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ABSTRACT

An algorithm for solving Dantzig's generalized programming formula-
tion of continuous-time linear~system optimal control problems is devel-
oped. Dantzig's work is extended to include continucus-time versions of
quadratic loss criteria and minimum fuel problems. New results in param-
etric linear and quadratic programming problems, where the parameter
dependence is nonlinear, are derived with internal schemes to avoid
cycling due to degeneracy. Finite switching results in the completely
linear system, including the minimum fuel and minimal time problems,
are presented without assuming Pontryagin's general position principal
or uniqueness properties., The procedure initially finds a feasible and
edmissible solution to the continuous-time control problem without using
discrete approximations., The algorithm continues to converge monoton-
ically to the optimal solution while remaining feasible and at each
stage, provides a bound on the value of the loss function for termina-
tion purposes. This procedure is well suited for systems with a rela-
tively high number of state variables and control inputs for whkich dis-

crete time linear or quadratic programming models become too large.
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Chapter 1

INTRODUCTION

With the advent of efficient and large-scale mathematical program-
ming techniques, computationally feasible methods are available for op-
timal control problems. The pjurpose of this paper is to present an
algorithm for solving continuous-time optimal control problems with
linear dynamics and various loss criteria. Due to the mathematical
programming techniques used in the algorithm, it is well suited for
large-scale control problems, i.e., control problems with large numbers
of state variables and time-varying control inputs. This work consists

of two main results that are combined to develop the algorithm,

In Chapter II, we describe the types of control problems considered,

including basic definitions and notations for these problems. The basic
results in control theory and certain necessary conditions for optimal
control, as described by Pontryagin et al. [1], are also presented.

In Chapter III, the algorithms and basic theorems for linear pro-
gramming and the simplex method [2], quadratic programming and the
complementary pivot theory [3], and the Dantzig-Wolfe generalized pro-
gram [2] are presented.

The first main result, an algorithm for solving parametric linear
and quadratic programming problems, when the objective function is non-
linear in the parameter, is presented in Chapter IV. Also presented is
the class of nonlinear functions for which this algorithm is valid. The
finiteness of the algorithm, including avoidance of cycling due to de-
generacy, is then proven, The characteristics of the optimal solution
as a function of the parameter are also described.

The second result, an eatension of Dantzig's [9] formulation of
optimal control problems as generalized programs, is presented in Chap-
ter V. It is shown that any optimal control problem with the following
characteristics may be formulated as a generalized orogram: (1) the
svstem must initiate from some point in a specified region of the state
space; (2) the state at the fixed terminal time can be chosen from an-

other convex region in the state space (fixed initial and final points
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are included in these definitions); (3) the state of the system is con-
trolled by linear differential equations; (4) the admissible control
region is a convex polyhedral set (for each point in time) in the con-
trol space; (5) the loss criteria is a linear functional in the state
and control and/or a quadratic functional in control and/or the absolute
value of the control inputs (minimum fuel), or the minimum time. It is
further shown that these continuous-time optimal control problems have
an equivalent generalized programming formulation in which the master
problem is a linear program of two or three plus the dimension of the
state space. The subproblem to the master program is a parametric pro-
gramming problem of the control space dimension and is solvable by the
methods presented in Chapter IV, This subproblem yields an extreme ad-
missable control that, when used with previously found extreme admi:s-
sable controls, gives a solution that is closer to a feasible or an
optimal one,

The algorithm and its variants are presented in the second part of
Chapter V. A {low chart of the algorithm is given, along with a descrip-
tion of each execution. Also included is an initiating phase that ter-
minates in a feasible solution of the control problem. On completion of
the initiating phase, the algorithm maintains a feasible control while
obtaining new controls; these new controls yield better objective values
without disturbing the feasibility. Upper and lower bounds on the op-
timal objective value are provided at each stage of the algorithm.

In Chapter VI, the characteristics of the optimal controls, without
any additional assumptions on the system or on the uniqueness of the
solution, are presented. Also included are the relationships between
the necessary conditions of Pontryagin and the generalized programming
results. Between these optimization conditions, a link exists in the
dual veriables of the generalized program and the adjoint variables
associated with the optimal control problem.

To clarify the algorithm and indicate its computational feasibility,
a minimum fuel problem and a minimum time problem are solved in detail
in Chapter VII., The convergence properties and solution procedures are

illustrated with data obtained from computer runs.
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Chapter II

3‘ OPTIMAL CONTROL

AN T
1.\'%_!

oy This section defines an optimal control problem and Pontryagin's
Erir

.ﬁﬁ necessary conditions for optimality. The emphasis is on those linear
AR

Y systems for which generalized programming equivalents can be formulated.
(k
_Rz A, Definition of Dynamic Control Systems

At

ﬂ:x The basic control problem can be described by the differential

§§ equations:

.

ot

) dxi

;3 il =97 = f (x Xy Uy e, U t) i
'.

o (2.1) g
; i=1, 2 y by,

Al

i

]

NN

) where

i’

& | .

- mx, ()]

s 1

i) x(t) = . (2.2)
-

[\ - x_(t)

@ - n -

’-? is the vector of state variables or phase coordinates which describe the
Y

.Rg trajectory of the system in Euclidean space through time. The control
ﬁ% function is the vector of control inputs

‘-‘

B M, (1)

”{f 1

9§f

i u(t) = (2.3)
ey

¥ u (t)

1 = m -

[

e

?%s . which influence the state through the differential equations. The sys-
;# tem at some initial time, to’ satisfies the initial conditions,
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x(t) e s CE" . (2. 4)
(o] (o]

Thus the system may have an initial point x(to) at any one of the poin
in the set, So' At a terminal time, T, the system is required to lie

in some region, i.e.,

x(T) ¢ §.C o (2.5)

The time T may be free or fixed, and the sets, So and ST’ may be

fixed points.

B. Admissible and Feasible Controls and Reachable Sets

The vector control function, u(t) must be specified at every t

and is required to lie in an admissible control region, U where

_t)

u(t) ¢ Ut cE , Vt. (2.6)

Definition 2.1, An admissible control is any vector function, u(t),

f}‘ ‘w?;-‘-"{‘?‘% "'I";_ } 4“”",] (’-r'\f\"{ﬂ'mx)
} \ Wb H {"

for which

u(t) e U, c ", vt e [0,T] ,

where [0,T] denotes the time interval (t|0< t < T},

The objective of the control problem is to find an admissible con-
trol function that transfers the state from some point at to to an-

other point at T, while minimizing

= . e . (2.7
J ./: fo(xl, vees X ul, , um, t) dt )
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It is convenient at this point to define another variable ,

i it
xo(t) .j: fo(xl, ceen Xpa Uy e U t) dt , (2.8)

(o]

and to let

x (t)
o
x(t) = . (2.9)
x(t)

Thus,

x =1 (x,u;t) , x(t) =0. and J =x (T) . {(2.10)
) o o o o

Definition 2,2, The reachable set, denoted by R, consists of a set

v T

of terminal x(T) of admissible solutions to the control problem,

without the condition x(T) ¢ ST'

R, = {x ¢ En|x = x(T) ,

where x(T) 1is a solution to (2.1) at t =T with

x(t) eSS , u(t) ey , Vt)
o o t

Note that for the fixed final time, T, if

there is no admissible control to transfer the system from an initial

int i ) to a int i S,...
. poin n o point in -
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oy
;/,‘-1.1
i
Lk
h'ﬁ Definition 2.3. A control function, u{t), defined for ¢t « [tO,TJ is 5
Al e 3
:!r-"l a feasible control for the optimal control problem if it is an ad-
DALY ,
i'& missible control and transfers the system from some state x(t )«¢ S
o) 0
r to a state x(T) ¢ ST while x(t) satisfies (2.1). Note that a h
|
}}5 feasible control exists iff 1
& S. N R s
®) v Ry %
‘a1
Akt
;éfz In the optimal control problem, we are searching for a control
)
::..) function, among all feasible controls, that results in a minimal value
12,
13 ©
2
[${§ Assumption 2.1, We will now restrict our attention to func.:ons fi,
B8
,}_j for i =0, ..., n, which are autonomous, i.e., they do not depend
8" explicitly on time, We will also assume that the fi functions for
,.1:-‘:'; i=0,1, ..., n, are continuous in both x and u and are con- ;
AR
ok tinuously differentiable with respect to x.
<
"'"A:"\
:g : C. The Adjoint System and the Hamiltonian .
o
‘{.'L_’j-' For any given u or x(o), let x = x(t) be determined by
AN
et
e
- x. = . (x,u) i=0,1 ..., n.
sty i i
For this choise of u, x(o0), and the resulting x(t), we definc the
adjoint system, \}'0. ‘1’1, e o) \yn, by
d\yi n afk(x,u)
Yw =30 °" z 5% ¥y
i
k=0
e
i=0,1, ..., n , (2.11)
where the partials are evaluated at the above x(t), u(t), The solution
]
to (2.11) is related to the choice of control, u(t).
SEL-68-085 6
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The Hamiltonian is defined as

H(Y,x,u) = ¥'f(x,u) ,

where V' 1is the transpose of

M
o
wl
¥ = ,
¥
e n_
and
s f ,u
f{a o(x )
e 1, Gou
2
VP f(x,u) =
D
v
f (x,u)
—n —
Thus (2.1) and (2.11) become
. OH
= - 2.1
xi g\y—i- ( 8)
s OH
= - 2.11a)
Yl % ( a

e~——] T

=
—

q D. Pontryagin's Conditions for Optimality

e

-
-

(&)
'-. When the initial and final points, x(to) and x(T), are not

are assumed to be smooth manifolds or

0

fixed, the regions S and S
o T

convex sets. A necessary condition for optimality in this case 1s that

the solution to (2.1) and (2.11) satisfy a transversality condition.
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"ij Let x(to) € SO and x(T) ¢ ST be given points on the boundary of S
o
?'S and ST: and let Do and DT be tangent planes of So and ST at
:‘ these points. Then the solution satisfying (2.1) and (2.11) will also ;
N »
:ﬁf satisfy the transversality condition, if w(to) and VY(T) are the
[.\
j:ﬁ directions of the supporting hyperplanes, Do and DT’ of S0 and
AR
{4 S, at x'to) and x(T), respectively.
L Necessary Conditions for t < t < T. Let u(t) be a feas-
ph —
O ible control with a corresponding trajectory x(t). For u(t) = u*(t)
L to yield an optimal solution to the control problem, it is necessary to
! —
FU, have a non-zero continuous vector function V¥(t) corresponding to X(t)
33 and u#¥*(t), (2.1) and (2.11), aad satisfying the transversality condi-
i
(T, tions so that
}x:'
o
i ’\.""
e (1) For t e [t ,TI,
‘,‘ (o]
3 4
s - - Sup — = .
>0 HIX(U), u*(t), ¥(U)] = HIX(t), u(t), ¥(1)] .
K00 u(t)EUt
Y00
2 *
K >
L33 and
by
a N !
‘,J_A-n
Y (2) ¥y (T) <0.
1y
{}4
-'J."
O E. The Linear System and Control Constraints
e ]
,fﬂ A linear system is defined as a dynamic system in which the
-%;; fi(xl’ ceer X ul’ cees um) are linear in x and u for i =1, ...,
{jg n. Note that fo(x,u) need not be linear., This linear system can be
I‘% described by two matrices, F and G, as
19N . n m
B x(t) = Fx(t) + Gu(t) , x(t) € E , u(t) ¢ E , (2.12)
2%

LA

where F is an n X n real matrix and G is an n X m real matrix.

L)
ey , F(1-1)
1948 The linear system has a fundamental matrix [4] e that has

o

v
=
S

the property of transforming x(t) by:

l-
[

=

2

: =

Pl g
ety

o
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T
nj‘.
§§: -
el F(t, -t )
3 1 0
§ x(t)) = e x(ty)
;
VZ when u(t) = 0 for 7T ¢ [t tyt ] This fundamental matrix arises from
e the solution of the differentlal equations in (2.12) when u(t) = 0,
The solution for any function u(t) is

i

o\ F(t -tg) t, F(t -7

il x(tl) = e x(to) + ./. e Gu(T) dT . (2.13)

' t
0

) j
3 When u(t) € U for all t and x(t.) € S, the right-hand side
A t 0 o

f ' of (2.13) determines a point in the reachable set of Ut' So’ and time
;F tl. Hence we can state, for linear systems, |
ol

\;}

)lw

W 1

3:5; Rt ={x € E |X=x(tl) ,

1

: )

A F(t -t) t F(t,-1)

& 170 1

IgN! x(tl) = e x(to) + f : e Gu(Tt) dTt ,

".&;\; t )

] L

gh

4_3- u(1) ¢ Ut , T € [to,tll ) x(to) € sO .

I

4

.*:},}_:{

L L

’ Throughout this paper, we will consider problems where Ut =

Uc Em, i.e., the admissible control set is constant over time. We
also assume that U 1is a bounded convex polyhedral set, i.e., it is

bounded by hyperplanes in m-dimen.ional space. Note that any convex

polyhedral set can be expressed by
U={(uce E" |Au < b)

for some real fixed matrix A of dimension q x m and for some real

vector b of dimension q.
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£
In the following, we will permit the initial and terminal sets, So
n
and ST Cc E, to be convex sets, j
[
Note that fi(x,u) = f;x + giu, where fi is an n-dimensional ‘
Al "
vector and gi is an m-dimensional vector. fi and 8, are the it]
rowvs of the F and G matrices, respectively,
|
F. Loss Functionals
In this section, we will describe the different classes of loss
functionals. These loss functionals, when combined with linear systems
and the above restrictions, can be solved by mathematical programming
techniques that are developed and discussed in the next two chapters,
Case 1. Linear Loss Functionals.
We define the linear loss case as one that includes all loss func-
tionals of the form
‘
u) = f'x + g'u
fo(x, ) X B
1
wvhere f and go are any real n and m component vectors, respec-
o
tively. Thus, we can define linear systems with linear loss functionals
as completely linear systems,
Case 2. Minimum Fuel Problems.
A certain well-known minimum fuel problem is characterized by loss
functionals of the form
m
f(u) = zz [u,| .
i
i=1
Case 3. Quadratic Loss in Control, 1

We consider a function a quadratic only in the control vector,
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f(u) = u'Qu ,

where Q 1is a positive semidefinite matrix.
When a linear functional is added to f(u) and modifications of

Cases 2 and 3 are permitted, the three cases are:

f (x,u) f'x + g'u + f£(u) , 4
0] (o] o

0, Casel

where f(u) Zlui| , Case 2

e u'Qu , Case 3
R
)
‘t
wast (If fo(x,u) = f(u), then fo = 0, and g, = 0.) Thus the control
1 ' problem can be stated as
-
Jeu
%; Minimize xO(T) ,
iy
1 . _
0 X = Fx(1) + Gu(t) + f(u) UO ) (2.14)
]
A
el - -
o 1y
- where F = |====1=--=- >
0
% :
) . 1
) ] : 1 F
N i
\' 0 '
ik
".\‘;': ]
iﬁ €
N G = |oeme- .

B T Lis
Tl 15
<y

and
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1
0
U = € En q 4
0]
—o—

x(t)esS , x(t)=0
o o o o

x(T) € ST , and

S ,.
S

1
)

u(t) e U= (u e E"|Au < b}

(=R

£ gy ano
2 lvk‘g-.’.i-’?z" =

The minimum time problem is also concsidered where T is not fixed,

S and S are fixed points, and x (T) =T - t .
o T o o 1

For linear systems described by matrices F and G and a given

g

gﬂﬁ polyhedron, U, Pontryagin defines a 'general position condition." This

e

el n-1

W%# cendition is satisfied when the vectors Gw, FGw, ..., F Gw are lin-

7

~:? early independent in E" when w has the direction of one of the edges ]

of U. For such systems, at each point of time, ¢, the function 3
Y(t) 'Gu(t) achieves its maximum at only one vertex of U, except on a ‘
set of measure zero.

Before proceeding further with the development of an algorithm to i
solve these continuous-time control problems, some of the existing tech-
niques used in solution procedurecs should be mentioned briefly. Three

of these techniques are mentioned here,

Lirect Methods [5]. 1In these methods, admissible and, if

;;ﬂ possible, feasible controls are chosen to start. The gradient of the
IQ?] cost functional (or, if the starting control is not feasible, a
»és Lagrangian form that takes feasibility into account), with respect to
o
S the control function, is determined. Then, by using gradient or steepest
=B ]
E-b descent methods, a new control function is chosen to improve the ccst
S
i{ﬂ functional (or Lagrangian).
Sa%Eg
g~] Indirect Methods [6]. Indirect methods primarily seek solu- .
il.ll .'
3 7] tions to the necessary conditions for optimality. Some methods use
L
W{: SEL-68-085 12
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[A)
arbitrary initial or final conditions for the adjoint variable. In this

case, the differential equations, (2.1) and (2.11), are in:-erated to
find solutions for x(to); during this procedure, a solut® i to the
necessary conditions is retained, if possible. If x(to) is not equal
to the original (known) x*(to), the gradient of some cost functional,
based on the distance from x(to) to x*(to), is used to determine a

new guess for the final time adjoint variable values.

Discrete Approximations [7,8]., Mathematical programming tech-

niques, e.g., linear programming or gradient projection methods, are
usually applied to a discrete approximation of the continuous-time prob-
lem, In these approximations, the system is considered at a prescribed
sel of instants in the interval [to,T]. Only at these times are the

control inputs allowed to change. The differential equations are then

approximated by difference equations for each time considered. Math-

| ematical programming techniques are then used to solve the approximation.

? ; Each of the three techniques mentioned have their disadvantages.
O
3*% The direct methods' disadvantage is that a feasible control must be pro-

\ vided initially. If not, the convergence methods cannot be guaranteed to

terminate with a feasible solution. Also, the efficiency of convergence

'.
r,':l;. Y e

is highly dependent on the initial guess. The indirect methods also have

X
o CalTaly

a disadvantage in that they do not provide a feasible solution untili the

o

final step. At times, the determination of a feasible solution is the

major problem in optimal control. The basic disadvantage of discrete

5

approximations steas from the large number of variables or equations
introduced by the approximation process.
The methods developed in this work combine the features of both the
direct ana indirect methods and use admissible controls to find a fea- i
sible solution. This combination continuously reduces the cost while it :
retains the feasibility and converges on the optimum values of the ad-
joint variables. Thus the problem, at any iteration in the optimization
phase, has a feasible solution available, and the present solution has a

measure of closeness to the optimum solut:on [9].
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Chapter III
MATHEMATICAL PROGRAMMING

In this chapter, the algorithms available for solving linear and
quadratic programming are reviewed, and the theory of generalized pro-
gramming is described. The choice of the simplex method for linear
programming problems and the complementary pivot theory for quadratic
programming problems is dictated by the ease encountered in using the
parametric programming methods presented in Chapter 1V.

It should be noted that any bounded convex polyhedral set can be
represented (possibly after a change of variable) by the set
X = {x|Ax < b, x >0} for some real matrix, A and for some real

vector, b.

A, Linear Programming

The standard linear programming problem can be stated as

minimize 2z = c'x

subject to Ax (3.1)

IN
o
oo}
=]
o

X > o,

where x € En, ¢ 1is a specified n-dimensional vector, b 1is a speci-
fied m-dimensional vector, and A is a given (m X n) matrix,

Since minimizing c¢'x is equivalent to maximizing (-c')x, only
minimization problems are discussed. Hence, problem (3.1) seeks the
minimum of a linear (convex and concave) function over a convex poly-
hedral constraint set; if the latter is nonempty, a solution exists
and is known to be at an extreme point in the constraint set. Thus we
need only consider basic solutions to problem (3.1), i.e., solutions in
which no more than m components of the vector x are positive and
whose column coefficients are linearly independent in rows where Ax < b

is satisfied with equality.
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%‘ The dual problem to (3.1) cen be expressed by i
[\
4
_l
;% minimize v = by
&
) A
6:55 subject to A'y > c (3.2)
e .
;g.é y>0, yeE
g
}:R The duality theorem of linear programming can be summarized in two
AN
i ﬁ Statements:
e
& ﬂ (1) for any feasible x,y [satisfying the constraints of (3,1) i
BN
ol : and (..2)7,
O
L
i ' '
g ) c'x >b'y , and
o
? (2) for the optimal x*,y* of (3.1) and (3.2),
Al o]
" -n.¢l
ok
Y (Ax* - b)'y* = 0 l
§¥ complementary slackness conditions
: (Aly* - ¢)'x* = ‘ !
A
il
Qf If the x vector is augmented by m components to include slack vari-
3; ables and the matrix A 1is augmented by I, the constraint inequalities
Y
o are equivalent to
) \}{
A
;#_ﬂ Ax = b
t "\.
-..‘;31‘ (3.3)
W AN x>0,
L) -
i
i where A and x are now the augmented matrix and vector, respectively.
Since we need only investigate the extreme points of the constraint
set, we need only allow basic solutions corresponding to choosing m '
linearly independent columns of A,and the components of the vector x |
corresponding to the m columns of A. The m columns of the augmented
A form a nonsingular matrix B, called the basis matrix. The corre- J

sponding componeuts of x are called the basic variables. Hence, a
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basic feasible solution to (3.1) is one in which the values of the basic

variables are nonnegative, and all the other variables, called the non-

Qﬁ
it

F

] basic variables, are at value zero. Let Xg represent the vector of the

basic variables corresponding to B. Then the pbasic solution to the

linear equations in (3.3) is

T 255 wia & Fhnm
Al

x_ =B b,

Jq B
0
):' x, =0 )

;g 2L

I'!

5

$ where i 1is nonbasic., This is a basic feasible solution, provided
; x_ >0,

\" B -

The Simplex Method. The simplex wmethod is reviewed in detail,

since a variation of it is employed in Chapter IV for the parametric

programming procedures. This method is presented in matrix form. Here,

—— —

the linear program

‘i‘-“h“
-

minimize 2z = c'x

@

;a subject to Ax = b (3.4

R,

f X > 0

)
3 {
P is observed, and the augmented system of equations

4‘ | g
R l
A M

?‘ 1 -c' Z 0 -
;‘ = (3. 5)

.ﬁ 0 A X b f
K A
! . ,
= is used. i

2 Given any basis, B, 1let the augmented basis be ﬁ, where

oz}
P e e g B

kD 1 -c!

\1 E = )

{ 0 B

;
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and rewrite (3.5) as

where

o

Ay ugid Mo iatiad el iai
—c! P
B °R
B R
)
, and

B2 0 \ S5 1 kil Ma ki gat
Bl Vi 1y favitic/alavalakanabava e

Z 0
B |~ '
R b

*h

(3.6)

(3.7

Ry

A,
e

SR Al

CB is the vector of the components of ¢ corresponding to the basic
iabl g
variables XB _
Since B 1is nonsing lar, B is also nonsingular;
| 1 c'B-1 T
B
—-1
B =
0 gl
- -
-1 . q
Multiplying (3.6) by B and then rearranging it, we get
o —— -1— —  — N 1 —1
et —c! '
z 1 cBB 0 c +cBB R
= - Xp
- -1
*B 0 gt b B'R _
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By setting the nonbasic variables, XR' at level zero,

alSlea s

;g — T [ - — — - — —
’é S X 1 crBt 0 c'Bth cLxy
P
& ) ) ) ’
& Xg 0 p~t b B h 571y
v R R B | A S 4 L
|4
.;r“ 1
3 where x_ =B b

Sy

-1
If B b is a nonnegative vector, the basis B is feasible,

2
FAm |

and thus the current solution is a basic feasible solution.

- “.Mc-
ot o

s
s

Look at any variable x‘j with a corresponding column Aj

and a cost coefficient <c¢.; this variable's column in the transformed

system of (3.7) is

s

e g L

o

P B T N T o, e

i e
o ¥
I
ey

[ B A‘ ) (3.8)

=
|

i
iy - -f' w
D i e

- th
If x, 1is a basic variable, B 1Aj is the r unit vector, if Aj

4

iy

th
is the r column of B, (Note that, in this case, ¢, would be the

: th
rth component of CB’ and xj would be the r component of xB.)

