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SOME PROBLEMS IN. THE UNSTEADY BURNING
OF SOLID PROPELLANTS

by

Y. E. C. Culick

- h e c lThe vzdel of uniformly distributed combustion in rteh e ga
phae A usd a th ~aie orexamining several features of unsteadyWrntn IsAco as sethe 4pproxtcsýtion the flame tome begins at the solid-

gee Interface and responds linearly and quaoi-stacically to chamnge'ý of
perre only. Three deviations frcm this behavior are then examined:

the cmlhuaticm zove is displaced front the surface, the energy release
r esonds to fluctuations of temperature and the response iv not quasi-
etatic. It appears that the assýmption that the burning beginb inm-,

oed.ately at the surface can lead to signific=n changes, more im-
portnt than the assumption that the enrgiy release responds to changes
eo pressure only, especially in the Interpretation of =perimentcl
date4  The prablm of noquasi-otatic behavior, i.e., processes in the
gas phase do tmt follow precisely ipressed changes of pressure, is
fortrlated as ana expansion in frequmeny. Approximate results scemt to
be e-nsitent wdth existing inf ormation.
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NOMENCLATURE

A Parameter, A E (1 - Tc/T

na Coefficient in burning rate law, m = ap

B Parameter, Eq. 70, 82, or 108

b Coefficient in Eq. 62

c C, Specific heat of solid, gas

E E- E/ART s

E Activation energy for surface reaction

H F Q /c (T -T)
S C

H See Eq. 85

HOT See Eq. 109

h Enthaipy

hfr, hsr Reference values of enthalpy

K Eq. 128

kc k Therial conductivity of solid, gas

kt k•L w/L

iv
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L Ls - hs+ - hs., positive for endoti-endc reaction

t e - k /mcp

Mb Mach number of product gases

m Mass flux (gm/cm2 - sec)

n Index in m - apn

n Index in Eq. 16

p Pressure

Qf Heat release per unit mass in gas phase

Qs Qs = - LS

q Heat transfer (ergs/cm-sec)

qft Heat transfer fluctuation at instantaneous position of
flame (outer edge)

qf' Heat transfer fluctuation at mean position of flame (outer

edge)

R Response function, R - (m'/Fm)/(p'/p)

R Universal gas constant

r Linear burning rate (cm/sec)

s Index in Eq. 64, s - A in linear calculations

T Temperature

Tc Temperature of cold solid (x ÷ - ®)

t Dimensionless time in Section 5; scale is To k g/ 2 C

Tf' Temperature fluctuation at instantaneous position of flame
(outer edge)

Ty! Temperature fluctuation at mean position of flame (outer edge)

V
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V Coefficient in Zq. 100

VT Eq. 104

El !T

W Eq. 65

W Value of Wfor 0, Eq. 81

ff

VBT Eq. 103

K Eq.105

• Xft Fluctuation of the outer boundary of the flame

x1  xj Inner (upstream) and outer (downstream) boundaries of the flame
zone

x PosItion of solid-gas interface

15 Eq. 80
ar Index in Eq. 16

•= ' (o)

If ( + A2  (2 Ao)2( (
rncia +~

p a

see Eq. 133

B Exponent in E, , Eq. 73

_ r .>'(0)
e A2  + (2 + •f)A2U° see Eq. 133

y Ratio of epecific heats, y -cp/CRe

Y1  Y1 = -Y(o)A2e ,see Eq. 133

vi
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,(o)
-p, ' 2 ,(o)

6V 6t , _ A2u , see Eq. 1.'

e Small parameter, Eq. 122

F Reaction rate, Eq. 19

- exp [f (mcp/kg)dx]

6 e8 (Xf- x)/L

K Thermal diffusivity of solid, a k -

Kc Thermal diffusivity o' gae, Kg = k /p C
g g gs p

A2  Eigenvalue, Eq. 34

A Complex function of f, Eq. 4

"" r' A I. Real and imaginary parts of A

A+, A_ Defined In Eq. 125

ji Normalized mass flux, Vj m/m

f J (mCp/kg)dx

&C tc C mc/k c)x - (r/ c )X

Pc* Pg Density of solid, gas

T Normalized temperature, T - T/T

Ta Average temperature intrcduced in Eq. 134

SNormalized frequency, Q = KcC -2

w Real angular frequency

vii
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SUBSCRIPTS AA

v+ Evaluated on the solid (-) or gas (+) side of the origin

s+ Evaluated on the solid (-) or gas (+) side of the interface

i Imaginary part

r R,-al part

I f Evaluated at the instantaneous position of the flame

Sf Evaluated at the mean position of the flame

± SUPERSCRIPTS

Mean value

Fluctuation value

(o), (1) Zeroth and first order terms in the expansions (Eq. 132)
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I. INTRODUCTION

It appears at the present time that much of the unsteady behavior
in solid-propellant rocket chambers can be traced to the interaction
between pressure fluctuations and the burning in .he neighborhood of the
solid surface. Thus, an understanding of the processes in this region
when the pressure is varying in time is essential. Ultimately, experi-
mental results are required, but their interpretation rests on analysis,
which is necessarily approximate.

The various analyses which have appeared differ substantially only
in the model adopted for the gas phase. But even in that respect, the
basic assumptions involved are so strong that almost ý.ll the final re-
sults for the response to harmonic pressure oscillations have the same
form, a two-parameter function of dimensionless frequency (Ref. 1),
shown as Eq. 71 here. In fact, only one of those parameters (denoted by
B) depends on the model chosen for the gas phase; the other, P, being
associated with the thermal wave in the solid and the surface reactirn
for transformation of solid to gas. This conclusion is a consequence
of four basic assumptions: (1) the problem is linear and treated in
one-dimensional form; (2) the solid is homogeneous and nonreacting, with
constant properties; (3) the surface reaction is independent of pressure;
and (4) the gas phase responds quasi-statically to changes of pressure.
It is easy to relax assumption (3), in which case the form of the re-
sponse function is changed only slightly and one additional parameter is
introduced, the index n in Eq. 71.

Differences among the explicit formulas for the parameter B, ex-
pressed in terms of the properties of the gas phase, arise from differ-
ences in the models chosen for the structure of the flame in the gas
phase. Hence, the detailed interpretation of numerical results and
experimental data must differ among the calculations. So long as the
assumption of quasi-static behavior is correctly interpreted and used,
disagreement of this sort is in fact associated with dissimilarities
among the models used for steady burning. The major portion of the
discussion here is grounded on one simple, yet fairly realistic, model,
based on uniformly distributed combustion, which has been solved approx-
imately and used previously in a calculation of the response function
(Ref. 2). The approximations used in Ref. 2, in addition to thoee noted
above, imply that the fluctuations of total energy r~lease in the gas
phase are always in phase with the pressure fluctuations, a result which
is open to question. Alternatives are possible, leading, of course, to
different expressions for the parameter B. Although part of the

-- j •J . .. . . . . . . .. . . . . . .. . . . . . . . . .1
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approximate nature of the analysis of Ref. • can be eliminated, as al-
ready noted in Ref. 3 and explicitly shown here, it is not possible to
obtain a complete and unique solution for the quasi-static problem.

There are two purposes of the work teported here. (1) within the
fcu: crucial assumptions noted above, several of the additional approxi-
mations used in Ref. 2 are examined, and means of correcting them are
offered. (2) Two of the four basic assumptions listed are relaxed some-
what and the corresponding response functions are computed: a separate
calculation is given for nonquasi-static behavior which does not contain
a pressure dependence in the surface reaction. In view of the length of
this report, it is perhaps helpful to summarize the main points to be made.

As in Ref. 1, the calculation of the response function is split intor three parts: analysis of the solid phase, construction of impcrtant con-
servation relations for the sclid-gas interface, and analysis of the gas
phase. The conservation of energy applied tc the interface provides an
importavt equation which is used as the primary relation into which the
other results are subatitv-ud. In particular, it is the heat transfer
at the surface which must be found from the calculations for the solid
and gas phases.

The simplest model for the solid jill be used: homogeneous, ncn-
reacting material having constant properties (see Ref. 4 and 5 for analy-
sea in which chemical activity in the solid phase is examined). Thus,
the treatment of both the solid phase and the interfacial region is
essentially the same as in most other researches on this problem. The
necessary information is collected in Section TI.

By far the most difficult part of the problem is analyiis of the
gas phase; even the steady-state problem remains at the present time
essentially unsolved. As a basis for all the work covcred here, the
model of uniformly distributed combustion is used. This can be solved
"exactly," although certain minor assumptions must be made. For example,
if the combustion zone extends from some plane removed from the inter-
face to the outer boundary, an additional condition, such as an "ignition
temperature" or a minimum reaction rate, must be used to define the inner

i boundary. However, the solution can be found, culminating in a trans-
cendental equation (Eq. 49) for the flame thickness. The formal solution
to the steady-state problem is covered in Section III. The linear burn-
ing rate caa be found according to the procedure outlined there, although
detailed results are not included here.

Perhaps the most important assumption of those noted above is that

the gas phase responds in a quasi-static manner. This effects enormous

S' "Linear Burning Rates for Solid Propellants Havipq Unifomly Dis-
tributed Combustion," by F. E. C. Culick and G. H. Dehority (in prepara-
tion).

I ~ u I i ! i s u l • i •m ii1 • !, i . .... ..I
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simplifications in the analysis. Witb this assumption, the necessary
results can be obtained in two ways: either directly, from a steady-
state solution, as discussed in Section IV-A; or by solving the rele-
vant linearized differential equations, as covered in Section IV-D. The
first approach is simpler, but the second must be used in calculations
not based on the assumption of quasi-static behavior, a matter treated
in Section V.

In order to complete the calculation of the response function, even
with the model of uniform combustion and quasi-static behavior of the
gas phase, some further approximations are required. There are three
principal ones used in Ref. 3 and discussed here in Section IV-A:

1. Combustion in the gas phase begins immediately at the solid-
gas interface

2. The flame zone is relatively thick, in a sense made precise
in Sect - IV-A

3. The fluctuations of energy release in the gas phase are uni-
form and hence always in phase with the pressure

It is generally true that the flame thickness, xf, measured from the
interface to the outer boundary, can be assumed to be large, in the sense
that exp(mcpxf/kg) is very much greater than unity. This implies (Eq. 58
and also remarks following Eq. 164) that a relatively small fraction of
the heat released in the gas phase is transferred to the solid by heat
conduction. It also implies, as remarks following Eq. 58 clarify, that
if in addition one assumes that combustion begins at the surface, the
results are in practice restricted to exothermic surface reactions (i.e.,
the parameter His positive). It appears that endothermic reactions can
be included in this model only if simultaneously one allows the combus-
tioa zone to be displaced from the surface.

-n Section IV-C, a displaced combustion zone is treated, although
an approximation used in Eq. 78 implies that the results are still valid
only for H > 0. Nevertheless, the results indicate that significant
numerical differences exist between the calculations of Ref. 2 and those
for the more realistic case of a displaced combustion zone. The dis-
tinction is interpreted by means of the parameter H in Eq. 85. Use of
the results of Ref. 2 in the interpretation of data can therefore be
done only with (possibly oerious) reservations.

