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ABSTRACT

We have reiviewed Coles' analytical development of the transformation
and its application to the constant pressure turbulent boundary layer.
The limitations of the theory noted by Baronti and Libby are clarified,
and an attempt is made to explain the remaining discrepancies. The
equations governing the scaling functions (which 1link the high speed
boundary layer to an equivalent low speed flow) are derived in terms of
the integral properties of the low speed flow for an arbitrary pressure
distribution. The modeling is completed by coupling the pressure gradients
of the two flows and predicting the behavior of the integral properties
of the low speed flow. The resulting formulation predicts the integral
properties of the high speed turbulent boundary layer as well as the
required modeling to an equivalent low speed flow. Finally, the theory
is applied to a variety of situationms.
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NOMENCLATURE

1:.1_
A Mach number parameter,A =
1+1-'—1M2
)
au/u
CD Dissipation integral, C 7 uz 5y dy
oz°e
Tw
Cf Skin friction coefficient.cf T u2
2 Pe’e
= = Ef
f Low speed skin friction parameter, f = —
2
<f>, <f2> Coles' sublayer constants, <f> = 17.2
<f2> = 305
G Clauser's equilibrium parameter (see Appendix)
*
H Form factor,H = 6/¢
| -1§ T \3 1/2
J Viscous dissipation parameter,l ={— (fﬂ)
e oo
k Karman's constant, k = .40
M Mach number
y-1 .2
m Mach number parameter, m = - M
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LY
'

Static pressure

p ul

-2 ]

Reynolds number, RL = =

Static temperature

Total temperature

Ratio of turbulent tc laminar shear stress, (T' =

Velocity component parallel to free stream

Friction velocity, u. =

Velocity component normal to free stream

Coordinate parallel to free stream

€

Coordinate normal to free stream

Clauser's pressure gradient parameter,BT

Ratio of specific heats,y = cp/cv

Boundary layer thickness
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)

* * ou
) Displacement thickness, § = | (1 - ) dy
Pele
0
n, n' Scaling function
S
6 Momentum thickness, 6 = J (1 —-f—) pz dy
e Pe'e
0
u Viscosity
v Kinematic viscosity, (v = u/p)
g, B Scaling function
o~
m Low speed velocity profile parameter
P Density
g, of Scaling function
T Shear stress
/] Stream function
Superscripts and Subscripts
¢ ), Refers to upstream infinity
( )e Refers to boundary layer edge
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1. INTRODUCTION

The dynamic equations governing the boundary layer are identical
in form for laminar and turbulent flow with the exception of the specific
form for the shear stress., While the simple Newtonian stress relation-
ship is valid everywhere for laminar flow, it is known to be valid only
very near the wall in a turbulent boundary layer. The prediction of the
turbulent boundary layer is, of course, much more difficult because of
the lack of understanding of the turbulent momentum transport. Most
analytical models rely on a simple gradient diffusion process (eddy
viscosity); and while such a method is perhaps adequate for low speed
flows, the effect of compressibility on such a model is unknown. This
difficulty, in addition to the existence of a vast amount c¢f empirical
knowledge about the low speed turbuvlant boundary layer, makes the prospect
of using a mathematical transformation to account for the effects of

compressibility particularly inviting.

The objective of the present study is to develop a transformation
theory which will model a given supersonic turbulent boundary layer flow
of arbitrary pressure gradient [ue(Rx) - specified] into an equivalent
low speed boundary layer flow [ue(R;) - predicted]. It will be found
that in developing this modeling, the integral properties of both the
high speed and the equivalent low speed flow will be predicted as well.

1 (1)

We begin by reviewing Coles analytical development of the

transformation and its application to the constant pressure turbulent
boundary layer. The inaccuracies of the theory noted by Baronti and
Libby(z)

discrepancies.

are clarified, and an attempt is made to explain the remaining

The equations governing the scaling functions (which link the high
speed boundary layer to an equivalent low speed flow) are derived in

terms of the integral properties of the low speed flow for an arbitratry



pressure distribution. The modeling is completed by relating the pressure
gradients of the two flows and predicting the behavior of the integral
properties of the low speed flow. The resulting formulation predicts the
integral properties of the high speed turbulent boundary layer as well

as the required modeling to an equivalent low speed flow.