Thus the first component of (3.8) bhecomes

o e .
T,

—c,+C'B-A,=—C,+C,=O;
J B J J

3 l'nj«.:, ‘1 &

moreover (3.8) is a unit vector.

R
g

Sl

=il , ,
Proposition 3.1, If all cj - céB Aj > 0, the current basis B is

optimal,

e i
et At A LI
~

2

Proof of Proposition 3.1.

LA

Assume O = c, - c'B-lA, > ), V.; then, from (3.7) and (3.8),
J J B J - J
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z =c'B 1b + ZLb,x,
3 JJ

Note that oj = 0 for |j corresponding to a basic variable. Thus any

change {from the current solution would result in an incrcase of some

xj (nonbasic), and the value of 2z would increase or remain unchanged.

Hence no improvement in the objeciive is obtained wvith any other

3;

solution.

y .E.D.

g ©

3

(2

& From . m 1, we have an optimality condition for any

Y

(W feasible basis;

b gt 0 v (3.9)
. =¢, ~¢c!'B A, > ) . 5

‘ J j B =" J

&

;;% If, on the other hand, the left-hand side of (3.9) was strictly negative,

B

?{! for some j = s, then increasing xs and adjusting the values of the

basic variables until one dropped to value zero (thus replacing a current

AT

basic variable) would decrease the objective function, provided xs !

4

i
%3

Q

entered at a positive level. The simplex method changes the basic set
at each iteration with the entering variable, xs, designated the non-
basic variable with the most negative relative cost factor, oj. The
exiting variable is the first basic variable to be driven to zero as

the entering variable increases cbove zero (assuming nondegeneracy and

ktounded solutions). The method terminates with the current basis being
optimal, when (3.9) is satisfied for all variables,
When the variable X is chosen as the entering variable, the

exiting variable can be determined by examining the ratios

(B_lb).
g2 | -—~if——i-, for all i, (3.10)
= | (87°A ) .
iy Sh
i r
b :
ﬁfs where (B As) ~ 0, From (3.7), the current basic variables are ex-
- 1 i
*gﬁ pressed as
i
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Thus the first variable driven to zero in the vector X5 is the one

'jﬁ corresponding to the minimum of the ratios defined by (3,10).

2 The simplex method can be carried out in two ways. The first
way (called the revised simplex method) is to substitute AS which cor-
responds to the entering variable xs for Ar which corresponds to the
exiting variable xr in the basis B, With this substitution both the
new solution and the relative cost factors can then be calculated. The

second way is to pivot in the augmented matrix

-1 0 cR cBB R

-1
about the term (B RS) , where s corresponds to the entering vari-
r
U able and r corresponds to the exiting variable, The pivoting opera-
tions do not change the canonical form of the basic variables which

remain basic, but they do force the column

to the canonical form of

th .
© where e is the unit vector with a one in the r component; this
r

will alter all of the other columns corresponding to the nonbasic
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variables. Note that once a feasible basis is determined, the simplex
method insures that all succeeding bases are feasible.

To obtain an initial feasible basis, phase I of the simplex method
adds artificial variables to (3.4) and solves a new linear program. Let
E be an m X m matrix with only diagonal terms, and let e,, = +1, if

11

bi > 0, and eii = -1, if bi < 0; then, the new linear program is

m
min z = ZE v,
i

e
[y

x>0, v>0, (3.11)
and the solution terminates in a basic feasible solution to (3.4), when
the simplex method is applied to (3.11). The optimal value of 2z 1in

(3.11) is zero iff (3.4) is feasible.

F. Quadratic Programming

The standard quadratic programming [3] problem can be stated as

minimize z = e'x + x'Qx

subject to Ax b

v

X

v

o, (3.12)

where x ¢ En; ¢ 1is a specified n-dimensional vector; b 1is a speci-
fied m-dimensional véctor; A is a specified (m X n) matrix; and Q
is a specified (n X n) matrix, It is hereby assumed that Q is posi-
tive semidefinite.

Since problem (3.12) is a convex programming problem, the Kuhn-

Tucker necessary conditions are also sufficient conditions for optimality.

Thus a sclution, x, to the following necessary conditions is an optimal

solution to (3.12),
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u=c+ 2Qx -A'y >0
i ]
v ==b + Ax > 0 :
X >0
¥
y >0 !
u = - i : ?
X34y 0, Yivy 0, Vi . 3.13) h
If we define i
T u X g
|
w = s z = ’ :
L.V y
2Q  -A' c ¢
M = , and q = , ﬂ
A 0 -b
|3

the necessary conditions may be written as
w =Mz + q
(3.14)
w,z >0, Wiz = o, Vi =1, ..., p, |
where M 1is p X p. Ik

Complementary Pivot Theory. Problem (3,14) is a statement of

the fundamental problem of the complementary pivot theory [3]. Although v
(3.14) is solvable by this theory for various classes of M, the dis- ?
cussion here will be restricted to M being positive semidefinite, as

it is in the quadratic programming problem (3.12).

Note that we are looking for a complementary solution to the .

linear equations in (3.14), i.e,, a solution to b
\3

w =DMz + q, 3
23 SEL-68-085 1
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= 0, Vi, We will initiate with a solution that is comple-

oy Sy W T ik

witl
1 Wizi

mentary but that may not be nonnegative. We will then retain this

(J

-
-
¥

ot
ig complementary property while seeking a nonnegative solution. <
) ¢
f £§ The problem in the structured form of
T
o
. z z
o 1 p
L)
P W q m ~
f.*@;,-' 1 1 11
‘mtd
.‘T;,\lf‘. . . .
b S IR ' ’ (3.1%)
J\ : w q ~ m
gf p P pp
&
P
)4Rg is observed with the transformations being made by substituting a vari-
T
?c%} able 2, (or, in later steps, some wi) in the extreme left column,
()
N replacing a variable in the column, and then pivoting on the system of

equations by changing the column ¢q and the matrix M. The variables
in the left column are called basic, and the variables in the row above
the matrix M (or M after transformation) are called nonbasic. The
problem is initiated by setting wi = qi and zi =0 for all i. 1If
any qi is negative, pick the wi corresponding to min qi, and let it
be a distinguished variable., The following can be taken as a genersl
iteration,

Increase the complement [defined by (3.14)] of the distinguished
variable and determine the blocking variable which is either

(a) a bhasic variable being driven below its lower bound (usually
zero) by an increase of the driving variable, or

(b) the distinguished variable which is driven toward zero.

[The first variable to block in either (a) or (b) becomes the
blocking variable.]

If the blocking variable is not the distinguished variable,
then replace the basic blocking variable with the increasing nonbasic
(driving) variable by pivoting about the point Ers in the matrix M,
where ﬁrs is the term in the current matrix that corresponds to the
st column (the driving variable) and the rth row (the blocking vari-
able). Now increase the complement of the former blocking variable

(now nonbasic) until a new blocking variable is found.
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g
Y
A5
5; I{f the blocking variable at any stage is the distinguished
K\/
{ variable, make it nonbasic at value zero and make the driving variable
-y
?h o basic (by pivoting).
;. At this point, a complementary solution exists. Then look
'ﬂ at all ﬁi (determined after pivoting) and choose the most negative to
;;' determine the new (basic) distinguished variable. The algorithm termi-
.k nates when all Ei > 0. The nonbasic variables, placed in the row above
the matrix ﬁ, are at level zero, except for the driving variable, at
, .
4, any time.
§ The pivoting rule is: pivoting on mo
) 1
" o=
) M
&)
:
;ﬁ m
‘ ﬁ' = ——15 , Vi }é r
4 is m
d Irs
%:
o
f% -m_ .
o, =—3 ,  Yj#£s
rj m
rs
mi m .
m,. = mi' - —75—32 R Vi £ r
= d rs
j#s
Let q, = m'O and apply the pivot rules given above. For basic vari-
i i

ables that correspond to negative qi and not distinguised, we define

their common lower bound to be
B < min q;

instead of zero. Thus P is the lower bound that blocks the decrease

of a basic variable.
It has been shown by Dantzig and Cottle [3] that the algorithm

terminates in a solution to the quadratic programming problem when (3. 14)

has a feasible solution.
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C. Generalized Programming
The general. red programming problem can be represented by
L]
, n
Choose a vector, P, in a convex set, C<; E", such that we
maximize A
subject to UOK + Py, =8 (3.16)
=1 p>0
where U0 and S are specified n-dimensional vectors, and p is a
scalar. [The results here are easily applied to an extended form of
(3.16), where the linear equations become
A+ P + P + ... + P = S
Yo 11 2H2 aq
4
|Ji =1, Vi N
s
and each Pi is drawn from a convex set Ci']
*
Thus, we are looking for some vector P or a convex combination
i %
of vector P1 , all in set C, so that the linear equations are fea-
sible, i.e.,
*
U07\ + P =38 (3.17)
or
ix
U A+ i; P =S
L Hi
i
=1
S
¢
by >0, (3.18)
an¢ the resulting value of A is a maximum over the choice of all the J
elements in set C, which satisfy the linear equations. Note that, if
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i
any set of P is in C, any convex combination of that set is also in

C. Hence (3.17) and (3.18) are eq.iivalent when

* ix
P = P
Z Hi

The solution procedure assumes we have on hand, initially, n
particular choices of P1 € C so that the following linear program g
(called a restricted master)

mﬁx A

: 1 n
subject to UOK + P uy ¥ ...+P by = S ?E
i ‘:‘ﬁ
YRS

Hy * oo tp = 1 ik

(3.19)

(A%
o

Hi

i TR
A -l

has a unique, feasible, nondegerate solution with the basis being

g
4 T

defined as

e

B @l

L

o
=
e~
jav]
e no

gz
oL x

L

?

LUy o
t_‘t. a

) i
and being nonsingular (by definition). Since for each P ¢ C, P =

25 plpg, where pg is a solution to (3.19), is in C and is a

T E.—_/-.—:— ————
1

==

Py

feasible solution to (3.16), but not necessarily the optimal solution.

0
To test P [and hence, any solution to (3.16), generated from a

&

- 0 . . .
basis] for optimality, a row vector i = T is determined to satisfy ’&
Y3
3
0.0 (3.20) ¥
B = (1,0,...,0) . ) =
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. — . n+1 . . . .
From v, we find a vector P , which ig not necessarily unique, and

a value ¢ so that

_O=n+1 min —0—

O=TP = peC TP, (3.21)

—_— P
vhere P = []] . If o5 =0, the current solution is an optimal one.
. . n+1 . .
If o< 0, (3.19) is augmented by P and the new linear program is

then solved. The general iteration starts with a solution to the re-

stricted master program

maximize A
n+k
subject to UA + s;‘ Plp.
0 - i

1

1]
wn

1
§ =1 1
Hy

0. (3.22)

v

k k
Let B be the optimal basis to the linear program (3.22), and let T ,

the dual (optimal) variable to (3.22), be defined analogous to (3.20).

Kk +k+1
Then, o and Pn o are found from the subproblem,
k= in _k—=
find Ok+1 : rrkpn+k+1 _ min n{P . (3.23)
PeC
k+1 th | .
f o = 0, the solution to the k ! iteration of the master
k+1 +k+1 ..
problem is optimal. [P S < 0, then Pn can be adjoined to
Jk+l
(3.22), and the solution to (3.16) is improved. The value -5 is

~he maximtm amount by which the value of the current basis Kk can be
improved. Thus, A - ck+1 constitutes an upper bound to the optimal ‘:
solution of (3.16). It is known that these upper bound evaluations can
vary considerably from one interation to the next. Accordingly, the

least or these evaluation: is saved from all iterations, including the

ctirrent onc,
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3“3 It has been shown that, if C is bounded and the initial solution

ot —I _* ! *

2 d to (3.19) is nondegenerate (“i > 0), T 5T and P 5P [where

i ;
" :
Au% 7 n+k E
f\‘ k* _ - i &
| Po= 2 Py ]
i=1 i
vL g

- and My is a solution to (3.22)], on a subsequence k, and that P = P

K *

b is optimal for (3.16). ™« satisfies the properties

X

EAR _*

s T #0 :
. (3.24) o
;1 *. k% :
M. TP>FTP =0, for all P e C .

al -

0

;f Moreover, if C 1is a polyhedral set, then the subproblem (3,23) is a

:?. 3 linear program, and the iterative process terminates in a finite number

%? of steps, It should be noted that, in any case, the objective function

3

)

improves with each iteration, and a feasible solution always exists to

the master problem, Also, the initial solution (or columns) for (3.19) '

]

can be obtained by a procedure similar to a phase I simplex method.

b ol ;ioil 5
>

Remembering that the usual form of a generalized progrem includes

i,

<)
LAt P

i
ﬁﬂ the sum of the vectors Pi € Ci’ where the Ci are convex sets, the

4,. vector S need not be fixed, but it must be drawn from a convex set, 4.

gi Thus the generalized program becomes

"{3' ,
ﬁ” max o

3& P, S

.. U}\+PH—Sv=O

‘J‘j “ = 1

28

) y =1, (3.25)

i3 s 3

where P e C and S € 4. In this case, the subproblem is extended to

k
find o) as in (3.23) and
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=
wn

= min

Sed ,

- S 1 k
where S = [i]' If b( or A < 0, then the corresponding vector or
vectors is entered into the master problem. If both 6k and AB =

the current solution is optimal.
The generalized programming problem,

max
A

Primal:
rima p

UOA + Py =8

p=1
PecC (3.16)
i
has as its
/
Dual: find a vector T so that
T [f] > o, YPe C
4
i [f] =0, some P e C

(3. 26)

Al
(=
o
o
| C——
1l
Juy

This dual is the equivalent of finding a particular hyperplane to support

the convex set C. If a solution to the dual is known, then a solution
*

to the primal may be found using the dual solution, T , to find the

*
vectors, P ¢ C, that satisfy

Y|
il
o

* ¥
I1If P is unique and the primal has a solution, P must be the solu-

* b
tion, If P is not unique and the primal has a solution, then some . ]

*
convex combination of all the P must form the primal solution,
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Chapter 1V

PARAMETRIC PROGRAMMING

In this chapter, algorithms are presented for solving parametric
linear and quadratic programming problems, wh2re the dependence on the
parameter is nonlinear and occurs only in the linear part of the objec-
tive function. These parametric programming problems arise in the sub-
problem of the generalized programming formulation of the o, ‘imal control

problems,.

A, Parametric Linear Programming

We consider the following problem linear in x

*
find x (t) to

minimize y(t)'x

subject to Ax b
x> 0

te [Tl,Tz] , (4.1
and the following problem quadratic in x

*
find x (t) to
minimize y(t)'x + xQx

subject to Ax b

v

x > 0
te [T ,T. 1. 4,2)
[1,2] (
In both of the above cases, A is a given m X n real matrix, b
is a given n-dimensional vector, Q is an n X n positive semidefinite
n
matrix, x 1is a vector in E , and

y(t) = [71(t), cee 7k(t), 7N(t)] (4.3)
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x

and s
ki

i

Ski+l

e Wo‘"a"'d'

these /k(t)

is a given vector valued function,
1o some homogeneous,

efficienrts that may depend on k.

= — 7*(t)

N (O = 25 Pri

ki(t) is a polynomial with real coefficients of degree m

N
i=

1

are constants so thaw, if

is its conjugate and pki(t) =D (V.

equation with constant real coefficients of order N

dt

{4

.q? ot the proposed algorithm,

 %§

;ﬁ Lemma 4.1. If ,_(t)
A
?“ﬁ“

%‘ some t =t
SN 0
Q4,ﬁ

\
et
AhY
7 (1)
tO
then (1) =

Proof of Lemma 4,1.

e

SEL-68-085

solves

0 for all t.

an equation of the

32

Such 7k(t)

m ., =
ki

each component of which is a solution

linear differential equation with constant real co-

are of the form

(4. 4)

ki

N

S  is complex for i odd,

ki

. It follows then that
ki+1

are real-valued functions of t.

The lemmas and theorems that follow are required to show convergence

is a solution to a homogeneous linear differential

and if for

"y (01

= —— =0
dtN 1

form

——_ ™




N a7,,(t) RN e
— () =a s (t) + a + + a
at 0 1 dt N-1 at¥
’ (4.5)
At t = tO,
R
—5 7%(V) =0 . (4.6)
dt tot
"0

By taking the derivative of both sides of (4.5) and substituting (4.6),

If this procedure is continued, all derivatives of 7*(t) at t = to

¢ become zero. Therefore, with 7 _(t) =0 and all of its derivatives at
zero for t = tO and with 7*(t) being able to expand (at t = to) to
a Taylor series, 7*(t) must be constant and have value zero for all t.

Q.E.D.

R

Definition 4.1, A vector y 1is said to be lexicographically greater

hovigs

than zero, if at least one component is non-zero and the first such

e,

=2

X

component is positive; this vector can be denoted as

x

;4ﬁﬁ;£§}4

ye 0,

L Tl

o 453 My
LR

i

A vector y 1is lexicographically greater than a ve..or z,

,_?§;me
Pt

vy z

3 if y -z e 0. A vector is said to be lexicographically greater or
equal to zero, if it i - lexicographically greater than zero or equal

to zero.
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-1,

s

§ ‘}'.‘, v'.’ )
#¥ A similar definition is true for one vector to be lexicographically

S8

‘%q greater or equal to another vector.,

| 7
wd

‘-
o

De ‘rnition 4.2. Let 7*(t) be a real scalar function of t. Then the

2

N-component vector D_ (t) can be defined by its components
£

! t‘- w‘-' —H“P

1

-1
d 7*(t)
Ve i dti-l

Thus the vector function D7 (t) is defined by the function 7, ()
*
and its first N-1 derivatives.

Lemma 4.2 [10]. If f(x) has a derivative at ¢ and f'(c) > 0, then 3

a positive number © exists so that for c < x< ¢ + 8, f(c) < f(x).

Theorem 4.1. Let 7 (t) be a member of the class of solutions to ho-
th
mogeneous, constant real coefficient, N order, linear differential
equations, and let D_ (t) exist as it is defined iu Definition 4. 2.
*
Then, if D) (t ) =0 or if D7 (to) >~ 0, a ®>0 exists so that
*
2,(t) >0 when te [to,tO + 8).

Proof «f Theorem 4,1,

If D (to) = 0, then, according to Lemma 4.1, 7 .(t) =0 for all
¥
t and O =
If D} (to) > 0, either 7*(t0) > 0 or its lowest order

*
derivative--one that is non-zero at t = to--is greater than zero. If

/*(tO) > 0, ‘then, by continuity a © > 0 exists for 7*(t0) > 0 when

t e [to,to + 9). If (t ) =0, 1let the lowest order, non-zero deriv-
ative at t = to be the Jth derivative, and let
{3
j-1
d
rY = . ¢
£(t) 3.1 70
dt ‘
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Thus f'(to) > 0 and, by using Lewna 4,2, a O does exist for

to <t <L to + O, so that

@t adt {
7 (t ) = £(t)) < £(t) = — 7. (1) ,
T 351 % - *
atd” 0 atd~t
|
From Taylor's theorem, it is known that a number 1T, between to ]
and t, exists for any given t,to <t< to + & and
Jj-1 .
d d j-1
7(t) = 7 (t ) + — y (t ) (t-t ) + ... + — ———— 7,(T) (t-t ) .
O drTm 0 (3-1ratd™ 0
Since
j-2
d d
t = = S poa & =
7S O) It 7*(t0) " J — = 7*(t0) 0 |
and
1
3-1 4d-1
7.(T) > —T 7% (t ) =0,
atd ™t dt’
SNy
's-"..'l
ﬁﬂ§
‘}% 7*(t) > 0. Hence, it follows that 7*(t) >0 for all t e [to,to + B).
ephag
oty Q.E.D
Fa
'-'_'.‘;:"':
”;1 The first algorithm presented here is based on the simplex method
‘ihﬁ and solves problem (4.1).
'-l:"'..\) 3
* {
e ¢ Find x (t) to
s
Ay
N minimize y(t)'x ]
Ml
AT B subject to Ax = b,x > 0, te[T,T,.]
j! '.' ~ — 1 2
e dy
RN
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Here, y(l) is a vector whose i component, 7i(t), is a real scalar

let B be an optimal basis for the linear

function. At tim t
n e 0’ 0

program

minimize 7(t0)'x
subject to Ax = b

x>0 . (4.7)

Let the solution be x = x*(to). Since x*(to) is a feasible solution
to Ax = b,x > 0, it remains a feasible one to problem (4.1) for all
t, but it is not necessarily an optimal solution. Thus how the opti-
mality test for B0 varies as t takes on the values t =t  + ¢,

0
where ¢ > 0, must be investigated. Let

_ _ ) -1
7k(t,B ) = 7k(t) - 7g (t) BO Ak , (4.8) o

0

sams

0

st

tl
where A1 is the k ! column of the matrix A,
<

v
- ing > .9
€ = inf [e[yk(to + e,BO) <0}, and (4.9)
3 = i (4.10)
€0 mén tk .
It is possible that the 60’ presented above, is zero, 7k(t,Bo) is
the relative cost factor for any t of column k when B0 is chosen
as the basis., Then the ordering of columns A can be taken so that
j/; Al, 00y Am correspond to the m columns of BO.
T For any basic variable X associated with the optimal bas:s BO,
iy
- 7.04,B) () (t) B 'A () - 7.(t) =0, Vt
2 ) 754 =7, - 7g oM =y -7y = 0, : =
, 0
E) (4.11a)
B
s And, for t = t_, .
o 0 .
‘-ﬁ 7 (tgrBy) 20, Uk, (4.11b)
"'-\/
,"(\'-. "
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with equality being held when k corresponds to a basic variable.

Therefore, the solution to (4.1) remains optimal, i.e., it satisfies

, (t B ) > 0 when t ¢ [to t0 + € ) for some eo > 0, given by (4.10).

Let 7" (t B) be the jth derlvative (with respect to t) of the

relative cost vector 7(t,B) when B is the basis under consideration.
Let 7i(t,B) be the comp:nent of the above vector corresponding to
column k of A. Let A be the new linear programming matrix ob-
tained after deleting all columns (variables) for which the relative
cost factors 7k(to,Bo) = 7§(tO’BO) are strictly positive for t = to

A general iteration is given with tO = Tl; a flow chart of the algorithm

follows the iteration.

Step I: Solve the linear program

minimize 7(t0)'x

subject to Ax = b
. x>0 (4.12)
to obtain the optimal basis B.. If the solution is unique at t+

0 0
(i.e., all relative cost factors for nonbasic variables are strictly

positive), proceed to Step III.

'E_ If the solution is non-unique, fix t = tO and proceed to Step 1II,
q.
-Qﬁ starting with j = 1 and AO = A,
e}
_:H'
g .
éﬁ Step I1I: Let the matrix AJ be composed of the matrix Bj_l and all
- | —_
‘f k columns of A~ having the relative cost factors 7j 1(t0,B‘_j 1) = 0,
ol il -
é; where 7J l(tO’Bj—l) refers to the (j—l)St derivative, To simplify
ey notation in (4.13) below, let the new x any 7 vectors corresponding
,;_ n to AJ also be denoted by x and 7, although they are now shortened
'f? x and 7y vectors. Then, solve the linear program
o
L
ﬁaﬁ
.\'
b\,
e
“» 37 SEL-68-085
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minimize 7J(t Bj— ) 'x

subject to AJx =b

x>0 . (4.13)

Let Bj denote the optimal basis. [Conputationally, it is convenient
to start with the previously optimal, basic feasible solution corre-
sponding to j-1 and then to apply the simplex method to obtain an
optimal solution to (4.13).] If the solution to (4.13) is unique or if
J=N-1, use the optimal basis Bj and proceed to Step III.

If{ the solution is non-unique and j < N - 1, increase j by 1

and repeat Step II.

Step III: Using the optimal basis from Step I or II in place of B0 in

(4.8) and (4.9) for all columns k (optimal basic columns can be ignored
since their € = +oc) find € Then calculate €0 The solution,

* -1
x (t) = B b, 1is then optimal for all t ¢ [to,t" + eo]. Moreover, it

[

will be shown that €. > 0.