The fourth approximation listed above is examined briefly in
Section IV-E. It is supposed that part of the fluctuation of reaction
rate is in phase with the flame temperature. The final response func-
tion appears as Eq. 106, and once again the results can be interpreted
in terms of H, Eq. 111. This crude approach indicates that the influ-
ence of temperature dependence of the reaction -ate is less significant
than that of a displaced combustion zone.

t3
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All of these resulto for the response function necessarily have
the same form, Eq. 71. But analysis of data in Ref. 7 Indicates that
this fo:mw-irrespective of the particular formula used for B--does not
&ccoIodata all data. Hence, it is necessary to alter one or more of
the b"ic assumptions euumerated earlier. In Section V, the assumption
of quesi-static behavior is relaxed--weakly, An expansion in the rele-
vant frequency parameter (nle, Eq. 122) is carried out to first order, so
the results are restricted to relatively low frequencies. For simpli-
city, the calculations are based on the model of uniform combustion
extending from the solid surface. With a number of fairly reasonable
numerical appro.imations, the response function eventually takes the
form shown in Eq. 165. The malor correction associated with nonquasi-
static buhavior appears in the imaginary part of the response function
*ad can be numerically significant. This conclusion appears to be con-
sistent with observations, tut satisfactory proof will be found only by
use of Eq. 165 to analyze data in a manner such as that used, for
example, in the vork of Ref. 7.

There evidently remain a number of significant problems in respect
to the unsteady behavior of a burning solidý Modeling of the combustion
zone in the gas phase is still in a very primitive state, and this is
probably the severest restriction Gn all the special cases treated.
Moreovet, even for the simple model used as a basis here, there are
several permutations not yet considered: for example, nonlinear behavior
is an important aspect which has not been covered here; the effect of a
displaced combustion zone on nonquasi-static and of course- on nonlinear
results has nct been treated; and the combination of nor.quasi-static and
nonlinear behavior is bound to be of interest, particularly for propel-r lants exhibiting thick combustion zones. In any case, the pcsesibilities
for obtaining analytical results relatively easily should act be too
quickly passed over in favor of specific numerical calzulations.

4

VROI Mrs_



S. ... ..... . ,NWC T 46.4

II. SOLID PHASE AND INTERFACIAL MATCHING CONDITIONS

Since only the gas phase trill differ from most earlier works, the
other pieces of the problem will be covered first and buit briefly; ex-
parded presentations may be found in Ref. 1 and 8 and sources cited
there. The model used is sketched in Fig. 1, with coordinate |jystem
chosen so that the origin is fixed always to the mean positiou of the

burning surface; the latter fluctuates with amplitude xs. In this pic-
ture, then, cold solid flows in from the left with speed equal to r2
the average linear burning rate, and the unsteady heat conduction
(energy) equation for the solid is

3T T3T 21
c - + PC c ax2

For the case of small amplitude motions; the temperature is split into
its average value (independent of time) T, and the fluctuation T';
T - f(x) + T'(x,t). The corresponding solutions of Eq. 1 are

(T-Tc M/Y a-Tc) - e c (2)

T' - T' e C (3)
0

where Tc is the temperature of the cold propellant, Y. is the average
surface temperature, T' is the temperature fluctuation evaluated at
x - Cc - 0, and Cc - Tx//c, Kc being the thermal diffusivity, Kc "
kc/0cC. The complex function, A, of dimensionless frequency 0 -
Kcw/;rz has real and imaginary parts given by

Ar - h{l + - [(1 + 1602)h + l]h} (4)

ZThis definition of the coordinate system will be altered slightly

in Section V-B.

5
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( + 16) 1]h (5)

It will be necessary later to match the solutions for the solid andgas rhases at the interface, and in particular the fluctuations of tem-

perature and heat transfer at x - xs must be computed. For small :,otions
of the surface, these can be expanded in Taylor series about the origin,
and to first order

TlT' =-+ )d (6)

8 0± 8 0±

where ( )o+, ( )%r refer to the gas (+) or solid (-) side of the origin
(o) -r interface (s). By use of Eq. 2, 3, 6, and 7, one can then find
the formula for the fluctuation of heat transfer from the interface to
the solid,

--I ; ,,nc •T' + (TsT) I] (8)

Is-4

after Eq. 13, deduced below, isi inserted for xs. As shown later in
Section VI the same result can be found in a different way.

There are two important matching conditions which can be deduced by

applying conservation of mass and energy to a small control volume in-
cluding the interface:

PC aT gs) -8( Ps (us - ) (9)

c (y ai)h + aT =g(ug -+ khg + La (10)
Ir+ s 9 c /)-

The steady-state form of Eq. 9 is simply an identity, while that for
Eq. 10, after use of Eq. 2, is

Tc + L (11)

(k~dY L c (s C1
I6
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utore Ls * hs+ - hs. is the latent heat for the surface reaction, Ls
being positive for an endothermic reaci:ion.

The fluctuaring part of Eq.= 9 gives a formula for the surface oscil-
lations:

- m -c g (12)cm ] - gs/Pc 
!

or, for harmonic oscillations, xe - e , with w # 0, and p << 1,

U IF (13)
m

The unsteady part of the energy balance in Zq. 10 leads to

(k• -x•+ - (k -] + m' , + - (cp-C) T' (14)

\ ax, aC x s s p 8

and with Eq. 8,

r T- T t m
STc . ATs+ T !) Ts{ + _.A . (15)

Finally, an assumption must be made in respect to the rate of con-
version of solid to gas at the lnterface. It is common practice to use
a pyrolysis law of the Arrhenius form

n . a 8 -E a/R 0T 8
ms M BOp T s e (16)

for which the fluctuation in mass flux is given by

m-- T- m (17)
"-I-= +s

where E a a + E /R Y . Combination of Eq. 15 and 17 yields

cT. g rax T ____
a +

1 T + ns + (18)

7
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where A ( (1-Tc/4S) (as + E1/RoYs) is the parameter mentioned in the
introduction and L - s/cTs. This completes the information required of
the solid and interface regions.

8I
I
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III. STEADY-STATE SOLUTION FOR THE GAS PHASE
WITH UNIFORMLY DISTRIBUTED COMBUSTION

The solution to the problem was summarized in Ref. 3, but not in a
form immediately suitable to the analysis of unsteady behavior. Thus,
a more complete discussion is necessary here. As formulated in both
Ref. 2 and 3, the analysis of the burning solid is carried out within
a wholly "thermal theory"--the influence of diffusion appears nowhere
explicitly. The conditions under which this idealized limit is attained
are discussed in Ref. 8 and in the literature of flame theory; the pres-
sure may be taken to be uniform in space and the problem then consists
in solution of the energy equation for the gas phase

( dT\. f.
m T- - Q- (k (19)
P dx dx gXj

where, to conform with the notation of Ref. 2, Qf is the heat release
per unit mass and i is the reaction rate (sec-1 ). For convenience, and
also in accord with Ref. 2, k9 and cp will be taken to be constant;
however (contrary to Ref. 2), cn # c..The calculations to be carried
out here are based on the case when g & = w is constant for xj x 5 Xf
and zero elsewhere, as shown in Fig. f.

At the downstream side of the flame (x > xf), the boundary con-
ditions are

T Tf

(x > xf)

dT
dx 0 (20a,b)

and At the surface, Eq. 11 holds: note that in this section T and T are
identical, as are m and W since on.y strict steady conditions are con-
sidered. It ahould be noted that Ls here is -Qs of Ref. 2, and x here
is -x of Ref. 2. For the purposes of this section, then, the boundary
condition Eq. 11 can be written

( ) 8 mM [c (T. - Td) - Q81 (21)

9I s
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-f -- II!
' m T,, Tf

I : 0 X$ Xi Xf

FIG. 1. Sketch of the Model Used for a Solid Pro-
pellant Burning With Uniform Combustion in the Gas

II
10
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Energy conservation applied to the gas phase only gives

(kg ml tmh h) (22)
8+ f

Thus, Eq. 21 and 22 lead to

m (h - h8 ) - m [c (Ts -TC) -Q8] (23)

Now, by definition of the enthalpy function,

hf s+ fr dT - hsr c dT
T Tp

r r

where hfr, hsr are the enthalpies of formation at the reference condi-
tions Tr and some pressure which may be taken to be the presture at
which the burning occurs. For constant specific heats, and cpf - Cps,
the definition therefore yields

hf - h+ =- Qf + c (Tf - Te) (24)

in which the heat release Qf in the gas phase is by definition Hsr - hfr
and is the m•a f In th& ener-,v equation, Eq. 19. The overall
energy balance for the gas phase can be written, by combining Eq. 22 and
24, as

(kg T) Wm [Qf- cp (Tf- T)] (25)

The last equation is, of course, simply an expression for the over-; all energy balance of the process; a simple limiting form arises when

cp - c, so that when equated, Eq. 21 and 25 give

Cp (Tf - Tc) - Qf + Qs (26)

which is practically obvious, since Qf + Qs is the net heat release due
to chemical reactions. But the point of this exercise is to compare
Eq. 25 with the corresponding expression deduced directly from theenergy Eq. 19. Integrate that equation from the surface to x -**

downstream of the flame and apply the boundary conditions Eq. 20a,b:

11
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(T T + Q i dx (27)

p f s k 2Z) 0+ f I
o0

Equation 27 is consistent with Eq. 25 only if the reaction rate satisfies
the normalization condition

p 0 dx a (28)

In Ref. 3 it was shown that this condition is redundant for the case of
a very thin flame front (combustion concentrated at a plane)--it gives
no information that cannot be obtained by other means. This is also
true for the case of uniform combustion. However, it is a convenient
relation to have at hand, particularly for the problem of quasi-static
burning in response to pressure changes. It is worthwhile noting that
Eq. 28 also leads directly to a relation which was introduced on an
approximation in Ref. 2 but which is in fact exact. For suppose that
the combustion occurs only in the region xi < x < xf and is uniform
there; then Eq. 28 gives

p5  (xf - xi) m (29)

In the extreme case xi = 0,

- = F (30)

a relationship which was adopted as an approximation just before Eq. 8
of Ref. 2.

As a convenience 3 for integrating Eq. 19, it is helpful to define

a new -ariable C (called C in Ref. 3):

mc

e e kg (31)

so that

mc
d r (32)• =dx d-C k d

SAnd only a convenience--the steps leading to Eq. 32 are obviously
unnecessary, but using c instead of x does simplify writing subsequent
manipulations.

