UNCLASSIFIED

AD NUMBER

AD844713

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Di stribution authorized to DoD only;

Adm ni strative/ Operational Use; OCT 1968. O her
requests shall be referred to Ronme Air

Devel opnent Center, Giffiss AFB, NY.

AUTHORITY
RADC [tr 3 May 1979

THISPAGE ISUNCLASSIFIED

THIS REPORT HAS BEEN DELi. [TED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200,20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE,

DISTRIRUTIC.4 STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED,

RADC-TR-68-367
Final Report

an

T
]

AN INVESTIGATION OF ADVANCED PROGRAMMING TECHNIQUES
Richard M. Dobkin

et al

System Development Corporation

AD844 113

TECHNICAL REPORT NO. RADC-TR-68-367
October 1968

Each transmittal of this document
outside the Department of Defense
must have prior approval of RADC
(EMIIF), GAFB, N.Y.

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, New York

When US Government drawings, specifications, or other data are used for aay purpose other
than a definitely related government procurement operation, the government tiereby incurs
no responsibility nor any obligation whatsoever; and the fact that the government may have
formulated, furnished, or in any way supplied the said drawings, specifications, or other
data is not to be regarded, by implication or otherwise, as in any manner licensing the
holder or any other person or corporation, or conveying any rights or permission to manu-
facture, use, or sell any patented invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

AN INVESTIGATION OF ADVANCED PROGRAMMING TECHNIQUES
Richard M. Dobkin

et al

System Development Corporation

Each transmittal of this document
outside the Department of Defense
must have prior approval of RADC
(EMIIF), GAFB, N.Y. 13440.

Ry

FOREWORD

This technical report, consisting of two parts, was prepared
by the Rome Operations Branch of the System Development Corp.,
Santa Monica, California, under contract F30602-67-C-0321,
Project 5581. Participating in the study were Richard M. Dobkins
(Project Leader), Nathan Adleman, and Guy Wiley of the Rome
Operations Branch, and Leah Fine and Joseph H. Yott of the
Technology Directorate. The work was performed from July 1967
to June 1968. The RADC Project Engineer is Mr. Richard M. Motto,
EMIIF.

Part I is the study to investigate a8 JOVIAL compiler capable
of interfacing with the MULTICS system and coperating on the
GE-6L5 computer, and to evaluate the advantages and disadventages
of incorporating certain features in such & compiler. PFart II
is the study to investigate the development of compiler technigues
for generating code that operates effectively in the GE-6L5 Paging
System.

The distribution of this document is limited under the
U.C. Mutual Security Acts of 19L9.

This report has been reviewed and is approved.

(yb/’ g;
Approved: ,%M 2‘
“JAMES G. MCGINNIS, Major, USAF

Chicf, Info Processing Branch
Intel & Info Processing Division

7”7) :
Approved: /’, (:);"f; 7 L{’IQ)L_Z’LL~7
d A. E. STOLL, Colonel, USAF
Chief, Intel and Info Processing Division

FOR THE COMMANDE

il

™ "‘”‘"‘"'mm

ABSTRACT

The objective of Part I of the study described in this
document was to perform two services. The first service was to
investigate four existing JOVIAL compilers to aetermine which
had the greatest potential for conversion to the GE-6L45 computer.
The four compilere were the ones currently in operation on the
CDC-1604B, the IBM 7090, the IBM 360, and the GE-635. The second
service was to investigate and evaluate the advantages and
disadvantages of incorporating certain features into a compiler
which would operate on the GE-645 under the control of the
MULTICS supervisor. These features included the production of
programs with reentrant code, cn-line compiling, partial
compilation capabilities, string processing, advanced system and
program compool features, on-line debugging aids, segmentation,
and binary versus symbolic output. The study and the conclusions
reached were made by comparing and evaluating the needs of the
compiler with available system procedure and interface modules.
In regard to an existing compiler, it was recommended that the
CDC~1604B JOVIAL compiler be selected for conversion to the
GE-6L5. As to the features to be incorporated, it was recommended
that all the features be implemented with the following exceptions:
that there be no batch compilation capability; only a limited
partial compilation capability be made available; there should be
no string processing in the initial version; only a small number
of the on-line debugging aids be initially available; and that
only binary output be produced.

