UNCLASSIFIED

AD NUMBER

AD844959

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 1968. Other requests shall be referred to Air Force Materials Lab., Wright-Patterson AFB, OH 45433.

AUTHORITY

Air Force Systems Command ltr dtd 2 Mar 1972

ALCOA RESEARCH LABORATORIES

ALUMINUM COMPANY OF AMERICA

MECHANICAL PROPERTIES, INCLUDING FRACTURE TOUGHNESS AND FATIGUE, CORROSION CHARACTERISTICS AND FATIGUE-CRACK PROPAGATION RATES OF STRESS-RELIEVED ALUMINUM ALLOY HAND FORGINGS

> D. J. Brownhill, C. F. Babilon G. E. Nordmark and D. O. Sprowls

Contract No. F33615-68-C-1385 -Project No. 7381

Second Technical Management Report May 15, 1968 - August 15, 1968

STATEMENT #2 UNCLASSIFIED

DEC 201968

13 1

NOTICE

This document may not be reproduced or published in any form in whole or in part without prior approval of the Government. Since this is a technical management report, the information herein is tentative and subject to changes, corrections and modifications.

Abstract

A total of 38 of 40 hand forgings ordered for this investigation have been received to date. The alloys and tempers include 2014-T652, 2024-T852, 7075-T7352 and 7079-T652, in thicknesses ranging from 2 to 6 inches.

Preparation of specimens for the tensile, compressive, shear, bearing, fracture toughness, axial-fatigue, corrosion and fatigue-crack propagation tests have been initiated. Tensile properties in the longitudinal, long-transverse and shorttransverse directions have been determined for five of the hand forgings.

TABLE OF CONTENTS

	· · · · · · · · · · · · · · ·	Page
I,	Introduction	l
II.	Material	2
III.	Procedure	2
IV.	Progress During Quarter	2
v .	Results to Date	3
VI.	Tables	5

Second Technical Management Report

MECHANICAL PROPERTIES, INCLUDING FRACTURE TOUGHNESS AND FATIGUE, CORROSION CHARACTERISTICS AND FATIGUE-CRACK-PROPAGATION RATES OF STRESS-RELIEVED ALUMINUM ALLOY HAND FORGINGS

I. Introduction.

The design mechanical properties, fracture toughness, corrosion characteristics and fatigue-crack propagation rates are four of the most important factors involved in the selection and efficient design of aircraft structures. Such data are needed for aluminum alloy hand forgings for several reasons: (1) much of the published design data has become obsolete by a change in the basis of specifying minimum properties, from one in which the length, width and thickness were considered, to one where only the thickness is involved; (2) the development of a technique of stress relieval by cold work in compression has resulted in relatively new tempers (TX52) for many of the alloys; and (3) there have been some significant problems with forged parts in recent years that were related to fracture and stress-corrosion characteristics.

Accordingly, the properties of hand forgings of several aluminum alloys currently being used in aircraft structures are being determined under this contract. The tests are intended to provide statistically reliable data for deriving design mechanical properties for MIL-HDBK-5, including stress-strain and compressive tangent-modulus curves. In addition, data concerning the fracture toughness, axial-stress fatigue, stress-corrosion, exfoliation and fatigue-crack propagation rates are being obtained. This Second Technical Management Report summarizes the results of tests and the general status of the program at this time.

II. Material.

All materials with the exception of the 6x24-in. 2024-T852 and 7079-T652 hand forgings have now been received. The latter two samples are expected within the next several weeks. As previously reported, some delay was incurred in obtaining the hand forgings because of a work-stoppage at the producer's plant. The cross-sectional size, alloy, temper and identification of each sample received is listed in Table I.

The chemical compositions will be reported when available for all of the samples.

III. Procedure.

All the specimens and test procedures being used are as described in the First Technical Management Report, dated May 15, 1968.

IV. Progress During Quarter.

A. Mechanical Properties

A.1. Tensile, Compressive, Shear and Bearing

All test coupons have been sawed from 37 of the 38 hand forging samples received to date; the machining and testing of the specimens is in progress. The tensile properties determined in the longitudinal, long-transverse and shorttransverse directions for five hand forgings are shown in Table II.