12
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With this transformation, the left-hand side of Eq. 19 is

mc mc R d mcp 2 - 22

kg Cd k d C p dT k dSg g2

and the whole equation can be written

_r2 d2Z . A2 (33)

with T - T/TCs, and the eigenvalue A2 is defined as

A2 .Qf k w (34)S" •c •z
p s

Since w - p09 is here taken to be nonzero only in the interval
xt < x < wf where it is constant, A2 is also nonzero and constant only
in the same region. Thus, Eq. 33 is easily integrated to give dT/dC and
T as follows:

d-r c(35)
•s <• <•i

T = c 1 4 + c2  (36)

dr A2-+ c3 (37)

T = A2 tn c + c 3 ; + c 4  (38)

d-r •=c 5
i* f < .f 

(39a,b)

T = c5 C + c 6

There are eight conditions to be satisfied: the boundary values
T - T. and Eq. 21 at the surface, Eq. 20a,b downstream of the flame
(x + -), and continuity of temperature aud heat transfer at the bound-
aries of the flame, x - xi and x - xf. As part of the given information
defining the problem, w and an "ignition temperature," Ti, at which

13
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combustion begins, must be specified. From Ti, xi, or Ci can be calcu-
lated from Sq. 36. There are therefore eight quautities determined
by the eight conditions listed aboive: the six constsnts of integration,
c1' "'" c6, the flame thickness xf, and finally the eigenvalue A2 . The
end result is an expression for A which can be solved to give the mass
flux or llnsar burning rate as a function of pressure and other var.-
able* in the problem.

A direct way to apply the various conditions is to find the temper-
ature profiles for the upstream and downstream side3 of x - xi and match
there. First, the surface condition on heat transfer, Eq. 21, is in the
normalized variables:

t drI 1s+ = 0 [c(Ts - T)- Qs (40)

The correct values are taken by the profile Eq. 35-36 at the surface if

S

c2 mr T (41)

so that between the interface and the upstream edge of the flame,

Ts aT ) +  -(4 C -- (42)

where (dt/d4)s+ is given by Eq. 40.

The conditions Eq. 20a,b far downstream require

(43a,b)

c 6  T f

Hence, continuity of temperature and heat transfer at C - Cf are
satisfied if in Eq. 38 and 39

A2

Cf(44ab)

c4  t f + A2 (1 - nf)
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and the temperature profile in the flame zone is

which must be matched to Eq. 42 at C C i" Continuity of temperature
there gives

Tf - T

=2f (46)
II

and continuity of heat transfer implies

SIt is easily verified, when due account is taken of the definitionsinvolved, that Eq. 47 is exactly Eq. 7 of Ref. 2.

For completeness, it may be noted that the normalizatyon condition,
Eq. 29, in dimensionless varsables is

(Q /c TsA2  f -T (48)

2 = ~i + (dt/•f s+L (47)Anytw is Easil 4-8gveriid ahn dqueaccount wichmst taen soflted definidon

QfA2 - (48)

Q.5 fdr C~

Qf
(Observe for use in Eq. 46 that according to Eq. 25, Tf - Ti -

- (dr/dC)s.) S

Numerical calculation of the steady-state problem proceeds as
fcllows:

(1) The quantities Tf, Qs, Qf are assumed known by thermodynamics
or otherwise, while the temperature of the cold propellant Tc can be
chosen as desired. The reaction rate w must be specified as a function,
say, of pressure and average temperature.

(2) Choose a value for Ts; consider the case ns - 0 so that m can
be computed from the pyrolysis law, Eq. 16

15
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an T esR°Ts
S T

where B., as, Ea are assumed known.

(3) In the purely steady-state problem, the interface can be fixed
at the origin, so x. a 0 and C. 1; (dT/dC),+ can then be computed from
Eq. 40 with C. 1:

)c( -T (50)d T s c 8

(4) The position of the inner edge of the flame follows from the
specified value of Ti used in Eq. 42, again with C. - 1:

T -T

C-1 i+ (d/~ ~(51)

(5) The position of the outer edge of the flame can be found from

the transcendental Eq. 49.

(6) The value of the eigenvalue can then be calculated from, say,
Eq. 48:

from which, since a was already calculated in step (2), a number is
found for w. Since the reaction rate is generally a function of pres- 4.

sure (specified), this last step gives the pressure.

Thus, the net result is the variation of masa flux or linear burn-
ing rate with pressure. If n. 0 0 in Eq. 16, then an iterative calcu.-
lation is required: a value of pressure must be assumed initially to
compute m from the pyrolysis law. The value computed in step (6) must
then be compared with the value assumed in step (1) and the calculations
repeated until satisfactory agreement is achieved.

This is an interesting problem to complete, for comparison with
experimental data for the burning of composite propellants: a thorough

discussion, with numerical results, is being prepared. The point of
including the discussion here is to clarify just what must be known to
solve the problem, and just what can be calculated, for a clear under-
standing of steady-state burning in this respect is helpful in analysis
of the quasi-static behavior.

16
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IV. QUASI-STATIC BEHAVIOR OF THE GAS PHASE

When the pressure varies in time, but is still assumed to be uni-
form in space, the equations of motion for the gas phase are

Sam 0 (52)

at ax~

C + mc Hax ax at (

It is a formal implication of the physical assumption of quasi-static
behavior that the time derivatives in the differential equations of
motion can be neglected. This is based on the idea (perhaps supported,
but not necessarily wholly Justified, by order of magnitude estimates)
that the processes within the gas phase respond essentially instan-
taneously to changes of pressure and of boundary values--temperature,
heat transfer, and positions of the boundaries.

The origin of the time dependence is of course the pressure field
external to the flame, but the assumption of instantaneous response
does not mean that other variables in the problem change in phase with
the pressure. In fact, a significant lag is introduced by the behavior
of the thermal wave in the solid; this influences the behavior of the
gas phase mainly through the heat transfer from the interface to the
solid, expressed in Eq. 8. But in consequence, the fluctuations of
surface temperature, flame temperature, flame thickness, and reaction
rate also cannot generally take place in phase with the pressure except
in the limit w - 0. Nevertheless, the solution to the strictly steady-
state solution can still be used if the influence of fluctuations is
properly accounted for.

An example may serve to clarify what is meant by "quasi-static"
when time lags are present. Consider the simple case of heat conduc-
tion between two planes at different temperatures T., T2 and separated
by a distance L. The temperature profile in the steady state is linear,

T(x) - T1 + (T2-TI) L (54)

where the temperature T - T1 at x 0 0. The assumption of quasi-static

17
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behavior when small fluctuation T1
t , T2 ', L' occur implies that the

fluctuation of the local temperature profile can be calculated simply
by computing its perturbation according to the steady-state solution
Eq. 54. Write T - T + T', Tj - T, + Tl', etc., and since the barred
quantities obey Eq. 54, one finds easily a formula for T':

T'(x) - T ' + (T -T 2 - L' (55)1 2 1 L 2 1 LL

The total temperature profile T - T + T' as well as T and T' separately
are still linear functions of the distance from the colder (T1 ) plate
but the ends of the profile need not jiggle back and forth in phase.
It is entirely permissible, for example, that T1 ' - fl' cos wt and T2
I cos GWt-4) so that the fluctuation in temperature of the hotter
plate lags in time by the constant angle #. Moreover, 11', T2 ' could be
specified as functions of the frequency, w. Similar statements apply
to the variable separation of the planes. The point is that the steady-
state solution fixes the functional form of the solution--in this case
linear-while phase lags and dependence on frequency can be introduced
through the boundary values. A truly nonsteady calculation would of
course lead to a thermal wave in the region between tbe planes. The
distinction between these cases is illustrated in Fig. 2.

T2 T2

.0 T Ide T• / i6 -T

T, +' T T,, T' T+ T

T, T,

0 L 0 L
Quasi - Static Temperature Profile

Behavior with Thermal Wave

--- Mean Temperature Profile

FIG. 2. An Illustration of the Difference Between Quasi-Static
and Truly Unsteady Temperature Profiles in a Solid Slab.
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The steady-state solution for the gas phase found in the preceding
section can be handled in exactly the same way. Although the form of
the profile is fixed by Eq. 42 and 45 within the gas phase, the effect
of the thermal wave in the solid is to force both a phase lag and a de-
pendence on frequency for practically all variables in the problem. In
particular, and this point will be mentioned again, the fluctuation of
-he flame thickness xf forces a fluctuation in the ratio w/m - 1/xf
*.ich is not in phase with the pressure.

It is perhaps best to begin the following manipulations by summar-
iz the results already obtained and required here. What is needed is
a ! Aula for the fluctuation of heat transfer from the gas phase to the
int rface, for use in the energy matching condition, Eq. 18. If
(kg aT/4x)A is expressed as a linear combination of contributions due
to ms', T,', and p', then with Eq. 17, there is sufficient information
to give a formula for the response ratio ms'/p'. Thus, one already has

MS A T(1
- + P'n (17)

m 1-T /T T~ p

and

(kc Wxs - aT + -k 1 - HA) +
1 u(I)U y (
s s

Ts + n 1--- p' H(18)

S 8

For easier comparison with Ref. 2, L - L /cT has been replaced by

H - Q s/c (T - T ) - - L/(l - T c/T s).

When the assumption of quasi-static behavior is made, there are two
ways of arriving at a formula for kg(3T'/3x)s+, both giving the same
result. One way is to linearize the two equations, Eq. 52 and 53, by
writing T - T + T' and solving for the fluctuations with the time deriva-
tives ignored. This, as shown later in Section V, is really the first
term of an expansion in powers of a frequency parameter. The second way
is simply to linearize the steady-state solution, as done above for heat
flow between two plates. The equivalence of these two methods is readily
demonstrated and is shown below.

A. Quasi-Static Results from the Steady-State Solution

This means of finding the quasi-static formulas has been widely
used, sometimes incorrectly; any steady-state solution for the gas phase

19



can be used as a basis. The steady-state problem of Section III from
which the quasi-static formula for (kg 3T'/3x)s+ may be found has yielded
the following:

(1) The temperature profile

T = Ts + (- s d/ s+(Cs <- •I (42)

T - T - A2 [ -- i- (Ci <- C !-Cf) (45)

(2) Three expressions for the eigenvalue A2 B k 2 2f/m2Cp2Ts

A2 . (46)

A2  ~f i /d-i) (47)

A2  (48)

(3) A transcendental equation for the flame thickness, found by
equating Eq. 47 and 48

" .i 1 + r- 4f tn (L) (49)

(4) The overall energy balance for the gas phase Eq. 25

-c m [Q - c (T -T)] (25)Sdx f p f

which in dimensionless variables is

Cas d -1- (rTf - r5 ) (25a)

i 2S~20
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(5) A normalization conditions, Eq. 29, on the reaction rate w,
which is implied by Eq. 25 and which, rewritten, is Eq. 48:

m (29)x f - x I

Not all of the above are independent results: by use of the expressions
for the temperature profile and the energy balance Eq. 25a, any two of
the formulas for the eigenvalue can be derived from the third. The model
has been solved exactly, but numerical results cannot be obtained until
the reaction rate w is independently specified.