The purpose of Part II of the study described in this document
was to investigate the concept of Paging for the purpose of
establishing techniques for generating code that operates
effectively in the GE-645 Paging System. There were two major
objJectives of this investigation. The first was to determine
if the code generation process for paging could be automatic
(handled by software) or if present programming techniques should
be altered to produce efficient code generation. The second
oblective was to define an implementation approach which will
allow a rapid implementation of a Paged JOVIAL Compiler and the
transfer of existing JOVIAL programs to the GE-645. The study was
accomplished by making an investigation of which language types
would be most efficient for paging, and how a program can be
structured for most effective operation in »© paged environment.
The conclusions reached during this study are detailed in
Sections II and ITIIof Part II of this report.

iii/iv

PRECEDING PAGE BLAMK-NOT FILMED

PART I - TABLE OF CONTENTS

Section I. Introduction e----ceceecccceccncccceccacceccacanaaa
Section II. The Compiler to Transfer eeececececccaceccccococcacaa
Section TIII. Segmentation eeceeccececccccocacccccccccccnccae- 4"
Section IV. ReentranCy e-eceecececcceccceccccccnccccnccnccceca-
Section V. System Compool Capability e-eecccecccccacccccccecca-
Section VI. Program CompoOl =e-e-c-cc-ececccceaccncccecacancaaas
Section VII. Debugging AidSs eee-ecccccceccccccccccccccacaccaae
Section VIII. On-Line Compiling ==-e-cecececcccccccccccaccccccaaaa
Section IX. Partial Compilation Capability ee--e-ecccccccac-a-
Section X. String Processing e----eecccencccccnccacccaccccaa
Section XI. Binary Versus Symbolic Object Code m==cecccecccccs
Appendix J3 Language Forms Not Found In JB(Basic) =e=--e-=

18
22
26
28
36
39
L1
L6
L9

Section

Section

Section

I.

II.

OV O~ O\ &Ww O

VMHFWLWWLWWWWWWWWwwwWwLwwwwwwww ok
Sl e
COMNHKHKFEEFRFEHEBHEO®®~NOAUWEWNLHON OO

III.

WWwWwwwwwwmhmhmrPoho -
. - * e .
HHEHHRRERFOFWRNFOO

PART II - TABLE OF CONTENTS

Introduction: ¢« « ¢ o ¢ o o o o o o o ¢ o

Paging Optimization Features for an Object Program

Introduction. ¢« « % % o & o @ & o s @ 3 s @ e

Organization of Object Code
Compiler Requirements « « « ¢ « ¢ o ¢ &+ ¢ &
Compiler Restrictions . + « « ¢« ¢« ¢« v ¢+ « &
Structuring Techniques. « « « « « « « « . .

3
.
.
.
.
.
-

Outpu‘t Classification ¢« « ¢« ¢ ¢ o ¢ ¢ o o o &

High-Activity Area. « « ¢« « ¢« ¢ ¢ ¢« ¢« ¢ o &
Table Divisions by Datae Classifications . .
Multiple Store of Invariant Data.
Assign Invariant Data With Instructions . .
Block Invariant Data. « « « « o o o s o o &
Ceparable Set-Variables . . « o« ¢« &« o &+ ¢ &
Storage Overlays for Set-Variables.
Named Temporary Set-Variables . . « « « .+ &
Correlated Set-Variable Assignments - . . .

Farallel Subtables. « ¢« ¢ + o o o ¢ s o« o & &

Serdaly Tabilfes! s g & % o s & [ele bl = o bl
Instruction Assignment Order. « .
Instruction Execution Order « . « « ¢ « + &
Statement Elimination . « « + ¢« ¢ + ¢ ¢+ & &
Loop Data Assignment. . « « « ¢« « « o ¢ + &
Loop Instruction Alignment. . . . « . + + &
Jump Simplification . .« . « « + ¢ ¢ o 4 . .
Page Utilization. « « « v ¢ ¢« ¢« ¢ & ¢ ¢« o« &
Advise Executive. « . ¢« ¢ ¢ ¢ ¢ ¢ 4 4 4 .
Related Gains « « « +« & o o o o o o s o o &
Conclusions « ¢ « ¢ o ¢ o o o o o o o o o o

