UNCLASSIFIED

AD NUMBER

AD848602

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; JAN 1969. Other requests shall be referred to U.S. Army Missile Command, Redstone Arsenal, AL.

AUTHORITY

USAMC ltr, 1 Dec 1972

THIS PAGE IS UNCLASSIFIED

REPORT NO. RK-TR-69-1

AD

MAR 6

Le L.

EFFECT OF PLASTICIZERS ON THE STRENGTH OF A PLASTIC NOTOR CASE

0848602

EXTENSION AT BREAK OF RINGS TREATED WITH PLASTICIZER

bγ

Donald A. Morgan

January 1969

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of this Command, ATTN: AMSMI-RK.

U.S. ARMY MISSILE

Madatona Areene

Best Available Copy

2 January 1969

Report No. RK-TR-69-1

1978년 - 1979년 1978년 1979년 1 1979년 - 1979년 1 1979년 - 1979년 1 1979년 - 1979년 1 1979년 1979년 1979년 1979년 1979년 1979년 1979년 1979년 1979년 1979년

EFFECT OF PLASTICIZERS ON THE STRENGTN OF A PLASTIC MOTOR CASE

PART II EXTENSION AT BREAK OF RINGS TREATED WITH PLASTICIZER

by

Donald A. Morgan

DA Project No. 1M262302A205 AMC Management Structure Code No. 5222.11.147

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of this Command, ATTN: AMSMI-RK.

Propulsion Systems Engineering Branch Army Propulsion Laboratory and Center Research and Engineering Directorate (Provisional) U. S. Army Missile Command Redstone Arzenal, Alabama 35809

ABSTRACT

This report contains the results of an investigation on the effects of seven plasticizers on the elongation at break point of rings cut from a glass-fiberreinforced plastic motor case.

The rings were stored for over a year with a saturated mixture of fuller's earth and triethylene glycol dinitrate, tributyl phosphate, triethyl phosphate, dipropyl adipate, dibutyl phthalate, dibutyl maleate, or ethyl nonanoate. A blank was also used.

Ē

ii

The extension at break was greatest for the blank and for triethylene glycol dinitrate. With other plasticizers there was significantly less extension at break.

The investigation is continuing using unlined motor cases packed with a mixture of sand and selected plasticizer. The actual burst strength will be investigated.

CONTENTS

1	Introduction	1
2.	Research Plan and Materials	1
3.	Test Equipment and Methods	2
4.	Results	3
5.	Conclusions	9
REF	ERENCES	11

ILLUSTRATIONS

Table		Page
I	Physical Properties	2
II	Effect of Plasticizers on Break Strength and Elongation at	
	Break at 76°F	6
III	Plasticizers Versus Break Strength and Elongation at	
	Break at 140°F Storage	7
IV	Rating of Rings by Extensions at Break	8

Figure

1	Typical Variation in the Stress-Elongation Curves for Rings
	in Contact with Dipropyl Adipate for Various Lengths
	of Time
2	Variation in the Stress-Elongation Curves for Various
	Plasticizers at 12 Months

-

4

5

į

1

Page

10.1

SYMBOLS

÷

M molecular weight

" surface tension (dynes/cm)

D dipole moment

 μ viscosity (g/cm³-sec)

 ρ density (g/cm)

iv

 ϑ solubility factor $\left(\operatorname{cal}^{\frac{1}{2}}/\operatorname{cm}^{\frac{3}{2}}\right)$

G hydrogen bonding factor, wavelength shift

1. Introduction

This work is a continuation of that described in U. S. Army Missile Command Report No. RK-TR-6:-1 as Phase I [1]. In this prior report seventeen commercial plasticizers used in the manufacture of solid propellants were rated by their effect on the shear creep of segments of rings cut from glass-wound epoxy resin motor cases. The effects of air and water were also determined in the same experiment.

The motor cases had 3 inches inside diameter and 10 inches overall length. The case consisted of 734 ends of S-glass per circumferential inch in helical winding only. Helix angle was 45 degrees. Sizing used was a silane, S-901. These motors had an average burst strength of 2605 psi. Ninety-five percent of the cases burst ± 6 percent of the average at a confidence let of of 90 percent. Further information about these cases can be found in the pertinent manufacturer's report [2].

