straight line can be drawn
through most of the pointas that represent effects of Lhe factors with little
or no deviation from the average of the experiment. The points labeled A,
E, B, D, and AE+BC are reel efrects, and the significance is indicated by
the dlstance from the stralght iine. The AE+BC effect, hovever, does not
donate any information because the AE cannot be distinguished from the BC
effect. From this experiment these conclusions can immediately be drawn:

1. A, E (the anode material and geometry) are most important.
2. B (the cathode geometry) is important.

3. D (the bakeout factor) is important, but less than the above.

The level cf the anode geometry factor that raised the breakdown vol-
tage 1s the spherical electrode. This might also be sald for the cathode
geometry, but with less confidence. When the anode material was titanium
alloy, higher breakdown voltages were reeached than vwhen it was copper.

The bakeout factor, D, was pertinent to this experiment with the test ve-
hicle designed for this study. The two levels of bakeout were complete
system and electrode bukeout versus electrode only bakeout. The electrodes
vere equipped with internal heaters for thin purpose. The complete system
and electrode bhakeout level is superior to slectrode only bakeout for at-
talning higher breakdown volteges.

Along with the statit :ical analysis, the results of the experiment
were analyred as to the physical processes occurring in the highly stressed
electrode system, As previously stated, the hydrogen partial pressures
were monitored on the mass spectrometer. Large burats of gas were coinci-
dent with sparking or breakdown. ALso, the superiority of spherical elec-
trodes in holding off higher voltages suggested a breakdown mechanism de-
pendent on the amount of gas present in the gap and the pumping conductance
of the electrode gap system caused by the shape and size of tke eloctrodes
and the gap distance. A theory was proposed whereby the gae conductance
of the gap played a major pert in the breakdown proceaa} Simply stated,
small-urea electrodes with a high-conductaiice gap will hold off higher
voltages than large-area electrodes at the same gap spacing. To evaluate
this theory, a second statistically designed block-of-eight experiment was
derived. The objective of this experiment was to verify the gas pumping
conductance theory. The factors chosen vwere anode processing, cathode
processing, and electrode size. The two levels of electrode processing
are hydrogen baked versus vacuum baked, and,for size, a 4" versus b/3"
diameter Bruce plane, as shown in a. of Table VI. Because of the simplicivy
of this full factoriml 2° experiment, it was decided to incorporate a trans-
verse magnetic field as a factor at the end of each treatment, as shown in
b. of Teble VI. The treatment was repeated with magnetic field and then
again without magnetic fleld to ehow up any consistent difference between
the first end third breakdown volteges because of the application of the
magnetic flelds

L. M. J. Mulcahy, A. Watson, end W. R. Bell, 'High Voltage Breakdown Study,"
USAECOM Contract DA28-043 AMC-003G4(E) ARPA Order No. SL7T (1967).
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TABLE VI - FACTORS AND LEVELS FOR BIOCK-OF-EIGHT EXPERIMENT

8., Without Magnetic Field

Factor Letter Level
An~de Processing A High Low
Cathode Processing B
Electrode Size Cc 8 ~ Vacuum Baked 1 = Hydrogen Baked
b - Vacuum Baked 1 - Hydrogen Raked
¢ - Large 1 - Bmalld

b. With etic Field

Anode Processing A & - Yacuum Baked 1 - Hydrogen Baked
Cathode Processing B b = Vacuum Baked 1 - Hydrogen Baked
Electrode Size C ¢ = Large 1l - Smsll
Perpendiculax

Magnetic Field L 4 - Present 1 « Absent

This is now & complete 2* factorial experiment and can be analyzed separately
as two 2° experiments, as shown in Table VII:

TARLE VII - EXPERIMENTAL ORDER
Main Perpendicular

Order Description Block __ Fields
1 Anode b=inch Bruce h-baked e cd
Cathode b-inch Bruce h-baked
2 Ancde 4/3-inch Bruce h-baked (1) a

Cathode U4/3-inch Bruce h-baked
3 Anode h-ineh Bruce vec-baked ac acd
Cathode U=1inch Bruce h-baked
4 Anode 4/3-inch Bruce vac-baked b
cathoie 4/3-inch Bruce vac-baked