Compiler Processes to Produce Page-Oriented

Introduction. « ¢« « ¢ ¢ o ¢ o ¢ o ¢ s ¢ o @
General Assumptions « + « o« ¢« ¢ o ¢ + ¢ o &
Input Requirements. « « « ¢ o o ¢ ¢ o ¢ o &
Execution Order of Instruction.
Freedom in Albegraic Evaluations.
Data Considerations « « ¢ « ¢« ¢ « « o ¢ o &

Optimizing Algorithm. . . « « « « « ¢« o o + &

La s o L e e ranL o s B s B s e
Intermediate Language Program . « « « « « &
Dictionary. « « ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ e 0 o 0.
Abridged Dictionary . « « « ¢ ¢ o ¢ ¢ ¢ o o
Dictionary Trace. « « « o o « o o o s o o o
Segment List. « « ¢« ¢ ¢ ¢ ¢ ¢ ¢ o 0 0 00

vi

O o3 N

~NO\\WwV EWw N e

ro =

w -

OFHFVVOVVOVOYWOWLWONANTNANTOVMEFEFFIFUMWWWRRDFOWWWNNROMNONDNDND NN P

MV s F o e r T s rrwiwWWLWWWWWWwWwwwww

PART II - TABLE OF CONTENTS (Continued)

Connector List. « o « & ¢« o o ¢ ¢ o ¢« « ¢ « o o o ¢« « 62
Accession List. « + « v ¢ ¢« ¢« 4o o ¢ o o o o o« o« s « + 63
Invariant Value Use List. . . . « « ¢« ¢« « ¢« ¢« « « « . 63
Blochk Aeeens LiBt « i ©. i s o fb o 9 ¢ ¢'6 b oa oo s 63
Prececsihg StEPS. . . + « o 2 % 4 3 4 5 G 6 o e w . s 63
Process Dictionary. « . . .
Process Intermediate Language Program . . . « 65
Process Accession Data. . . « v « « ¢+ s+ ¢« ¢« « « « « « 65
Consolidate Program Intelligence. . . « « « &« « « « « 65
Program Relocations . « « « « v « o ¢« ¢« ¢ o o « « « +« 66
Dictionary Realignment. . . . ¢« ¢« ¢« + ¢« « « o« &« « « « 66
Generate Code . v « « o « « + ¢ o o e o o « o« o+ o« 67
Cenpidar CUEPUts. & ¢ & § & 4 0 @ & 5 5 b s 5 » o« BT
Optimized Computer Programs « « « &« o« « o« « + 67T
Compiler Printed Output . « « « « « « ¢« « ¢« o o« o« « « 67
Proposed Procedures . .« + « « « o+ o « s s« s o s « « +» 68
Extract Dictionary Information. . . . « « « ¢« « « . . 68
Extract Intermediate Language Information 69
Process Accession List. « ¢ « ¢ ¢« v ¢ ¢ e-a o o « o+ T0
Establish Flow Connectors . « « « ¢« + o« ¢ « o« o« « + + T0
Invariant Dat@. 5 2 ¢ ¢ w « 6% s 46 ol & & bles o o o @ 7Y
Extraneous Named Values . . . « ¢« &+ &+ o ¢ o o o « « +« T1
Consolidate Program Intelligence. . . . « « « « « « « T1
Compile Time Executions . . « « +« ¢ ¢ ¢ ¢« ¢« ¢« ¢ « « s T1
Consolidate Program Intelligence. . . . « + +« « & « « T2
Reported Intelligence . . « + ¢« ¢« + ¢ ¢« o ¢« o o o o« « T2
Construct Processing Blocks « « & o o « o o o o o « « T3
Construct Decision BloCKS « + « o v « « o o« o « o« o+ Th
Move Program Segments . . « ¢« ¢« ¢+ ¢ o o s o o s o s « 15
Restrictions on Moving Statements T8
Criteria for Moving Statements. . « « + ¢« ¢« ¢« ¢« ¢« » » TO
Decision Block Intelligence .« « « ¢« ¢« o o« ¢ o o o « &« 17T
Decision Blcck Statement Moves. « « « « « « « « o« « « T8
Factor Common Expressions . « « « ¢« + « « « o « o« » . 18
Processing Block Analysis . « ¢« « o s o o o o o « o« « 19
Decision Block Analysis v + « ¢« ¢« ¢ ¢ ¢ ¢« « o o o « o« 19
Dictionary Realignment. . . . + « « « ¢« ¢« o « « « « » 80
Divide Subscripted Data « « « o ¢ « « o+ » ¢ s o« o « » 80
Group Variable Valu€. « « « « ¢ « « & & & 452 amw . S1
Group Invariant Data. « « « « « « « o « ¢« « o + « o « 81
Computer Code Generation. . + « « o« « o o & o &« « » » 81
SUMMATY « ¢ « + o o « o o o o o o o o« o o o o o « « o+ 82

