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ABSTRACT 

An algorithm for solving Dantzig's generalized programming formula- 

tion of continuous-time linear-system optimal control problems is devel- 

oped.  Dantzig's work is extended to include continuous-time versions of 

quadratic loss criteria and minimum fuel problems.  New results in param- 

etric linear and quadratic programming problems, where the parameter 

dependence is nonlinear, are derived with internal schemes to avoid 

cycling due to degeneracy .  Finite switching results in the completely 

linear system, including the minimum fuel and minimal time problems, 

are presented without assuming Pontryagin's general position principal 

or uniqueness properties.  The procedure initially finds a feasible and 

admissible solution to the continuous-time control problem without using 

discrete approximations .  The algorithm continues to converge monoton- 

ically to the optimal solution while remaining feasible and at each 

stage, provides a bound on the value of the loss function for termina- 

tion purposes.  This procedure is well suited for systems with a rela- 

tively high number of state variables and control inputs for which dis- 

crete time linear or quadratic programming models become too large. 
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Chapter I 

INTRODUCTION 

With the advent of efficient and large-scale mathematical program- 

ming techniques, computationally feasible methods are available for op- 

timal control problems.  The purpose of this paper is to present an 

algorithm for solving continuous-time optimal control problems with 

linear dynamics and various loss criteria.  Due to the mathematical 

programming techniques used in the algorithm, it is well suited for 

large-scale control problems, i.e., control problems with large numbers 

of state variables and time-varying control inputs.  This work consists 

of two main results that are combined to develop the algorithm. 

In Chapter II, we describe the types of control problems considered, 

including basic definitions and notations for these problems.  The basic 

results in control theory and certain necessary conditions for optimal 

control, as described by Pontryagin et al. [1], are also presented. 

In Chapter III, the algorithms and basic theorems for linear pro- 

gramming and the simplex method [2], quadratic programming and the 

complementary pivot theory [3], and the Dantzig-Wolfe generalized pro- 

gram [2] are presented. 

The first main result, an algorithm for solving parametric linear 

and quadratic programming problems, when the objective function is non- 

linear in the parameter, is presented in Chapter IV.  Also presented is 

the class of nonlinear functions for which this algorithm is valid.  The 

finiteness of the algorithm, including avoidance of cycling due to de- 

generacy, is then proven.  The characteristics of the optimal solution 

as a function of the parameter are also described. 

The second result, an extension of Dantzig's [9] formulation of 

optimal control problems as generalized programs, is presented in Chap- 

ter V. It is shown that any optimal control problem with the following 

characteristics may be formulated as a generalized orogram: (1) the 

system must initiate from some point in a specified region of the state 

space; (2) the state at the fixed terminal time can be chosen from an- 

other convex region in the state space (fixed initial and final points 

1 SEL-68-085 
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are included in these definitions);  (3) the state of the system is con- 

trolled by linear differential equations;  (4) the admissible control 

region is a convex polyhedral set (for each point in time) in the con- 

trol space;  (5) the loss criteria is a linear functional in the state 

and control and/or a quadratic functional in control and/or the absolute 

value of the control inputs (minimum fuel), or the minimum time.  It is 

further shown that these continuous-time optimal control problems have 

an equivalent generalized programming formulation in which the master 

problem is a linear program of two or three plus the dimension of the 

state space.  The subproblem to the master program is a parametric pro- 

gramming problem of the control space dimension and is solvable by the 

methods presented in Chapter IV.  This subproblem yields an extreme ad- 

missable control that, when used with previously found extreme admi:5- 

sable controls, gives a solution that is closer to a feasible or an 

optimal one. 

The algorithm and its variants are presented in the second part of 

Chapter V.  A flow chart of the algorithm is given, along with a descrip- 

tion of each execution.  Also included is an initiating phase that ter- 

minates in a feasible solution of the control problem.  On completion of 

the initiating phase, the algorithm maintains a feasible control while 

obtaining new controls; these new controls yield better objective values 

without disturbing the feasibility.  Upper and lower bounds on the op- 

timal objective value are provided at each stage of the algorithm. 

In Chapter VI, the characteristics of the optimal controls, without 

any additional assumptions on the system or on the uniqueness of the 

solution, are presented.  Also included are the relationships between 

the necessary conditions of Pontryagin and the generalized programming 

results.  Between these optimization conditions, a link exists in the 

dual variables of the generalized program and the adjoint variables 

associated with the optimal control problem. 

To clarify the algorithm and indicate its computational feasibility, 

a minimum fuel problem and a minimum time problem are solved in detail 

in Chapter VII,  The convergence properties and solution procedures are 

illustrated with data obtained from computer runs. 

(T 
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Chapter  II 

OPTIMAL  CONTROL 

This section defines an optimal control problem and Pontryagin's 

necessary conditions for optimality. The emphasis is on those linear 

systems   for which generalized  programming equivalents can   be   formulated. 

A,        Definition of  Dynamic Control  Systems 

The  basic control   problem can  be  described  by  the  differential 

equations; 

where 

dx. 

x.   = -rp =   f4 (x-, x   .   u-, u»   t) i       dt i     l n      1 m 

1  =  1,   2,   . . . ,   n  , 
(2.1) 

x(t) 

x1(t) 

x   (t) 
L   n 

(2.2) 

is the vector of state variables or phase coordinates which describe the 

trajectory of the system in Euclidean space through time.  The control 

function is the vector of control inputs 

u(t) 

u^tV 

u (t) 
L m 

(2.3) 

i which influence the state through the differential equations.  The sys- 

tem at some initial time, satisfies the initial conditions, 

SEL-68-085 
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x(t ) £ S C E 
o    o 

(2.4) 

Thus the system may have an initial point  x(t )  at any one of the points 

in the set,  S .  At a terminal time,  T,  the system is required to lie 

in some region, i.e.. 

x(T) e STC E (2.5) 

The time  T  may be free or fixed, and the sets,  S  and  S ,  may be 
J > o T 

fixed  points. 

i B.        Admissible  and  Feasible  Controls  and Reachable  Sets 

The  vector control   function,     u(t)     must  be  specified at  every     t 

and   is  required  to  lie  in  an admissible  control   region,     U  ,     where 

Hv 
.m 

u(t)   e  U    c E     ,   Vt (2.6) 

Definition  2. 1.     An admissible  control   is  any  vector function,      u(t), 

for which 

,m 
u(t)   e  Ut c E     ,   Vt   e   [0,T]   , 

where     ro,Tl     denotes  the  time   interval    [tlO < t < T) 

r. The objective of the control problem is to find an admissible con- 

function that transfers the stal 

other point at  T,  while minimizing 

trol function that transfers the state from some point at  t   to an o 

= /  f (x... 
A    0 1 ••- V V , u   t) dt . 

m 
(2.7) 

i-- 
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It   is  convenient at  this  point  to define  another variable ) 

Jf       0 
x  (t)   =    /      f  (x   ,    . . . ,    x   ,   u   ,    ...,   u   ,   t)   dt 

o /        o    1 n       1 m 
o 

(2.8) 

and to  let 

x(t)   = 

x   (tV o 

Lx(t) _ 
(2.9) 

Thus, 

x    =  f   (x,u,t)   ,     x   (t  ^   =  0  .    and     J = x  (T) 
o o ' o    o o 

(2.10) 

Definition 2.2.     The  reachable  set,   denoted by    R  ,     consists   of  a  set 

of   terminal     x(T)     of admissible   solutions   to  the control  problem, 

without  the  condition    x(T)   e   S   . 

R    = fx  e  E  |x = x(T) , 
T ' 

where x(T)  is a solution to (2.1) at  t = T  with 

x(t ) e S ,  u(t) e U+ ,  Vt} 
o    o t 

Note   that  for  the   fixed  final   time,     T,      if 

sT n RT = 0 , 

there   is  no  admissible  control   to  transfer  the  system from an   initial 

point   in     S       to a   point   in     S   , K o T 

SEL-68-085 



Definition 2,3.  A control function,  u(t),  defined for  t t [t , Tj  is 
  o 

a feasible control for the optimal control problem if it is an ad- 

missible control and transfers the system from some slate  x(t ) t S 
o    o 

to  a   state     x(T)   e   S       while    x(l)     satisfies   (2.1).      Note   that   a 

feasible   control  exists   iff 

T T       > 

^N 

In   the  optimal  control   problem,   we  are   searching   for  a  control 

function,   among   all   feasible  controls,   that   results   in  a  minimal   value 

of     J. 

Assumption  2. 1.     We will  now restrict  our  attention   to  functions     f.. 

: oi- ii,   which are  autonomous,   i.e.,   they  do not  depend 

explicitly   on   time.     We will  also  assume  that  the     f.     functions   for 

i  =  0,   1 n,     are  continuous  in both    x    and     u     and are  con- 

tinuously   differentiable with  respect   to    x. 

C.       The Adjoint  System  and   the  Hamiltonian 

lor  any given    u    or     x(o),     let     x =  x(t)     be  determined  by 

x,   =  f. (x, u) i   = 0,    1,   . ..,   n 
i i 

For  this   choise   of    u, 

adjoint   system,      i'   ,   y , 

x(o),     and  the  resulting    x(t),     we define   the 

i' by 

d^. 

dt 
k=0 

of   (x.u) 
K 

o, i, (2.11) 

where the partials are evaluated at the above  x(t), u(t).  The solution 

to (2.11) is related to the choice of control,  u(t). 

v--. SEL-68-08 5 
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The Hamiltonian is defined as 

H(¥,x,u)   = ^'fCx.u)   , 

m 
v/here    Y'     is  the  transpose of 

T 

^ 

s§ 

and 

fCx.u)   = 

Thus   (2.1)   and   (2.11)   become 

f  (x,u) 
o 

f1(xIu) 

f   (x.u) 
n 

i xi = -^; 
(2.1a) 

m 
mB 

¥.   =  -  3  1 ox. 
(2.11a) 

D.        Pontryagin's Conditions  for Optimality 

When  the  initial  and  final   points,     x(t  )     and    x(T) ,     are not 
o 

fixed, the regions  S  and  S   are assumed to be smooth manifolds or 
o T 

convex  sets.     A necessary condition   for optimality in  this  case   is  that 

the   solution   to  (2.1)   and   (2.11)   satisfy a   transversality  condition. 

Ü SEL-68-08 5 
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Let  x(i ) t S  and x(T) t Sm be given points on the boundary of  S o     o T     b     i J o 

and  S :  and let  D  and  D  be tangent planes of S  and  S  at 

these points.  Then the solution satisfying (2.1) and (2.11) will also 

satisfy the transversality condition, if ^(t )  and T(T)  are the o 
directions  of  the   supporting hyporplanes,      D       and     D  ,     of    S       and 

S^    at     x't   )      and     x(T),      respectively. T o > f J 

Necessary Conditions  for     t    <   t <  T.      Let    u(t)     be  a  feas- 

ible control  with  a corresponding  trajectory     x(t).     For    u(t)   = u*(t) 

to yield  an  optimal  solution  to  the control  problem,   it   is necessary   to 

have  a  non-zero continuous  vector  function     ^(t)     corresponding  to    x(t) 

and     u*(t),      (2.1)   and   (2.11),   a.id  satisfying   the   transversality condi- 

tions  so  that 

(1)     For     t   e   [t   ,T], 
o 

I H[x(t)I   u*(t),   f(t)]   =  u(^u       H[x(t),   u(t),   f(t)] 

and 

(2)     ^   (T)   <  0 
o — 

E.   The Linear System and Control Constraints 

A linear system is defined as a dynamic system in which the 

x and  u  for  1=1, fi(xi V lli u )  are linear in 
m 

n.  Note that  f (x,u)  need not be linear.  This linear system can be 
o 

described by two matrices,  F and G,  as 

J'l 
x(t) = Fx(t) + Gu(t) , x(t) € E u(t) e E (2.12) 

where     F     is  an     n  X  n     real   matrix  and    G     is  an     n X m     real   matrix. 

The   linear   system has  a   fundamental   matrix   [4]     e that   has 

the  property  of   transforming     x(t)     by: 

SEL-68-Ü85 
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x(t ) = e        ^^ ' 

m when  u(t) = 0  for i  t [t , t ].  This fundamental matrix arises from 

the solution of the differential equations in (2.12) when  u(t) = 0. 

The solution for any function  u(t)  Is 

F(t  -t ) 
xit^   =  e x(t0)   + 

■t..        F(t    -T) p -1 Gu(t)   dt (2.13) 

When     u(t)   e  U       for all     t     and    x(t   )   e   S  ,      the  right-hand  side 
t 0 o 

of  (2.13)   determines  a  point   In  the   reachable   set  of     U  ,      S  ,     and   time 
t o 

t   .     Hence we   can  state,   for  linear   systems, 

Rt     =  /x   e   En|x  = x(t1)   , 

F(t1-t0) 
x(t  )   = e x(t 

tH      F(t   -T) 

o-X1^     1 Gu(T)   dT   , 

u(-r)  e U    .       T e  [tn,t 1   ,      x(tn)   e  S 
t 0      1 U o 

Throughout   this  paper,   we will   consider  problems  where       U    = 

Uc E   ,      I.e.,    the  admissible  control   set   is  constant   over  time.     We 

also assume   that     U     is  a  bounded  convex  polyhedral   set,   i.e.,   it   is 

bounded   by hyperplanes   in m-dlmeii.-ional   space.     Note   that  any convex- 

polyhedral   set  can  be  expressed  by 

m 
U = ( u e  E     I Au <  b] 

for some real fixed matrix A of dimension  q X m and for some real 

vector  b  of dimension  q. 

SEL-68-085 
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In the following, we will permit the initial and terminal sets, 

and  ST c E to be convex sets. 

Note that  f.(x,u) = f'.x + g'u,  where  f.  is an n-dimensional 
i i   "i i h 

vector and  g.  is an m-dimensional vector.  f   and g.  are the i 

rows of the  F and  G  matrices, respectively. 

F. Loss  Functionals 

In  this  section,   we  will   describe   the different  classes  of  loss 

functionals.     These   loss   functionals,   when  combined  with  linear  systems 

and  the above  restrictions,   can  be  solved  by mathematical   programming 

techniques   that   are  developed  and  discussed  in   the  next   two chapters. 

Case   1.     Linear  Loss  Functionals. 

We define  the   linear   loss  case as  one  that   includes  all   loss  func- 

tionals of  the   form 

f  (x,u)   =  f'x + g'u   , 
O 0 0 

where  f  aiid g   are any real  n and m component vectors, respec- 
o       o 

tively.  Thus, we can define linear systems with linear loss functionals 

as completely linear systems. 

Case 2.  Minimum Fuel Problems. 

A certain well-known minimum fuel problem is characterized by loss 

functionals of the form 

m 

f( 
U)-l\ 

1=1 

Case 3.  Quadratic Loss in Control. 

We consider a function a quadratic only in the control vector. 

i.e. , 

SEL-68-0y5 10 
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f(u) = u'Qu , 

where Q  is a positive semidefinite matrix. 

When a linear functional is added to  f(u)  and modifications of 

Cases 2 and 3 are permitted, the three cases are: 

f (x,u) = f'x + g'u + f(u) , 
o        o    o 

0 ,  Case 1 

V. 

where  f(u) =<fZ|u.| ,  Case 2 

'u'Qu ,  Case 3 . 

(If f (x.u) = f(u),  then f = 0,  and g =0,) Thus the control 
o o o 

problem can be stated as 

Minimize x (T) , 
o 

x = Fx(t) + Gu(t) + f(u) U (2.14) 

where F = 
0 I f 

I  o 
 -i  

0 I 
'■      I    F 

0 I 

G = 
< 

and 

11 SEL-68-085 
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U  = 
o 

1 

0 

x(t ) 6 S  ,  x (t ) = 0 
o    o    o o 

x(T) e ST ,  and 

I 

m 

u(t) e U = [u e E |Au < b) 

The minimum time problem Is also considered where  T  is not fixed, 

S   and  S„ are fixed points, and  x (T) = T - t . 
o       T o o 

For linear systems described by matrices F and  G and a given 

polyhedron, U,  Pontryagin defines a "general position condition." This 

condition is satisfied when the vectors Gw, FGw, ..., F  Gw are lin- 

early independent in  E when w has the direction of one of the edges 

of  U.  For such systems, at each point of time,  t,  the function 

^(t)'Gu(t) achieves its maximum at only one vertex of  U,  except on a 

set of measure zero. 

Before proceeding further with the development of an algorithm to 

solve these continuous-time control problems, some of the existing tech- 

niques used in solution procedures should be mentioned briefly.  Three 

of these techniques are mentioned here. 

Direct Methods [5].  In these methods, admissible and, if 

possible, feasible controls are chosen to start.  The gradient of the 

cost functional (or, if the starting control is not feasible, a 

Lagrangian form that takes feasibility Into account), with respect to 

the control function, is determined.  Then, by using gradient or steepest 

descent methods, a new control function is chosen to improve the cent 

functional (or Lagrangian) . 

Indirect Methods [6].  Indirect methods primarily seek solu- 

tions to the necessary conditions for optimality.  Some methods use 
8 • 

SEL-68-085 12 
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arbitrary initial or final conditions for the adjoint variable.  In this 

case, the differential equations, (2.1) and (2.11), are in grated to 

find solutions for  x(t );  during this procedure, a soluts > i to the 

necessary conditions is retained, if possible.  If x(t )  is not equal 

to the original (known)  x*(t ),  the gradient of some cost functional, 

based on the distance from  x(t )  to x*(t ),  is used to determine a 
o o 

new guess   for   the   final   time  adjoint variable   values. 

Discrete Approximations   [7,8].     Mathematical   programming  tech- 

niques,   e.g.,   linear  programming  or gradient   projection  methods,   are 

usually applied   to  a  discrete  approximation  of   the   continuous-time   prob- 

lem.      In  these approximations,   the system is  considered  at a  prescribed 

set  of  instants   in   the   Interval     [t  , T] .     Only  at   these   times  are   the 
o 

control   inputs  allowed   to  change.     The  differential  equations  are  then 

approximated  by difference  equations  for each   time  considered.     Math- 

ematical  programming  techniques are  then used   to   solve   the approximation. 

Each  of  the   three   techniques  mentioned  have  their disadvantages. 

The  direct  methods'   disadvantage  is  that  a  feasible  control must  be  pro- 

vided   initially.     If  not,   the  convergence methods   cannot   be guaranteed  to 

terminate with  a   feasible  solution.    Also,   the  efficiency  of  convergence 

is  highly  dependent  on  the  initial  guess.     The   indirect methods also have 

a  disadvantage  in   that   they   do not provide a   feasible  solution until   the 

final  ttep.     At   times,   the  determination of a   feasible  solution  is   the 

major problem  in  optimal  control.     The  basic  disadvantage  of discrete 

approximations  stens   from  the  large number of   variables  or equations 

introduced   by  the  approximation process. 

The methods developed in this work combine the features of both the 

direct ana indirect methods and use admissible controls to find a fea- 

sible solution. This combination continuously reduces the cost while it 

retains the feasibility and converges on the optimum values of the ad- 

joint variables. Thus the problem, at any iteration in the optimization 

phase, has a feasible solution available, and the present solution has a 

measure of  closeness   to  the   optimum solution   [9]. 
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Chapter  III 

MATHEMATICAL  PROGRAMMING 

I 

In this chapter, the algorithms available for solving linear and 

quadratic programming are reviewed, and the theory of generalized pro- 

gramming is described.  The choice of the simplex method for linear 

programming problems and the complementary pivot theory for quadratic 

programming problems is dictated by the ease encountered in using the 

parametric programming methods presented in Chapter IV. 

It should be noted that any bounded convex polyhedral set can be 

represented (possibly after a change of variable) by the set 

X = [x|Ax < b, x > 0}  for some real matrix,  A   and for some real 

vector,  b. 

A.   Linear Programming 

The standard linear programming problem can be stated as 

minimize  z = c'x 

subject to Ax < b and 

x > 0 , 

(3.1) 

where    x e  E   ,     c     is  a   specified n-dimensional  vector,     b     is a  speci- 

fied m-dimensional   vector,   and    A     is a given     (m X n)     matrix. 

Since minimizing     c'x    is  equivalent   to maximizing     (-c^x,     only 

minimization  problems  are  discussed.     Hence,   problem  (3.1)   seeks  the 

minimum of a   linear   (convex and concave)   function   over a  convex  poly- 

hedral  constraint   set;    if  the   latter  is  nonempty,   a   solution exists 

and  is known  to be  at an  extreme point  in  the  constraint  set.     Thus we 

need only consider  basic   solutions   to problem  (3,1),   i.e.,   solutions   in 

which no more   than     m    components  of  the  vector     x     are  positive  and 

whose  column  coefficients  are   linearly independent   in  rows  where    Ax <  b 

is  satisfied with equality. 
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The dual problem to (3.1) c^n be expressed by 

minimize  v = by 

subject to A'y > c 

y > 0   ,     y e   Em  . 

(3.2) 

1 

The  duality  theorem of  linear  programming can  be  summarized   in   two 

statements: 

(1)     lor any  feasible     x,y     [satisfying   the constraints of   (3.1) 

and   to.2)1, 

c'x > b'y  ,     and 

(2)  for the optimal  x*, y* of (3,1) and (3,2), 

c'x* =  b'y* 

(Ax* - b) 'y* = 0 | 

(A'y* - c) 'x* -1 complementary slackness conditions 

J i m 
i 

v (> 

If the  x vector is augmented by m components to include slack vari- 

ables and the matrix A  is augmented by  I,  the constraint inequalities 

are equivalent to 

Ax = b 

x > 0 , 
(3.3) 

where A and x  are now the augmented matrix and vector, respectively. 