The results of Phase ' showed that the cumulative sag of the coupon was directly proportional to the surface tension of the plasticizer and inversely proportional to the viscosity. Properties such as dipole moment, hydrogen bonding, and solubility factor were not cignificant. This indicates that the penetration was a purely physical process. This type of penetration is explained more fully by Crank and Park [3]. A seemingly anomalous decrease in accumulative sag in the case of certain butyl esters at the higher temperature corroborated findings of A. K. Doolittie [4].

2. Research Plan and Materials

The effect on rings cut from the motor cases of those plasticizers found active in the first phase is investigated in this second phase. These rings were 3 inches inside diameter by 0.500 ± 0.005 inches wide by 0.055 ± 0.005 inches thick and were cut dry from the cylindrical portion of motor cases from the same lot as in Phase I. All raw edges were sealed with epoxy resin.

Seven plasticizers were selected from Phase I to be used in Phase II. Basis of selection was the greatest amount of deformation of the segment. The plasticizers solected were triethyl phosphate, tributyl phosphate, ethylnonanoate, dipropyl adipate, dibutyl phthalate, dibutyl maleate, and trietlylene glycol dinitrate. These plasticizers were also from the same lots as used in Phase I.

Simulated propellants were prepared by absorbing these plasticizers on fuller's earth in the proportion of one mol of plasticizer to 533 grams of fuller's earth. All simulated propellants were definitely moist with plasticizer except

that containing triethyl phosphate which was damp only. The schedule called for tests at the two temperatures of storage, 76° and 140°F; at six time intervals at 76°F and three time intervals at 140°F; and for all tests to be run in triplicate. Blank tests were also to be run. The storage area for the 76°F test was a constant temperature, 50 percent relative humidity room. Storage area for the 140°F test was a test cabinet kept at that temperature.

Rings were packed with simulated propellant and stored between glass plates Nine rings containing one composition were stored together. Plates were stored one tier high at 146° F and no more than two tiers high at 76° F. Rings stored at 76° F were packed with fuller's earth mixtures containing triethyl phosphate, tributyl phosphate, dibutyl phthalate, ethyl nonanoate, dipropul adipate, or triethylene glycol dinitrate. Rings stored at 140° F contained mixtures with triethyl phosphate, dibutyl phtalate, dibutyl maleate, ethyl nonanoate, or dipropyl adipate. Unpacked rings for blanks were stored concurrently at each temperature.

Table I [5-8] gives the physical properties of the plasticizers used in this phase of the experiment.

Plaaticizer	M	σ*	D [5, 3]	μ*	ə [6, 8]	ρ*	G [7, 8]
Triethyl phosphate	182	32.4	3.00	1.8	9 . 2	1.068	11.7
Fributyl phosphate	256	30.0	3.07	3.71	8.5	0.971	11.7
Ethyl nonanoate	186	29.2	1.75**	2.5	7.3	0.860	8.4**
Dipropyl adinate	230	33.2	2.40**	4.2	7.3	0.979	8.4**
TEGDN	240	47.2	2.53**	5.95	10.1	1.317	2.2**
Dibutyl phthalate	278	36.2	2.75	11.3	9.3	1 042	6.3
Dibutyl maleate	228	32.9	2 56**	4.0	8.5	0.995	8.4**
Epoxy resin	-	-	2.23**	-	10.9		24.0**
• •					±2.4**		1

TABLE I. PHYSICAL PROPERTIES

* Measured at 76° F

** Estimated

3. Test Equipment and Methods

The original scheme of testing contemplated using a hydraulic method adapted from that developed by Naval Ordnance Laboratory (NOL)[9].

A modified hydraulic tester was made. However, during preliminary testing it was found that the amount of stretch in the rings on pressurizing, because of lack of circumferential wraps, was so great that about half the time the seal between the elastic obturator ring and the test fixture was lost, ruining the test. Since the test was set up statistically with three replicates, this entailed too great a loss of confidence and the hydraulic method was abandoned.

A split-D tester of normal design was therefore made for use in a Houndsfield Tensometer* and proved acceptable. This tensile tester can give a permanent record of the relationship between stress and extension.