w o

[he N Ew -

w -

vii/viii

PRECEDING PAGE BLAMK-NOT FILMED

PART I - COMPILER ANALYSIS
SECTION I

INTRODUCTION
The purpose of this report is to present the results of a study which had two
major objectives. The first objective was tc investigate the possibilities of
developing a JOVIAL compiler for the GE-645 computer which would interface with
the MULTICS (Multiplexed Information and Computing Service) system. This
service included an evaluation of the following items to determine which had
the greatest potential:
1. Adapting the GE-635 JOVIAL Compiler to the GE-645.
2. Transferring the CDC-1604B JOVIAL Compiler to the GE-6L4S5.
3. Transferring the IBM 7090 JOVIAL Compiler to the GE-6L45.
4. Transferring the IBM 360 JOVIAL Compiler to the GE-6.45.
This objective was met by making an analysis of each compiler. The major areas
considered for each compiler were: the reliability of the code-producing
capability of the compiler, which took into account the age of the compiler, the
amount of use since its inception, and the quauntity and quality of the mainten-
ance activity; the ease with which the compiler could be converted to the GE-645;
the deviation of the compiler from ctficial compiler specifications; and the
amount of available documentation, such as program descriptions, maintenance

manuals, and user guides.

The second objective was to evaluate the advantages and disadvantages of
incorporating the following features into the compiler:

1. Reentrant Code

2. On-Line Compiling

3. Partial Compilation Capabilities

L. String Processing

5. Advanced Compool Features

6. Program Compool

7. Segmentation

8. Compiler Producing Reentrant Programs
9. On-Line Debugging Aids

10. Binary versus Symbolic Output

This second objective was accomplished by first making as complete a study as
possible of the areas of MULTICS which were deemed most pertinent to the
subject. It was then determined which features could and should be implemented,
taking into consideration the costs and time required measured against the
expected usefulness of the feature.

In regard to any question arising concerning compiler specifications, the basis
used was AFM 100-24, "Standard Computer Programming Language for Air Force
Command and Control Systems.”

The following sections of the report present the analysis of each item con-
sidered during the study, the conclusions reached, and the recommendations
made.

SECTION II

THE COMPILER TO TRANSFER

1.0 INTRODUCTION

This section attempts to outline the reasoning and justification behind our
selection of the JOVIAL compiler most suitable for transfer to the GE-645
computer under the MULTICS system. What follows is a discussion of each of the
compilers under surveillance with appropriate information concerning both their
positive and negative facets,

2.0 GE-635 JOVIAL COMPILER

Supplied by the General Electric Company for the Rome Air Development Center,
this compiler was first available for limited use in September 1966. While

the full JOVIAL J3 language is not completely implemented, those forms missing
are not of enough significance to allow their absence, of itself, to cause this
compiler's elimination from consideration.

The 635 compiler is not written in JOVIAL, but in a macro-language called POPs

(program operators). Thus, the compiler cannot compile itself. A variation

of the POPs assembler operating on the 645 and producing code for the 645 which
would operate under MULTICS would be an additional requirement for the transfer
of this compiler. There is prcbably no need to elaborate on the advantages of

maintaining or modifying a compiler written in JOVIAL &s opposed to one written
in an assembly or macro-language.

Compiler maintenance or program description documentation is not available
with the 635 compiler.

The 635 and 645 instruction sets are very similar, and therefore, it might seem
very easy to transfer the 635 compiler to the tl5 machine. The differences,
however, are of enough significance to have great effect on a compiler trans-
fer operation. For one thing, there are a significant number of conventicns
that MULTICS demands an object program follow. Segmentation, linking, and
base registers are features that are not accounted for in the 635 compiler.