The fluctuation of heat transfer is found by linearizing in the
usual way: T - T + TV, m - I + i, etc. A question arises whether the
values indicated as ( ),+ here are really those at the interface or
whether, as for the solution, Eq. 3, to the solid phase, they represent
values on x - 0, from which the correct values at the interface must be
found by using the linearized boundary conditions Eq. 6 and 7. The
answer is that within the quasi-static assumption, the terms involving
x. must be ignored. The reason for this is that in the limit w - 0,
the fluctuating part, is, of the surface mo=tion is zero, so that xs is
a constant which, by free choice of the oriZin, may be taken to be zero.
In other words, it is inappropriate to use the formula is - iwxs and
hence in the limit w - 0, x. cannot be found from Eq. 13. Incidentally,
it is easily verified that the correct quasi-static limit (i.e., w - 0)
does follow from, for example, Eq. 18 for the solid phase, even though
that relation involves use of Eq. 13. The reason for this is that the
material of the solid phase is assumed to move always at the uniform
speed i - /%c. In the treatment of the gas phase, fluctuations of the
speed of the gas are necessarily included, and hence neglect of the
terms in x. must be enforced as a separate statement, part of the quasi-
static analysis. A more careful handling of the surface boundary con-
ditions is requited if the assumption of quasi-static behavior is re-
laxed, or if nonharmonic changes of pressure are considered. The point
here is that so far as periodic quasi-static variations are concerned,
values denoted by ( ),+ are identical with values ( )s+. More detailed
considerations appear in Section V.

To find an expression for (dT'/dx)s+, consider Eq. 47, with the
definition of A2:

dk& 1 dýT Q k w( k
dCJ mc T a C \dx m 2 (k-TCi ýf

which gives, since C. 1 for x. o,

21



NWC TP 4668--

S\

Sdx+ - f (56)

As already remarked, this can be found by direct integration of the
energy equation and appears as Eq. 7 of Ref. 2 and Eq. 87 below. Before
canbidering refinements, the simple case of uniform combustion beginning
at the surface will be discussed, the problem h.ndled in Ref. 2; thus,
;a 1. Moreover, the approximation that Cf >> 1 will be introduced at
his point, and used in almost all the remaining disc-ussion. Hence,

Eq. 56 becomes

dT Qfg ýX)(57)

h useful interpretation of "large cf" follows from Eq. 47 and 48,
which show that for large Cf,

&c (dT 1

mcT 8
PS

and hence the heat transfer to the solid from the gas is small compared
to the energy transferred by convection. Moreover, with Eq. 40, this
relation becomes

H) (58)

8 pf

where H - Qs/c (Ts-Tc) will appear as an important parameter in the final
results for tfe response function. For practical cases, Tc/Ts - 1/3, so
that one must -aoose H near unity to be consistent with the approximation
that r;1 is large. However, this is not especially troublesome, providing
H > 0, since Zf can be considered large whmLn • 5• 2. Then since
cp/c - IL 1-H - (1/2)/(2/3) - 0.75 and H - 0.25; in other words, the approx-
imation Cf >> 1 accommodates positive values of H in the range 0.25 - 1.

A rough numerical estimate indicates that 4 may indeed be quite

large. Since UCp Xf/kg - (pc~p/k) Wf = (cpkc/ckg) rXf/Kc, and

cpkc/ckg = 1, one has ' - exp (_rXf/Kc). A representative value of KC

is 10-3 cm2 /sec and for r = 1 cm/sec, f - exp (1000 if) with-if in

centimeters. Even for xf as unrealistically small as 20 microns = 0.002
centimeters, ef - e2 .
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If, on the other hand, H is negative, then instead of Eq. 58 one
has

C _ _S

1 1+(-H)) -1 J1 (58a)

and it is apparent that It < 0 and large values of "f are not compatible
unless Ci is also fairly large. The treatment of Ref. 2 is therefore
restricted to positive values of H (i.e., exothermic surface reactions)
becAuse the assumptions are made that Cf is large and that Ci - 1 (i.e.,
combustion begins at the surface).

The quasi-static formula for the fluctuation of heat transfer is
found simply by linearizing, Eq. 57:

(k LT -W-

where, as usual, A2a .Qf kg v/(cm) T (Qg/CpTs) (In f)- by Eq. 48.
m; mc T Aý(59)

- 2 - -
The fluctuation of mass flux is gelatd to I pressure and surface

temperature fluctuations by the linearized pyrolysis law, Eq. 17.

A second formula for the heat transfer at the surface may be deduced
by linearizing Eq. 25 for the overall energy balance of the gas phase:

k-i' LQS-c (Tf- mc (Tf' -T ') (60)Sx f p f s p f a

As later calculations will show, this relationship is used to compute the
fluctuations of flame temperature, Tf', once the remainder of the problem
has been solved.

The preliminary calculations are completed by finding a formula for
the fluctuation, w', of reaction rate. First, following Ref, 2, it may
be most simply supposed that w' is the fluctuation of the steady-state
reaction rate w(p) which was computed in the work in the following way.
The averagc heat transfer from the solid to the gas is given by the
results above as Eq. 58. But from the matching condition at the inter-
face and the temperature distribution in the solid Eq. 11,

ks x m [c (Ts T ) - Qe
g dx)8+ a c a
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Equating these expressions gives

S wV-a2 [c (T.-T) -Qs (61)
cP

It is supposed that the right-hand side can be expressed as a function
of pressure only. This is accomplished by assuming that the linear
burnfrg rate may be approximated by the law a - apn and that an approxi-
mation to the Arrhenius law is

mi=b(Ts - TC)8 p (62)4

n-n
so that T - T = (p Sa/b)1 /s; hence, Eq. 61 reads

1/8

n n 2 [C(g P Q (63)

Maw (ap) bCp ]

In this way w is given by Eq. 63 as a fumction of pressure only, and has
been so constructed as to satisfy the equations for steady burning for
the case a - apn and a pyrolysis law approximated by Eq. 62.

The assumption in now made that even during oscillations, the re-
action rate is given instantaneously by the same function of pressure,
so that W' 48 computed by setting p = p + p' in Eq. 63 and retaining
only terms linear in p'. This implies that the local fluctuation of
energy release, Qfw', is also always in phase with the pressure fluctu-
ations.

Nov the temperature fluctuations are not in phase with the pressure.
For example, the fluctuation of temperature at the edge of the flame,
Tfl, follows from Eq. 60:

Tfa p =- _ _la

where (k DT'/ax)s. is given here by Eq. 59. Thus, if the local reaction
rate is it all sensitive to temperature, there must be a part of w' which
(contrary to the assumptions used in Ref. 2 and expressed above) is not
in phase with pressure oscillations. Thc result that w' is entirely in

4 Note that ns m0 in Ref. 2.
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phase with pressure is a consequence of two assumptions: (1) that the
reaction rate is everywhere in the gas phase a function of pressure
only, and (2) quasi-btatic behavior.

Even though one may represent the steady-state glbal combustion
process as a function of pressure, uniform in space, tlis does not mean
that locally, within the gas-phase flame, one can always simply ignore
other variables. In the analyfsis, the influences of those variables
are smeared out in the steady state to give the uniform function of
pressure w(p) derived above. in fact, it may be better to regard the
calculation as a means of relating the overall rate of energy release,
Qfwxf, to the linear burning rate. Treatment of this as a function of
presstre only amounts to finding what the (perhaps fictitious) uniform
function of nressure would have to be in order to match an observed
burning rate, which is here approximated as apn.

The view that the reaction zate depends almost entirely or pressure
is based on the idea that the overall burning rate is diffusion con-
trolled. Nevertheless, locally the homogeneous gas-phase reactions
must respond to temperature changes, and of course the process of diffu-
sion is itself dependent on temperature. Moreover, under unsteady con-
ditions, there are likely to be fluctuations of mixture ratio. Both of
these will affect the local reaction rate and will therefore contribute
pieces to w' which are not in phase with the pressure change, even
though the processes are treated in a quasi-static manner. Such a
possibility is not strictly c'insistent with the assumption that the re-
action rate is uniform in sp&ce. That assumption necessarily precludes
consideration of dependence of w on variables which exhibit spatial
variations.

Thus, one concludes that if one requires the fluctuating, as well
as the steady-state, reaction rate to be uniform in space, one is seri-
ously restricted; the energy release is in phase with the pressure. In
fact, that conclusion holds even if the assumption of quasi-stati!z
behavior is relaxed as shown in Section V. The calculation of Ref. 2
therefore cannot be usefully extended without altering certain approxi-
mations on which that work is based.

In summary, the three main approximations which qualify the results
of Ref. 2 are:

(1) That combustion in the gss phase begins immediately at the
interface

(2) That the flame zone is relatively thick, thus, as the remarks
following Eq. 58a show, excluding consideration of endothermic surface
reactions unless approximation (i) is relaxed

(3) That the fluctuations of energy release are uniform in the gas
ppuhase and hence always in phase with the pressure fluntuations.
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The analysis of Ref. 2 is incomplete so that the approximation (1) could
not be corrected; a procedurA for doing so is developed below in Section
IV-C. Correction of (2) to include endothermic reactions can be done
without essential difficulty, but it is lengthy and will not be included
here. Alternatives to the approximation (3) are more difficult to con-
struct but may be more important than relaxation of (1'. Some remarks
oa this question are given in Section IV-D.

If Eq. 63 is used, the fluctuation of reaction rate is

c L A2)w

- i(64)
cs

where

S[ c (1-ns/n)

* W-nc 2(1-H) + _R (65)c

and H - Qs/c(Ts-Tc). The factor c /c in cp/c)(n-ns)/s arises from the
fluctuation of Q., Qs' - -(cp-c)Ts?, which appeared also in Eq. 14.

B. Calculation of the Response Function
for the Simplest Case

Before further consideration of the app..oximations noted above, it
is useful to compute the response function for the simplest case, thereby
showing most clearly hew the various pieces of the problem fit together.
For this purpose, all that is required is contained in Eq. 17, 18, 59,
and 64. Substitution of Eq. 64 into Eq. 59 gives what amounts to the
net result of analysis of the gas phase:

I 3 = ) W p _2 A2 m' (66)
mýcT a.x p m

Now substitution of this formula into the energy matching Eq. 18, and
use of the pyrolysis law, Eq. 17, to eliminate Ts'/Ts, leads to

Sc
W + --k n) + n(A s c (67)•

p /p X + + REA2 -HA+ - 1
c c

S26
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Now for the assumed form of the mean burning rate, m = apn, the limiting
value of the above ratio for w - 0 must be n (everything changerfi in phase

with the pressure). Hence, since A o 1, this condition requires

n A(1-H) + - EA2 + eAW + -C n (68)
C c s

and with W given by Eq. 65,

C n. c
-R EA2 + - -A (1-H) + A
c C.