Since we need only investigate the extreme points of the constraint 

set, we need only allow basic solutions corresponding to choosing m 

linearly independent columns of A,and the components of the vector x 

corresponding to the m  columns of  A,  The m columns of the augmented 

A  form a nonsingular matrix  B,  called the basis matrix.  The corre- 

soonding components of x  are called the basic variables.  Hence, a 

•\K 
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basic feasible solution to (3 .1) is one in which the values of the basic 

variables are nonnegative, and all the other variables, called the non- 

basic variables, are at value zero.  Let x  represent the vector of the 
B 

basic variables corresponding to  B.  Then the oasic solution to the 

linear equations in (3.3) is 

xB = B b , 

x. = 0 , 

where     i     is nonbasic.     This  is  a  basic  feasible  solution,   provided 

XB>0- 

The Simplex Method.  The simplex method is reviewed in detail, 

since a variation of it is employed in Chapter IV for the parametric 

programming procedures.  This method is presented in matrix form.  Here, 

the linear program 

minimize z = c'x 

subject to Ax = b 

x > 0 

(3.4) 

is  observed,   and  the  augmented  system of equations 

-c 
(3.5) 

is  used. 

Given any basis,  B,  let the augmented basis be B,  where 

1 

B = 
0 

B 

B 
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m 
and rewrite (3.5) as 

0    B 

— r—            1 1—   —1 

CB -CR 
Z 

XB 
= 

0 

B R 
-XR_ 

b 

(3.6) 

where 

A = 

,  and 

c   is the vector of the components of c corresponding to the basic 

variables x. 
B 

Since B is nonsing lar,  B is also nonsingular; 

_-l 
B 

-1 
CBB 

-1 

Multiplying   (3.6)   by    B and   then  rearranging  it,   we  get 

1       -c'B 

0 B 
-1 

-c'+c'B~  R 
B 

B^R 

(3.7) 
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By setting the ncnbasic variables,  x ,  at level zero, 
R 

X 1 V1' 0 c'B^b CBXB 

XB 
0 B-1 b B^b B^b 

where    x     =  B    b. 

If    B    b    is  a  nonnegative  vector,   the  basis     B     is  feasible, 

and   thus   the  current  solution   is  a  basic  feasible  solution. 

Look  at any  variable     x.     with  a  corresponding  column    A. 

and   a  cost  coefficient     c.;      this  variable's  column in  the   transformed 
J 

system of   (3.7)   is 

-c .+c'B~ A . 
3     B j 

B^A 
J      _ (3.8) 

-1 th 
If     x       is  a  basic variable,      B    A       is  the    r unit   vector,   if    A, 

J       th J J 

is   the     r column  of    B.      (Note   that,   in  this  case,      c .     would  be   the 
th ,, J HJ  u     4-1. th 3        ,     * \ r component of    c   ,     and    x.     would  be  the    r component  of    x   •) 

B        J 
Thus the first component of (3.8) becomes 

B 

-c. + c'B A = -c . + c . = 0 ; 
J    B   j    J   J 

moreover (3,8) is a unit vector. 

Proposition 3.1.  If all  c. - c'B A. > 0,  the current basis  B  is 
  J    B   j - 

optimal. 

Proof of  Proposition  3. 1. 
-1. 

Assume     5    = c     - c'B    A    >   J,     V.;      then,   from  (3.7)   and   (3.8), 
j j B j   - j 
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s 
:'B~1b + N 6 x  . 13     Z^ j j 

^ 

m 
m 

Note I hat 0  for ,j  corresponding to a basic variable.  Thus any 

change from the current solution would result In an increase of some 

x.  (nonbasic), and the value of  z  would increase or remain unchanpred. 

Hence no improvement in the objective is obtained .vith any other 

solut ion. 

Q. E. D. 

From 

feasible   basis; 

m  1,   we  have  an  optimality condition   for any 

c. = c 
J   j 

c'D A . ^ 0 , Vj (3.9) 

tk> 

If, on the other hand, the left-hand side of (3.9) was strictly negative, 

for some  j = s,  then increasing  x  and adjusting the values of the 

basic variables until one dropped to value zero (thus replacing a current 

basic variable) would decrease the objective function, provided  x 
s 

entered at a positive level.  The simplex method changes the basic set 

at each iteration with the entering variable,  x ,  designated the non- 
s 

basic variable with the most negative relative cost factor,  5..  Tiie 

exiting variable is the first basic variable to be driven to zero as 

the entering variable increases above zero (assuming nondegeneracy and 

bounded solutions).  The method terminates with the current basis being 

optimal, when (3.9) is satisfied for all variables. 

When the variable x   is chosen as the entering variable, the 
s 

exiting variable can be determined by examining the ratios 

for all  i , (3.10) 

where {B-\ 
pressed as 

0.  From (3.7), the current basic variables are ex- 
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x„ = B~1b - /B~1A ]'X 
B \ SI     i 

Thus the first variable driven to zero in the vector x   is the one 

corresponding to the minimum of the ratios defined by (3.10). 

The simplex method can be carried out in two ways.  The first 

way (called the revised simplex method) is to substitute  A  which cor- 
s 

responds to the entering variable  x   for A  which corresponds to the 
s r 

exiting  variable     x       in  the   basis     B.      With  this  substitution  both   the 
r 

new solution and the relative cost factors can then be calculated.  The 

second way is to pivot in the augmented matrix 

-1 
R  B 

B^R 

about the term (B R 1 ,  where  s  corresponds to the entering vari- 

able and  r  corresponds to the exiting variable.  The pivoting opera- 

tions do not change the canonical form of the basic variables which 

remain basic, but they do force the column 

c -c B 
s  B 

B^A 

to the canonical form of 

0 where is   the  unit  vector with  a  one   in  the    r 
th 

component;   this 

will  alter  all   of  the  other columns  corresponding to  the  nonbasic 
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.) 

variables.  Note that once a feasible basis is determined, the simplex 

method Insures that all succeeding bases are feasible. 

To obtain an Initial feasible basis, phase I of the simplex method 

adds artificial variables to (3.4) and solves a new linear program.  Let 

E  be an  m X m matrix with only diagonal terms, and let  e.. = +1,  if 

b. > 0,  and e.. = -1,  if b < 0;  then, the new linear program is 

min z = > v. 

1=1 

Ax + Ev = b 

x > 0,  v > 0 , (3.11) 

and the solution terminates in a basic feasible solution to (3.4), when 

the simplex method is applied to (3.11).  The optimal value of z  in 

(3.11) Is zero iff (3,4) is feasible. 

E.   Quadratic Programming 

The standard quadratic programming [3] problem can be stated as 

minimize z = c'x + x'Qx 

subject to Ax > b 

x > 0, (3.12) 

where x e E ;  c  is a specified n-dimensional vector;  b  is a speci- 

fied m-dimensional vfector;  A  is a specified  (m X n)  matrix; and  Q 

is a specified  (n X n)  matrix.  It is hereby assumed that Q is posi- 

tive semidefinite. 

Since problem (3.12) is a convex programming problem, the Kuhn- 

Tucker necessary conditions are also sufficient conditions for optimality. 

Thus a solution,  x,  to the following necessary conditions is an optimal 

solution to (3.12), 

SEL-68-08S 22 
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u = c + 2Qx - A'y > 0 

v =-b + Ax > 0 

> 0 

Vi= 0'   yiv1 = 0. 

> 0 

Vi 3. 13) 

If we define 

w = 

l_yJ 

M = 

"2Q  -A' 

_A    0 _ 

and q = 

the necessary conditions may be written as 

w = Mz + q 

w, z > 0, 

(3.14) 

/.z. =0,  V. = 1  p, 

where  M is  p X p. 

Complementary Pivot Theory.  Problem (3.14) is a statement of 

the fundamental problem of the complementary pivot theory [3].  Although 

(3.14) is solvable by this theory for various classes of M,  the dis- 

cussion here will be restricted to  M being positive semidefinite, as 

it is in the quadratic programming problem (3.12). 

Note that we are looking for a complementary solution to the 

linear equations in (3.14), i.e., ä solution to 

w = Mz + q , 
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with    w.z.   =  0,    Vi •     We will   initiate with  a  solution   that   is comple- 
i   i ' 

mentary  but   that  may not  be nonnegative.     We will   then  retain this 

complementary  property while  seeking  a nonnegative  solution. 

The   problem  in   the  structured   form of 

(«Hi wl ql 

• = • + 

w 
p_ ^qpj 

11 

pp 

(3.15) 

Wv 

is observed with the transformations being made by substituting a vari- 

able z.  (or, in later steps, some w.)  in the extreme left column, 

replacing a variable in the column, and then pivoting on the system of 

equations by changing the column q  and the matrix M.  The variables 

in the left column are called basic, and the variables in the row above 

the matrix M  (or M  after transformation) are called nonbasic.  The 

problem is initiated by setting w. = q.  and  z. = 0  for all i.  If 

any q. is negative, pick the w.  corresponding to min q.,  and let it 

be a distinguished variable.  The following can be taken as a general 

iteration. 

Increase the complement [defined by (3,14)] of the distinguished 
variable and determine the blocking variable which is either 

(a) a basic variable being driven below its lower bound (usually 
zero) by an increase of the driving variable, or 

(b) the distinguished variable which is driven toward zero. 

[The first variable to block in either (a) or (b) becomes the 
blocking variable,] 

If the blocking variable is not the distinguished variable, 

then replace the basic blocking variable with the increasing nonbasic 

(driving) variable by pivoting about the point m   in the matrix M, 

where m   is the term in the current matrix that corresponds to the 
th    rS th 

s  column (the driving variable) and the r  row (the blocking vari- 

able) .  Now increase the complement of the former blocking variable 

(now nonbasic) until a new blocking variable is found. 
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If the blocking variable at any stage is the distinguished 

variable, make it nonbasic at value zero and make the driving variable 

basic (by pivoting). 

At this point, a complementary solution exists.  Then look 

at all q.  (determined after pivoting) and choose the most negative to 

determine the new (basic) distinguished variable.  The algorithm termi- 

nates when all  q. > 0.  The nonbasic variables, placed in the row above 

the matrix M,  are at leve] zero, except for the driving variable, at 

any time. 

The pivoting rule is:  pivoting on m  , 
rs 

rs m 
rs 

is 

is  m 
rs 

Vi ^ r 

-m 
m 
rj   m 

^ ,   Vj ^ s 
rs 

U 
m. 
iJ 

m m 
ir rj 
m 
rs 

Vi ^ r 

Let  q  = m   and apply the pivot rules given above.  For basic vari- 
i    10 

ables that correspond to negative  q.  and not distinguised, we define 

their common lower bound to be 

< min q, 

instead of zero.  Thus  ß  is the lower bound that blocks the decrease 

of a basic variable. 

It has been shown by Dantzig and Cottle [3] that the algorithm 

terminates in a solution to the quadratic programming problem when (3.14) 

has a feasible solution. 
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C.   Generalized Programming 

The general, -eci programming problem can be represented by 

Choose a vector,  P,  In a convex set, C c E",  such that we 

maximize A 

subject to  U A + PM = S (3.16) 

M = 1.     p > 0 

where U0 and S are specified n-dimenslonal vectors, and p is a 

scalar. [The results here are easily applied to an extended form of 

(3.16),   where   the   linear  equations  become 

V + Vi + V2 + •••+ vq = s 

Mj = ! '    Vi , 

and eacii  P.  is drawn from a convex set C . ] 
i i 

Thus, we are looking for some vector  P  or a convex combination 

of vector P 

sible, i.e.. 

i* 
all in set  C,  so that the linear equations are fea- 

U A + P = S (3.17) 

or 

uoA + S pl*Mi = s 

^ 
= 1 

Mi > 0 , (3.18) 

am1   the   resulting  value of    A     is  a maximum over  the  choice  of all  the 

elements   in set     C,   which  satisfy  the  linear  equations.     Note   that,   if 
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any set of P  is in C,  any convex combination of that set is also in 

C.  Hence (3.17) and (3.18) are equivalent when 

-* = 1 A, 

2Mi= 1' "li0 • 

The solution procedure assumes we have on hand, initially,  n 

particular choices of  P  e C  so that the following linear program 

(called a restricted master) 

max 

subject to  ILA + P u, + . , . + P n 
0     Ml        Hn 

= 1 

&y 

Mi   - (3.19) 

has  a unique,    feasible,   nondegerate  solution with  the  basis  being 

defined  as 

Ur P1... Pn' 

lAl 

1 
i      0 

and being nonsingular (by definition).  Since for each  P  t C, P = 

p u ,  where  u.   is a solution to (3.19), is in C  and is a 
i i 

feasible solution to (3.16), but not necessarily the optimal solution, 

To test P   [and hence, any solution to (3.16), generated from a 

basis] for optimality, a row vector n = IT  is determined to satisfy 

jfV = (1,0, ...,0) . (3.20) 
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From     ■',     wc   find  a  vector     P 

a   value     ü    so   that 

n+1 
which  is not  necessarily unique,   and 

_0_n+l       min -0- 
o =  it  P        =  ^ ^  n P 

PCC (3.21) 

wliere     P = If     o = 0,      the  current   solution   is  an  optimal   one. 
n+1 

li'  0 < 0,  (3.19) is augmented by  P' ~  and the new linear program is 

then solved.  The general iteration starts with a solution to the re- 

stricted master program 

m 
Vm i 

maximize 
n+k 

V subject to  U A +  > P ,: 
0    £.   pi 

I^1 

^i - 
0 . (3. 22) 

Let  B  be the optimal basis to the linear program (3.22), and let  if , 

the dual (optimal) variable to (3.22), be defined analogous to (3.20). 
k    ,  „n+k+1 

llien,  ü  and  P      are found from the subproblem. 

BÖ 
find 

k+1 _k-n+k+l 
K   P 

mm _k— 
r.    „      *     P 

PeC 
(3.23) 

k+1 th 
If  o   =0,  the solution to the k  iteration of the master 

problem is optimal.  If  ö   < 0,  then  P     can be adjoined to 

(3.22), and the solution to (3.16) is improved.  The value  -6    is 

■he maximum amount by which the value of the current basis A  can be 

\    k+l improved.  lluis,  A - c    constitutes an upper bound to the optimal 

solution of (3.16).  It is known that these upper bound evaluations can 

vary considerably from one interation to the next.  Accordingly, the 

least of these evaluation:; is saved from all iterations, including the 

current one. 
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It has been shown that, if  C  is bounded and the initial solution 
_k ,k*   * 

to (3.19) is nondegenerate  (u. > 0), n    -> n  and  P  -» P  [where 

n+k 

1 

„k*   V „i p   = Z p ^ ' 
1=1 

and  |i.  is a solution to (3.22)] , on a subsequence k,  and that P = P 
1 _* 

is optimal for (3.16). n       satisfies the properties 

7T   ^ 0 

(3.24) 

■jf P > rt P =0,    for all  P e C 

Moreover, if C  is a polyhedral set, then the subproblem (3.23) is a 

linear program, and the iterative process terminates in a finite number 

of steps.  It should be noted that, in any case, the objective function 

improves with each iteration, and a feasible solution always exists to 

the master problem.  Also, the initial solution (or columns) for (3.19) 

can be obtained by a procedure similar to a phase I simplex method. 

Remembering that the usual form of a generalized program includes 

the sum of the vectors  P. £ C.,  where the  C.  are convex sets, the 
ii i 

vector S need not be fixed, but it must be drawn from a convex set, S 

Thus the generalized program becomes 

max 
P,S 

A 

U A + P, 
o    p - Sv = 0 

v - 1 , (3,25) 

where  P e C and  S e ^.  In this case, the subproblem is extended to 

find as in (3.23) and 
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■„i 

k      _k- 
A = nun n S 

S e ^ , 

where = 0 If or A < 0,  then the corresponding vector or 

vectors is entered into the master problem.  If both 

the current solution is optimal. 

The generalized programming problem, 

and A = 0, 

Primal: 
max A 

U0A + PM = S 

M = 1 

P e C (3.16) 

has as its 

Dual: find a vector  it so that 

- [r] > » • VP e C 

0 ,    some P e C 

(3.26) 

m 

This dual is the equivalent of finding a particular hyperplane to support 

the convex set C.  If a solution to the dual is known, then a solution 
_*■ 

to the primal may be found using the dual solution,  it ,  to find the 
*■ 

vectors,  P e C,  that satisfy 

= 0 

If  P  is unique and the primal has a solution,  P  must be the solu- 

tion.  If  P  is not unique and the primal has a solution, then some 
■x- 

convex combination of all the  P  must form the primal solution. 
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Chapter  IV 

PARAMETRIC   PROGRAMMING 

mm 

m 

In  this chapter,   algorithms  are presented  for  solving parametric 

linear and quadratic  programming problems,   whsre  the  dependence  on  the 

parameter is nonlinear and occurs  only in the  linear part  of the objec- 

tive   function.     These parametric  programming  problems  arise   in   the  sub- 

problem of the  generalized  programming  formulation  of  the  o,    imal  control 

problems. 

m 
Parametric  Linear  Programming 

We  consider   the   following problem linear  in    x 

I 
m 

find x (t) to 

minimize  7(t)'x 

subject to Ax = b 

x > 0 

t e [T^] , (4.1) 

and the following problem quadratic in x 

find x (t)  to 

minimize  7(t)'x + xQx 

subject to  ^x > b 

x > 0 

t e [T^T^ . (4.2) 

In both of the above cases,  A  is a given  m X n  real matrix,  b 

is a given n-dimensional vector,  Q is an n x n positive semidefinite 
n 

matrix,  x is a vector in  E ,  and 

7(t) = [71(t) 7k(t), ..., 7N(t)] (4.3) 
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is a given vector valued function, each component of which is a solution 

to some homogeneous, linear differential equation with constant real co- 

efficients  that  may depend  on     k.      Such    7   (t)     are  of   the   form 
k 

N 

V0 = 1 pki(t) e 

i=l 

s, .t 
ki 

(4.4) 

m where  p, .(t)  is a polynomial with real coefficients of degree  m 
KI ki 

so that 

N 

/L,     ki 
i=l 

1 
1 

and  ; 

Ski+1 

ki 
are constants so tha:, if  s 

ki 
is its conjugate and  p  (t) = p 

ki      ki+1 

is complex for  i  odd, 

(t).  It follows then that 

these  /, (t)  are real-valued functions of t. 
k 

The lemmas and theorems that follow are required to show convergence 

of the proposed algorithm. 

Lemma 4.1.  If /#(t)  is a solution to a homogeneous linear differential 

equation with constant real coefficients of order N  and if for 

some  t = t 

/,(t) = dt ^(t) 

N-l 
d  [7#(t)] 

dt 
N-l 

EJiJAi 

pum m 

ft 

then  /#(t) =  0  for all t. 

Proof of Lemma 4.1. 

/ (t)  solves an equation of the form 
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m 

dt 

At  t = t0, 

N /^t) = V*(t) + ai dt + . . . + a 
N-l 

a"-1^«) 

dt 

(4.5) 

dt 
= 0 

t=t. 

(4.6) 

By taking the derivative of both sides of (4.5) and substituting (4.6), 

«St 

im 
dt 

N+l 
= 0 . 

t=t. 

If this procedure is continued, all derivatives of  7#(t)  at t = t 
0 

become zero.  Therefore, with 7#(t) = 0  and all of its derivatives at 

zero for  t = t  and with  /„(t)  being able to expand (at  t = t )  to 
Ü * 0 

a Taylor series, y   (t)  must be constant and have value zero for all t. 
* 

Q.E.D. 

Definition 4.1.  A vector  y  is said to be lexicographically greater 

than zero, if at least one component is non-zero and the first such 

component is positive; this vector can be denoted as 

y ^ 0 . 

A vector y is lexicographically greater than a ve^ior  z, 

y j^- z 

m 

if y - z >~ 0.     A vector is said to be lexicographically greater or 

equal to zero, if it 3 - lexicographically greater than zero or equal 

to zero . 
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A similar definition is true for one vector to be lexicographically 

greater or equal to another vector. 

DF { jnition 4. 2.  Let  /^.(t)  be a real scalar function of  t.  Then the 

N-component vector D  (t)  can be defined by its components 

D  (t). 
7*      1 

d^jAt) 

df 
i-1 

Thus   the  vector   function    D.y   (t)      is  defined  by the  function     /At) 

and   its   first    N-l     derivatives. 

Lemma   4.2   [10].      If     f(x)     has  a  derivative  at     c     and     f (c)   > 0,      then 

a  positive  number     5    exists   so   that   for    c < x <  c +  6,   f(c)   <   f(x) 

I 

Theorem 4.1.  Let 7„(t)  be a member of the class of solutions to ho- 
  -K- 

th 
mogeneous, constant real coefficient, N  order, linear differential 

equations, and let D  (t)  exist as it is defined in Definition 4.2. 
7 

Then, if D  (t ) =0 or if D  CtJ ^ Ü, 
/* 0 ?* o 

7^(t) > 0 when  t e [t0)t0 + 5). 