In addition, the compiler generates code which calculates addresses and
dynamically sets them into instructions. This is not permissible if pure
reentrant programs are to be produced. Investigation of the code generated

by the 635 compiler has led us to believe that there is probably little point
to trying to salvage any of its code-generating philosophy. There is, in fact,
an amazing lack of similarity betwecn a 635 running under GECOS and a 6L5
running under MULTICS.

Because of its very limited usage, the 635 compiler has not had tnc charnce that
many other compilers have had to have errors corrected. Compiler builders
themselves can write test cases and discover just so many bugs in their
program. It takes years of usage before some @ery significant errors may be
corrected (see discussion of 1004B ccmpiler below) in the stardard JOVIAL
compiler.

r

The implementation of a compool capability in the 635 compiler is not compati-
ble with the accepted definition of a compool. Rather than a formatted,
ordered set of descriptions, the compool is a set of data declarations which
are essentially recompiled every time the compool is referenced. In addition,
the programmer is burdened with the responsibility of supplying the compiler
with a list of compool identificrs which his program will manipulate. There
is no provision for specifying addresses in the compool. The compool approach
recommended in Section V has so little in common with the approach used in

the 635 compiler that nothing could be salvaged from that compiler in this
area.

The error analysis achieved by the 635 compiler is found wanting in a number
of respects. While formulated on a sound basis and extremely well-intentioned,
the implementation has unfortunately resulted in ncn-self-explanatory messages
and gaps of up to fifty lines between a statement in error and the correspond-
ing messages. There are approximately fifty different error messages output
by the 635 compiler, as compared to more than 205 output by the 1604B compiler.

3.0 IBM 360/50 JOVIAL (J5.2) COMPILER

Produced by SDC for the Detense Communications Agency, this compiler was
adapted from the 360/50 Basic JOVIAL compiler written by SDC for its own use
in 1905. The language processed by this compiler is a subset of JOVIAL (J3)
knowrn as Basic JOVIAL (or JB) with extensions (e.g., fixed-point arithmetic).
The differences between JOVIAL (J3) and JOVIAL (JB) are outlined in the
Appendix.

The 300 compiler is written in JOVIAL.

There exists a very gcod program description document for the generator portion
of the ccmpiler. The generator is that part of the compiler which is of
primary interest as the translator is dependent on the machine for which it is
generating code.

The 300 compiler has had a fairly extensive public exposure and is probably in
reasonably good shape as far as JOVIAL compilers go. The errors that will
appear witn this generator will not only be infrequent, but of the sort which
will be very easy to circumvent.

The major problems with the 360 compiler are its ability to accept only those
language forms defined in JB and the intermediate lunguage (IL) which it uses.
The IL is very simple and straightforward, making it fairly easy for the
translator to generate code. It 1is, however, very difficult for the trans-
lator to generate good, efficient code. The IL was just not designed with
this in mind. The conversion of this JB generator into a J3: generator would
involve changes and/or additions to the IL of a non-trivial nature.

4.0 IBM Toyu JOVIAL (J2) COMPILER
Produced by SDC for SACCS under Oystem 465L in 199y, this was the first JOVIAL

compiler. It procecses a dialect of JOVIAL known as J2. Maintenance of this
compiler was stopped in ecarly 1965.

The 7090 compiler is written in JOVIAL.

There is no existing program description or maintenance document for this
compiler.

While this compiler has had rather extensive exposure it has not suffered any
radical changes to its basic operation. Thus, it could not take advantage of
any new compiler techniques and processes developed since 1959. The cessation
of maintenance in 1965 means, of course, that no errors discovered since that
time have been corrected.

The IL generated by this compiler has been termed "horribly complex" by one of
its former maintainers. As no documentation exists, it was not Judged
feasible to attempt tu reinforce this opinion.

5.0 CDC 1604B JOVIAL (J3) COMPILER

Produced by SDC for the NAVCOSSACT CDC 16044 in 1965, this compiler has t:en
successfully transferred to, and is presently operating on, the 1604B at RADC.
Despite its designation as a JOVIAL (J3) compiler, it does not completely pro-
cess some of the more exotic JJ3 language forms. The generator portion, how-
ever, does have the capability of handling the complete J3 language; the
generator is the part we are interested in.

The 1604B compiler is written in JOVIAL.

There exists a very good program description document for most of the generator
portion of the compiler.