All tests were conducted at 76°F and 50 percent relative humidity. Test rings were brought into the area, wiped, and allowed to temper for at least 30 minutes. They were then placed on the split-D tester and loaded into the machine. Rate of crosshead advance was approximately 0.3 inch per minute. All rings were stressed to rupture. Rings were then examined and data from those rings obviously breaking in a resin-poor area were rejected. These amounted to some 5 percent of the total number of rings.

Figures 1 and 2 show typical graphs of stress elongation, selected from several actual runs. Figure 1 shows the typical variation in the stress-elongation curves for rings in contact with dipropyl adipate for various lengths of time. Figure 2 shows the variation in the stress-elongation curves for various plasticizers at 12 months. In each instance, the curves start with zero force and zero elongation.

4. Results

Several criteria were examined to determine if one could differentiate between plasticizers. Breaking strength of the rings, extension of the rings at break, and ratio between applied stress and extension were investigated statistically. Only extension at break was found to give satisfactory results. Breaking strength was also found to correlate directly with extension at break, but the statistical evaluation of breaking strength as a criterion of difference between plasticizers was at a lower confidence level.

Table II gives the breaking strength and extension at break of rings stored at 76°F for various plasticizers at increasing time intervals. Values of

* The use of this trade name is for identification purposes only and is not to be construed as a recommendation of this particular instrument.

З

FIGURE 1. TYPICAL VARIATION IN THE STRESS-ELONGATION CURVES FOR RINGS IN CONTACT WITH DIPROPYL ADIPATE FOR VARIOUS LENGTHS OF TIME

4

đ,

٤

-0.125 in.-EXTENSION e N 1000 500 õ FORCE (Ib) MATERIAL: COMPOSITEON: S.GLASS EPOXY RESIN TREATMENT: IN CONTACT WTH PLASTICIZER AT 76° F FOR 12 MONTHS FOR 12 MONTHS RESULTS: RESULTS: RESULTS: RESULTS: RESULTS: REMARKS: 1, ZLANK 1, ZLANK 2, BUTYL PHTHALATE 3, PROPYL ADIPATE BEAM: 1/2 T.

÷ 3

:

FIGURE 2. VARIATION IN THE STRESS-ELONGATION CURVES FOR VARIOUS PLASTICIZERS AT 12 MONTHS 1

- Linkallahur

Å:

į.

1

ł

ł

TABLE II. EFFECT OF PLASTICIZERS ON BREAK STRENGTH AND ELONGATION AT BREAK AT 76°F

1.446

-

- II:

