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ABSTRACT 

We have re\iewed Coles' analytical development of the transformation 

and its application to the constant pressure turbulent boundary layer. 

The limitations of the theory noted by Baronti and Libby are clarified, 

and an attempt is made to explain the remaining discrepancies.  The 

equations governing the scaling functions (which link the high speed 

boundary layer to an equivalent low speed flow) are derived in terms of 

the integral properties of the low speed flow for an arbitrary pressure 

distribution.  The modeling is completed by coupling the pressure gradients 

of the two flows and predicting the behavior of the integral properties 

of the low speed flow.  The resulting formulation predicts the integral 

properties of the high speed turbulent boundary layer as well as the 

required modeling to an equivalent low speed flow.  Finally, the theory 

is applied to a variety of situations. 
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I 
NOMENCLATURE 

I^M2 

2  e 
Mach number parameter, A -  —^—s- 

! + IZiM^ 
6   2  e 

3u/u 
C       Dissipation integral, CD - 1   2 ay 

dy 

0 2 peue 

w 
C       Skin friction coefficient, Cf - j—^-j 

2 e e 

Low speed skin friction parameter, f - — 
2 

<f>, <f > Coles' sublayer constants, <f> - 17.2 
<f2> - 305 

Clauser's equilibrium parameter (see Appendix) 

H       Form f actor, H - 6/6 

Of Viscous dissipation parameter,^ 
R- /T \3 

R^IV 

1/2 

Karman's constant, k - .40 

M Mach number 

m Mach number parameter, m ^M
2 
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t p       Static pressure 

p u L 
R       Reynolds number, K^  - —  

T       Static temperature 

T       Total temperature 
o 

T'      Ratio of turbulent to laminar shear stress, (T1 - ^/T^) 

u 

u 

Velocity component parallel to free stream 

Friction velocity, UT - y "jj 
w 

T W 

Velocity component normal to free stream 

Coordinate parallel to free stream 

Coordinate normal to free stream 

-   6_ d£ 
i"       Clauser's pressure gradient parameter, ßT - _ WT T  dx 

w 

Ratio of specific heats,Y - c / cv 

Boundary layer thickness 

viii 



Displacement thickness, 6 - pu 
(i - r~-) dy 

o 
P u 
e e 

n, n'    Scaling function 

9       Momentum thickness, 9 (1 - 
u  p u  ' 
e  e e 

Viscosity 

Kinematic viscosity, (v ■ y/p) 

C, £'    Scaling function 

' 
7T Low speed velocity profile parameter 

p        Density 

a, a Scaling function 

Shear stress 

* Stream function 

Superscripts and Subscripts 

( )oo    Refers to upstream infinity 

( )     Refers to boundary layer edge 
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( )     Refers to wall condition 
w 

( )     Refers to low speed flow 

( )     Refers to turbulent flow v 't 

( )     Refers to laminar flow 

, 



1.  INTRODUCTION 

The dynamic equations governing the boundary layer are identical 

in form for laminar and turbulent flow with the exception of the specific 

form for the shear stress. While the simple Newtonian stress relation- 

ship is valid everywhere for laminar flow, it is known to be valid only 

very near the wall in a turbulent boundary layer. The prediction of the 

turbulent boundary layer is, of course, much more difficult because of 

the lack of understanding of the turbulent momentum transport.  Most 

analytical models rely on a simple gradient diffusion process (eddy 

viscosity); and while such a method is perhaps adequate for low speed 

flows, the effect of compressibility on such a model is unknown.  This 

difficulty, in addition to the existence of a vast amount of empirical 

knowledge about the low speed turbvlant boundary layer, makes the prospect 

of using a mathematical transformation to account for the effects of 

compressibility particularly inviting. 

The objective of the present study is to develop a transformation 

theory which will model a given supersonic turbulent boundary layer flow 

of arbitrary pressure gradient [u (R ) - specified] into an equivalent 

low speed boundary layer flow [u (R—) - predicted].  It will be found 

that in developing this modeling, the integral properties of both the 

high speed and the equivalent low speed flow will be predicted as well. 

We begin by reviewing Coles'   analytical development of the 

transformation and its application to the constant pressure turbulent 

boundary layer.  The inaccuracies of the theory noted by Baronti and 

Libby^ ' are clarified, and an attempt is made to explain the remaining 

discrepancies. 

