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FRECY:  The model of wniforely distributed cosbustion in the gas
g&ssa 43 used ze the hasis for examining seversl features of unsteady
Wurning. Ao & zereth approsimation the flame zone begins at the solid-
g38 interface and responds linesrly and quasi-statically to changae of
pressure only. Three devistions frcm this behaviur sre then examinped:
the combusticn xove iz displaced frow the surface, the energy relesse
tesponds ¢o fluctuations of temperature and the response is not quasi~
gtatic. It appears that the assimption that the burning begins im-
mediately ar the surface cas lead to significsnt changes, more im~
portent than the asswsption that the energy velesse responds to changss
of pressurg only, especially in the interpretation of sxperimentsal
datn. The problen of rosquasi-static bshavior, i.e., processes in the -
gas phase do not follow precisely impressed changes of pressure, is ’
, formulated w2 an supsoaien in frzogusmcy. Approximate results seem to
E bz congistent with sumisting ivformation.
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: NOMENCLATURE
: A Parameter, A = E (1 - TC/T;
: a Coefficient in burning rate law, m = apn
B Parameter, Eq. 70, 82, or 108
§
‘ b Coefficient in Eq. 62
c,c_ Specific heat of solid, gas
E E~E/RT
8 o0s
E8 Activation energy for surface reaction
H BE= Qslc (Ts-Tc)
HB See Eq. 85
HBT See Eq. 109
h Enthaipy
hfr' hsr Reference values of enthalpy
K Eq. 128
kc’ kg Therial conductivity of solid, gas
kl kﬂ, = 2x/L
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Ly L, =h_ - h , positive for endothermic reaction

£ €= kslmcp

Mb Mach number of product gases

m Mass flux (gm/cm? ~ gec)
n Index inm = apn

n_ Index in Eq. 16

p Pressure

Qf Heat release per unit mass in gas phase

Q, Q =-1L

8 8 8

q Heat transfer (ergs/cm-sec)

9 Heat transfer fluctuation at instantaneous position of
flame (outer edge)
q;' Heat transfer fluctuation at mean position of flame (cuter

edge)
R Response function, R = (m'/m)/(p'/p)

R Universal gas constant

r Linear burning rate (cm/sec)
8 Index in %q. 64, s - A in linear calculations
T Temperature

T  Temperature of cold solid (x + - =)

t Dimensionless time in Section 5; scale is 3; kg/ﬁch

Tf' Temperature fluctuation at instactaneous pesition of flame
(outer edge)

TIJ Temperature fluctuation at mean position of flame (outer edge)
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V Coefficient in Zq. 100 '

Vp Eq. 104

W Eg. 65

WB Value of W for 8 ¥ 0, Eq. 81
8T Eq. 103

X Eq. 105

£ Fluctuation of the outer boundary of the flame

Xes Xg Inner (upstream) and outer (downstream) boundaries of the flame

zone ‘ "
X, Position of solid~gas interface
& Eq. 80
a, Index in Eq. 16
(o)
qz 1 {0) - —
o, o, mrt @ LA p2 ¥ gy B -@2-%) 2y 0
B | - = = £
mcst w

see Eq. 133

8 Exponent in gi - EfB, Eq. 73

-T (o)
N v 1 {(0) -
8, By =e _F —— ~ A2 "._ + (2 + Ef)Azu’(o) , see Eq. 133
mcpTs w

Y Ratio of gpecific heats, y = cp/cRe

-ef

-u’(o)Aze , see Eq, 133 v
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wc(o)

= ~p2 - 12300 gee Eq. 10

]
w

Small parameter, Eq. 122
Reaction rate, Eq. 19
= e : [k )dx]
¢ = exp [f (mp/ g) x]
e'(;f-x)/L
Thermal diffusivity of solid, K, = kc/pcc
Thermal diffusivity of =k /p
ermal diffusivity of gae, Kg g/pgscp
Eigenvalue, Eq. 34
Complex function of @, Eq. 4

Real and imaginary parts of A

Defined in Eq. 125

Normalized mass flux, p = m/m

E= f (mcp/kg)dx

. = (;;/kc)x - (?Yxc)x

Density of solid, gas

Normalized temperature, T = I/T;

Average temperature introduced in Eq. 134
Novmalized frequency, I = ncm/;2

Real angular frequency
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SUBSCRIPTS
¢+ Evaluated on the solid (-) or gas (+) side of the origin
st Evaluated on the solid (-) or gas (+) side of the interface
i Imaginary part
r Real part
f Evaluated at the instantaneous position of the flame
f Evaluated at the mean position of the flame
SUPERSCRIPTS
Mean value
' Fluctuation value
(o), (1) Zeroth and first order terms in the expansions (Eq. 132)
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I. INTRODUCTION

It appears at the present time that much of the unsteady behavior
in solid-propellant rocket chambers can be traced tu the interection
between pressure fluctuations and the burning in .he neighborhood of the
solid surface. Thus, an understanding of the processes in this region
when the pressure is varying in time is essential. Ultimately, experi-
mental results are required, but their interpretation rests on analysis,
which is necessarily approximate. .

The various analyses which have appeared differ substantially caly
in the model adopted for the gas phase. But even in that respect, the
basic assumptions involved are so strong that almost <ll the final re-
sults for the response to harmonic pressure oscillations have the same
form, a two-parameter function of dimensionless frequency (Ref. 1),
shown as Eq. 71 here. In fact, only one of those parameters (demnoted by
B) depends on the model chosen for the gas phase; the cther, , being
associated with the thermal wave in the solid and the surface reaction
for transformation of solid to gas. This conclusion is a consequence
of four basic assumptions: (1) the problem is iinear and treated in
one-dimensional form; (2) the solid is homogeneous and nonreacting, with
constant properties; (3) the surface reaction is independent of pressure;
and (4) the gas phase responds quasi-statically to changes of pressure.
It is easy to vrelax assumption (3), in which case the form of the re-
sponse function is changed only slightlv and one additional parameter is
introduced, the index n_ ia Eq. 71.

Differcnces among the explicit formulas for the parameter B, ex-
pressed in terms of the properties of the gas phase, arise from differ-
ences in the models chosen for the structure of the flame in the gas
phase. Hence, the detailed interpretation of numerical results and
experimental data nust differ among the calculations. So long as the
assumption of quasi-static behavior is correctly interpreted and used,
disagreement of this sort is in fact associated with dissimilarities
among the models used for steady burning. The major portion of the
discussion here is grounded on one simple, yet fairly realistic, model,
based on unifornly distributed combustion, which has been solved approx-
imately and used previously in 2 calculation of the response function
(Ref. ). The approximations used in Ref. 2, in addition to those noted
above, imply that the fluctuations of total energy release in the gas
phase are always in phase with the pressure fluctuations, a result which
is open to question. Alternatives are possible, leading, of course, to
different expressions for the parameter B. Although part of the
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approximate naturs of the analvsis of Ref. Z can be eliminated, as al-
ready noted in Ref. 3 and explicitly shown here, it i8 not possible to
obtsin a complete snd unique solution for the quesi~static problem.

There are two purposes of the work reported here. (1) within the
feu crucial assumptions noted above, several of the additional approxi-
mations used in Ref. 2 are examined, und means of correcting them are
offered. (2) Two of the four basic assumptions listed are relaxed some-
what and the corresponding response functions are computed: a separate
calculaticn is given for nonquasi-static behavior which does not contein
a pregsure dependence in the surface zeaction. In view of the length of

S TR e ey B L

this report, it is perhaps helpiul tc summarize the main points to be made.

As in Ref. 1, the calculation of the response function is split into
three parts: analysis of the solid phase, construction ¢f impcriant con-
servation relations for the sclid-gas interface, and snalysis of the gas
phase. The conservation of energy applied tc the interface provides an
important equation which is used as the primary relation into which the
other results are subatitv+»d. In particular, it is the heat transfer
at the surface which must be found from the calculations for the soiid
and gas phases.

The simplest model for the solid will be used: homogeneous, acn-
reacting meterial having constant properties (see Ref. 4 and 5 for analy-
ges in which chemical activity in the solid phase iz examined). Thus,
the treatment of both the solid phase and the interfacial rsgion is
essentially the same as in most other researches on this problem. The
necessary information is collected in Section 7I.

By far the most difficult part of the problem is analysis of the
gas phase; even the steady-state problem remalns st the present time
essentially unsolved. As a basis for all the work covered here, the
model of uniformly distributed combustion is used. This can be solved
"exactly," although certain minor assumptions must be made. For example,
iI the combustion zone extends from some plane removed from the inter-
face to the outer boundary, an additional condition, such as an "ignition
temperature” or a minimum reaction rate, must be used to define the inner
boundary. However, the solution can be found, culminating in a trans-
cendental equation (Eq. 49) for the flame thickness. The formal solution
to the steadv-state problem is covered in Section III. The linear burn-
ing rate caa be found according to the Yrocedure outlined there, although
detailed results are not included here.

Perhaps the most important assumption of those noted above is that
the gas phase responds in a quasi-static manner. This effects enormous

I " inear Burning Rates for Solid Propellants Havirg Unifovmly Dis-
tributed Combustion,” by F. E. C. Culick and G. H., Dehority (in prepara-
tion).
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simplifications in the analysis. With this assumption, the nzcessary
results can be obtained in two ways: either directly, from a steady-
state solution, as discussed in Section IV-A; or by solving the rele-
vant linearized differential equations, as covered in Section IV-D. The
first approach is simpler, but the second must be used in calculations
not based on the assumption of quasi-static behavior, a matter treated
in Section V.

In order to complete the calculation of the response function, even
with the model of uniform combustion and quasi~static behavior of the
gas phase, some further approximations are required. There are three
principal ones used in Ref. 3 and discussed here in Section IV-A:

1. Combustion in the gas phase begins immediately at the solid-
gas interface

2. The flame zone is relatively thick, in a sense made precise
in Seect . IV-A

3. The fluctuations of energy release in the gas phase are uni-
form and hence always in phase with the pressure

It is generally true that the flame thickness, xf, measured from the
interface to the outer boundary, can be assumed to be large, in the sense
that exp{mc xf/kg) is very much greater than unity. This implies (Eq. 58
and also remarks following Eq. 164) that a relatively small fractiom of
the heat released in the gas phase is transferred to the solid by heat
conduction. It also implies, as remarks following Eq. 58 clarify, that
if in addition one assumes that combustion begins at the surface, the
results are in practice restricted to exothermic surface reactions (i.e.,
the parameter His positive). It appears that endothermic reactions can
be included in this model only if simultaneously one allows the combus-
tioa zone to be displaced from the surface.

In Section IV~C, a displaced combustion zone is treated, although
an approximation used in Eq. 78 implies that the results are still valid
only for H > 0. Nevertheless, the results indicate that significant
numerical differences exist between the calculations of Ref. 2 and those
for the more realistic case of a displaced combustion zone. The dis-
tinction is interpreted by means of the parameter H in Eq. 85. Use of
the results of Ref. 2 in the interpretation of data can therefore be
done only with (possibly cerious) reservations.

The fourth approximation listed above is examined briefly in
Section IV~-E. It 1s supposed that part of the fluctuation of reaction
rate is in phase with the flame temperature. The final response func-
tion appears as Eq. 106, and once again the results can be interpreted
in terms of H, Eq. 111. This crude approech indicates that the influ-
ence of temperature dependence of the reaction rate is less significant
than that of a displaced combustion zone.

Mot N e i e o 7 AR B AR 5 b b o e ol S s\ e S 4
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All of thess resulty for the response function necessarily have
the same form, Eq. 71. But asnalysis of data in Ref. 7 indicates that
this fo m--iervespective of the particular formula used for B-~does not
acconandate 21 data. Hence, it ia nacessary to alter one or more of
the basic assumptions enumerated earlier. In Section V, the assumption
of quesi-static behsvior is relaxed--weakly. An expansion in the rele-
vant frequency parameter (flc, Eq. 122) is carried out to first order, so
the results are restricted to relatively low frequencies. For simpli-
city, the calculations are based on the model of uniform combustion
extending from the solid surface. With & number of fairly reasonable
numerical approiimations, the response function eventually takes the
form shown in Eq. 165. The major correction associated with nonquasi-
static behavior gppears in the imaginary part of the response function
sad can be numerically significant. This conclusion appears to be con-
sistent with observations, hut satisfactory proof will be found only by
use of Eq. 165 to anslyze data in a manner such as that used, for
exanple, in the work of Ref. 7.