Finally, the theory is applied to a variety of situatioms.



2. REVIEW OF COLES' TRANSFORMATION WITH CONSTANT PRESSURE APPLICATIONS

The use of a mathematical transformation to account for the effect of

compressibility has been extensively applied to iaminar boundary layers and

wakes. Howarth,(B) Stewartson,(a) and many others have used this technique.
Coles has formulated perhaps the most general transformation yet considered
for the dynmamic boundary layer equations. These equations for the steady,

two-dimensional mean flow of a compressible fluid are

3 3
% (pu) + 3y (pv) =0 1)
Ju ou - EE 0T
Pu StV ax t 3y (2)

*
The transformation, simply stated, specifies the correspondence between

a flow governed by these equations and an incompressible flow for which

u,oy (3)
90X oy
pu . _dp, 2t (4)
oX oy dx dy

and '3 is constant.

The transformation set forth by Coles i1s represented by thr. e

initially unspecified scaling functions:

=g (5)

<lel

*
The term transformation will be used here in the same sense used by Coles,
i.e., as a true mapping of one flow field into another rather than simply

a mathematical manipulation.



=" (6)
=N

In order to insure the boundedness of the pressure gradient throughout
each flow field, Coles imposes the condition that these functions be
independent of y , i.e., o0 = o(x), n=n(x) and £ = £E(x) . Before
pursuing this development, it is appropriate to comment on the ability
of the transformation to predict the behavior of high Mach number boundary

layers at constant pressure.

Baronti and Libby in attempting to evaluate the transformation at
nominally constant pressure noted a systematic deviation with increasing
Mach number in the "wake" region of the boundary layer but concluded

that the "law of the wall region'" was well predicted.

They arrive at this conclusion by choosing a value of E} which
allows the best agreement of the respective low speed and high speed
velocity profiles in the inner logarithmic region of the boundary layer.
However, this procedure precludes a test of the transformation in the wall
region of the boundary layer since it forces a match there; in addition,
it does not, in general, satisfy an essential requirement of the trans-
formation which relates one station to another in the high speed and low
speed flows, i.e., Coles' "law of corresponding stations”, which for
pe~T 1is simply CfRe -'Effg . An additional but less fundamental point
is that the choice by Baronti and Libby of ¢ , the boundary layer thickness,
for normalization gives rise to uncertainties which can be large
particularly for turbulent boundary lay:rs where the edge is not well

defined.

Using the law of corresponding stationms, CfRe -'Efig , and comparing

the velocity profiles in the coordinates
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we eliminate both of the above objections to the Baronti-Libby comparison

u u
-— = — VS.
u —
e u
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e

and the need to specify any of the scaling functions, hence, the need to

resort to any ad hoc theory such as the 'sublayer" or '"substructure'" hypothesis.

The results of applying the transformation in this way to the

(3) and Korkegi(6) (adiabatic, flat plate) is
(7)

experimental data of Coles
shown in Figure 1 contrasted with the low speed data of Wieghardt

*
and the analytical form suggested by Coles.(l)

As can be seen, there is
indeed a deviation from the low speed profiles which increases as Mach

number increases. However, the deviation is seen to be more significant

in the inner region than the outer region of the boundary layer which is
contrary to the conclusions of Baronti and Libby. In addition, the thickness
of the boundary layer is increased. The actual magnitude of the velocity

in the wake region is within 2-3% of the predicted value whereas the deviation

at y/6 = 1 is seen to be as large as 10%.