The equations governing the scaling functions (which link the high 

speed boundary layer to an equivalent low speed flow) are derived in 

terms of the integral properties of the low speed flow for an arbitratry 



pressure distribution.  The modeling is completed by relating the pressure 

gradients of the two flows and predicting the behavior of the integral 

properties of the low speed flow.  The resulting formulation predicts the 

integral properties of the high speed turbulent boundary layer as well 

as the required modeling to an equivalent low speed flow. 

Finally, the theory is applied to a variety of situations. 

. 



2.  REVIEW OF COLES' TRANSFORMATION WITH CONSTANT PRESSURE APPLICATIONS 

The use of a mathematical transformation to account for the effect of 

compressibility has been extensively applied to laminar boundary layers and 

wakes.  Howarth,   Stewartson,   and many others have used this technique, 

Coles has formulated perhaps the most general transformation yet considered 

for the dynamic boundary layer equations.  These equations for the steady, 

two-dimensional mean flow of a compressible fluid are 

h(pu) + h (pv)"0 (1) 

3u ,    3u    dp , 9T /0V pu r— + pv T— ■ - T^ + -r— (2; 3x     9y    dx  9y 

The transformation,  simply stated, specifies the correspondence between 

a flow governed by these equations and an Incompressible flow for which 

^ + -^-0 (3) 
3x  3y 

 3u , 3u    dp . ^ /^ 
pu-^+pv — " Z+~Z ^ 

3x      3y    dx  dy 

and p Is constant. 

The transformation set forth by Coles Is represented by thr e 

Initially unspecified scaling functions: 

^ - a (5) 

The term transformation will be used here In the same sense used by Coles, 
I.e., as a true mapping of one flow field Into another rather than simply 
a mathematical manipulation. 



^ - £ (6) 
dx 

^l^-n (7) 

In order to insure the boundedness of the pressure gradient throughout 

each flow field, Coles imposes the condition that these functions be 

independent of y , i.e., a - a(x), n - n(x) and i  - ^(x) . Before 

pursuing this development, it is appropriate to comment on the ability 

of the transformation to predict the behavior of high Mach number boundary 

layers at constant pressure. 

Baronti and Libby in attempting to evaluate the transformation at 

nominally constant pressure noted a systematic deviation with increasing 

Mach number in the "wake" region of the boundary layer but concluded 

that the "law of the wall region" was well predicted. 

They arrive at this conclusion by choosing a value of Cf which 

allows the best agreement of the respective low speed and high speed 

velocity profiles in the inner logarithmic region of the boundary layer. 

However, this procedure precludes a test of the transformation in the wall 

region of the boundary layer since it forces a match there; in addition, 

it does not, in general, satisfy an essential requirement of the trans- 

formation which relates one station to another in the high speed and low 

speed flows, i.e., Coles' "law of corresponding stations", which for 

r- T is simply C~R - TLRT • An additional but less fundamental point M 'f e  f e 
is that the choice by Baronti and Libby of 6 , the boundary layer thickness, 

for normalization gives rise to uncertainties which can be large 

particularly for turbulent boundary layars where the edge is not well 

defined. 

Using the law of corresponding stations, C Rg - CfR— , and comparing 

the velocity profiles in the coordinates 



u   u      y 
— ■ — vs. *■ ■ 
Ue  u      ü 

e 0 

_p_ dy 

pe t 

we eliminate both of the above objections to the Baronti-Libby comparifion 

and the need to specify any of the scaling functions, hence, the need to 

resort to any ad hoc theory such as the "sublayer" or "substructure" hypothesis. 

The results of applying the transformation in this way to the 

t« 
(7) 

experimental data of Coles   and Korkegi   (adiabatic, flat plate) is 

shown in Figure 1 contrasted with the low speed data of Wieghardt 
(1)* and the analytical form suggested by Coles.     As can be seen, there is 

indeed a deviation from the low speed profiles which increases as Mach 

number increases.  However, the deviation is seen to be more significant 

in the inner region than the outer region of the boundary layer which is 

contrary to the conclusions of Baronti and Libby.  In addition, the thickness 

of the boundary layer is increased.  The actual magnitude of the velocity 

in the wake region is within 2-3% of the predicted value whereas the deviation 

at y/9 ■ 1 is seen to be as large as 10%. 