5 > 0 exists so that 

Proof 'if Theorem 4.1. 

If D  (O = 0,  then, according to Lemma 4.1, 1 At)   -  0  for all 

t  and  5 = 00, 

If D  (t ) ^- 0,  either 7„(t„) > 0  or its lowest order 
/# 0 '* 0 

derivative—one that is non-zero at  t = t —is greater than zero.  If 

fS^rS)   > 0,  then, by continuity a  5 > 0  exists for 7„(t ) > 0  when 

t t [t ,t  +5).  If  7„(t ) = 0,  let the lowest order, non-zero deriv- 
0  0 *  ■' 

ative at  t = t  be the jth derivative, and let 

f(t) = 
dt 
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Thus  f (tf,) > 0  and, by using Lei...na 4.2,   a     5 does exist for 

t < t < t + &,  so that 

| 

i 
f Kl '■ 

^TT ^V = f(v<f(t) =rpi^(t) • dt dt^ 

m 
From Taylor's   theorem,   it   is known  that  a  number    x,     between    t 

and     t,     exists  for any given     t,t    < t < t    +  5    and 

?*(t) =7*(to) +dt^(to)(t-to) + '•• + 
Hj-1 .    T 

(j-D.'dt 

If    ' 
1 

Since 

^V =dt ^v 
J-2 

7jtn)   = 0 
dt 

3-2  '**   0 

and 

J-l rij--l 
7JV   > ~T 7At)   = 0  , 

dt j-l  '*
v 

dt 
,i--l  '*v  0 

?At)  > 0,     Hence,    it  follows   that     7 At)   > 0     for all    t  e   [t„,t„  +  5). * — * _ 0     0 

Q.E.D. 

The   first  algorithm presented here  is  based  on   the simplex method 

and  solves  problem  (4.1). 

Find    x  (t)      to 

minimize     /(t)'x 

subject   to    Ax  -  b,x > 0,        t  e   [T   , T ]   . 

MM 
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m 

th 
Here,  /(t)  is a vector whose i  component,  /.(t),  is a real scalar 

function.  At time  t ,  let B  be an optimal basis for the linear 

program 

minimize  /(t )'x 

subject to Ax = b 

x > 0 . (4.7) 

Let the solution be  x = x (t ).  Since  x (t )  is a feasible solution 

to Ax = b,x > 0,  it remains a feasible one to problem (4.1) for all 

t,  but it is not necessarily an optimal solution.  Thus how the opti- 

mality test for  B  varies as  t  takes on the values  t = t + e, 

where e > 0,  must be investigated.  Let 

^^•V =\(t) - '* (t) BölAk • 
0 

th 
where A   is the k  column of the matrix A, 

(4.8) 

i 
€k  =  inf [e|7k(t0 + e,B0)  < 0]   , and 

en  = min  ei 0 k       k 

(4.9) 

(4.10) 

It   is  possible   that   the     e   ,     presented  above, is  zero.      7  (t,B )     is 

the   relative  cost   factor  for  any     t    of  column     k    when     B       is chosen 

as   the  basis.     Then  the  ordering  of columns     A     can   be   taken   so that 

A   ,    . . . ,   A       correspond  to  the    m    columns  of B 
m 0 

For  any  basic   variable     x.,     associated  with  the optimal   bas; s     B  , 
* 1 0 

~i(l'B0)   =   /i(t)   "  /B  (t:)   BÖlAi   =   /i(t)   "  /i(t)   "  0'      Vt   ' 

(4.11a) 

And,    for     t   =   t 

^k^o^o^0'      Vk ' (4. lib) 
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i i 

with equality being held when k corresponds to a basic variable. 

Therefore, the solution to (4.1) remains optimal, i.e., it satisfies 

^k
(-t'B0

)  > ü when t  e ^n^o + eo^ for some en > 0' siven by (^-10). 
Let ■/•'(t,B)     be the jth derivative (with respect to t)  of the 

relative cost vector 7(t,B) when B is the basis under consideration, 

Let 7 (tjB)  be the component of the above vector corresponding to 
k 1 

column k of A.  Let A  be the new linear programming matrix ob- 

tained after deleting all columns (variables) for which the relative 
— —0 

cost factors y^^n'^r)   =  ^b-^n'Bn^  are strictly positive for t = t 

A general iteration is given with  t0 = T ;  a flow chart of the algorithm 

follows the iteration. 

Step I:  Solve the linear program 

minimize /(*„) 'x 

subject to Ax = b 

x > 0 (4.12) 

(Hf. m 

to  obtain the optimal basis B .  If the solution is unique at  t 

(i.e., all relative cost factors for nonbasic variables are strictly- 

positive), proceed to Step III. 

If the solution is non-unique, fix  t = t  and proceed to Step II, 

starting with j = 1 and A = A. 

Step II:  Let the matrix A  be composed of the matrix Bj_i and all 

k columns of A"   having the relative cost factors J       (t , B.  ) = 0, 
—i-1 st ^ 

where Jü     ^n'8- 1?  refers to the  (J-D   derivative.  To simplify 

notation in (4.13) below, let the new x any 7 vectors corresponding 

to A  also be denoted by x and 7,  although they are now shortened 

x and 7 vectors.  Then, solve the linear program 
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minimize  / (t . B  -■) ' x 

subject to Ax = b 

x > 0 . (4.13) 

I 

Let  B.  denote the optimal basis.  [Con.putationally, it is convenient 

to start with the previously optimal, basic feasible solution corre- 

sponding to j-1  and then to apply the simplex method to obtain an 

optimal solution to (4.13).]  If the solution to (4.13) is unique or if 

j = N - 1,  use the optimal basis B.  and proceed to Step III. 

If the solution is non-unique and j < N - 1,  increase  j  by 1 

and repeat Step II. 

Step III:  Using the optimal basis from Step I or II in place of B  in 

(4.8) and (4.9) for all columns 

find e . 

0 
k (optimal basic columns can be ignored 

Then calculate  e 
0' 

The solution, since their e  = +«0 
*      -1 

x (t) = B b,  is then optimal for all  t e [t ,t. + el.  Moreover, it 

£o>0- will be shown that 
u 

If    t     +  e    > T   ,      the  parametric  programming  problem is  solved. 

However  if  the  solution  is  not  reached,   repeat   the  general  iteration 

with t
1  = t

0 +  e0     replacing    t0. 

That  this  algorithm does  terminate  in a   finite number of steps to 

a  solution  of  (4,1)   for  all     t  e   [T   , T ]     remains   to be  shown.     The re- 

mainder of  this   section   is  devoted  to  showing  a   finite  number of  steps 

to  the  solution. 

i 
Lemma 4. 3.  If the relative cost factors for some basic  B  are zero for 

a subset of columns  S  and positive for the remaining columns T, 

then the same is true for any basis B  whose columns are in S. 

Proof of Lemma 4.3. 

The vector of coefficients of the objective equation of the original 

matrix can be replaced by the relative cost vector for  B .  The price 
0 

0 

vector     Tt of simplex multipliers  relative  to    B 
0. 

0 
satisfies     it B    = 0 
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'O*7! 
TERMINATE 

YESl 

Solve  Linear  Program 

mln  ;(t  )'x 

Ax =  b 

x > 0 

NO 

Are  all  nonbaslc 

vvv >0 

YES 

LNO 

Let  J = 1 

1 
Drop all columns of k for which 

'r1(vvi)>o 

to form AJ  matrix and 

shortened cost and x vector. 

I—NO 

Let 

7J<t,B)   = ^ F^V.B) 

and solve  linear program 

(with  above basis as  start) 

min  /^VBj^Vx 

AJx  = b 

x > 0 

Get     B 

Are all nonbasic 
7J(t0,BJ)>0 

NO 

Replace    J    with    J  + 1 

Is    J   = N 

19   'o^a 

Replace     t    with     t    +  € 

Find    tr 

Find    £   ,     k nonbasic 

YES 

YES 

FLOW CHART FOR   PARAMETRIC  LINEAR 

PROGRAMMING ALGORITHM 
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m 

and that of  rt B = 0,  since the objective coefficients for both 

columns of B  and  B  are now zero by hypothesis.  Hence  IT 

and it follows that their relative cost factors are identical. 

0 
rt    = 0, 

Q.E.D. 

Theorem 4. 2.     At   the  end  of   the  general   iteration,    the   following vector 

relations  are   satisfied: 

m 

D[7k(t0,B)]   = 

WB) 

£ WB) 

dt 

^-1    _ 

-Nil    WB) 

>•   0 

or 

for     k =  1, 

m 
DC/,(tn,B)]   =  0 for  all     k k    0 . 

where     B    is  the   final   basis on  terminating  the  iteration of 

Step  II  at     t   . 

Proof of Theorem  4.2. 

For    k    corresponding  to  the  basic variables  of  (4.11), 

D[/   (t   ,B)]= 0,     For   the  basis     B,     let  the  basic  variables  be    x 

and  let the nonbasic  variables  be    x 
B' 

R" 
The  problem  is   separated as 
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B 

B'^R ] 

= b 

(4.14) 

By pivoting on the  m + 1  rows of (4.14), the first  m columns are now 

unit vectors, and the system becomes 

I ! R 
■ 

= b 

■[• = z. 

where /  is the relative cost factor vector of the nonbasic variables. 
R 

R is separated into two matrices,  R  and R 

cost factors corresponding to the columns of R are zero, and those 

corresponding to the columns of Rr 

2' 

Rl 
are negative 

so that the relative 

Then, the problem 

rows 

1 m 
xiL 

xiL 

=  b 

i m 
m 

row 
m+1 

z   - ^(VB)   ^0 

41 

x. 

XR. =  z. 
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i row 
m+2 nun z. 7_     (t,B) 

Rl 
XiL =  0 

(4.15) 

m 

i 

is  observed,   where only   the  variables  corresponding  to   the columns  of 

R     and     I     are  allowed   to  enter   the basis. 

According   to  Lemma 4.3,   the  pivoting procedures  of   the  simplex algor- 

ithm  retain the  zero  elements  of   row    m + 1     at  level     0     and   the  positive 

elements  of row    m +  1     are  at positive values  for every  stage;   these 

procedures  terminate  with  all  relative cost   factors  of   row    m+2,   corre- 

sponding  to     I     and     R   ,     at  nonnegative values.     At   termination,   because 

of  the simplex method   stopping rule,   a new  set of  basic  variables  is found 

having  the property  of   the   components  of the  basic  variables   in rows    m +  1 

and     m + 2    being at   zero   (after  pivoting);   the  components of   the nonbasic 

variables  are either 

(1) zero  in row    m + 1     and  n'iimegative  in row    in  + 2,     for vari- 
ables  corresponding  to   columns of     I     or     R       in  (4.15)   or 

(2) strictly positive  in row    m + 1,     for variables corresponding 
to columns  of    R   . 

2 

If the variables are as in (1) above, the ones having zero components 

in row m+2 are chosen with their columns for consideration in the 

next stage of the algorithm.  Once a nonbasic variable has a positive 

relative cost factor at any stage  j,  it can be assumed that its rela- 

tive cost factors were at zero in previous stages also; V^nce it can no 

longer enter the basis .  Since the relative cost factors in the first 
th 

k - 1 stages can never change sign by pivoting in the I;  and later 

stages, its derivative vector must be lexicographically greater than 0. 

Thus at completion of the N stages, all derivative vectors must be 

lexicographically greater than or equal to zero. 

Q.E.D. 

Theorem 4.3.  The basis  B,  obtained at the end of Step II in the 

algorithm for any t = t ,  remains optimal for the interval 

[t ,t + e ],  where e      is strictly positive. 
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Proof of Theorem 4 .3 

Since each 7 (t,B)  is a member of the class of solutions to homo- 
AC 

geneous, constant coefficient, linear differential equations, it 

strictly positive  by Theorem 4.1.     By the  definitions  given  for     e      and 

'0' 
the basis B  satisfies the optimality criteria for 

t e[t0,to+ ^ . 

Q.E.D, 

m 

Theorem 4.4.  The number of basis changes in any finite interval [T ,T ] 

is a finite number, and the parametric programming problem is 

solvable in a finite number of steps. 

Proof of Theorem 4.4. 

At any switching point  t ,  there exists a basis  B  and an 

G > 0,  so that  B  is optimal for t 6[t ,t  + e ) .  There also exists 
P       ^       P# *00P * 

a basis B  and an  e > 0,  making B  optimal for  t e[t - € ,t ) . 

It follows then, if there is a cluster point at  t ,  there would be an 

infinite increasing sequence of switching points  t. eLt  - e ,t J 

which could be bypassed by a single switch at any such t.  to basis 
•x- 1 

B .  This establishes the existence of a finite number of basis changes 

in any finite interval  t 6[T ,T ]. 
12 

What remains to be shown is that the algorithm, as presented, solves 

the parametric programming problem in a finite number of steps. As dis- 

cussed above, let us assume there is a switching point  t. 6Ltn - £ ,t J 

and a switch from basis  B. ,  to B .  To simplify the discussion, let 
i-1      i 

us also assume that  B  differs from B.    by the introduction of one 
1 i-l 

incoming column k,  and that the value of the incoming variable x = 
0 k 

x > 0,  i.e., the basic solution is nondegenerate. 
K 

The optimal  value  of   the  objective     z,     in  the  neighborhood of     t., 

takes  the  form of 

z^t.B.^)   "^(t.B.^)'   xk   ,       xk  = 

0, 

xk>0. 

if    t < t 
—    i 

if     t > t. 
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Both z„(t,B. H)  and 7, (t,B. ,)  can be shown to be linear combinations 
0   i-l        k   i-l 

of solutions to homogeneous, linear differential equations with constant 

real coefficients and hence they themselves are also solutions.  In addi- 
+ —  + 

tion for  t , 7 (t ,B J) < 0. otherwise there would have been no switch 
1  k  1  i-l 

from B.    to B..  This means that the vector of the  0, 1  ,2  , ..., 
st i-l 

N-l   order derivatives of 7 (t,B.  ),  evaluated at  t.,  is lexi- 

cographically negative.  It follows then that the function  z  is discon- 
th 

tinuous in  t  at  t.  in at least one of its j   order derivatives.  On 
1 * 

the other hand, the optimal value of  z,  in the interval  t ett  - e ,t.], 

can also be expressed as 

z = z0(t,B ) 

I Vv) 

and is continuous in all derivatives at  t.,  which is a contradiction. 
1 

The  above  argument   is  now  extended  to  the  case where     B.   -■     is  as~ 

sumed  to differ from    B       by  several   incoming columns.     The   term 
_ i 

x  7   (t,B       )     is  then  replaced   by a  sum of  terms,   each  of which is   lexi- 

cographically negative  at     t  =  t.,     hence  their  sum is   lexicographically 

negative  and  the discontinuity  at     t  =  t.     follows.      (Note  that  the  de- 

generacy of basic  solutions   in   the   simplex  algorithm is   assumed  to be 

handled  by  the  standard  right-hand  side  lexicographic  rules  of  the 

simplex method.) 

Since  each basis  change   is   accomplished by a   finite   (at  most     N) 

number  of  linear programs,   the  parametric  programming problem  is  solv- 

able   in  a   finite number of  steps. 

Q.E.D. 

Corollary 4.1.  The solution  x (t)  to (4.1) is a piecewise constant 

vector function of  t with a finite number of discontinuities. 

Proof of Corollary 4. 1. 

Since  x (t)  is constant for  t e[t ,t + c ],  this follows im- 

mediately from Theorem 4.4, 

Q.E.D. 
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Proposition 4.1.  When all the  s.  for each 7.(t)  are real, the upper 

bound on the number of switchings in an infinite time interval for 

an  (m X m)  matrix A  is 

|(n - m) N . 

m 

m 

m i i 

Proof of Proposition 4.1. 

For any 7v.(t)  that is a member of the class of solutions to an 
th 

N  order homogeneous, constant coefficient, linear differential equa- 

tion and for real and distinct  s.,  it is known [1] that the function 

7j,(t)  has, at most,  N roots of 7#Ct) = 0. 

At the most, there are (  1 possible bases for A; for each of 

these bases, there are  (n-m)  nonbasic variables.  For each nonbasic 

variable x.,  the relative cost factor 7 (t,B)  has at most N points 

at which it crosses the value zero and thereby creates a possible basis 

switch. 

Q.E.D. 

B. 

I 
t* ■ 

Parametric Quadratic Programming 

The conditions for which the parametric programming problem has a 

solution are found in this section.  Also, an algorithm based on the 

complementary pivot theory procedure for quadratic programming is 

constructed. 

The quadratic programming problem 

find x (t)  to 

minimize  7(t)Ix + xQx 

subject to Ax > b 

x > 0 , t eCT^T^ , (4,16) 
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can be formulated in the complementary pivot theory as, 

find vv (t),  z (t),  so that 

w = mz + q(t) 

w z =0,  Vi 
i i 

w. > 0,  z. > 0, Vi , 
i -     i — 

(4.17) 

where 

M = 

2Q   -A' 

q(t) 

/(t) 

and w = 

where  y  is the vector of dual variables to the quadratic programming 

problem, and u,v are slack vectors of the necessary conditions for 

quadratic programs, as was stated in Chapter III.  The necessary con- 

ditions in (4.17) for Q positive semidefinite are sufficient at 

any  t = t .  From the results of Dantzig and Cottle [3], the complemen- 

tary pivot theory algorithm terminates in a solution to (4.17) when M 

is positive semidefinite, providing the solution set for 

w = Mz + q,    w > 0; 0. 

is nonempty. 

To show that the above solution set is nonempty, a solution must 

be shown to exist for every  t  in the parametric programming problem. 

If such B   solution does exist, it must satisfy the conditions of (4.17). 

Therefore, let us assume the absence of unbounded solutions, i.e., that 

the set '1 
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I X = (xlx > 0, Ax > b] 

is bounded and nonempty. 

Proposition 4.2.  The parametric quadratic programming problem has a 

solution for every point  t e[T ,T ],  when X  is nonempty and 

bounded,  /(t)  is a vector function with each of its components bounded 

in the interval  [T , T ],  and  Q is positive semidefinite. 

Proof of Proposition 4.2. 

Since the objective is continuous ii 

attains its infinum at a point in X. 

x over a compact set X, it 

Q.E.D. 

Proposition 4.3.  Given the above conditions on jit),     X,  and Q,  the 

form w = Mz + q,  w,z > 0,  w.z. = 0  has a solution fcr every 

t e[T , T ],  and this solution can be found by using the methods of 

complementary pivot theory in a finite number of pivot operations on M. 

Proof of Proposition 4. 3. 

As stated above, Dantzig and Cottle [3] have shown that the comple- 

mentary pivot theory algorithm converges to a solution of the quadratic 

programming problem, if the solution set for w = Mz + q, w, z > 0,  is non- 

empty.  Since X is nonempty, and since the infinum of /(tVx + x'Qx 

is attained in X  for each  t,  then the necessary and sufficient con- 

ditions, i.e., a solution to (4.17), must exist.  Thus, the conditions 

for termination of the algorithm are satisfied. 

Q.E.D. 

y 

Remembering the characteristics  of    /(t)     explained  earlier,   we 

will   now  show  that only  a   finite  number of  solutions  are   considered when 

solving the  parametric  programming problem  for all     t     in   the   finite 

interval,      [T^T^. 
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Theorem 4.5. There are a finite number of changes in the set of basic 

variables of (4.17) for the parametric programming problem over a 

finite   interval. 

Proof of Theorem  4.5. 

Let  the     M    matrix  be     (n x n) .     Since   each  complementary  solution 

has     n     basic   variables,   there  are,   at  mo.^t,     (       ]    complementary solu- 

tions.     By using  the pivoting procedures,   the   characteristic  of any 

solution   is 

w 
_ q(t) + M 

z 

z w 

where    w    is   the   set of basic variables  of  the vector    w. 

w  = 

w 

and     z,      the   set  of  basic variables  of   the  vector     z.     The  solution,   for 

any     t,      is 

-    "■ - 
w 

- q(t) 

z 
-J 

>  0 =  0 

The  vector  function    q(t)     is  of  the   form    /(t),     and each  component  of 

q(t)      has  a   finite number of zero  crossings   in  any  finite  interval  of     t. 

Let   these  points  be  labelled,      t 

solution.     The   set  of points 

I 
'2' 

for  the  i       complementary 

(2nnJ 
(2nn) 

(2nn) 

'■'i 
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m 
are the only points at which the set of basic variables can change in 

the finite interval.  The set  T  is countable and has measure zero.  If 

the points are ordered, i.e.,  t ,t , ...,t ,  then a set of basic vari- 
U  1       K 

ables that remain basic must exist for any interval  [t,,t   ).  This is 

true because a solution has been shown to exist for every  t e[t ,t   ), 
j  j + 1- 

thus the set of basic variables cannot change in this interval. 

Q.E.D. 

At this point, an algorithm is presented to provide a basic solution 

to the complementary problem; this solution remains optimal over a posi- 

tive interval.  The method used does not require prior knowledge of the 

switching points and does not assume nondegenerate solutions at these 

points.  The algorithm employs the same pivoting procedures of the com- 

plementary pivot theory algorithm presented in Chapter III. 

Pefini Lion 4.3.  We will say a vector  y,  which is lexicographically 

smaller than zero (i.e.,  -y ^ 0)  lexico-increases to  y,  if 

(y ~ y) ^"0.  and if the component of  y  corresponding to the first 

nonpositive component of  y  becomes nonnegative. 