Apparently, then, the transformation fails in the inner '"law of the
wall" region of the boundary layer to an extent which increases systematically
with Mach number. Since this region typically represents less than 207%
of the boundary layer thickness and it can reasonably be argued that the
resulting error in overall (e.g., integral) properties of the layer may
not be excessive, nevertheless the fundamental idéa of Coles that a simple
geometric mapping of a low speed to a high speed flow can account for
effects of compressibility does not appear to be valid in detail. One
phenomenon which is not expected to be accounted for by simple transformation
theory is the increasing magnitude of sound pressure level [the irrotational

fluctuation mode in the parlance of Kovasznay(e) and Morkovin(g)] with

*

The analytical form has the ambiguity previously mentioned regarding ¢ ;
however, here it is confined to an analytical form and affects only one
of the two flows.



Mach number. Whether this phenomenon is important to the momentum exchange

is not clear [see Schubert and Corcos(lo)]. but it is difficult to see how
the complicated sound radiation field generated at high Mach number tfa the
boundary layer could be accounted for merely by a mathematical transformation.
Another phenomenon introduced by high Mach number is the variation of
molecular transport coefficients (viscosity, conductivity) due to

temperature variations in the boundary layer. An important process affecting
turbulent momentum exchange in the region adjacent to the laminar sublayer

is the "damping" of velocity fluctuations by viscous forces there. For

an adiabatic supersonic boundary layer, the temperature near the wall is
significantly higher than ambient and an increased dissipation of turbulent
velocity fluctuations due to the increased viscosity is therefore expected

in this region. This increase in viscous dissipation is believed to be a
plausible explanation for the deviation of the transformed profiles in the
law of the wall region. To give some quantitative support to this conjecture,
we have made a rough estimate of this effect in the following way. Webb(ll)
has arrived at an empirical estimate of the effect of dissipation based on

a simple gradient diffusion model which seems to give an accurate representa-
tion of the turbulent shear stress near the wall in confined low speed
turbulent flows. This estimate is obtained by applying the known solution
for the decay of velocity in a finite viscous vortex to the estimate of the
damping of the turbulent velocity fluctuations which are convected during

the mixing process. The result is that the local shear stress is reduced

by a factor dependent on the local ratio of turbulent to laminar shear
stress, T' = Tt/Tz . Figure 2 shows the change in velocity profiles for

low speed pipe flow which results from arbitrarily increasing the value

of the dissipation factor by various amounts. Qualitatively, the change
appears similar to that due to increasing Mach number in the compressible

adiabatic boundary layer.

A typical value of the ratio T' , evaluated at y = 6 1is estimated

for a compressible boundary layer as follows:



) 5 B - R
Tt~ 2 87 (9u/9y) s D . (u /6)~i \’——Y-NR o & (_W)
u du/oy v T Vi o, 6 f M, \P

w

Taking p m T-l and ue~ T and recalling that CfR0 = CfR5 » then the

ratio of T for low speed flow to its valu:. for compressible flow is

~ 3711/2

b 59_(5{)
T R T
0 e

To see whether the parameter J indeed collapses the velocity profiles

for various Mach numbers and Reynolds numbers, data taken by Coles(s) and
by Lobb, Winkler and Persch(lz) over a range of M_ up to 8.2 (including
heat transfer) for J ™6 are shown in Figure 3. The remarkable agreement
of these profiles for a fixed value of 7 strongly supports the offered
explanation for the failure of the transformation theory near the wall,

As an alternate display of the correlation, the maximum deviation of the
experimental profiles from the transformation theory is plotted directly
against the parameter J in Figure 4. Shown for comparison is the

calculated deviation for pipe flow referred to earlier.

On the basis of these correlations, we tentatively conclude that
viscous dissipation effects are responsible for the deviation of the
transformation theory near the wall and, at least in principle, the
transformation theory is invalid. However, for not excessively high Mach
numbers, the deviation is small, it extends over only a small fraction of
the boundary layer, and it does not preclude the application of the theory

to obtain overall results.