Apparently, then, the transformation fails in the inner "law of the 

wall" region of the boundary layer to an extent which increases systematically 

with Mach number.  Since this region typically represents less than 20% 

of the boundary layer thickness and it can reasonably be argued that the 

resulting error in overall (e.g., integral) properties of the layer may 

not be excessive, nevertheless the fundamental idea of Coles that a simple 

geometric mapping >f a low speed to a high speed flow can account for 

effects of compressibility does not appear to be valid in detail.  One 

phenomenon which is not expected to be accounted for by simple transformation 

theory is the increasing magnitude of sound pressure level [the irrotational 
(8) (9) 

fluctuation mode in the parlance of Kovasznay   and Morkovin  ] with 

* — 
The analytical form has the ambiguity previously mentioned regarding 6 

however, here it is confined to an analytical form and affects only one 
of the two flows. 



Mach number. Whether this phenomenon is important to the momentum exchange 

is not clear [see Schubert and Corcos(1 'l, but it is difficult to see how 

the complicated sound radiation field generated at high Mach number la the 

boundary layer could be accounted for merely by a mathematical transformation. 

Another phenomenon introduced by high Mach number is the variation of 

molecular transport coefficients (viscosity, conductivity) due to 

temperature variations in the boundary layer. An important process affecting 

turbulent momentum exchange in the region adjacent to the laminar sublayer 

is the "damping" of velocity fluctuations by viscous forces there.  For 

an adiabatic supersonic boundary layer, the temperature near the wall is 

significantly higher than ambient and an increased dissipation of turbulent 

velocity fluctuations due to the increased viscosity is therefore expected 

in this region. This increase in viscous dissipation is believed to be a 

plausible explanation for the deviation of the transformed profiles in the 

law of the wall region. To give some quantitative support to this conjecture, 

we have made a rough estimate of this effect in the following way.  Webb 

has arrived at an empirical estimate of the effect of dissipation based on 

a simple gradient diffusion model which seems to give an accurate representa- 

tion of the turbulent shear stress near the wall In confined low speed 

turbulent flows.  This estimate is obtained by applying the known solution 

for the decay of velocity in a finite viscous vortex to the estimate of the 

damping of the turbulent velocity fluctuations which are convected during 

the mixing process. The result is that the local shear stress is reduced 

by a factor dependent on the local ratio of turbulent to laminar shear 

stress, T1 - T /T  . Figure 2 shows the change in velocity profiles for 

low speed pipe flow which results from arbitrarily increasing the value 

of the dissipation factor by various amounts. Qualitatively, the change 

appears similar to that due to increasing Mach number in the compressible 

adiabatic boundary layer. 

A typical value of the ratio T' , evaluated at y - 6 is estimated 

for a compressible boundary layer as follows: 



U   9u/äy vw   ^  / Vw    Vp^VS  Mu  lp J 
1/2 

Taking p~T"  and p~T and recalling that C^ - CR- , then the 

ratio of T for low speed flow to Its valu. for compressible flow Is 

To see whether the parameter T   Indeed collapses the velocity profiles 

for various Mach numbers and Reynolds numbers, data taken by Coles^ and 
(12) 

by Lobb, Winkler and Perschv   over a range of M^ up to 8.2 (including 

heat transfer) for T C* 6 are shown in Figure 3.  The remarkable agreement 

of these profiles for a fixed value of T   strongly supports the offered 

explanation for the failure of the transformation theory near the wall. 

As an alternate display of the correlation, the maximum deviation of the 

experimental profiles from the transformation theory is plotted directly 

against the parameter J*   in Figure 4.  Shown for comparison is the 

calculated deviation for pipe flow referred to earlier. 

On the basis of these correlations, we tentatively conclude that 

viscous dissipation effects are responsible for the deviation of the 

transformation theory near the wall and, at least in principle, the 

transformation theory is invalid.  However, for not excessively high Mach 

numbers, the deviation is small, it extends over only a small fraction of 

the boundary layer, and it does not preclude the application of the theory 

to obtain overall results. 



3.  GENERALIZATION TO VARIABLE PRESSURE ADIABATIC WALL 

3.1 SCALING FUNCTIONS 

For the constant pressure turbulent boundary layer, Coles derives the 

following relationships for the scaling functions o, n, C : 

ua) 

— - — (constant) (8) 

^ pw % d(oe) (q) 

n  — de 
P M 

-  T      T - T0 n/ c.   9   c 
_iL. - w  <f> *        0°° V -/ - <f2> m ■/ (10) 
o u   T T„       2        «> 2 

CO       00 00 
(y/T ■ constant) 

He arrives at these equations by invoking the condition of constant pressure, 

Newtonian friction at the wall, and an assumption known as the "substructure 

hypothesis" (which is similar to the constancy of the sublayer Reynolds 

number).  The analysis is well detailed in Coles report and will not be 

repeated here. 