0
If to + €0 Z T2,

However if the solution is not reached, repeat the general iteration

the parametric programming problem is solved.

with t1 =t + 60 replacing t

0 0’

That this algorithm does terminate in a finite number of steps to
a solution of (4.1) for all t € [Tl’TZ] remains to be shown. The re-
mainder of this section is devoted to showing a finite number of steps

to the solution.
Lemma 4.3. If the relative cost factors for some basic B0 are zero for

a subset of columns S and positive for the remaining columns T,

then the same 1s true for any basis B1 whose columns are in §S.

Proof of Lemma 4. 3.

The vector of coefficients of the objective equation of the original
matrix can be replaced by the relative cost vector for BO' The price

vector no of simplex multipliers relative to B0 satisfies =« BO =0

SEL-68-085 8
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to = T1 TERMINATE
+ YES
Solv i | % NO
olve Linear Program — Is to > T2
min 7(t0)’x I
Ax =b n
x>0 Replace tO with "0 + €
Are all nonbasic Find ¢,
7 tg By > 0 + L
? YES .| Find Ek' k nonbasic )
‘NO ‘ ]
4
Let j =1 K

Drop all columns of k for which

Jl .
. (t Jl)/o

to form AJ matrix and

shortened cost and x vector.

Let

=3 _d =31
7 (t,B) = at ! (t,B)

and solve linear program

oA

(with above basis as start)

’?_1 S g gy

min 7J(t0,BJ_1)'x

AJx=b

ol
'
)

Osans

x_>_0

Get B
J

i Are all nonbasic

o -j(t_,B,) >0

Wl 73( 0'"J —————— YE§ ——— =
ool ?

Y,

P

e NO

I Replace j with J§ + IJ

L_NO Is j =N YES —

FLOW CHART FOR PARAMETRIC LINEAR
PROGRAMMING ALGOR ITHM
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1
and that of =n B1 = 0, since the objective coefficients for both
0
columns of BO and B1 are now zero by hypothesis. Hence 15 =1 = 0,
and it follows that their relative cost factors are identical.

Q.E.D.

Theorem 4.2. At the end of the general iteration, the following vector

i' relations are satisfied:

\ DIy, (ty,B)] = , > 0

N-1
— 7, (t
dtN 1 k

B) ;
0’ ’

ot

e
A
|
I

o zfx
oD

SR R

or

Il
o

for all k

?

D[7k(t0, B)]

where B 1is the final basis on terminating the iteration of
Step II at to.

Proof of Theorem 4. 2.

For k corresponding to the basic variables of (4.11),

D[/ (t ,B)Y}= 0, For the basis B, 1let the basic variables be XB’

and let the nonbasic variables be xR. The problem is separated as ’1
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t
=]

—J
]
T w
[
o

| LB |
. (4,14)
[ x_ "] i

B
z - [7B17R ] LXR =0 .

i
IR By pivoting on the m + 1 rows of (4,14), the first m columns are now
%;4?‘ unit vectors, and the system becomes
A
43
A

O o)
L TaS
]l
| PR
k]
os)
o

E

] X
- B —_
— l" —
z [O:)‘R] —ZO.
1 X

where 7R is the relative cost factor vector of the nonbasic variables.

R 1is separated into two matrices, El and ﬁz, so that the relative

cost factors corresponding to the columns of R

s, T
> ot ek
., ?. S

YL
Pt )‘\
fy 2l

e
b=
A2
? o
A Gt

~!
= e

oy

are zero, and those

1

correspondiné to the columns of R are negative. Then, the problem

Y 2
'ﬂk
NEOE
9hY .j
3%?3
s -
o rows G T =
1,...,m TRt R S B
’ ] ) : 1
'
X—
2
*B
1 !
row f i~ =
z - 01 0+ yL (t B) £ 0 X= =z
m+1 . ] R2 0’ Rl 0
x—
L %J
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*B
row . o1 ‘
ne2 . min Z1 = 0 : 7R (t B) : ~ Xﬁ =0
i 1 : 1 (4.15)
e
Ry

is observed, where only the variables corresponding to the columns of

R1 and I are allowed to enter the basis,

According to Lemma 4.3, the pivoting procedures of the simplex algor-
ithm retain the zero elements of row m + 1 at level O and the positive
elements of row m + 1 are at positive values for every stage; these
procedures terminate with all relative cost factors of row m + 2, corre-

sponding to I and R at nonnegative values. At termination, because

1)
of the simplex method stopping rule, a new set of basic variables is found
having the property of the components of the basic variables in rows m+ 1
and m + 2 being at zero (after pivoting); the components of the nonbasic

variables are either
(1) zero in row m + 1 and nonnegative in row_ m + 2, for vari-
ables corresponding to columns of I or Rl in (4.15) or
(2) strictly positive in row m + 1, for variables corresponding
to columns of R2.
If the variables are as in (1) above, the ones having zero components
in row m + 2 are chosen with their columns for consideration in the
next stage of the algorithm. Once a nonbasic variable has a positive
relative cost factor at any stage j, it can be assumed that its rela-
tive cost factors were at zero in previous stages also; Y2nce it can no
longer enter the basis. Since the relative cost factors in the first
k- 1 stages can never change sign by pivoting in the hth and later
stages, its derivative vector must be lexicographically greater than O,
Thus at completion of the N stages, all derivative vectors must be
lexicographically greater than or equal to zero,

Q.E.D.

Theorem 4.3. The basis B, obtained at the end of Step II in the

algorithm for any t =t remains optimal for the interval

0)

[to,to + eo], where €O is strictly positive.
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Proof of Theorem 4.3.

T Fau!

Since each 7k(t,B) is a member of the class of solutions to homo-

B

4 ¢ geneous, constant coefficient, linear differential equations, ek ie
T strictly positive by Theorem 4.1. By the definitions given for €k and
to, the basis B satisfies the optimality criteria for

TR S

o ey N
it

l- t elt ,t + €], i
xt 0’0 0 .
AV Q.E.D.
'i {
e Theorem 4.4. The number of basis changes in any finite interval [Tl’Tz]
%i is a finite number, and the pa.ametric programming problem is
"
A solvable in a finite number of steps.
i
b
L ‘ Proof of Theorem 4.4.
- @ At any switching point to, there exists a basis Bp and an
N k
.ﬁ; h € >0, so that B is optimal for t €lt.,t + € ). There also exists 3
L) P % P v 070 P * '
3#% a basis B and an € > 0, making B optimal for t €[tO - € ,to).
8
!,ﬁ It follows then, if there is a cluster point at to, there would be an
; { 7 infinite increasing sequence of switching points ti e[to - € ,to] 1
:,;" f
t?ﬁ which could be bypassed by a single switch at any such ti Lo basis ]
) * 3
'yq B . This establishes the existence of a finite number of basis changes
N . - .
"W in any finite interval t G[Tl,Tz].
What remains to be shown is that the algorithm, as presented, solves
the parametric programming problem in a finite number of steps. As dis- E
% 3
cussed above, let us assume there is a switching point ti e[t0 - € ,to]
and a switch from basis Bi—l to Bi' To simplify the discussion, let
us also assume that Bi differs from Bi—l by the introduction of one
incoming column k, and that the value of the incoming variable xk =
xﬁ >0, 1i.e.,, the basic solution is nondegenerate.

The optimal value of the objective =z, in the neighborhood of ti,

takes the form of

0, if t< ti
zZ = zo(t,Bi_ .
x, >0, if t>t
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%&. Botih zo( ’Bi—l) and 7k(t,Bi_1) can be shown to be linear combinations

%}; of solutions to homogeneous, linear differential equations with constant

W
i’ real coefficients and hence they themselves are alsc solutions. In addi-

: + =+

"ﬁ tion for ti’ 7k(ti,Bi 1) < 0, otherwise there would have been no switch .

hy s d
gi§ from Bi , to Bi' This means that the vector of the O, 1 t, 2" R,
£ st -
%i{ N-1 order derivatives of 7k(t,Bi 1), evaluated at ti’ is lexi-

by b

cographically negative. It follows then that the function =z 1is discon-

SRR . . . .th . .
3 tinuous in t at ti in at least one of its j order derivatives. On
3 -

*
the other hand, the optimal value of 2z, in the interval t e[to - € ,tO]

23
- h

T X

can also be expressed as

.

W e

>1 z =z (t,B)

WA 0

ki

ig} and is continuous in all derivatives at ti’ which is a contradiction.
_r;- The above argument is now extended to the case where Bi—l is as-
5:! sumed to differ from Bi by several incoming columns. The term

%ji xk7k(t,Bi_l) is then replaced by a sum of terms, each of which is lexi-
é%% cographically negative at t = ti’ hence their sum is lexicographically
%n negative and the discontinuity at t = ti follows. (Note that the de-
Tﬁa generacy of basic solutions in the simplex algorithm is assumed to be
ééw handled by the standard right-hand side lexicographic rules of the
$¥ simplex method.)

éj Since each basis change is accomplished by a finite (at most N)
:;‘ number of linear programs, the parametric programming problem is solv-
3§E able in a finite number of steps.
,1" Q.E.D.

*
Corollary 4.1. The solution x (t) to (4.1) is a piecewise constant

vector function of t with a finite number of discontinuities.

Proof of Corollary 4.1,

*
Since x (t) 1is constant for t e[to,t

0 + eO], this follows im-

mediately from Theorem 4. 4.

Q.E.D. o
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Proposition 4.1. When all the sj for each 7i(t) are real, the upper

Vi Eoi
X
I,

bound on the number of switchings in an infinite time interval for

g
p

an (m X m) matrix A is

e = s S 4l

e i
osf"d-._?

i []
@' g n
AU (n - m) N,
Vet
m
e
'Wﬁ
M
’15 Proof of Proposition 4.1,
;ig' For any 7*(t) that is a member of the class of solutions to an é
g th
ig N order homogeneous, constant coefficient, linear differential equa-
el
z tion and for real and distinct si, it is known [1] that the function
e
%’; 7,4(t) has, at most, N roots of 7,(t) =0,
]%& At the most, there are (;) possible bases for A; for each of ]
fﬂ” these bases, there are (n-m) nonbasic variables. TFor each nonbasic ;
§%% X variable Xy the relative cost factor 7i(t,B) has at most N points i
'r: 5
%k} at which it crosses the value zero and thereby creates a possible basis
)
gf switch,
g.4 : Q.E.D.
o
ol
:a% B. Parametric Quadratic Programming
-
fﬁg The conditions for which the parametric programming problem has a
g:{ solution are found in this section. Also, an algorithm based on the
:Q{ complementary pivot theory procedure for quadratic programming is
ey
;SE . constructed.
1Y
gﬂy The quadratic programming problem
‘- .
gl *
;n‘i find x (t) to
; % minimize y(t)'x + xQx
3
= subject to Ax > b
_{)_ ] =
Ay
;?gj x>0, t e[Tl,Tz] ) (4.16)
i/
Lxn g
15% - ¢
b
NIY
1
¢
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can be formulated in the complementary pivot theory as,

T e

* *
find w (t), =z (t), so that

B ’
1; w =mz + q(t)
»‘)‘ wz =0, Vi
: ii
&
1] .
: 0 0
¥ wi >0, zi 2 , Vi, (4.17)
L
1& where
P -
2Q  -A! 7 (1)
1§y
ig‘ M= } Q(t) = ’
g
\ | A 0 -b
!
i
v z = , and W o= ,
N
i LY M
%
X
/§ where y 1is the vector of dual variables to the quadratic programming
s problem, and u,v are slack vectors of the necessary conditions for
1.
\l quadratic programs, as was stated in Chapter III. The necessary con-
?5 ditions in (4.17) for Q positive semidefinite are sufficient at
L~ any t = to. From the results of Dantzig and Cottle [3], the complemen-
5' tary pivot theory algorithm terminates in a solution to (4.17) when M
g
‘: is positive semidefinite, providing the solution set for
Eu
g w =Mz + q, w > 0, z >0,
‘?
% is nonempty.
k1)
) To show that the above solution set is nonempty, a solution must
?} be shown to exist for every t in the parametric programming problem,
31 If such # solution does exist, it must satisfy the conditions of (4.17).
}- Therefore, let us assume the absence of unbounded solutions, i.e., that
; the set
.
‘-
&
L
N SEL-68-085 46




v

{

X = (x|x >0, Ax > b}

is bounded and nonempty.

Proposition 4.2, The parametric quadratic programming problem has a

solution for every point t e[Tl,Tz], when X is nonempty and
bounded, 7(t) 1is a vector function with each of its components bounded

in the interval [Tl’Tz]’ and Q 1is positive semidefinite.

Proof of Proposition 4.2,

Since the objective is continuous ‘2 x over a compact set X, it

PO TP

attains its infinum at a point in X.
Q.E.D.

Proposition 4.3. Given the above conditions on y(t), X, and Q, the

form w =Mz +q, w,z> o, wizi = 0 has a solution fcr every
t e[Tl,Tz], and this solution can be found by using ihe methods of

complementary pivot theory in a finite number of pivot operations on M.

Proof of Proposition 4. 3.

As stated above, Dantzig and Cottle [3] have shown that the comple-
mentary pivot theory algorithm converges to a solution of the quadratic
programming problem, if the solution set for w = Mz + q, w,z > 0, is non-
empty. Since X is nonempty, and since the infinum of 7(t)'x + x'Qx
is attained in X for each t, then the necessary and sufficient con-
ditions, i.e., a solution to (4.17), must exist. Thus, the conditions

for termination of the algorithm are satisfied.
Q.E.D.

Remembering the characteristics of (t) explained earlier, we
will now show that only a finite number of solutions are considered when
solving the parametric programming problem for all t in the finite

interval, [Tl,TZ].
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Theorem 4.5. There are a finite
variables of (4.17) for the

finite interval.

;%ﬁ Proof of Theorem 4,5,
.4 ."-‘1
%}f; Let the M matrix be (n x n).
[¥aX]
'O
ﬁ;‘( tions. By using the pivoting procedures,
lv%ﬁ solution is

q(t)

"":-u-f‘.s"f'
N |

where w 1is the set of

e

i

it

o

& A e
":L':'/‘-(‘\i'('v:

—

X
RH) and 7z, the set of
i

any t, is

The vector function a(t)

q(t)

solution. The set of points
1 Kl
T = 11, ceen T T “
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basic variables of the vector z.

is of the form y(t),

number of changes in the set of basic

parametric programming problem over a

Since each complementary solution

2
has n basic variables, there are, at mo.t, (1?) complementary solu-

the characteristic of any

IN

| =

basic variables of the vector w,

The solution, for

| N

and each component of

has a finite number of zero crossings in any finite interval of t.

1
LLet these points be labelled, Ti

500 g Til for the ith complementary
k
Tk Tl (%y)
H . L J t
2 (%F) (%P)
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are the only points at which the set of basic variables can change in
the finite interval, The set T is countable and has measure zero. If

to,tl,...,tK, then a set of basic vari-

ables that remain basic must exist for any interval [tj’tj+1)' This is
true because a solution has been shown to exist for every t e[tj,t ),

the points are ordered, i.e.,

+1,

thus the set of basic variables cannot change in this interval,

A . sl

Q.E.D,

NIRRT

At this point, an algorithm is presented to provide a basic solution
to the complementary problem; this solution remains optimal over a posi-
tive interval. The method used does not require prior knowledge of the
switching points and does not assume nondegenerate solutions at these
points., The algorithm employs the same pivoting procedures of the com-

plementary pivot theory algorithm presented in Chapter III.

Definition 4.3. We will say a vector y, which is lexicographically

smaller than zero (i.e., -y & 0) lexico-increases to Yy, if

(y - y) >0, and if the component of ¥ corresponding to the first |

’ nonpositive component of y becomes nonnegative.

Definition 4.4. We will define a lexico-minimum of a set of vectors as

that vector y where all the other vectors in it are lexicograph-

ically greater than or equal to y.

Definition 4.5. For every t Da (to) is defined as the vector

o’ .
i

qi(to)

dq (1)
_—
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where ai(to) is the current value of the ith component of a(to)
under the pivoting procedures (i.e., those procedures leading to

a particular complementary solution). Let

€ = 12f [elqi(to + €) < 0) ,

and let €, = min ¢,.
0 i

We will now present an algorithm for solving the parametric quad-
ratic programming problem., It should be noted that this algorithm is
also applicable to the parametric linear programming problems discussed
in Section IV.A; however, this method is more complicated. A flow chart

and proof of the algorithm's finite termination will follow the general

iteration given here for any t = t,. ?

ket Step I: (a) Solve the complementary pivot theory problem

fah W= Mz + q(to)

€
N
I

=0,w,z >0,

for positive semidefinite matrix M, and (b) examine the nonnegative
complementary solution for t > to; i.e,, is

D— >~ 0 =0 ?
qi(to) or

If Dﬁi(to)(* 0 or equal to zero, proceed to Step III; if it is not,

go to Step 1II.

Step II: Choose an index i so that in(to) is a minimum over all

S
r,
R

R, the derivative vectors that are lexicographically less than zero. Retain

AP
&;fv all other variables of those variables which have derivative vectors lex-
y .\-.
‘ﬂ%E icographically less than zero, at their present lower bounds, or let them

'
‘n
K

'dﬁ' increase (when forced to decrease they are blocking variables). Then let

U the basic variable corresponding to i be the distinguished variable and
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A -
%iﬂh* Let ty =T, TERMINATE
F b
> YES
[ ‘1 i
v ’1 ‘ ?
- Solve \
5
w = Mz + q(t)) NO Is t0 2 T2
A
w.z =20
i7i
1 .
w >0 Replace with to + €
zZ Z 0
Are all D-— (to) >0 Find €y Vi
> qi — YES > and ¢
or = 0? Y

NO

Pick i so that in(to) is
lexico-minimum and let ith
basic variable be distinguished.
Use complementary pivot theory
1 itl to i t
algorithm to increase in( 0)
while keeping all variables j,
so that Ej(to) = 0 at their

lower bound.

/

Proceed until distinguished variable

— lexico-increases (by leaving basis

at level zero).

FLOW CHART FOR PARAMETRIC QUADRATIC
PROGRAMMING ALGOR ITHM
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perform the standard complementary pivot algorithm with the new lower
bound restrictions; terminate when the distinguished variable lexico- ]
graphically increases (i.e., when it drops out of the basis by becoming
level 0). The solution of Step I is used to initiate Step II. Now,

return to (b) of Step I with the current solution.

Step III: Using the previous definiticns, calcil .te ei for all i

and EO’ the minimum of ei. The final basis at to is then optimal
for t e[to,to + eo]. If a solution for t > to + N is desired, re-
turn to (b) of Step I, using the solution at tO + €0’ and proceed with
the algorithm,

The procedure given here provides a solution to the parametric
quadratic program for any interval of the parameter.

It remains to be shown that each step in the algorithm does termi-
nate in a finite number of executions and that the final basis generated
at any tO is optimal over a finite positive interval for the quadratic v
program, Hence the remainder of this section is devoted to this proof.

Step I is solvable in a finite number of steps, if the problem

£
1]

Mz +
Q(to)
w'z = 0, w,z >0
can be solved. Since it is known that the quadratic program has a
solution for every t, we are assured of the complementary pivot theory

algorithm converging to an optimal solution in a finite number of steps.

Proposition 4.4, Step II must terminate with a complementary solution

having the derivative vector of the distinguished variable lexi-

cographically increased while other variables at their lower bound

are not lexico-decreased.

Proof of Proposition 4,4,

The complementary pivot theory algorithm, when initiated with a
basic (complementary) solution, terminates in another complementary

solution, since we assume feasibility of the quadratic program, Because
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the distinguished variable and its complement are converging to a non-
negative complementary solution, this termination occurs when the dis-
tinguished variable lecves the basis. When it leaves the basis, the
variable has a derivative vector equal to zero; thus it has lexico-
graphically increased. All other variables, at their lower bounds, were

not permitted to lexico-decrease; all variables entering the basis are

permitted to increase only. Thus the new solution has no variables
lexicographically less than zero, and the distinguished variable is
lexico~-increased.

Q.E.D,

Al o BLA S T

.
e
o

R P ERTalg e

Theorem 4.6. The algorithm terminates in a finite number of steps to a

complementary basis that is optimal over a finite positive interval.

Proof of Theorem 4,6,

The execution of Step II lexico~increase at least one of the vari- ;%

J-‘. R

ables that was lexicographically less than zero while not lexico- i,
decreasing any of them; and it does not introduce any new variables E;

lexicographically less than zero. Since there are only a finite number
of lexicographically less than zero vectors (at most, n) and since
each has, at most, n components, the execution of Step II must termi-
nate after at most n2 times with each execution requiring a finite
number of steps. The termination condition is that all basic variables
are lexicographically greater than or equal to zero (all nonbasic vari-
ables lexicographically equal to zero). Thus by Theorem 4.1, the basic
variables, and hence the solution to (4.17) are nonnegative over a

finite positive interval.

Q.E.D.

.,,»-"’;‘;x'\"x‘: SER 1

From the above results, it has been determined that a finite number

b (e

of basis changes are required to solve the parametric quadratic program-

Ty

ming problem for a finite interval of the parameter. The solution to

-r.
S

N

the parametric quadratic program need not be piecewise constant as it is

> 2

..

in the parametric linear programs. For each interval where a single

fox 1
T

=1

basis remains optimal, the solution will, in fact, have the character-

istic form

....-\
ey Vew
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= a(t) ' v,z = 0 ’

N

where w and z ro the complementary variables in their original form,
and z and W are their complements. q(t) is nonnegative over the
interval and has the form where each of its components solves some par-
ticular Nth order homogeneous constant coefficient linear differential
equation, When the value of some Hi(t) goes negative for some t,

the basic variables W,E are no longer optimal, and a new set of basic

variables must be found with the complementary property. The new

values of Ei(t) are just linear combinations of the former components,
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Chapter V

GENERALIZED PROGRAMMING ALGORITHM FOR
OPTIMAL CONTROL PROBLEMS

The mathematical programming results obtained in the previous two
chapters are applied to the linear system, continuous-time optimal con-
trol problems to formulate [9] a generalized linear program, A solution
procedure based on this formulation is then developed and is shown to
an optimal control is provided

terminate in an optimal solution, i.e.,

to the continuous-time problem,

A, Formulation

The control problems will now be formulated as generalized programs
and then the subproblems will be shown to be parametric programming prob-

lems of the form presented in Chapter IV. The control problem can be

restated as

0
min J =-/(; )'(O(t) dt = xO(T) (5.1a)

u( )

x(t) = Fx(t) + Gu(t) (5.1

x e E , ue E , and

x(0) ¢ S

, and
0

x(T) € ST’

m

u(t) € U = (u|Au > b) UCE ,

F is an n X n real matrix, and

G is an real matrix.

nxm
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m

£ (0 = £x(0) + g u(t) +h S Ju (O] + u() Qu(t)  (5.1¢)
0 0 0 2 1

i=1

where fO is a fixed real n-vector and go is a fixed real m-vector,
h is a real constant, and Q is an n X n real matrix.

We will first consider strictly linear cost functionals, i.e.,

Letting
1
0! 1o
— --_-r----
F = ! , and
i
01 F
gl
0
G = |[----] , (5.2)
G

the completely linear system can be expressed by
X(1) = Fx(t) + Gu(t) . (5.3)

i s
When a particular vector function u (t) and an initial condition

x'(0) are given, the solution to (5.3), at t = T, is

’'s

£
gt

— . T
M = e xico) +f (T-OF 780y g | (5. 4a)
0

=
g

and the solution to (5.1b) is

T

. T .
x(T) = e'F x10) + f T OF il at | (5. 4b)
0

=

LS

Tl
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Guiild oV ig et pts o4l At 3 g st

The set 4 C ok

Proposition 5.1.

The set g C E is defined
_ TF
5 = [y|x € So,y =e x)
. ¥ :
If S0 is a convex set, So is also a convex set by the linear mapping.

can be defined by

1]

or

S

o

zZlz=x -y, x ¢ Spr ¥ €

If ST and Sg are convex, then 4 is convex.

Proof of Proposition 5.1.