Definition 4 .4 . We will define a lexico-minimum of a set of vectors as 

that vector y where all the other vectors in it are lexicograph- 

ically greater than or equal to  y. 

Definition 4.5.  For every  t„,  D- (t„)  is defined as the vector 
 J        0   q.  0 

i 

vv 
dq.(t) 

i 

dl 

d^q.Ct) 
1 

dt 
N-l 
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, th 
where  q.(t )  is the current value of the 1  component of QCtfJ 

under the pivoting procedures (i.e., those procedures leading to 

a particular complementary solution) .  Let 

^ = inf Uh-CtQ + e) < 0] 

m 

and let  e„ -  min e . 
0    i       i 

We will now present an algorithm for solving the parametric quad- 

ratic programming problem.  It should be noted that this algorithm is 

also applicable to the parametric linear programming problems discussed 

in Section IV.A; however, this method is more complicated.  A flow chart 

and proof of the algorithm's finite termination will follow the general 

Iteration given here for any t = t . 

Step I:  (a)  Solve the complementary pivot theory problem 

w = Mz + q(t ) 

wz  =0,w,z>0, 
i i        — 

for positive  semidefinite  matrix M,   and     (b)     examine  the nonnegative 

complementary solution  for     t > t   ;      i.e.,   is 

i 

or 0  ? 

If Djj.(t ) <^ 0  or equal to zero, proceed to Step III; if it is not, 

go to Step II. 

Step II:  Choose an index i so that  Da.(t~)  is a  minimum over all 
  Hi     0 
the derivative vectors that are lexicographically less than zero. Retain 

all other variables of those variables which have derivative vectors lex- 

icographically less than zero, at their present lower bounds, or let them 

increase (when forced to decrease they are blocking variables) . Then let 

the basic variable corresponding to  i  be the distinguished variable and 
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i 

^ 

^ ■' 

Let  t^ = T, 
0   1 

Solve 

w = Mz + q(t ) 

wz  =0 
i 1 

w > 0 

z > 0 

NO 

Are all  D- (tj ?- 0 
q. o 
i 

or = 0? 

NO 

■YES 

Pick  i  so that  Dq-.(tn)  is 

lexico-minimum and let ith 

basic variable be distinguished. 

Use complementary pivot theory 

algorithm to increase ^-(tfJ 

while keeping all variables  j, 

so that q.(t ) = 0 at their 

lower bound. 

TERMINATE 
i 

YES 

Is ^V 

Replace with    t     +  en 

Find    e.,  VI 

and    e_ 

Proceed until distinguished variable 

lexico-increases (by leaving basis 

at level zero). 

FLOW CHART FOR PARAMETRIC QUADRATIC 

PROGRAMMING ALGORITHM 
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i 
perform the standard complementary pivot algorithm with the new lower 

bound restrictions; terminate when the distinguished variable lexico- 

graphically increases (i.e., when it drops out of the basis by becoming 

level  0).  The solution of Step I is used to initiate Step II.  Now, 

return to (b) of Step I with the current solution. 

Step III:  Using the previous definitions, calci 1 ..te  e.  for all  i 

and e ,  the minimum of  e..  The final basis at  t   is then optimal 

for  t eft;
n,t  + e ].  If a solution for  t > t + e   is desired, re 

turn to (b) of Step I, using the solution at  t  + e ,  and proceed with 

the algorithm. 

The procedure given here provides a solution to the parametric 

quadratic program for any interval of the parameter. 

It remains to be shown that each step in the algorithm does termi- 

nate in a finite number of executions and that the final basis generated 

at any t   is optimal over a finite positive interval for the quadratic 

program.  Hence the remainder of this section ifa devoted to this proof. 

Step I is solvable in a finite number of steps, if the problem 

m 
w = Mz + q(t ) 

w'z = 0,    w, z > 0 

can be solved.  Since it is known that the quadratic program has a 

solution for every  t,  we are assured of the complementary pivot theory 

algorithm converging to an optimal solution in a finite number of steps. 

m 

Proposition 4.4.  Step II must terminate with a complementary solution 

having the derivative vector of the distinguished variable lexi- 

cographically increased while other variables at their lower bound 

are not lexico-decreased. 

Proof of Proposition 4.4. 

The complementary pivot theory algorithm, when initiated with a 

basic (complementary) solution, terminates in another complementary 

solution, since we assume feasibility of the quadratic program,  Because 
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the distinguished variable and its complement are converging to a non- 

negative complementary solution, this termination occurs when the dis- 

tinguished variable lerves the basis.  When it leaves the basis, the 

variable has a derivative vector equal to zero; thus it has lexico- 

graphically increased.  All other variables, at their lower bounds, were 

not permitted to lexico-decrease; all variables entering the basis are 

permitted to increase only.  Thus the new solution has no variables 

lexicographically less than zero, and the distinguished variable is 

1ex1co-increased. 

Q.E.D. 

Theorem 4.6.  The algorithm terminates in a finite number of steps to a 

complementary basis that is optimal over a finite positive interval. 

Proof of Theorem 4.6. 

The execution of Step II lexico-increase at least one of the vari- 

ables that was lexicographically less than zero while not lexico- 

decreasing any of them; and it does not introduce any new variables 

lexicographically less than zero.  Since there are only a finite number 

of lexicographically less than zero vectors (at most,  n)  and since 

each has, at most,  n  components, the execution of Step II must termi- 
2 

nate after at most  n  times with each execution requiring a finite 

number of steps.  The termination condition is that all basic variables 

are lexicographically greater than or equal to zero (all nonbasic vari- 

ables lexicographically equal to zero).  Thus by Theorem 4,1, the basic 

variables, and hence the solution to (4.17) are nonnegative over a 

finite positive interval. 

Q.E.D. 

From  the   above  results,   it has  been  determined   that  a   finite  number 

of basis  changes  are  required  to solve   the  parametric  quadratic  program- 

ming  problem   for  a   finite   interval  of the  parameter.     The  solution   to 

the  parametric  quadratic  program need not   be   piecewise  constant  as   it   is 

in  the  parametric  linear  programs.     For  each  interval  where  a  single 

basis remains  optimal,   the   solution will,   in  fact,   have   the  character- 

istic  form 

53 SEL-68-085 



mmmmmrnmrmmmmmm 101 )C« HWSt?! IW'Kfl )tK'\m ttT JCn K!ff mmmsmmmmmmmmmmmmmmmmmmmmmmms^mi 

w 
m 
fei 

1 
i 

q(t) w, z   =   0   , 

IP 

where w and  z   rn the complementary variables in their original form, 

and z  and w  are their complements.  q(t)  is nonnegative over the 

interval and has the form where each of its components solves some par- 

ticular N  order homogeneous constant coefficient linear differential 

equation.  When the value of some q.(t)  goes negative for some  t, 

the basic variables  w,z  are no longer optimal, and a new set of basic 

variables must be found with the complementary property.  The new 

values of q.(t)  are just linear combinations of the former components. 
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Chapter V 

GENERALIZED  PROGRAMMING ALGORITHM  FOR 
OPTIMAL CONTROL  PROBLEMS 

i 

The mathematical programming results obtained in the previous two 

chapters are applied to the linear system, continuous-time optimal con- 

trol problems to formulate [9] a generalized linear program.  A solution 

procedure based on this formulation is then developed and is shown to 

terminate in an optimal solution, i.e., an optimal control is provided 

to the continuous-time problem, 

A.   Formulation 

The control problems will now be formulated as generalized programs 

and then the subproblems will be shown to be parametric programming prob- 

lems of the form presented in Chapter IV.  The control problem can be 

restated as 

min J = /  x 
u(-)   -/Q 

x0(t) dt = x0(T) (5.1a) 

x(t) = Fx(t) + Gu(t) (5.1b") 

x e E ,    u e E  ,    and 

„n+1 
e E 

x(0) e So ,    and    x(T) e ST , 

u(t) e U = [ulAu > b] UcEm . 

F is an n X n real matrix, and 

G  is an n X m real matrix. 
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m 

x0(t)   =  f0x(t)   + g0u(t)   +  h   S   |u.(t)|   +  u(t)'Qu(0 (5.1c) 

1=1 

where  f0  Is a fixed real n-vector and g  is a fixed real m-vector, 

h  is a real constant, and  Q  is an  n x n real matrix. 

We will first consider strictly linear cost functionals, i.e., 

h = 0,  Q = 0. 

ti 

Letting 

F = 

fö 
and 

G = (5.2) 

the completely linear system can be expressed by 

x(t) = fxU) + Gu(t) . (5.3) 

When a particular vector function u (t)  and an initial condition 
—i 
x (0)  are given, the solution to (5.3), at  t = T,  is 

x(T) =  e TF x^O) + r
T e(T-t)? Gu^t) dt (5.4a) 

and   the   solution  to   (5.1b)   is 

x(T)   =  e 
TF 

x^O)   +    ^e^^Gu^t) 
-A) 

dt (5.4b) 
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The set    S    C E       is  defined 

F TF 
S0 s  [y|x  e  S0,y = e       x} 

If S  is a convex set,  S  is also a convex set by the linear mapping. 

The set «5 c E  can be defined by 

^  =   ST  - S0  , or 

«8=^z|z = x-y,   xeSTlyeS0 

Proposition 5.1.  If S  and S  are convex, then S    is convex. 

Proof of Proposition 5.1. 
12 F 12 

Let x , x  be points in S  and let y , y  be points in S ; 
112   2 

then x - y ,  and x - y  are in S ,     For all A,  0 < A < 1, 

Mx^y1) + (l-A)(x2-y^) = Ax1 + (1-A) x2 - Ay1 - (1-A) y2 . 

Ax  + (1-A) x  e S0 since  S  is convex. 

1 2 
Ay + (1 -A) y e S    since S  is convex. 

11 2  2 
Thus A(x -y ) + (1-A)(x -y ) e S,   and implies that S     is convex. 

Let S  and  S  be defined as 

S0 = < y € E 
n+1 J0 

y 

and 

ST =<? e E 
n+1 

y = 

v = 0,y e S„ 

v = 0, v 6 S 

Q.E.D. 

the sets S  and &     are similarly defined. 
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Using the above set of definitions, we can restate the initial and 

final state constraints of the fixed time control problems as 

x(0) = 0 ,     xn(0) = 0 '    and 

x(T) e &   . 

Thus,   it   can  be  assumed,   without   loss  of  generality,   that   the   system 

initiates  at   the  origin with no  prior  costs. 

1.        Control  Problems  Formulated  as Generalized  Programs 

If we  take  the  vector  functionals  of the  control     P = P[u(t)] 

to  be  defined  by 

and 

P = |  e(T t)F Gu(t) dt -L (5.5a) 

P = P[u(t)]  to be defined by 

-t)F r   e(T-t) 
Gu(t) dt , (5.5b) 

then, let 

u(t) e U , ■i: 
(T-t)F „ 

e      Gu (t) dt 

and 

C = ( P u(t) e U , = f  e(T-t) 
Jo 

F Gu(t) dt 

Proposition 5.2.  If U  is a convex set, the set C(C)  is convex. 

Proof of Proposition 5.2. 
1      2 

Let  u (t),  u (t)  be vector functions in U,  for all  t,  and 
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t) F  1 ;  Gu (t) dt  c C 

T 
T-f) F   2 

'  Gu (t) dt   e C . 

For all A,  0 < A < 1,  A = (1-A), 

T T 
AP1 + ÄP2 = A f    e(T"t)F GuV) dt + Ä r 0

(T-t)F Gu2(t) dt X r O(T- 

=/»< 
^o 

T t)F GCA^Ct) + Au2(t)] dt 

1 — 2 
Since U is convex,  Au (t) + Au (t) e U, Vt. 

1  — 2 
Thus AP + AP e C,  and C  is convex. 

Q.E.D. 

Remembering that  the  state at  time    0     is  assumed  to be  at  the 

origin  and using  the  definitions  of P,     C,     and Eq,    (5.4b),   we   find    C 

is  equivalent  to    R   ,      the  reachable set  of    U    at   time     T.     The  control 

problem   is  feasible,      iff 

ens t 0. 

Given a specified control function u(t),  the cost associated with that 

control is J[u(t)],  since the cost at time t = 0 is zero.  Note that 

P = 
^0 

P 
whpre p = J[u(t)] , 

when  u(t)  is the control generating  P by Eq. (5.5a).  Thus 
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). P e En+1|?= 
'0 
p 

P = P(u) J(u) u(t) r 
Note also that by using Proposition 5.2,  C  is convex. 

Let  U' = (^O,...,!})  and note that the first component of 

the vectors  S,  in the set S,      is  defined to be zero.  Also note that 

the first component of the  P vector represents the cost of using the 

control (and its corresponding trajectory) generating P.  Thus we are 

looking for a vector P e C,  a vector function u(t)  generating P, 

and a vector  S e ^  to satisfy 

_max A 
P e C 

M» v > 0 

i 
subject to V + p p Sv 

= 1 M 

v = 1 , (5.6) 

where  p  and 

ing  J[u(t)], 

v  are scalars.  Iviaximizing A  is equivalent to minimiz- 

the first component of the vector  P,  where  u(t) gen- 

erates  P.  Since  P must be taken from a convex set C  and  S must 

be taken from a convex set S,      the above formulation is a generalized 

program of the Dantzig-Wolfe type.  In the following chapter we will 

show that an optimal solution to the control problem is an optimal solu- 

tion to the generalized programming problem.  We will now show that any 

solution to the generalized programming problem is an optimal solution 

to the original control problem. 

A solution to the generalized programming problem consists of 

a vector  P  in the reachable set 
T 

admissible   control   region     U    generating     P,      and  a  vector     S     in   the 

constraint   set   of  terminal   states    S,      so   that 

R   ,      a  control   function     u(t)      in   the 
T 
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The above equality insures the transformation of the system from an 

initial point,  x(0) e S  to a final point x(T) e S  by the vector 

function u(t),  chosen from U.  Thus it is a feasible control.  By 

minimizing J over all feasible sets of P and S,  we can find a 

feasible solution with the least cost.  This is precisely an optimal 

solution to the continuous-time control problem, 

2,   Generalized Programming Subproblems as Parametric Programs 

To complete the generalized programming formulation, its sub- 

problem must be described.  Here we assume there are at least  n + 2 

vectors  P  and/or  S  a\ 

(5.6), so that the problem 

vectors  P  and/or S  available to provide a feasible solution to 

max A , 
(ii v 

li.v > 0 

i U A + P|a+P|i2+.,.+Pj_i.=S   v1 +  • ' •   +  S v 

M1 + M2 + • • • + M  = 1 

12 p 
(5.7) 

is solvable and has a dual solution vector 

*'   =  (TrO'ir,'7Tn+l
,V2) ' 

where  rt' = (n ,...,« ).  The subproblem is then formulated in two parts: 

S 

min    n' 
S e S 

0 

1 

and (5.8) 

i min  TT 

P € C 

P 

1 

0 

(5.9) 
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The  solution   to   (5.8)   is dependent   on   the  explicit   definition   of   the   set 

^    or    &,      the  simplest   case  bcinp;   the   fixed  end  point   problem,   which 

consists  of   a   sinplc  element.      In   this  case,    the  subproblem  (5.8)   is 

trivial   and   need  not   bo  considered.      If     &     is  a  convex   polyhedral   set, 

then   (5.8)   is  a   linear   program  that   needs   to  be  solved  once   for  eacli 

iteration  of   t lie  master  problem: 

Subproblem   (5.9)   can  be   described 

P /■Te(T-t)?Gu(t)   dt 

min     it' 1 =    min     it' 1 
P  f.   C P   £    C 

_0_ 0 

(5.10) 

Since   the  requirement     P t  C       is  equivalent   to  the  requirement     u(t)  c   U 

for  all     t,      (5.10)   becomes 

$ 

min        7T1 

u(t)   e  U 

. 

(T-t)F - 
Gu(t)   dt 

or 

since     TT     does  not   depend  on     t, 

m i n 
u(t)   e   U r (^Q,«')   e 

(T-t)F - 
Gu(t)   dt +    Tt 

n+1 
(5.11) 

The minimum of the integral is attained when the integrand is minimized 

at every point.  Let 

(T-t)F - 
/(t) = (ir0,JT') e G (5.12) 

% 
SEL-68-085 62 



^v^jTO*r«x"^.wwv:nTT^^^ 
•;■/• 

i be  an  m-dimenslonal  vector  function.      Thus  the   subproblem  becomes 

m 

i 
Find    u(t)   e  U   , 

so  that    /(t)'u(t) 

t  e[0,T] 

is a  minimum (5.13) 

i 
1 

i 

From (5.12), it is obvious that  /(t)  has the property of each of its 
st 

components being a member of the class of solutions to an  n + 1   order, 

homogenous, constant coefficient, linear differential equation.  Since 

our attention is restricted to those  U  that are polyhedral sets, (5.13) 

becomes 

min /(t) 'uU) 

Au(t) > b 

' - / 
t e[0,T] (5.14) 

'•:■;> 

(Note that the inequality may be reversed or an equality without loss of 

generality.)  Thus a solution  u(t),  for the subproblem, can be obtained 

by using the parametric linear programming methods of Chapter IV. 

In a similar manner, we can formulate minimum fuel, minimum 

time, and quadratic loss in control problems as generalized programs.  It 

can also be shown that the minimum fuel and minimum time are special 

cases of the linear loss problems just described.  Since generalized pro- 

gramming can be applied to general convex programming problems, we can 

formulate optimal control problems with loss functions convex in the con- 

trol variable as generalized programs.  However, only the quadratic loss 

in the control case will be discussed in detail, since this is (to the 

author's knowledge) the only general nonlinear convex loss function which 

has a known finite solution procedure for the parametric subproblem.  Sep- 

arable piecewise linear (convex) functions of the control can also be 

formulated as a special case of the linear loss problem, although it will 

not be shown here. 
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The   previous   formulations  can   be  generalized   if we  observe   the 

following  general   linear  system control   problem and  use   the notation 

given   in  Chapter   II, 

min J 
u(t)    £   U 

T 

/  x 
(t)   dt, 

LW 

where       x(L)   = 
x0(t) 

x(t) 

^n+1 
e  E .       and 

x(t)   =   Fx(t)   +  Gu(t)   +   f(u)   U0   ,      (5.15) 

'^ 

HflH 

m 

,   linear   loss 

where     f(u)   = ( Z |u.|    ,   minimum  fuel 

u'Qu        ,   quadratic  loss   , 

where    Q     is  positive   semidefinite,     u(t)   e   U,      t   £[0,T],     x(0)   e   S   , 

x(T)   c   ST   ,      and     S0, S„    are  convex   sets   in    E   .     We   note   that     J 
T 

is 

a convex functional in u(t),  since  u(t)  is a vector sequence drawn 

from a convex set  U,  and  f(u)  is a convex function in u.  Thus the 

solution to Eq. (5.15) can be noted as 

x(T) 
FT - r 

y       x(0) + / 
Jo 

T — F(T...t) - 
e      Gu(t) dt + I 

T  — 
F f T 11 

e ' " ' f[u(t)] U0 dt . 

(5.16) 

Now,   we  define     P    and     P,      as  before,    by 

rT     F(T-t)   „ 
P  =    I       o Gu (t)   dt   , and (5.17) 

'0 

P 

-T     - 
f    e^-V   Gu(t)   dt   +    f 

Jo Jo 
fru(t)]   dt  U 

0 
(5.18) 
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where  U  is an n + 1-dimensional unit vector with a one in the first 

component.  Thus the second integral of (5.18) becomes 

m 

I  1^ (t)|dt ,     minimum fuel , 

1=1 

Jo 
(t)'Qu(t)   dt   , quadratic   loss  . 

Also  as was  done  before,   we  can  now  define    C    as 

P e  E 
n+1 F(T-f) 

eK        '   Gu(t)   dt 

z > J[u(t)]   ,     u(t)   e  U,     Vt1 

Thus the  P,  as defined in (5.18), are members of C.  We also note 

that C  is a convex set, since J[u(t)]  is a convex functional. 

The vectors S and set &     are defined as before.  Thus the 

general linear system control problem can be formulated as a generalized 

programming problem. 

Find P e C ,  S e ^  ,  to 

max A ,  |i, v > 0 
P e C        " 

subject to U A + P)j = Sy 

U = 1 

v = 1 (5.19) 

Again we note that the solution to the generalized program is 

one in which a vector  P  is found so that the last  n elements  P 

belong to the set rf,  and, out of all possible vectord,  P e (i,  i.e., 
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m ir. 

yj i feasible solutions to the control problem; the first component of P , 

taken to be the value of the loss functional, is minimal.  Thus the 

vector control function u (t) generating  P  is a solution to the 

optimal control problem. 

We now describe the subproblem corresponding to the minimum 

fuel and quadratic loss problems as in Eqs. (5.8) and (5.9).  For the 

general case, following the similar reasoning given for the linear loss 

case, the subproblem to the restricted master problem becomes, (remember- 

ing that rr  = 1,  since  (U' 0,0)   is a basis vector and 

0 

0 

0 

= 1 ) 

min  /  hlu(t)]   +  (n it') 
u(-) -A)  ( 

, e(T-t)F Gu   ( dt + JJ    ,  (5.20) 
(      n+1 

Defining    /(t)      as  before,    (5.20)   becomes 

min /(t)'utt)   +  f[u(t)] 
u(t) 

subject  to    u(t)   t  U  ,     Vt   . (5.21) 

For the quadratic loss problem, with U = (u|Au > b, u > 0} , 

(5.21) becomes a parametric quadratic programming problem in u(t) of 

the   form discussed   in Chapter   IV  [due   to  the   form of    /(t)]. 