3. GENERALIZATION TC VARIABLE PRESSURE ADIABATIC WALL

3.1 SCALING FUNCTIONS

For the constant pressure turbulent boundary layer, Coles derives the

following relationships for the scaling functions o, n, £ :

O [e ¢)
;-- ;: (constant) (8)
8. Pw Yw d(06) (9)
n — — db
P H
- T T - T, C [
L w g, w %\ ZE 2 _f
5 W Tm <f> Tw 5 <f"> m_ 5 (10)

(u/T = constant)

He arrives at these equations by invoking the condition of constant pressure,
Newtonian friction at the wall, and an assumption known as the ''substructure
hypothesis" (which is similar to the constancy of the sublayer Reynolds
number). The analysis is well detailed in Coles report and will not be

repeated here.

If we take the substructure hypothesis to be independent of pressure

Ly,

gradient and heat transfer [see Coles we need only generalize equations
8 and 9. This assumption has been made in the following developments.

While plausible, it is experimentally unverified.

The pressure gradients of the two flows are related(l) by
= = 2 u2
dp _po f1dp, e dn/o) (11)
— 2 lp. dx  n/o dx
dx En e

This equation is one of the required relationships; however, it is in a



form which is not useful for our purposes in that it involves both

dp/dx and dp/dx , one of which 1s unknown a priori. However, it can be
shown that by noting the behavior of the velocity in the vicinity of the
wall [see Lewis(13)] the pressure gradients are linked by the following
relationship:

Pe 8
T

(12)

£k

-5
T

&1 15

W W
w

Combining equations 11 and 12 after some manipulation, we find that

p._ P U oy
PP
pu

where, for reasons which will become obvious later, o, n, £ are taken as

functions of x rather than x . Equation 13 replaces the constant pressure

condition n/o = (uw/'ﬁw) (constant).

One more equation is required and for this we utilize the relationship

between the shear stress terms of the momentum equation,(l)

- = 2

ST.po [ifu_yiude), dp (1 1), L duo(2 2 (14)
8;' £ n2 p \3y o 9y dx dx Pe P n/o dx e

6
-E—n—- 192- 2
2 v W + o dx J v oy d
o
0
6 S
dp . o _ L dnfo . 2, _ uldy £
T ax J a p/pe) d n/o dx Pele L =l /ue) Pe dy
0 0



Noting that

0 ‘ = — oy
J (1 - wrs) Loy s L G 4 B
€ oe e
0 g

and evaluating the integral, J (1 - ;/;e) ¢ by approimating the
temperature field by the equatgon (r/r) -1 ::ﬁi-[(lo /T. ) - 1] we
0w e oW

arrive at the required relationship

(19)

We have tor convenience redefined the scaling functions in the followiny

Janner

- = ! nja=s — 17,7
e —
2 u P
ll_,/L - 2
BT = m—_o: El
5Tl
The resulting equatiorss become
€ [ m
1 [ w _ ( W Y = 2 e —2] .
= (1 +m) T;_ <f T - l) £ - «f™> T+ o f (%D
B B R du
n,}o, dy /e = == (L +m) l-—e——“g" T ! (18)
dR— W e u, dR=



L ey ]
2 T 5
. dR; u‘. dR;
eo'n' -
Al e (19)
0 2 To - R"'* du
f7 - 1l + ‘T‘g H —_—
w u dR—
X
P, ui v/ (y-1) u ;; ~ / EE
— R - —— — —— R ' "" — N = o—
where > 1-m ( 2 1) ' o n'/ = f 5

" m_ 2 [ Y 2 m u, 2
B e—em— B c—————— ' ' — [ —— e,
and m, =T —3%° A I+un (n'/o") ( )

Hence, given a low speed flow which is completely specified (at
least insofar as its integral properties are concerned) these three
relationships can be used to construct an equisalent supersonic flow

for a given M_ .

The objective of the study is, of course, to take a specified
velocity distribution in the supersonic flow, ue(Rx) , and predict the

necessary ;;(ﬁi) to produce its low speed equivalent.