There evidentiy remain a number of significant problems in respect
to the ungteady behavior of a burning solid. Modeling of the combustion
zone in the gas phase is still in a very primitive state, and this is
probably the severest rastriction con all the special cases treated.
Mozeovexr, even for the simple model used as 8 basis here, there are
several permutations not yet considered: for example, nonlinear behavior
i3 en important aspect which has not been coverad here; the effect of a
displaced combustion zome on nonquasi-static and of course on nonlinear
results has nct been treated; and the combination of norquasi~-static end
nonlinear behavior is bound to be of interest, particularly for propel-
lants exhibiting thick combustion zones. In any case. the pcssibilities
for obtaining analytical results relatively easily should nct be too
quickly passed over in favor of specific numerical calculations.
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II. SOLID PHASE AND INTERFACIAL MATCHING CONDITIONS

Sirce only the gas phase /i1l differ from most earlier works, the
other pieces of the problem will be coverad first and but briefly; ex-
parded presentations msy be found in Ref. 1 and 8 and sources cited
there. The model used is sketched in Fig. 1, with coordinate system
chosen so that the origin is fixed always to the mean position of the
burning surface; the latter fluctuates with amplitude xg. In this pic-
ture, then, cold solid flows in from the left with speed equal to ?}2
the average linear burning rate, and the unsteadv heat conduction
(energy) equation for the solid is

2
9T - 9T e T
Pe ¢ 3¢ + o TC 3y k axz (1)

For the case of small amplitude motions, the temperature is split into
its average value (independent of time) T, and the fluctuation T';
T = T(x) + T'(x,t). The corresponding solutions of Eq. 1 are

-1 )/ (T,-T) = efe (2)
T' = T’ elec 3)

where T, is the temperature of the cold propellant, T is the average
surface temperature, Té is the temperature fluctLation evaluated at
x=E =0, and §, = ¥x/c., k; being the thermal diffusivity, k. =
kp/occ. The complex function, A, of dimensionless frequency Q =
kcw/T? has real and imaginary parts given by

1 2.% b
xra3{1+7-i[(1+169) + 113} (4)

————
This definition of the coordinate system will be altered slightly
in Section V-B.
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-l 23 k%
Ay 27,-2-[<1+1¢sn) 1} (5)

It will be necessary later to match the solutions for the solid and
gas rhases at the interface, and in particular the fluctuations of tem~
perature and heat transfer at x = xg must be computed. For small rotions

of the surface, these can be expanded in Taylor series about the origin,
and to first order

T'aT' 4+ x (ﬂi) (6)
8 ot g8 \dx o

(3§;) .( g;) + xs (dz‘g) M
st ot dx

ot

vhere ( )go4, ( )g, vefer to the gas (+) or solid (-) side of the origin
(o) »r interface is). By use of Eq. 2, 3, €, and 7, one can then find
the formula for the fluctuation of heat iransfer from the interface to

the solid,
T ~T\ m'
T’ .= ' 8 ¢\ 's_
(%), - e (59 %] ®

after Eq. 13, deduced below, is inserted for xg. As shown later in
Section VI the same result can be found in a different way.

There gre two important matchiing conditions which can be deduced by
applying conservation of mass and energy to a small control volume in-
cluding the interface:

pe (B %) =p  (u - k) €

-4 g8 S8

. aT - s oT
pc (r - xs)hs- + (fg ax)s+ pg(ug xs)hs+ + (kc ax)s_ (10)

The steady-state form of Eq. 9 is simply an identity, while that for
Eq. 10, after use of £q. 2, is

( . %}.)a =% [c (’fs ~T) + le (11)
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vhere Lg = hgy - h,. 18 the latent heat for the surface reaction, lLg
being positive for an endothermic reac:ion.

The fluctuacing part of Ea. 9 gives a formula for the surface oscil-
lations:

(12)

or, for harmonic oscillations, xg ~ eth, with w ¢ 0, and pgs P << 1,

p X m

¢ 8 1 s
il — (13)
The unsteady part of the energy balance in Zg. 10 leads to
51! - 3T 'L + 7 (¢ ~ '
' (Fg ax )s+ (kc ax )s_ tmg Lgtm (cp ) Tq 14)

and with Eq. 8,

¢
-]

Finally, an assumption must be msde in respect to the rate of con-
version of solid to gas at the interface. It is common practice to use
a8 pyrolysis law of the Arrhenius form

L5
-3

|

L4

-
o~

= [ v (S c et L
,8+-mc LATS +(c -]) Ts {—T”'*-é-—}—f- (15)

n o -E /R T
s
m, = B.p T e 85 08 (16)

for which the fluctuation in mass flux is given by

ms' Ts' o'
?-ET—.S—'l-msp (17)

vhere E = a_ + Es/R;T;. Combination of Eq. 15 and 17 yields

T c T '
1 T’ A} '8 LA 8
. =k (=] =+ 2+|-L-1+ =
: lc:'l‘s [3 (ax )ﬁ ( x) Tg (c 1 - TJ? Tg
1-T/7
, +n (L+ xc 8)B-'-- (18)
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vhere A = (I-Tclf,) (ag * E,/Ro’fs) is the parameter mentioned in the
introduction and L = T;/cT,. This completes the information required of .
the solid and interface regioms.
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III. STEADY-STATE SOLUTION FOR THE GAS PHASE
WITH UNIFORMLY DISTRIBUTED COMBUSTION

The solution to the problem was summarized in Ref. 3, but not {n a
form immediately suitablzs to the analysis of unsteady behavior. Thus,
a more complete discussion i8 necessary here. As formulated in both
Ref. 2 and 3, the analysis of the burning solid is carried out within
a wholly "thermal theory'--the influence of diffusion appears nowhere
explicitly. The conditions under which this idealized limit is attained
are discussed in Ref. 8 and in the literature of flame theory; the pres-
sure may be taken to be uniform in space and the problem then consists
in solution of the energy equation for the gas phase

4T d( arh .

I‘l!cp ix " Ix kg a—x-/ - prge (1%)

where, to conform with the notation of Ref. 2, Qy is the heat release
per unit mass and ¢ is the reaction rate (sec~!). For convenience, and
also in zccord with Ref. 2, kg and cp will be taken to be constant;
however (contrary to Ref. 2), c, # c. The calculations to be carried
out here are based on the case when p ¢ = w is constant for Xy X < X¢
and zero elsewhere, as shown in Fig. i.

At the downstream side of the flame (x > x¢), the boundary con-
ditions are '

T=T

f
(x > xf)
% -0 (20a,b)

and at the surface, Eq. 11 holds: note that in this section T and T are
identical, as are m and W since only strict steady conditions are con-
sidered. It szhould be noted that Lg here is -Qg of Ref. 2, and x here

is -x of Ref. 2. For the purposes of this section, then, the boundary
condition Eq. 11 can be written

(! %)ﬁ =m[c (T, - T) - q,] (21)
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Energy conservation appliad to the gas phase only gives

dT

Thus, Eq. 21 and 22 lead to
m (h, - h) =m[c (T, -T) - Q] (23)

Now, by definition of the enthalpy function,

T

£ T

8
c  ,dT -h _ -~ I c__ dT
rf 8T ps

T
r r

hf-hﬁ-ler+l
T

where hg,, hg, are the enthalpies of formation at the reference condi-
tions Ty and some pressure which may be taken to be the pressure at

which the burning occurs. For constant specific heats, and cpf = Cpgs
the definition therefore yields

- = - { -
he - h Q + c, (Te 're) (24)

in which the heat release Q¢ in the gas phase is by definition Hg, - hfr
and 18 the msame as Qs in the energy equation, Eq. 19, The overall
energy balance for the gas phase can he written, by combining Eq. 22 and
24, as

(s -&)ﬂ =m [Qf =< (Tf - Ts)] (25)

The last equation is, of course, simply an expression for the over-
all energy balance of the process; a simple limiting form arises when
¢p = ¢, 8o that when equated, Eq. 21 and 25 give

ep (Tg = T) = Qg +Q (26)

vhich 1is praccically obvious, since Q¢ + Qg 1is the net heat release due
to chemical reactions. But the point of this exercise is to compare
Eq. 25 with the corresponding expression deduced directly from the
energy Eq. 19. Integrate that equation from the surface to x + »
dovnstream of the flame and apply the boundary conditions Eq. 20a,b:

11
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o cp (Tf - 1.) + (x' dx)o+ Qf ps € dx 27)

0

Equation 27 is consistent with Eq. 25 only if the reaction rate satisfies
the normalization condition

pg tdx = n (28)

0

In Ref. 3 it was shown that this condition is redundant for the case of
a very thin flame front (combustion concentrated at a plane)~-it gives
no information that cannot be obtained by other means. This is also
true for the case of uniform combustion. However, it is a convenient
relation to hav2 at hand, particularly for the problem of quasi-static
burning in response to pressure changes. It is worthwhile noting that
Eq. 28 also leads directly to a relation which was introduced on an
approximation i Ref. 2 but which {8 in fact exact. For suppose that
the combustion occurs only in the region x4 < x < x¢ and is uniform
there; then Eq. 28 gives

os € (xf - xi) = (29)

In the extreme case x, = o,

wip é= (30)

g £

xla

a relationship which was adopted as an approximation just before Eq. 8
of Ref. 2.

As a convenience3 for integrating Eq. 19, it is helpfui to define
a new ~arisble 7 (called £ in Ref. 3):

mwc
irz-dx
=e B (21)
so that
mc
dx dx 4t k.8 dzg

———

And only a convenience--the steps leading to Eq. 32 are obviously
unnecessary, but using { instead of x does simplify writing subsequent
manipulations,

12
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With this transformation, the left-hand side of Eq. 19 is

2
:cl ﬂ-?f.aci.(mc ;d_T :_(mcp) czdz‘l‘
ks - dg ko ta Mt ” k ac?

and the whole equation can be written
= )2 (33)
with 1 = T/Tg, and the eigenvalue A2 is defined as

22 = !_‘:g.cfg,r_: (34)

Since w = p_é is here taken to be nonzero omly in the interval
x4 < x < . where it is constant, A% is also nonzero and constant only
in the same region. Thus, Eq. 33 is easily integrated to give dr/df and
t as follows:

dt
E ¢y Co<rex (35)
g8 — > =71

T = c1 ; + c2 (36)
dr A2

T: = 7 + c, {37)

gLt zse
T=A2fnc+c, g+c (38)
3 4
ar
dz 5

T = c5 T+ c6

There are eight conditions to be satisfied: the boundary values
T = Tg and Eq. 21 at the surface, Eq. 20a,b downstream of the flame
{x + =), and continuity of temperature aud heat transfer at the bound-
aries of the flame, x = x; and x = xg. As part of the given inforamation
defining the problem, w and an "ignition temperature,"” Ty, at which

13
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combustion begins, must be specified. From Ty, x4, or {j can be calcu-
luted from Eq. 36. There are therefore eight quautities determined

by the eight conditions listed above: the six constants of 1ntegration,
€1» «:+, Cg, the flame thickness xf, and finally the eigenvalue A2. The
end result is an expression for A2 which can be solved to give the mass
flux or linmar burning rate as a function of pressure and other vars-
ables in the problem.

MNP TR TR O ST
L I3 .

SERER VTN A -
R ———.

A direct way to apply the various conditions is to find the temper-
ature profiles fer the upstream and downstream sides of x = x; and match
there. PFirst, the surface corndition on heat transfer, Eq. 21, is in the
normalized veriables:

Rl AL B a b . i B el

dt
o (&) -2 A CORLARLR 40

The correct values are taken by the profile Eq. 35-36 at the surface if

! c dr
: 1" d;

cpm T, -t (jz) 1)

) 80 that between the interface and the upstream adge of the flame,

A TR (175 YPTT FRRY | (TS OT ar g
l

S SR A

,. [ dz
i T, (-1 \3;)s+ G, ¢ %) (42)

where (dt/d()e+ is given by Eq. 40.