We  now  look  at   the minimum  fuel   problem   for  two classes  of    U, 

The   first  class   has   the  classical   form of  the  minimal   fuel  problem, 

where 

U = [u(|u. (t)|   <   1,      i  = 1,    , . , ,   m] 

and the second class is a general polyhedral  U. > 
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For the first case, (5.21) has the following solution (the 

singular arcs, /(t) = 1  for an interval, are not discussed because no 

solution is defined), 

-1 < /.(t) < 1  ,     u.(t) 
i i 

7.(t) < -1  ,   u.(t) 
i i 

7.(t) > 1 u.(t) 
i 

= -1 

for all  i (5.22) 

The magnitude of one as a bound for the control is noted to 

be nonrestrictive, since G can be scaled to permit other values.  The 

formulation can also be adapted to treat lower bounds on u.(t)  with 

magnitudes that differ from the upper bounds.  These changes affect the 

ranges of /.(t) in (5.22).  Thus the subproblem for the standard mini- 

mum fuel problem has a well-defined solution, and its execution in re- 

lation to the master problem is proportionately as quick, regardless of 

the size of the control space. 

The minimum fuel problem for general polyhedral sets U has 

a subproblem equivalent to that of the linear loss case.  Following the 

same steps given above, the subproblem for general U which replaces 

(5.23) is 

min 7(t)u(t) + 
u(.) 

1 u(t)\ 

subject to 

Au(t) > b 

0 < t < T (5.23) 

This is equivalent to a parametric linear programming problem of the 

type presented in Chapter IV when the variable  u,(t),  which is un- 

restricted in sign, is replaced by the difference between two nonnega- 

tive variables, 
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u.(t)   ■-■ u.(t)   - u.(t)   . 
111 

(5.24) 

The  constraints  are  replaced  by 

Au  - Au > b 

1 
u > 0 

u > 0 (5,25) 

Since linear programming algorithms consider only basic solutions,  u. 

and u.  cannot be basic at the same time because their columns A.  and 
i i 

-A.,  respectively, are linearly dependent.  Thus for every  i,  either 

u. or ii.  must be at level zero.  Using this result,  lu,(t)|  can be 
ii ' i   ' 

replaced by 

u. (t)I = u.(t) + u. (t) , 
i   '    i      i 

(5,26) 

and the equivalent parametric linear program is 

min  > [/.(t) + 1] u.(t) + /  [-7.(t) + 1] u.(t) 
—   -/-,! 1       *-' 1 1 
U,U    ± 

I 
subject to Aü(t) - Au(t) > b 

u.(t), u.(t) > 0 
i     i   — 

for 0 < t < T (5.21) 

Since a generalized programming formulation is shown to be used 

for finding a feasible solution to the linear system control problems, 

the minimal time uroblem can be solved with these methods.  The subprob- 

lem to the generalized programming problem for feasible solutions is also 

shown to be a parametric linear programming problem of the type discussed. 

Here we will present a solution procedure (similar to the one proposed 

-^ 
^y 
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by Ho [11]) to the minimal time problem that is equivalent to finding, 

if it exists, a feasible solution to the generalized programming form- 

ulation of linear systems and, of course, to determining whether or not 

a feasible solution exists. 

The minimal time problem can be stated as 

mm l 
u(-) Jo 

dt = t 

(t   is free). 

where  x(0)  is given and  x(t ) = 0,  and 

x(t) = Fx(t) + Gu(t) 

x(t)  e En,  u(t) e U c E1" (5.28) 

Thus we wish to find the shortest time in which we can transfer the state 

from a given point to the origin or, equivalently, to find the minimum 

time for which a control u(t) e U exists to transfer the system from a 

given point to the origin.  The latter statement is the one related to 

a generalized programming formulation of the minimal time problem.  De- 
TF 

fine P as before, for any fixed T,  and  S = -e  x(0) .  Let the 

set of all  P  be  C = R ,  i,e,, the reachable set, which is convex. 

We want to know whether 

S e R  ,    for any fixed T , (5.29) 

so  that we  can   find  the minimum    T    for which   (5,29)   holds,     Equiva- 

lently,   we want   to know whether a  solution exists  for 

P|j  =  S 

=  1 

P e  C =  R„ for any    T (5.30) 
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and again we want to find the minimum T  for which a solution to (5.30) 

exists.  The solution procedure for (5.30) for any T,  will be discussed 

later.  At this point, we will solve the minimum time problem by choosing 

a  T,  and try to solve (5.30).  If a solution exists, decrease  T and 

proceed; if one does not exist then increase T and proceed.  If the 

increments for the increase and decrease of T are ci.osen wisely, this 

procedure will converge to an answer to the minimum time problem. 

The solution to (5.30) is a phase I generalized programming 

procedure that is also used to find initial feasible solutions to the 

optimal control problems discussed here.  A finite convergence procedure 

is shown for phase I methods when its existence is known, and a test for 

its existence will be presented for control problems for which the exis- 

tence of feasible solutions is not assumed. 

To generalize and summarize the above results, the following class 

of control problems may be formulated as generalized programming problems; 

Z1 
min  J = / 
u(.)     -A) 

f(x,u) dt , 

x = Fx + Gu, 

x(0) e S  ,  x(T) 6 ST ,  u(t) e U ,  0 < t < T ,       (5.31) 

where  S ,  S ,  and  U  are convex, and 

f(x,u) = f1(x) + f2(u) 

where  f,(x)  i? linear in  x  and independent of u,  f0(u)  is convex 
1 ^ 

in  u  and independent of  x.  When  S ,  S ,  and U  are polyhedral 

sets and  f (u)  is quadratic in  u  or the sum of the absolute value of 

the components (with linear terms permitted), the generalized program- 

ming problem is solvable by the methods presented in the previous two 

chapters.  The rest of this chapter is devoted to the development of the 

algorithm for solving these generalized programming problems and to 
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i 
^ 

pointing out   the   specific  features of the  algorithm so  that   it  can  be 

adopted  for  special  purposes,   including the  determination of feasibility 

or  its  existence. 

B. Solution  of   the  Control   Problem 

The  first  step and,   at   times,   the major  problem in  the  solution of 

the  control   problem  is   to  find an admissible   control  yielding  a  feasible 

solution.     An  important  characteristic  of the  generalized  programming 

solution of  optimal  control   problems  is  that,   at  every stage  in  the 

optimization  phase,   a   feasible  solution  is  always  available.     With this 

feasible  solution,   a  bound on  the  value  of the   optimal  objective  func- 

tion can  then  be  computed.     Thus,   if the  solution  procedure  is  inter- 

rupted before   its  convergence   to an optimal  solution,   a   feasible solution 

can  be  recovered   and  an estimate  of how  close   it   is   to an optimal  solu- 

tion  provided.     This  estimate  or  bound  can be  used   to terminate  the  al- 

gorithm,   since  suboptimal  solutions  having an objective value close  to 

the  optimal  one,   are  generally sufficient   for  decision  purposes.     Al- 

though the  general   solution  to the  linear control   problems  may be  an 

infinite  convergent   process,   the  generation  of  a   feasible   solution,   if 

interior  solutions  exist,   is  a   finite  process,   and   the  generation of a 

suboptimal  solution,   as  close  as  desired  in objective value  to  the  op- 

timal,   can  also  be  obtained   in  a   finite  number  of  steps.     The  algorithm 

and  its variants  are  presented  in  this  section  along with  convergence 

and   finiteness  proofs.      The  characteristics  of  solutions  and  their  re- 

lations  to  known  results   in  control  theory are   presented  in Chapter VI. 

1. Generation  of  a  Feasible  Solution 

There  are   two  major  aspects of  finding  a   feasible  solution. 

The   first  of  these   is   the  determination   of whether  or not  a   feasible 

solution exists;    the   second   is   to generate  the   feasible  solution,   if  it 

does exist.      In  both  cases,   a   phase   I  procedure   of   the  generalized  pro- 

gramming  problem   is  uäed.     The  control   problem  to  be  considered  is 

Find  a     u(t)   e   U = (u  e  E   I Au <  b]    , Vt 
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such that  x(0) e S   and 

x(T) £ S  ,   when  x  is controlled by 

x(t) = Fx(t) + Gu(t) . (5.32) 

Without   loss  of generality,   we   let     S     - 0    and     S    = S. 

Let  us  assume  that   the  reachable   set    R       is  a   continuum.     Let 

us   also assume   that,   if 

RTn ^ 

then R    D  &     is a continuum.  This condition insures the existence of 

a finite-dimensional neighborhood in that set of desired final states 

in the reachable set.  As will be shown, these conditions imply that the 

phase I portion of the generalized programming formulation of the control 

problem terminates with a feasible solution in a finite number of 

of steps. 

Since the convergence (Chapter III) of the generalized program 

assumes that a nondegenerate feasible starting solution is available, 

the phase I procedure must terminate with such a nondegenerate feasible 

solution.  This implies, for an n-dimensional state space, that a col- 

lection of n + 1 vectors  P must be generated so that the initial 

basis, 

B = 

n+1 

is   nonsingular.    Also  a  value,      S   t rf,     must  be  provided   so  that     B     S 

is   a   vector  and  is  strictly  positive   in  all  components. 

Although  convergence   proofs  require  the  results  of   the   follow- 

ing   phase   I   procedure,   more  efficient  variants  (to be  presented)   should 

be   used  in  practice  and  can  provide  a   feasible  solution   in   fewer  steps 

for  most   problems. 
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We will now show the procedure for finding a feasible solution 

hen A    is a single point and a ball of radius p  in E  (a  p- 

neighborhood) is also contained in the reachable set,  R .  The p- 

neighborhood is used to avoid degeneracy problems, in much the same man- 

ner as a simplex lexicographic methods by perturbating the original right- 

hand side. Thus we seek to generate a set of n + 1  vectors  P ,  xo 

provide a nondegenerate solution to the set of linear equations. 

M p ii1 + ... + P 
n+l 

'n+l 

P-i + • • • + Pn+1 = 1 

MH > 0 , Vi (5.33) 

a.   Some Properties of Convex Sets 

Definition 5.1.  The convex hull of a set,  X c E ,  is the intersection 

of all convex sets in E  containing X. 

Definition 5.2,  The convex hull  A  of a finite set of n+l  points, 

x1, x2, , x ., ,  in  E   is an n-dimensional simplex, if the 
n+l 

flat of minimal dimension containing A has dimension n.  The 

points x.  are called vertices. 
i 

Lemma  5.1   [12].      If    A    is  an  n-dimensional  simplex with vertices 

x  (i  = 1,   . . . ,   n +  1),      then    A   consists  of all  points    x G E 
i 

for which  constants     Ot      exist,   so that 

(V 

n+l 

= 1 Vi •      lai = 
1=1 

a   > o . 
i   — 
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Definition 5.3.  A set of  k + 1  points in E  is geometrically in- 

dependent, if no  (k-1)-dimensional hyperplane contains all the 

points. 

Definition 5.4.  A set  fx„, x, , .... x ]  of vectors in E   is point- 
  0  1       nJ 

wise independent (algebraic counterpart of geometrically indepen- 

dent) , if the k vectors,  x 

linearly independent. 
v x  are 

Lemma  5.2   [13].      If    X  =  (x   ,   x   ,    ...,   x  }      is  a  pointwise   independent 

set   in     E   ,      then  there  exists  a   unique    k-dimensional   hyperplane 
k k 

H       containing    X    having  the  property  that    x  e  H   ,      iff 

\   a x. 
i=0 

I«. 
i=0 

where the Of.  are unique.  The  Ö. are the barycentric coordi- 
i i 

nates of  x with respect to X. 

Let us look at the convex hull of the set of n + 1 

points in  E ,  X, 

X = (x0, kl( 

0 

0 

' Xn] ' 

0 

1 

X2 = 

where 

x  = 
n 

0 

0 

and denote it by conv.X.  These points are pointwise independent, thus 

their convex hull is a simplex 
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Let 

* 
x     = 

1 
n+1 

1 
n+1 

i 

thus x e convX,  since the barycentric coordinates are Ot    =  1/n+l, Vi. 

Also since a. > 0, Vi, x   is in the interior of convX. 

Define a new set of points, 

X    -  [XQl   X^) .., x'] , 

where x' = x. + Ax , 
i   i    i 

x.    is as before,  and 

lAxJI < 
(n+l)' 

Lemma 5.3.  The points x!  are pointwise independent. 

Proof of Lemma 5.3. 

Let x'.' = x. + Ax. - Ax„,  j = 1 n. Assume that the x"  are 

linearly dependent.  Then a nontrivial set of A.  exists, so that 
J 

Thus, 

V A x'.' = 0 
Zl  J J 
j=l 

V Ax" = V A.[x. + Ax, - AxJ = 0 , 

S 
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and 

(5.34) 

Taking  the vector   inner product  of   both  sides  of  (5.34;   with     x   , 
K 

1^ x . \'   x,    = A,    , and 
J k k 

y A.(ZÄn - Ax.)* x, < y A. 
L(n+1) 

since 

^j\ < ll^jll • Kli < 
(n+l) 

2     ' 

Thus  we  h.ive 

1 .(n+D  . 
> A. (5.35) 

If we take inner products with all the  x., j-1 n,  and sum the 

left- and right-hand sides of the result (5.35), we obtain 

1\<1 ^^? (n+l)' 
y v 
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which implies 1 < 2n/(n+l) ,  which is a contradiction for n > 0. 

Thus the vectors x',  are pointwise independent or geometrically in- 

dependent. 

Q.E.D. 

Theorem 5,1,  The point x  is in the interior of convX' 

% 

Proof of Theorem 5.1, 

ConvX' forms a simplex, since the points x'  are pointwise in- 

dependent and form an n-dimensional hyperplane.  Thus 

-1 i i 
i=0 

and 

lai- = 1 (5.36) 

has  a unique  solution in the    a' 

We must  now show that    CC\  > 0,  VI,     Notice  that 

or 

S ^TI xi = x* =:   2 a'x1 
( ixi  ' 

i=0 

V «>'. —K- x = o £   \    i   i       n+1     ij 
i=0 L 

(5.37) 

Since    x! 
i 

x    + Z^c  ,      (5.37)   becomes 

I 
i=0  '- 

a'   - 1 .   x    + a'Ax 
n+l /      i i     i 

=  0 (5.38) 
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By taking the inner product of (5.38) with each  x., i 

cessfully, we get the set of equations, 

. , n  sue- 

ai -^T+ S a;(ZÄi' xi) = o 

i=0 

:-;• 

ai —T + y «'.(£*'., x0) = n+l   £_,      i   i  2 
i=0 

.-"■ 

or, in general 

Since 

a1 
Ar + > a;(AX' x ) = n+l   /_,  iv  i'  n' 

i=0 

a1 = 
n+l -1 a'(^^ Xj), j - 1, , n 

i=0 

1   '    (n+l)2 

a1 >   
i   n+l 

(n+l) 
— \ a* 2  2 "i 

i=0 
(n+l) (n+l)' 

Thus a1. > 0  for  i = 1 n.  Now, 

l^-l' 
i=0 

and we take the vector product of (5.38) with  1  to get 
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1=1   ^ / 1=0 

which  Implies  by using 

la\ i  = 1  - %  . and 

1=1 

I 
1=1 

n+1 n+1   , 

that 

1  - a'   - 1 + — + 
n+1 1   *[<*['   i>   = = 0  , or 

1=0 

a' -^i+l ^^--i) 
1=0 

Remembering  that     ||Ax.||  < l/(n+l)       and     ||l||   =-/n,     we obtain 

a- > J_ -    :£L 
0       n+1       r    ^' (n+1) 

/L      i       n+1 
■Jn 

1=0 
(n+1)' 

Thus CC'   > 0,  and  x  Is In the Interior of convX' 

Q.E.D. 

By using the assumption that a p-nelghborhood about 

S = X  is also In R .  the following set of points are found in R , 
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.."' where  e., 1 = 1, ..., n  is an n-dimensional unit vector with a one in 
th 1 

the i  row and  e   is the null vector.  Geometrically,  X  defines 

the vertices of an n-dimensional simplex with  X  defined by the bary- 

centric coordinates of  l/(n+l),  for each point in  X . 

m i Let   X  = X (-£-) 1 + -2- e  . Vi 
i   T  n+lln+1/ -  n+1  i '        V1 " 

Proposition 5.6.  Let a ball of radius [p/(n+l)][l/(n+l)] ,  about  X. 

for any i,  be  N.,  then 

N C R^ i - T 

Proof of Proposition 5.6. 

X. - K  = i   T 
1  / P \ 1  +  _P_ e 

n+1 In+1 / —  n+1  i 

The maximum distance from any point in  N.  to X   is —- —- 
i      i     n+1  n+1 

thus the maximum distance from any point in N  to  X  is  d, 

(n+1) 
or 

d < p 
(n+1)  ' ' 

which is less than  p  for n > 1.  Thus  N. Q  R ,  since a p-neighbor- 

hood about  X  is in  R . 
T T 
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•;i: 
■i 

X    e  X  : 
i P 

so that 

We will  now solve  the  following  problems,   for  all 

b.        Solution Procedure  for Feasible  Solution  to a 
Generalized  Program 

Find a vector    P     (or a  convex combination of vectors), 

«<^(4 

= 1    '1 
i=l 

+ Z   yi 
1=1 

V + ly   - iy   = x
± 

= i 

[i,yi, yj^ > 0 . P e C (5.39) 

This is the phase I procedure of a generalized program.  The columns 

P  can now be generated to the master program (a linear program). 

0- a n 

min w 
n.y 

= S  yi + S  yi 
i=l i=l 

P1^ + • •. + Pknk + iy+ - iy" = x. 

^i + +   ML 
=  1 

^i- yi- y- > 0 (5,40) 
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—k       th 
From the vector of dual variables  rt ,  the k   iteration of the general- 

k+l 
ized program (5.40) generates a new column  P   ,  by means of the sub- 

problem, 

min 
P e C 

-k 
Tt 

P 

1 
(5.41) 

This subproblem is equivalent to finding a vector function  u  (t) that 

...     k'  F(T-t) „ ,,. 
minimizes  rr  e      Gu(t) 

U: 

subject to u(t) e U , 

-k'   / k'   k 
where  JT  = it , it 

'  n+1 
(5.42) 

The problem (5.42) for polyhedral  U has previously been shown to be 

a parametric linear programming problem and is solvable by the methods 

introduced in Chapter IV. 

The generation of P    from u   (t)  is 

-k+l rT   F(T-t 

Jo 
) Guk+1(t) dt 

The generalized program (5.39) terminates when 

,2 
k    p 

w < 
(n+1) \n+l/ 

for some iteration  k  of (5.40),  We know that the minimum value of 

w  for all P e C  is zero, since X. e R .  and 
'        i   T 

i* 
P  = X e C . 
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Therefore 

P M + ly iy X. 

= 1 

M> y^» y- > 0, has a solution with all y^o. y.» yj -  u'  The terminating 

condition for each part of the phase I procedure te-rminates a general- 

ized program at a suboptimal solution with the objective value some 

specified distance from its optimal value.  Thus the generalized program 

terminates in a finite number of steps. 

Once the value of w becomes low enough, the solution to 

the phase I procedure for each X.  must be recovered.  From the final 

solution, for each X.  phase, let 

u"   (t) 1   ui(tS and 

i=l 

p  ^ z p ^ 
i=l 

for each     i   = 0,   1,    ,,,,   n.     Also note  that 

5       =    }     p Ui  =   /      I     e G[u   (t)]   dt   Mj 
1=1 i=l 

Jo 

FfT-f)        i* 
e   U     ;   Gu     (t)   dt   . 

Proposition 5,7.  The set of vectors  P   and controls  u  (t)  con- 

stitute a nondegenerate feasible solution to the set of equations, 
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P     ,0+P     p1+   ...   +i'     Mn-XT 

'J0  + p1   +   . . .   + u     =1 Hl f n 

M.   > 0   ,     Vi   . (5.43) 

V V( ^ ^ 

Proof of  Proposition  5.7. 

The  points    X.      can  be   transformed and  scaled  to  the   points. 

m 

X0 = 

0 

0 

f—  ^-1       . 
1 0 

0 1 

• 
'      X2   = 

. 

0 0 

and    X„,    can be  scaled   to 
T 

y fe) ^ -* • \"+i/ 

By  the  same  transformation,      P can be replaced  by 

x'.   = x.   + Ax.   , 
iii 

.%: wher'. 

Ax.     <   .      , 1     i"        \n+l 

Thus   the  results   of Theorem 5.1   hold  and 
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I a. > o , vi , 

I 
and by retransforming and rescaling,  p. = o;' > 0,  Vi  for (5,43) 

Q.E.D. 

'."> 

c.   Application to Control Problems 

The above procedure may be used to Initiate the optimum 

control problem when feasibility is known.  However, in cases wher^ I.  e 

existence of a feasible solution is not known, another phase I procedure 

can ba used.  This procedure will determine feasibility and in the pro- 

cess provide an initial feasible solution. 