3 6 9 12 15 15 $E \pm \star$ TS E	3 3 stitcizer TS* E** 990 515 930 515 930 525 830 525 830 525 830 525 (610) (220) 431 (670) 860 431 770 549 870 544 960 534 770 549 870 549 880 441 770 549 870 515 940 495 940 495 940 495 940 505 940 534 1 adipate 1000 505 1 adipate 790 368	ω		E 500 529 529 544 544 543 593 593 593 593	TS TS 1040 1040 1010 980 650 1040 1040 1200**				TS 21	ы
stictzer TS* E** TS E TS <the< th=""> TS <the< th=""> TS<th>stitcizer TS* E** 990 515 930 525 830 525 830 525 870 431 6610) (220) 860 431 670) 544 870 544 950 534 770 549 870 515 980 441 980 441 980 441 980 441 980 431 940 505 940 387 1 adipate 1000 505 1 adipate 790 368</th><th><u></u></th><th>TS 1910 910 940 940 980 950 790 780 (480)</th><th></th><th>TS 830 1040 1090 1010 980 650 880 1040 1200**</th><th></th><th>TS (530)</th><th>E</th><th>TS</th><th>ы</th></the<></the<>	stitcizer TS* E** 990 515 930 525 830 525 830 525 870 431 6610) (220) 860 431 670) 544 870 544 950 534 770 549 870 515 980 441 980 441 980 441 980 441 980 431 940 505 940 387 1 adipate 1000 505 1 adipate 790 368	<u></u>	TS 1910 910 940 940 980 950 790 780 (480)		TS 830 1040 1090 1010 980 650 880 1040 1200**		TS (530)	E	TS	ы
950 515 940 539 1910 500 830 564 (530) (186) 830 525 920 466 910 529 1040 559 1030 564 (610) (220) 940 495 940 529 920 603 559 1030 564 (50) (186) (610) (220) 940 495 940 515 940 529 1090 559 920 603 870 544 630 270 790 529 657 397 1020 529 770 549 990 500 950 529 860 564 307 516 500 544 0700 515 (570) 720 1930 446 760 534 1000 544 0700 515 920 640 456 760 505 970 516 505 0700	950 515 830 525 830 525 (610) (220) (610) (220) (610) (220) (670) (392) 870 544 960 534 770 549 870 544 960 534 770 549 870 515 940 495 940 495 940 495 980 441 phthalate 1000 505 850 500 387 1 adipate 790 368		1910 910 940 980 980 980 790 (480) (480)		830 1040 1090 1090 980 880 1040 1200**		(530)	1001/		
R30 525 920 456 910 529 1040 559 920 603 (610) (220) 940 495 940 529 1090 559 920 603 (610) (220) 940 466 980 544 1010 555 900 431 (670) 5321 870 544 500 559 900 431 (670) 5321 870 544 530 500 539 500 431 (670) 5321 870 515 880 529 1040 554 1000 529 500 431 770 544 530 1040 554 1000 544 1000 544 1000 544 1000 544 1000 544 1000 554 900 544 770 540 490 1010 505 1000 554 1000 554 100 554	830 525 (610) (220) (610) (220) (670) (392) 870 544 960 534 770 549 870 515 940 495 940 495 940 495 940 495 950 505 940 495 950 505 940 495 950 500 950 505 940 387 1 adipate 790 368		910 940 980 980 950 790 880 990 (480)		1040 1090 1010 980 650 1040 1200**		1020	(001)	810	485
	I phosphate (610) (220) 860 431 (670) (392) 870 544 (670) (549) 870 549 (670) (549) 770 549 (770) 549 770 549 (770) 549 770 549 (770) 549 770 549 (700) 515 960 534 (490) (495) 940 495 (491) (491) phthalate 1000 505 (500) 1 adipate 790 368 1		940 980 950 950 790 880 990 (480)		1090 1010 980 650 880 1040 1200***		NONT	564	920	554
I phosphate8604318604519505441010505900431 (670) (392) 670 328 950564980510910529 870 544 630 270 790 529 650 991 529500 960 534 870 515 880 593 880 505 970 515 770 544 630 270 990 503 880 505 970 515 770 515 (570) (206) (480) (147) 1200^{***} 520 910 544 770 515 (570) 200 990 505 910 544 1000 544 770 515 (570) (200) 990 566 970 515 940 495 1000 544 1030 466 766 534 1000 544 1030 466 760 524 900 545 525 940 506 549 900 545 950 495 526 526 940 505 500 549 500 549 960 549 970 554 940 500 549 900 545 950 549 970 505 525 910 520 910 549 960 549 910 910 554 1 adipate 790 <td>I phosphate 860 431 (670) (392) 870 544 960 534 770 549 870 515 770 549 870 515 770 549 870 515 960 534 770 549 870 515 940 495 940 495 980 441 phthalate 1000 505 850 500 387 1 adipate 790 368</td> <td></td> <td>980 950 790 880 990 (480)</td> <td></td> <td>1010 980 650 880 1040 1200**</td> <td></td> <td>920</td> <td>603</td> <td>170</td> <td>407</td>	I phosphate 860 431 (670) (392) 870 544 960 534 770 549 870 515 770 549 870 515 770 549 870 515 960 534 770 549 870 515 940 495 940 495 980 441 phthalate 1000 505 850 500 387 1 adipate 790 368		980 950 790 880 990 (480)		1010 980 650 880 1040 1200**		920	603	170	407