That this is identically satisfied can be shown in the following way.
First. the index s (called m(!) in Ref. 2) is in fact exactly equal to
the more comnonly used A. To see this, write the linearized form of the
pyrolysis law, Eq. 62,

m.__ T'8
- - +nir

m cs a 5

By comparison with Eq. 17, obviously s - E(1-Tc/Ts) - A. Thus, Eq. 68
requires A(O-H) - c EA2 /c. But this is merely the mean energy balance
at the surface, written in a slightly obscure form. For with Eq. 57
substituted into Eq. 11 with Ls= -Qs, one has

mc(T - T) (1-H)

p

and by use of the definitions of A and A2 , multiplication by E gives

c
__R EA2 - A (7-H) (69)
C

Thus, Eq. 67 has the correct limit "built-in"; this will always be the
case if correct use is made of the steady-state energy balance (see
Ref. 5, Eq. 40, for example). This formula can be put into the standard
form suggested in Ref. 1 by defining

An (B W+•l _c. =, 2(1-H) + -2 1 (0
"n C c A (7

and in view of Eq. 68, Eq. 67 can be written
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nAB+n (A -)a (71)

p' A (l+A) +AB

It is clear, therefore, that there are only two significant parameters,
A and B, other than ci-/2 in A and, of course, n. 'Note also that it is
really R that is changed to change B, and that. by the steady-state energy
balance at the surface, Eq. 69, 1-H can also -e interpreted as a combin-
ation of gas Fhase properties:

c Qfk _

1- T/T (72)
c 1.c•8 (mp)2T

The limit H 1 1 probably cannot be reached in practical cases because
this implies, aczording to Eq. 11, that no heat is transferred from the
gas to the solid-tLe heating of the solid is then due entirely to the
exothermic reaction at the surface: Ts - Tc + Qs/c. Although this does
not violate conservation of energy, it is an unlikely dynamical state.
The fact that Eq. 72 requires m is not significant because that re-r suit explicitly requires a nonzero value of heat transfer from the gas
to the solid. Negative values of H (endothermic surface reactions) are
of course accommodated by Eq. 72.

C. Combustion Zone Not Extending to the Surface

Since the assumption that the gas begins burning immediately upon
issuing from the surface appears to be a serious restriction, it is use-
ful to examine a simple way of avoiding it. Suppose, for simplicity,
that the ratio of the mean position of the inner edle to that of the
outer edge is a constant, 0 : ii - BXf. Then i = 4fB and =
O(Cf'/Cf). If jf1-5 >> 1 still, then Eq. 57 is replaced by

.k Q" " (73)

p f

and the quasi-static formula, Eq. 59, is replaced by

The argument leading to Eq. 63 now provides

(- c - Qs (75)
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in which Cf must be expressed as a function of pressure from the steady-
state problem (see Eq. 78 below).

If one follows the argument used in Ref. 2 and in Section IV-B,
only the fluctuation w' in Eq. 74 should be computed from the steady-
state relation w(p) given by Eq. 75. Observe that if one assumes that
the flame thickness also responds instantaneously and in phase with the
pressure, then w/Cf i-n Eq. 73 coula be linearized by use of Eq. 75 and
the final result for the response function would be the same as Eq. 71.
Thus, in Eq. 74, Cf' must be replaced by use of the quasi-static linear-
ization of Eq. 29:

2

WC m1

_2k _k

2m c

2
m c _

k (1-O)tn
k

which gives

n [2 ] (76)

so that Eq. 74 is

~kg a mmC YA2 14(1 + 0tnf)
L [

- (1 + 2 0 tn 1f) m-- (77)

Now the relation for rf(p), the true steady-state flame thickness,
is easily ottained from Eq. 49 and 50, with Eq. 62 used for Ts - Tc.
Onc finds, withh Ci - ; O:

-10 + 1-0f/~ 
c a p 

--) 

2s

29



LI

Ei

NWC TP 4668

and again for large Cf (a circumstance which is likely always to be
true),

n C Qf/(1-B) (78)'Cff 
( nf -n)8 -/

This gives, for use in Eq. 75,

_f (79)

where

c /c n-ns tn Cf
1-l (As (18 nf (80)

The factor cp/c once again comes from the fluctuation of Qs. Note that
Eq. 79 shows that a decrease of flame thickness accompanies an increase
of pressure, which is true for any value of 0. Linearization of Eq. 75
gives now

- ,/ s)1L - (W-03 (1-H)] P' -W 8 L (81)

Construction of the response function now proceeds exactly as in
Section IV-B, except that Eq. 77 is used in place of Eq. 59, and WO

replaces W. The final result as:

c

(l + tn •-) +- n +n (a-l)A8 f c s s

P'I/P" A cp A2 -- c

X + + E--k (1+2 .n C) -HA + - 1
X c f c

Cf

which again has the form of Eq. 71, with B now defined as

c n
B - W (1 + In• t ;4) + -Z- _ (82)

n If c An . 1
5 Note that because the 'T" has been dropped, the heat transfer to

the solid is a small fra,-tion cf the heat released in the gas phase, and
also one is still restrLcte-d to H > 0 - of remarks following Eq. 58.
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The correct limit for w - 0 implies now

_ c [c 2~

AW8 (1 + 8 n f ) n. = n A(I-H) +-c E

(1 + 20 tn f) (83)

To check that thi3 is identically satisfied, substitute Eq. 73 into
Eq. 11 to find

c A
-_ E A2 A (1-H) (84)c -f

It is a simple matter of substitution to verify that the condition Eq.
83 is in fact satisfied.

For 8 - 0, the results of Ref. 2 are of course recovered. Moreover,
since the response function, as a function of frequency, has always the
same form, Eq. 71, the same numerical results are found, although with
different values of some of the parameters if different formulas B Cre
used. A convenient way of comparing is to define a new quantity H8 so
that B here has the same dependence on if as B of Eq. 72 has on H, i.e.,

(1+c nn~)+~ ui[n(~~ c n-n1
1 w (1+ 0 n C ) +p -ans_ 1 2n (1-H ) + -R( 8)

n 0f c An n1 c A

Since WO is given by Eq. 81, one finds the relation between H and H :

1-H8  (1-H) (1 + 0 tn •f)

or

H11-H (1+80 n Zf) -8 tn (85)

The meaning of H1 is that where H is used in Ref. 2, H8 should appear
to account for a combustion zone displaced from the surface. That is,
the same numerical results are obtained here for a value of H1 1 Ho,
say, as are obtained in Ref. 2 for H - Ho. But if the calculations are
interpreted in terms of Q., different results are obtained. In Ref. 2,
Qs - c(Ts-Tc)H, whereas if HO is used, Eq. 85 shows that
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[H r, + -,

( Q8 " -T c) I+ 0 Z C f] (86)

Nc~fis large, so that it is quite possible that B Zn- is a
significant correction. Indeed, if 0 Ln 7f >> 1, then H = in 7f(H-l)
which is not only large, but HO has a different sign from H. Since it is
clearly not precise to assume that combustion really begins exactly at
the interface, it appears that the modification suggested here may be
important not only quantitatively but also qualitatively.

For example, in Ref. 9, the effect of aluminum on the transient
response has been examined by relating changes of H to the heat capacity
of molten aluminum collecting on the surface. Thus, an increase of H,
due to the heat absorbed by the aluminum, accompanies greater accumula-
tion of the metal on the surface. It was chen found by numerical re-
sults that increasing H (i.e., more aluminum on the surface) is a stabil-
izing effect: it tends to reduce the peak in the response function. This
was offered as an explanation for the observed effect that the addition

I of aluminum to a propellant tends to suppress pressure oscillations in a
chamber.

On the other hand, in both Ref. 4 and 5, an increase in H, or the i
corresponding parameter, was found to enhance the peak in the response
function. 6 The reason for the difference between these conclusions
seems to be that account is taken, in the last two works, of the thermal
wave in the surface layer. This tends to enhance the peak in the same
way that the thermal wave in the solid causes the peak originally for a
pure solid. If the thickness of aluminum is comparable to the wavelength
of the thermal wave--a likely circumstance--this influence cannot be ig-
nored. Hence, the conclusions of Ref. 9 must, for the present at least,
remain qualified in an important respect.

A remark should be made in regard to the interpretation of the in-
fluence of H (i.e., Q.). By combining Eq. 21 and 25, the overall energy
balance for the conversion of cold solid to gaseous reaction products is,
in the steady state,

c (Ts-Tc) - Q f - c (T-T)

so that K is related to other parameters in the problem according to

HI Qf 1 c_-- (87)

H l -cT 8-Tc) [ - Qf ](7
6 The work there was not, however, directed to studying the effects

of aluminum.
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Thus, when different numerical results for the admittance function are
obtained by changing H - Qs/c(Ts-Tc), this is necessarily accompanied
by changes in the values of Qf, Tf, or T. so that Eq. 87 is satisfied.
This is not troublesome, but must be recognized in the interpretation
of parametric studies.

D. Quasi-Static Results by Integration
of the Linearized Differential Equations

Certain aspects of the problem are clarified by finding the per-
turbations by integrating the differential equations. It is also neces-
sary to follow this route if one wishes to relax the assumption of quasi-
static behavior. When the time derivatives are ignored in Eq. 52 and 53,
and the variables are written as T - T + T', etc., one finds

am'/Dx = 0 (88)

32T' - IT' + c dk -- p--- Qw p d (89)
g ax px p dx

In order to simplify the computations, only the limiting case of com-
bustion extending to the solid-gas interface will be considered here.
It is also perhaps less confusing for the time being to use the position
variable x rather than the dimensionless C. The solutions for the
steady-state heat transfer and temperature are

q(x) = kg ý = Q wt I[ - e-] (90)

QfwZ2

T(x) -Tf - -i- [ 1 + e-C] (91)
g

where t - kg/mcp and 6 - (xf-x)/t and the boundary condition qf - 0 at
x - xf has Seen used.

Equation 88 of course gives the result that m' is constant through
the gas phase. It is a straightforward matter to integrate Eq. 89 tr
find, for the case when w' is uniform in the gas phase:

dT ' e-
q- k j- - q-' e + Q w't(I-e-

dx f

+M- Qfw [(0+1)e-e -1] (92)
m
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9 5
T'- • --q~fj -(l-e-) - Qfvw' - [8-l+ e- I•

3 g IS- M- Qf; L-- [2(1-e-e) - (l+e-') (93)

I where i - ic (i -x)/k, and I has m in place of m, The integrations have
been performed om r te surface (x - 0) to the mean position of the outer
edge of the flame (xf); extension of the range to x - if + xf', the
instantaneous position, merely adds terms of higher order in small quan-
tities. Thus, T-" and q¢ denote flyctuations at the mean positio ; at
the instantaneous position, Tf' 0 T1f and qf - 0, but note that qf is
nonzero. The situation is sketched in Fig. 3.

0I I , .