2.

A.2. Fracture Toughness

The preparation of notch-bend fracture toughness specimens has begun and 18 of the 156 specimens scheduled for test are now machined.

A.3. Axial Stress Fatigue

Preparation of the axial-fatigue specimens is about to be initiated.

B. Corrosion Characteristics

Resistance to Exfoliation Attack and to Stress-Corrosion Cracking

Preparation of test specimens to investigate the corrosion characteristics of the hand forgings has been started. These specimens will be tested to study the susceptibility to exfoliation and the resistance to stress-corrosion cracking of representative hand forgings.

C. Fatigue Crack Propagation

Preliminary Investigation

The 6x24-in. 2014-T652 hand forging has been submitted to the Machine Shop for the preparation of twenty long-transverse crack propagation specimens for the preliminary investigations. These specimens will be tested to study the effects of notch geometry and specimen length on the rate of fatigue-crack propagation.

V. Results to Date.

The tensile properties determined in the longitudinal, long-transverse and short-transverse directions for five hand

3.

Sec

forgings are shown in Table II. The tensile properties of the hand forgings exceed the applicable specified minimum values as shown in Table III.

D. J. BROWNHILL

4.

C. 7. Babilon

J.E. Nordmurk

Del Sprowles

8/15/68

rs

VI. Tables.

5.

TABLE I

SAMPLES OF HAND FORGINGS RECEIVED AS OF AUGUST 15, 1968 (F33615-68-C-1385)

Cross-Sectional	2014-T652	2024-T852	7075-T7352	7079-1652
Size, in.	ARL Sample No.	ARL Sample No.	ARL Sample No.	ARL Sample No.
2x8	741007	741017	741027	341037
3x12	341008	341018	341028	341038
4x8	010142	341019	341029	000142
4x16	341010	341020	341030	341039
5x5	341011	341021	341031	341041
5x10	341012	341022	341032	341042
5x20	341013	341023	341033	341043
6x6 6x12 6x24	341014 341015 341016	341024 341025	341034 341035 341036	341044 341045

TABLE II

\$

TENSILE PROPERTIES OF STRESS-RELIEVED ALUMINUM ALLOY HAND FORGINGS (F33615-68-0-1385)

		Sample		Tenaile	Tenella	1 1 1 1 1	
Alloy and Temper	Cross-Sect. Size, in.	Number	Direction*	Ultimate Stress, psi	Yield Stress,† psi	$ \begin{array}{c} \text{in 2 in}\\ \text{or 4D,}\\ \text{s}\\ \end{array} $	Reduction, of Area,
2014-1652	5x20	5410175	с Г Г	68 64 700 63 900	60 700 57 300 56 100	7.0 2.0 80 80	24 7 7
2024- 1 852	4x8	341019	SP L	68 900 70 400 65 600	61 100 63 100 57 200	0.00 0.00	2004 2004
-	бхб	341024	ы БЛ С	69 100 68 800 69 400	61 600 60 600 58 500	000 000	28 30
	6x12	341025	ЗЧ Г	67 000 67 300 65 300	58 700 60 200 55 100	0 N N 0 N N 0 N N	0450
7075-17352	9 x 16	341030	ST L	70 000 64 700 76	59 500 55 200 52 500	12.0	20 25

* L-Longitudinal; LT-Long-transverse; ST-Short-transverse t Offset equals 0.2 per cent.

TABLE IXI

SPECIFIED MINIMUM VALUES FOR ALUMINUM ALLOY HAND FORGINGS TESTED (F33615-68-C-1385)

			suel	ille	El ong.	:
Alloy and Temper	Thickness, in.	Direction*	Ultimate Stress, psi	Yield Stress,† psi	in 2 in. or 4D,	rederal Specification
2014-T652	h.001-5.000	3 E L	62 62 60 65 65 65 65 65 65 65 65 65 65 65 65 65	514 500 500 000 000	F01	QQ-A-367g
2024-T852	LTA	L, LT, ST		1	ı	None
7075-17352	TTW	L, LT, ST	1	1 1 1	1	None

* L-Iongitudinal; LT-Iong-transverse; ST-Short-transverse + Offset equals 0.2 per cent