The conditions Eq. 20a,b far dowmstream require

cg ™ 0
(43a,b)
j % = Tt
§ Hence, continuity of temperature and heat transfer at [ = ;¢ are
o ] satisfied if in Eq. 38 and 39
SR ]
| ? 37T
é : (442,b)
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and the temperature profile in the flame zone is

14 4
T =T -Azln._g-l-—i (; ici;) (65)
£ 3 3 1 £

which must be matched to Eq. 42 at { = f4. Continuity of temperature
there gives )

Te =T

£° 7
of

A2 = T
Z -1~ cf)

(46)
£n

and continuity of heat transfer implies

T T
A2 = v_f__i_ (i‘.\ 47)
g7 B\

It is easily verified, when due account is taken of the definitiomns
involved, that Eq. 47 is exactly Eq. 7 of Ref. 2.

For completeness, it may be noted that the normalization condition,
Eq. 29, in dimensionless variables is

(Qf/c T.)

2
S Y] 48

Any two of Eq. 46-48 give an equation which must be solved to find ;f:

14 c T 4
Zo1e (22 (&) () 49
21 £ e+ \%1
Q
(Observe for use in Eq. 46 that according to Eq. 25, Te =Ty =2 g
- (dt/dp) ) ps

Numerical calculation of the steady~state problem proceeds as
fcllows:

(1) The quantities T¢, Qg, Qf are assumed known by thermodynamics
or otherwise, while the temperature of the cold propellant T, can be
chosen as desired. The reaction rate w must be specified as a function,
say, of pressure and average temperature.

(2) Choose a value for Tg; consider the case ng = 0 so that m can
be computed from the pyrolysis law, Eq. 16

15
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s« =-E/RT
s 8 To"8
a= B. T‘ e

where Bg, Sy E. are assumed known.

(3) In the purely steady-state problem, the interface can be fixed

at the origin, 80 x; = 0 and §, = 1; (dv/dg)g, can then be computed from
Eq. 40 with g = 1:

dt 1l
(az)a* = E;T; [C(TS-TC) - QB] (50) %

(4) The position of the immer edge of the flame follows from the
specified value of T; used in Eq. 42, again with Zg = 1:

4

ri B Ts

‘i- l*m (51) .

(5) The position of the outer edge of the flame can be found from
the transcendental Eq. 49. -

(6) The value of the eigenvalue can then be calculated from, say,

Eq. 48:

PO Y S,

Az Em.ml
mchsz ;f c:l.

from which, since m was already calculated in step (2), a number is
found for w. Since the reaction rate is generally a function of pres- ;
sure (specified), this last step gives the pressure. :

Thus, the net result is the variation of mass flux or linear burn- 3
ing rate with pressure. If ng ¥ 0 in Eq. 16, then an iterative calcu- 5
lation is required: a value of pressure must be assumed initially to
compute m from the pyrolysis law. The value computed in step (6) must
then be compared with the value assumed in step (1) and the calculations
repeated until satisfactery agreement {s achieved.

This is an interesting problem to complete, for comparison with ]
experimental data for the burning of composite propellants: a thorough
discussion, with numerical results, is being prepared. The point of
including the discussion here is to clarify just what must be known to .
solve the probler, and just what can be calculated, for a clear under-
standing of steady-state burning in this respect is helpful in analysis
of the quasi-static behavior.

T
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IV. QUASI-STATIC BEHAVIOR OF THE GAS PHASE

When the pressure varies in time, but is still assumed to be uni-
form in space, the equations of motion for the gas phase are

ap am -

ot + ox 0 (52)
oT aT _ 3 oT p

pc1:o og + lm:p 9x  9x (kg ax) + ot + prgé (53)

It 1s & formal implication of the physical assumption of quasi-static
behavior that the time derivatives in the differential equations of
motion can be neglected. This is based on the idea (perhaps supported,
but not necessarily wholly 3justified, by order of magnitude estimates)
that the processes within the gas phase respond essentially instan-
taneously to changes of presaure and of boundary values--temperature,
heat transfer, and positions of the boundaries.

The origin of the time dependence is of course the pressure field
external to the flame, but the assumption of instantaneous response
does not mean that other variables in the problem change in phase with
the pressure. In fact, a significant lag is introduced by the behavior
of the thermal wave in the solid; this influences the behavior of the
gas phase mainly through the heat transfer from the interface to the
solid, expressed in Eq. 8. But in consequence, the fluctuations of
surface temperature, flame temperature, flame thickness, and reaction
rate also cannot generally take place in phase with the pressure except
in the limit w = 0. Nevertheless, the solutiorn to the strictly steady-
state solution can still be used 1f the influence of fluctuations is
properly accounted for.

An example may serve to clarify what is meant by "quasi-static"
when time lags are present. Consider the simple case of heat conduc-
tion between two planes at different temperatures T,, T, and separated
by a distance L. The temperature profile in the steady state is linear,

T(x) = Ty + (Tp-Ty) T (54)
where the temperature T = T} at x = 0. The assumption of quasi-static

17
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behavior when small fluctuation T}', T3', L' occur implies that the
fluctuation of the local temperature profile can be calculated simply
by computing its perturbation according to the steady-state solution
Eq. 54, Vrite T = T+ 1, Ty =Ty + T1', etc., and since the barred
quantities obey Eq. 54, one finds easiiy a formula for T':

T'(x) = Tl

] ' 1y X 4 - X L'

+ (T -7 - (T - T)) = (i:) (55)
The total temperature profile T = T + T' as well as T and T' separately
are still linear functions of the distance from the colder (T;) plate
but the ends of the profile need not jiggle back and forth in phase.

It is entirely permissible, for example, that T;' = Tl cos wt and Tz' =
cos (wt-¢) so that the fluctuation in temperature of the hotter
pi&te lags in time by the constant angle ¢. Moreover, ?1 ’ Tz could be

specified as functions of the frequency, w. Similar statements apply

to the variable separation of the planes. The point is that the steady-
state solution fixes the functional form of the solution--in this case
linear--while phase lags and dependence on frequency can be introduced
through the boundary values. A truly nonsteady calculation would of
course lead to a thermal wave in the region between tbe planes. The
distinction between these cases is illustrated in Fig. 2.

o L (0] L
Quasi - Static Temperature Profiie
Behavior with Thermal Wave

Mecn Temperature Profile

FIG. 2. An Illustration of the Difference Between Qussi-Static
and Truly Unsteady Temperature Profiles in a Solid Slab.
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The steady-state solution for the gas phase found in the preceding
section can be handled in exactly the same way. Although the form of
the profile is fixed by Eq. 42 and 45 within the gas phase, the effect
of the thermal wave in the solid is to force both a phase lag and a de-
pendence on frequency for practically all variables in the problem, In
particular, and this point will be mentioned again, the fluctuation of
*he flame thickness x; forces a fluctuation in the ratio w/m = 1/x¢
wi.ich is not in phase with the pressure.

It is perhaps best to begin the following manipulations by summar-
iz the results already obtained and required here. What is needed is
a : .nula for the fluctuation of heat transfer from the gas phase to the
int' rface, for use in the energy matching condition, Eq. 18. If
kg 97/3x)g4 is expressed as a linear combination of contributions due
tomg', Tg', and p', then with Eq. 17, there is sufficient information
to give a formula for the response ratio mg'/p'. Thus, one already has

m.' T' '
— -4 £, 2 an
5 = = -
1 Tc/Ts T P
and
T'! c
]
S b, (o) o)
2T X /st T ¢
8 8
Ts' Tc 1 !
— + n (l - :)(-A- - H) E (18)
T 8 T, P

For easier comparison with Ref. 2, L = f;/cig has been replaced by
H = Qs/c (T8 - Tc) =-L/1 - Tc/TS).

When the assumption of quasi-static behavior is made, there are two
ways of arriving at a formula for kg(aT'/ax)s+, both giving the same
result. One way is to linearize the two equations, Eq. 52 and 53, by
writing T = T + T' and solving for the fluctuations with the time deriva-
tives ignored. This, as shown later in Section V, is really the first
term of an expansion in powers of a frequency parameter. The second way
is simply to linearize the steady-state solution, as done above for heat
flow between two plates. The equivalence of these two methods is readily
demonstrated and is shown below.

A. Quasi-Static Results from the Steady-Scate Solution

This means of finding the quasi-static formulas has been widely
used, sometimes incorrectly; any steady-state solution for the gas phase

19




can be used as a basis. The steady-state problem of Section III from
wvhich the quasi-static formula for (k8 3T'/3x) g4+ may be found has yielded
the following:

(1) The temperature profile

- - dt
e+ (-2 (dc) (kg sty (42)
s+
Tet_ - A2 |fn fﬂ - 1-3% (g, <t <t.) (45)
: f [4 ;f {=2="f
. 2 _ 2 2=
(2) Three expressions for the eigenvalue A< = kg wQg/m cp Tg
T, -1
A2 = £ 1 - (46)
E ‘s £ z
h — -{1.-—= .
L % %y
L.t -
£°1 dt
A2 o =t (—) 47
| Bg = B \db/gy
; A2 = 1 (48)
i Tz /)
§

T (3) A transcendental equation for the flame thickness, found by
: equating Eq. 47 and 48

4 '3

£ (m) (f)
—n ] 4+ 14 [n — (49)
c:l dz s+ £ ci

(4) The overall energy balance for the gas phase Eq. 25

[TV VA

dT
K, (;;)“ - mlQg - ¢ (1, - 1,)] (25)

which in dimensionrless variables is ;

: dt ’
: | , Cs (d;)& 1- (Tf - ‘!3) (258)

{
!
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(5) A normalization conditions, Eq. 29, on the reaction rate w,
which 1s implied by Eqg. 25 and which, rewritten, is Eq. 48:

m
WR—— (29)
Xe = %4

Not all of the above are independent results: by use of the expressions
for the temperature profile and the energy balance Eq. 25a, any two of
the formulas for the eigenvalue can be derived from the third. The model
has been solved exactly, but numerical results cannot be obtained until
the reaction rate w is independently specified.

The fluctuation of heat transfer is found by linearizing in the
usual way: T= T+ T', m = m + m', etc. A question arises whether the
values indicated as ( )g4+ here are really those at the interface or
whether, as for the solution, Eq. 3, to the solid phase, they represent
values on x = 0, from which the correct values at the interface must be
found by using the linearized boundary conditions Eq. 6 and 7. The
answer is that within the quasi-static assumption, the terms involving
xg must be ignored. The reason for this is that in the limit w = O,
the fluctuating part, Xg, of the surface mstion is zero, so that xg is
a constant which, by free choice of the orizin, may be taken to te zero.
In other words, it is inappropriate to use the formula xg = iwxg and
hence in the limit w = 0, x5 cannot be found from Eq. 13. Incidentally,
it is easily verified that the correct quasi-static limit (i.e., w = 0)
does follow from, for example, Eq. 18 for the solid phase, even though
that relation involves use of Eq. 13. The reason for this is that the
material of the solid phase is assumed to move always at the uniform
speed T = m/p.. In the treatment of the gas phase, fluctuations of thke
speed of the gas are necessarily included, and hence neglect of the
terms in x; must be enforced as a separate statement, part of the quasi-
static analysis. A more careful handling of the surface boundary con-
ditions is required if the assumption of quasi-static behavior is re-
laxed, or if nonharmonic changes of pressure are considered. The point
here is that so far as periodic quasi-static variations are concerned,
values denoted by ( ),4 are identical with values ( ) 4. More detailed
considerations appear in Section V.

To find an expression for (dT'/dx)s+, consider Eq. 47, with the
definition of A2:

(g) . L(QE) v (_1__.1...\
dg st mcst cs dx st mchsz Ci Cf

which gives, since ;s « 1 for X, = 0,

21
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Q. k \
(k o) .ot (.;..-4..) ¥ (56)
s s+ P i ;f

As alvready remarked, this can be found by direct integration of the
energy equation and appears as Eq. 7 of Ref. 2 and Eq. 837 below. Before
considering refinements, the simple case of uniform combuetion beginning
at the surface will be discussed, the problem handled in Ref. 2; thus,
zg = 1. Moreover, the approximation that gy >> 1 will be introduced at
this point, and used in almost all the remaining discussion. Hence,

Eq. 56 becomes

\ Q.k
- § z w-fBl¥
(\"g dx cp (m) (57

A useful interpretation of "large T¢" follows from Eq. 47 and 48,
which show that for large Zg,

k
(dc s+ ;cp-'fs dx s+ ;f

and hence the heat transfer to the solid from the gas is small compared
to the znergy transferred by convection. Moreover, with Eq. 40, this
relation becomes

T k
£ {1.-£ - H) = e B
p (l = )(1 H) E‘;:f- =5 (58)
P °s p £

where B = Qg/c (Tg-T,) will appear as an important parameter in the final
results for tie vesponse function. For practical cases, To/Tg ~ 1/3, so
that one must .10ose H near unity to be consistent with the approximation
that r: is large. However, this is not especially troublesome, providing

H > 0, since Iy can be considered large whza fnf 5 2. Then since

cp/e ~ 1, 1-B ~ {1/2)/(2/3) = Q.75 and H = 0.25; in other words, the approx~-
imation ¢ >> 1 accommodates positive values of H in the range 0.25 ~ 1.