5 Anode 4/3-1inch Bruce h-baked b ba
Cethode 4/3-inch Bruce vac-baked

é Anode Leineh Bruce h-baked

abd

Cathode U-inch Bruce vac-baked be bed
T Anode L-inch Biuce vac~-baked

Cathode L=inch Bruce vac-baked wbe abcd
3 Anode 4/3-inch Bruce vac-baked . ad

Cathode 4/3-inch Bruce h-baked
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The Sap_ viwepi wan periormed simiiarly to the stepwise voltage ilncrease
yrocedure as described before. The resulting voltages are plotted versus
d.stance to the cre-half pover. 1In Fig. 3, first the average effect, u,
without magnetic field present, is plotted with the average effuct, u; , with
wagnetic field present. It can be seen immediately that the magnetic field
lowers the breskdoyn voliage except at the smallest spacing tested:
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Ilg. 3 Breakdswn wvoltage versus gap separation
in centimeters to the one-half power for

average values with and without magnetic
field.

In Fig. b4, the effects of the factors A, ,AE, and A, are shown by sub-
traciing the values individually from the corresponding overall average
breskdown value, 4. The subscript 1 refers to the conditioned breakdown
value prior to spplying magnetic field and 3 refers to the breakdown value
after application of magnetic field, The differences in these values are
indicative of & memory of the conditions imposed by the magnetic field

after it was removed. Other main effeets and two-factor interactions are
plotted similerlys
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Fig. b Breakdown voltage versus gap separstion
in centimeters to the one-half nover for
average values with factor A and two-
factor interaction AE.

From these curves, the principal conclusions that can be stated with
8 good measure of confidence are as follows:

1. The hydrogen-baking procedure permitted higher
breakdowr. voltages than did the vacuum-baking.
Tha magnetic field amplified this difference.

2.

3.

Large-area electrodes reduced the breakdown voltage,
vhich is consistent with the results obtained in
the first experiment. The magnetic field head no
effect in this case.

The combined effect of hydrogen-baking of the
cathode and using small electrodss reises the
breakdown voltage. This effect is smplified in
the presence of a magnetic field.

The results of these experiments, presented in this manner, show with
a good degree of confildence what can be expected when electrodes are de-
signed for high-voltage devices. These data are for coyper electrcdes.
Othexr materials of interest to vacuum component design engineers will be
similarly analyzed.

The next experiment (now being conducted) vas designed ms & full fac-
torial with gix factors at two levels, as s result of some three-factor
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interactions showing up in the analysis of the block-of-eight experiment.

Thia 4a Anna 4n Avdan 22 e wcaemmladbe avd nasase a1l dha tnfluansas 4o +ha
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breakdown process .

Different materials, as well as the other factors initially named,
will be introducsd into each successive experiment. The results of this
program will be compiled in the form of graphs and charts for the high-
voltage design engineer.
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IMPROVING BINOMIAL RELIABILITY ESTIMATES -~
A MODERATELY DISTRIBUTION FREE TECHNIQUE FOR
SMALL SAMPLE RELIABILITY ESTIMATION

Michael G. Eillings
C-E~I-R, Inc.
Dugway Proving Ground, Dugway, Utah

1. INTRODUCTION. The purpose of this article is to demonstrate how lower
confldence bounds for rellability obtained using the distribution free
binomial approach can be improved under fairly nonrestrictive assumptions
on the random variable involved. The technlque to be described, referred
to hereafter as the MDF technique, 18 an extension of the result presented
at the 1966 Army Design Conference (see [1]).

2. THE MDF TECHNIQUE., Suppose that the random variable under consideration
is continucus (i.e. has an absolutely continuous distribution function) and
nonnegative with distribution function F(x) and density function F'(x).
Suppose further that the mission for which the reliability is to be estimated
can be expressed as a8 number T in the domain of F(x), and suppose that the
reliability is to be estimated on the basis of a sample of n independent
systems from the population under investigation. The following Proposition
provides the basis for the MDF estimation technique.

Proposition 1. Let Y be the number of mission failures in n trials.
For ve(0,1) let C(Y) be the solution to the equation

Y
I & reer1frn - e f a1 -y,

f=0
X
Let M(Y) = ~S%ill, where x(Y+1) is the (Y+1)th order statistic and T 1is the

mission. Finally, let k(y,n) be determined by the equation

n*

fz () [k(y,m) @151 - key,me) 1™ w1 -y,
=()

where n* < n, 1 - k(y,n)C(n*) > 0 and 1 - k(y,n)C(n* + 1) < 0, If F'(x)
is monotone nondecreasing on [O’X(Y+1)]‘ then

Pr{l - k(Y.n)(%) <1-FD) >y

The proof of Proposition 1 1s lengthy and is included in the Appemdix.