1 2

% Let x, X

i 1 1
S then x -y, a
< 11
A ANxT-y) +
N
939 !
2 ;
Y Ax
,‘ :IM A’:
O ' )\y1
?'IS
Ay
PRV 11
%ﬂ 4 Thus A(x -y ) +
L
¥
f% -
Jhas! Let S, and
%.‘*};-:D

3&5
A
i 3 -

the sets

S .

be points in T

0 <A<,

2
y
For all A,

1
be points in and let y ,

nd

F
S
0

2 2 ,
Xx -y are in 4.

(1) (x2=y%) = Ax* + (10 %2 = Ayt - (1-N) y°

+ (1-N) x2 € Sg since Sg is convex.

2
+ (1 -N) vy € ST since ST is convex,

2 2
(1-N)(x -y ) € 4, and implies that 4 is convex.

Q.E.D.

5,

T be defined as

n+l{—

E O,y ¢ 8

4

are similarly defined.

SEL-68-085




R R T S T N S e e e AN WA, Fa R S A TV I VAP A ARUE VAT A VAR IGIE KAH £924 S b b cda e iVl A aRPOOU R RO

"
£

e M

Using the ahove set of definitions, we can restate the initial and

final state consiraints of the fixed time control problems as

x(0) =0 , xO(O) =0, and A

x(T) ¢ &

:..V;L‘Fl ‘.JE‘T :3'-;&"' o =

Thus, it can be assumed, without loss of generality, that the system

"
ﬁi initiates at the origin with no prior costs.
ik
%‘ 1. Control Problems Formulated as Generalized Programs
18
4 If we take the vector functionals of the control P = Plu(t)]
S
K to be defined by
i
R
E T (T-t)F
3 p =./' e Y Gu(t) dt (5.5a)
\q 0 P
g: and
%ﬁ P = P[u(t)] to be defined by !
0 T ‘
A P =./' T OF 5ue) at (5.5b) 2
A
: :
;i then, let »
T i
T-t) F I !
C= ‘P u(t) € U, P :./. e( ) Gu(t) dt P
I 0 S ;,
L
4
and 1
Gy K
— - - T-t)F =
C={Plu(t) ¢ U, P =./. ( ) Gu(t) dt 1
0 i
h
&
Proposition 5.2, If U 1is a convex set, the set Cc(C) is convex.
vV o
|1
i
Proof of Proposition 5.2, ;
2
Let ul(t), u (t) be vector functions in U, for all t, and i
< L/
3
3
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b 1 (7

i P _f T OF gl at ¢ c

s 0

b

9 &

A 2 T (r-vF _ 2

W P=fe Gu (t) dt € C .

b 0

:

% For all A, 0<A<1, A= (1-2),

i

g.: 1 -2 T (r-vrF 1 « (T (r-OHF _ 2

i@ AP +7\P=7\fe Gu(t)dt+7\-/-c Gu (t) dt

i 0 0

K T

; - 1 = 2

A = f T T gl (1) + TuP(0)] at |

3‘.’ 0

K,

b 1 ~ 2

b} Since U is convex, Au (t) + Au (t) ¢ U, Vt.

o 1 =2

' Thus AP" + AP ¢ C, and C 1is convex.

e

K Q.E.D.

7 -

.

3\ Remembering that the state at time O is assumed to be at the

:ﬁ origin and using the definitions of P, C, and Eq. (5.4b), we find C

& is equivalent to RT, the reachable set of U at time T. The control
problem is feasible, iff

2

" cN 4 #£ g .

AN

i

Given a specified control function wu(t), the cost associated with that

‘; control is J[u(t)], since the cost at time t = 0 is zero. Note that

4

3 . [fe

E‘L P = 0 , where p. = Jlu(t)] ,

Z . b 0

A BT,

when u(t) 1is the control generating P by Eq. (5.5a). Thus
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oy
x

AT A
= :
P A

..
.

Gy .
T}
kT
b | p |
Y = = n+l, — 0
gﬂﬁ C =1P E = , P=PwW , p.=J), u(t) ¢U
b l P 0 s
&
o ©
t‘% Note also that by using Proposition 5.2, C is convex,
i:.f}\;
;TH Let Ub = (1,0,...,0) and note that the first component of
’l the vectors §, in the set 3, is defined to be zero. Also note that
aed . =
'\b the first component of the P vector represents the cost of using the
‘ —
! control (and its corresponding trajectory) generating P. Thus we are
gﬂ looking for a vector P ¢ C, a vector function u(t) generating 3,
{% and a vector S € 4 to satis{y
A %
,'M
i
;f; _max_ A, v >0
%ﬁ PeC
s
% ‘ : Py =5 |
g}ﬁ subject to UO% + Py = Sy .
5\‘J =
ij p =1
'«q_,
; v=1, (5.6) b
where |, and y are scalars. Maximizing A is equivalent to minimiz-
ing J[u(t)], the first component of the vector P, where u(t) gen-
erates P. Since P must be taken from a convex set C and S must
be taken from a convex set I, the above formulation is a generalized
program of the Dantzig-Wolfe type. In the following chapter we will
show that an optimal solution to the control problem is an optimal solu-
tion to the generalized programming problem. We will now show that any
solution to the generalized programming problem is an optimal solution
to the original control problem.
A solution to the generalized programming problem consists of
a vector P in the reachable set RT, a control function wu(t) in the v
admissible control region U generating P, and a vector S in the
1
constraint set of terminal states &, so that 1
<
P= S 3
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The above equality insures the transformation of the system from an
initial point, x(0) ¢ S0 to a final point x(T) € ST by the vector
function wu(t), chosen from U. Thus it is a feasible control. By
minimizing J over all feasible sets of P and §, we can find a
feasible solution with the least cost. This is precisely an optimal

solution to the continuous-time control problem.

2. Generalized Programming Subproblems as Parametric Programs

To complete the generalized programming formulation, its sub-
problem must be described. Here we assume there are at least n + 2

vectors P1 and/or S1 available to provide a feasible solution to

(5.6), so that the problem t
1
max A , v >0 ;
My V -
J J+1 J+p
P P =S + ... + 8
UA + e * P by + g vy Vo
+ + + =1
Hy * oMy M
vyt vg F e F vy =1, (5.7)

is solvable and has a dual solution vector

), ]

—l —_ ]
o= (“o’“ ' a1 T2 :
where n' = (nl,...,ﬁn). The subproblem is then formulated in two parts:
)
S
_min_ {0 , and (5.8)
Sesd
1
S
- E
P 3
_min_ 7|1 . (5.9) H
PeC 0
- =
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The solution to (5.8) is dewendent on the explicit definition of the set

4 or I, the simplest case being the fixed end point problem, which

i‘; consists of a single clement. In this case, the subproblem (5.8) is

’iiﬁ trivial and nced not be considered. If 4 is a convex polyhedral set,

.Lzﬁ then (5.8) is a linear program that needs to be solved once for each
L)

Jiii iteration of the master problem:

Subproblem (5.9) can be described

— T =
] OF —
B f T Gucoy at
0
_min_ ' 1| = min_ T 1 ) (5.10)
P ¢ C Pe¢ C
SO 0 _J

Since the requirement P ¢ C is equivalent to the requirement u(t) ¢ U

for all t, (5.10) becomes

1]

T
f (T OF g Gu(t) dt
0

min ! 1 or
u(t) ¢ U

since n does not depend on ¢,

T

min -/~ (no,n') (T OF Gu(l) dt| + = 1 (5.11)
u() « vl Jo n

The minimum of the integral is attained when the integrand is minimized

at every point. Let

S8 = () TV g (5.12)
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be an m-dimensional vector function. Thus the subproblem becomes

)

7

»}4 -\i
i

VA Find u(t) ¢ U, te[0,T]
ﬁgi so that y(t)'u(t) is a minimum . (5.13)
il
ﬁ} From (5.12), it is obvious that y(t) has the property of each of its
j%ﬁ} components being a member of the class of solutions to an n + ISt order,
115: homogenous, constant coefficient, linear differential equation. Since
ii_ our attention is restricted to those U that are polyhedral sets, (5.13)
:ﬁ% becomes
{1
hq%: min y(t)'u(t)
e Au(t) > b
i1
e t €[0,T] . (5.14)
By
FJ‘-r
i)“ ‘ (Note that the inequality may be reversed or an equality without loss of
:;ﬁﬁ generality.) Thus a solution u(t), for the subproblem, can be obtained
.Ei§ by using the parametric linear programming methods of Chapter IV,
-:%b In a similar manner, we can formulate minimum fuel, minimum
_’:“ time, and quadratic loss in control problems as generalized programs. It
:iﬁg can also be shown that the minimum fuel and minimum time are special
'ﬂ;{ cases of the linear loss problems just described. Since generalized pro-
;;g: gramming can be applied to general convex programming problems, we can
! formulate optimal control problems with loss functions convex in the con-
trol variable as generalized programs. However, only the quadratic 1loss i
in the control case will be discussed in detail, since this is (to the |
author's knowledge) the only general nonlinear convex loss function which
) has a known finite solution procedure for the parametric subproblem. Sep-
arable piecewise linear (convex) functions of the control can also be
formulated as a special case of the linear loss problem, although it will
3 not be shown here.
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The previous formulations can he Jeneralized if we observe the
following general linear system control problem and use the notation

given in Chapter II,

min J =/ xo(t) dt,
u(t) ¢ U 0

x (t)
- 1
where x(t) = 0 € En+ , and
x(t)
x(1) = Fx(t) + Gu(t) + f(uw) Uy » (5.15)
0 , linear loss
where f(u) =( Z |ui| , minimum fuel
i
u'Qu , quadratic loss |,

where Q 1is positive semidefinite, u(t) ¢ U, t €[0,T], x(0) ¢ SO,

x(T) ST , and So, ST are convex sels in E'. We note that J is
a convex functional in u(t), since u(t) is a vector sequence drawn
from a convex set U, and f(u) 1is a convex fur.ction in u. Thus the

solution to Eq. (5.15) can be noted as

= T T
- T — F(T-t
2T = e T X(0) +[ FTY Gucoy at + f T T8 ru(en) U, dt .
0 0
(5.16)
Now, we define P and 5, as before, by
T F(T-t)
P = Jﬂ e Gu(t) dt , and (5.17)
0
P T =, T
p=] © =f R T f fu(07 dt vy, (5.18)
p 0 0
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where UO is an n + l-dimensional unit vector with a one in the first

component. Thus the second integral of (5.18) becomes

r M
y/ﬁ §S|ui(t)|dt , minimum fuel ,
0 i=1
T
./. u(t)'Qu(t) dt , quadratic loss .
' 0

Also as was done before, we can now define C as

J

z > Ju(t)] , u(t) e U, ¥t

z

T
n+1 -1;

eF(T_t) Gu(t) dt] ,

Thus the 5, as defined in (5.18), are members of C. We also note
that C 1is a convex set, since J[u(t)] is a convex functional.

The vectors S and set # are defined as before. Thus the
general linear system control problem can be formulated as a generalized

programming problem,
Find PeC, Sed , to

_max_ A, ,v>0
PeC

subject to UOK + 3“ = Sy

v=1. (5.19)

Again we note that the solution to the generalized program is
—% *
one in which a vector P is found so that the last n «clements P

belong to the set 4, and, out of all possible vectors, P ¢ 4, i.e.,
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feasible solutions to the control problem; the first component of P ,
taken to be the value of the loss functional, is minimal. Thus the

* —%
vector control function u (t) generating P is a solution to the

optimal control problen.

We now describe the subproblem corresponding to the minimum

fuel and quadratic loss problems as in Egs. (5.8) and (5.9). For the

general case, following the similar reasoning given for the linear loss

A case, the subproblem to the restricted master problem becomes, (remember-
f"§ ing that =, =1, since (U!,0,0) is a basis vector and
B & 0 0
i J
I U ~
Y, - _
N n! 0 =1 ) 4
T i
5 [ 0
\_'(J:f i
ool
A A ;
AL 3
B e 4
T (T-0)F = '
e min flu(t)l + (o' e Gu(t) »dt + x . (5.20)
< 0 n+l
Al u(-) “J0

R
h)
R

oA e
=¥

tot Defining »(t) as before, (5.20) becomes

15

‘A

4

§E¥ min y(t)'u(t) + flu(t)]
5 u(t)

.,yr
Sy
L
C:’ck{

subject to u(t) ¢ U, Vvt . (5.21)

=5
2

m -':‘-' K
B

e

.

For the quadratic loss problem, with U = {ulAu > b, u> 0},
(5.21) becomes a parametric quadratic programming problem in u(t) of

the form discussed in Chapter IV [due to the form of y(t)].

g 3""7

We now look at the minimum fuel problem for two classes of U.

The first class has the classical form of the minimal fuel problem,

where
U = {uHLli(t)l i 1’ i-= 17 000 m} ’

and the second class is a general polyhedral U.
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For the first case, (5.21) has the following solution (the
singular arcs, y(t) = 1 for an interval, are not discussed because no

solution is defined),

-L<y () <1, u . (t) =0
1 1
7y (t) < -1 u (t) =1
1 1
y.(t) >1 , u,(t) = -1
1 1
for all i . (5.22)

The magnitude of one as a bound for the control is noted to
be nonrestrictive, since G can be scaled to permit other values. The
formulation can also be adapted to treat lower bounds on ui(t) with
magnitudes that differ from the upper bounds. These changes affect the
ranges of 7i(t) in (5.22). Thus the subproblem for the standard mini-
mum fuel problem has a well-defined solution, and its execution in re-
lation to the master problem is proportionately as quick, regardless of
the size of the control space.

The minimum fuel problem for general polyhedral sets U has
a subproblem equivalent to that of the linear loss case. Following the
same steps given above, the subproblem for general U which replaces

(5.23) is

min y(t)u(t) + z |u, (0
u(-) i

subject to

Au(t) > b

0<t<T. (5.23)

This is equivalent to a parametric linear programming problem of the
type presented in Chapter IV when the variable ui(t), which is un-
restricted in sign, is replaced by the difference between two nonnega-

tive variables,

67 SEL-68-085

PR
)_\--\\.a\ F\x \ (

Oy 74 W2

P T
~hA N
tviats

-
LS

LT
r‘ﬂ,‘:

g
«J

T TINRIt |

-
oy

v

—w
~
<,

2o



u () = U () - U (1) (5.24)
The constraints are replaced by
AU - AU > b
u>0
u>0 (5. 25)

Since linear programming algorithms consider only basic solutions, u,
and Gi cannot be basic at the same time because their columns Ai and

—Ai, respectively, are linearly dependent. Thus for every i, either

u, or ﬁi must be at level zero. Using this result, |ui(t)| can be

replaced by

[u (O] =u () +u (1), (5. 26)
i i i
and the equivalent parametric linear program is

min 25 [} (t) + 1] uy (t) + ji (- Fa (t) + 1] u (t)

uu i

subject to AT(t) - Au(t) > b
U, (t), u. (t) >0
i i -

for O

IN

t<T. (5.21)

Since a generalized programming formulation is shown to be used
for finding a feasible solution to the linear system control problems,

the minimal time broblem can be solved with these methods, The subprob-

%5' lem to the generalized programming problem for feasible solutions is also

B
B

AR
-

Here we will present a solution procedure (similar to the one proposed

-~

y )
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3‘& by Ho [11]) to the minimal time problem that is equivalent to finding, i

iy i

R if it exists, a feasible solution to the generalized programming form- {
3 i

?.; . ulation of linear systems and, of course, to determining whether or not {

T,! a feasible solution exists. %

ﬁﬁq The minimal time problem can be stated as

ok

A A

L

X i ’

"Q_}; min f dt = tf

Y u(-) -0

e

fb.t‘ (‘cf is free),

is

T

h‘y where x(0) 1is given and x(tf) = 0, and

N

;;; x(t) = Fx(t) + Gu(t)

K x(t) ¢ E', u(t) e UCE". (5.28)

W -

?\ Thus we wish to find the shortest time in which we can transfer the state

0

from a given point to the origin or, equivalently, to find the minimum

2 kg s
LY

,f% time for which a control u(t) € U exists to transfer the system from a
T

i% given point to the origin. The latter statement is the one related to
o

iﬁ% a generalized programming formulation of the minimal time problem. De-

fine P as bhefore, for any fixed T, and S = —eTF x(0) . Let the

={®)

set of all P be C= R i.e., the reachable set, which is convex.

y . T’

i

Qz We want to know whether

e

4 S ¢Ry, for any fixed T , (5.29)

=4

L 3
T

so that we can find the minimum T for which (5.29) holds. Equiva-

lently, we want to know whether a solution exists for

-;,3,_ g

i

Py =8

sl S ain Suih au 1
LI A
LRERSTNA

1h
=
=

po=1

v
a

PeC for any T, (5.30)
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and again we want to find the minimum T for which a solution to (5, 30)
exists. The solution procedure for (5.30) for any T, will be discussed
later, At this point, we will solve the minimum time problem by choosing
a T, and try to solve (5.30). 1If a solution exists, decrease T and
proceed; if one does not exist then increase T and proceed. If the
increments for the increase and decrease o1 T are cununsen wisely, this
procedure will converge to an answer to the minimum time problem.

The solution to (5,30) is a phase I generalized programming
procedure that is also used to find initial feasible solutiuns to the
optimal control problems discussed here. A finite convergence procedure
is shown for phase I methods when its existence is known, and a testi for
its existence will be presented for control problems for which the exis-

tence of feasible solutions is not assumed.

To generalize and summarize the above results, the following class

of control problems may be formulated as generalized programming problems:

T
min J = f f(x,u) dt ,
u(-) 0

x(0) ¢ sO y, x(T) ¢S, ult) e, 0<t<T, (5.31)

where SO’ S., and U are convex, and

f(x,u) = fl(x) + fz(u)

where fl(x) ie linear in x and independent of u, f2(u) is convex
in u and independent of x. When SO' ST' and U are polyhedral
sets and fz(u) is quadratic in u or the sum of the absolute value of
the components (with linear terms permitted), the generalized program-
ming problem is solvable by the methods presented in the previous two
chapters. The rest of this chapter is devoted to the development of the

algorithm for solving these generalized programming problems and to
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pointing out the specific features of the algorithm so that it can be
adopted for special purposes, including the determination of feasibility

or its existence.

B. Solution of the Control Problem

The first step and, at times, the major problem in the solution of
the control problem is to find an admissible control yielding a feasible
solution. An important characteristic of the generalized programming
solution of optimal control problems is that, at every stage in the
optimization phase, a feasible solution is always available. With this
feasible solution, a bound on the value of the optimal objective func-

tion can then be computed. Thus, if the solution procedure is inter-

ey e e vy e
2 )
P
=g /

rupted before its convergence to an optimal solution, a feasible solution

ff."f'
1S

can be recovered and an estimate of how close it is to an optimal solu-

5

tion provided. This estimate or bound can be used to terminate the al- §

s

gorithm, since suboptimal solutions having an objective value close to

P s ooty
il i

-

the optimal one, are generally sufficient for decision purposes. Al-

il e}

G2

though the general solution to the linear control problems may be an

i
1
K
)
v
1

infinite convergent process, the generation of a feasible solution, if
interior solutions exist, is a finite process, and the generation of a
suboptimal solution, as close as desired in objective value to the op-
timal, can also be obtained in a finite number of steps. The algorithm
and its variants are presented in this section along with convergence
and finiteness proofs. The characteristics of solutions and their re-

lations to known results in control theory are presented in Chapter VI.

1. Generation of a Feasible Solution

There are two major aspects of finding a feasible solution,
The first of these is the determination of whether or not a feasible
solution exists; the second is to generate the feasible solution, if it
»r does exist, In both cases, a phase I procedure of the generalized pro-

gramming problem is used. The control problem to be considered is

Find a u(t) ¢ U =(ue E"[Au < b}, vt ,
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b; such that x(0) ¢ S,  and
t
*,
g x(T) ¢ ST , when x 1is controlled by
o8
; X(t) = Fx(t) + Gu(t) . (5.32)
)
i1 Without loss of generality, we let S0 = 0 and ST = 4.
%& Let us assume that the reachable set RT is a continuum. Let
iy
;§ us also assume that, if
'8
!
[
4 RN 3
i - N/
N
A8
%. then RT N é is a continuum. This condition insures the existence of
)
h a finite~dimensional neighborhood in that set of desired final states
]
)
> in the reachable set. As will be shown, these conditions imply that the
\ phase I portion of the generalized programming formulation of the control .
H
f' problem terminates with a feasible solution in a finite number of
.“'
o of steps.
[
g Since the convergence (Chapter III) of the generalized program -
A; assumes that a nondegenerate feasible starting solution is available,
[\
) the phase 1 procedure must terminate with such a nondegenerate feasible
I g
ey
‘{ solution. This implies, for an n-dimensional state space, that a col-
ol 4
lection of n + 1 vectors P must be generated so that the initial
; basis,
i 5
A.: P1 p o pn+1
O
i B = :
o 1o 1
)
-1
9! is nonsingular. Also a value, S <« 4, must be provided so that B ~S§
N

s is a vector and is strictly positive in all components.

Although convergence proofs require the results of the follow-
ing phase I procedure, more efficient variants (to be presented) should
be used in practice and can provide a feasible solution in fewer steps

for most problems.
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:ji We will now show the procedure for finding a feasible solution
oy . .

i" when 4 1is a single point and a ball of radius p in E (a p-
A5

neighborhood) is also contained in the reachable set, R The p-

A T ;
2nx neighborhood is used to avoid degeneracy problems, in much the same man-
n
ii‘ ner as a simplex lexicographic methods by perturbating the original right-
:‘ hand side. Thus we seek to generate a set of n + 1 vectors Pl, to
‘¥x provide a nondegenerate solution to the set of linear equations.
.\“
A
155 1 n+l
+ ..., + P =S
o Py Mn1
1649
q
,': |_11+...+pn+1=
0
S
Ay py >0, Vi, (5.33)
i.
i a. Some Properties of Convex Sets ;

-
g =
i

n
Definition 5.1. The convex hull of a set, X ¢ E, 1is the intersection

T

q LI Qend]
of all convex sets in E containing X.

o
L

Definition 5.2, The convex hull A of a finite set of n + 1 points,

¢

q n . q q q .
X X in E is an n-dimensional simplex, if the

> )

1 X2t o T
flat of minimal dimension containing A has dimension n. The

S

e i
(]
3

S
%

points xi are called vertices.

Z=0

X
5
(e S N

Lemma 5.1 [12], If A is an n-dimensional simplex with vertices

n
xi(i =1, ..., n+ 1), then A consists of all points x ¢ E

D e

for which constants ai exist, so that

A

n+1l

BTSSP oty
PG
k]
I
Q
[y
x
[
Q
[N
{l
=

2

]
[
1]
ey

i ~
[
-ﬁ a >0
3 -D‘ 1 -
':: 4
1 )
ﬂI
S’
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Definition 5.3. A set of k + 1 points in En is geometrically in-

dependent, if no (k-1)-dimensional hyperplane contains all the

points.

Definition 5.4. A set {xo, ce oy xn} of vectors in E& is point-

X
1,
wise independent (algebraic counterpart of geometricully indepen-

dent), if the k vectors, x1 - XO’ x2 - XO' 0000 Xk - xO are

linearly independent.

Lemma 5.2 [13]. If X = [xo, X 500 xk] is a pointwise independent

1’
n
set in E , then there exists a unique k-dimensional hyperplane

k k
H containing X having the property that x e H, iff

k k
Soax .Y

=0 i=0

e

where the Gi are unique. The Gi are the barycentric coordi-

nates of x with respect to X.