This compiler has had constant maintenance, updating, and improvement since
its inception. In addition to its use at NAVCOSSACT and RADC, it is being
used at FOCCPAC, FOCCLANT and was transferred to the CDC 3600 for usage by

the AFSC Space CSystems Division. To illustrate the importance of widespread
usage of a compiler in order to achieve proper checkout, it can te noted that
since mid-1963, 190 errors have been officially documented as being corrected.
It is quite probable that another 190 errors have been corrected without docu-
mentation. Any errors that appear in the future with this generator will not
only be infrequent, but of the easily circumventable sort. I[t's time and
users that produce good compilers.

The 1604B compiler contains what amounts to a separate program which produces
its IL. This second "phase" of the generator produces an IL which is much
more complex than that »f the 460 JB compiler, but one which is much easier
to handle, from the translator's point of view, in order to generate gocd,
efficient code.

The ability of the 1604B compiler to handle compool references without a
prior list of compool variables should make the implementation ¢f the
recommended compool capability in the 645 compiler an easier task than it
would be using the 635 compiler.

One major disadvantage of the 1604B compiler is its size, i.e., it is signif-
icantly larger than any of the other compilers considered.

6.0 SUMMARY

We are recommending that a 645 JOVIAL (J3) compiler be produced by starting
with the 1604B JOVIAL (J3) generator and adding a newly written 645 transla-
tor onto it for the following major reasons:

A. Of the compilers studied, the 1604B is the only one which contains a
source language scanner and processor which will accept the full J3
language.

B. The 1604B produces an intermediate language which is the best suited for
producing optimal code. The object code generated by the 635 compiler
is incompatible enough with the 645 machine and the MULTICS system to
eliminate its code generation phase from consideration. Hence, a new
code generator has to be written in any casc.

C. Adequate documentation is presently availabtle for only the 1604UB und 460
generators.

D. The constant usage and maintenance which the 1604B compiler has undergo:re
makes it probably the best checked-out of those compilers ctudiea.

E. The error analysis and detection done by the 1604B compiler is easily the
test of these compilers.

F. The 1604B compiler was produced recently enougn to take advantage of new
compilation techniques, yet is5 old cnvugh to huve had as ruch or morce
usage than the other three compilers.

G. Despite its larger size and the extra time needed to compile it, the
1604B compiler is relatively as efficient in terms of its own opera‘ing
speed as the other compilers considered.

SECTION ITII

SEGMENTATION

1.0 INTRODUCTION

Fundamental and essential to the operation of MULTICS is the division of
memory space into segments. A MULTICS segment is a portion of the virtual
memory space which may be addressed by name. It is of little use to ask
whether programs which will operate under MULTICS should be segmented. Pro-
grams which ignore the MULTICS segmentation conventions will not work. How-
ever, it is of great use to consider what is the best way to use the segmen-
tation facilities of MULTICS. The preliminary documentation of MULTICS or
which this study is based indicates that minor variations in the use of seg-
ments will have substantial effects on the quality of the programs produced
by the JOVIAL compiler.

The remainder of this section describes some of the characteristics of MULTICS
segments and draws certain conclusions about how they should be used. In ad-
dition, a final paragraph offering a possible solution to the problem of the
segmentation of the compiled object program is included. The objective of
these segment usage policies is to combine JOVIAL and MULTICS in a way that
will preserve the most important capabilities of both.
2.0 SEGMENT DESCRIPTION
The following subparagraphs describe things which must be specified about a
segment in MULTICS and the facilities which the JOVIAL user will need for this
specification. The following will have to be specified:

Name of the Segment

Access List

Parent Directory

Allocation Mode

Structure of the Segment

Contents of the Segment

The following discussion will concentrate on segments which contain data but
there will be a few remarks about segments which contain instructions.

2.1 Segment Name

The syntax of names in MULTICS seems to be more complicated than
that of JOVIAL. It would be possible to restrict segment names which are used
only within the JOVIAL subsystem to the JOVIAL syntax but there is a need for
JOVIAL users to refer to many of the MULLTICS modules. Therefore, it will be

\

necessary to provide some capability to handle these names which seem to con-
tain periocds, dollar signs, and underline characters as well as the normal
JOVIAL letters and numbers. One approach which can be used is to write the
segment name as a JOVIAL Hollerith constant. This is a bit awkward but a
neater methcd cannot be chosen until a complete description of the MULTICS
name syntax is available.