If we take the substructure hypothesis to be independent of pressure 

gradient and heat transfer [see Coles  ], we need only generalize equations 

8 and 9.  This assumption has been made in the following developments. 

While plausible, it is experimentally unverified. 

The pressure gradients of the two flows are related   by 

dp , p" a2 / 1 dp , Ue d(n/a)| (11) 

—  ^  2 Ip dx  n/a dx 
dx  ^ n  \ e 

This equation is one of the required relationships; however, it is in a 



form which is not useful for our purposes in that it involves both 

dp/dx and dp/dx , one of which is unknown a priori.  However, it can be 

shown that by noting the behavior of the velocity in the vicinity of the 

wall [see Lewis^] the pressure gradients are linked by the following 

relationship: 

^e _Ö_ d£ ii _£_ d£ 
p  T  dx  — j— 
w w     T dx 

w 

(12) 

Combining equations 11 and 12 after some manipulation, we find that 

1 dn/o 
n/a dx 

1  dp w w w ani 
Pe p" 7  M p"üe dx 

(13) 

where, for reasons which will become obvious later, o, n, ? are taken as 

functions of x rather than x .  Equation 13 replaces the constant pressure 

condition n/a » (u/ u) (constant). 
00      00' 

One more equation is required and for this we utilize the relationship 
(1) 

between the shear stress terms of the momentum equation. 

37  p a2 ri /3T  1 3u da\  d^ /_!. . 1\ + JL dn/i fu2 . u2\1 
-   r  2 LP \ay   o ay dx/   dx vpe   p/    n/a dx    ^ e      /J 3y  5 n 

(14) 

Integrating across the boundary layer, we find that 

ÜIT - T +^ . 
2 w   w  a dx 

a 

dx a-p/^^-^^-^e- (1 - u2/u*) -p- dy 
e 



Noting thai 

■ 

(i - U2/u2) -^ Jy - -P_ (f   + 0) 
e D Pen 

ana evaluating the integral,  J (1 - c/p ) cy    by appro-ri^ating the 

temperature field by the equation  (T /l ) - I cr— [ (T0 /T ) - L]  w* 

airivc at the required relationship 

;  u 
_W W OP 

Cf/2 - ('/-)  % + -i_2 

dx  DU d>: 
e 

^ (1 + H) 

Cf/2 + [l + ^Hj ^ ^ 
w    p u dx 

(lc0 

p u  dx 
e 

We have tor convenience redefined the scaling functions in the followi:^ 

a anner: 

The resulting equatior.s become 

i/a- 

u 

00    00 

p uju 
V 

(-b, 

— = (1 + m.) &--(^-')'-!T^T=] (17) 

1  dr,'/, 
n'/o' ,- 

o i r     .    «du 
(1 + mj-l«e^i_. a A._e 

dR- 
x 

w p ^ u dR- 
e  x 

(IS) 

10 



0 dR- u  dR- 
p  , , x ex 
ll£lD  (19) 

72 L  .\~\  Vd% uu 

-  I1 + -f^ H j -r 
\    w  '  u u  dR- 

v/(v-i) u ^ fT 
oo u &-[-(|-')] 

and m ■ r; 7 , A 
e  1 - A oo 1 U  I 00 ' 00 

\ 00/ 

Hence, given a low speed flow which is completely specified (at 

least insofar as its integral properties are concerned; these three 

relationships can be used to construct an equi/alent supersonic flow 

for a given K^ . 

The objective of the study is, of course, to take a specified 

velocity distribution in the supersonic flow, u (R ) , and predict the 

necessary u (R-)  to produce its low speed equivalent. 

Returning to equation (12), it can be shown that 

du"   T /P \"   1  1 du ^ du    T /p \    ,  , au 

u dR-   0» Fo0'     'ex 
(20) 

T_  '    e- \ p /  o ■ n' u QK 

e  x 

Hence, given u (R ) we have an equation to make such a prediction 

provided that o'  and n1  are known.  These functions can be predicted 

by simply calculating the integral properties of the low speed flow 

simultaneously.  Coupling such a calculation with the previously derived 

transformation laws, we have then arrived at a self-contained set of 

equations which predicts the modeling we seek.  The integral properties of 

the supersonic turbi lent boundary layer are also obtained. 

11 



Returning to the scaling functions, we note that equation 19 requires 

do'/dlH , and hence for simplicity we have treated o1 as one of the 

dependent variables of the final system of ordinary differential equations. 