	(670) (392) 870 544 870 549 770 549 770 549 870 515 770 549 870 515 870 515 870 515 870 515 880 441 940 495 940 495 950 505 850 500 690 387 1 adipate 790 368		950 790 880 990 (480)		980 650 880 1040 1200**		006	431	950	456
870 544 630 270 790 529 650 397 1020 500 770 543 870 515 880 593 880 505 970 515 770 543 990 500 990 503 880 533 880 544 1000 544 770 543 990 505 760 4480 1470 1200*** 520 1000 544 940 495 1000 505 760 426 1030 475 710 304 980 441 893 441 893 446 766 534 1055 525 980 441 893 446 766 534 1055 505 1 880 503 730 446 766 534 1055 505 1 1 adipate 790 387 730 445 660 970 505 <td>870 544 960 534 770 549 770 549 870 515 870 515 870 515 870 515 870 515 870 515 880 441 940 495 940 505 980 441 980 500 850 500 1 adipate 790 368</td> <td></td> <td>790 880 990 (480)</td> <td></td> <td>650 880 1040 1200**</td> <td></td> <td>910</td> <td>529</td> <td>750</td> <td>490</td>	870 544 960 534 770 549 770 549 870 515 870 515 870 515 870 515 870 515 870 515 880 441 940 495 940 505 980 441 980 500 850 500 1 adipate 790 368		790 880 990 (480)		650 880 1040 1200**		910	529	750	490
96053487051588053388050597051577054999050099652010405541000544870515(570)(206)(480)(147)1200***5201000544870515(570)(206)(480)(147)1200***5201000544940101050576042610304757103049404951000544103046676053410555259404418904901020549960456860603940500544103046676053410555255259405005499604567603703649705641 adipate730446(600)(221)105056495044187052087043687052091044193046156487052087043688046161034891049552011 adipate7308705204128805649505205205205201 adipate7304368804616103769106419106549605337304456005211050520910495<	960 534 770 549 870 515 940 495 940 495 940 495 940 495 940 495 950 505 950 500 1 adipate 790 368		880 99C (480) 760		880 1040 1200**		1020	500	(110)	(358)
770 549 990 500 996 520 1040 554 1000 544 870 515 (570) (206) (480) (147) 1200*** 520 1000 544 870 515 (570) (206) (480) (147) 1200*** 520 1000 544 940 495 1000 505 760 426 1030 475 710 304 980 441 890 441 890 456 860 603 525 526 1050 534 1055 554 505 11 534 535 535 535 535 535 535	770 549 870 515 870 515 870 515 940 490 940 495 940 495 940 505 950 500 850 500 690 387 1 adipate 790 368		99C (480) 760		1040 1200**		970	515	650	250
870 515 (570) (206) (480) (147) 1200*** 520 1000 544 820 495 1000 505 760 426 1030 475 710 304 940 495 1000 505 760 426 1030 475 710 304 940 495 1000 505 900 485 950 495 700 534 1055 525 525 524 880 441 890 495 950 495 730 412 950 505 1 850 500 730 446 660 309 910 544 505 1 554 790 368 910 446 660 221 1050 500 940 544 105 556 1 1 554 10 554 105 556 1 1 554 10 554 10 554 10 554 10 554 10 554 10 554	870 515 820 490 940 495 940 495 880 441 1000 505 850 500 690 387 790 368		(480) 760		1200**		1000	544	840	456
820 490 1010 505 760 426 1030 475 710 304 940 495 1000 544 1030 466 760 534 1055 525 980 441 893 490 1020 529 960 456 860 603 1000 505 900 485 950 495 730 412 953 505 850 500 750 549 960 559 840 480 970 598 850 560 730 446 660 309 910 554 730 387 730 446 660 309 910 554 790 368 910 446 660 309 910 544 870 520 870 426 880 564 950 520 1 870 520 880 564 950 520 10 545 870 520 980 564 950 <	820 490 940 495 880 441 1000 505 850 500 690 387 790 368		760				1000	544	840	539