Let us look at the convex hull of the set of n + 1

n
points in E , X,

X = [xo, kl’ e xn} , where
— _ L L
0 1 0 0
0 0 1 0
o T T %27 Y
0 0 0 1

and denote it by convX. These points are pointwise independent, thus

their convex hull is a simplex
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Let
Pa o
n+1
*
X = .
1
Ln+1
thus x¥e convX, since the barycentric coordinates are ai = 1/n+1, Vi,
*
Also since ai >0, Vi, x is in the interior of convX.
Define a new set of points,
X! = {xb, xi, cen xé] ,
where x' =x, + &, ,
x5 is as before, and
1
o, |l < —— -
(n+1)
Lemma 5.3, The points xi are pointwise independent.
Proof of Lemma 5. 3.
Let xg = xj + ij - Axo, =1, ..., n, Assume that the x3 are
linearly dependent. Then a nontrivial set of KJ exists, so that
n
Ax'' =0,
J J
j=1
Thus,
-‘7\}(":2?\[}( + X, -1 =0
2, 33 J 0 '
J J
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(n+1)

, — 2
Z A loxg - )Xy < Z?\J’[__Z] ,
J J

AXX < gl = iyl <
k 3 (n+1) 4

Thus we have

2
?\. —_— | > ?\ . 5.35
g J[(n+1)2:] k ( )

It we take inner products with all the xj, j=1, .y, n, and sum the

left- and right-hand sides of the result (5,35), we obtain

2
zxk < Z [in ————2] — Z A
” n (n+1) (n+1)

J
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e

J.;'.\ o
:‘% 2
‘b which implies 1 < 2n/(n+l1) , which is a contradiction for n > O.
-J‘-., -
By Thus the vectors xé are pointwise independent or geometrically in-
bs 4
£
";‘—’—“ i dependent.
(0 Q.E.D.
'-r: t
o
J!!. Theorem 5,1, The point x is in the interior of convX'. ﬂ
0 |
ﬁ: Proof of Theorem 5.1, |
: 1
"Q‘ ConvX' forms a simplex, since the points x'i are pointwise in- {
) dependent and form an n-dimensional hyperplane. Thus
£s
5
B n
I *
- 1!
;‘. X z Olixi 5 and
i 'A i=0
1
Z o =1 (5. 36)
i
-
has a unique solution in the Ot'i.
We must now show that Ol'i > 0, Vi, Notice that
1 * N
—_ = = a'x!
Z el i Z i%1 0
1=0
|
or ]
n
a'x! —-—l—x =0 . (5.37)
ii n+l 1
i=0
o
Since x!' = x, + &,, (5.37) becomes !
i i i :
n
; 1
[0 A 4+ o =0 . (5.38
Z ( i n+1) X Ry )
I =0
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By taking the inner product of (5.38) with each X i=1,

cessfully, we get the set of equations,
n
a - L, 25 a'(sx!, x ) =0
1 n+1 i i" 71
i=0
n
1 —
o' - 1 1 —
2 " nel "t z ajloxi, xy) =0
i=0
n
ar - L + ZE ar(x', x )
n  n+l i i’ “n
i=0
or, in general
n
an = L ar{,xt, x.), 3 =1 n
J- n+1 i ’ J- ’ ’ ’
i=0
Since
1
(ox'y x,) < ——5
i i 2
(n+1)
n
a'>n11— - > "=(11)' 12
b S P (n+1)
Thus G; >0 for i =1, , N Now,
—1=
n 1
» x, =1 ,
e =
i=0
1]

and we take the vector product of (5.38) with 1

to get

SEL-68-085 78

DT A
‘-. ’L L[(E\‘ .S'\(‘ \‘ y)*\-‘\'f':
4 I AP a

B

LA

¢
DM '. Yot talS

%“in y A' (1 lr.t .Q"A& !'h.ﬂ

gty

n

-.x.x." "‘)\?\, ‘.’i\;\ \\,f,\"\ ,\\ '\\_j \4‘\‘: . 'J'[\"f- "_\r": ?\* \_(J\",J *.{??\;r'{ ,J.\ :'t"- LN
. £

sSuc-

N r<‘
‘»‘\Q-t -’.‘p.:’ o‘g‘"‘: .t‘

€



—r

Vi s

Q
R

1
2
T~
[ary

+
M

2

%

z

o

kot o R g

which implies by using

% ¥ 2
e e el el o

-~

o ne
ooy - P
. >

1 - and

R
[orn
,'_'.M =
Q
L2
i
o

e’ s

et _’:‘."n“"' - /b
N =
=
+|b—‘
Pt

1l

=

]
=
|-
fuy

o
s
[N
]
—

that

1& 1o -1+ 2y at{sxt, 1) =0 or
:“ n i — !

)
Vd Remembering that Hﬁwi” < 1/(n+1)2 and ||| =.n, we obtain

e

4

(n+1)2

Sy e
FLE o =
o
=
+
=

e
*

Thus ab >0, and x is in the interior of convX',

zaad
4

Q.E.D.

By using the assumption that a p-neighborhood about

| -‘
oo KT
PLER LA LR

by bl - el
~

S = XT is also in RT, the following set of points are found in RT’

hy

4
e}

ad
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g x=x——(—p)1 L_ i =0
,{: I { T  n+l \n+l) =t el €40 1 N
‘gl L
1 .
iy where ei, i=1, ..., n 1is an n-dimensional unit vector with a one in ¢
S th
iy the i row and e, is the null vector. Geometrically, Xp defines
i
.i the vertices of an n-dimensional simplex with XT defined by the bary-
" centric coordinates of 1/(n+l), for each point in X .
o)
B0
oy 1,0 P
) Let x=x-—--—-)1 £_ i
) © i - T T metner/ =t ngg 8y e
‘,
A

o T,

;zj‘ Proposition 5.6, Lel a ball of radius [p/(.n+1)][1/(n+1)]2, about xi
}.}_’; for any i, be Ni’ then

iy s

i
rbd
=

N
=

7,53 W)

Yy

Proof of Proposition 5.6.

BTt
N
[y
—_—
©
-

R\ c ' 1 P
%, - %l < I () 1]

|

1%, - %l < g () Ve 2 - oy (V). d

— n+l n+1 n+1 n+1

, 1
The maximum distance from any point in N, to X, 1is L, b ,
i i n+l n+l

a thus the maximum distance from any point in N1 to XT is d,

N

N 2

. 1 1
;L% d < nil (n+1) + 5 [p1&/n4n+1] | or
'{( (n+1)

bs 1 1 n+2 1
& sl {l) ey §

Qg which is less than p for n > 1. Thkus Ni C RT’ since a p-neighbor-
% - =

‘ hood about XT is in RT.
5 Q.E.D.
h
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We will now solve the following problems, for all

X, e X:
1 P
b. Solution Procedure for Feasible Solution to a
Generalized Program
Find a vector P (or a convex combination of vectors),
so that

u.yz, y; >0, PecC. (5. 39)

This is the phase I procedure of a generalized program. The columns

i
P can now be generated to the master program (a linear program),

n n
+ -—
min w = ‘; .+ 22
Llry L yl yi
i=1 i=1
1 + -
P + P + - =
Mt we * by - Iyo= Xy
My + + Hye =1
Y yT>o (5. 40)
I.lil yi’ yi ol o .
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=k
From the vector of dual variables 1w, the kth iteration of the general-

ized program (5.40) generates a new column Pk+1, by means of the sub-

problem,

min ;k !
PeC 1

This subproblem is equivalent to finding a vector function

k! -
minimizes =« eF(T 2 Gu(t)

subject to u(t) ¢ U ,

K < k' k >
where =(n ,
n+1

(5.41)

+1
(t) that

(5.42)

The problem (5.42) for polyhedral U has previously been shown to be

a parametric linear programming problem and is solvable by the methods

introduced in Chapter 1IV.

k+1 k+1
The generation of P * from u + (t) is

T

K+1 F(T- k+1

pt =f oF¢ t)Gu+(t) dt
0

The generalized program (5.39) terminates when

k P 1 2
YOS D (m)

for some iteration k of (5.40). We know that the minimum value of

w for all P ¢ C 1is zero, since Xi € RT, and

Pi* = Xi e C
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Therefore

T y:, y; > 0, has a solution with all y:, y; = 0, The terminating
condition for each part of the phase I procedure terminates a general-
ized program at a suboptimal solution with the objective value some
specified distance from its optimal value. Thus the generalized program
terminates in a finite number of steps.

Once the value of w bkecomes low enough, the solution to
the phase I procedure for each Xi must be recovered., From the final

solution, for each Xi phase, let

ui*(t) 25 ui(t)pi and

i%* i
P P
E Hi

for each i =0, 1, ..., n, Also note that

k
i ¥
P1 = z

i=1
T
u -— '*
= f ST 6l * 4y at
0
1 ¥

i¥* i
Proposition 5.7. The set of vectors P and controls u (t) con-

k
- T .
_ 2 f T8 crutv)7 at s
: 0
i=1

stitute a nondegenerate feasible solution to the set of equations,

L
N 83 SEL-68-085
v
WA
o ’-;," 8 '3('?‘ {;!&;\j{: o \ :\ b .-.'-'\:'-:". ,.'( ” i A j::""‘ S

\‘ \' ﬁ Yo “"Q‘ . 7‘ r‘,\- >
‘ L0k M w&‘ !' 4 "r 3.{‘ LN n




-_" o
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)
U
TR
! - >
gnli “0 + Ul + 0 + [Jn = 1
Mol
\); %;(
~"%)3 uy >0, Vi (5.43)
J‘
N Proof of Proposition 5.7.
LY ]
?f: The points X, can be transformed and scaled to the points.
1;3 i
' — = — — e — —
; 0 1 0] 0
WAL
c\" '\\ 0 0 1 0
NoE X = = = -
QN = y X, = y Xo = , eee, X 0= ,
n 0 1| 2 no
) 5 3 5 :
k&g Lu | 0 o_j 1J
- @] o ~ - I
R
n i
Tl
Q}} and XT can be scaled to
[
g
iy :
A :
; \ _ * '
A < mT) %
! 1 ;
i% ‘
By the same transformation, P can be replaced by
x!' = x, + I, ,
i i i 1
wher
2
ol < (7x)
i n+1 .
Thus the results of Theorem 5.1 hold and ]
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and by retransforming and rescaling, . =0 >0 Vi for (5.43).
g My i s
Q.E.D.

c. Application to Control Problems

The above prccedure may be used to initiate the optimum
control problem when feasibility is known. However, in cases wher: . e
existence of a feasible solution is not known, another phase I proc-:dure
can bge used. This procedure will determine feasibility and in the pro-
cess provide an initial feasible solution.

For the fixed end point problem, a solution with w =0

to the generalized progranm,

n n
min z y++ z o
My Y i 1
i=1 i=1
+
P+ 1y +1Iy =8
M =1
+ -
PeC, (5.44)

implies that a vector P ¢ C exists which provides a feasible solution
to the control problem, If the optimal solution to (5.44) has a value

*
of w >0, a feasible solution does not exist to the control problem.

Theorem 5.2. If at any stage k in the solution of (5.44), the value
k
of wk + & > 0, the original control problem is infeasible, where
8k is the objective value of the subproblem to the generalized

program (5. 44).

85 SEL-68-085

B AT

VERRY (3 I{
r‘ l‘\ / 1 ‘ lf E’é.)\ ﬂi d I. }

73

' 24

% [l . ~
A A ML NS
4@ “ .--‘*ﬂ.-- Fii ' h

b M ks P S

a

s"\;"n" “"{

o

Rt NN/

4

4 W TR L,
R s 'P.‘,J\".\' 7"( o .‘

SAARANASY




Catatatatat Tl

PSR

=5~

P2

5 F A
o « 3

o

P2

§ A

O - G, 5 SR S R P ]

it

-

h)

Sl

R e - )

o

d

ot

»

By

-
o it )

Proof of Theorem 5. 2,

. th
Consider the master program at the k stage, as: max )\

subject to Uo% + Elpl + ...

+ ...
My
+ —
yi, yiy }Ji ZO
where _
0
—i -
= , S
i
Lp
"1 1 1
T = I
" I J
k k .
Thus A = -w and the dual variable to

-k’ k k'
i Ty X

(5.45) is

T n
n+l’ n+2

By using the duality theorem of linear programming and the dual to (5. 45),

Also

k _min k'
“PecC
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Since S is always in the basis

By hypothesis,

i

Since w

which implies that

—k!'

kl

k k
<0 +w

k
< 8% + wk

Itk
n+2

k k
<% +w
k k
<% 4+ w
1
< 6( + wk

Thus,

P-85#0

of (5.45),

for any P e C .

and by (5. 46)

for any P ¢ C ,

(5. 46
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Thus there is no admissible control function u(t) which can generate
a feasible solution to the control problem.

Q.E.D,

However, if at any iteration Kk, wk = 0, the current
solution is a feasible solution to the control problem and phase I1
(the optimization phase) of the generalized program can be initiated.
Since this phase I procedure, unlike the previous one, is not necessar-
ily a finite process, the optimization phase may begin when wk < ¢, some
small positive number and the desired final point not precisely attained.
For any practical control problem, when feasibility is not known, a point
at some arbitrarily small distance away from a determined fixed point
would be an acceptable terminal point for the control problem. Thus,
the phase 1 procedure would be finite even when feasibility is not
assumed.

For the variable end point problem, phase 1 procedures .i
arc much simpler. For example, when the desired final region 4 is |
constrained to lie in some r-neighborhood about a determined point S,
the phase I procedures outlined previously are used (r < p). If fea- s
sibility is assumed, a series of reachable points in the r-neighborhood
should be chosen, and a phase I procedure identical to the first one
discussed in this paper would provide a nondegenerate feasible solution.

If a nondegenerate solution is not necessary, then a procedure identical
to that for finding the existence of a feasible solution can be used.
In this case S is allowed to be the right-hand side of (5.44) and the

algorithm is terminated when w < r, as the following theorem points out.
k . *
Theorem 5.3. If w < r, then the solution P to (5.44) at stage Kk,

k . . . . .
which proriuces the value w , 1is a vector which lies in an r-neighbor-

hood about S, and it is a feasible solution for the control problem.
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Proof of Theorem 35, 3.

Since w < r,

n n n
zy +Zy—=§ |¢(p, -S| <r,
i i .
i=1 i=1 i=1
thus
n
= 7 3
+ (P, - S,)) <., and
i i’ =
i=1

T T S W

A general phase I procedure for the variable end point
problem can be used to determine feasibility as well as to find a fea-

sible solution when it exists. We consider the problem

A0 n n
o mn LS e S
:t’:': Hy Vv - yl yl
;53 i=1 i=1
aﬁ subject to
L Py +Iy - Iy+ Sy =0
o
2 . H =0
A -
PeC
Sed , or equivalently, (5.47)
89 SEL.-68-085

S

e L?' “C"i'&ﬁ?r.ﬂfi"' B! ‘EW’C“‘}\ VNRE
S Yo ?&ﬂﬂé\’%}uf (ol M AN y:«; N



a restricted master problem at iteration Kk,

max A
k
ua+ NP o N syt oTy =0
0 Z. By 2 13. y y
i=1 j=1
k
\L‘i =1
i=1
k
\ Vv =1
L
j=1
+ - _— - =
L Yy Y Yy >0, and P, S, 1, T are as before . (5.48)

When a solution to (35.48) produces a value of kk = 0 or equivalently
wk = 0, the solution is a feasible solution to the control problem.

The following two theorems will prove useful for determining when a fea-
sible solution does not exist and for recovering a feasible solution
(when it does exist® from a particular iteration of the master problem
(5.48). Let the subproblem of (5,48) be designated by the parameters,

k I
¢ and ;}, and defined by

[ 0]
'a 1 { i =k
T bk . nk P , and (5.49)
R PeC
3 \-.':- * 1
R 0
‘. pad -

PR e 3

ol kK  min -k' | S
oo A= n : (5.50)
'gb' Sed 0
L
b’,_"w-. : 1 §

where ;k is the dual variable to (5. 48).

K

25

-_z

Lt

)
oA A
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’\:-t' Theorem 5.4. If at any stage k of the initial phase procedure for the
} k }
‘:.l variable end point problem w< + O + A{ > 0, the original control

problem is infeasible.

5_-( Proof of Theorem 5.4,
! —k' (nk k' k k

al Letting n = o' T, Hn+1’ nn+2) and remembering from the

A duality theorem, that

then, by hypothesis,

min =k’
PeC

+min —-k'|l -S k
Sed ’

o g
)

k k
O<bk+/‘5 + W =

gl by

Tt

o = 2 0O

l'f (Y
b B}
5%
T

L

v

[

|

P I
L}

Substituting in the above,

- %
LN

L
R
pot

.’v
s

Al
A,

1

o
]
L)

o
J

- =1 _k‘ k k
0< o +A+wk<nk + =t 0 - -

- &
'

A @
=
~

e
L 4
o
| S—
—

e -
.y 1Y
'. 'y
f'_l_l
=

L
|2 Tl
Coe

for all Pe C and S ¢ &

) Thus

" ] ! k! k k k K

3 K k k k 4
- - - , O
= ] 0<o +A +w <1 P+r (-S) + nn+1 + nn+2 ﬂn+l ‘a2 r

- l-l
b 0< n (P-S) ,
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¥,

which implies that

‘40

(P-5) # 0

Therefore,

Theorem 5.4 indicates an infeasibility condition,

Theorem 5.5. If at any iteration k

a vector,

k *
and a value w < r so that S
an r-neighborhood surrounding S

trol problem is feasible and the solution

is a feasible, reachable point.

Proof of Theorem 5.5.

. k
Since w < r, the vector,

k
\; ik
P
f. M
i=1
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and

for all

is an interior point in §

that is also in

Pc¢C and S ¢ &

there is no feasible solution to the control problem

Q.E.D.

the solution to (5.48) provides

and has

3,

the original con-

being a solution to

(5.48)1]

and in
the next theorem (Theorem 5.5) a feasibility condition is presented
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has the property

- * ok N * ok 2 25 ¥ _ oama
P - s = +/Z (PF =92 < > [ (P - sH2 =
i i

* *
Thus the point P is in an r-neighborhood about S implying that

* *
P ¢ 4. Hence the control gencrating P is a feasible control.
Q.E.D,

2. Generation of an QCptimal Solution

For the fixed end point problem, the subproblem for phase I
methods is a parametric linear program of the type discussed in Chapter

1V, For some variable end point problems, the phase I procedure has an

added subproblemnm,

0
-S
4 min k' 0 q or
sed "
1
—
min Itk's
Sed (5.51)

Ao

bk S
4
o

. ;‘v »
R

Thus we seek a vector S 1in a specified set 4 that minimizes the sum

)
Pl MO el e Jovs L)

zz nT(-Si) '

subject to the constraint that S e 4. If 4 1s a convex polyhedral

I
‘GEQ set, this problem is a linear program that must be solved once for each
Mo
i{ iteration of the master problem. For other classes of 4, the sub-
¢ problem depends on the definition of 4.
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;ﬁ; While discussing the optimization phase of the generalized )
programming formulation of the optimal control problem, we will con-

Eﬁ sider only the fixed end point problem.

o To avoid degeneracy, it is desirable to start the optimization

iwq phase with a set of n + 1 vectors Pi that provide a nonsingular

L hasis,

o
-1 =2 -
X v P B ... p!

lg{ which is feasible for the program,
& £

R A = —n+1

B max UN+ Py + ...+ P =
A b 0 1 n+l
g subject to

wj

5 by >0, (5.52)
.

f £(x,ub) dt
0

where P = '

L i

i i
where u (t) ¢ U generates the vector, P, and

S

These vectors are immediately available when using the phase 1

procedure discussed initially. For other phase T procedures, once a

feasible solution is found and assuming a neighborhood about that solu-

tion is also feasible, the initial phase I procedure may be used by

generating the right-hand sides in a similar manner about the known

fecasible solution.
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Restating the fixed end point optimal control problem as
¥ .
[ x = Fx + Gu
;%ﬁ x(0) =0, x(T) = 8
-3
L n m
[\ xeE , ult) e UgE , Vt,
Brd) where U = {u|Au > b} ,
b ?
ﬁs and
e
i me o e at
-_.-..: u(.) = X,u y
- 0
%‘}’_‘{
w2
T, ' 1
G where f0x + gpu
> m
f(x, = 'X + glu + zz u
(x,u) fox gou | i|
i=1
<
fbx + gbu + u'Qu
we can define F and 6, as before. .
When a set of vector control functions ui(t) is given from
7 =i
- the phase I procedure, the vectors P must be generated.
;? T T
. f (f'x + glu) dt + f f(u) dt
o) 0 0
] , 0 0
e -1 =
,.\.'.l
N P
¥
o or
ol , T = T
oy P = T T8 Gucey at « £(u) dt U
OV, A 5 0

hod
“x

ooy by
-

Since the matrix eFt must be provided for the phase I method, the

‘
=
3.4

matrix,

D

.
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e is easily shown to be

r— | -
v L, Ft
0 : ffo(-_’--- LY
S
Ft i
e = !
]
]
)
]
] 3
1 Ft
0 ! e :
by considering the system
xo(t) = fox X € B
x (1) = Fx
where x(1) = eF(L—T) x(1), and
F(t-1)
. — 1 - X
xo(t) = fox(t) = foe x(1)
X
Letting X = Y , »
X — —
[}
L F(t-1)
0o
I e
= 0 T
X(t) = " 3 ! %ot™
B . F(t-1)
5 U x(1)
]
o
L 1

From (5.52) we see that the linear equations in by always
insure that a feasible solution exists for the control problem. The
simplex method, when applied to the master problem, maintains primal
feasibility at all times even when augmenting the linear equations with
a vector 5k+1. Thus at any time in the execution of the optimization
phase, a feasible solution is available from the current basis. Also
as will be shown, a bound on the optimal solution is provided at each

stage.

SEL-68-085 96




LTICLTH LN LW L U U DS LA E L R R A O T O, W M N S H T S UM S T RO W A 5L Y

n

X 3

S e 0 S e
é"@'- r
&

k ] k
In the following let J = —X(, where A is the objective

th
value of the master problem in the k iteration,

P

)

. th
il Theorem 5.6. During any k iteration of the optimization phase of the

AHE *
Wﬂ generalized program, the optimal value of the cost function J(u )
Nl
o satisfies the following inequalities [2]:

L

r.‘

N kK, ~ k * k, A k k

AN J( + 0 <Ju) <J (W <JI =-N, (5.53)
X - - -

5
0 where k

N i

3;_ G = > Wl

_‘". i=1

i

A
KA Proof of Theorem 5.6.
;5 Consider the equivalent linear program, as before,
W
\L
Pt

)
3: max A
) M
] =1 2 -k
e ¢ - -
: U)\+Pp1+p“2+ .+Puk Sy 0
A8
S Hy ® b Tty =1
AN
v=1

(5.54)

: :,.
eSS (G
=
.
v
o

o

by S,

k
The solution to (5.54) is A and by the dual theorem,

%a
4
’2a Xk _ nk 4 ﬂk
i T n+l n+2 '
./ It 1
(7 where nk = (nk, nk , ﬂk , T ) is the dual variable to (5.54). Since
i " A0 n+l n+2
. ﬂo = 1, the subproblem has the solution,

%
0 ok min )oKy, K

J = + 10 + 7
W u(t) € U b n+l ('

3
N
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Thus for the value u ,
k * k' *  k
o <J(u) +4 1 P + x , and v
= n+1
k k ! k * k' _* k k
- A +b=J(+b<J(u)+1rP+n -nk - ,
- n+1 n+1 n+2
or
k I * k' ¥ k
J +6(<J(u)+n P -
= n+2
Since
O a
k't -S k' k
P = -1 S 4+ =0,
n+2
0
4
1
k k * k' _*
J o+ 0 <J(u) + 1 (P -9 » 3
* * ¥*
If u is the optimal wu, then P is feasible and P = S. Thus,
k 1 * k k
e JU e < Ju) < I, where J ({)
O - -
Ay
o
:ﬂ: is the current solution and U 1is a feasible control, and the right-
| *
rr":j, hand inequality follows immediately since J(u ) 1is the minimum cost.
:s% Since J(u) 1is convex in u,
e
A3k}
o) k
‘1\;“} k k
s J(G)SJ=§UJ(u)
;‘:. i=1 ]
'&-'\,"J
"'P. A
e
:f:": Therefore
Lt !
e } k 1 k * k k ,
o T+ 0 <I +8 <Ju) <T@ <y (5.55) ‘]
e ]
“.:E) Q.E.D.
ol SEL-68-085 98
i
'V'
e
o
4
*iiwu R w G I VR
4 % ‘r'.."“h ""‘p "-,W 4'1.1 » e ! '\"- "‘r'}-"':)f‘,',«‘"‘* \’:Aﬂ\‘:\‘t":"‘,\:,' A "" W[ AN, AR ey '\)s':\‘ i\ ;




Py k K o k *
e Corollary 5.1, When o =0, J (u) =J = J(u).