& rough numerical estimate ind;gites that L¢ may indeed be quite
large. Since We, Xp/ky = (pocp/ky) TXp = (cpkc/cky) Txg/xc, and
cpkclckg = 1, one has Lg ~ exp (;;é/‘c)a A representative value of x.
12 103 cm?/sec and for r = 1 em/sec, Tp - exp {1000 Eg) wi;h‘§f in

centimeters. Even for ;} as unrealistically small as 20 microns = 0.002
centimeters, [y -~ e4,

22
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1f, on the other hand, B is nagstive, then instead of Eq. 58 omne
has
c T 1 11
. 1-';' QA+ (H))e————| = (58a)
P s Ialge/o )N, g

and it is apparent that H < 0 and -large values of 7§ are nct compatible
unless §j is also fairly larze. The treatment of Ref. 2 is therefore
restricted to positive values of H (i.e., exothermic surface reactions)

because the assumptions are made that [f is large and that gy =~ 1 (1.e.,
combustion begins at the surface).

The quasi-static formula for the fluctuation of heat transfer is
found simply by linearizing, Eq. 57:

(), -5z 2
g 9x cpm

w m
— — 2 w! o'
rnme T Aé{—-— (59)
p s W m
where, as usual, A? = Q¢ ko w/(c Nele Ts) (£n cf) by Eq. 48.
The fluctuation of mass flux is elatea to ﬁ r2ssure and surface

temperature fluctuations by the linearized pyrolysis law, Eq. 17.

A second formula for the heat transfer at the surface may be deduced
by linearizing Eq. 25 for the overall energy balance of the gas phase:

oT ! ' = - - [] "
( . 3;) = m [Qf - cp (Tf - Ts)] - mcp (Tf - Ts y (60)

As later calculations will show, this relationship is used to compute the

fluctuations of flame temperature, Tg¢', once the remainder of the problem
has been soived.

The preliminary calculations are completed by finding a formula for
the fluctuation, w', of reactian rate. First, following Ref, 2, it may
be most simply supposed that w' is the fluctuation of the steady-state
reaction rate w(p) which was computed in the work in the following way.
The averapgc heat transfer from the solid to the gas is given by the
results above as Eq. 58. But from the matching condition at the inter-
face and the temperature distribution in the solid Eq. 11,

(ks %%) =n [c ('l‘B - Tc) - Qs]
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Equating these exprcssions gives

Q. k
£ 2
"c';""’ =a" [c (T, - T) - Q] (61)

It is supposed that the right-hand side can be expressed as a function
of pressure only. This is accomplished by assuming that the linear
burairg rate may be approximated by the law m = ap® and that an approxi-
mation to the Arrhenius law is

n
= b('l.‘8 - 'l‘c)s p B 62)*

g 1/s
so that T _-T_ = (p a/b)""'"; hence, Eq. 61 reads

- QSJ (63)

In this way w is given by Eq. 63 as a function of pressure only, and has
been so constructed as to satisfy the equations for steady burning for
the case m = ap" and a pyrolysis law approximated by Eq. 62.

The assumption 16 now made that even during oscillations, the re-
action rate is given instantaneously by the same function of pressure,
so that v' 1s computed by setting p = p + p' in Eq. 63 and retaining
only terms linear in p'. This implies that the local fluctuation of

energy release, Qew', is also always in phase with the pressure fluctu-
ations.

Now the temperature fluctuations are not in phase with the pressure.
For example, the fluctuation of temperature at the edge of the flame,
Tg¢', follows from Eq. 60:

v | Q !
' v .0 | f_ =5 _F T T
Tf = '].'8 + = [c (Tf Ts)} = (kg ax)

vhere (k 3T'/8x)8+ is given here by Eq. 59. Thus, if the local reaction
rate is §t all sensitive to temperature, there must be a part of w' which
(contrary to the assumptions used in Ref. 2 and expressed above) is not
in phase with pressure oscillations. Thc result that w' is entirely in

* Note that ng = 0 in Ref. 2.
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phase with pressure is a consequence of two assumptions: (1) that the
reaction rate is everywhere in the gas phase a function of pressure
only, and {2) quasi-statie behavior.

Even though one mav represent the steady~state global combustion
process as a function of pressure, uniform in space, this does not mesn
that locally, within the gas-phare flame, one can always simply ignore
other variables. In the analysis, the influences of those variables
are smeared out in the steady state to give the uniform functiom of
pressure w{p) derived above. In fact, it may be better to regard the
calculation as a means of relating the overall rate of energy release,
Qgwxg, to the linear burning rute. Treatment of this as a fuunction of
pressire only amounts tc finding whar the (perhaps fictitisus} uniform
function of pressure would have to be in order to match an chserved
burning rate, which is here appreximated as apl.

The view that the reaction rate depends almost entirely or prassure
is based op the idea that the overall burning rate is diffusiocn con~
trolled. Nevertheless, locally the homogeneous gas-phase reacticns
must respond to temperature changes, and of course the process of diffu-
sion is itself dependent on temperature. Morecver, under unsteady con-
ditions, there are likely to be fluctuations of mixture ratio. Both of
these will affect the local reaction rate and will therefore contribute
pleces tn w' which are not in phase with the pressure change, even
though the processes are treated in a quasi-sztatic manner. Such a
possibility is not strictly c.msistent with the assumption that the re-
action rate is uniform in spsce. That assumption necessarily precludes
consideration of dependence of w onr variables which exhibit spatial
variations.

Thus, one concludes that if one requires the fluctuating, az well
as the steady-state, reaction rate tc be uniform in space, cne is seri-
ously restricted; the energy release iz in phase with the pressure. In
fact, that conclusion holds even if the assumption of quasi-static
behavior i8 relaxed as shown in Section V. The calcuiation of Ref. 2
therefore cannot be usefully extended without altering certain approxi-
mations on which that work is based.

In summary, the three main approximations which gqualify the results
of Ref. 2 are:

(1) That combustion in the gas phase begins immediately at the
interface

(2) That the flame zone is relatively thick, thus, as the remarks
following Eq. 38a show, excluding consideration of epdothermic surface
reactions unless approximation (1) is relaxed

(3) That the fluctuations ¢f energy reiease are uniform in the gas
phase and hence always in phase witi the pressure fluctuations.

»o
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The analysis of Ref. 2 is {incomplete so that the approximation (1) could
not be corrected; a procedure for doing so is developed below in Section
IV-C. Correction of (2) to include endothermic reactions can be done
without essential difficulty, but it is lengthy and will not be included
here. Alternatives to the approximation (3) are more difficult to con-
struct but may be more important than relaxation of (1). Some remarks
o3 this question are given in Section IV-D.

1f Eq. €3 is used, the fluctuation of reaction rate is

_2(1 )...:..,WL (64)
-T /T p

where

P (65)

¢ (1-n /a)
W=n [2(1-}1)4»22 ——i-—]

4

and H = § /c(Ts-Tc) The factor c,/c in ¢ kﬂ&vﬂs)/s arises from the
fluctuation of Qg, Qs = -(cp-—c)'l‘s , which appeared alsc in Eq. 1l4.

B. Calculation of the Response Function
for the Simplest Case

Before further consideratinn of the app.oximations noted above, it
is useful to compute the response function for the simplest case, thereby
showing most clearly hew the various pieces of the problem fit together.
For this purpose, all that is required is contained in Eq. 17, 18, 59,
and 64. Substitution of Eq. 64 into Eq. 59 gives what amounts to the
net result of analysis of the gas phase:

! T c
S a1 -¢)yel_ 2 o'
— (ax) (1 _) w; 2 = (66)

meT
s

Now substitutica of this formula into the energy matching Eq. 18, and
use of the pyrolysis law, Eq. 17, to eliminate T;'/Tg, ieads to

c \
- L2 -3

— <, T
p'/p 2+ 5:- -EEAZ-HA-O-EZ—I

(67)
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Now for the assumed form of the mean burning rate, m = apn. the limiting
value of the above ratioc for w = 0 must be n (everytbing changes in phase
with the pressure). Hence, since A + 1, this condition requires

Cc [ [
- P a2 4 P o ]
n[A(lH)+c EA +c] Aw+c n, (68)

and with 4 given by Eq. 65,

oy 2y s A Safy s
= EA + 2 (l-;—)-A(l-H)'*;— . (1-;—)
That this is identically satisfied can be shown in the following way.
First. the index s (called m(!) in Ref. 2) is in fact exactly equal to

the more commonly used A. To see this, write the linearized form of the
pyrolysis law, Eq. 62,

t T' '
— 2
T, T, tUeh

BllB

By comparison with Eq. 17, obviously s = E(1-T /Ts) = A, Thus, Eq. 68
requires A(1-H) = c EA? /c. But this is merely the mean energy balance
at the surface, written in a slightlv obscure form. For with Eq. 57
substituted into Eq. 11 with Ls' -Qg, one has

Q k W _
. . =me (T_-T) (1-H)

and by use of the definitions of A and A2, multiplication by E gives

c
E‘P' EAZ = A (7-H) (69)

Thus, Eq. 67 has the correct limit "built-in"; this will always be the
case if corxrect use 18 made of the steady-state energy balance (see

Ref. 5, Eq. 40, for example). This formula can be put into the standard
form suggested in Ref. 1 by defining

=}
n‘un

c
+-£2 8. -
¢ An 2(1-H) +

w
::l::

1
A (70)
and fn view of Eq. 68, Eq. 67 can be written
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wjsg MB¥am G -1
PP A -r-:*-- (1+A) + AB

(71)

It is clear, therefore. that there are only two significant parameters,
A and B, other than xclr in A and, of course, n. Note also that it is
really H that is changed to change B, and that by the steady-state energy
balance at the surface, Eq. 69, 1-H can alsc “»@ interpreted as a combin-
ation of gas phase properties:

€l

c Q. k
a-f 1 L& (72)
lvrc/Ts (mcp) Ts

The limit H = 1 probably cannot be reached in practical cases because
this implies, ac:tording to Eg. 11, that no heat is transferred from the
gas to the solid--tke heating of the solid is then due entirely to the
exothermic reaction at the surface: Tg = T¢ + Qs/c. Although this does
not violate conservation of energy, it is an unlikely dynamical state.
The fact that Eq. 72 requires m + » is not significant because that re-
sult explicitly requires a nonzero value of heat transfer from the gas
to the solid. Negative values of H (endothermic surface reactions) are
of course accommodated by Eq. 72.

C. Combustion Zone Not Extending to the Surface

Since the assumption that the gas begins burning immediately upon
issuing from the surface appears to be a serious restriction, it is use-
ful to examine a simple way of avoiding it. Suppose, for simplicity,
that the ratio of the mean position of the inner edge to that of the
outer edge is a constant, B : Xy = Bxg. Then [y = b and ‘i'/—i
B(Cf'/cf) If gel-3 5> 1 still then Eq. 57 is replaced by

Q
4T f l w
k L 2 CfB (73)
and the quasi-static formula, Eq. 59, is replaced by
' ' g.'
(k' -g%) - B, T, A2 _—1-(2— B g :f—-) (74)
s+ LeB \w m Le
The argument leading to Eq. 63 now provides
1/s
Q k 2 n-n
e die B (ap" a s}
( ) )w-cf (ap) [c(bp Qg (75)
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in which {f must be expressed as a function of pressure from the steady-
gtate problem (see Eq. 78 below).

If one follows the argument used in Ref. 2 and in Section IV-B,
only the fluctuation w' in Eq. 74 should be computed from the steady-
state relation w(p) given by Eq. 75. Observe that if one assumes that
the flame thickness also responds instantaneously and in phase with the
pressure, then w/{¢" in Eq. 73 coula be linearized by use of Eq. 75 and
the final result for the response function would be the same as Eq. 71.