940 495 1000 544 1030 466 760 534 1055 525 880 441 893 490 1020 529 960 456 860 603 880 441 893 490 1020 529 960 456 860 603 850 500 750 549 960 559 840 480 970 598 850 387 730 446 660 309 910 544 1050 559 840 480 564 950 554 1 790 368 910 446 (600) (221) 1050 500 941 554 10 554 10 554 950 544 910 544 1050 550 13 554 10 554 950 544 950 550 10 554 950 544 950 550 10 545	940 495 880 441 880 441 880 505 850 505 850 387 790 368		, , ,	426	1030		710	304	840	461
880 441 893 490 1020 529 960 456 860 603 1000 505 900 485 950 495 730 412 953 505 1 850 500 750 549 960 559 840 480 970 598 690 387 730 416 660 309 910 544 790 368 910 446 660 309 910 554 890 402 730 412 880 564 950 554 870 520 870 461 610 348 910 441 870 520 870 485 630 564 950 520 1 870 520 870 485 720 481 910 495 960 412 880 461 610 330 456 980 534 <td>880 441 1000 505 850 500 690 387 790 368</td> <td></td> <td>1030</td> <td>466</td> <td>760</td> <td>534</td> <td>1055</td> <td>525</td> <td>800</td> <td>569</td>	880 441 1000 505 850 500 690 387 790 368		1030	466	760	534	1055	525	800	569
1000 505 900 485 950 495 730 412 953 505 1 850 500 750 549 960 559 840 480 970 598 690 387 730 456 850 446 660 309 910 554 790 368 910 446 (600) (221) 1050 500 941 554 890 402 730 436 720 412 880 564 950 520 1 870 520 870 461 610 348 910 495 520 1 960 412 880 461 610 348 910 495 495 495 534 950 490 456 930 534 950 534 950 534 950 534 950 534 950 534 950 534 950 <t< td=""><td>1000 505 850 500 690 387 790 368</td><td></td><td>1020</td><td>529</td><td>960</td><td>456</td><td>860</td><td>603</td><td>840</td><td>417</td></t<>	1000 505 850 500 690 387 790 368		1020	529	960	456	860	603	840	417
850 500 750 549 960 559 840 480 970 598 690 387 730 456 850 446 660 309 910 544 790 368 910 446 (600) (221) 1050 500 941 554 890 402 790 368 910 446 (600) (221) 1050 500 940 544 950 544 956 520 1 870 520 870 436 720 412 880 564 950 520 1 870 520 870 461 610 348 910 495 1 960 412 830 461 610 275) 990 480 534 920 539 750 412 930 456 980 534 10 456 10 456 10 456 <t< td=""><td>850 500 690 387 790 368</td><td></td><td>950</td><td>495</td><td>730</td><td>412</td><td>950</td><td>505</td><td>1010</td><td>451</td></t<>	850 500 690 387 790 368		950	495	730	412	950	505	1010	451
690 387 730 456 850 446 660 309 910 554 790 368 910 446 (600) (221) 1050 500 900 441 890 402 730 436 720 412 880 564 950 520 1 870 520 870 436 720 412 880 564 950 520 1 870 520 870 436 720 412 880 564 950 520 1 870 520 870 461 610 348 910 495 960 412 830 441 930 456 980 534 920 530 534 10 456 10 456 10 456 10 456 10 456 10 456 10 456 10 456 10 456 10 456	690 387 790 368		960	559	840	480	026	598	066	574
790 368 910 446 (600) (221) 1050 500 900 441 890 402 790 436 720 412 880 564 950 520 870 520 870 436 720 461 610 348 910 495 te (540) (176) (430) (216) 930 485 (630) (275) 990 480 960 412 840 412 830 441 930 456 980 534 920 539 750 412 980 515 920 451 710 456	790 368		850	446	660	309	910	554	940	554
890 402 790 436 720 412 880 564 950 520 870 520 870 436 720 412 880 564 950 520 870 520 870 436 880 461 610 348 910 495 te (540) (176) (430) (216) 930 485 (630) (275) 990 480 960 412 840 412 830 441 930 456 980 534 920 539 750 412 980 515 920 451 710 456			(009)	(221)	1050	500	006	441	950	554
870 520 870 436 880 461 610 348 910 495 (540) (176) (430) (216) 930 485 (630) (275) 990 480 960 412 840 412 830 441 930 456 980 534 920 539 750 412 980 515 920 451 710 456	890 402		720	412	880	564	950	520	1000	52 r
(540) (176) (430) (216) 930 485 (630) (275) 990 480 960 412 840 412 830 441 930 456 980 534 920 539 750 412 980 515 920 451 710 456	520		880	461	610	348	910	495	730	402
960 412 840 412 830 441 930 456 980 534 920 539 750 412 980 515 920 451 710 456	(540) (176)		930	485	(630)	(275)	066	480	940	490
539 750 412 980 515 920 451 710 456	960 412		830	441	930	456	980	534	940	544
	539		980	515	920	451	710	456	1010	485