§q Proof of Corollary 5.1,

o

ﬁfj The proof follows from (5.55), since equality holds throughout.
i Q.E.D.

ps k
Note that the value, A, of the master problem is an approximaiion to
the current solution at iteration k. At any stage, the solution de-

fined by

E

k
ﬁ(t) = 2 u};ul(t)

i=1

e oy

ot 2

T

T

A k 3
has a cost J(u) which by convexity is smaller than J . .

k
Although © does not necessarily increase monotonically to

v
7~ =
') -t
L
Vi

’\. 0, it does so for a subsequence of k. Thus the best bound from pre-
;qﬁ vious iterations should be retained until a better bound is attained.

3 k
-3_ 2] The current value (at iteration k of the generalized program) of b

i; may be used to provide a stopping condition for termination of the op-
:14 timization phase. By observing the value ]
N

B

k, k

O & /3%

,i(

5.0
) we can determine the maximum percentage by which the objective function

can decrease for the optimal solution, and we are assured that the cur-

I).V

rent solution is feasible to the original control problem.

! J

We now present a flow chart of the generalized programming

o
g et g
Ay

D)
)

&
i

soluiion to the optimal control problem, We will use the fixed end

point problem for an example, assume a p-neighborhood about S 1is in

It

RT, and apply the long form of the phase I procedure. 3
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(as real matrices with elements being fun~tions
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[ Initiate phase I |
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Set i =0

=JL Replace i by 1 + 1 |

GO TO OPTIMIZATION (BLOCK 8)
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JSet k=0

@ | Replace k by k + 1 |=e— FROM SUB. PROB.

Y

e "\. K o« U5 1,»1.-(‘ (':\'\ 'Q'-
Saio¥ '. 'L MEARRER .

min w Z z
Yi ¥y
Subject to pl“l + ... 4+ Pkuk + Iy+ - Iy— = S:l *
Hy + . + Hye =1
+ =
l.lin yir yi 2 0
4
Y
P 1\2
@ IS (n+1) <n+1> ?
N
|
-k
Calculate i, dual variable to
@ linear program
Y
YES TO START OF SUBPROBLEM
Is 1i=n? .
YES

GENERALIZED PROGRAMMING ALGORITHM FOR LINEAR
OPTIMAL CONTROL.
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J
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o
J
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i i F(T-t
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max A
i
Subject to A 0 ! + + k. =0
upjec o + popo + poul A popk =
0 1 k
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u0+ p1+.. + “k_l
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The inputs to the flow chart are,

e S T

| 2N

,E 5 System matrices F, G

:E Loss functions, f(x,u) = fo(x,u) + f(u)
where fo(x,u) = féx + gbu

Parameter, ¢.
Final time T [assuming initial time O]

Final state S [or S - SF]
T 0

,*q.h!-ha “‘Q:{ < = -»‘_'i

Polyhedral matrix, A

3
z

{ Right-hand side vector, b
« .
i t DO o
f& Unit vectors, Uo, el, e2, . en+1
:‘.’ e = 0
% 0
W
N the vector 1 .
{
1
'.
; ! To retain the continuous-time aspects of the control problems,
y e
tf' this algorithm requires explicit knowledge or availability of the matrix
: t
Q h eF , and its time derivatives,
28
7. It is well known [4] that the components of this (n X n)
y
:i matrix can be expressed as polynomials of an order less than or equal to
Ft
D n with an exponential multiplying factor. The knowledge of e is

required for determining the functions ((t), wused in the parametric

S

!ﬁ programming subproblem, and for determining the vectors P, given a

J-

f control function wu(t), over an interval.

() We can express the fundamental matrix as

7
2

[/

{j m-1

L)) Ft k

-7- e = Z O'k(f) F ,

- LY

¢ k=0
b

where m is the degree of the minimal polynomial of F. Note that

.': ‘:1

i A m < n, if F is (n x n). The algebraic equations determining ak

1 are

D :
& |
% 103 SEL-68-085
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1
d
¢
<
;

&L—‘m-‘ A

o
.14
a:§ MO o= (L),
"l
™
11 where O is an m-vector and (' 1is a vector with elements of the form
" S .
e [ Pkt
% , k=1, ..., 0 =20, ..., mk - 1, where the s&s are the
X eigenvalues of F and m, is the multiplicity of the eigenvalue, ﬂ(
it
gy M can be shown to be nonsingular, Thus Qk is composed of linear com-
F binations of the elements of ((t), which are themselves members of
e the class of solutions to homogeneous, constant coefficient, linear dif-
)
;ﬂ ferential equations. Thus any vector
{r
0
s F(T-t)
i& y(1) = me G ,
..I
'l.‘
J;: where n is a real vector and G 1is a real matrix, has components
‘,“s
;{. which are members of the class of solutions to the homogeneous, constant
1N

coefficient, linear differential equations,

e

e As will be proven in the next chapter, the functions generated Py
L. ?
:ﬂﬁ for the linear loss case, minimum fuel problem, and minimum time problem
g,
ﬁ% are piecewise constant functions., Also, for the quadratic loss in con-
- A
trol problem, the generated function u(t) is shown to be expressed as S
fﬁ a linear combination of the aés for a finite interval of t. Thus the .
I3 7
g{ components of the vector integral
B
g .
) t
2 F(T-t
) / eF(T-1) Gu(t) dt
) 1
13
3
1/
o

can be represented by a sum of integrals of the form,

t
2 1
/ a t.fes dt ,
g s
1
a
which when integrated, is equivalent to
E st |t t )
- t K
a = 2-/251 Loyt o5t ae (5.56) g
s S t s s
1 1
1
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i
3
%
=;i§ o Ft .
-5ﬁ It should be noted that all components of e will be real, even for
*iﬁ complex eigenvalues, since cancellations of the complex part occur.
i%’ e Since the values of eFt and its first n - 1 derivatives
j:: are needed at only a finite number of points (undetermined), these val-
:% ues may be provided by an analog computer. This suggests (but not re-
ek strictively) the use of hybrid computers for the algorithm. The analog
E computer could be used to supply values of (t) at specified instants
;?g and to compute the vectors, P[u(t)], while a digital computer could
iiﬁ be used to solve the linear and quadratic programming problems in the
E master and subproblems.
?:4 To show that the algorithm is computationally feasible, we will
ug: show that each step or block in the flow chart is solvable by a finite
?k number of iterations. Although convergence of generalized programs may
'}?; be an infinite process, a suboptimal solution as close as desired to the
igi optimal solution is achievable in a finite number of iterations of the
fé i subproblem., However, when the reachable set is a polyhedron, the gen-
L% eralized program converges in a finite number of iterations of the sub-
'H_ o problem. The number of thesc iterations is less than or equal to the
{¢_1T, $ number of extreme points of the polyhedron.
f'% To demonstrate the finiteness of the executions at each stage
;Hi in the algorithm, we will show finiteness for each block of the flow
) chart for the basic algorithm (note that the block numbers designated
!: coinc.de with those on the flow chart.) It is also noted where an ana-
T:E log computer may be substituted when hybrid computations are desired.
"
L) Ft
0 Block 1: If the matrix e is not available as an input, its deter-
,{? mination may be obtained using an eigenvalue analysis of the matrix F;
'lki routines of this nature are available. After the eigenvalue analysis,
;fiS a set of linear equations must be solved to find eF(T_t) in terms of

o
|

i

e

a finite sum of multiples of F. The analog computer may be utilized

= , Ft

- for determination of e .

".,'

;l ]

ﬁa' Block 2: The extreme points of a simplex, in the reachable set surround-
et .

1t. X ing the desired point S, 1is a computation involving addition and sub-

2 P
Liak)
]

traction of the available vectors, some of which are unit vectors.

X
d
B

i At
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Block 5: The solution to the phase I master problem at any k for any
right-hand side is a linear program that has an initial basic sclution

immediately available, i.e.,

=0, Vl
Hy
-0, y = -8 for S <0
yi - 'yi— i H 4 i
S T =0 for S. >0
Yi TPy Yy T o i =

The number of rows in this linear program is n + 1 for any stage Kk,

even though the number of columns is variable but always finite.

Block 6 : Additional columns are added to the master program of phase

I until the value of w 1is less than a required strictly positive num-

ber. Since the minimum value of w 1is zero and since w decreases

monotonically and strictly decreases on a subsequence of iterations, for

some specified positive number, the value of w will be smaller than

this number after a finite numbher of iterations. This is a basic result Jr=—X
of generalized programming problems and shows only a finite number of col-

umns are used for the master program,

Block 7: The calculation of the dual variable of the linear program in
the master problem is a result of the solution procedure for the linear

program and requires little or no additional computation.

Block § : A vector addition provides the column vectors to be used in

T the master program after the phase I procedure is completed.

-.1%-,“{4

Ry

iy

TP:J‘ Blccks 9 and 13 : The determination of the vector P is achieved by

>fﬁ£& intregation. However, due to the structure of the integrand, special- :
S ized (finite and exact) integration schemes are possible. The integral K
:i?i: is broken into a finite sum of definite integrals (corresponding to a

%i}? finite number of switching points) whose end points are calculated by

XY ]
}5*' the analog computer or by formula substitution as suggested by Eq. (5.56). X
TN o

SN
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Block 11 : The master program for the optimization phase is a linear

program with a fixed number of rows (at most n + 3) and a variable

number of columns. Although the number of columns may be infinite, for

-

any practical problem and within limits of the computer's accuracy, no

more than a finite number of columns are generated before achieving a

solution, indistinguishable (within computer accuracy) from the optimal

solution. The simplex method should be used with the starting solution

to each interation being the final solution of the previous iteration,

The first vector to be added to the basis is the vector generated from

the subproblem (if optimality has not already been achieved).

Block 12: The solution of the parametric programming problem is dis-

cussed in Chapter IV. The solution has a finite number of executions;

cycling is avoided due to the lexicographic ordering rules and normal

degeneracy perturbation techniques available for linear programming

S codes and complementary pivot theory methods.

All other steps are either logical programming steps or simple

QEJ§ calculations. Thus since each step requires a finite number of execu-

tions, each iteration of the master problem and its corresponding sub-

problem (of phases I and II) require a finite number of executions.

The solution of phase I is finite since only a finite number

of columns must be generated for the n 4+ 1 generalized programs used

for the solution to each step of phase I. The algorithm may be termi-

nated at any stage in phase Il yielding a feasible control with a bound

on how much its objective value can differ from the optimal objective

value.
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Chapter VI

RELATION OF GENERALIZED PROGRAMMING
TO CONTROL THEORY
In this chapter, the relationship between the necessary conditions
of the generalized programming formulation and Pontryagin's necessary
conditions for the optimal control problem is discussed. The character-
istics of optimal controls for the various classes of control problems

are also discussad.

A, Relation to Pontryagin's Necessary Conditions

The relationship between the generalized programming optimality
conditions and Poncryagin's necessary conditions is used to show how a
solution to the generalized program can be an optimali solution to the
control problem. The following class of problems (discussed in the pre-

vious chapter) are considered:

X € En 5 u € Em
x = F¢ + Gu
T
min J =./~ {fbx + géu + f(u)} dt ,
0
0

.;j where f(u) = 2{ |ui| )
o u'Qu
Eos and x(0) =0
o
) x(T) = €

LR

u(t) € U = {u|Au > b}

4 ~
vt .
‘l; @ — ! 1 N
" If we ler Xy = fox + gou + f(u), then
g 9,
X = [ PJ = T% + Gu + f(u) U. .
X 0
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By using the previously presented notation, the Hamiltonian can be defined

as

H = y'Fx + ¥'Gu + y' f(u) Uy (6.1) i
i
X = ”ir_ , and (6.2) ‘
\V = _H; ) (6.3)
v, (t)
(t) 1
where Y(t) = and y(t) =
v, ..
(t)
wn(t)

Pontryagin's maximum principle states that (6.2) and (6.3) must hold

*
while the optimum u (t) satisfies

- - % = =
H(y, x, u) = u(i;lpe U H(y, x, w) , (6.4)
. “%
for a given V, x, or
HE, X, u) > H(Y, % W, all u(t) e U . (6.5)

Let the optimal dual solution to the generalized program,

LISt

g max A
WY
A PeCcC
#2_ subject to UOK + Py =8
(2
oY p=1

» 8
v

‘G :f\v:‘r‘- I B e
.
& B

and let .:;}‘
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i?ﬁ where n = (no, ceoy ﬂn). Thus it is obvious that ¢(t), as defined, i
;%( provides a solution to (6.3). To show that this solution is non-trivial,
1 it is sufficient to show that wo(t) # 0. From the results obtained in
] 4
*Qf Chapter V, the first column of eF(T e is the unit vector UO. Thus,
e

i *
we Wo(t) = —ﬂo - for all t . (6.7

S
#{. We also know, from generalized programming, that

\_1

,.‘1{
A7 ~F
;;0 b1¢ UO = 1 ’
LA

fg therefore, ng =1 and wo(t) = =1, for all t. ;
(). :
%% Since n° is the dual solution to the generalized program, it 4
% satisfies
L
;‘ ‘:

S »~

-
L —*t| p —%! — —_
‘{{; Emln_ = S = , PecC ,

] € 1 1

or, equivalently,

o
2,
a

9

L7 min  —*'l P(u) < =¥ P(u)

: u(t) € U q = 0

T%» Vu(t) € U . (6.8)
BAT

g

ﬁ_' The above inequality is equivalent to the subproblem of the generalized
v, —%

”ﬁ] program, when 1 is the current dual variable. Equation (6.8) may be

restated as

e e e A2
[ e
LIl Sl e N

* * ~%'  F(T- *
il o ) + 7 eF T8 (o

0
s
:_ < nof(u) + 7 F(T ) Gu(t)
3

a for all wu(t) e U, and
t e (0,T] ,
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or

* ¥ K T(T-t) = *
-t f(u) - = e ( ) Gu (t) .
»
1
* ¥ F(T-t) = '
> ~nyf(u) - T e (T-0) Gu(t)
By expressing the above in terms of V(t) and by using Eqs. (6.6) and
(6.7), the inequality is equivalent to (6.5) or Pontryagin's maximum :
principle. Thus the generalized programming necessary conditions are |
equivalent to Poatryagin's necessary conditions for the same problem.
To cemplete the analogy between Pontryagin's necessary conditions
and the generalized programming optimality conditions for control prob-
lems, we include here a discussion of the transversality conditions for
sets 4 which are convex smooth manifolds. g
~% — :
Notice that the vector =« is equivalent to the vector (T). 3
4
Also an optimality condition for free (initial) final point problems
[as shown in Eq. (5.47)] is
-
Po T
—*' 1 s
P1¢ >0, for all S ¢ 4.
0
1
*
We also note that some S € 8 has the property
- *'S* *
- = -7
N T n+2 '’
= \'5\‘!
t:,{)“ *
g?’ since there must be some vector S in the basis of the expanded master
Al linear program.
f+$3 These conditions represent a halfspace with the hyperplane defining .
u-\:\l —K
e it as being represented by the vector = . This hyperplane is a sup-
o, * *r K *
fﬁﬂ porting hyperplane to 4 at some S, since n § = Y 4 lies
?%ﬁ completely in one halfspace of the hyperplane. The hyperplane is also a;
AN a tangent plane to the manifold 4 (when 4 is a manifold). These
A
Hhth!
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conditions represent the fact thaut (t) = -t is orthogonal to the

*
tangent hyperplane of 4 at S . This is precisely the transversality

condition described in Chapter II.

P
To show that a solution to the generalized programming problem is
also a solution to the continuous-time optimal control problem (for
fixed end points), it is assumed that we have a finite set of vectors
31, so that ;
—i ]
*! 2
b1 =0 and
1
_’1
s | P — —
b >0, all PecC
117
Also
L.)
—i -
X . —
.‘3,\':.:'! “i =1
A
god
J‘\ ]
;;.i?, u, >0 (6.9)
"- . i =
*
has a solution,
i
Theorem 6.1. The solution
* - i *
uﬂ):Zu(ﬂui
t € [0,T]
LY
. is an optimal solution for the control problem. ’
RS .; 4
1L
qu :-:\
2oy
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Proof of Theorcm 6.1.

We know

v(t) = el eF(T_t)

satisfies (6.3) and ﬁo(t) = -1 satisfies Eo(t) <0, te [CT].

f(u) + % e FT-0) 5%ty = f[s ufui(t)jl
y 1

L -0 E[Zpi*ui(t)] ’

and, from convexity,

* * § * i
1u) < f[z bpu (t):’ < St

. k . . -
Since © = 0, from generalized programming necessary conditions,

~¥' F(T- — * *
=f(u)+rr eI‘(Tt) Gu (t) + =«
n+1

-k i O~ FT t - % %
< \ ;_;.f(ul) + \ o, ™ ¢ )% (t) + Zp_ n
- Lt L1 2t

n+1

=i
. P
\ M =0.
= 1
.X.
Since = is constant and since
n+1
—% P - -
1t >0, VPe C,
1
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shown that

8
W -

3 * ~*' F(T=t) — * ~%t T(T- —
_{i? f(u) + 1 e S % Gu (t) < f(u) + « eI‘(T 2 Gu(t) ,
o =

..:"(J ?’)

e vu(t) € U,

0\

A

i

) @IS

}

(> * ~%¥t F(T=t) — ¥ ~% F(T-1t) —

?. - f(u) - e S % Gu (t) > -f(u) -7 e SUS Gu(t),

o

£ u(t) € U,

i

et t e [0,T] ,

;f which is equivalent to the maximum principle. Thus Pontryagin's neces- ]
%K sary conditions for optimality are satisfied by the solution ‘o the gen-
ﬂ% ¥ 9 eralized programming problem. Since the set of equations (6.9) has a

’ .y *

5} solution, the control u (t) is a feasible control. It remains to be

\d

»

e

LR
=

I < Jw , Ve e v,

PO

]
which was shown to be a result of 6{ = 0, in Theorem 5.6. Thus the

.
L3
[ oLt

*
control wu (t) 1is an optimal control for the continuous-time control

x

%3

L problem.

-

:- Q.E.D.
o

W

D —% .

= We will now show that given =, an optimal dual solution, a finite
~d —j

3 set of vectors P can be found to provide a feasible solution to the
Tl

‘z set of equations (6.9). This is done for three cases, the quadratic

loss “n control with positive definite matrix @, the linear cases

o

¢ A
-
A

satisfying Pontryagin's general position condition, and finally, the

)
(N linear cases not satisfying Pontryagin's general position condition.

Theorem 6.2, If the quadratic lo-: control problem with positive def-
*
inite Q has a feasible solation, then u (t), which provides a

solution to
115 SEL~68-085
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pL 3
7,
«
A

2

x .{

-3
XX
|

REA . B
=
n
o

L 1

is an optimal control for the control problem,

P D

.‘_‘.l),

» s

b -
>4

Proof of Theorem 6. 2.

-
e

-
Let u (t) be a control satisfying

£
LR I P
X ]
(=

oot
|

ek
|
*

L S
iR

QﬁiJE%
==
"
o

.y.
then u (1) solves

S

AT e Y

min u(t)' Qu(t) + /*(t)' u(t)

e
LY

7
v

S

u(t) ¢ U, t ¢ [0,T] ,

L

kY
where , (t) is generated by n . The quadratic program with Q posi-
tive definite has a unique solution at each t., Thus there is no other

15 u(t) satisfying
4,

By the feasibility assumption and by U being a compact set, an optimal
*

control exists and must satisfy the necessary conditions. Since u (t)

is the only control satisfying the necessary conditions for optimality,

. it must be the optimal control,

= Q.E.D.

T
s

Theorem 6.3, For feasible linear control problems (including minimum

b l:"l "4;’/{. L :

S Sl 4

fuel and minimum time) where ?, 5, and U satisfy the general

*
position condition of Pontryagin, the control u (t) =atisfying

™
:
=

w
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M|
3
W
4 »
—_t P
b1 =0
1

is an optimal control.

B
.‘ Proof of Theorem 6. 3.

fﬂ Since a feasible control exists and since U 1is compact, an opti-
A, *HR

%, mal control u (t) must exist and satisfy the necessary conditions for
?f optimality. From the results of Pontryagin, when the general position

i condition holds,

i

h]

”

N =

o P

!

e min —*!

' .10
k1 u(t) e U (6 )
" 1

:j "y has a unique solution [of u(t)], except on a set of measure zero,

¥* *

X which we call u (t). Thus u (t) is the only function satisfying the
e necessary conditions, and

!

- .

. ¥* *H

X u (t) = u (t)

L

s Q.E.D.
'L) "

=)

% When the general position condition is not satisfied by F, 6,

and U, the solution to (6.10) is not necessarily unique over a set

of positive measure. However, since (6,10) must be satisfied (be-

cause it is a necessary condition), only its solutions need be investi-

gated to produce the optimal control. This is true, since the problem

is feasible, U 1is compact, and an optimal control exists. By the

theory of generalized programming, any solution to (6.10) which is fea-

sible for (6.9) is an optimal solution, as shown by Theorem 6.1,

Proposition 6.1. There are a finite number of distinct solutions to

(6.10).
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Proof of Proposition 6.1,

e

ol

It has been shown in Chapter IV that an upper bound exists on the

number of possible switching points of any solution to the parametric

g

ST

—F
programming problem (6.10), for any value of = for a finite interval

of t. These poiwis are fixed (given 7%), and any solution to (6.10)

remains constant between any neighboring pair of switching points. There

AY

are a finite number of possible solutions for (6.10), between such

switching points (due to a finite number of bases). Thus there are a

' }
,ﬁ' finite number of distinct solutions to (6.10).
o
A .E.D.
R ¢
.
ﬁQ Proposition 6.2. The set of points P, generated by (6.10), are extreme
™'y =
w? points of a convex (bounded) polyhedron of all P satisfying
AL
2
_1. ‘ ¥ P
,; T =0, (6.11)
:, 1
3
3% Proof of Proposition 6.2,
a
K' By the minimization procedure of (6.10), extreme points are gen-
4 erated. Also by the homogeneity of (6.11), any convex combination of
N7
*; the finite number of extreme points satisfy (6,10). Thus the points
fé generated by (6.10) are extreme points of the convex polyhedral set
containing the solutions to (6.11).
; }:‘ Q.E.D.
ir Theorem 6.4. TFor linear loss problems not satisfying the general posi-
j? tion condition, a finite set of vectors P' can be found to pro-
)
o vide an optimal solution to the generalized programming problem,
o
- Proof of Theorem 6. 4.

The optimal solution satisfies

Lt
S

H
x

¥ &
21 f
a2 &

APt el
-t
—

-
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hence we have shown that a finite number of vectors P form the extreme
points of all vectors satisfying the Eq. (6.11). Since an optimal solu-

tion exists, it must satisfy (6.,10), and therefore, it must be a convex

combination of all extreme points to the set of vectors satisfying (6.11).

| ('7)

A% *

3§‘ It can be shown that an optimal control vector P must be a combination
B —i

'g; of at most n + 1 extreme vectors P satis{ying (6.10). Thus, the

finite set of extreme vectors satisfying (6.10) can be generated 2 .d must

include, in its convex hull, a feasible solution to (6.9). Therefore,

-
the optimal solution is determined by a finite set of vectors P .

! iy
bl Q.E.D.
~:' e
AN Let . be the solution to
(Y My
3 NG LI

‘l‘ : UO + “l 000 Hye =
] [N
4’.}?; \ﬁ
18 - %
‘-.,.." L, = 1, (6.12)
1 ¥, 2
B i=1
1 S oo
¥
o —i
}#{ where the P are the extreme vectors of (6.10) or (6.11). Such a
3;%; solution exists from Theorem 6. 4.
R

* k * 4

Theorem 6. 5. u (t) = ZS kg () ,
i=1
where ul(t) generates Pl, is an optimal solution to the

control problem,

Proof of Theorem 6.5.