The estimator 1 -~ k(y,n)[%%%%-] will be called the MDF y--confidence lower

bound estimator for the reliability 1 ~ F(T).
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It 13 seen that for each Y the number 1 - C(Y) is simply the binomial
y=-confidence lower bound estimator for the reliability based on Y failures
in n trials. Values of this estimator are tabulated for selected values
of n and y[2]. Precise determination of the number k(y,n) for each pair
(y,n) 1s most easily accomplished on a computer. Table 1 presents values of
k(y,n) for three confidence levels (.90, .95 and .99) for selected values cf
n from 5 to 100. Values of k(y,n) intermediate to values of n given can be
obtained quite accurately by linear interpolation,

In an application of the MDF technique to a specific problem, a confidence

level y is chosen first; from the observed data one then determines the value
X
of M(Y) - J—Y—*—i'l

T where Y 18 the observed number of failures of the mission T

and X(Y+l) is the (Y+1)th order statistic for the sample. The value C(Y) is

obtained from binomial reliability tables (1 - C(Y) is the lower y-confidence
bound estimate for the mission reliablity based on Y failures). Finally, the
value of k(y,n) is nbtained from Table i. Thus, for example, 1f Y = £, then

according to Proposition 1, 1 - k{y,n)"* (ﬁ%%%) is the MDF lower y-confidence
estimate of the reliability 1 - F(T) for the mission T.

Example 1. Suppose that for a given reliability estimation problem the
miseion ia T = 3.2 hours, and the times to failure for a sample of 15 systems
are given by {11.9, 5.8, 8.1, 13.2, 12.7, 12.6, 25.6, 20.2, 9.2, 20.6, 14.2,
17.8, 19.8, 28,1, 12,2}, Let the confidence level be vy = ,90, and suppose
ic can be assumed (see Example 3) that the probability density function for
the timz to fallure random variable X is monotone nondecreasing on [o,x(Y+1)],

where Y is the number of mission failures (i.e. X(Y+1> - x(l) = 5,8), In

accordance with the above description, the MDF lower ,90 confidence hound for
the mission reliability is obtained as follows: From the sample data, M(Y) =
M(0) = x(l)/3.2 = 1,81, From binomial reliability tables C(Y) = C(0) = .142.

By an interpolation in Table 1, k(.90, 15) is determined to be 1.17132,
Thus, according to Proposition 1, the MDF .90 confidence lower bound estimate
for 1 - F(T), the mission reliability, 1is

1 - 1.17132(2%2) o 9081,
1,81

(The corresporiding binomial estimate is .8577.)

Example 2. Suppose circumstances are the same as for Example 1, except
that the dcta are as follows: {0.9, 4.1, 4.6, 4,7, 7.1, 7.5, 7.9, 11.1, 11.1, ,
11.5, 15.9, 17.5, 18,1, 21.9, 22,3}. Then

X
Y = 1, M(Y) » M(L) = 3§§l w 1,28, C(Y) = C(1) = .7356

(from binomial reliability table with n = 15, y = ,90) and, as before, k(.90,
15) = 1.17132, Thus, the MDF .90 confidence lower bound egtimate for 1 ~ F(3.2)
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is 1 - 1.17132¢3338) ~ .7844. (The corresponding binomial estimate would

be .7644,)

3. APPLICABILITY OF THE TECHNIQUE. Whether the MDF techanique should be
applied to a given problem depends on the extent to which the analyst can
Justify the neceasary assumptions regarding the problem and the distribution
function Involved. Recall that Proposition 1 requires that the density
function F'(x) be monotone nondecreasing onm the interval [O’X(Y+l)]' This

ig actually a stronger requirement than necessary for the validity of Proposition

1 - 1t 1s noted in the proof of Proposition 1 (Appendix) that the monotonicity
X,

requirement is oaly used to guarantee that F<x(y+1)).i c—&%illg F(T); however,

thls inequality is valld for a much larger class of distributions than that

characterized by the monotonlcity (nonlecreasing) of the density function.

Since no simple charact- ‘zation of the more general class of distributions

appears to exist, the purposes of this paper are best served by confining

attention to class of distributions with density functions which are monotone

nondecreasing on [O’X(Y+l)]'

In a partliculur application then, the analyst must be able to justify the
use of the assumption that f(x) is monotone nondecreasing on [O,X(Y+1)].