-

*े ने*हू-इन्हेर्ने

** Estimated. Actual TS beyond the range of the instrument.

6

. تخبر نہ

¢

the breaking strength are in pounds. Values of the extension are in thousandths of an inch. The values in parentheses indicate that the ring broke in a resin poor area. The value therein is the actual value found. The value used in analysis was the average value of the two acceptable rings. 7

्र्न्डः दाः

Table III gives similar data for samples stored at 140°F. The same units are used and the same usage for rings breaking in a resin poor area.

			Time (no)		7
		6		9	1	15
Plasticizer	TS	E	TS	E	TS	E
Blank	870	529	980	505	890	407
	820	431	880	475	910	456
	990	495	- 1	(2 only)	1100	569
Dibutyl phthalate	9 60	461	1040	539	1100	490
	720	319	830	441	700	338
	990	490	740	402	930	495
Dipropyl adipate	940	941	1040	525	1040	485
	970	500	840	495	970	441
	92 0	466	850	475	930	500
Triethyl phosphate	(610)	(206)	870	465	930	539
	910	475	(520)	(147)	970	490
	800	505	1000	500	1000	520
Dibutyl maleate	1040	480	1010	515	1000	529
	990	569	1050	525	830	466
	650	333	970	495	620	377

TABLE III.PLASTICIZERS VERSUS BREAK STRENGTH ANDELONGATION AT BREAK AT 140°F STORAGE

Etatistical analysis of the data on extension of Table II showed that both plasticizer and time are significant variables. A strong interaction was likewise found between plasticizer and time. Time was found to enter in a higher degree than linear. Results of this analysis for the different plasticizers are shown in Table IV. Values given are the summation of all extensions for a single plasticizer.

Rings		
Blank	10.92*	
TEGDN	10.64	
		90%
DBP	10.27	
EN	10.24	
TEP	9.95	1
TBP	9.86	1
DPA	9.81	

TABLE IV. RATING OF RINGS BY EXTENSIONS AT BREAK

* Values given under the Rings are the sum of extensions at break for all rings of that class. It is the summation of values for 21 rings.

The statistical interaction between time and plasticizer was examined further. It was noticed that a pronounced minimum, statistically significant, occurred for each plasticizer except ethyl nonanoate. These minima occurred at various time intervals. The minimum for dipropyl adipate occurred at 3 months, those for tributyl and triethyl phosphate occurred at 6 months, that for dibutyl phthalate occurred at 12 months, and those for the blank and for TEGDN at 21 months. The time of the minimum can be related to the effect of the plasticizer inasmuch as the later the time of the minimum, the greater the sum of the extensions at break, i.e., the less the effect of the plasticizer.

These minima are probably related to the rates of diffusion of the various plasticizers, either through the plastic or along the plastic-glass interface. The fact of the minimum can be explained if it is assumed that the front of the plasticizer penetration divided the ring into two layers, whose strengths are not additive but are approximately equal. The small differences in extension and the relatively large standard error prevent a meaningful correlation between physical properties of the plasticizers and the extension.

An analysis was made of the data on extension at 140°F (Table III). No significant differences were found between plasticizers or between times at 140°F. A significant difference was found between temperatures, using corresponding times and plasticizers in Tables II and III.

5. Conclusions

Extension at break is capable of separating plasticizers at least into two groups, those which have no effect and those which do.

The differences in conditions of the experiment in Phase I and Phase II are such that different factors have become important. Neither the grouping of the plasticizers nor their order within groupings is the same.

Phase III of the experiment is now under way. In this phase pressure bottles of the same lot as in Phase I or Phase II will be packed with plasticizer and inert material, and these samples of each plasticizer will be burst hydraulically at intervals of 6 months.