2.2 Access List

The access list of a segment describes which processes or users may
use the segment and how they may use it. It seems likely that the specifica-
tion of the access list for a segment created by an explicit user ccmmand can
be done outside of JOVIAL by system commands or by calls to systen procedures.
However, there will be some segments which are automatically created by the
JOVIAL system. The conventions about these segments must be consistent with
the rest of MULTICS and with the ncrmal behavior of JOVIAL systems.

2.3 Parent Directory

In MULTICS each segment "belongs to'" a directory (its parent
directory) which determines the scope of the name of that segment. T.ere may
be many segments in the system with the same name as long as they each belong
to a different directory. Specification of the parent directory will often
be implicit but facilities for explicit specification should be provided for
compool input and possibly for segment declarations within a program.

2.4 Segment Allocation Mode

The specificaticn of allocation made determines when and by whom the
creation and destruction of the segment will be triggered. A data base re-
trieval program provides an example of the requirecments for flexibility and
convenience of allocaticn. Suppose that we have two or nore data bases with
similar structure but different data. They all contain personnel data but
each for a different department of the came organization. We also wish to
allow simultaneous retrieval from each data base by rore than one user. The
combination of JOVIAL and MULTICS should be well suited to the production and
operation of a single reentrant retrieval program which will satisfy this hypo-
thetical requirement. The key to this achicvement is providing the proper
flexibility <¢f control over data allocation to the JOVIAL user. It shouid be
possible for the user to create segments for each of these data bases all with
the same structure declarations (tables and items). The retrieval program
must be programmed so that the segment names of cthe data bases may be vari-
ables whose values are not known at corpile time. It must be possible to
create segmen:s which are private to the process of each user for scratch
storage during; the operation of his retrieval. Finally, these requirements
should be sat:sfied with a considcrable degree of convenience to the program-
mer and the retrieval user.

Two basic types of segment allccation control can provide the necessary
flexibility and convenience:

A. The compiler generates code to automatically allocate space private to
each process at the time that process first references the data. In ad-

dition, that space is automatically released when the process is destroyed.

The only action required of the program writer or user is to specify that
the segment has this allocation mode when he declares the segment.

B. The programrer includes a call in his program which causes the creation of
the segment when his program is executed and a complementary call for the
destruction of the segment. The compiler automatically generates code for
the proper addressing of the data in this segment based on the structure
specified in the segment declaration. By careful selection of the parent
directory, the programmer may have several segments with the same struc-
ture and name and still program to access one of these segments without
ambiguity. For example, if he makes the process directory of the process
executing the create call the parent directory of the created segment, he
will have a separate segment private to each process which contains the
program with the create call. Similarly, if he uses a directory private
to the personnel staff of department ABC as the parent directory of the
created segment, then only processes which are run for members of that
personnel staff will be able to access that segment.

The programmer should be able to specify the desired allocation mode in
his segment declaration.

It is not recommended that allocation mode be separately specified for
individual items and tables of JOVIAL data. It is recommended that all
JOVIAL data take its allocation mode from the segment to which it belongs.
This allows the programmer to declare a lot of minutely specified data
within a segment while avoiding unnecessary expansion of the linkage seg-
ment. The loss of flexibility is only nominal since he can always put
his different pieces of data in different segments if different alloca-
tion modes are desired.

2.5 Segment Structure

The usual JOVIAL declarations cf items, tables, arrays and strings
should te the main method of specifying the structure of a data segment. The
structure of a segment of instructions may be partly specified by program or
procedure declarations. It will be necessary to have facilities for the pro-
grammer to specify which elements are in which segment and in what order they
occur in the segment. It is recommended that the JOVIAL overlay declaration
be used for the specification of order. The specification of inclusion in a
specific segment could be accomplished by an extersion of the overlay declar-
ation so that a segment name is a legitimate first terr. of the overlay's data
sequence or by use of BEGIN END brackets to enclose the declarations of the
data belonging to the segment. One advantage of the BEGIN END bracket method
is that it could also be used to specify which segment a program or procedure
belongs to for compool input. The programmer probably should be prohibited
from specifying that formal parameters be placed in a specific segment. There
probably should not be any facilities for the programmer to specify that some
declared data is located at an explicit address of a segment because there are
a few hints in the MULTICS documentation that some of the words of the segment

S

are used for system housekeeping but there does not seem to be any all inclu-
sive statement of which words.