Thus, in Eq. 74, g¢' must be replaced by use of the quasi-static linear-
ization of Eq. 29:

c m2
W —= = P 1
Xe~ng k8 (mcp xf)- (mcp xi)
k k
g g
) mre, 1
ks fa(z /t))
2
m ¢ 1
Tk TBhg
which gives
g’ ' '
_Tf_.gn‘gf[gg__g.] (76)
Cf m w
so that Eq. 74 1s
! *
oT - — 1 -\ W
k-—-) =mc T A2 —7|(1+84£n2Z,)—
( g 8x s+ p s EfB [ f v
E—
- +264nzgy) = an
m

Now the relation for cf(p), the true steady-3tate flame thickness,
is easily ol-tained from Eq. 49 and 50, with Eq. 62 used for Tg - T,.

On¢ finds, with Ci = ;fﬁz
1/s
phTe) ~ Q’j

1-8 1-8
tg 1+ Ot Lz, [(c

ol

£
-
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and again for large g¢ (a circumstance which is likely always to be
true),

Q./(1-8)
g tng o L (78)%
a n-n /e
°(§ P ) "9
This gives, for use in Eq. 75,
' '
e Sy (79)
Le p
where
¢ /e fn~-n Int
- P 8 £
=~ 1H ( 7y ) T+ In T (80)

The factor cp/c once again comes from the fluctuation of Qg. Note that
Eq. 79 showe that a decrease of flame thickness accompanies an increase
of pressure, which is true for any value of f. Linearization of Eq. 75

gives now

1 [\ [ a2 w' ! !
:—5(-51’-) (—-—-——;—)-_—— = (v-g3 (1-0)] 2= w) B (81)
Ce 1-TC/Ts W p P

Construction of the response function now proceeds exactly as in
Section [V-B, except that Eq. 77 is used in place of Eq. 59, and Wg
replaces W. The final result is:

c
— r3 2 -
n'/m . AWB (L+ 8 4n Cf) + o g + ng (A-1)

p'/p c 2 - c
v+ A4 P A e tnT) cma+-R -1
A ¢ c B f c
£

which again has the form of Eq. 71, with B now defined as

WB - :2 ng
B-;‘-(1+B£ncf)+cm (82)

5 Note that because the "1" has been dropped, the heat transfer to
the solid is a sm&ll fra.tion cf{ the heat released in the gas phase, and
also one is still restructzd to H > 0 - of remarks following Eq. 58.
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The correct limit for w = 0 implies now
Ty 4R Sp . A2
AWB 1+ 8 4£n Cf) +<on =n A(1-H) + - E E;F
- [
(1+288n7) + E'P' (83)

To check that this is identically satisfied, substitute Eq. 73 into
Eq. 11 to find

2

E = A (1-H) (84)

] k’n
l>

Wl
®

f

It is a simple matter of substitution to verify that the condition Eq.
83 is in fact satisfied.

For 8 = 0, the results of Ref. 2 are of course recovered., Moreover,
since the response function, as a function of frequency, has always the
same form, Eq. 71, the same numerical results are found, although with
different values of some of the parameters if different formulus B are
used. A convenient way of comparing is to define a new quantity dg so
that B here has the same dependence on Mg as B of Eq. 72 has on H, i.e.,
n n-n

1 52_ 8
2n (1-118) + - ( )

C
- P
wB (1+a£ncf)+c

N[

LS.z
An n A

Since WB is given by Eq. 81, one finds the relation between H and HB:

l—H8 = (1-H) (1 + B8 £n ;f)
or

ne-n(1+s£n';'f)-s£n'£f (85)

The meaning of Hg is th.t where K is used in Ref. 2, Hg should appear
to account for a combustion zone displaced from the surface. That is,
the same numerical results are obtained here for a value of Hg = H,,
say, as are obtained in Ref. 2 for H = H,. But if the calculationc are
interpreted in terms of (g, different results are obtained. In Ref. 2,
Qg =~ <(Tg-T.)H, whereas if Hg is used, Eq. 85 shows that
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H +slnff]
(86)

Q = ¢ @1 [‘%-mrz;

Now ¢s¢ is large, so that it is quite possible that B €n s is a
significant correction. Indeed, if B Ln T¢ >> 1, then Hy = 8 In Tg(H-1)
which 12 not only large, but Hg has a different sign from H. Since it is
clearly not precise to assume that combustion really begins exactly at
the interface, it appears that the mcdification suygested here may be
izportant not only quantitatively but also qualitatively.

2Tt AEe s AN B

For example, in Ref. 9, tke effect of aluminum on the transient k
response has been examined by relating changes of H to the heat capacity :
of molten aluminum collecting on the surface. Thus, an increase of H, ]
due to the heat absorbed by the aluminum, accompanies greater accumula-
tion of the metal on the surface. It was chen found by numerical re-
sults that increasing H (i.e., more aluminum on the surface) is a stabil-
izing effect: it tends to reduce thke peak in the response function. This
wvas offered as an explanation for the observed effect that the addition

of aluminum to a propellant tends to suppress pressure oscillations in a .
chamber.

- R,

On the other hand, in both Ref. 4 and 5, an increase in H, or the
corresponding parameter, was found to enhance the peak in the response
function.® The reason for the difference between these conclusions
seems to be that account 1is taken, in the last two works, of the thermal
wave in the surface layer. This tends to enhance the peak in the same
way that the thermal wave in the solid causes the peak originally for a
pure solid. If the thickncoss of aluminum is comparable to the wavelenygth
of the thermal wave--a likely circumstance--this influence cannot be ig-
nored. Hence, the conclusions of Ref. 9 must, for the present at least,
remain qualified in an important respect.

‘. n v PSP ANS
b R r.w-*::«A\ﬂ.‘ﬂ.‘mﬁl’i@x"\?Q_t'shgsz'*,‘?'{vf?,@ﬁ\ma»'\'ﬁ'gg st G

A remark ghonld be made in regard to the interpretation of the in-
fluence of H (i.e., Qg)- By combining Eq. 21 and 25, the overall enmergy

balance for the conversion of cold solid to gaseous reaction products is,
in the steady state,

<
H
4
2

¢ (Tg-Tc) - Qg = Qs - cp ("'r'f-fs)

so that B is related to other parameters in the problem aczording to

Q c. (T,-T)
ﬂ'l-—:—g——{l-—La-g—s— (87)
c(Ts—Tc) f )
¥ 6 The work there was not, however, directed to studying the effects
of aluminum.
32
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Thus, when different numerical results for the admittance function are
obtained by changing H = Q,/c(Tg-T), this is necessarily accompanied

by changes in the values of Q¢, Tg, or Tg so that Eq. 87 is satisfied.
This is not troublesome, but must be recognized in the interpretation

of parametric studies.

D. Quasi-Static Results by Integration
of the Linearized Differential Equations

Certain aspects of the problem are clarified by finding the per-
turbations by integrating the differential equations. It is also neces-
sary to follow this route if one wishes to relax the assumption of quasi-
static behavior. When the time derivatives are ignored in Eq. 52 and 53,
and the variables are written as T =T + T', etc., one finds

m'/3x = 0 (88)
27! = AT _ gt 4pe O
kg w7 ", o Q' +m ©, Ix (89)

In order to simplify the computations, only the limiting case of com-
bustion extending to the solid-gas interface will be considered here.

It is also perhaps less confusing for the time being to use the position
variable x rather than the dimensionless . The solutions for the
steady-state heat transfer and temperature are

a0 =k g welr-e? (90)
Qpt? -8
T(x) = Te - kg [6-1+e ") (91)

where £ = k /mcp and 6 = (;f-x)/l and the boundary condition q¢ = 0 at
X = x¢ hae geen used.

Equation 88 of course gives the result that m' is constant through
the gas phase. It is a straightforward matter to integrate Eq. 89 te
find, for the case when w' is uniform in the gas phase:

q' = kg %%— = qf' e ? 4 Q w'ﬂ(l—e-e)
+ 2 q W [(e+1)e™® -1] (92)
m
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L -8 22 - -8 .
T'-T-f-'uq?"r(l-e)-wa'r[a-li-e ]
8 8
- 12 -8 - -8
- E-’- Qv ﬁ— [2(1-e7% - § (+e"%] (93)
m 8

vhere 8 = ;E?(; ~-x)/k,, and £ has m in place of m- The integrations have
been performed from_the surface (x = 0) to the mean position of the outer
edge of the flame (x¢); extension of the range to x = Xy + x¢', the
instantaneous position, merely adds terms of higher order in small quan-~
tities. Thus, Tf' and qg' denote fluctuations at the mean positio ; at
the instantaneous position, T¢' # Tf and qf' = 0, but note that qf 1is
nonzero. The situation is sketched in Fig. 3.

e S

Xt Xg = Xg + X4

FIG. 3. Conditions at the Downstream Boundary of the Flame for
Quasi-Static Behavior. .
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Now if Eq. 90 and 91 are linearized, the perturbations must be
exactly Eq. 92 and 93, but two points should be noted. First, there
are contrlbutions from fluctuaticns in 6, for

mc me. x x,' \
B-E-E(xf-x)-—#-*-—f-(l-#g—'-) (1+-:_-£—---f:—)
K m Re g

Hence, in the exponentials,

_ - -
ee = ee+e = eeee = ee (i+8")

Second, since Eq. 90 and 91 extend all the way to the edge of the flame,
perturbations at the downstream edge refer to the instantaneous and not
the mean position of the flame. Thus, Tg¢ in Eq. 91 gives Tg¢', mot Tf',
and no term in q?', which appears in Eq. 92 and 93, is found. By ex-
pansion in Taylor series, similar to Eq. 6 and 7, one has

'V om gt v (4T
Te =T + % (dxl (94)
£
1 [ 2=
(&) - (@) = (5
£ It dx
and the second gives
2
1= - ' i d_'l_‘
Q" = 0 =qp' +x; k8 (dxz)— (96)

f

When these relations are taken into account, the desired agreement is
found. It may be noted that since the mean heat transfer vanishes at
the flame edge, (dT/dx)¥ = O and to first order T¢' = T¢', but the heat
transfer fluctuation at the mean position does not vanish to first order.
The fluctuation of heat q_ ' is therefore due to the fluctuvation of
energy release associated with the change of flame thickness.
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The last point merite closer attention. Consider the energy
balance for the fluctuations in the reglon Xg < x < x¢' shown in Fig. 3.

One has for p constant

' ' Lty ' e ' ) = L 1
Qpwx.' + <, (ETf +m'Te") cp(ETf n'To) = q 9
or

' . ' oy t ' ' C I
ag e + mcp (T? Tf )+ m cp (Tf Tf)

+ Qpux' m Qpvx, o7

since both temperature differences vanish, to fir:- order, and q¢' = 0
bty definition of the outer edge of the flaue. It follows from tge
differential equation for the mean temperature tn:t k (dszdxzy; = —Q¢w
and 2q. 96 and 97 are the same. This exercise shows how it is that
even though conditions dowastream of the flame are uniform, the flame

temperature can fluctuate, giving rise tc the entropy waves discussed
in Ref. 2.

When evaluated at x = 0, Eq. 92 gives the expression for hest
transfer to the surface, identical to that discussed in Section IV-A,
By use of Eq. 92, many of the terms in Eq. 93 can be identified as
q'(x) so that Eq. 93 may be written

8 8
m' - -9 :
+ Qv {(8-1) + e ] (98)
g

Evaluated at x = 0, this gives the perturbation of the overall energy
balance for the gas phase:

= L ' - ! T .7
dou' T 5" = Qp G+ wx)) mcp(Tf T))

- mey (Tf' - TS') (99)

Another way of arriving at the same formula is to consider a control
volume extending from x = 0 to x -‘if 4+ x_.' or integrating the energy
equaticn directly over the eatire gas phase:
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With T =T + T', etc., and retaining only terms of first order in
fluctuations, this gives

-x-f+Xf' ;ﬁxf'
-— dT' —
me T' - k T +im'c T
P g dx ], P o

2= \ gt L
Qe Gegw' + wx.')

. and since again (dT'/dx)_ _ — « = 0, Eq. 99 1is recovered.
X = xf*xf
The comnutations above serve to verify explicitly for the special
. model of uniform combustion that the procedure of Sectiorn IV-A based on

the steady-state solution does indeed give exactly the same results ob-
tained by integrating the differential equations for the perturbations.