For the fixed end point problem, a solution with w = 0 

to the generalized program. 

in     V  +  V  " w =  >  y. +  >  y. 

i=l i=l 

PM + ly  + ly = S 

= 1 

y.. y. > o 

P e C , (5.44) 

implies that a vector  P e C  exists which provides a feasible solution 

to the control problem.  If the optimal solution to (5.44) has a value 

of w > 0,  a feasible solution does not exist to the control problem. 

Theorem 5.2.  If at any stage  k  in the solution of (5.44), the value _____     _   ^ 

of w + & > 0,  the original control problem is infeasible, where 

5  is the objective value of the subproblem to the generalized 

program (5.44). 
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Proof of Theorem 5.2. 
th 

Consider the master program at the k  stage, as;  max A 

subject to U A + P |i + . . . + P p + Iy+ - Iy~ - Sv = 0 

^1 + 
= 1 

+ 
V y.:- y^ Mi > 0 (5.45) 

where 

P1 = S = 

I = 

1   1 

I = 

■1   -1 -1 

Thus  A  = -w  and the dual variable to (5.45) is 

k   k' 
it   = |it0, t 

n+l  n+2 / 

By using the duality theorem of linear programming and the dual to (5.45), 

Also 

, k    k     k 
n+l   n+2 

„k   min  k' 
5 =PeC " 

0 

p 

I 

0 

min  k'    k 
:P e C ^ P + Vl 
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Since  S  is always in the basis of (5.45), 
I 

-k' 
IT 

-s 

0 

1 

0    implies 

rt  (-S) = n+2 
(5.46) 

By hypothesis, 

0 <  &k + wk min       k' k k 
P  .  C   "     P + "n+l  + W     ' 

or 

ck k k' k k 
0<o    +w    <n    P+it    .+w 

- n+1 

for any    P e  C 

k T,k 

Since     w     = -A    = 
n+1 n+2 

0 < 6k + wk <  TtkP  -  / 0  , and  by  (5.46) 
— n+<s 

«       c
k k k'^ k'o 0<b+w<n;P-JtS, or 

Mi 

0 <  5k + wk < Ttk' (P-S)   , for  all     P 

which  implies  that 

Thus,    for  any    P e C  , 

0 < it     (P-S)   , 

I, 

k       /     r. 
JT ^     0 and 

P -  S ^ 0 for all     P. 

mi 
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Thus there is no admissible control function  u(t)  which can generate 

a feasible solution to the control problem. 

Q. E. D. 

■•:■ 

However, if at any iteration  k, w =0,  the current 

solution is a feasible solution to the control problem and phase II 

(the optimization phase) of the generalized program can be initiated. 

Since this phase I procedure, unlike the previous one, is not necessar- 
k 

ily a finite process, the optimization phase may begin when w < t,  some 

small positive number and the desired final point not precisely attained. 

For any practical control problem, when feasibility is not known, a point 

at some arbitrarily small distance away from a determined fixed point 

would be an acceptable terminal point for the control problem.  Thus, 

the phase I procedure would be finite even when feasibility is not 

assumed. 

For the variable end point problem, phase I procedures 

are much simpler.  For example, when the desired final region S    is 

constrained to lie in some r-neighborhood about a determined point  S, 

the phase I procedures outlined previously are used  (r < p).  If fea- 

sibility is assumed, a series of reachable points in the r-neighborhood 

should be chosen, and a phase I procedure identical to the first one 

discussed in this paper would provide a nondegenerate feasible solution. 

If a nondegenerate solution is not necessary, then a procedure identical 

to that for finding the existence of a feasible solution can be used. 

In this case  S  is allowed to be the right-hand side of (5.44) and the 

algorithm is terminated when w < r,  as the following theorem points out. 

k * 
Theorem 5.3.  If w < r,  then the solution  P  to (5.44) at stage  k, 

which produces the value w ,  is a vector which lies in an r-neighbor- 

hood about  S,  and it is a feasible solution for the control problem. 
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Proof  of Theorem 5.3, 

Since    w < r, 

1<+1^ = 1 i(pI-vi <r - 
i=l i=l 1=1 

thus 

w 
i=l 

* 2 
+     / (P.   -  S.)     <  r, and 

S     = + 1^: s.) 
1 <-1 + /(p* S.)     < r 

i       — 

Q.E.D. 

A general phase I procedure for the variable end point 

problem can be used to determine feasibility as well as to find a fea- 

sible solution when it exists.  We consider the problem 

mi 

M 

in     V  +   Y  " 

i=l i=l 

subject to 

Pp +Iy - iy + Sv = 0 

= 0 

v = 1 

P e C 

Serf,     or equivalently, 

89 

(5.47) 
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ruVW 

Wv' 

M 

M<-j 

a restricted master problem at iteration  k, 

max  A 

U A + 
0 

k 

V P 
i=l 

'i 

k 

V 
.1=1 

s\ — + 
+ iy iy 

k 

\ 

1=1 

li 

k 

V 
j=l 

v . 
j 

=  1 

K. 

^ 

m Y-r.V 

L. ,    v   ,   y.,    y.        0   , and     P,   S,    I,    I     are  as  before   .      (5.48) 

When   a   solution   to   (5.48)   produces  a   value  of    A     =0    or equivalently 

w    =0,      the   solution   is  a   feasible   solution   to  the  control  problem. 

The   following   two   theorems  will   prove  useful   for  determining when   a   fea- 

sible   solution  docs  not   exist   and   for   recovering  a   feasible  solution 

(when   it   does  exist''   from a   particular  iteration  of  the  master  problem 

(5.48).      Let   the   subproblem of  (5.48)   be  designated  by   the  parameters, 

&       and     il ,     and  defined   by 

It 

m 

0 

ok  - 
m in    —k' 

P €  C  r 

P 

1 

0 

" 0 

k min    -k' 
S ,  A  n 

s 
0 

1 

—k 
where     n       Is   the  dual   variable  to   (5.48). 

90 

and (5.49) 

(5.50) 
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I 
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Theorem 5.4. If at any stage k of the initial phase procedure for the 

variable end point problem w + b + A > 0, the original control 

problem is Infeasible. 

Proof of Theorem 5.4. 

-k1  7 k  k'   k    k   \    ,     u  •   .r 
Letting n     =  in , IT  , rt -, •   n     o / an^  remembering from the 

duality theorem, that 

k   -k 
w = -A = 

n+1   n+2 

then,   by  hypothesis, 

VV 

0 0 

^       .k          k         k 
0   <   b      +    '\     +   W      : 

min    —k' 
: p.c n 

p 

1 

0 

min 
+ s e A 

-k' 
rt 

-S 

0 

1 

+  w 

Substituting   in   the  above, 

k k k      -k' 
0<b    +A    + w    <n 

0 0 

p 

1 
-k* 

+  n 
-s 

0 
k 

- Vi • 
k 

"  nn+2 

0 1 

for  all     P e   C     and     S  t   <*   . 

Thus 

k k k k' k' .   0. k k 
0<b    +A    +  w    <  n     P+ix     (-S)   +   IT     i  +   n +2 n+1       '^+2   ' 

or 

0 <   itk' (P-S)   , 
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which implies thai 

k , 
it ^ 0 and 

iJ-v- 

(P-S) ^ 0 for all  P <£ C  and S n  S 

Therefore, there is no feasible solution to the control problem. 

Q. E.D. 

Theorem  5.4   indicates  an   infeasibility condition,   and   in 

the  next   theorem  (Theorem 5.5)   a   feasibility condition   is   presented. 

Theorem 5.5.      If at   any   iteration     k     the  solution   to   (5.48)   provides 

a  vector, 

1^1 
j=l 

k * 
and a value  w < r  so that  S  is an interior point in S     and has 

an r-neighborhood surrounding S  that is also in ^,  the original con- 

trol problem is feasible and the solution 

i=l 

[p   being a solution to 

(5.48)] 

RO>:. 

is a feasible, rc-achable point. 

Proof of Theorem 5.5. 

Since  w < r,     the vector, 

P =  >  P ii. 

i=l 
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has the property 

liW 

= + I (p'i - SV 
i 

i 
Thus the point  P  is in an r-neighborhood about S  implying that 

P    e   S.     Hence the control generating P  is a feasible control. 

Q.E.D. 

m 

2.   Generation of an Optimal Solution 

For the fixed end point problem, the subproblem for phase I 

methods is a parametric linear program of the type discussed in Chapter 

IV.  For some variable end point problems, the phase I procedure has an 

added subproblem. 

0 

min 
S e i 0 

1 

or 

min    k' 
Se  I'  n     S (5.51) 

Thus we seek a vector  S in a specified set i     that minimizes the sum 

■-. • 

1 
subject to the constraint that S a S.      If    i     is a convex polyhedral 

set, this problem is a linear program that must, be solved once for each 

iteration of the master problem.  For other classes of S,     the sub- 

problem depends on the definition of S . 
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i While discussing the optimization phase of the generalized 

programming formulation of the optimal control problem, we will con- 

sider only the fixed end point problem. 

To avoid degeneracy, it is desirable to start the optimization 

phase with a set of n + 1  vectors  P  that provide a nonsingular 

basis, 

u        P1       p2      ...       ?n+1' 

1 

which   is  feasible   for   the   program, 

max A ,, ,        —1 

subject   to 

»'1 

-n+1 
+   P        p n+l 

Jn+1 

=  S 

= 1 

Mi   > 0   • (5.52) 

wliere 
—i 
P    = 

f(x,u  )   dt 

wliere     u   (t)   e   U    generates   the   vector,     P  ,      and 

S  = 
0 

S 

These vectors are immediately available when using the phase I 

procedure discussed initially.  For other phase T procedures, once a 

feasible solution is found and assuming a neighborhood about that solu- 

tion is also feasible, the initial phase I procedure may be used by 

generating the right-hand sides in a similar manner about the known 

feasible solution. 
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Restating the fixed end point optimal control problem as 

M 
x = Fx + Gu 

x(0) = 0, x(T) = S 

.'' 

x e En ,  u(t) e U c Em ,  Vt , 

where U = {ulAu > b) , 

m. 
and 

T*" J= fT  f(x,u) dt . 

where 
föx + eou 

■) 

m 

fU,n)   = /f'x + g'u+ 2 \\\ 
i=l 

I f x + g'u + u1 Qu 

"-;■■ 

we can define  F and  G,  as before. 

When a set of vector control functions u (t)  is given from 

the phase I procedure, the vectors  P  must be generated. 

p1 = 
O1* x +  g'u) dt + r f(u) dt 

-4) 

or 

■■■ /: 

-T — 
p'= !  e

F(T-t) Gu(X)  dt + |  -f(u) dt u0 . /  f(u) 
^0 

Ft 
Since the matrix  e   must be provided for the phase I method, the 

matrix, 
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s 
Ft 

e    is easily shown to be 

Ft 

0 

0* 

föe 
Ft 

Ft 

by considering the system 

xo(t) = f0x x e E 

x (t) = Ex 

where  x(t) = o      X(T),  and 

I--' 

Le 11 i ng  x = 

xo(t) = f^x(t) = f^eF(t"T) X(T) 

x(t) = 

0 

x 

F(t-T) - 
e      x(-i) = 

0 

"0" 

., F(t-T) 
foe 

F(t--T) 

X0(T) 

X(T) 

m 

From (5.52) we see that the linear equations in  p   always 

insure that a feasible solution exists for the control problem.  The 

simplex method, when applied to the master problem, maintains primal 

feasibility at all times even when augmenting the linear equations with 
—k+1 

a vector  P  .  Thus at any time in the execution of the optimization 

phase, a feasible solution is available from the current basis.  Also 

as will be shown, a bound on the optimal solution is provided at each 

stage. 
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k    k k 
In the following let  J = -A ,  where  A  is the objective 

th 
value of the master problem in the k  iteration. 

th 
Theorem 5.6.  During any k  iteration of the optimization phase of the _ ^ 

generalized  program,    the  optimal value  of   the  cost   function    J(u  ) 

satisfies   the   following  inequalities   [2]: 

J   (u)   +   ö    < J(u  )   < J  (u)   < J     =  -A     , 

where 

u(t)   =   ^   /( t) 

1=1 

Proof of Theorem 5.6. 

Consider the equivalent linear program, as before, 

(5.53) 

max A 

,+pk
L -   Sv  =  0 

M2  + +    M, =  1 

v = 1 

^i 
> 0 (5.54) 

The   solution  to   (5.54)   is    A       and  by the  dual   theorem, 

., k k k 
n+1 n+2 

wliere 
 l^i      /  k       k'        k k     \ 
JT    =   (it   ,   it     ,   it    , ,   Tt    „       is   the  dual  variable   to   (5,54).     Sin 

\   0 n+1       n+2/ 
ce 

it    =  1,    the  subproblem has   the   solution. 

D    =     ,   v < J(u) + it    P +  it 
u(t)   e  U  ) n+1 
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I 
i 

Thus   for   the  value     u   , 

i 
;•■••■"'■ m 

k *, k'   * k 
o    <J(u)+7T     P    +  ir    ,   ,        and 

T,k       R
k       Tk       vk  ^   T/   *N k'   * k k k A+b=J+0<   J(U    )+TTP+Tt -TT -    t       „ 

— n+1 n+1 n+2 

or 

k k  ^   T.   *. k'   * k 
J    +&    <J(u)+n     P    -it    „ 

— n+2 

i 
m 

Since 

-k' 
TT 

k' k 
=  -n     S +  rt    „ 

n+2 

föK 

k k * k'      *- 
J     +   D    <  J(u  )   +   IT     (P     -   S) 

If     u       is   the  optimal     u,      then     P       is   feasible   and     P    =  S,     Thus, 

Jk +  51< <  J(u^)   < Jk(u), where     J   (u) 

is the current solution and  u  is a feasible control, and the right- 

hand inequality follows immediately since  J(u )  is the minimum cost. 

Since  J(u)  is convex in  u, 

Jk(u) < Jk = Y M.JCU
1
) 

i=l 

Therefore 

Ö SEL-68-085 
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J (u) + b <J  +b < J(u ) < J (u) < J 
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1o 

■I ' 

IS 

m 
M m 

Corollary 5.I..     When     bk  = 0,      Jk(u)   = Jk = J(u*) 

Proof of Corollary  5.1. 

The  proof  follows   from   (5.55),   since  equality holds   throughout. 

Q. E.D. 

Note that the value,  A ,  of the master problem is an approximation to 

the current solution at iteration  k.  At any stage, the solution de- 

fined by 

u(t) = 1 k i. . 
M.u (t) 

i=l 

Kv 

has a cost J(u)  which by convexity is smaller than  J . 

Although  6  does not necessarily increase monotonically to 

0,  it does so for a subsequence of  k.  Thus the best bound from pre- 

vious iterations should be retained until a better bound is attained. 

The current value (at iteration k of the generalized program) of 5 

may be used to provide a stopping condition for termination of the op- 

timization phase.  By observing the value 

5k/Jk 

we can determine the maximum percentage by which the objective function 

can decrease for the optimal solution, and we are assured that the cur- 

rent solution is feasible to the original control problem. 

We now present a flow chart of the generalized programming 

soluvion to the optimal control problem.  We will use the fixed end 

point problem for an example, assume a p-neighborhood about  S  is in 

R .  and apply the long form of the phase I procedure. 
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© 

o •,  , .    F(T-t)    .   F(T-t) 
Calculate e       and e 

(as real matrices with elements being functions 

of t) or have matrices available 

Initiate phase I 

m I 
•-:• 

i 

i 

m 

© 

© 

s,. = s - S7T Ä   i * I ei'  ' = 0' ^ 

© 
Set   i   =  0 

Replace     i     by    i  + 1 

© 

Set     k  = 0 

Replace  k     by    k + 1 FROM  SUB.    PROB. 

in w        V"  + V"   - 

.y     =   Zyi +   Zyi 
Subject to    P1

Ml +  ..,   +  P p    + ly    - ly = S. 

^1 + 

Mi- y*. yj > o 

Ä is    w < 
(n+1) 

(-)2 

NO 

© 
 _k  
Calculate  n ,  dual variable to 

linear program 

YES 
I 

TO  START OF  SUBPROBLEM 

Is     i  = n  ? 

4 YES 

GO  TO  OPTIMIZATION   (BLOCK 8) 

KM 
GENERALIZED  PROGRAMMING  ALGORITHM  FOR  LINEAR 

OPTIMAL CONTROL. 
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OPTIMIZATION 

Let P1 = ^5 and 

u^t) = y 
j 
^j from 

.th 
problem 

for { ill  i = o, 1, • ... r i 

pho.se II 

¥ 

-S 

© 

© 

Set  k = n 

i i "FfT — t") 
Calculate p  from u (t)  and e 

0 

for i = 0, 1, , . . , n 

FROM 3UB 
Replace k by k + 1 

max A 

M 

0        1 kr. Subject to A + p0|a0 + PoMl + ... + P0nk = 0 

P 11. + P LJ. + . • • + P Ll. = S 

M0 +  Mi + •.■ +  Mk = 1 

M. ^ 0  i = 0, 1, . . . , k 
Ki — 

rv=i  •> m 

—k 
Calculate it - dual to linear program 

TO SUBPROBLEM 
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I 

Is  Phase =  I   ?J 

YES NO 

F     =  F, f(u)   = 0 

G     = G,9   = 0 
f(u)   = / u'Qu 

I IM 
_      *      _ 

F  * =  F,   G     = G, 

Find     u   (t) 

.     -k'      F  (T-t)     *   ,t. ..   , 
mm n       e G  u(t)   +   f(u) 

Subject   to Au > b 

t   £[0,   T] 

1, 
Po   0 

k+1 

^T     „* 
=    /      e G  u(t)   dt   +    /      f(u  )   dt  U 

Jo Jo 

k 

YES Is    9=0? 

Go  To 

Bloc! :k© 

NO 
Is   6    >  0  ? 

Is 
< e * 

speci fied  £ $ 

NO 

Go To 

NO 

-k' k+1 
P0 

Pk+1 

1 
_ 

YES 

=   b 

u  (t)   =  argjj^    P M. 

is  optimal  solution 

YES 
STOP 
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Tlie   inputs   to   the   flow chart  are, 

L<     o System matrices    F,   G 

Loss  functions,      f(x,u)   =   f  (x,u)   +   f(u) 

where       f   (x,u)   =   f^x  + g^u 

Parameter,    p. 

Final   time    T     [assuming   initial   time     0] 

or  S Final state  S 

Polyhedral matrix,  A 

Right-hand side vector,  b 

-<] 

Unit vectors,  U , e^ e^,    ..., en+1 

eo = 0 

the vector  1 . 

To retain the continuous-time aspects of the control problems, 

this algorithm requires explicit knowledge or availability of the matrix 
Ft 

e  ,  and its time derivatives. 

It is well known [4] that the components of this  (n X n) 

matrix can be expressed as polynomials of an order less than or equal to 
Ft 

n with an exponential multiplying factor.  The knowledge of e    is 

required for determining the functions  /(t),  used in the parametric 

programming subproblem, and for determining the vectors P,  given a 

control function u(t),  over an interval. 

We can express the fundamental matrix as 

m-1 

■" -1 V" fk ■ 
k=0 

.1 
v 

where m is the degree of the minimal polynomial of F. Note that 

m < n, if F is (n x n). The algebraic equations determining Of 

are 
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M a = r'(i) , 

where 0 is an m-vector and 
e ■ 

t "e 
3kt 

k ( = 0, 

is a vector with elements of the form 

. . , m. - 1,  where the  s's  are the 
K K 

eigenvalues of  F  and m  is the multiplicity of the eigenvalue, 

M can be shown to be nonsingular.  Thus CX       is composed of linear com- 

binations of the elements of ^(t),  which are themselves members of 

the class of solutions to homogeneous, constant coefficient, linear dif- 

ferential equations.  Thus any vector 

/(t) = .■eF(T-t) G , 

whore  n  is a real vector and G  is a real matrix, has components 

which are members of the class of solutions to the homogeneous, constant 

coefficient, linear differential equations. 

As will be proven in the next chapter, the functions generated 

for the linear loss case, minimum fuel problem, and minimum time problem 

are piecewise constant functions.  Also, for the quadratic loss in con- 

trol problem, the generated function u(t)  is shown to be expressed as 

a linear combination of the OC's    for a finite interval of  t.  Thus the 
k 

components of the vector integral 

r 2 e1^^ Gu(t) dt 

can be represented by a sum of integrals of the form. 

/ 

2    f st , 
a t. e  dt 
s 

which  when   integrated,   is  equivalent   to 

4 i1  st t   e - I"12, i 
7 s  s 

C-l     st 
dt (5.56) 
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fX Ft 
It should be noted that all components of e  will be real, even for 

complex eigenvalues, since cancellations of the complex part occur. 
Ft 

Since the values of e   and its first n - 1 derivatives 

are needed at only a finite number of points (undetermined), these val- 

ues may be provided by an analog computer.  This suggests (but not re- 

strictively) the use of hybrid computers for the algorithm.  The analog 

computer could be used to supply values of  /(t)  at specified Instants 

and to compute the vectors,  P[u(t)],  while a digital computer could 

be used to solve the linear and quadratic programming problems in the 

master and subproblems. 