Returning to equation (12), it can be shown that

— -1
du T P du
pl 1 1
- _e - le_ 1+ me) ("‘e) o' u_ dRe (20)
o dR; %% Po e X

Hence, given ue(Rx) we have an equation to make such a prediction
provided that o' and n' are known. These functions can be predicted
by simply calculating the integral properties of the low speed flow
simultaneously. Coupling such a calculation with the previously derived
transformation laws, we have then arrived at a self-contained set of
equations which predicts the modeling we seek. The integral properties of

the supersonic turbulent boundary layer are also obtained.

11



Returning to the scaling functions, we note that equation 19 requires

do'/dﬁ; » and hence for simplicity we have treated o' as one of the

dependent variables of the final system of ordinary differential equations

We differentiate cquation 17 which becomes

2., =2 2, =2 '
2<fr>]'Af dn _[12 (1+mm)+2<f>'Af]do
ol .

dR— ¢ dR—
X X

T - du
+ [<f> (T" - 1) + 2<% A?]%+ gt 2L e
0% dR;

u  dR—
e X
Combining equations (18) and (19)

dR

=0 (21)

(22)

(23)

Equations (20)-(23) and the integral formulation of the low speed

flow (see Appendix) represent the total formulation which is composed of

12



seven ordinary differential equations with seven dependent variables;

'fg*,“F,'f; G;/G;, 6" 3 M5 Rx with ﬁ; as the independent variable. These
equations are well defined provided ue(Rx) is specified, and the

variables are initialized.

We could, of course, resort to the particular high speed experiment
of interest for such initial conditions. However, in order for the
procedure to be useful in practice (i.e., general engineering predictions)
it 1s necessary to choose these values independently of a particular
experiment. We have chosen the values tabulated by Coles(l) for which
the wake of the incompressible boundary layer disappears as being

characteristic of the low speed turbulent boundary layer near its "origin'".

R@ = 4.25.
0

n 1 = R- = g . - s
At the "origin" we have taken Rxo Rz, 0 and (ue/uw)o 1;

can be calculated from equation (17), M, = M_ and, of course,
()

=g ',

o 0
The wall temperature, TW/To » has been carried throughout the

analysis as arbitrary and hence formally non-adiabatic boundary layers

could also be predicted. In a strict sense, however, Crocco's(IA)

suggestion that the heat transfer of the two flows must match can be

(13)].

shown to be a requirement of the mapping [see Lewis In particular

we must have

&5

0 @I
Te oy 5y

s
w T
e

w

and hence the low speed flow, while incompressible, cannot be of constant

density if it is to correspond to a non-adiabatic compressible flow.

13



4. APPLICATION OF THEORY

4,1 LOW SPEED -~ CONSTANT PRESSURE

In order to evaluate the formulation for the low speed turbulent
boundary layer, particularly in light of our choice of initial conditions,
(7)

we have made comparisons with the experimental data of Wieghardt

— *
(Figure 5). Cf and R6 are seen to be well predicted.

4.2 SUPERSONIC - CONSTANT PRESSURE

Figure 6 shows typical comparisons of the theory and experimental

(5)

constant pressure adiabatic data of Coles. The agreement is remarkably
goor considering that no recourse was made to the high speed experiment

for the initial conditions used in the calculations.
4.3 SUPERSONIC - VARIABLE PRESSURE

There appears to be a remarkable lack of consistent detailed experimentation
on two-dimensional, supersonic turbulent boundary layers in variable pressure

that do not involve separation.

We have chosen the shock-wave impingement experiments of Hakkinen(IS)

at Mach 1.5 to model theoretically. The predicted shear stress is in
agreement with the experimental values (Figure 7) and the characteristics

of the equivalent low speed flow are shown in Figure 8.

In order to explore the theoretical predictions at higher Mach number,
we have taken a gradually increasing pressure Cp = Cp(Rk) at various
Mach numbers. The results shown in Figure 9 show an interesting and
somewhat surprising reversal of the behavior of shear stress with increasing

Mach number.,

*ﬁ was found to be in good agreement with the experiment beyond i;”='2 p 4 106,
but there exists a discrepancy at lower Reynolds numbers which is believed
due to the neglect of the laminar sublayer in the low speed integral
formulation. This is not expected to be an important limitation for most
high speed turbulent boundary layer situations.