Indications are that the technique is fairly insensitive to other than serious
departures from the assumption, and therefore that a relatively loose or
ingensitive justification technique can be employed. Unfortunately, there
appears to be no specific test of the hypothesis that the density function
F'(x) is monotone nondecreasing on [O’x(Y+1)] available at present. It is

possible that adaptations of certain existing teats, such as the test for
a nondecreasing failure rate proposed by Proschan [3], may lead to a suitable
test for MDF applications, This possibllity is being investigated.

An approach which seems reasonable in view of the apparent insensitivity
of the MDF technique to departures from the monotonicity assumption is the
following: On cthe basis of the data, vne selects a known distribution function
Fo(x) which appears to be a reasonable candidate for the true distribution

function of the random variable involved - and is reasonably representative
of the data over the Interval IO,X(Y+1)]. Thus, for example the analyst might

decide that a normal distribution with W and ¢ equal to the sample mean and
sample variance respectively 1is not an inappropriate selection; again, one

might choose a Weibull and estimate the parsmeters graphically. Having selected
Fo(x), one then would apply the Kolmogorov-Smirnov test, using the selectad

distribution function in the null hypothesis: HO:F(x) ™~ Fo(x). If the null
hypothesis is not rejected, and if the selected function Fo(x) has a monotone
nondecreasing first derivative (F'O(x)) on [O’X(Y+l)]’ then one concludes

that Lt is possible to apply the MDF technique to estimate the reliability.
Note tbat application of the MDF technique in this case 1s less hazardous
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(more conservative) than using the hypothesized distribution function FOCx)

to estimate the reliability. Further, the MDF technique is a much simpler
method to apply than claseical approaches which involve the hypothesized
distribution function Fo(x) in the sense that one does not need to be

concerned about estimation of the parameters in Fo(x) and the associated

problems encountered in obtaining lower confidence bounds in terms of the
estimators,

Example 3. For the data from Example 1, suppose it is hypothesized

that the distribution function for this data is normal with y = 15,5, and
02 = 40.4 (15.5 and 40.4 are the mean and variance, respectively, of the
sample.) The Kolmogorov-Smirnov test of the hypothesis HO + F(x) = Fo(x),
where

2
1 gx-15.5)
F.(x) = Exp - —
0 VZr~ /50.4 8o.s ’

would not reject HO at any reasonable level of significance (max
!Fh(x(j)) - FO(x(j)I = ,179; the critical value for a = ,20 i3 .266)., Ncw
x(Y+1) = 5,8, Since F'o(x) - fo(x) is monotone nondecreasing on [0, 15.5],

it is not unreasonable to proceed as if F'(x) is monotone nondecreasing at
least on [0, 5.8] = [0, x(Y+1)] and to apply the MDF technique to estimate

the reliability for the mission T = 3.2 hours, as has been done in Example .

To the author's knowledge, there are no readily adaptable goodness of
fit type tests available for the situation in which censored data is involved.
In this case, justification for use of the MDF technique, or any other tech-
nique, must necessarily be based on past experilence, on examination of the
censored data and, to a large extent, on faith.

The next section discusses seven Monte Carlo studies which were conductad
to investigate the behavior of the MDT estimator. Three populations, Weibull,
Uniform and Exponential, were considered. The density function for the Weibull
population was monotone increasing on the interval [0, § 35]; the density

function for the Uniform distribution is, of course, monotone nondecreasing

on its whole domain, However, the density function for the Exponential distribu-
tion is monotone decreasing on its whole domain, so that the MDF techmique is
only an approximate technique for this case. It will be seen that, inspite

of the departure of the exponential cese from the MDF requirement (monotone
nondecreasing density function), the MDF technique generally provided acceptable
results in the two Exponential studies conducted.

4. MONTE CARLO STUDIES., In order to obtain an indication of the behavior of
the MDF estimator and of the sensitivity of the MDI' technique to departure
from the monotonicity assumption, seven Monte Carlo studies were conducted

as follows: Two studies were based on sampling from a Weibull population

312




R SR I

, _-.005x% ®

s S D 7 L S r4 T x) 0~1_-Ax
with disctribution funciluw Tia; = 1 2 (1.a Wlix) = ABx e .

A = ,005,8 = 2), The mission considered was T = 3.2; since F(3.2) = .05,
the mission reliability was 1 - F(T) = ,95, For Weibull 1, 100 sets of

15 observations each were obtained; for Weilbull 2, 100 sets of 30 vbserva-
tions each were obtained.