We differentiate equation 17 which becomes 

2>  A 72 ^„t      r  i o^2.   . -2 <*? > A r dn' _ r_i_ n +m. . 2<fS AFI do« 

X X 

+ [<£> (i2- - ^ + 2<£2> A ll ^r-+ u<f2> f2 J-^ - o 

Combining equations   (18)  and  (19) 

dR- u    dR- x ex 

u      dR—' "    dR- 
e       x x 

r_9       / To 2 + m \  RT* du -,  ,    J   , 

w e'   u     dR—J        dR— ex x 

•Kr^-'IMI--^:) 
. ^ "e    -lVd"el   1  d"e 

T2      77 R«* do'       „   .  -.  R6* du. 
UK / p •, 
-£.(|S0V 

f' _ H -^_ ü^ .  (1 + H) _2_ __e 
dK      /PÄ N"1 dR- u     dR-         x ex 

f2 -  I 1 + 

T          \ — — 
o«      I R7* du 

w       i  u dR— /    e x 

(21) 

w e-1 u     dR—     u    dR— 
e       x '    e      x 

dRx       1 
and recalling   — - -r ,  It follows from equation  (19)  that 

dR-  *" 
x 

(23) 

Equations (20)-(23) and the integral formulation of the low speed 

flow (see Appendix) represent the total formulation which is composed of 

12 



seven ordinary differential equations with seven dependent variables; 

RT*. ^ f. u /"„,» a'. n', R  with R- as the independent variable.  These 

equations are well defined provided u (R )  is specified, and the 
w      X 

variables are initialized. 

We could, of course, resort to the particular high speed experiment 

of interest for such initial conditions. However, in order for the 

procedure to be useful in practice (i.e., general engineering predictions) 

it is necessary to choose these values independently of a particular 

experiment. We have chosen the values tabulated by Coles   for which 

the wake of the incompressible boundary layer disappears as being 

characteristic of the low speed turbulent boundary layer near its "origin". 

TT  - 0 
O 

o 
Cf - 5.9 x 10'3 

Rr- - 4.25. 
o 
O 

At the "origin" we have taken Rv - Rj? ■ 0 and (ü /ü ) = 1 : 
*0   

Äo e oo o    ' 

a '  can be calculated from equation (17). M0 = M  and, of course. 
O "Q        00 » » 

n ' - a ' . 
o    o 

The wall temperature, T /T0 , has been carried throughout the 
W  "oo 

analysis as arbitrary and hence formally non-adiabatic boundary layers 

could also be predicted.  In a strict sense, however, Crocco's 

suggestion that the heat transfer of the two flows must match can be 
(13) 

shown to be a requirement of the mapping [see Lewis   ].  In particular 

we must have 

_e_ .9T.  _e_ ST 

e  ^ w  T  3y 
e  -^ w 

and hence the low speed flow, while incompressible, cannot be of constant 

density if it is to correspond to a non-adiabatic compressible flow. 

13 



4.  APPLICATION OF THEORY 

4.1 LOW SPEED - CONSTANT PRESSURE 

In order to evaluate the formulation for the low speed turbulent 

boundary layer, particularly in light of our choice of initial conditions, 

we have made comparisons with the experimental data of Wieghardt 
—      — * 

(Figure 5).  Cf and R  are seen to be veil predicted. 

4.2 SUPERSONIC -  CONSTANT PRESSURE 

Figure 6 shows typical comparisons of the theory and experimental 

constant pressure adiabatic data of Coles.    The agreement is remarkably 

goo' considering that no recourse was made to the high speed experiment 

for the initial conditions used in the calculations. 

4.3 SUPERSONIC - VARIABLE PRESSURE 

There appears to be a remarkable lack of consistent detailed experimentation 

on two-dimensional, supersonic turbulent boundary layers in variable pressure 

that do not involve separation. 

We have chosen the shock-wave impingement experiments of Häkkinen 

at Mach 1.5 to model theoretically. The predicted shear stress Is in 

agreement with the experimental values (Figure 7) and the characteristics 

of the equivalent low speed flow are shown In Figure 8. 

In order to explore the theoretical predictions at higher Mach number, 

we have taken a gradually increasing pressure C = C (R ) at various 

Mach numbers.  The results shown in Figure 9 show an Interesting and 

somewhat surprising reversal of the behavior of shear stress with increasing 

Mach number. 

H was found to be in good agreement with the experiment beyond K^^ 2 x  10* 
but there exists a discrepancy at lower Reynolds numbers which is believed 
due to the neglect of the laminar sublayer in the low speed Integral 
formulation.  This is not expected to be an important limitation for most 
high speed turbulent boundary layer situations. 
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This result as well as the theory in general must» of course, be 

verified by future experimentation. 