*
u (t) provides a feasible solution by virtue of (6.12) and satis-
fies the necessary conditions by construction; by Theorem 6.1, the cost

function is minimal over all feasible controls,

Q.E.D.
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3. Characteristics of Linear Loss Optimal Contirols

Without assuming a general position condition, we will show that an
optimal solution to the control varjable for linear loss functionals
including minimal fuel and minimum time problems, is a piecewise con-
stant function with a finite number of points of discontinuity for any
finite interval of time. Thus, since we are considering finite horizon
problems (T < «), an optimal contirol is a piecewise constant vector
function with a finite number of switching points.

The solution to the parametric linear program is observed as being
a vector control function that is piecewise constant and has a finite
number of switching points. Thus any vector Pi, generated by the
subproblem, has the same property for its generating control function.
Since generalized programming problems are linear programs in the master
problem, and since the number of rows in the linear program is less than
or equal to (n + 3), the number of columns Pi in any solution is at

most (n + 1) for phases I and II of the algorithm.

i
Proposition 6.3. The columns P, generated for the optimization phase

of the algorithm by the phase I procedure, are generated by control
vectors that are piecewise constant with a finite number of dis-

continuities.

Proof of Proposition 6. 3.

In general, the n + 1 columns Pi, for 1i=0,1, ..., n gen-
erated for an initial feasible solution to the control problem, are gen-
erated from the phase I algorithm for n + 1 right-hand sides, Thus
each Pi is generated by a set of at most n + 1 vectors P, and

each in turn is generated by a piecewise constant control function with
a finite number of switchings. If the maximum number of switchings for
any control function generated by the subproblem is M (M < «), each
Pi has a control with at most (n + 1)M switchings, since these

controls are generated by summing n + 1 control functions with at

most M switchings each.
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Each new column (after feasibility is attained) is generated by a
piecewise constant control with at most M switchings. Thus each
column Pl, in the master problem of phase II, has at most (n + 1)M

switchings in control.

Q.E.D.

Proposition 6.4, At any stage in the iterative process of the generalized

program, the current control solution is a piecewise constant func-
tion with a finite number of discontinuities and has an objective
value within the bound of the optimal objective value, given in

Eq. (5.53), of ok.

Proof of Proposition 6. 4.

The solution to the master problem contains a nonnegative combina-
tion of at most n + 1 columns Pi, each generated by a control func-
tion that is piecewise constant, and each has at most (n+1)M switch-
ing points (Proposition 6.3). Thus, the combination of the controls to
generate the solution has at most (n + 1)2M discontinuities. The

bound (bk) was shown in Chapter V.

Q.E.D.

Theorem 6.6. The optimal control generated by the generalized program-

ming solution of the continuous-time problem for the linear loss
functionals (minimum fuel and minimal time problems included as
special cases) is a piecewise constant function, and it has a

finite number of discontinuities.

Proof of Theorem 6.6,

k
If the generalized program terminates with a value of & =0 for
some stage k, then by Proposition 6.4, the theorem is true,

In any case, given the optimal dual variables to the generalized

—¥%
program = , the optimal solution is a combination of at most n + 1

vectors Pl, generated as solutions to (6.10). The generating con-
trols of these vectors have at most M switchings, and their combina-

tions has most (n +1)M switchings.
Q.E.D.
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| —k
It should be noted that when b( = 0, the current value of xk is

optimal, and it can be used to determine an optimal control function in-

dependent of the current solution (but not necessarily distinct).

Theorem 6.7. If the solution to the parametric linear programming prob-
-

lem when using =« to generate ,(t) 1is unique except on a set of

measure zero, the optimal control function, when non-zero, is at an

extreme point of the admissible control region.

Proof of Theorem 6, 7.

The solution to a linear program always occurs at an extreme point
of the constraint set. When a change of variables is made to produce an
equivalent problem for minimum fuel problems, a control of level zero is
considered to be at an extreme point of the new constraint set. Thus,
the optimal control is at an extreme point of the admissible control
region (or an equivalent constraint set for minimum fuel or minimum time

problems).
Q.E.D.

The previous theorem also implies that the standard minimal +ime
problem, and certain linear loss problems, have bang-bang solutions. It
also implies that the minimal fuel solution is a bang-coast-bang solu-
tion in some cases.

Pontryagin [1] has shown that his general position condition is a
sufficient condition to insure that the parametric linear programming

problem has a unique solution almost everywhere

Proposition 6.5. The upper bound on the number of switchings for the

linear loss functionals when the matrix F has real eigenvalues,

the state of the system is n, and the matrix A of the admissible

control region is m X p, is

2
m+ 1) (p -m
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Proof of Proposition 6.5,

There are at most (g) bases for the parametric linear program,.

Each has (p - m) nonbasic variables with relative cost factors 7i(t)

e
having at most (n + 1) points at which it becomes value zero., Thus
if a basis can be repeated, it can do so no more than (n + 1) (p - m)
times, after which it remains optimal. Thus each column Pi of the
master program is generated by a control with at most
p
(n + )(p - m
m
switching points. Since at most (n + 1) control functions are com-
bined, the maximum number of switchings is
2 p
" (n+1) (p-m
m
Q.E.D,
3
= C. Characteristics of Quadratic Loss Optimal Controls |

Since the parametric quadratic program has a time (parameter) de-
pendent solution for the control vector, the only characterization of
the optimal control generated is in the class of time functions possible
for the solution.

For the quadratic programming problem, stated as

i1
the solution has the form
. (v _ z
= q(t) + M .
| Z ] w
where _
[ w ] _
- = q(t), and z,w =0
[ Z
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ai(t) is merely a linear combination of the original components of q(t)

which are again linear combinations of the components

for all sk eigenvalues of f, and g less than the multiplicity
of the eigenvalue S Thus the solution to the parametric quadratic
program is composed of linear combinations of the same elements.

As in the linear case, at most (n + 1) columns of the generalized
programming master problem are used at any stage; therefore, the current

solution is of the same form, i.e., linear combinations of the elements

Whenever a basis switch is made, the linear multipliers change in the

linear combination, but the solution has the same characteristic form,

Proposition 6.6. At any stage in the quadratic control problem, includ-

ing the optimal solution, the form of each component of the control

function is a linear combination of n + 1 terms of the form

with only the constant terms changing at each of the finite number

of basis switches.

Proof of Proposition 6.6,

Each column generated by the subproblem has a control function of
the required form with the finite number of basis switches, since the
control function is generated from the parametric quadratic program.
Since at most (n + 1) columns are combined for each solution, the
current control solution has the same form. At the optimum, the quad-
ratic program has a unique solution for positive definite Q, and only
one column is generated with the generating control, which is optimal,

having the required form. For positive semidefinite Q, the solution
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to the quadratic program is not necessarily unique, and a combination

of at most (n + 1) control functions may be required as in the linear

case.

Q.E.D,

This algorithm provides an open loop solution to the optimal control
problem. Also, it should be noted that no assertion is made regarding
the uniqueness of the solution in the form of the optimal control
function.

Since Chapter VII provides an illustrative example with computational

experience in the linear case, we will now present an example showing the

form of the solution for the case of quadratic loss in control [14].

Consider the system

x1 = XZ
X, = u
Thus, 0 1 0
F = G = 5
0 0 1
xl(O) = 0, x2(0) =0
xl(T) =8, and xz(T) =S, .
T
2
LI"(”‘) J—f %u dat
0
ul <1,

1
where Q = 3 I and is positive definite. If the optimum dual variable

to the generalized programming formulation of this problem is

—* = (-1, n¥, 1§, 1P,
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J'
v
‘r‘i)‘ -
DO the optimal solution can be obtained as follows:
‘;‘\i")‘
=:‘|"' *
' find the control u (1) so that
L & {
r,‘(-% =
'Lf‘."}
e min x| P 1 by u (1)
2 i is achievec u (t
o ] <1 , Y
C
i .
Therefore, u (t) must solve
4N
i
M 21N
. ; 1 2 * * - *
‘g g =u + (7, w) eF(T L Gu(t)l + 1,
3 7} u(.) 2 1 2 f 3
;: {
Ehe
S
()
:‘:' lu(t)] <1, t. [0,T], or
i
min 1 2 * * : _ 4
lu(t)] <1,
— ”~
oL
Y * X Y .
,"}\ where \yl(t), and wz(t) are the optimal adjoint variables for all t.
;".w," Hence ihe minimization is
O
<
\ min 1 u2 . *(t)' -
u(-) 2 \“2
|u(t)| < 1.
Yor this problem, the solution is easily seen as
(0 |y ()
-y, (t ] < 1
(1), (O] < .
* *
u (1) = -sat wz(t) =
* *
-sgn Yo (U, [y, (0]
-
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4 * ¢
aj Note that wz(t) has the form Y
4 d
< i
Ey g
=
P
B & * X T-t B 5 * i
! b b1 = 7 - b1 . e, \
Yy (0 Ty 1 T g o€ )
o 1 1
| i3
Y 1
B §
b i
| * 1
'Q g
L] ;
b Thus the optimal solution has the form u(t) = Ot + B, for any interval t
4 L
i where O and B are allowed to change at certain switcl.ing points.
i‘ Free Final State Problem. In conclusion we will consider the i
. ¢
& problem where the initial state is zero and the final state (at fixed 3
th ¢
% time, T) is completely free. Since the first through n rows of the N
PV t
1 generalized programming master problem have free right-hand sides, the i
f§ R slack variables for these rows are always permitted to be non-zero. f
L —% ¥
i Thus, the optimal =« must be g
4§ i
i ?
g —%! *
" e = (1, 0, ..., ﬁn+1)
i -
:r The optimal control is then determined by the subproblem, ;
@« A
i v
min 1
& 0 flx(u), ul X
i :
if subject to u(t) e U t e [0,T] . :
1
& Thus the problem is solved by onc iteration of a parametric programming 5
k- problem. 3
; 1
c I8
4 *
Y
:
"1
2
K- f
B \ f
I %
: : L
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Chapter ViI
EXAMPLES AND COMPUTATIONS
f)

In this chapter, examples are used to show the execution and sample
results of the algorithm. The convergence properties will be demon-
strated as well as the basic features of the algorithm.

The problem we intend to solve is

‘ 3

() |u(t)| at

}.{1 = Xz .
kz =u

- lu(e)] < |

1 0
~ x(0) = , x(3) =

0 0

Ft ) and

Thus " 0 1 0
F = ] G = ’
[0 o 1

- 0] -
F(T-t) (1 T-t 1‘ T-t
e = =
| O 1 1 J 1
1
Therefore,
3 T-t
Y P = f u(t) dt ;
0 1
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and

|u| <1 }.

Uz{u

k)
By the definitions given in Chapter V,
1 1 2
F ‘ FT ) ‘ 3 t I 1
SO == ‘e = = LY |
( 0 ‘ l 0 1 0 ’ 0 :
127!
S =
" (Lol
-1
Pl |
d =(8) ={s_ -8 = ¢
0
T ( 9 ‘
f‘ We initiate by looking for a feasible solution to ‘?
U E
[ |
-
oY
¥ 2 2
( .
, min + -
: = .+ . -
_ L Y z yl 2 y1
%q i=1 i=1
’w
o
u.t + _ =1 ,
subject to P+ Iy -1y = ;
% f Y f
f,g. 3
b ""
5% i =1, where i
£
N 3 [ 7-t
;u: PeC = P]P = -/- u(i) dt, ]
'\‘\ 0 1 3
B

oy

lu(e)| <15 .

B
L 0 0 o
Qﬁ Let P = E generated by the admissible control u(t) = 0. 1In
O\ Lo
fa this example, we seek to solve phase I by keeping the desired point as w
g i the right-hand side and to terminate when w = 0, .
:‘
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The first master problem is represented by the tableau

2 2
min W = Z y+ . Z v
}J.;y i

i=1 i=1

+ + - -
T ¥y Y 7 Yy
0 1 0 -1 0 = -1
0 0 1 0 -1 = 0
1 0 0 0 0 = 1

o+ -
lJ.O) yi! yi Z 0 ‘

The first two rows correspond to states in the dynamic system, and the
final row represents the possibilities of convex combinations of the
columns Pl, generated by the subproblem. The optimal basis for this

linear program is

0 0 -1
= 0 1 0
B0
1 0 0
with
[0 0o 1
-1
BO = 0 1 0
-1 0 0
The solution is
-".i:l 4 + + -
i‘f;::?; bo = b ¥y = b vy =Yy =Y, =0
B
":h:’}
T with

9
c'
o
A,
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._
!
b -
“.\\‘, The dual variable is
™
:tl
i g /\O'_ ; -1 _ -1 _ _
:..\5 o= )BB =(0, 1, 1) B = (-1, 1, 0) , &
3
b o
,,{3 [n (nl, UV n3)]
','\l
,‘ The subproblem for the first interation is
A%
e
O
‘e P
-r:: min A, .
_g, PeC 1
£l -
o
"n (The minus sign results from the manner in which r 1is generated from
L\
)B.) The subproblem is then expanded to
e
‘. min 3 3-t ’
-1 -1 t -1
u(t) € U f ST i) 3
0 1
o
or
min
- 3 - t) -x
ule) [ nl( 1) 2] u(t),
lutt)y| <1, t e [0,3] ,
for rr1=—1, rr2=1.
The minimum is achieved by the function
1
u(t) = -1 t e [0,2]
1 -
u(t) =1 t e (2,3]
AT
-
SEL-68-085 132

J- om e - = “w " .- Ll S Wi T Wa il W I it i M di T B W e
§f‘ \&:.-gu\-‘ } \ .“.\;. -,.‘:.:a n_o,}: ﬁ :}_ _“ 7\}
S

! )
3 -.
"‘uk&» A'l.no .a-.n'\a' !'\ "' 7 lA ; M n‘nl‘ a'k

2, \




A R R T T U R R IR LR AR O S O T T R T R SO O R T T DR OO N RV PR RN U VR U WA T VA

@ _’

Sl aalinet
LU D Y
R o K g 4

P

I

.

: 1
which generates a vector P,

)
I
W
(9}
‘ NSRS
il - ey

\':

)
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[ ot . o0 S L et e

0

The new master problem tableau has an additional column correspond-

i ravee Ox G i

1
ing to P, i.e.,

e 5
2 LK X

2 2
=DM %
- i 4 i ‘;

+ -
0 . 3
[Jir Yi; yi Z g

{
{ \q
‘ 1 t
The optimal basis for this linear program is i

-

[
Ll

i

\
A
s
<
1‘\

b
2

and the solution is

AR

S

Hg = 5/7, by = 2/7, Vg = 2/1, all others equal zero,

K,
I

G X

W o= 2/7 .

T
LY e g T

[
i P

o

-

2

=

iy

‘ou il
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i

Y, -
;%ﬁ Using the dual variable from the above basis, the new column generated by
»i%§ both the subproblem and the generating control is

R

?;4 K
"\ )
.i¥2 2 4.5 2

Yl P” = , u(t) =1, t e [0,3] .

N 3

A

Y

S

e The new tableau is

Fhgf

i '\é 2 2

Y min N N -
-‘ w = + X ;
1..-],3\.; l“lly Z yl —_— }1
g- i 1

.1;-{'

l'l" + + = -

":"-.;,' Ko Hy Ho i ) Yy Y2

Ll

Al 0 -3.5 4.5 1 0 -1 0 = -1

K 0 -1 3 0 1 0 =1 = 0
8~ A
l‘.'\ 3

‘i 1 1 1 0 0 0 0 = 1

I\-“M‘
e

;{. U-i, y1: yi _>_0 . Ll
™

e
‘% 1 The optimal basis for this linear program is
A
ok

(H} 0 -3.5 4.5
O
iy B,=]0 -1 3 |,

Y
| QF L
L, 1 1 1
;?';

and the solution is

with

W :O.

Thus, a feasible control has been found for the control problem,
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To demonstrate the above fact, let

f 0 1 2
- u (t) = Kol (t) + ko (t) + pu (), or ]

and let

_ 3 [ 3-t -1
pf = pruf(e)] =f uF(o) at =
0

Thus uf(t) is a feasible control, i.e., an admissible control bringing

ol the system from its initial state to the desired final state. Note that
f 3 £
Jlu™ ()] = [u™(t)| dt = 4/3
0

Since a feasible solution is available consisting of a positive
combination of (n + 1) vectors P, the optimization phase may be
initiated.

Let

Jut ()]

= ; therefore

The initial master problem is (k = 2),
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)e

or in tableau form,

max A

21 amaw

e [ s

The solution to this linear program is

Hg = 173, p =

with

If we define
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1/2,

Ry = 1/6
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J
3..
]
Wl Ko . th . o
4 :‘ where Hy is the solution to the k master program, the inequalities
"‘:.5 in Theorem 5.6 become
jf;
10 * =
o 5 < 3@ < K 2 o8
e ,
"'ﬁ For k = 2 the solution is
P
.\:‘ 5
all I = a3, AF - %
N
: .
!‘.! The dual variable ;2 is
R -2
2' ! ¢ =(1, 2, -4, 0O ,
e
TN
p »
: and the subproblem is
+ k+1
find bk, uk 1, P , so that
P
k o
8 = min =xn or
PeC 1
3 3-t
min k k k k
t) dt + .
u(t) € U f ng [w(td] + <"1’ “2) e "3
6] 1
This is equivalent to finding the solution to
k
m1n |uCt)| + [nk(S-t) + 1 ] u(t)
1 2
[u(t)]| <1
t ¢ [0,3]
For k = 2, the solution js
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=il t ¢ [0, 1/2]
3
u (t) = 0 t e (1/2, 3/2]
1 t e (3/2, 3]
.JEi This solution produces a new vector
2.0
7 - | -0.25
1.0
with
P
k =k
- = Jlk = =-2.5
B 1
b, 1N
...:-' 41
o
" Thus, by using the inequalities in Theorem 5.6, we arrive at
Ny
-k k * -k k
J(u) + 0 < Ju) < J(u) < T 1
for k = 2, the solution is

.X.
-1.17 < J(u ) < 1.33

-
X

Lc;.
L
|

A .

mfé After each column is generated, the master problem is augmented (all P1
b h)

@Jﬂ are retained) .,

g

We will now present the results from a computer run solving the

Tw
o

5&2 above problem. The program converged in 40 iterations, using 16 place ac-
ﬁ%ﬁ curacy, on an IBM 360/67. Figure 1 illustrates the control function Ek(t)
bhﬁ at iterations corresponding to k = 2, 3, 4, 5, 10, 15, 30, 40. Its cost

L J(Uk) is shown at each iteration in Fig. 2. The optimal value J(Uk)

al each iteration is shown in Fig. 3, and the distance between the two

> "

. k
curves represents the magnitude of o© . The convergence of n and ©

£
3
o S S L g

g -
ks
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k
is shown in Table 1. In this problem, ©o converged monotonically to

R

zero. The convergence of n, on the other hand, is not monotonic by

4 component or component-wise norm. However, it does converge on a sub-

fé' il sequence to its optimum value and seems to monotonically converge in the
%ﬁ{ norm of |¥° - %

L'u A common penomenon in these problems was observed from the gener-
}‘ ated columns and their corresponding control functions. After the ini-
%£; tial iterations, the new columns seemed to be approaching a limit and
3}: were very nearly equal component wise, This is due to the uniqueness of
%:’ the solution to the subproblem at (or near) the optimum dual variables.
iS‘ (Note that the subproblem has a unique solution for every stage of this

LA

problem,) Thus the control functions are converging (as seen by Fig. 1)

iy A
o
5ol Tl A NLs

to their optimum value, and the state generated by these controls is

%6'

converging to its optimum desired value.

=i

o-“ 4
tfj i
>

This similarity in the generated columns produces an unusual prob-

'T@ lem in the master program. The master program develops into a linear
FA )
}ﬁh program with approximately equal columns being basic or 'mearly' basic
It J

columns. Thus the basis matrix is getting closer to a singular matrix.

s

R

For computational purposes, this activity is not very critical, since

it only occurs when optimality is close at hand, and termination occurs

2 g in i
b e d
i

N
_'G before the basis matrix becomes singular,
RN
gFﬂ 11e final solution computed for the example consists of a control

O

b
K.

AN

f\, -1.000 t ¢ [0, 0.38196564]

3%3 -0.1176 t e (0.38196564, 0.38196754]

¥E? ~0.0784 t € (0.38196754, 0.38196945]

b u(t) = < 0.0 t e (0.38196945, 2.61802864]

\*% 0.0392 t ¢ (2.61802864, 2.61803246]

37: 0.1176 t ¢ (2.61803246, 2.61803436]

ﬁ?% H 1.00 t ¢ (2.61803436, 3.0]

% \

;.-.“‘Z‘ & with a cost J(u ) = 0,7639320. If accuracy to within five places is
E}Q sufficient, then
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ul(t) { |
0.0 | ) 3 t

ol ks :
a. k =2,3,4,5
Fig. 1. uU(t) vs t AT ITERATIONS CORRESPONDING .
TO k =2, 3, 4, 5, 10, 15, 30, 40,
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] Fig. 1, CONTINUED.
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CONVERGENCE OF DUAL VARIABLES

Fig. 2.

Table 1

FER)

vs k.

SOWw N

10
15
20
25
30
35
40

2.0
1.33
1.0
0,89
0.89
0.89
0.895
0.894
0.894
0.8944
0.8944

-4.0
-1.67
-1.75
-1.22
-1.36
-1.34
-1.34
-1.34
-1.34
-1.3417
-1,3416

.12
.128
.131
0.130
0.130
0.1305
0.1305

-2.5
-0.83
-0.31
-0.14
-0.004
-0.,0001
-0.000004
-0.00000013

0

0

0
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J(u)

Jis) = ey

0.5k
f\ Jk) + 8k

-0.5

Fig. 3. J(G%) AND JG@) + 8¢ Vs k.

-1.0 t ¢ [0, 0.38197]
*
u (t) =¢ 0 t € (0.38197, 2.61803]
1.0 t € (2.61803, 3.0]

with J = 0.7639,

To compare this method with other solution procedures for the mini-
mum fuel problem, we observed the final control function produces a fea-

sible control which, in turn, produces an objective value accurate to

15 digits (double precision accuracy).
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Although lincar programming can be used in the discrete version of

the continuous problem, to achieve a solution as good as that obtained

by the generalized programmirg method, the time interval would have to

be broken into more than one million increments; these increments can
produce a linear program with over a million variables and over a mil-
lion rows. HNaturally, linear programs of that size are too large for
existing computers.

By using the generalized programming method, only linear programs
with rcws approximately equal to the dimension of the state space need
to be solved.

Tne concluding example illustrates the determination of the exis-
tence of a feasible solution to the control problem to solve a minimum

tim2 problem.

o
[
o

Let

X(O) = ’

min

u( )

with Ju(t)| <1, Vt .

T
Jﬂ dt
0

The solution to this problem is known to be 7T = 2,0 [15]. The solu-

tion procedure used is to choose some very large T

eralized program

min W = 3“ + zy-
L,y = LY i
+ -—
Pu + Iyi = Iyi = S
H =1, where
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$| e = ; and
\ 0 1

P 1is defined as previously. If the prcblem is feasible, reduce T; if
not, increase T and continue.

The following table illustrates the number of iterations required
to determine a feasible solution, if it exists, or the infeasibility of
the original problem, for any T. Note that from Theorem 5.2 when

k k
w 4+ 0 >0, no feasible solution exists for the current T.