E. Perturbations of Reaction Rate
Depending on Temperature

It was argued in Section IV-A that a potentially important failing
of the model proposed by the Princ-'on group is that the energy release
is forced to be in phase with the pressure everywhere in the gas phase.
This 1s obviously an approximation, but ou the other hand, treatment of
nonuniformities is very difficult, not only because the calculations
rapidly becone very involved, but also because it is not clear what
constitutes a realistic representation.

At the present time, it does not seem worthwhile tc give up a priori
specification of the combustion distribution for the steady state. And
in particular, if viewed in the way suggested after Eq. 63, the assump-
tion of a urniform distribution may be accepted as a reasonable first
approximation. However, this does not, as argued previously, irrevocably
lead one to use a uniform distribution of energy release fluctuations
which unavoidably forces the euergy release, or reactjor rate, and pres-
sure to be in phase.

. The point is that in fact one has a great deal of freedom in
respect to choice of w'; a very simple alternative is offered here.
suppose first that the reaction rate is locally sensitive to temperature,

. such that the steady-state value is approximated by a uniform distribu~
tion, but the {luctuations are

37
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c 2
->la'2( A ){—'-ws?—+v r (100)
[4 ¢ l-TBfT v P Ts

vhere T' is the local temperature fluctuation and V is a coefficient
which can be determined only by a more careful examinaticn of tne pro-
cesgses in the flame. It does not appaar possible to find V 1as W was
found, by appeal to calculations and experimental results for the steady
state. This expression simply adds a term to the formula Eq. 81 already
used. lowever, the formulas for T' and q' in the gas phase canrot now
be deduced from ths steady-state solution which is supposed to be for <
uniforn distribution of combustion. Rather, E¢. 100 must be substituted
in =0 8Y and the differential equation solved. Incidentally, it must
be exphasized that the arbitrary addition of the term in Eq. 100 in no
way violates the assumption of quesi-static behavior, so that Eq. 88 and
89 are s£ill valid.

The computations required are straightforward but involved, and will
not be covernd hers. A quick estimate of the influence of this modifi-
cation caa re obtained in the following way. Suppose that the influence
of temperature changes is most important in the hotter regions of the
flime, and is thivefore roughly represented by setting T' = T¢' in
Eq. 100. Calcuis-ion of the response function now proceeds as in
Section TV-C. Substitution of Eq. 100 in Eq. 77 gives

/ ' T ' T.'
(Z) - -2) (e ez (522
g s+ T, P T,

€p A2 - . m'
-R2A_a+28407) (101)
c T8 £ 3
g

_By use of the perturbation of the ove~ull energy balance, Eq. 60,
Tt'/T can be eliminated fron this equation, leading to

T
A foar _ < P
- \ka ax) (l ) 1+ 8 £&n C Y W 8T —

mc'r8 Ts P

+
<5
=3

(102)

-
Hll
}u’
BI!B

wheze
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(103)

T T / —
1+ = |2 - :%) (1 + 8 4n ;f)
P T,
I\2 — Tc -—
A 128 00 T - v1- £) o) (48 L2 T
z T
% = L - s (105)
14+ & V(l— —3) (148 £n 7.)
c - £
p T,

The response function is oice again found by using the energy matching
condition, Eq. 18, the pyrclysis law, Eq. 17, and now Eq. 102 for the
heat transf{er from the gas phase; the result is:

[
- 3 —2 - -
w' /G _ AWy (8 Loz +a, (c VT) * QD (196)
pI/F Cc ¢
A+ 24 P px-na + (-2 -V ) -1
Ao ¢ ¢ T

First checking the limit 4 = O, one has the requirement

c
T £
AWBT (1+8 £n Cf) + ng (c \

which can be rewritten, after substitutjion of Eq. 103 and 105 as

- c A2 —
AWy (148 fn Tp) = n|A(L-H) + R E =g (1428 & T)
Z
f

&)

c
- -2 _
+ (n ns) D( 3 VT)] (107)
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where D stands for the denominator of Eq. 103-105. 1t follows, after
use of Eq. 104, that D(c,/c - VT} = ¢,/c and the condition, Eq. 107, is

exactly Eq. 83, which has already been found to be satisfied identically;

thus, the limit for w = 0 is correctly met for any value of V.

Naturally, the response function again has the fo'n of Eq. 71, but
with B given by

(108)

-}

—

et

i
n'n

<
-3
L g

-1 < s
B nwer(1+s£ncf)+c 5, >

As in Eq. 82 and 85, the results can be interpreted in terms of a new
quantity Hgr, defined so that B here has the same dependence on Hgp as
B had on H in Eq. 70; by use of the definitions of Eq. 103, 82, and 81,
Egr 18 defined by the equality

f_R n-ns
[znu-a) + = ( . )] ~ 83(1-H)

1 -—
= (148 In tp) - T ~
1*?"(1'%" (1+b4nzy)

P 8
c_n . 1 ¢, n-n c n_
25 (1__...v).=_. 2:-,(1_}1 ).;,.2.( CEh 2=
c nA cp T n BT c i/ ¢ An

which eventually gives

148 £n E? a~84n EE

Y S W S yr (109)
where
c I T ~
o=y \1-__——-)(1+s 0 T.) (110)
cp T £
8

Equation 85 is of course recovered for V = Q.

Tt is not obvious how to evaluate V--although for a genuine diffu-
sion flame one might try using the temperature dependence of the diffu-
sion coefficient--so to assess the influence of this correction, suprose
once again that 8 €n gz >> 1. Then Eq. 109 becomes
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H,. = il + 1 (111)
BT c Tc
- (l - %—) v
p 8

It appears that this correction is not quite so large as that shown in
Eq. 85 for B £n Ef >> 1. When V is nonzero, the influence of a dis-
placed combustion zone is in effect blunted. That this is the case may
be interpreted roughly as follews. If combustion begins downstream of
the interface, then the heat transfer to the surface is less than that
when combustion begins at the surface. On the other hand, for V # O,
the heat transfer is increased according to Eq. 102. Hence, the two
effects tend to compensate one anotner.

Admittedly, the preceding calculations are approximate. The intent
is to demonstrate that the results of Ref. 2 and subsequent applications 13
in Ref. 9 and 10 must be qualified in respects which are not considered
in those works.
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V. DEVIATIONS FROM QUASI-STATIC BEHAVIOR~-
SMALL AMPLITUDE HARMONIC OSCILLATICNS

In spite of the assumptions involved, the model based on uniform
comhugtion is nevertheless a most convenient one, and seems to be an
acceptable zeroth approximation to  he real probiem. It 1s particularly
useful for studying an aspect of the general p oblem whi-h has received
too little attention, nomely, behavior when the assumption of strict
quasi-static is not erforced. The only treatment of this question is
Ref. 6, which is not only complicated hut is based or a very thin flame
front as the model for the gas phase.

The two conservation equations, Eq. 52 and 53, will be solved with
the time derivative terms nonzero. By use of Eq. 52, the left-hand side
of Eq. 53 can be written

9 3
cp 3t (pT) + cp ™ (mT)

and with the perfect gas law, the first term is (c,/R) 3p/3t which can
be grouped with 3p/3t on the right-hand side. It 1s best to work with
dimensionless variables; in terms of { defined earlier, the equations
can be written

3 (le)y 8.

2 (2R )+ 2 <0 (112)
232T 2._ - a.].'...d_. B - A2 w 13)
et i (1(1-w)] T (3) A (.‘;] (113)

wiere 1 = T/T;, ¢ = m/m, and t now stands for the dimensionless time,
the scale being § ko/@°c_, 1i.e., t stands for (Eicpfisk )t. In order
to get results without excessive complications, it will ge supposed that
w is always independent of position. This means that dependence of
reaction rate on temperature can be accounted for only in the somewhat
artificial manner discussed in Section IV-D.

When the quasi-static assumption is dropped, it is no longer possi-
ble to obtain ueat closed solutions. Several methods of approaching the

problem will be indicated, but eventually only the first-order correction
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for the case of harmonic oscillations will be treated. With w dependent
only on time, Eq. 113 can be integrated once--divide by f and integrate

from an arbitrary position to the flame edge where in all cases

dt/dg = 0. After integration of the first term by parts and combination
of the various pieces, one finds

L

4 %g' - ut = - pete - dn (E’g) [’i‘%{ (%) - A2 %] (114)

Thus, Eq. 112 and 114 constitute a coupled pair of firsc-order equations
not yet restricted to small motions. For the purposes of this section
only small fluctuations are considered; the linearized forms of Eq. 112,
113, and 114 are

wl . _1d (p'y,L a3t
T T dt (‘15' )+W t (115
2.1 - ' '
28510 .93 =y 14 PV a2 W
T A Y AR T (3.) Mg (116)
21'—_ LTt = I ¥ Yy _ (_;__f_
z r T Ty - (tp ug +rf) Ln T )x
' ' ;f'
1d (py_ 2."_.]_ 2 Ty £
x[_y dc(;) A a 22 (o T, 7. (117)

The fact that u = 1 has been used, and ug' stands for the fluctuation of
mass flux at the flame edge. As before, the fluctuation of flame thick-~
ness in Eq. 117 must be found from its connection, Fq. 29, with w and m.
Equation 117 is lidentical with Eq. 98; to_show this ic¢ is necessary to
replace qF' by use of Eq. 96, and to use 6 rather than f as the inde-
pendent variable.

Second-order equations for both u' and t' separately can be con-

structed. For example, sclve Eq. 117 for u' and substitute into Eq. 115
to find
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23_ _1_3.:;)_1 3’ ( dr) .

g ¢ a;(?c ?"t*’%ic)’ :

H ., C' 5

; .S_QL) T o ' 2 40Ty i 3

(?2 o) [T ke vt (A% Ln g.) = 3

i ;
‘ - (1 £ ;-f.) id (RL -~ A2 w' (118)

r’dc o 7 dat -5) ]

Solution of this equation will give t' and then Eg. 108 can be used to
find u' by direct integration from the surface outwards:

14
Vo i o3 1 4 (p'
wemag # J[??f 3t zt dt (3) dg (119)
4

8

Note that ug' is connected to the surface temperature fluctuation rs by
the pyrolysis law, so that Eq. 119 can be used as a formula for ug', the
quartity ultimately required. Since T is an awkward function of Z,
analytical solution to Eq. 118 does not scem possible, although Eq. 118
and 119 could be used as the basis for numerical calculaticns. An
interesting approximation--at first sight extremely crude--is to set the
: mean temperature equal to some average value T, everywhere go that
. d7/dg = 0 as well; then Eq. 118 is

2.1 ] ' ]
' 2851 _ 1 3x 1.4 (p\_ 2%
T2 T, 3t y dt \'f;) A v (120)
; ;i Since z2 32¢'/3g2 = (kgfﬁbp)z [Ebp at'/ax - kg 3%1'/3x2] (of Eq. 32}, .

the left-hand side is the ordinary heat conduction equation with con-
vection of energy by the mean flow. The right-hand side is of course
the fluctuation of energy release associated with the chemical reactions.

To see how close Eq. 120 is to a more acceptable approximation,
substitute Eq. 115 for f£3u'/3g in Eq. 116:

o3t (= 4 (2)e e L] (] am -

This is exact within the initial assumptions usea, but the difficulty of
course is that u' on the right-hand side is not known In addition to
the terme in Eq. 120, there appears on the right-hand side a term
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d/dt(p'/p) which 13 a consequence of compressibility, and the term with
u' in it, which represents transport of mean energy by fluctuations of
the mass flux. A more reasonable approximation is tc set T = Ta on the
left-hand side of Eq. 121, retain d7/dZ on the right, and then worrv
about what to do with u'. This procedure will be followed for the case
of harmonic oscillations whose frequencies are not too high.