4.4 BOUNDARY LAYER SEPARATION 

We find that in the limit as f ^ 0 , the low speed formulation predicts 

that ("e/ü ) (du /dx)  - - 4.05 x lO-3 . 
e    e 

By recalling equation (12) and noting that 

cf  Rfi    i    T 

f _ 9 r  1    _w 
C, " - '   T ^ T 
f  R-r   ,  e   <» 

T 

we find that, independent of the history of the turbulent boundary layer, 

6    P U ^J e e  ' separation 

The result is in good agreement ^•10%) with the empirical correlation 

of Zukoski which represents a compilation of adiabatic wall, turbulent 

boundary layer separation data for M ■ 2 -► 6 . 

4.5 SUPERSONIC EQUILIBRIUM PROFILES 

Clauser    has shown Chat by adjusting the pressure distribution such 

that 

6 dp  - 
— Z " ^T " constant 
T dx 
w 

the outer portion of low-speed turbulent boundary layer velocity profiles 

can be maintained in a state of "equilibrium", i.e., they are invariant 

in the sense that 
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u - u 
e 

u 
- F ; 3r 

u  - u 
e dy 

A   U 

0    T 

By following the rules of the transformation and invoking the pressure 

gradient relationship (equation 12), we can generalize this concept to 

supersonic flows.  The supersonic equivalent of Clauser's low speed 

equilibrium boundary layer is predicted to be of the form 

u - u 
e 
u 

• a - F 

dy 

< 

0 
• ßT> 

u - u 
-2 -P- dy • a 

U
T  

pe 

where 

and 

a - /l + <f2> m cf/2   [Y^- - lj 

w 

The modeling outlined In the paper can be used to generate the required 

pressure distributions for any Initial boundary layer and Mach number 

corresponding to a given experimental facility. 
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5.  CONCLUSIONS 

Summarizing, we have 

(1) found that the deviation of the high speed velocity profiles 

from the equivalent low speed profile occurs primarily in the inner 

region of the boundary layer, not in the wake. 

(2) given evidence that the discrepancy is due to increased 

"dissipation" near the laminar sublayer in the compressible flow and 

concluded that, for not excessively high Mach numbers, this should 

not affect the application of the theory to obtain overall results. 

(3) derived the equations which govern the scaling functions for a 

variable pressure in terms of the integral properties of the low speed 

turbulent boundary layer. 

(4) set forth a complete formulation of the modeling of the supersonic 

turbulent boundary layer to its low speed equivalent and developed a 

computer program to implement it. 

(5) applied the theory to a variety of supersonic turbulent boundary 

layer flows. 
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APPENDIX 
LOW SPEED INTEGRAL FORMULATION 

(18) 
The formulation [see Alberv '] used consists of the integrated form 

of the momentum equation 

H^ + ¥^ + ¥il*L.72-(2H+1)5L^ (24) 
dR-       STT dR-      3f dR- u  dR- 

x xx ex 

and its  first moment 

dRT* aT /? aT AT R
T* du 

j _!_ + R_* i^iL + R * M^ . c    - 3J ^--i (25) 
dRr- 3TT dR- 3f dR- u      dR- 

x x x ex 

and the differential form of the skin friction law 

dRjr* rr - R-* du 
-_1. + R^ [P] il_ + R_* [Q] il _6_ ^e (26) 

dRr- ü dR-        ' dR- u      dR- 
x x x e       x 

where    TT    comes from Coles' analytical form of the turbulent boundary 

layer 

u       1 , T      „      TT „,—. ~ - ^ In -3— + C + ^ W(y/6) 
u 

T 

k ■  .40  (Karman's constant) 

C - 5.10    and    UT - V  ijp   ,  and    H, J,   [P],   [q]    and    C      are specified 

functions of    TT    and    f    (see Reference 18). 

1-1 



/w 
In order to arrive at the dependence of C  on n  and f , it is 

          £                
necessary to link ß - (6 /r ) (dp/dx)  to 

1) 

G-5. 

f-   -\2 
u - u 
^  

u 
dy 

u - u 
e 

0^    UT ) 

dy 

and here we have modified Alber's formulation to agree with the numerical 
(19) 

values predicted for equilibrium flows by Mellor and Gibson    for which 

the following form was chosen 

ßT - - .852 - .0596 G + (G/5.90) 

1-2 
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