Time, T Number. w o]
of Iterations

,} . 5 2 0 0
2 2,05 2 0 0 i
33 a 1.95 2 0.05 -0.025
1 2 0.75 ~0.25
b
{Q Thus, for times when T < 2.0, a feasible solution can be found after
5
two iterations; and, for times when T < 2,0, the determination of an
ﬂq infeasible problem can also be discovered after two iterations,.
? A
\ N
) h
B
N
/&\
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Los Angeles, Calif. 90045
Hq. USAF (AFRDSD)
The Pentagon
Washington, D.C. 20330
Attn: Major Charles M. Waespy
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=\ SSD(SSTRT/Lt. Starbuck) - AFUPO

o Los Angeles, Calif. 90045

P DET #6, OAR(LOOAR)

3. Air Force Unit Post Office

f -0 Los Angeles, Calif. 90045

i

£ ARL(ARIY)

W\ Wright-Patterson AFB, Ohio 45433
)

(N ATAL

R Wright-Patterson AFB, Ohio 45433
i Attn: Dr. H. V. Noble

i Attn: Mr. Peter Murray

%

e AFAL(AVTE/R. D. Larson)

f{ Wright-Patterson AFB, Ohio 45433
,#; Commanding General

bl White Sands Missile Range

’ New Mexico 88002

“5 Attn: STEWS-WS-VT (2 cys)
a0

-/ RADC (EMLAL-1)

. Griffiss AFB, N.Y. 13442

iﬁ Attn: Doc. Library

Ji Academy Library (DFSLB)

q U.S. Air Force Academy
4 Colorado 80840

il
b Lt. Col. Bernard S. Morgan

- FJSRL, USAF Academy
#i Colorado Springs, Colo. 80912
o

53‘ Director of Faculty Research
;{ﬁ Dept. of the Air Force
l: USAF Academy, Colo. 80840

2 APGC (PGBPS-12)
- Eglin AFB, Fla. 32542
A

] AFETR Technical Library
Zi (ETV, MU-135)
-2 Patrick AFB, Fla. 32925

%

b
Y AFETR (ETLLG-1)

STINFO Officer (for Library)
Patrick AFB, Fla. 32925

Dr. L. M. Holling Worth

AFCRL(CRN)

L. G. Hanscom Field

Bedford, Mass. 01731 3
AFCRL (CRMXLR )

AFCRL Research Lib., Stop 29

L. G. Hanscom Fic'd

Bedford, Mass. u1731

Department of the Air Force

AFSC Scientific aad Technical
Liaison Office

111 E. 16th Street

New York, New York 10003

Col. Robert E. Fontana

EE Department

AF Institute of Technology

Wright-Patterson AFB, Ohio 45433

Col. A. D. Blue - RTD(RTTL)

Bolling AFB, Wash. D.C. 20332

ESD(ESTI)

L. G. Hanscom Field

Bedford, Mass. 01731 (2 cys) >
Dr. I. R. Mirman

AFSC(SCT)

Andrews AFB, Md. 20331

Lt. Col. J. L. Reeves

AFSC(SCBB)

Andrews AFB, Md. 20331 (2 cys)

Mr. Billy Locke

Plans Directorate

USAF Security Service
Kelly AFB, Texas 78241

Mr., H. E. Webb (EMIA)
Rome Air Development Center

Griffiss AFB, New York 13442

1
AEDC(ARO, Inc.)
Arnold AFB, Tenn. 37389

Attn: Lib./Doc.
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Lt. Col. R. Kalsich

Chief, Electronics Div. (SREE)
Directorate of Engrg. Sciences
AF Office of Scientific Research
1400 Wilson Boulevard

Arlington, Va. 22209 (5 cys)

DEPARTMENT OF THE ARMY

U.S. Army Research Office
3045 Columbia Pike

Arlington, Va. 22204

Attn: Physical Sciences Div.

Commanding General

U.S. Army Materiel Command
Washington, D.C. 20315
Attn: AMCRD-TP

Commanding General (SCCSA-E)
- U.S. Army Strategic Comm. Command
Ft. Huachuca, Arizona 85163

Commanding Officer

Army Materials and Mechanics
Research Center

Watertown Arsenal

Watertown, Mass. 02172

Commanding Officer

U.S. Army Ballistics Res. Lab
Aberdeen Proving Ground
Aberdeen, Md. 21005

Attn: AMXRD-BAT

Commandant

U.S. Army Air Defense School

P. 0. Box 9390

Ft. Bliss, Texas 79916

Attn: Missile Sciences Div.
C and S Dept.

r":_:j"- o~

Commanding General

U.S. Army Missile Command
Redstone Arsenal, Ala., 35809
Attn: Technical Library
Attn: AMSMI-REX
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Commanding General

Frankford Arsenal

Philadelphia, Pa., 19137

Attn: SMUFA-L6000 (Dr. Sidney Ross)

Bl A i wemi

U.S. Army Munitions Command
Picatinney Arsenal

Dover, N. J. 07801

Attn: Tech. Info. Branch

Commanding Officer

Harry Diamond Labs

Conn. Ave., and Van Ness St., N.W.

Washington, D.C. 20438

Attn: Dr. Berthold Altman :
(AMXDO-T1I) ]

Commanding Officer

U.S. Army Security Agency
Arlington Hall

Arlington, Va. 22212

Commanding Officer

U.3. Army Limited War Lab
Aberdeen Proving Ground
Aberdeen, Md. 21005
Attn: Tech, Director

Commanding Officer
Human Engrg. Labs
Aberdeen Proving Ground, Md. 21005

Director

U.S. Army Engineer Geodesy,
Intelligence and Mapping

Research and Dev. Agency 3

Ft. Belvoir, Va. 22060

Commandant

U.S. Army Command and General Staff
College

Ft. Leavenworth, Kansas 62270

Attn: Secretary

Dr. H. Robl, Deputy Chief Scientist
U.S. Army Research Office (Durham)
Box CM, Duke Station
Durham, N.C. 27706
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«ég@i Commanding Officer
’%ﬁxj U.S. Army Research Office (Durham)
Eﬁ#? Box CM, Duke Station
- SO Durham, N.C. 27706
5?&@' Attn: CRD-AA-IP (Rici rd O. Ulsh)
-‘;ﬂi Librarian
ﬁjg’ U.S. Military Academy
[f»” West Point, New York 10996
TG
Mgﬁﬂ The Walter Reed Inst. of Res.
‘{%é Walter Reed Medical Center
WL Washington, D.C. 20012
;ﬁiz:
,;gf; CO, U.S. Army Elec. R & D Activity
NI White Sands Missile Range, N.M.
AN 88002
N
§H£$¥ CO, U.S. Army Mobility Equip. Res.
;gﬁh; & Dev. Center
‘fékﬁ Ft. Belvoir, Va. 22060
Al Attn: Tech. Doc. Ctr.
g?tgf
L Mr. Norman J. Field, AMSEL-RD-S
a‘%;- Chief, Office of Science and Tech.
?&,{E R and D Directorate - USAEIC
ﬂ'ft Ft. Monmouth, N.J. 07703
Jan
Y Mr. Robert O. Parker, AMSEL-RD-S
ﬁ_fs Execuiive Secretary, JSTAC
deyy USAELC
b Ft. Monmouth, N.J. 07703
)
RN Commanding General
L U.S. Army Electronics Command
. f\ Ft. Monmouth, N.J. 07703
%}_m Attn: AMSEL-SC
ik RD-D
f;izk RD-G
fﬁk}_ RD-GF
ARREA RD-MAT
S5 XL-D
L XL-E
o XL-C
i ¥k XL-S
iy HL-D
qujé HL-CT-R
AN HL-CT-P
;r%ﬁﬁ HL-CT-L
Y HL-CT-0
HL-CT~1
HL-CT-A
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Commanding General

U.S. Army Electronics Command
Ft. Monmouth, N.J. 07703
Attn: NL-D

KL-SM (Dr. L. Wandinger)
NL-R-2 (Mr. Bernard Goldberg)
VL-D

WL-D

NOTE: 1 copy to each symbol listed
individually addressed

DEPARTMENT OF THE NAVY

Chief of Naval Research
Washington, D.C. 20360
Attn: Code 427 (3 cys)

Naval Elec. Systems Command
ELEX 03
Falls Church, Va. 22046 (2 cys)

Naval Ship Systems Command
SHIP 031
Washington, D.C. 20360

Naval Ship Systems Command
SHIP 035
Washington, D.C. 20360

Naval Ordnance Systems Command
ORD 32
Washington, D.C. 20360 (2 cys)

Naval Air Systems Command
AIR 03
Washington, D.C. 20360 (2 cys)

CO, ONR Branch Office
Box 39, Navy No. 100 F.P.O.
New York, N.Y. 09510 (2 cys)
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ANNNANGTE

ONR Branch Office

1076 Mission Street

San Francisco, Calif. 94103

Attn: Deputy Chief Sci. (2 cys)

CO, ONR Branch Office
219 So. Dearborn Street
Chicago, Illinois 60604

CO, ONR Branch Office
1030 E. Green Street
Pasadena, ralif. 91101

CO, ONR Branch Office
207 W. 24th Street
New York, N.Y. 10011

CO, ONR Branch Office
495 Summer Street
Boston, Mass. 02210
Naval. Res. Lab.
Tech. Info. Officer
Washington, D.C.
Attn: Code 2000

Director,

(8 cys)

Commander
Naval Air Dev.
Johnsville, Pa.

and Material Center
18974

USNEL
Calif.

Librarian,

San Diego, 95152 (2 cys)

Commanding Officer and Director

U.S. Naval Underwater Sound Lab
Ft. Trumbull, New London, Conn.

06840
Librarian

U.S. Navy Post Graduate School
Monterey, Calif. 93940

Glen A. Myers (Code 52Mv)

Assoc. Prof. of Electrical Engrg.
Naval Postgraduate School
Monterey, Calif. 93940

W. A. Eberspacher
Technical Consultant
Systems Integration
Code 5340A, Box 15
Naval Missile Center

Point Mugu, Calif. 93041
TP N PN SRR
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Director
U.S. Naval Observatory
Washington, D.C. 20390

Chief of Naval Operations

OP-07

Washington, D.C. 20360 (2 cys)
Director, U.S. Naval Sec. Group
3801 Nebraska Avenue

Washington, D.C. 20390

Attn: G43

CO, NOL

White Oak, Md. 21502 (6 cys)
CO, NOL

Corona, Calit. 91720

CO, Naval Ordnance Test Station
China Lake, Calif. 93555

CO Naval Avionics Facility
Indianapolis, Ind. 46206

CO, Naval Training Device Center
Orlando, Fla. 32813

U.S. Naval Weapons Lab
Dahlgren, Va. 22448

Weapons Systems Test Div.
Naval Air Test Center
Patuxtent River, Md.
Attn: Library

20670

Head, Technical Division

U.S. Naval Counter Intelligence
Support Center

Fairmont Bldg.

4420 N. Fairfax Drive

Arlington, Va. 22203

OTHER GOVERNMENT AGENCIES

Mr. Charles F. Yost

Special Asst. to the Dir. of Res.
NASA
Washington, D.C. 20546
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Dr. H. Harrison, Code RRE
Chief, Electrophysics Br.
NASA

Washington, D.C. 205346

Goddard Space Flight Center - NASA

Greenbelt, Md. 20771
Attn: Library, Doc. Sec. Code 252
NASA Lewis Res. Center

21000 Brookpark Road
Cleveland, Ohio 44135
Attn: Library

National Science Foundation

1800 G Strcet, N.W.

Washington, D.C. 20550

Attn: Dr. John R. Lehmann
Div. of Engrg.

Mr. M. Zane Thornton
National Library of Medicine
8600 Rockville Pike
Bethesda, Md. 22014

Los Alamos Scientific Lab
P. O. Box 1663

Los Alamos, N.M. 87544

Attn: Reports Library

NASA Sci. and Tech. Info. Fac.
P.O. Box 33

College Park, Md. 20740

Attn: Acq. Br. (S/AK/DL) (2 cys)
Commandant (E-2)

U.S. Coast Guard Hq.
Washington, D.C. 20226

Attn: Library, Sta. 5-2

NASA

Electronics Research Center
AT/Library

575 Technology Square
Cambridge, Mass. 02139

Federal Aviation Agency

Info. Retrieval Br., HQ-630
800 Independence Ave., S.W.
Washington, D.C. 20&53
_6_
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Federal Aviation Administration

800 Independence Ave.,
Washington,
Attn:

b.C.
Admin.

Stds.

S.W.
20590

Div. (MS-110)

s

U.S. Department of Commerce
National Bureau of Standards
Publications Editor

Center for Computer Sci.
Washington,

D.C.

& Tech.
20234

NON-GOVERNMENT AGENC IES

Director

Res.

Lab. of Ele

MIT
Cambridge, Mass.

Lincoln Lab
MIT
Lexington, Mass.

Polytechnic Inst.

333 Jay Street

Brooklyn,
Attn:

N.Y.

Director
Columbia Radiation Lab
Columbia University

538 W.
New York,

N.Y.

Director
Coordinated Science Lab
University of Illinois

Urbana,

Illinois

Director
Electronics Research Lab
University of California

Berkeley,

Calif.

Director
Electronic Sciences Lab
University of Southern Calif,

Los Angeles, Calif.

sy ."(\(‘q\‘c_}.\_ ~ 1\&2\8\&[*;:\‘(\\- \;» )}\: J\, Q_- A
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Mr. Jerome Fox,

C.

02139

02173
of Brooklyn

11201

Res. Coord.

120th Street

10027
61803
94720

90007
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Prof. A. A. Dougal, Director

Laboratories for Electronics
and Related Sciences Res.

University of Texas

Austin, Texas 78712

Div. of Engrg. and Applied Physics
210 Pierce lall
Harvard University
Cambridge, Mass. 02138
Director

Information Processing and

Control Systems Lab

Northwestern University

Evanston, Illinois 60201
Dr. John C. Hacock, Director
Electronic Systems Res. Lab
Purdue University

Lafayette, Ind. 47907
Aerospace Corp.

P.O. Box 95085

Los Angeles, Calif. 90045

Attn: Library Acq. Group
Prof . Nicholas George
Calif. Institute of Tech.
Pasadena, Calif. 91109

Aeronautics Library
Graduate Aeronautical Labs
Calif. Inst. of Technology
1201 E. California Blvd.
Pasadena, Calif. 91109

Director, USAF Project RAND
The RAND Corporation
1700 Main Street
Santa Monica, Calif.
Attn: Library
VIA Air Force Office
Liaison Office

90406

The Johns Hopkins University
Applied Physics Lab
8621 Georgia Avenue

Silver Spring, Md. 20910
Attn: Boris W. Kuvshinoff
Doc. Librarian

e
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Hunt Library
Carnegie Inst. of
Schenley Park
Pittsburgh, Pa,.

Tech.
15213

Dr. Leo Young, SRI
Menlo Park, Calif. 94025
Mr. Henry L. Bachmann
Asst. Chief Engineer
Wheeler Labs

122 Cuttermill Road

Great Neck, N.Y. 11021

School of Engrg. Sciences
Arizona State University
Tempe, Ariz. 85281

University of Calif. at Los Angeles
Department of Engineering
Los Angeles, Calif. 90024

Inst. of Tech.
Calif. 91109
Library

Calif.
Pasadena,
Attn: Doc.

University of California

Santa Barbara, Calif. 93106
Attn: Library
Carnegie Inst. of Tech.

Electrical Engrg. Dept.
Pittsburgh, Pa., 15213

New York University
College of Engrg.
New York, N.Y. 10019

Syracuse University
Dept. of Electrical Engrg.

Syracuse, N.Y. 13210
Yale University

Engrg. Dept.

New Haven, Conn. 06520

Airborne Instruments Lab
Deer Park, N.Y. 11729

Bendix Pacific Division
11600 Sherman Way

N. Hollywood, Calif. 91605
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Raytheon Co.
Bedford, Mass.
Attn: Librarian

01730

Emil Sc hafer, Head

Electronics Properties Info.

Hughes Aircraft Co.
Culver City, Calif. 90230
Texas Instruments Inc.
Technical Reports Services
M/S 65

P.0. Box 5012
Dallas, Texas 75222

The University of Wisconsin
College of Engineering
Department of EE
Madison, Wisconsin 53706
General Electric Co.

Res. and Dev. Center

P.O. Box 8
Schenectady, N.Y. 12301
Westinghouse Electric Corp.
Electronic Tube Div.

Box 284
Elmira, N.Y. 14902
Fairchild Res. and Dev. Lab
4001 Junipero Serra Blvd.
Palo Alto, Calif., 94304

Purdue University Libraries
Periodicals Checking Files
Lafayette, Ind. 47907

Ampex Corp.
401 Broadway
Redwood City, Calif. 94063
General Dynamics

Pomona Division

P.O. Box 2507

Pomona, Calif. 91766

Attn: Division Library

General Precision, Inc.
Librascope Group
808 Western Avenue

Glendale, Calif. 91201
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Sperry Rand Res. Center
North Road
Sudbury, Mass. 01776
Westinghouse Electric Corp.
Defense and Space Center
Aerospace Div - MS-393
P. O. Box 746
Baltimore, Md. 21203
Lockheed Propulsion Co.
Sci. and Tech. Library
P.O. Box 111
Redlands, Calif. 92373
University of Utah
Department of EE
Microwave Device and Physical
Electronics Lab
Merrill Engrg. Bldg.
Salt Lake City, Utah

84112

Director of Research -
AeroChem Res. Labs., Inc.

P.O. Box 12
Princeton, N.J. 08540

Director of Research 14
Motorola, Inc.

Semiconductor Products Div.

5005 E. McDowell Road

Phoenix, Arizona 85008

IBM Corp.
Electronics Systems Center
Oswego, N.Y. 13827

Stevens Inst. of Tech.
Dept. of Physics
Castle Point Station
Hoboken, N.J. 07030

The University of Michigan

Inst. of Sci. and Tech.

Tech. Doc. Service

Box 618 v

Ann Arbor, Mich., 48107

SRI

Menlo Park, Calif.

Attn: GO37 Ext. Rpts. ’

(A. Rosengreen) (2 cys)
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'{ Hughes Aircraft Co. TRW Semiconductors, Inc.
~ 500 Superior Avenue Research Direc’or

3. n, Newport Beach, Calif. 92663 14520 Aviation Blvd.

ﬁ Attn: Library Lawndale, Calif. 90260
:' Director Director

=y Engineering Design Center Communication and Display R and D

Case Inst. of Technology
10900 Euclid Avenue

Research and Development Center
Westinghouse Electric Corporation

\ Cleveland, Ohio 44106 Pittsburgh, Pa. 15235

fh Director Raytheon Co.

ﬁj Speech Comm. Res. Lab. Inc. Semiconductor Likrary

g 35 W. Micheltonen Street 350 Ellis Street

3 Santa Barbara, Calif. 93104 Mt. View Operation

A Mt. View, Calif. 94040

;j Baird-Atomic Inc.

] Library North Carolina State University

i3

33 University Rd.
Cambridge, Mass. 02138

School of Engineering
Department of EE
Box 5275

- m'

Raytheon Co.
Microwave and Power Tube Div.
Waltham, Mass. 02154

Semiconductor Tech. Section
Microelectronics Center
Bldg. 68, Rm. 2734

EX One Space Park

; Redondo Beach, Calif. 09278

v Director Material Science Lab
i Electronics Def. Labs Raleigh, N.C. 27607
% Sylvania Electric Products, Inc.
(! Library ITT Semiconductors
i § P.0. Box 205 Product Lab
Q Mt. View, Calif. 94040 1801 Page Mill Road
;é Palo Alto, Calif. 94304
B TRW Systems, Inc.

National Biomedical Res. Foundation
;t 8600 Sixteenth Street

ko ITT Corp. Silver Spring, Md. 20910
A ITT Electron Tube Division
Vice President - Engineering
Box 100

i; Easton, Pa. 18043

Department of EE

The University of Arizona
Tucson, Ariz. 85721

Attn: Prof. L. P. Huelsman

Sylvania Electronics Systems

2

Director of Engineering
Eastern Operation

100 First Avenue
Waltham, Mass. 02154

Sylvania Electronic Systems
Applied Research Lab

40 Sylvan Road

Waltham, Mass, 02154

Attn: Doc. Library

University of Nevada
College of Engrg.
Dept. of EE

Reno, Nevada 89507

University of California
Lawrence Radiation Lab
Tech. Info. Div.
Berkeley, Calif. 94720
Attn: Library

-9 -
2-69

ONR 83 .

SRR zcwtw}f (
A .u e "’“

"$ R

‘l
A"rn.““w H«l' ”'l“- Lt "r'n, ks M”?&MM‘:’.‘» "" 'u» [Aod A M:"I‘ OOEIN Lt



o ¥ diats ¥, fEag AR h e P oy, ey o TR = PRTT
‘“' Fe gt AT A VG Sa Ve e i e e TR R R T R T T TR R o Aa 0 BN, 0 RN e W 87 60 &

¥
3 ”
W Nuclear Instrumentation Group IBM Corporation
:; Bldg. 29, Rm 101 Montcrey and Cottle Roads
31 Lawrence Radiation Lab San Jose, Calif. 95114
o University of California "
%q Berkeley, Calif. 94720 University of Notre Dame '
:% Department of EE
pLA LIE Electronics Notre Dame, Ind. 46556
h@ Electronics Div. of Lab. for
\ Electronics Inc. EE Department
8 1075 Commonwealth Avenue Rice University
aH Boston, Mass. 02215 Houston, Texas 77001
‘{3 Librarian
% ITT Federal Labs
e 500 Washington Ave. RCA
?1 Tech. Library RCA Engrg. Library
;ﬁ“ Nutley, N.J. 07110 Moorestown, N.J. 08057
;ﬁ Raytheon Co. Lockheed-Georgia Co,.
Q Res. Div. Library Dept. 72-34, Zone 400
S‘ 28 Seyon Street Research Information
g Waltham, Mass. 02154 Marietta, Ga.
gﬁy The Universily of Oklahoma Varian Associates al
Mﬁ College of Engineering Technical Library d
{ﬁ. School of EE 611 Hansen Way
"vﬁ Norman, Oklahoma 73069 Palo Alto, Calif. 94303 3
}3 Hughes Aircraft Co. Princeton University y
“Q Hughes Research Lab Scliool of Engrg. and App. Sci.
L 3011 Malibu Canyon Rd. Princeton, N.J. 08540
X Malibu, Calif. 90265
B Vice President
‘] Federal Scientific Corp. Bell Telephone Labs., Inc.
¢ 615 W. 131st Street Murray Hill, N.J. 07971
:Eg New York, N.Y. 10027
L University of Illinois
{“ The University of Santa Clara Department of EE
% The School of Enginecering Urbana, Illinois 61801
5&1 Department of ELE
i - Santa Clara, Calif. 95053 Mr. John J. Sie, President
3?» Micro State Elec. Corp.
#& Sprague Electric Co. 152 Floral Avenue
AN Res. anc Dev. Labs Murray Hill, N.J. 07971
Ko North Adams, Mass. 01247

Staff Vice President

Worcester Polytechnic Inst. Materials and Device Res. L
Department of EE RCA - David Sarnoff Res. Ccnter
Worcester, Mass. 01609 Princeton, N.J. 08540
Westinghouse Electric Corp. Info. Tech. Library ,
Rescarch Labs AUERBACH Corp. »
Churchill Borough 121 No. Broad Street
Pittsburgh, Pa. 15235 Philadelphia, Pa., 19107
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Philco Corp.

k- Module Engrg. Dept.

§ Microelectronics Div.
Y 504 So. Main Street
Spring City, Pa. 19475
Motorola, Inc.
Government Elec. Div,

’é 8201 E. McDowell Road

e Scottsdale, Ariz., 85252
A

.§ Librarian

M Microwave Associates, Inc.
§ Northwest Industrial Park
?? Burlington, Mass. 01803
g% United Aircraft Corp.

B Norden Division

{ Technical Library

E- Norwalk, Conn. 06851

TN

iﬂ * Watkins-Johnson Co,

Y 3333 Hillview Avenue

& Stanford Industrial Park
Y. Palo Alto, Calif. 94304
. 4

}i \, The Ohio State University
% Department of EE

3: 2024 Neil Avenue

Bl Columbus, Ohio 43210

]

nl

University of Florida
College of Engineering
Department of EE

iy vty Sy Vi o

i 3 'l.."}' Bid @ikt ol erEe i 07k o

The George Washington University

School of Engrg. and App. Science
Department of EE .
Washington, D.C. 20006

Georgia Inst. of Technology
Price Gilbert Memorial Library
Atlanta, Ga. 30332

Sandia Corp.

Tech. Library

P.O. Box 5800, Sandia Base

Albuquerque, N.M. 87115

Cornell Aeronautical Lab, Inc.
of Cornell University

P.0. Box 235

Buffalo, N.Y, 14221

AUTONETICS

Res. and FEngrg. Div.

Tech. Info. Ctr.

P.O. Box 4173

3370 Miraloma Ave.

Anaheim, Calif. 92803
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