Xfq f 04 X

FIG. 3. Conditions at the Downstream Boundary of the Flame for

Quasi-Static Behavior.
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Now if Eq. 90 and 91 are linearized, the perturbations must be
exactly Eq. 92 and 93. but two points should be noted. First, there
are contributions from fluctuaticns in 8, for

P - - (x - x ) 1 + + _xf'
k f K

gg f x f

me xf x f mc x

+k (f+ - -- k
kg m xf g

+ l mc R_ ÷_f-)+

Hence, in the exponentials,

0+0-' 08 0'
e a e = e e 5 e (1+0')

Second, since Eq. 90 and 91 extend all the way to the edge of the flame,
perturbations at the downstream edge refer to the instantaneous and not
the mean position of the flame. Thus, Tf in Eq. 91 gives Tf', not T-'
and no term in q•', which appears in Eq. 92 and 93, is found. By ex-
pansion in Taylor series, similar to Eq. 6 and 7, one has

Tf'-T_' + xf I IdT (94)
ff f \dxý

and the second gives

qft • + xf kg 'T96

\fff dx2 (96)

When these relations are taken into account, the desired agreement is
found. It may be noted that since the mean heat transfer vanishes at
the flame edge, (dT/dx)T - 0 and to first order Tf' - Tf', but the heat
transfer fluctuation at the mean position does not vanish to first order,
The fluctuation of heat q-' is therefore due to the fluctuation of
energy release associated with the change of flame thickness.
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The last point merits closer attention. Consider the energy
balance for the fluctuations in the region 7f < x < xf' shown in Fig. 3.
One has for cp constant

"Qf~f' + c (T' m'IT-') - cp(~T' - mf '

Q~(fW~ , f c f p f f~q q

or

q-f' qft+ SC, (Ty' -T )+ m'c (
f f p Cf f

+ Qfwxf I Qfwxf (97)

since both temperature differences vanish, to fir-" order, and q = 0
b, definition of the outer edge of the flaue. fot ollows from the
differential equation for the mean temperature tn-t k (d2T/dx 2 )T _ -Qfw
and Eq. 96 and 97 are the same. This exercise shows gow it is that
even though conditions dot-astream of the flame are uniform, the f• 'Me
temperature can fluctuate, giving rise to the entropy waves dis'ussed
in Ref. 2.

When evaluated at x - 0, Eq. 92 gives t.-e expression for heat
transfer to the surface, identical to that discussed in Section IV-A.
By use of Eq. 92, many of the terms in Eq. 93 can be identified as
q'(x) so that Eq. 93 may be written

•2
T' -=T• - qf' 7--It+ qI t- IQf -

m -

+ - Qf w V- [(0-1) + e-e (98)
m g

Evaluated at x - 0, this gives the perturbation of the overall energy
balance for the gas phase:

' -- 6+' 1- WQf (WXf I + ZX) - M'cP(Tf Y)

- p (Tf' - T3
1 ) (99)

Another way of arriving at the same formula is to consider a control
volume extending from x - 0 to x i xf + xfI or integrating the energy
equaticn directly over the entire gas phase:
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Sx~x

d [pT - kg dx = Qf w dx

J L 'I
o 0

With T T+ T', etc., and retaining only terms of first order in
fluctuations, this gives

T' kd f+f+m Xf+Xf'
T'p g dxj o0  + P[Jo

= Qf (fw' + Wxf)

and since again (dT'/dx)x = fxf' = 0, Eq. 99 is recovered.

The computations above serve to verify explicitly for the special
model of uniform combustion that the procedure of Section IV-A based on
the steady-state solution does indeed give exactly the same results ob-
tained by integrating the differential equations for the perturbations.

E. Perturbations of Reaction Rate
Depending on Temperature

It was argued in Section IV-A that a potentially important failing
of the model proposed by the Princ-'on group is that the energy release
is forced to be in phase with the pressure everywhere in the gas phase.
This is obviously an approximation, but on the other hand, treatment of
nonuniformities is very difficult, not only because the calculations
rapidly becone very involved, but also because it is not clear what
constitutes a realistic representation.

At the present time, it does not seem worthwhile to give up a priori
specification of the combustion distribution for the steady state. And
in particular, if viewed in the way suggested after Eq. 63, the assump-
tion of a uniform distribution may be accepted as a reasonable first
approximation. However, this does not, as argued previously, irrevocably
lead one to use a uniform distribution of energy release fluctuations
which unavoidably forces the eitergy release, or reaction rate, and pres-
sure to be in phase.

The point is that in fact one has a great deal af freedom in
respect to choice of w'; a very simple alternative is offered here.
suppose first that the reaction rate is locally sensitive to temperature,

* such that the steady-state value is approximated by a uniform distribu-
tion, but the "luctuations are
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. _ _ w_ " , W+ v -V ( 1 0 0 )

jf 0 -Ta/Tc , p Y a

where T' is the local temperature fluctuation and V is a coefficient
which can be determined only by a more careful examinaticn of the pro-
cesses in the flame. It does not appear pocsible to find V is W was
found, by appeal to calculations and experimental results for the steady
state. This expression simply adds a term to the formula Ea. 81 already• used. :'lowever, the formulas for T' and q ' in the gas phase cannot now

be deduced from thý steady-state solution which is supposed to be fo.
uniform distribution of combustion. Rather, Eq. 100 must be substituted
in wi 89 and the differential equation solved. Incidentally, it must
Sbe ¢aphasized that the arbitrary addition of the term in Eq. 100 in no
wer violatcs the assumption of quasi-static behavior, so that Eq. 88 and; 89 are still valid.

The computations required are straightforward but involved, and will

not be c,,)verI•d here. A quick estimate of the influence of this modifi-
cation can re obtained in the iollowing way. Suppose that the Influence
of temperature changes is most important in the hotter regions of the
flame, and is therefore roughly represented by setting T' - Tf' in
Eq. 100. Calcuio'ion of the response function now proceeds as in
Section TV-C. Substitution of Eq. 100 in Eq, 77 gives

s s

c A2
-- E- (1 + 2 n f)m-- (101)c . 0

-f

By use of the perturbation of the ove-all energy balance, Eq. 60,
Tt'1T8 can be eliminated from this equation, leading to

'3T T (+Wk+: kg ax) - 1-_---(1 + Bn f) WBT.. --

acT Ts p

T
+ T R X- (102)

ys
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-~ " T (+8(103)

-s

(1 'Ic/T-) (1 + B0 n ýf) V
v T S (104)

Tp

Af2 (1428 Zn ?f) - V(l----.)(1-H) (1+8 Zn •f)
- T

x = S (105)T

S+ v V(I-1)c(1+8 _n9f)
p T

The response function is once again found by using the energy matching
condition, Eq. 18, the pyrolysis law, Eq. 17, and now Eq. 102 for the
heat transfer from the gas phase; the result is:

1m. =AWT (1+8 Zn -;f) +- n - VT + ns(X-1)
m ST - f s (cci- - (106)

X + L+ c EX-HA + - -1
X~ c V c -T

First checking the limit 'j = 0, one has the requirement

AW (1+8 Zn •f) + n - VT n [A(1-H
OT~+EX f- Ck-V

c
+ -2x +(iv)]

which can be rewritten, after substitution of Eq. 103 and 105 as

Sc A 2_
AW8 (1+8 tn •f) n A(1-H) + --- E (1+28 Zn Cf)

+ (n-n) D VT (107)
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i ,:

wOere D stands for the denominator of Eq. 103-105. It follows, after
use of Eq. 104, that D(cp/c - VT) = cp/c and the condition, Eq. 107, is
exactly Eq. 83, which has already been found to be satisfied identically;
thus, the limit for w - 0 is correctly met for any value of V.

Naturally, the response function again has the fo n of Eq. 71, but
with B given by

B--•W (I+ 0 n --k - (108)

1 OTcn (1 cVT
n A p

As in Eq. 82 and 85, the results can be interpreted in terms of a newSquantity HBT, defined so that B here has the same dependence on HOT as
B had on H in Eq. 70; by use of the definitions of Eq. 103, 82, and 81,
HOT is defined by the equality

r ~n-n 1
(1+ nn(-H) + c ( )] - BA(I-H)

1+ V{ _ A--
n 0 n - T

I+ c V(l (I + (1 6 ten f

A P T

c n 1  n-n cn

which eventually gives

H HT + (109)OT I+ a + I1+ a

where

T
c V i c) (110)

p

Equation 85 is of course recovered for V = 0.

tt is not obvious how to evaluate V--although for a genuine diffu-
sion flame one might try using the temperature dependence of the diffu-
sion coefficient--so to assess the influence of this correction, suprose
once again that 0 tn Zf >> 1. Then Eq. 109 becomes
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SST Ti + 1 (111)

p s

It appears that this correction is not quite so large as that shown in
Eq. 85 for 8 en f >> 1. When V is nonzero, the influence of a dis-
placed combustion zone is in effect blunted. That this is the case may
be interpreted roughly as follows. If combustion begins downstream Gf
the interface, then the heat transfer to the surface is less than that
when combustion begins at the surface. On the other hand, for V 0 0,
the heat transfer is increased according to Eq. 102. Hence, the two
effects tend to compensate one another.

Admittedly, the preceding calculations are approximate. The intent
is to demonstrate that the results of Ref. 2 and subsequent applications •
in Ref. 9 and 10 must be qualified in respects which are not considered
in those works.
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V. DEVIATIONS FROM QUASI-STATIC BEHAVIOR--
SHALL AMPLITUDE HARMONIC OSCILLATIONS

In spite of the assumptions involved, the model based on uniform
combustion is nevertheless a most convenient one, and seems to be an
acceptable zeroth approximation to Lhe real problem. It is particularly
useful for studying an aspect of the general I oblem whi-h has received
too little attention, xamely, behavior when the assumption of strict
quasi-static is not erforced. The only treatment of this question is
Ref. *, which is not only complicated but is based on a very thin flame
front as the model for the gas phase.

The two conservation equations, Eq. 52 and 53, will be solved with
the time derivative terms nonzero. By use of Eq. 52, the left-hand side
of Eq. 53 can be written

cp a (pT) + c a (MT)

and with the perfect gas law, the first term is (c /R) ap/at which can
be grouped with ap/at on the right-hand side. It ýs best to work with
dimensionless variables; in terms of ; defined earlier, the equations
can be written

a ( ak )+ C2 P_' 0(11?)

,2 32T + d A2  (113)

ul.ere T - T/Ts, P = m/_ and t now stands for the dimensionless time,
the scale being T. k /m c , i.e., t stands for ( pc /rsk )t. In order
to get results without excessive complications, it will ge supposed that
w is always independent of position. This means that dependence of
reaction rate on temperature can be accounted for only in the somewhat
artificial manner discussed in Section IV-D.

When the quasi-static assumption is dropped, it is no longer possi-
ble to obtain neat closed solutions. Several methods of approaching the
problem will be indicated, but eventually only the first-order correction
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for the case of harmonic oscillations will be treated. With w dependent
only on time, Eq. 113 can be integr:ated once--divide by 4 and integrate
from an arbitrary position to the flame edge where in all cases

dT/d4 - 0. After integration of the first term by parts and combination

of the various pieces, one finds

-Zn (PT)[ T(-)InA2 _(114)

Thus, Eq. 112 and 114 constitute a coupled pair of firsz-order equations
not yet restricted to small motions. For the purposes of this section
only small fluctuations are considered; the linearized forms of Eq. 112,
113, and 114 are

S- i (115)
34 idt( p at

92 _Y = -p 2 (116)

S•O - '= - f + Tf') - en x

x [IL L A2 A2 -tf (117)

The fact that = f 1 has been used, and if' stands for the fluctuation of
mass flux at the flame edge. As before, the fluctuation of flame thick-
ness in Eq. 117 must be found from its connection, Fq. 29, with w and m.
Equation 117 is identical with Eq. 98; to show this tc is necessary to
replace qg' by use of Eq. 96, and to use T rather than ? as the inde-
pendent variable.