To show that the algorithm is computationally feasible, we will 

show that each step or block in the flow chart is solvable by a finite 

number of iterations.  Although convergence of generalized programs may 

be an infinite process, a suboptimal solution as close as desired to the 

optimal solution is achievable in a finite number of iterations of the 

subproblem.  However, when the reachable set is a polyhedron, the gen- 

eralized program converges in a finite number of iterations of the sub- 

problem.  The number of thesr iterations is less than or equal to the 

number of extreme points of the polyhedron. 

To demonstrate the finiteness of the executions at each stage 

in the algorithm, we will show finiteness for each block of the flow 

chart for the basic algorithm (note that the block numbers designated 

coinc.de with those on the flow chart.)  It is also noted where an ana- 

log computer may be substituted when hybrid computations are desired. 

DA 

Block 1 ;  If the matrix 
Ft 

is not available as an input, its deter- 

mination may be obtained using an eigenvalue analysis of the matrix F; 

routines of this nature are available.  After the eigenvalue analysis. 
Ff T —t) 

a set of linear equations must be solved to find e      in terms of 

a finite sum of multiples of F.  The analog computer may be utilized 
Ft 

for determination of e 

Block 2 : The extreme points of a simplex, in the reachable set surround- 

ing the desired point  S,  is a computation involving addition and sub- 

traction of the available vectors, some of which are unit vectors. 
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Block 5 : The solution to the phase I master problem at any k  for any 

right-hand side is a linear program that has an initial basic solution 

immediately available, i.e., 

M. = 0, Vi 
i 

m 
y.  = 0, y. = -S. 

S.,  y^O . 

for  S < 0 
i 

for  S > 0 
i — 

The number of rows in this linear program is  n + 1  for any stage  k, 

even though the number of columns is variable but always finite. 

Block 6 :  Additional columns are added to the master program of phase 

I until the value of w  is less than a required strictly positive num- 

ber.  Since the minimum value of w is zero and since w decreases 

monotonically and strictly decreases on a subsequence of iterations, for 

some specified positive number, the value of  w will be smaller than 

this number after a finite number of iterations.  This is a basic result 

of generalized programming problems and shows only a finite number of col- 

umns are used for the master program. 

Block 7 : The calculation of the dual variable of the linear program in 

the master problem is a result of the solution procedure for the linear 

program and requires little or no additional computation. 

Block 8 : A vector addition provides the column vectors to be used in 

the master program after the phase I procedure is completed. 

M' 

m 

Blccks 9 and 13 : The determination of the vector  P is achieved by 

intregation.  However, due to the structure of the integrand, special- 

ized (finite and exact) integration schemes are possible.  The integral 

is broken into a finite sum of definite integrals (corresponding to a 

finite number of switching points) whose end points are calculated by 

the analog computer or by formula substitution as suggested by Eq. (5.56) 
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Block 11: The master program for the optimization phase is a linear 

program with a fixed number of rows (at most  n + 3)  and a variable 

number of columns.  Although the number of columns may be infinite, for 

any practical problem and within limits of the computer's accuracy, no 

more than a finite number of columns are generated before achieving a 

solution, indistinguishable (within computer accuracy) from the optimal 

solution.  The simplex method should be used with the starting solution 

to each interation being the final solution of the previous iteration. 

The first vector to be added to the basis is the vector generated from 

the subproblem (if optimality has not already been achieved). 

m Ü 

Block 12: The solution of the parametric programming problem is dis- 

cussed in Chapter IV.  The solution has a finite number of executions; 

cycling is avoided due to the lexicographic ordering rules and normal 

degeneracy perturbation techniques available for linear programming 

codes and complementary pivot theory methods. 

All other steps are either logical programming steps or simple 

calculations.  Thus since each step requires a finite number of execu- 

tions, each iteration of the master problem and its corresponding sub- 

problem (of phases I and II) require a finite number of executions. 

The solution of phase I is finite since only a finite number 

of columns must be generated for the  n + 1  generalized programs used 

for the solution to each step of phase I.  The algorithm may be termi- 

nated at any stage in phase II yielding a feasible control with a bound 

on how much its objective value can differ from the optimal objective 

value. 
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Chapter VI 

RELATION  OF GENERALIZED  PROGRAMMING 
TO CONTROL THEORY 

In  this chapter,   the  relationship between  the necessary conditions 

of the generalized  programming  formulation and  Pontryagin's necessary 

conditions  for  the  optimal  control  problem  is  discussed.     The character- 

istics of optimal  controls   for the  various  classes  of control  problems 

are also discussed. 

A.       Relation  to  Pontryagin's Necessary Conditions 

i 

'.\' 

&S 

t/W 

«^' 

The relationship between  the generalized  programming optimality 

conditions and  Poncryagin's necessary conditions  is used to show how a 

solution  to  the  generalized program can  be  an  optimal  solution to  the 

control  problem.     The  following class of problems  (discussed  in the pre- 

vious chapter)   are  considered: 

x e E    , 

x  = F-c + Gu 

.T 

u  e  E 
.m 

min  J =   /        |f0X + g0U +   :C(u)f   dt   ' 

where f(u) SIM 
u'Qu 

and x(0)   = 0 

x(T)   = S 

u(t)   e  U = {u|Au > b] 

Vt  . 

If we  let    x     =  f'x + g'u +  f(u),     then 

0 
x 

Fx +  Gu +   f(u)   U 
0 
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I By using the previously presented notation, the Hamiltonian can be defined 

as 

H = ^'Fx + ^'Gu + ^ f(u) U (6.1) 

x = H- and (6.2) 

t = -H-  , (6.3) 

where i|f(t) = 

t (t) 

'(t; 

and  ^(t) = 

^(t) 

\|r (t) 
L n 

Pontryagin's maximum principle states that (6.2) and (6.3) must hold 

while the optimum u (t)  satisfies 

_ _  * 
H(\|f, x, u ) 

sup 
U(t) 6 U 

H(\j(, x, u) , 
(6.4) 

for a given ty,   x,  or 
«4» 

H(i|f, x, u ) > H(\|f, x, u)  ,    all  u(t) e U (6.5) 

W 
Let the optimal dual solution to the generalized program, 

be 

max A 
Per 

subject   to U A +  Pp = S 

M = 1 

P e C , 

*  = (v \' ■■•• v^ 
and   let 

-,   , -*'     F(T-t) 
(6.6) 

-# 
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a 

where     TT      =  (n    n ).     Thus  it  is  obvious  that     \|/(t),   as defined, 

provides a  solution  to   (6.3).     To  show that  this   solution  is non-trivial, 

it  is  sufficient  to  show  that    ^-/t)   ^ 0-     From  the  results  obtained  in 
F(T-t) 

Chapter V,   the  first  column  of    e is  the  unit  vector    U .     Thus, 
0 

\|/   (t)   = -n    , for all     t (6.7) 

We also know,   from generalized  programming,   that 

* uo = 1 , 

therefore,  *£ = !  and ^r/1^ = ~1'  for a11 t' 
—^f 

Since TT  is the dual solution to the generalized program, it 

satisfies 

r        ~1 p          -i 

mm    —*' P —*< P 
T;      pr ^ < TT 
P e  C 

1 [ 1 J 
P e C , 

or, equivalently. 

min   —*■' 
u(t) e U " 

P(u) 

1 
< it 

P(u) 

1 

Vu(t) e U (6.8) 

The above inequality is equivalent to the subproblem of the generalized 

program, when TT is the current dual variable. Equation (6.8) may be 

restated as 

*    *■   r^*-'  F(T-t)   * 
Tr0 f(u ) + IT  e   (       '   Gu (t) 

*      ~*' KT-t) — 
< TT f(u) + TT e  K       '   Gu(t) 
- 0 

for all    u(t)   e U, and 

t  e   [0,T]   , 
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Vi 
.'A 

or 

* * 
-n  f(u ) 

*'  F(T-t) - * 
~  e^  X; Gu (t) 

.v-V 

> -rt0f(u) - ^  e      Gu(t) 

By expressing the above in terms of ^(t)  and by using Eqs, (6.6) and 

(6.7), the inequality is equivalent to (6.5) or Pontryagin's maximum 

principle.  Thus the generalized programming necessary conditions are 

equivalent to Pontryagin's necessary conditions for the same problem. 

To complete the analogy between Pontryagin's necessary conditions 

and the generalized programming optimality conditions for control prob- 

lems, we include here a discussion of the transversality conditions for 

sets S     which are convex smooth manifolds. 

Notice that the vector n       is equivalent to the vector \|KT). 

Also an optimality condition for free (initial) final point problems 

[as shown in Eq, (5,47)] is 

it 

0 

s 

0 

1 

> o , for all S e ^ 

We also note that some S    e  S     has the property 

jr S = -IT   , 
n+2 

since there must be some vector  S  in the basis of the expanded master 

linear program. 

These conditions represent a halfspace with the hyperplane defining 
_*■ 

it as being represented by the vector  n .  This hyperplane is a sup- 
•* *■' *■    *• 

porting hyperplane to S     at some  S ,  since  rt  S = -TT   ; S     lies 

completely in ono halfspace of the hyperplane.  The hyperplane is also 

a tangent plane to the manifold S     (when S    is a manifold).  These 
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conditions represent the fact that \|f(t) = -IT  is orthogonal to the 

tangent hyperplane of «Ü  at  S .  This is precisely the transversality 

condition described in Chapter II. 

To show that a solution to the generalized programming problem is 

also a solution to the continuous-time optimal control problem (for 

fixed end points), it is assumed that we have a finite set of vectors 
—i 

so that 

P1 

= 0 

m 

and 

> 0,    all  P e C 

Also 

i 
^ 

M. > 0 
i — 

(6.9) 

has a solution, 

Theorem 6.1.  The solution 

u (t) = N u (t) p. 

i i 
t e [0,T] 

is an optimal solution for the control problem. 
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Proof   of   Theorem  6.1. 

We   know 

-    . -*'      F(T-t) 
\|/(t)   =  -rt       e 

satisfies (6.3) and ^(t) = -1  satisfies  tn(t) < 0,  t e [0, T] 

*        ~*'     F(T-t)   — + 
f(u  )   +  TT       e Gu   (t)   =   f 

V"     *  i 
>    P."   (t) 

-*'      F(T-t)   _ 
+   Jt       e G 

V * i 
ZMiu ct) 

M 

and,    from convexity, 

f(u )   <  f 
^    *  i       1 V   *       i 
2 ^iu (t) < 2/if(u) 

Since     b    =0,      from generalized   programming necessary conditions. 

* ~*i      FCT-t)   —  * * 
0  =  f(u )   +  TT       e Gu   (t)   +  rt     , 

n+1 

\ -    *       i K^      ~*1      F(T-t)   -  i sr   *    * 
<       \    i;.f(u   )    +     >    n.Tt e GU    (t)    +      \  n.    Tt 
-       Z      ! ^      ! Z ^       n+1 

v * - 
=      >   M.    " i 

P1 

=  0 

Since     Tt     „        is  constant   and  since 
n+1 

> 0   , VP e  C  , 
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f(u )   + 7t      e   V     W   Gu   (t)   <  f(u)   +  it      e   U      ;   Gu(t) , 

Vu(t)   e   U , 

or 

f(u  )   - Jt       e   ^        ;   Gu   (t)   >  -f(u)   - rt    e   U     ;   Gu(t) , 

u(t)   e  U  , 

t  e   [0,T]    , 

which is equivalent to the maximum principle.  Thus Pontryagin's neces- 

sary conditions for optimality are satisfied by the solution to  the gen- 

eralized programming problem.  Since the set of equations (6.9) has a 

solution, the control  u (t)  is a feasible control.  It remains to be 

shown that 

J(u ) < J(u) , Vu(t) e U , 

which was shown to be a result of 5=0, in Theorem 5.6. Thus the 

control u (t) is an optimal control for the continuous-time control 

problem. 

Q.E.D. 

We will  now show  that   given     n  ,      an optimal  dual solution, a  finite 

set   of vectors     P      can  be   found   to provide  a  feasible   solution  to  the 

set  of equations   (6.9).     This   is   done   for  three cases,    the quadratic 

loss   ^n  control with  positive  definite  matrix    Q,     the   linear   cases 

satisfying  Pontryagin's general   position condition,   and   finally,   the 

linear  cases not  satisfying   Pontryagin's general   position  condition. 

Theorem 6.2.      If  the  quadratic   lo." 5 control   problem with  positive  def- 

inite     Q    has  a  feasible  solation,    then    u  (t),   which  provides  a 

solution  to 
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P 

1 

=   0 

.■'1 • 

is  an   optimal   control   for   the  control   problem. 

Proof  of  Theorem  6.2. 

Let      u   (t)     be   a   control   satisfying 

= o  , 

then     ii   (t)     solves 

min  ii(l)'   Qu(t)   +   /   (t) '   u( t) 

u(t)   e   U  , t   e   [0,T]   , 

where     /   (t)     is  generated  by    n   .     The  quadratic  program with    Q     posi- 

tive  definite  has  a   unique  solution  at   eacli     t.      Thus   Hiere  is no  other 

u(t)   satisfying 

n 
P(u) 

1 
=  0 

W 

By  the   feasibility  assumption  and  by     U     being   a   compact  set,   an  optimal 
■x- 

control  exists  and  must   satisfy  the  necessary conditions.     Since     u   (t) 

is  the  only  control   satisfying  the  necessary conditions   for optimality, 

it  must   be   the  optimal  control. 

Q. E.D. 

Theorem 6.3.  For feasible linear control problems (including minimum 

fuel and minimum time) where  F,  G,  and  U  satisfy the general 

position condition of Pontryagin, the control  u (t) satisfying 
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is  an   optimal   control. 

Proof  of Theorem 6,3. 

Since  a   feasible  control  exists  and  since     U    is  compact,   an opti- 
■*■*■ 

mal   control     u     (t)     must  exist   and  satisfy   the  necessary conditions   for 

optimality.      From   the  results  of  Pontryagin,   when  the general   position 

condition  holds, 

mm 
u(t)   e 

1     . 
(6.10) 

lias a unique solution  [of u(t)],  except on a set of measure zero» 

which we call u (t).  Thus  u (t)  is the only function satisfying the 

necessary conditions, and 

u (t) s u  (t) 

Q.E.D. 

When  the   general   position  condition   is   not   satisfied  by     F,     G, 

and     U,      the   solution   to  (6.10)      is  not  necessarily unique  over  a  set 

of  positive  measure.      However,   since     (6.10)   must  be  satisfied   (be- 

cause   it   is  a  necessary condition),   only  its   solutions need   be   investi- 

gated   to produce   the  optimal  control.     This   is   true,   since  the   problem 

is   feasible,      U     is  compact,   and   an  optimal   control  exists.      By  the 

theory of generalized  programming,   any solution  to  (6.10)   which   is   fea- 

sible   for   (6,9)   is  an  optimal   solution,   as   shown  by Theorem 6.1. 

Proposition 6.1.      There  are  a   finite  number   of  distinct  solutions  to 

(6.10). 
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Proof of   Proposition  6.1, 

II   has   been  shown   in Chapter   IV   that   an   upper   bound  exists  on   the 

number of  possible   switching  points  of  any  solution   to   the   parametric 

programming  problem  (6.10),    for  any value  of    n     for  a   finite   interval 

of     t.     These  poir.Ls  are   fixed   (given    T ),     and   any   solution  to   (6.10) 

remains  constant   between  any neighboring  pair  of  switching  points.     There 

are  a   finite   number  of  possible  solutions   for   (6.1Ü),   between  such 

switching  points   (due   to  a   finite number  of  bases).     Thus   there  are   a 

finite number  of distinct   solutions   to   (6.10). 

Q. E. D. 

Proposition 6.2.  The set of points  P,  generated by (6,10), are extreme 

points of a convex (bounded) polyhedron of all  P satisfying 

_*> P 

1 
= 0 (6.11) 

Proof of Proposition 6.2. 

By the minimization procedure of (6,10), extreme points are gen- 

erated.  Also by the homogeneity of (6.11), any convex combination of 

the finite number of extreme points satisfy (6.10).  Thus the points 

generated by (6.10) are extreme points of the convex polyhedral set 

containing the solutions to (6.11). 

Q.E.D. 

Theorem 6,4.      For   linear  loss  problems  not   satisfying  the general   posi- 

tion  condition,   a   finite   set   of vectors     P       can  be   found  to pro- 

vide  an  optimal   solution  to   the generalized  programming  problem. 

Proof  of Theorem 6.4. 

The  optimal   solution  satisfies 

P 

1 
=  0 
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hence we have shown that a finite number of vectors  P form the extreme 

points of all vectors satisfying the Eq. (6.11),  Since an optimal solu- 

tion exists, it must satisfy (6,10), and therefore, it must be a convex 

combination of all extreme points to the set of vectors satisfying (6.11). 

It can be shown that an optimal control vector  P  must be a combination 

of at most  n + 1   extreme vectors  P  satisfying (6.10).  Thus, the 

finite set of extreme vectors satisfying (6.10) can be generated s  id must 

include. In its convex hull, a feasible solution to (6,9).  Therefore, 

the optimal solution is determined by a finite set of vectors  P . 

Q.E.D, 

m 

'■S 

Let be the solution to 

*-l *7^      ö V + V + • * • + Mk
p = s 

1    ^i-1   ' (6.12) 

1=1 

—1 
where the  P  are the extreme vectors of (6.10) or (6,11), 

solution exists from Theorem 6,4, 

Such a 

Theorem 6,5, u (t) = \  i^u (t) , 

i=l 

where  u (t)  generates P ,  is an optimal solution to the 

control problem. 

Proof of Theorem 6,5. 

u (t) provides a feasible solution by virtue of (6.12) and satis- 

fies the necessary conditions by construction; by Theorem 6.1, the cost 

function is minimal over all feasible controls, 

Q,E,D, 
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13.   Characteristics of Linear Loss Optimal Controls 

Without assuming a general position condition, we will show that an 

optimal solution to the control variable for linear loss functionals, 

including minimal fuel and minimum time problems, is a piecewise con- 

stant function with a finite number of points of discontinuity for any 

finite interval of time.  Thus, since we are considering finite horizon 

problems  (T < «O ,  an optimal control is a piecewise constant vector 

function with a finite number of switching points. 

The solution to the parametric linear program is observed as being 

a vector control function that is piecewise constant and has a finite 

number of switching points.  Thus any vector  P ,   generated by the 

subproblem, has the same property for its generating control function. 

Since generalized programming problems are linear programs in the master 

problem, and since the number of rows in the linear program is less than 

or equal to  (n + 3),  the number of columns  P  in any solution is at 

most  (n + 1)  for phases  I  and II of the algorithm. 

^ 

Proposition 6.3.  The columns  P ,  generated for the optimization phase 

of the algorithm by the phase I procedure, are generated by control 

vectors that are piecewise constant with a finite number of dis- 

continuities. 

Proof of Proposition 6.3. 

In general, the  n + 1  columns  P ,  for  i = 0, 1, ..., n gen- 

erated for an initial feasible solution to the control problem, are gen- 

erated from the phase I algorithm for n + 1  right-hand sides.  Thus 

each  P  is generated by a set of at most  n + 1  vectors  P,  and 

each in turn is generated by a piecewise constant control function with 

a finite number of switchings.  If the maximum number of switchings for 

any control function generated by the subproblem is  M  (M < oo),  each 

P  has a control with at most  (n + DM  switchings, since these 

controls are generated by summing n + 1  control functions with at 

most  M switellings each. 
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^v] Each  new  column   (after   feasibility  is  attained)   is  generated  by a 

piecewise  constant  control  with  at  most     M    switchings.     Thus each 

column     P   ,      in   the  master  problem of  phase   II,   has  at  most     (n +  1)M 

Wi switchings   in  control. 

7l Q.E.D. i 
Proposition 6.4.  At any stage in the iterative process of the generalized 

program, the current control solution is a piecewise constant func- 

tion with a finite number of discontinuities and has an objective 

value within the bound of the optimal objective value, given in 

Eq. (5.53), of  ök. 

Proof of Proposition 6.4. 

The solution to the master problem contains a nonnegative combina- 

f tion of at most n + 1 columns P ,  each generated by a control func- 

^ tion that is piecewise constant, and each has at most  (n+l)M switch- 

|y ing points (Proposition 6.3).  Thus, the combination of the controls to 
K) 2 

generate the solution has at most  (n + 1) M discontinuities.  The 

-v bound  (b )  was shown in Chapter V. 

Q.E.D. 

Theorem 6.6.     The  optimal   control generated  by  the  generalized program- 

ming  solution of  the  continuous-time  problem  for  the  linear  loss 

functionals   (minimum  fuel  and minimal   time  problems   included  as 

special   cases)   is  a  piecewise constant   function,   and  it has  a 

finite  number  of  discontinuities. 

Proof of Theorem 6.6. 

If  the  generalized  program terminates with a  value   of    5    = 0     for 

some  stage     k,      then  by Proposition 6.4,   the   theorem  is   true. 

^ In  any case,   given  the  optimal  dual  variables   to  the  generalized 

program it , the optimal solution is a combination of at most n + 1 

vectors P , generated as solutions to (6.10). The generating con- 

trols  of  these  vectors  have  at most     M    switchings,   and   their combina- 

tions  has  most     (n +1)M     switchings. 
Q.E.D. 
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II should be noted that when 6=0, the current value of rr is 

optimal, and it can be used to determine an optimal control function in- 

dependent of the current solution (but not necessarily distinct). 