REFERENCES

- Morgan, Donald A., Effect of Plasticizers on the Strength of a Plastic Motor Case, Part I, Shear Creep of Segments Immersed in Plasticizer, U. S. Army Missile Command, Redstone Arsenal, Alabama, Report No. RK-TR-67-1.
- Final Report, Manufacture and Delivery of Fiberglass Pressure Vessels and Samples, Thiokol Chemical Corporation, Huntsville, Alabama, 12 March 1965, Report No. 13-65.
- 3. Crank, John, and Park, G. S., Diffusion in Polymers, Academic Press, 1968.
- 4. Doolittle, A. K., "Application of a Mechanistic Theory of Solvent Action to Plasticizers and Plasticization," Journal of Polymer Science, No. 2, 1947, pp. 129-132.
- 5. McClellan, A. L., Tables of Experimental Dipole Moments, W. H. Freeman and Company, 1963.
- 6. Small, P. A., "Some Factors Affecting the Solubility of Polymers," J. Applied Chem., <u>3</u>, February 1953, pp. 71-80.
- 7. Gordy, Walter, and Stanford, Spencer C., "Spectroscopic Evidence of Hydrogen Bonds: Comparison of Proton-Attracting Properties of Liquids III," J. Chem. Physics, 9, pp. 204-214.
- Crowley, J. D., Teague, G. S., and Crowe, J. W., "Three Dimensional Approach to Solubility," J. Paint Tech," 38, No. 496, May 1966, pp. 272 and 273.
- 9. Milani, NOL Hydraulic Ring Tensile Tester, Naval Ordnance Laboratory, NavOrd Report No. 6735.

(Becaulty closellisation of (1116, hody of observe) and indexts IMATING ACTIVITY (Corporate outbot) Army Propulsion Laboratory and Center	NTROL DATA - R	ntered when B	e overall report le classified)		
rmy Propulsion Laboratory and Center					
Research and Engineering Directorate (Pr	rovisional)	Unclas	BECURITY CLASSIFICATION BIFIED		
J. S. Army Misaile Command Redatone Arsenal, Alabama 35809		N/A			
EFFECT OF PLASTICIZERS ON THE ST PART II EXTENSION AT BREAK OF RING					
CRIPTIVE NOTES (Type of report and inclusive deteo) None					
Hanisi (First name, middle initial, last name)		·			
Donald A. Morgan					
SAT DATE 2 January 1969	74. TOTAL NO. 0 18	P PAGES	78. NO. OF REFS 9		
NTRACT OR BRANT NO.	M. ORIGINATOR		MBER(#)		
ouect Ho. (DA) 1M262302A205 AMC Management Structure Code No.	RK-TR-6	9-1			
5222. 11. 147	AD		ny other numbers that say be assigned		
Rovernments or foreign nationals may be ATTN: AMSMI-RK.	12. SPONSORING		TIVITY		
This report contains the results of colasticizers on the elongation at break pot colastic motor case. () The rings were stored for over a y earth and triethylene glycol dinitrate, tri	int of rings cut year with a sam butyl phosphate	from a glu urated mix , tristhyl	ass-fiber-reinforced ture of fuller's phosphate,		
dipropyl adipate, dibutyl phthalate, dibuty was also used.		-			
The extension at break was greate initrate. With other plasticizers there v					
The investigation is continuing usi of sand and selected plasticizer. The act			investigated.		
÷					
1473 CLEARER PER ATTAL VILLE	64, WHICH 18				

THE THE PROPERTY

1

Ì

.

UNCLASSIFIED

14.	LIN	K A	LIN	к ө	LIN	кс
4 6 Y WORDS	ROLE		ROLE	W T	ROLE	WT.
Glass-fiber-reinforced motor case rings Triethylene glycol dinitrate Tributyl phosphate Trethyl phosphate Dipropyl adipate Dibutyl phhalate Dibutyl maleate Ethyl nonanoate Deterioration						
				{		l
						[
		Í			1	}
· · · · ·			1		4	
						1
			ļ		Ì	1
			1]		
		Ì	1		ļ	
		ļ				{
		1			ļ	[
	ļ		l	ł		ļ
	1					
		l		Į]	Į
				1		
				}		
	ł	[l		ĺ
				ł		ł
	1	ļ		1	1	ļ
	1		1	1	1	1
			1	l		ļ
	UNCL	ASSIF	ED		a ann an Annaich	
4			Classic			-