Second-order equations for both p' and T' separately can be con-
structed. For example, solve Eq. 117 for u' and substitute into Eq. 115
to find
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2..(l1 +~ d7 d T'

"3 ,r3 , ÷
- f)

-(~~~~i~A HfL] 1 A2 Z

- C 7 dt n C i•

Solution of this equation will give T' and then Eq. 108 can be used to
find U' by direct integration from the surface outwards:

, + J 8 l d dC (119)

Note that us' is connected to the surface temperature fluctuation TS' by
the pyrolysis law, so that Eq. 119 can be used as a formula for pf', the
quartity ultimately required. Since f is an awkward function of 1,

analytical solution to Eq. 118 does not seem possible, although Eq. 118
and 119 could be used as the basis for numerical calculaticns. An
interesting approximation--at first sight extremely crude--is to set the
mean temperature equal to some average value T'a everywhere so that
d•/dt- 0 as well; then Eq. 118 is

C2 12T 1a'•' i d p) A2 w' (120)
=5Z"- 3 Orr dt T- noa

Since C2 a2 T,/a 2 
- (kg/-cp) 2 [ acp '/x k a2'/ax 2 ] (of Eq.3,

the left-hand side is the ordinary heat conduction equation with con-
vection of energy by the mean flow. The right-hand side is oi course
the fluctuation of energy release associated with the chemical reactions.

To see how close Eq. 120 is to a more acceptable approximation,
substitute Eq. 115 for rau'/3C in Eq. 116:

2 a2r 1 a'r' [Y-1) L + A2  + (M2)37• -r y d't + Wd • 11

This is exact within the initial assumptions used, but the difficulty of
course is that u' on the right-hand side is not known. In addition to
the terms in Eq. 120, there appears on the right-hand side a term
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d/dt(p'/'p) which i3 a consequence of compressibility, and the term with
i'' in it, which represents transport of mean energy by fluctuations of
the mass flux. A more reasonable approximation is to set T - Ta on the
left-hand side of Eq. 121, retain dT/d4 on the right, and then worry
about what to do with P'. This procedure will be followed for the case
of harmonic oscillations whose frequencies are not too high.

A. Solution to the Gas Phase for
"Low" Frequency Oscillations

The time derivatives are now replaced according to

at (M 2c

p

where 9 = cw/i-2 is the dimensionless frequency arising in the problem
of unsteady heat conduction in the gas phase, and

( = kc)p = (122)

is a small quantity of order 10-. It is a little easier to work with
the variable E : ý = ec so that Eq. (121) and (116) are

d 2T' dT' ii~c, Ic~... 2 -i+ V, 4 (23
dC2  d& T 1 YI p wj

dW = ic ( T'_p(124)
d T Tr p

In later calculations it will be assumed that Qc is small, the
quasi-static assumption of course corresponding to Qc = 0. To interpret
the meaning of this parameter, rewrite it in the form

p sk

MCp

k 9(TfCTS)Ix f ___

m c p(T-CT) (n/P g)/xf
pfs g

SCp (T f-"S) (ug/xf
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The ratio of mean heat transfer rate at the surface to the rate of
energy transferred by convection appears in brackets; this is multiplied
by the ratio of the average transit time (-f/jr ) for an element of gas,
to the period l/w of the oscillations. Thus, It is the product of these
which matters, not the relative importance of heat conduction or transit
time alone.

The relatively weak assumption will be made that ' = Ta in ifl/T;
in any case, T varies smoothly from unity at the surface to a value of
three or four at the flame, which is a very small change relative to C2
in the second derivative of Eq. 121, i.e., compared with the first two
terms in Eq. 17. It appears that the gross behavior of the results
should not be greatly affected by this approximation, and by doing so
one has the opportunity to obtain results quite easily. For now Eq. 123
is formally integrable. The solutions to the homogeneous equation are
exp(A +C), exp (A_), where

[ + (125)

These of course represent merely the thermal wave solutions. The com-
plete formal solution to Eq. 123 is therefore

h d efC 2  [ d
Tr e, Cl + e" e-d& + e : - e d

where

-1 + ] d'-T (126)

and the Wronskian is

e (e,+ + + ) •

= - (A - X+) e (127)
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Thus, some of the integrals in the solution for T' can be carried out
and T' is!

"c =Cle +Ce +K -

dT -

-e J 11' d- e dE

with

K + At •+(128)
+- p1

The .onstants C1 and C2 are set by requiring that T' = uf uf' and
f - Cz/) FmcpTs = (Qfw/mc pTs )xf' (see Eq. 96 and 97) one finds:

C1 = (Lf'-K) + -IL (129)
+ me T

.eX '-K)+ it (130)
c2 X _-X + -+ (f - M) + YC~ J 10

With these expressions for the constants, the solution for r' can be
written
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T f 1K IA+ q-f) -

T!r' •K i-- .AO -A~

[- e (131)
mc T (A--A
p a

•+-I eEK - (deX¢¢e- '•d -•-dt J
e -A e dý-e7,e d

Since o' is given by Eq. '19, Eq. 131 is still not an explicit solution,
but it is a convenient form for iterative approximations, from which both
T' and (dT'/dE) can be computed.

The zeroth approximation is found by setting fla - 0 in both Eq. 119
and 131; this is of courre the quasi-static case considered in Section IV:
Eq. 119 gives U' a constint through the gas phase, and Eq. 131 reduces
to Eq. 93 or 98 if propei account is taken of the variables, 9 -f-9.
The next and higher approximations may be found by expanding in powers of
ife. Only the correction or order PC will be considered here, so that
the results are valid orly for relatively low frequencies. From the
definitions, Eq. 125 and 128, it follows that X+X_ - -ine/?a exactly,
so that

K- Ta [- in
and to first order

T
a

T
a

With these used In Eq. 131, one eventually finds
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V, P ,(0) + i•€ P,(1)

T TT'(°) + iC T'( 1 ) (132)

where the quasi.-static fluctuations are p,(o) equal to the surface value,
S(o) =f 8s'(°) and

'(o) = '(o) + qe-1(-

meTf _Mc T

PS

•,(o) r• (--f]
_2 2 Le f-1 + -1-f

w

' d•- - Kd - dC

P '(o) e dJ e - d-'dE

Since the mean temperature profile is given by Eq. 45 and • exp(C),

"dT :e d.A2e 1 A2  1-e

The integrals above can be easily carried out %nd T' is

,0 = __ _( )( -1 A2 K! (-- f)l)
f mTc Tf

p s

o - ('(f- )(l+ef)J (1'3)

a 1 + e + Y 1  e + 1
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I
which agrees exactly with Eq. 93 since A2 - (Qfkgw/i•2cpT,); the
constants a,, ... , 61, are defined in the nomenclature.

The first-order correction to the fluctuation of mass flux is
given by the integral of Eq. 124:

Su 1 I) + F L f_
f f

The mean temperature profile as a function of F is

T f T-A 2  [('if-F;) - (I-ef)$-i

which prohibits easy evaluation of the integrals. Hence, in the interests
again of obtaining results, T is approximated by -a. With Eq. 126, one
eventually finds for '(1):

IM ,(1) + y (1 - Ta*) F+ 1 e~

+ j1 {et (&-l)-l} + 6 (134)1 2

Note that the mean value &s - 0 has been used since fluctuations 8s'
contribute terms of second order only. Equation 134 is required in the
first-order correction .1(1) for the temperature fluctuations. However,
the entire profile T'(1) is not required for the computation of the re-
sponse function. One needs only the gradient at the surface, which from
Eq. 131 is

(T (' 'K) [eAXTf-e_+f
0+ cql' .(I,'-I

+ - (AL-A) e -X_e-kEJ+mc-T (+ -_

X J t • +e -A_e (135)
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Henceforth, only first-order terms in Ilc will be considered, and , lu-

ation of Eq. 135 is relatively easy. First in the integral

Ij ET (X+e - ).e )d& (6 (0) + i ()d -nd• i )!
J _ Ta

00

1 ' O)t,2 I - ('f + I) + c - _ + -e d

0

With the very good approximation that terms containing exp(-&f) can be
neglected, one finds

u•'Li e --Ae )4& A2Uf(o) + i [ aA 2  (

d& + - a~

A (a ¥£) + A2  1
T 1 a-
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If the remiaining terms are expanded to order iAfl and terms of order
exp(--Tf) are dropped, Eq. 128 becomes

'()+ i~ 1 -- 4 [ Y.7- L + A2 +(vn

TT) Me Y -(,(o)
90+ a)

- i' -) + isl(o) (- - inc

Xh2in I + f -

T-7a T ar• w- T a

a a aa

+ A2A2.1 2!

The zeroth order terms give

M
+ A' ,- u(o 0_ J (136) A

which is exactly the qua -static results, Eq. 92, evaluated at the
surface. The first-order .erms give

(Ai WA V ,(i)1+ a -a"
Om" " 'Fa f a

1 •(o) yo iTf + X -1 (P I T (137) ,

.• ~The definitions of aI and 61 can be substltured to give a more expliacit '
form. In donlso, further e-snare neglected, based onthfatht

i• ~A 2 - (Qf/cpT' 5)(•n ZfY1 , Qf/i(ci~slf) is much larger than unity (cf.•
S~~remarks followrhng Eq. 57. Although t-f - mcvx/k may be 10 - 2O0,

(r f
A Qf/c T , may be O- -aspf~ smc largers56~s thanta unpi ty (cf.ma
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sometimes be borderline--it shosld be checked in individual cases.
However, it is true that the terms conta-.inug A2 will make a smaller -

contribution in any case, ind if they are retained, subsequent manipu-
lations become very tedious indeed. It appears that the major behavior
will be accounted for, and hence the essential implications of the cal-
culation will be found, if the approximation is made. The relative
simplIcity of the final formula Eq. 165 partly justifies this step.
Then Eq. 137 reduces to

(()

_____ ,(o) 1"(0) 1f )

+ (138)

Some terms containing A2 have been retained to show the only first-
order contributions on the right-hand side. However, these may be
neglected compared with the remaining terms, and one is left with the
quite simple result

,(1) r ,o) )

3 -)= ii. L (0) '(o) ,(0) -(T - (139)
0+ Y mcY

There are no first-order fluctuations appearing on the right-hand side,
which makes later calculations very much shorter than if Eq. 138 is used.
This is of course a consequence of the fact that the normalized thick-
ness Tf is very much greater than unity. It is by no means obvious that
all of the labor following Eq. 131 would culminate in such a result as
Eq. 139.