14



This result as well as the theory in general must, of course, be

verified by future experimentation.

4.4 BOUNDARY LAYER SEPARATION

We find that in the limit as f + 0 , the low speed formulation predicts

that (8/3) (du_/dx) = - 4.05 x 10°% ,

By recalling equation (12) and noting that

T

L _ . X
Too

T
i

T

o, o]
h

n
L]
wlL;v
n

6 o

we find that, independent of the history of the turbulent boundary layer,

T
W 6 dp - -3
(ir) 5 dx 4,05 x 10

e o u,

e separation

The result is in good agreement €+107) with the empirical correlation
of Zukoski(16) which represents a compilation of adiabatic wall, turbulent

boundary layer separation data for M_=2 > 6 .

4.5 SUPERSONIC EQUILIBRIUM PROFILES
(17)

Clauser

that

has shown that by adjusting the pressure distribution such

nstant

< ok
&1 18
[ ]
w|
[ ]
(¢
Q

the outer portion of low-speed turbulent boundary layer velocity profiles
can be maintained in a state of "equilibrium", i.e., they are invariant

in the sense that

15



e . y .
u ——
T Ue - u _
0 Yt

By following the rules of the transformation and invoking the pressure
gradient relationship (equation 12), we can generalize this concept to
supersonic flows. The supersonic equivalent of Clauser's low speed

equilibrium boundary layer is predicted to be of the form

, )
_p_dy
u -u Pe
e -Fé 0 'E‘
u o 8 * T
T
ue -u 0
J uT 3; dy o
\0 J
where
T
a="1 4+ <f2>m C./2 .
e f T
oco
and

*
Bp 1- Me H) T, dx

The modeling outlined in the paper can be used to generate the required
pressure distributions for any initial boundary layer and Mach number

corresponding to a given experimental facility.

16



5. CONCLUSIONS

Summarizing, we have

(1) found that the deviation of the high speed velocity profiles
from the equivalent low speed profile occurs primarily in the inner

region of the boundary layer, not in the wake.

(2) given evidence that the discrepancy is due to increased
""dissipation'" near the laminar sublayer in the compressible flow and
concluded that, for not excessively high Mach numbers, this should

not affect the application of the thecry to obtain overall results.

(3) derived the equations which govern the scaling functions for a
variable pressure in terms of the integral properties of the low speed

turbulent boundary layer.

(4) set forth a complete formulation of the modeling of the supersonic
turbulent boundary layer to its low speed equivalent and developed a

computer program to implement it.

A

(5) applied the theory to a variety of supersonic turbulent boundary

layer flows.

17
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APPENDIX
LOW SPEED INTEGRAL FORMULATION

The formulation [see Alber(lg)] used consists of the integrated form

of the momentum equation

PR B e B P gy 2 <
dR— om dR— of dR— u_  dR—
X X X e X
and its first moment
dR-* = = e du
T+ R AL g ML g 5 e (25)
om dR— of dR— u_ dR—
X e X

Vv

dR—=* ~ — R=* du
=B 2] TR (.o = (26)
dR— dR—- dR—- u_ dR-
X X X e X
s 1 (1)
where 7 comes from Coles analytical form of the turbulent boundary
layer
— yu ~
u 1 T T By — JIE
E-Eln_ + C + - W(y/8)
T

k = .40 (Karman's constant)

C= 5,10 and 3& =Y ?;/3', and 'ﬁ, J, [P], [Q) and Eb are specified

functions of % and T (see Reference 18).
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s ~ .
In order to arrive at the dependence of C._ on wm and f , it is

D »
=z —_— — =
necessary to link BT = (8 /Tw) (dp/dx) to
Y= -\
u, - u _
- dy
_ ol
TR
ue-u _
dy
J —
0 Yy

and here we have modified Alber's formulation to agree with the numerical
values predicted for equilibrium flows by Mellor and Gibson(lg) for which

the following form was chosen

By = - .852 - .0596 G + (G/5.90) 2
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