A. Solution to the Gas Fhase for
"Low" Frequency Oscillations

The time derivatives are now replaced according to

3 Pgs g
5t ﬂn(_q ) = iQe

m c
P

where Q = ch/?Q is the dimensionless frequency arising in the problem
of unsteady heat conduction in the gas phase, and

o} k ¢ o} 2 K
Pe <p Pe/ \ %

-2
is a small quantity of order 107 . It is a little easier to werk with
the variable £ : ¢ = ef so that Eq. (121) and (116) are

21 a e, x1yp, e w], e
?d_&;T € ?T--[iﬂs(y)_{;*/\‘_’. +ud€ (123)

.d_ﬁ—_-.?_‘LE(T'_P_'.) (124)
T P
In later calcuiaticns it will be assumed that Q¢ is small, the

quasi-static assumption of course corresponding to Qe = 0. To interpret
the meaning of this parameter, rewrite it in the form

ng(Tf-Ts)/xf w

m cp(T -Ts) (m/pg)/xf
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The ratio of mean heat transfer rate at the surface to the rate of
energy ¢ransferred by convection appears in brackets; this is multiplied
by the ratio of the average transit time (Efli ) for an element cf gas,
to the period 1/w of the oscillations. Thas, §t is the product of these

which matters, not the relative importance of heat conduction or transit
time alone.

The relatively weak assumption wiil be made that T = T, in iRe/t;
in any case, T varies smoothly from unity at the surface to a value of
three or four at the flame, which is a very small change relative to g2
in the second derivative of Eq. 121, i.e., compared with the first two
terme in Eq. 17. It appears that the gross behavior of the results
should not be greatly affected by this approximation, and by doing so
one has the opportunity to obtain results quite easily. For now Eq. 123
is formally integrable. The solutions to the homogeneous equation are
exp(x+£), exp (A_&), where

At ow 1:v‘1+1§“-‘-] (125)
a

These of course represent merely the thermal wave solutions. The com-
plete formal solution to Eq. 123 is therefore

b r b
ALE { AE A_E AE
' = e + Cl + J %-e dej+ e C2 - [ %-e + dg
J
13 13
where
n e - 1:1_) Ly 28ty v dT
n [me( y 13 + AL =+ at (126)
and the Wronskian is
X+E AE
© ¢ O, + 1) &
A= =(_-1) e (127

4 (:_,,E) P )
dr, de'e

w
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Thus, some of the integrals in the solution for t' can be carried out
and t' is

&
A+€ A E . A+E = -K+E
LI - - LIPS
T Cle + C2e + K x+_x- e u Y e dg
E
b
3 Y -
- . 4T
e u 3 e dg
£
with
- - ' 1]
K = -X—-l-— [me (JLI) P4 p2 Y—] (128)
+ - P w

The :onstants C; and C) are set by requiring that t' = 7¢' = 1¢' and
' = LY o, o/ma T [ R
(31 /ag)E. q? /mcpTs (wa/mcst)xf (see Eq. 96 and 97) one finds:

Mg \
e 3
C, =S AL (R (129)
- 4 mec T
P s
_A—.;f '
C, = < -\, (1.'-K) + i (130)
2" X A + Vg - =
- "+ mcst

With these expressions fo- the constants, the solution for r' can be
written
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: ’ Tg'K [ gy A-C ‘f’]
: v =K+ X% A_e Ae
i
¢
} Q' A (E-E.>  A_(E-E,)
{ 3 £
H - e -e (131)
' me T (A -2,)
: p3
<. £ ,
ALE - =\ E AE - =X £
1 + [ dT + - ( ] dT -
- m——{ e ' — e dE-e p' —e dE
A+—x‘ dg J dg ;
£ 13

Since u' is given by Eq. 119, Eq. 131 is still not an explicit solution,
but it is a convenient form for iterative approximations, from which both
7' and (d'r'/dE)o+ can be computed.

The zeroth approximation is found by setting Qc = 0 in both Eq. 119
and 13]1; this 18 of courre the quasi-static case considered in Section IV:
Eq. 119 gives u' a const:nt through the gas phase, and Eq. 131 reduces
to Eq. 93 or 98 if prope; account is taken of the variables, 6 = E -£.
The next and higher appruximations may be found by expanding in powers of
ie. Only the correction or order Q¢ will be considered here, so that
the results are valid orly for relatively low frequencies. From the
definitions, Eq. 125 and 128, it follows that A\4A- = -iQe/T, exactly,
so that

With thes= used in Eq. 131, one eventually finds
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1 (0) (1)

u' =y + iQe u

' (0)

' =1 + 1iQe r'(l) (132)

v (0)

where the quasi-static fluctuations are u
pifo) = 1g' (©) and

o' (e-ef )
T'(o) = ! (o) + e -1

equal to the surface value,

f
£ me T
P s
0) T (E-E)) _
-4 — [-e "l + E E
w
- — -
f [
u.(0) o & dt gdi - |

Since the inean temperature profile is given by Eq. 45 and ¢ = exp(%),

E £/, [ E-E
d’l’ = d‘l’ 2 {i_}__ = A2 - - f)
3 rra :f) A ‘1 e

The integrals above can be easily carried out -.nd T'\O) I

v(O) i
qF £-E v (0) £~¢§
T'(o) a 7" (0) f (e f"l) - 72 v — {(E—Ef)-]:re EJ
w

3 -

mc T
P s
E-E -\
- u'(°) A2 [Z(I-e f) - (E E)(l+e f)J (133)
g 13
= %y + Bl e + Y1 e + 61 E

49




K2

SRl

e

v e
NS e

RN TR

T i el = g -

NWC TP 4668

which agrees exactly with Eq. 93 since A2 = (Qgk w/@?c_2T,); the
constants ay, ..., 63, are defined in the nomenclature,

The first-order correction to the fluctuation of mass flux is
given by the integral of Eq. 124:

b 2
1 (o) '
uc(l) - usv(l) + t—a de - P dg

T P T
£ 4

The mean temperature profile as a function of £ is
- - 2 [ - -E-Ef ]
T Tf - A (Ef-e) - (l-e )

which prohibits easy evaluation of the integrals. Hence, in the interests

again of obtaining results, T is approximated by T,. With Eq. 126, one
eventually finds for p'(1);

(1) (1) 1 _ p_'_) 13
* gus +?’ (Gl Ta.p, E+Ble

'}

2
+yy {e% -D-1} + 6 &= (134)

Note that the mean value {5 = 9 has been used since fluctuations £g'

contribute terms of secon? order only. Equation 134 is required in the
first~order correction t1' for the temperature fluctuations. However,
the entire profile 1'(1) 1g not required for the computation of the re-

sponse function. One needs only the gradient at the surface, which from
Eq. 131 is

' A A LA E, -\,
) e e [P ]
o+

A=k

o' . [ -3¢ -A_sf]

+ Ae -\ e
me T (b -
P 8
% _ -AE -AE

1 v dt \

- —X+-X u I A+e -\ e (135)
0
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f:nu-n-n-u-n!vuwu-luluunqug!uulul!ul!ullul!lunlulluﬂﬂﬂnaﬂﬂnl!!l

Henceforth, only first-order terms in Qe will be considered, and ¢ lu~
ation of Eq. 135 is relatively easy, First in the integral

rf A6 -x € J: _
J u'g; (A+e -)_e )dg = (u'(o) + iQeu'(l))%%(e > 4 m“)c‘lE =
(o} (o]
-F "
.\0)12[1 - (Ef + 1)e Ef] + 1Q¢ [%(—O) 'r- -1 )+ J 1S dz € 4
L a
o

With the very good approximation that terms containing exp(~ £ ) can be
neglected, one finds

( - -
f 2,E A€ © o W
u de(x e -)_e YdE = A4y + 1Qe ?; ('f - Ts) + A Mg
o

2 —_ ! 6 -‘
-L(al-raP:)+A2-._—1-.zJ
Ta P Ta
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. If the remaining terms are 2xpanded to order ifl¢ and terms of order 2
B exp(~f¢) are dropped. Eq. 128 bacomes - %
;

; , . (o) ot (D
; ar'y L) (o) e t(1y _ fa ¥=1p' 442 ("' )
i (35 )04- 2Tf + m;n{’ e {me Yz + A 7+ 10e 2 5

(O) 1(0)
- s 9 + 19¢
N (_me) (15 :ﬁe) (1 4 ife AR A M4 (1_2 iﬂe) (me)
Ta ‘ a Ty ac T a Ta

P s

¢ {o) '
i _ (1.0 i8¢ 2,1(0) . g' -~ - 2, 1(1) ., 1 "p__)
| (1 2 = ){ Ay iQe ['ﬁ'"“(?f TB) + A Mg - A ™% " e p
} a a a
H
i
! é .
E 2 1
: i ?2”
! a
The zeroth order terms give
t
b 1)
3 (o) ' (0)
; (%_z. e [ w't u-<¢>] (136)
- ot Ly

vhich 18 exactly the qua -static resulits, Lq. 92, evaluated at the
surface. The first-order .erms give

Aokt btk waw Al A AL R R R W s 0 BN Y

(3§1°+ A [ Mg + ?;2 (al a P ?;2}
: y (0) o(°>
1= _ (o)
+_ff__ S S 'S T VA S S {137)
: Tee T T YPp Ta £ 8
é a ps a

The definitions of s1 2nd 61 can be substiturad to give & more expliicit
form. In doiag 80, further terms are neglected, based or the fact that
= (Gg/cpigh(in Tf)™ -l & Q¢/ (e T;;f) in amuch larger than unity (cf.

teaatks fogloving Eq. 57. Although x ,k may be 10 - 20,
Qf/cpT, msy be as large as 5 - 6, sgo that tge as umption AZ << 1 may
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sometimes be borderline--it should be checked in individual cases.
However, it is true that the terms containing AZ wiil make a smaller
contribution in any case, and if they sre retained, subsequent manipu-
lations become very tedious indeed. It appears that the major behavior
will be accounted for, and hence the essential impiicaticns of the cal-
culation will be found, 1f the approximaticn is made. The relative
simplicity of the final formula Eq. 155 partly iustifies this step.
Then Eg. 137 reducas to

1 (1)

e —
R
il fa]
———

L]

=

N
‘——'\,

(1) ,(O)
w' (D) 1 w (0
) e b (- )

W a w

q__v (o)
. %1__[} @ @ -;8)1

s xlp’ (138)

Some terms containing A? have been retained to show the only first-
order contributions on the right-hand side. However, these may be
neglected compared with the remaining terms, and one is left with the
quite simple result

T f

, (1) @' (o)
(-31_ = y-1 2’_4_ 11 £ _ _ ?_'(0) . uv(O) T, -7 (139)
Y E a f 8

me T
P s

There are no first-order fluctuations appearing on the right-~hand side,
which makes later calculations very much shorter than if Eq. 138 is used.
This is of course a consequence of the fact that the normalized thick-
ness Lf is very much greater than unity. It is by no means obvicus that
ail of the labor following Eq. 131 would culminate in such a result as
Eq. 139.