A second necessary relation among the heat transfer, surface temper-
ature, and flame temperature fluctuations can be deduced by direct inte-
gration of the linearized energy equation, Eq. 116. After change of
variable from C to • and integrating over 0 < < one finds
\{•--!18{1o+=( (-' + f j ') - (r- ' + --fI' -•••T A f•w

3T +y_
Sf-~-L~-- A 2 mc w

Y f (140)
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Once again expand ali quantities to first order in fle to find the zeroth
and first order pieces of Eq. 140:

ST.,(o) ( t(o) + ToPo,(O) (0) + L (o)
(ayo) .(o) , (o) _

+ 0s t,2 W ( f (141)

% PT

'(tIl),(1)() ()0+ q T ; (U). (1) (IT +. T `F

+ c A2 + f (142)
p 6

Note that because of the factor Zf, the last term is dominant. Equation
141 is of course the same as Eq. 99; to show this explicitly requires
use of Eq. 30 which, when linearized and expanded, gives

( -- )- f (143)
SgCf

for the quasi-static contributions. Recall also from Eq. 97 (which is
valid for all linear motions) that

'(o)
-T m -,(o) /d 27 (144a) -

i;i7

ps
d- T~ (144b)

Equations 141 and 133 my be used t o find the fluctuations of flame
temperature, 54.
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The only tesk remaining so far as the gas phase is concerned is to
find formulas for the fluctuations of the flame thickness. For the
qua•i-ststic problem, Eq. 30, w - m/xf, can be used; thus giving Eq. 142
but in the case of nonquasi-static motions, one Lvat return to the origin
of the term Qfw. If one examines the balance of enthalpy for the gas
phase, by use of a control volume, one finds by comparison with the inte-
gral of the unsteady energy equation that the following equality must be
met:

x f
1f dx -m h -sr f hfr

- s (hor - fr) (m- ms hfr

- msQf - (mf - m ) hfr

where hf hsr are reference enthalpies. This corresponds to Eq. 28 for
"steady flow; but here, instead of Eq. 30, one has

W f M - (m - m ) Qf
x f [C f 8 s

Hence, the perturbations are related by

w Xf m M Qf

or, for the first-order terms:

w(I) (I) Uf ) (1) h
(U 'M (145w ,f Q (145)

The value of hfr depends on the thermodynamics of the reactione it the
gas phase. If the gases leaving the surface burn completely to form the
elementary products in terms of which the reference enthalpy is defined,
then hfr - 0 and Qf - hsr. Rather than complicate the results with
another parameter, thit limiting case will be supposed here so thatw•(1)(1) •f *(l)

-=-- U ) -- (146)
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which #iVes gf,() for use in Eq. 1"tb. Because of ths form of Eq. 139,
this result is not required for calculation of the response function;
how'ver, it must be used in Eq. 142 to find the fluctuations of flame
temperature. Note that if one assumes w to be ;iven by the simplest
form (Eq. 64), then w'(1) vanishes, and mf,(l)/gf - Ls,( 1 )

B. First-Order Interfacial Conditions
A

The linearized forms of the pyrolysis law, Eq. 17, and conservation
of energy at the interface are easily expanded in powers of Re to give
the following relations:

Quasi-static
approximutton,:

*(o) - + * ' + ns (147)
O s P *

T. _ +

+ (L + 1-T-(148)

First-order
contribution:i

- 4 +;~) a (l (149)

( (13) i

(x +) TO + 1 -tu (10

Also, the 14nesrized boundary conditions at the surface must be
expanded In powers cf V I. Just as in the analysis of the solid pblse
outliOd in Section Tr. the solutions to the sets of eqt*Uons above in
Section V-A will yield the values at the origin x - , - 0, but one
requires the values at the interfsce located at xx; again, for small
notions one has Eq. 6 and 7, and the corresponding formula for us:
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T 6 T 0++x a d (6)
MTL

S ?T) " o+ + x (d (7)

.+ 0+ 0T-

However, since for the one-dimensional problem dp/dx 0 0, Eq. 151 shows
that us' - Po' and no correction is required for surface motion. In
order to obtain the correct quasi-static limit for w - 0, it is neces-
sary to adopt a coordinate system such that the solid moves at uniform
speed 7 plus a correction uo; then conservation of mass applied to the
interface gives, instead of Eq. 9:

c( u = (0g 5 -g s )

and since pse << PC*

x a~ - (152)

Expand the surface speed in powers of ile,

i - 8 (o) + (ie) • (1) + . . .

and collection of terms according to powers of iM in Eq. 152 gives the
formulas for the successive terms in kc

k (o) - U(0u )

S TC 5S
(1 (153)
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In order to have the origin and the interface coincide at all times in
the limit w - 0, it is necessary that ý,(o) vanish, as argued in Section
III. Hence, the correct choice for uo is

u° = '(0) m= (O) (154)
cc

which has the reasonable interpretation that for a small D.C. (w • 0)
change of pressure, the solid is taken to move from the left at a speed
equal to the original linear burnin_ rate plus the change of linear
burning rate corresponding to the change of pressure. Incidentally, this
value for u appears nowhere explicitly; its presence here merely serves
as a formal justification for the assertion in Section III that values
at the interface coincide with those at the origin in the quasi-static

limit--T'o+ - T., etc. It therefore follows by expansion of Eq. 6 and 7,
and by use of Eq. 153, that the correct boundary values for the various
approximations are:

T, (o) T (0) (155a)

4(o (0ig

1 \•xs+ =•)o+(155b)

C.Fist-O(de) C ton (t) , e) FcI

6 0 + 9 x0+ 0

-+ x f) mp(d2/o (156b)

and similar equations for the higher order terms.

C. First-Order Correction to the Response Function

By definition, the response functiou R is the ratio evaluated at
the downstream edge of the flame
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(m'fnm' f Pf

p' • p'/p

"R(O) + (o) R

when cqr~ied out to first order in in. The calculations of Section IV
give Rk°), the response function subject to the quasi-static approxi-
mation, R(O) u •,'(O)/(p,/'; the task here is to compute

= (157)
p /

Equation 134, evaluated at the edge of the flame and with terms of order
exp(-Tf) and l/ff dropped where appropriate, leads to the formula for
P'(I) :

+ [o

s a m c T
hf =)?() ~.[~(0) -(0 P11_

+ !L= + 11 - 7

Thus, with Eq. 142, the first-order correction to the response function
is

R(1 (-

c fy ) p/p it (ppI)

x (0o) ( o) + ½ w + (o)) (158)
XMc mT w a/

Equations 139, 150, 153, and 156a-b combine to give

Y-( + I qf (o) -,(o) f-r- 6)
,(i r C (p'/P) _P S

c P s (159)

x+ -+ I -A + -5
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where a - (kcc 1k c). Note that Ts'() vanishes in the limit of zero
feequency, whilethe fluctuation of heat transfer is finite.

From Eq. 141, 4
(To-- . (*,,(° _ (o) T -(°)

(A4+1) 1+ A 2 T(o

l-T /TCs

I •" w (o) (o) (160)

and Eq. 159 becomes

,(1) T- (o)

IP/P (161)
p'pA aE/7F'P p *7A+ -nn HA + 11I

The term (aE/tf)/iV' is, because of the large size of g, negligible except
for very small values of in2. I:s effect on the response function is there-
fore insignificant, because Eq. 161 is multiplied by i•c in the response
function. Now with Eq. 160, Eq. 158 becomes

(1) A (s_

1-T /T 8 p, )
Pf +' A '()T

+ T: [ .V +A___-- (162)
S602(1 K pw/ a
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Now from Eq. 64, with

-- -W l - P

w p Y p

cp 
S P

Thus, because of the factor Tf2 , the dominant terms in Eq. 162 are the
terms involving w'(0); approximately, then:

R ?f
a Lp T

S 1 + - (163)+ A ._ýL E _ _ £ c

iS f

and with all these simplifications, the response function to first order
in Pe is

nAB + n -) +i- W cTR--- + OE• =--. ýf7 1 - cS
A I fc T-+ - (1 + A) + AB a p T

[ f+ A E](164)

f

It io somewhat surprising that such a simple result can finallybe obtained. The primary rear'.-n for this, as remarked above, is formally

that the normalized thickness of the flame, Tf, is large, and it is
possible to throw away many co: 1tributions. The physical meaning of this
dimensionless quantity may be seen by writing it as

mc

g

kg( •Tf /
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The numerator is roughly the net flow of enthalpy through the gas phase,
and the denominator is an estimate of the heat transfer from the gas
phase to the s,.lid. Thus, large Ef implies a relatively small heat
transfer loss from the gas phase to the solid, a connection which also
follows from Eq. 49 and other results arising in the solution to the
steady-state problem.

Now the second term in the square brackets of Eq. 164 is, under
practical conditions, not huge, whereas the first tetm is; hence,
finally, the response function can be written approximately as

nAB + n (A-1) ic3 2 -w (165)R r-- + (ifleý -1 f TR= A '2--f--
X + -(i+A + AB P a

The first-order correction in frequency, therefore, mainly affects the
imaginary part of the response function.

The term propirtional to Tf2 in Eq. 165 arises from the formula for

)if,(1), just before Eq. 158. It is effectively the integrated effect

of the energy release fluctuation over the gas phase: note that
w'(°)/-wTfp'/F according to Eq. 71 and the manipulations following
Eq. 162. The energy relea3e enters through its effect on the temper-
ature profile in the conservation of mass, for example, as shown in
Eq. 124 and subsequent integrations.

One therefore has the following interpretation Lor the major
correction shown in Eq. 165. According to the conservation of mass,
Eq. 52, the fluctuation o" mass flux depends on the rate of change of
temperature with time, anti hence m' (i.e., p') is out of phase with V.
When the entire gas phase is considered, the dominant contribution to
the flztuation of temperature is the fluctuation of energy release,
which is, in the simplest case, in phase with the pressure fluctuations.
Hence, since the energy release and associated temperature fluctuations
are in phase, the net result is a contribution to the mass flux which is
out of phase with the pressure changes, the last term of Eq. 165.

The fact that the correction term in Eq. 165 can be quite large,
end yet the real part of the response function is not much affected, is
a significant result. Earlier numerical calculations in Ref. 11 indi-
cated that the real part of the response function g!ven by the strictly
quasi-static analysis did not differ much from that gliven by the results
of Ref. 6 which did account for nonquasi-static behavior of the gas
phase. Moreover, the real part of the quasi-static formula, the first
ratio in Eq. 165, does give remarkably good (at least qualitatively)
agreement with experimental results. However, the analysis of Ref. 7,
in which both the real and imaginary parts of the quasi-static formula
were used to interpret data, ahowed very serious discrepancies. These
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earlier observations are all accommodated qualitatively by the result
shown in Eq. 165, that nonquasi-static behavior contributes overwhelm-
ingly to the "out of phase" component of the response function.

It must be emphasized, however, that this does not mean that one is
free to determine numerical values of A and B by comparing only the real
part of the response with exper!anental results. In this respect, the
discussion of Ref. 7 is of course valid. The charts developed in that
work will, however, be substantially changed if the correction term of
Eq. 165 is taken into account. This will be treated in a subsequent
publication.

I
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