Three studies were based on sampling from a population with the Uniform
distribution on [{0,1). For Uniform 1 and Uniform 2, the mission was T = .05
so that the true reliability was .95, Uniform 1 consisted of 100 sets of
n = 10 observations; Uniform 2 consisted of 100 sets of n = 20 observations.
For Uniform 3, the mission was T = ,1l% so that the true reliability was .85;
100 sets of n = 10 observations were drawn for Uniform 3.

Finally, two studies were based on sampling from an Exponential popula-

with distribution function F(x) = 1-e-'0lx (L.e. F'(x) = Ae—xx, A= 0L),
The mission considered was T = 5.129; as with the Weibull studies, since
F(5.129) = .05, the reliability was .95, For Exponential 1, 100 sets of
n = 20 observations were obtained; for Exponential 2, 100 gets of n = 45
observations were obtained. '

For each set of observations in each of the seven studies, the MDF ,90
lower confidence estimate was obtained as described in Section 3. Further-
mote, for each set of observations in each study, the binomial ,90 lower
confidence bound was determined. The results obtained by these two methods
of estimation are compared in gummary form in Tables 2 and 3, Also, for
each set of observations in each study the MDF estimate was compared with the
binomial estimate for proximity (at the third decimal place) to the true

reliability, The results of this proximity evaluation are presented in
Table 4.

From Tables 2, 3 and 4 it is seen that use of the MDF technique
resulted in substantially better estimates of the true reliability than did
the binomial method in the five cases with the smallest sample szizes: Weibull
1 (n=15), Uniform 1 (n=10), Uniform 2 (n=20), Uniform 3 (u=10) and Exponential
1l (n=20), Further, in none of these cases did the observed proportion of
ervors (estimates in excess of the true reliability) made using the MDF
technique exceed the allowable .10, despite the fact that the MDF technique
is only an approximate technique for the exponential case. Also, the magnitude
of the errors was relatively small in general, as indicated by the proximity
of the error median to the true reliability in each case.

Consider now the results of Weibull 2 and Exponential 2: Tables 2, 3 and
4 show that although the superjority of the MDF technique is not as pronounced
in these casea as with the three smaller gample cases, it 1s nevertheless
evident; further, Table 3 and 4 indicates that tine MDF provides better estimates
in these cases (Weibull 2, Exponentlal 2) often enough to justify at least
calculating the MDF estimate to determine whether it gives a larger value than
the corresponding binomial estimate.

The MDF technique led to 12 erroneous estimates (>.95) in Exponential 2.
Although this proportion exceeds 1 - y = ,10, it is seen from Table 2 that
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the degree of departure from the true veliabilics 1. i eacessive in three
cases (.95Z, .953, .953). Further, only 5 of the erroneocus eatimates

exceeded the true reliability by more than ,0l. Again, it is pointed out

that the MDF tachnique 1is unly approximate for the Exponential case. However,
it is clear that the more nearly the Exponential distribution function involved

is approximated by a Uniform distribution function over the range of interest
(i.e. over the interval [O,X(Y+1)]). the smaller will be the chance of obtaining
erroneous estimates.,

To provide an indication of how the MDF technique comparees with two other
commonly used estimation techniques, the following studies were conducted:
1) For each set of observations in Weibull 1 and Exponential 1, a .90 confi-
dence lower bound (for the reliability) was obtained using the method described
by Epsteia in [4] (which assumes Exponentiality) for the non-replacement
situation with data censored at the third order statistic. 2) The same technique,
with data censored at the £ifth order statistic was used to obtain a .90
confidence lower bound (for the reiiability) for each set of observatlions in
Exponential 2. The results of studies 1) and 2) are summarized in Table 5.
3) For 33 randomly selected trials from Weibull 1 and 32 randomly selected
trials from Weibull 2 the technique described by Jolms and Lieberman im [5],

with data censored at the seventh order statistic, was used to obtain ,90
confidence iowar bounds for the reliability. The results of theae studies are
sumnarized in Table 6.
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‘ TABLE 1. VALUES OF k(y,n) FOR SELECTED CONFIDENCE

: LEVELS y AND SAMPLE SIZES n
b X ;
n .90 .95 .99 ;
| 5 1.13222 1.10195 1.05967
! 6 1.14160 1.11117 1.06796
§ 7 1.