A gecond necessary relation among the heat transfer, surface temper-
ature, and flame temperature fluctuations can be deduced by direct inte~-
gration of the linearized energy equation, Eq. 116. After change cf
variable from { to £ and integrating over 0 < £ 5_5}, one finds

1] 1

q ¢
3‘!) i oy PR - 1 £ w
5] =Gt o) At b T e - A2 E =
(ag oF o 80 f f e T fw
p's
19¢ p' =
Yy p f
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Once again expand all quantities to first order in fir to find the zeroth
and first order pieces of Eq. 140:

1(0)
(l‘_‘;) - (TG'(O) + ?ouo’(O)) - : {0) 4+ T u_fo(o))

e 4 £
(o)
o . (0) -
.'acp‘}:s w
(1)
a1 ' l(l) g 1(1) (1) - v(l)
('5-5.0., = *1g ¥, ) '(T'?' *Tfu? )
(1)
(1) _ -
+?f_ -A21’-—_—-£f+-1-§'— . (142)
mcp’ru bl Yp

Note that because of the factor Ef, the last term is dominant. Equation
141 18 of course the szame as Eq. 99; to show this explicitly requires
use of Eq. 30 which, when linearized and expanded, gives

(o) E.'
w'- - }I'(O) - _-_f_ (143)
v Ef

for the quasi-static contributions. Recall alse from Eq. 97 (which is
valid for all linesr motiocns; that

ag 25
-f —— g0} (.g_é.)? (1442)
me T

p's
o' ¢y -
S e g (—g-é-} (144b)
ncpl“ £

Equations 141 gnd 1335 may be used to find the fluctuations of flame
teaperature, 1g'.
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The onily tesk remaining sc far as the gas phase is concerned is to
find formulas for ihe fluctuations of the flame thickness. For the
quasi-static problem, Eq. 30, w = m/x¢, can be used; thus giving Eq. 142
but in the case of nonquasi-static motions, one wust return tc the origin
of the term Qgw. If one examines the balance of enthalpy for the gas
phese, by use of a control volume, one finds by comparison with the inte-
grsl of the unsteady energy equation that the following equality must be
net: '

X¢

Qf wdz = ms hsr - mf hfr

=mg (e - he) - (mg-m) b

- msQf - (mf - ms) hfr

where hg., hg, are reference enthalpies. This corresponds te Eq. 28 for
steady flow; but here, instead of Eq. 30, one hss

h
1 [ fy

W X m—— n - (m - m ) -c—-—]
xf A £ ] Qf

Hence, the perturbations are related by

? 4 S
A S 2 f‘.:.__.‘fs,.)i;.f.s

or, for the first-order terms:

(1
g b,
“w a' - usill) - fo - (ufﬁ(l) - usv(l}) ‘_Q_g:_ (145}
E¢ £

The value of he, depends on the thermodynsmics of the reactfons in the
gas phase. If the gases leaving the surface burn completely to form the
elementary products in terms of which the reference enthalpy is defined,
then hgy = 0 and Qf = hy,, Rather than complicste the results with
another parameter, this limiting case will be supposed here so that

(1)
v (1) £’
) gf
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vhich gives Ef'(l) for use in Eq. 144b. Becguse of the form of Eq. 139, -
this result 13 not required for calculation of the response function;

howsver, it must be used in Bq. 142 to find the fluctuations of flame

temperature. Note that i{f one assumes w to be given by the simpiest

form (Zq. 64), then w' (1) vanishes, and ef'(l £ = yg' 1)

B, First-Order Interfscial Conditions

The liéiatized forms of the pyrolysis law, Eq. 17, aund conservation

of energy at the interface are easily expanded in povers of Qe to give 3
the following relations:

Quasi-static
approxization:

£
(o) s ), . p
My (“s + ) T n = (147)

o
e wan e ,,....‘.W.‘«,.«m:wmwmmwmlm%m?ﬁﬁm%ﬁﬁh' RS AR 4

. .
o+ 1--'rc/‘?s
1-7_/T
¢n (L+* < ‘) 2 (148)
P
First-order
contribution:
u (1) - (“ + Eﬁ \ T (1) (149)
s s p5/] 8
: °o's
(1) ; c
a) L[ eA) 0 P
(ae)ﬁ (}. + A) T, + (‘EE 1 a.a) T, (159)

Algo, the Iinesrized boundary conditione st the surface must be
expanded in powers ~f 4ilc. Just &8s in the analysis of the golid phase
outlined in Section II, the solutions to the sets of equsiions abowve in
Sectfon V~-A will yield the values at the origin x = £ = O, but one
requires the values st the interfzsce locsted at =;; again, for smail
motions one has Eq. 6 and 7, and the corresponding formula for ug': .
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. aT \
Ta To+' + xa (dx )°+ ©
a) (z.r_) (d"f)

(8x)8+ 3% w* *s \axZ] , @
.y’ dp
b e Uy x ( - )M’ @as1)

However, since for the one-dimensional problem dip/dx = 0, Eq. 151 shows
that u.' = u,' and no correction is required for surface motion. In
order to obtain the correct quasi-static limit for w = 0, it is neces-
gary to adopt a coordinate system such that the solid moves at uniform
speed T plus a correction u,; then conservation of mass applied to the
interface gives, instead of Eq. 9:

o, x + u, = k) =0 (ugs - x)
and since p . << pc,
- (o u m ' — fp.u
. n co __s m co _ .
xs.-pc(; -ﬁ)-—"c(ﬁ “s) (152)

Expand the surface speed in powers of 1Qe,

:’:s - is(°) + (19¢) is(l) + ...

and collection of terms according to powers of ile¢ in Eq. 152 gives the
formulas for the successive terms in RB:

N

(o) & (Pc% _ ,(o))
s °. ¥

s 7 VYs (153)
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In crder to have the origin and the interface coincide at 8411 times in
the limit 0w = 0, it is necessary that x8(°) vanish, as argued in Section
III. Hence, the correct choice for u, is

- ¢ (0)
B (o) m
u, b Mg b (154)

which has the reasnnable interpretation that for a small D.C. (w = D)
change of pressure, the solid is taken to move from the left at a speed
equal to the original linear burnine rate plus the change of linear
burning rate corresponding to the change of pressure. Incidentally, this
value for u, appears nowhere explicitly; its presence here merely serves
as a formal justification for the assertion in Section III that values

at the interface coincide with those at the origin in the guasi-static
limit--T',, = T,, etc. It therefore follows by expansion of Eq. 6 and 7,

and by use of Eq. 153, that the correct boundary values for the various
approximations are:

¢ (0) ¢ (0)
Ta L] To+ (155a)

(3‘1‘ ), (o) i} (_a_._r_).(o)

=), I\, (155b)
Ts'(l) - Tﬁ,(l) + x8.(1) (%’:_;L . Toq.'(l)

+x D @iﬂ) (%L (1562)
(%2'):1) ) (%%):1) + ' (%) (%g)ﬁ (156b)

and similar equations for the higher order terms.

C. First-Order Correction to the Response Function

By definition, the response function R is the ratio evaluated at
the downstream edge of the flame
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(m'fu'm)f uf'

p'/F p'/p

R =

(0) (1)

= R + i9%e R

when caryied out tc first order in iQe. The calculations of Section IV
give R'9/, the respunse function subject to the quasi-static approxi-
mation, R(0) = u'(0)/(p'/P); the task here is to compute

y ¢ (1)
rD - "%TF (157)

Equation 134, evaluated at the edge of the flame and with terms of order
e:'qz](.-)-gf) and 1/€¢ dropped where appropriate, leads to the formula for
Ug :

3 v(o)
N RN NI 3 N ORI S
Mg = Vg = I'F T = =
Ta mc T
ps
v(o) '
+35(w_ +u'(°)) -?ag-—]
w P

Thus, with Eq. 142, the first-order correction to the response function
is

T 1(1) i

) A ( 5 ) t¢
R = +
(a-T./Ty) p'fp —T—S(P'/;)
' (0)
ar + (o) -t
x [1’?'(0) -ty (w_ + u'(°)) -1 (.‘P_—)] (158)
mcst w N p

Equations 139, 150, 153, and 156a-~b combine to give

q v(o) y
y=1 1 £ ' (o (0) = -
W Y T [— = T W ‘*f"s)}
Ty Tc(P /p) chTs
PP - N cE/Ff c (159)
A+ 2+ - HA + (—P- - 1)
2 Q c
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where o = (kccg/k§C). Hote that rs’(l)
e

vanishes in the limic of zero
fcequency, whi

he fluctuation of heat transfer is finite.

From Eq. 141,

!(o)
q-f- ' (0) y(0) = ~ st\’ (0) , (0) w! (0)‘}
="~ T - U (tgmt.) = \3’5 - ('ro -
meTs ot W
: L0) s
? - (A‘?'Fi} w = - {14 A — fxz) TS'(O)
1 A,
g
{ 1 (0)
g =¥ = - .rs' (o) (160)
? -
3 and Eq. 159 becomes

y (0)

i
.
A gty i & . . - & e -
L B g RN T il st ¢ b o SO VR it R TR o Bk

@ 2.l [29% %
Tt ' T

; 8 - Y Ta ‘;p_'[i P'/}. - (161)
§ P'/B A OE/EC ¢ \ i
‘ ?.'i‘x"" 10 -HA+(-2-C - 1} ;

¢

The term (aE/E})/iQ is, because of the large size of Ef, negligible except
for very small values of i. I:s effect on the response function is there~

fore insignificant, because Eq. 161 1is multiplied by iQe in the response
function. Now with Eq. 160, Eq. 158 becomes

N

R(l) - A— ( s - }
l—Tc/Ts p'/p

- _ ()
S¢ 3,w'(°)/w A Ts' 1
+ ‘:_r‘.’-"' -i pgndle N T -1 P'/.I; - T (162}
1
a p'/p 2(1 - :Q.)
\ T
S
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Now from Eq. 64, with

1(0) N T '
B .yl e (1,13) 2
w P TP
T c T '
=WE —{1-= =

P TP

Thus, because of the factor E}z, the dominant terms in Eq. 162 are the
terms involving w'(0); approximately, then:

T
Y L E g g_(l___g)
Ta £ ¢ T
p 8
x 1 . +521€f1 (163)
A, 6B _ ., % _ J
A+)‘+iﬂ.€.f .L+A+c 1

and with all these simplificatrions, the response function to first order
in Qe is

nAB + n_ (A-1) - T
R = — —2 +me:2-’7-sf§-»(1--_—9-)x
A+ 5= (L+A)+AB a p T,
- 1
R TI T, - (164)
2t A oE he -0 -
[ A+X+i—9€;+(c l) 1+A

It i somewhat surprising that such a simple result can finally
be obtained. The primary reac.n for this, as remarked above, 1s formally
that the normalized thickness of the flame, £¢, 1s large, and it is
possible to throw away many contributions. The physical meaning of this
dimensionless quantity may be seen by writing it as

T .
Se "% *¢
8
me (Tf~Ts)
Te~T
k(is)
B\ X¢
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The numerator is roughly the net flow of enthalpy through the gas phase,
and the denominator is an estimate of the heat transfer from the gas
phase to the sulid. Thus, large £¢ implies a relatively small heat
transfer loss from the gas phase to the solid, a connection which also

follows from Eq. 49 and other results arising in the solution to the
steady-state problem.

Now the second teym in the square brackets of Eq. 164 1s, under
practical conditicnsg, not huge, whereas the first term is; hence,
finally, the response function can be written approximately as

R = +(1ﬂe;%€2%-=;i—-

nAB + n_ (A-1) (
s 1 -~
)\+%-(1+A)+AB p Ta

T ) (165)
T

The first-srder correction in frequency, therefore, mainly affects the
imaginary part of the response function.

1 e Pn A28 RIS gt A

The term proportional to Efz in Eq. 165 arises from the formula for
uf'(l) just before Eq. 158. 1t is effectively the integrated effect
of the enetgy release fluctuation over the gas phase: note that
w'(0) /-Ecp'/P according to Eq. 71 and the manipulations following
Eq 162. The energy release enters through its effect on the temper-
ature profile in the conservation cof mass, for example, as shown in
Eq. 124 and subsequent integrations.

PSRRI ¥

One therefare has the following interpretatiun .or the major
correction shown in Eq. 165. According to the conservation of mass,
Eg. 52, the fluctuation o€ mass flux depends on the rate of change of
temperature with time, and hence m' (i.e., u'} is out cf phase with T°.
When the entire gas phase is considered, the dominant contribution to
the flv:tuation of temperature is the fluctuatiou of energy release,
which is, in the simplest case, in phase with the pressure fluctuations.
Hence, sirce the energy release and associated temperature fluctuations
gre in phase, the net result is z countribution to the mass flux which is
out of phase with the pressure changes, the last term of Eq. 165.

R PR A

The fact that the correction term in Eq. 165 can be quite large,
end yet the real part of the respense function is not much affected, is
a significant result. Earlier numerical calculations in Ref, 11 indi-~
cated that the real part of the response function gfven by the strictly
quasi-static analysis did not differ much from that given by the results
of Ref. 6 which did acccunt for nonquasi~static behavior of the gas
phase. Moreover, the real part of the quasi-static formula, the first
ratio in Eq. 165, does give remarkably good (at least qualitatively)
agreement with experimental results. However, the analysis of Ref. 7,

A : in which both the real and imaginary parts of the quasi-static formula
o : were used to interpret da:a, showed very serious discrepancies. These

S ‘mm%:ﬁmfﬂﬁiYmﬂwmmnﬁﬁiﬂmw £
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earlier observations are all accommodated qualitatively by the result
shown in Eq. 165, that nonquasi-static behavior contributes overwhelm-
ingly to the "out of phase' component of the response function.

It must be emphasized, however, that this does not mean that one 1is
free to determine numerical values of A and B by comparing only the real
part of the response with experimental results. In this respect, the
discussion of Ref. 7 18 of course valid. The charts developed in that
work will, however, be substantizlly changed if the correction term of
Eq. 165 is taken into account. This will be treated in a subsequent
publication.
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