Theorem 6.7.  If the solution to the parametric linear programming prob- 

lern when using  rt   to generate /(t)  is unique except on a set of 

measure zero, the optimal control function, when non-zero, is at an 

extreme point of the admissible control region. 

. i 

Proof of Theorem 6.7. 

The solution to a linear program always occurs at an extreme point 

of the constraint set.  When a change of variables is made to produce an 

equivalent problem for minimum fuel problems, a control of level zero is 

considered to be at an extreme point of the new constraint set.  Thus, 

the optimal control is at an extreme point of the admissible control 

region (or an equivalent constraint set for minimum fuel or minimum time 

problems) . 

Q.E.D. 

4 The  previous  theorem  also  implies  that  the  standard  minimal  time 

problem,   and certain   linear   loss  problems,   have   bang-bang  solutions.      It 

also  implies  that   the  minimal   fuel   solution  is   a   bang-coast-bang  solu- 

tion   in  some  cases. 

Pontryagin   [1]   has   shown  that  his  general   position  condition  is  a 

sufficient  condition   to  insure  that   the parametric   linear  programming 

problem  has  a  unique   solution  almost  everywhere. 

1 
Proposition 6.5.  The upper bound on the number of switchings for the 

linear loss functionals when the matrix F has real eigenvalues, 

the state of the system is  n,  and the matrix A of the admissible 

control region is  m X P,  is 

(n+1)  (p-m) 
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Proof of  Proposition 6.5. 

There  are  at  most    (     I bases  for the  parametric  linear program. 

Each has     (p - m)     nonbasic variables with  relative  cost  factors    y   (t) 
i 

having at most  (n + 1)  points at which it becomes value zero.  Thus 

m) 

times, after which it remains optimal.  Thus each column  P*  of the 

master program is generated by a control with at most 

if a basis can be repeated, it can do so no more than  (n + 1) (p 
,i 

(n + 1)(p - m) 

switching points.  Since at most  (n + 1)  control functions are com- 

bined, the maximum number of switchings is 

(n +1)  (p - m) 
m 

Q.E.D. 

C.   Characteristics of Quadratic Loss Optimal Controls 

Since the parametric quadratic program has a time (parameter) de- 

pendent solution for the control vector, the only characterization of 

the optimal control generated is in the class of time functions possible 

for the solution. 

For the quadratic programming problom, stated as 

w = Mz + q(t) ,  w, z > 0,  w.z  = 0 , 
—     ii 

the solution has the form 

where 

q(t) + M 

q(t),  and    z, w = 0 
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q.(l)  is merely a linear combination of the original components of  qd) 

which are again linear combinations of the components 

s t 
.£       k 
1  e 

for all  s  eigenvalues of  F,  and £    less than the multiplicity 

of the eigenvalue  s .  Thus the solution to the parametric quadratic 

program is composed of linear combinations of the same elements. 

As in the linear case, at most (n + 1) columns of the generalized 

programming master problem are used at any stage; therefore, the current- 

solution is of the same form, i.e., linear combinations of the elements 

.  V 
t e 

Whenever a basis switch is made, the linear multipliers change in the 

linear combination, but the solution has the same characteristic form. 

Proposition 6.6. At any stage in the quadratic control problem, includ- 

ing the optimal solution, the form of each component of the control 

function is a linear combination of n + 1  terms of the form 

t e 
v 

with only the constant terms changing at each of the finite number 

of basis switches. 

Proof of Proposition 6.6. 

Each column generated by the subproblem has a control function of 

the required form with the finite number of basis switches, since the 

control function is generated from the parametric quadratic program. 

Since at most  (n + 1)  columns are combined for each solution, the 

current control solution has the same form.  At the optimum, the quad- 

ratic program has a unique solution for positive definite  Q, and only 

one column is generated with the generating control, which is optimal, 

having the required form.  For positive semidefinite  Q,  the solution 
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to  the quadratic program is not necessarily unique, and a combination 

of at most  (n + 1)  control functions may be required as in the linear 

case. 

Q.E.D. 

m 

m 

This algorithm provides an open loop solution to the optimal control 

problem.  Also, it should be noted that no assertion is made regarding 

the uniqueness of the solution in the form of the optimal control 

function. 

Since Chapter VII provides an illustrative example with computational 

experience in the linear case, we will now present an example showing the 

form of the solution for the case of quadratic loss in control [14]. 

Consider the system 

x. = x„ 
i   2 

x2 =u . 

Thus, 

F = 
0  1 

n  o 
G = 

0 

1 

xi(0) = 0, x2(0) = 0 

x (T) = s1 ,     and x2(T) = s2 . 

mm 
u(.) ■I 

1  2 
-u  dt 

u| < 1 , 

where Q = - I  and is positive definite.  If the optimum dual variable 

to the generalized programming formulation of this problem is 

^    - V J-,  n^,  n^, R^l     i 
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tlie  optimal   solution can   be   obtained  as   follows: 

find   the  control       u   (1)        so  that 

min 
Tt 

P 

u(t)     < 1 
1 

is  achieved  by    u   (t) 

Therefore,      u   (t)     must   solve 

Si 

min      ( 1     2 *       *       F(T-t)   ^   ,   J * 
u(.)    J2  U     +   (Tri'    V   e Gu(t)J+   ^3 

u(t)I   <  1,      t   t   [O.T]   ,   or 

min     )  1     2 
u(.)        2   U     + Gu(t)' 

Iu(t)|   <  1   , 

* x- 
where     \|/   (t),      and    i|/9(t)     are  the  optimal  adjoint   variables   for  all     t. 

Hence  the   minimization   is 

mm 
u(-) 

12* | 
- u    +  \|/0(t) '   u > 

u(t)|   < 1. 

For this problem, the solution is easily seen as 

■x- 

-t2(t), t2(t)| V 1 

u (1) = -sat t2(t) 

-sgn \|f2(t), |t2(t)| > 1 
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Note that ^At) has the form 

* * ' T-f 
(V Tt   ) 

2 ^    1   j 
= Tt*(T-t) + TT* i.e., 

51 

^(t) = at + ß . 

Thus the optimal solution has the form u(t) = dt  + ß,  for any interval 

where tt and ß are allowed to change at certain switching points. 

Free Final State Problem.  In conclusion we will consider the 

problem where the initial state is zero and the final state (at fixed 
th 

time,  T)  is completely free.  Since the first through n  rows of the 

generalized programming master problem have free right-hand sides, the 

slack variables for these rows are always permitted to be non-zero. 

Thus, the optimal  it  must be 

«   = (1' 0 V^ 

The optimal control is then determined by the subproblem, 

mm 
u(.) 

f[x(u), u] 

subject to   u(t) e U    t e [0,T] . 

Thus the problem is solved by one iteration of a parametric programming 

problem. 
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Chapter Vil 

EXAMPLES AND COMPUTATIONS 

In this chapter, examples are used to show the execution and sample 

results of the algorithm.  The convergence properties will be demon- 

strated as well as the basic features of the algorithm. 

The problem we intend to solve is 

Thus 

r3 
min       /      I 

x.   = x 
i ^ 

(t)|   dt 

x2 = u 

x(0)   = 

F  = 

Ft 

u(t)|   < 

'l' 
1 x(3)   = 

" 0 " 

Lo J _ 0 _ 

" 0 1" 
G = 

' 0 

_ 0 0_ .1 

1     t 

0       1 
and 

'V 

$ 

m m m 

F(T-t)   r e 0 = 
1       T-t 

0 1 

01 
i 

UJ 
T-t 

L   1 &Ö 

Therefore, 

Ay r T-t 

1 
u(t)   dt   ; 
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and 

U = i u   | u |   11/ 

Hi I 

By  the  definitions   given   in Chapter V, 

s" =    -   c, 0        i 

s    = 
T 

FT 

0 

0 

ML» 
3 

1 

1 

L 0 

[s]  =|sT-
soF| 

1 

L o J 

LoJ)  ' 

We   initiate   by  looking for  a   feasible   solution  to 

mm 

p.y 
=   1  y+i+l y~i 

i=l i=l 

subject   to P,,  +   iy     _   Iy    = 

-1 

Loj 

= i where 

P e  C  = < P P = 1 
T-t 

1 
u(t)   dt, 

u(t)|   <  1 

0 
Let      P generated  by  tlie  admissible   control     u(t)   =  0.      In 

tliis  example,   we   seek  to  solve  phase   I   by  keeping  the  desired   point  as 

the  right-hand  side  and  to terminate  when    w  = 0. 
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The first master problem is represented by the tableau 

2       2 

" W = S yl + S yi 
i=l i=l 

0 

0 

1 

^1 

1 

0 

0 

J2 

0 

1 

0 

Jl 

-1 

0 

0 

J2 

0 

-1 

0 

-1 

0 

1 

M0. Yi- yT > 0 

The first two rows correspond to states in the dynamic system, and the 

final row represents the possibilities of convex combinations of the 

columns  P ,  generated by the subproblem.  The optimal basis for this 

linear program is 

0 0 -1 

0 
0 1 0 

1 0 0 

$- 

with 

-1 

f 0   0 

0   10 

_ -1  0   0 

The solution is 

=  1, + + 

i.  y1 = y2 
y2 = o 

with 

0       , 
w     =1 

I 
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The  dual  variable   is 

n0' =  ;BB_1   =  (0,    1,   1)   B-1  =   (-1,    1,   0)   , 

J.-> 
[it'     =    (Tt    ,     TX2,     TT3)]     . 

The subproblem for the first interation is 

min /%, 
P e  C 

Q 
fA 

(The  minus  sign  results  from  the  manner  in  which     TT     is  generated   from 

/   .)     The  subproblem   is  then expanded   to 

r3 
nun /      . s 

u(t,   £   U   J0     '-«!•   -V 
3-t 

u(t)    dt    -   IT, 

or 

M 

mm 
[-TT   (3  -  t)   -TT ]   u(t) , 

u c • ; i ■£ 

u(t)|   <  1   , t   t   [0,3]   , 

for     rti  = -1,   ir2  = 1 

The  minimum  is  achieved  by  the   function 

u   (t)   =  -1 t  e   [0,2] 

u  (t)   = 1 t   t   (2,3] 

v 
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which generates a vector  P , 

">"■ 

^r 3-t 

1 
u(t) dt = 

-3.5 

-1.0 

The new master problem tableau has an additional column correspond- 

ing to P ,  i.e., 

mm n    ST +   ST " 

o 

0 

1 

-3.5    1 

-1.0    0 

1     0 

0 -1 0 = -1 

1 0 -1 = 0 

0 0 0 = 1 

p- 
+ 

yl' yi 
>  0   . 

The optimal basis for this linear program is 

-3.5 0 0 

Bl = -1 0 1 

1 1 0 

m m 

and the solution is 

M  = 5/7,  M  = 2/7,  y = 2/7,   all others equal zero, 
0 1 A 

föi 

IP 

w = 2/7 

i- 
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Using the dual variable from the above basis, the new column generated by 

both the subproblem and the generating control is 

P2 = 
4.5 

3 
,     u (t) = 1,  t fc [0,3] 

I 
The new tableau is 

mm 
2       2 

1    y+i   +   l    y'i 

i ^ ^1 ^ yi y2 yi 

0 -3.5 4 .5 1 0 -1 

0 -1 3 0 1 0 

1 1 1 0 0 0 

J2 

0 

-1 

0 

0 

1 

^i' yi' yi ^0 

The optimal basis for this linear program is 

B2 = 

0 

0 

-3.5   4.5 

-1    3 

1     1 J 

to 1 

and the solution is 

H0 = 1/3,  |il = 1/2, ^2 = 1/6 

with 

w2 = 0 

Thus, a feasible control has been found for the control problem 
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m 
To demonstrate the above fact, let 

u (t) = |i u (t) + i^u (t) + p u (t) , 

and let 

uf(t) 

1 
3 

2 
3 

t = [0,2] 

t = (2,3] 

or 

PCu (t)] 
3-t 

uf(t)   dt  = 
' -1 

1 0 

Thus u (t)  is a feasible control, i.e., an admissible control bringing 

the system from its initial state to the desired final state.  Note that 

J[u (t)] 
•'o 

(t)I dt = 4/3 . 

m 

Since a feasible solution is available consisting of a positive 

combination of  (n + 1)  vectors  P,  the optimization phase may be 

initiated . 

Let 

P1 

J[u (t)] 

therefore 

0  „   1 
D0 = 0'  P0 

3,  and  p 
0 

m 
^ 

The initial master problem is  (k = 2) , 
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max A 

U.A + \ ^i- P |i = s 
^    i 
i=0 a 

^i =1 

or in tableau form, 

max A 

A 

|ii > 0 , 

Ko ^1 ^2 

1 0 3 3 = 0 

0 0 -3.5 4,5 = -1 

0 0 -1 3 = 0 

0 1 1 1 _ 1 

u > 0 
i — 

The solution to this linear program is 

n0  =  1/3,  |i1 = 1/2,  )i2 - 1/6 

with 

Ak-2 

If we define    u       as   the  control 

■-k        V     k   i^ u     =     >     (i.U   (t)    , 

1=0 
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k th where    \i.     is  the   solution  to  the    k master program,   the  inequalities 

in Theorem 5.6   become 

J(u*)  < J(uk) < -Ak  =  Jk 

i For    k  =  2   the   solution  is 

J(uk)   = 4/3   , -Äk   =   2 

-2 
The dual variable     n       is 

-2 
(1,   2,   -4,   0)    , 

and the subproblem is 

S 
J,. _,  ck  k+1  k+1 
find  b , u   , P  , so that 

^k     .   -k' 
o = mm it 

P e C 

P 

1 
or 

min     f  k i /..x i   / k  k\ 
u(t) eu J0  "0 lu(t)l + («1' S) 

3-t 

1 
u(t) dt + n. 

This is equivalent to finding the solution to 

mm 
u(-) 

u(t)| + n (3-t) + nk] u(t) 

u(t)| < 1 

t e [0,3] 

For    k  =  2,     the   solution  is 
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-i t e [o,  1/2] 

u"( t)   =  <f    0 t  e   (1/2,   3/2] 

1 t   t   (3/2,   3] 

This   solution produces   a   new vector 

2.0 

-0.25 

1.0 

with 

k 
b    = 

-k' 
:  a 

p 

1 
-2.5 

J 

i 

Thus,   by using the   inequalities   in Theorem 5.6,   we  arrive  at 

w-kx k ,   *, -kN k 
J(u   )   +  o    <  J(u   ) < J(u  )  <  J     ; 

lor    k   = 2,     the   solution   is 

-1 .17 <  J(u  )  <  1 .33   . 

After each column is generated, the master problem is augmented (all P 

are retained). 

We will now present the results from a computer run solving the 

above problem.  The program converged in 40 iterations, using 16 place ac- 

curacy, on an IBM 360/67.  Figure 1 illustrates the control function u (t) 

at iterations corresponding to  k = 2, 3, 4, 5, 10, 15, 30, 40,  Its cost 
_k /—'{\ 

J(u )  is shown at each iteration in Fig. 2.  The optimal value  J(u ) 

at each iteration is shown in Fig. 3, and the distance between the two 
k k 

curves represents the magnitude of  ü .  The convergence of  n  and  0 
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is shown in Table 1.  In this problem,  6  converged monotonically to 

zero.  The convergence of  n,  on the other hand, is not monotonic by 

component or component-wise norm.  However, it does converge on a sub- 

sequence to its optimum value and seems to monotonically converge in the 

*     i-k  -*, 
norm of  n - n  . 

A common penomenon in these problems was observed from the gener- 

ated columns and their corresponding control functions.  After the ini- 

tial iterations, the new columns seemed to be approaching a limit and 

were very nearly equal component wise.  This is due to the uniqueness of 

the solution to the subproblem at (or near) the optimum dual variables. 

(Note that the subproblem has a unique solution for every stage of this 

problem.)  Thus the control functions are converging (as seen by Fig. 1) 

to their optimum value, and the state generated by these controls is 

converging to its optimum desired value. 

This similarity in the generated columns produces an unusual prob- 

lem in the master program.  The master program develops into a linear 

program with approximately equal columns being basic or "nearly" basic 

columns.  Thus the basis matrix is getting closer to a singular matrix. 

For computational purposes, this activity is not very critical, since 

it only occurs when optimality is close at hand, and termination occurs 

before the basis matrix becomes singular. 

lie final solution computed for the example consists of a control 

I 
:S 

-1.000 t   e   [0,   0.38196564] 

-0.1176 t   t   (0.38196564, 0.38196754] 

-0.0784 t   £   (0.38196754, 0.38196945] 

u"(t)   =/    0.0 t   £   (0.38196945, 2.61802864] 

0.0392 t   e   (2.61802864, 2.61803246] 

0.1176 t   £   (2.61803246, 2.61803436] 

1.00 t   fc   (2.61803436, 3.0] 

with  a  cost     J(u   )   = 0.7639320.     If  accuracy  to within  five  places  is 

sufficient,   then 
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u(t) 

I 

2/3 

0.0 

-1/3 

-I 

 I I  
I 2 3 

 I 

k = 2 

u(t) 

1.0 

0.0 

-1.0 

2 3 

k=3 

I.Or 

u(t) 
0.0 

-1.0 

 I I I  
I 2 3 

_^ 

k-4 

u(t) 

1.0 

0.0 

-1.0 
k=5 

SEL-68-085 

a.     k   .=  2,   3,   4,   5 

Fig,   1.     u(t)   vs   t  AT   ITERATIONS  CORRESPONDING 
TO    k  =  2,   3,   4,   5,    10,   15,   30,   40. 
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1.0 

u{t) 0.0 

■1.0 

1 

J 

r 
1 2                                         3 

1- 

k= 0 

u{t)     ao 

u(t)    00 

b.     k  =  10,   15,   30,   40 

Fig.   1.     CONTINUED, 
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l.5r 

I 
3 

1.0- 

13 

0.5- 

2   3   4   5 10 20 30 

4 

Fig.   2,     J(u  )     vs    k, 

Table  1 

CONVERGENCE  OF   DUAL VARIABLES 

k it 
1 «2 "3 

k 
0 

2 2.0 -4.0 0 -2.5 

3 1.33 -1.67 0 -0.83 

4 1.0 -1.75 0 -0.31 

5 0.89 -1.22 0 -0.14 

10 0.89 -1.36 0.12 -0.004 

15 0.89 -1.34 0.128 -0.0001 

20 0.895 -1.34 0.131 -0.000004 

25 0.894 -1.34 0.130 -0.00000013 

30 0.894 -1.34 0.130 0 

35 0.8944 -1.3417 0.1305 0 

40 0 .8944 -1.3416 0.1305 0 
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öl   ''- 

l.5i- 

J(uk) 

2   3  4   5 

-0.5 1 

.oL 

-1.5 

J(ük)+ 8k 

I0 15 20 

k 

30 

Fig,   3.     J(ük)     AND    J(IIk)   + 5k     VS    k 

,-1.0       t   £  [0,     0.38197] 

u   (t)   = ^   0 t   e   (0.38197,     2.61803] 

1.0       t   6   (2.61803,      3.0] 

with     J  = 0.7639. 

To compare this method with other solution procedures for the mini- 

mum fuel problem, we observed the final control function produces a fea- 

sible control which, in turn, produces an objective value accurate to 

15 digits (double precision accuracy) . 
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Although  linear programming  can be   used   in  the  discrete version  of 

the   continuous  problem,   to achieve   a   solution  as  good as   that  obtained 

by   the  generalized  programming method,   the  time  interval would   have   to 

be   broken  into more  than one million  increments;   these  increments  can 

produce  a   linear  program with over   a million variables and  over  a mil- 

lion  rows.     Naturally,   linear  programs  of   that  size  are  too  large   for 

existing  computers. 

By using the generalized programming method, only linear programs 

with rews approximately equal to the dimension of the state space need 

to  be   s olved . 

Tne concluding example illustrates the determination of the exis- 

tence of a feasible solution to the control problem to solve a minimum 

time   problem . 

Let 

x(0)   = 

0 1 0 
= ) G  = 

.0 0 J L i J 

'1' 

1 x(T)   = 
"o" 

_0 _ Lo J 

T min      C 
with     |u(t) i   <   1   ,     Vt 

The solution to this problem is known to be T = 2.0  [15] .  The solu- 

tion procedure used is to choose some very large T and solve the gen- 

eralized program 

mm 
= Ih +    Syi 

P^ + ly. - Xy. = S 

W = 1 where 
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S = -e 
FT 

1 

0 
and 

FT 
1   T 

0   1. 
and 

P  is defined as previously.  If the problem is feasible, reduce T; if 

not, increase  T and continue. 

The following table illustrates the number of iterations required 

to determine a feasible solution, if it exists, or the infeasibility of 

the original problem, for any T.  Note that from Theorem 5.2 when 
k   k 

w  + b > 0,  no feasible solution exists for the current  T. 

me,   T 
of 

Number 
Iterations 

w b 

5 2 0 0 

2.05 2 0 0 

2 2 0 0 

1 .95 2 0.05 -0.025 

1 2 0.75 -0.25 

Thus, for times when T < 2.0, a feasible solution can be found after 

two iterations; and, for times when T < 2.0, the determination of an 

infeasible problem can also be discovered after two iterations. 
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