2.6 Segment Contents

It is recommended that the usual JOVIAL presetting facilities be
available for prongram declared data. The actual operation of initialization
must oecur at the time of segment creation. This will not be the same as com-
pillation time or compool assembly time. Therefore, special system routines
for initialization will have to be separate from the compiler and compsol
assembler. Once the complete mechanism is set up for presetting program de-
clared data the application of this mechanism to data declared in the compool
may be quite simple.

3.0 EVENTS IN THE LIFE OF A SEGMENT
The events described below are fundamental to the use of segments in MULTICS:
Declaration
Creation
Attachment to a Process
Linkage to Another Segment
Detachment from a Process
Destruction

Although these are not the only things that can happen to a segment, they are
the most significant things which happen to the segment as a whole and they
form the basis of some segment classifications which are important to re-
entrancy. Definitions of these events follow.

3.1 Segment Declaration

The declaration of a segment is the action of filing away a set of
descriptive information about the segment in such a way that certain system
programs (such as the compiler) can refer to the description with little ad-
ditional work on the part of the user. Some examples of such descriptions
are the descriptions in & JOVIAL compool or the dictionary produced during a
corpilation. This set of descriptive information may include specifications
of the attributes of the declared segment and declarations of the structure
and coding of the segment contents. It does not include the body of the seg-
ment although it may include a list of initial values which are to be inserted
when the segment is created. It is not necessary that the declaration specify
all of the attributes of the segment. It is desirable to allow some of the
potential descriptive information to remain unspecified until later events
(especially until segment creation). The attributes: segment size, parent
directory, and various details of the access list are most likely to be left
unspecified until segment creation.

10

The description may be considered as a set of rules which are to be followed
by the system when the segment is created, manipulated, or destroyed. This

set of rules is similar in function to the set of rules which results from a
JOVIAL item or table declaration. It is a command to the JOVIAL system that
vhen manipulating element XYZ, the manipulation is to be consistent with the
attributes filed in the declaration of XYZ.

It is recommended that new compool input language forms be designed for
declaration of segments (see Section V). 1In addition, it would be desirable
to provide similar language forms for including segment declarations in a
JOVIAL program. This would allcw a user who has a relatively simple inter-
program communication problem to solve it without going through the extra
steps of compool assembly.

The determination of what portions of a complete segment description should
be included in segnent declarations will depend on how the MULTICS system
commands for segment creation and directory manipulation are organized. This
information is not completely available yet. However, it is clear that some
of the elements of the description should be optional and that it should be
rossible to specify some elements indirectly. For example, it should be pos-
sible to specify that the parent directcry is to be the process directory of
the process in which the create call is executed, even though that process
and that process directory are not yet in existence at the time the declara-
tion is processed.

3.2 Segment Creation

Segment creation is initiated by a call to MULTICS routines which
build & directory entry describing the segment. This event includes several
major operations:

1. Actusl construction of the directory entry.
2. Allocstion of some space for the body of the segment.

3. Creation of an associated linkage segment and segment symbol table if
they are needed.

4. 1Initializing the value of the body of the segment if necessary.

The specifications necessary for this action (parent directory, size, linkage
information, etc.) may have been previously declared and filed away (in a
compool) or they may be specified as a part of the call to build the directory
entry, or they may be split between the two sources. The JOVIAL compiler (and
associated programs) will have to gather the information from declaration and
call and provide a complete set of parameters to the MULTICS system routines.

Segments which contain program instructions should be created at compile time.
If the programmer is controlling allocation, the segment creation event will
occur as his call is executed. In the cases where the segment creation event
is autamatically controlled by compiler-generated code, it will be necessary
to use the traps which MILTICS provides as a part of the linkage process.

11

3.3 Attaching a Segment to a Process

This includes giving the segment a segment number in this process
and appending a copy of the associated linkage segment to the process' link-
age segment. This event is handled automatically by the MULTICS routines
which get called during linkage. The MULTICS documentation refers to this
event as making the segment known to the process. It occurs when the segment
is first referenced by the process.

3.4 Linkage tc Another Segment

This event includes the modification of the reference-by-name which
the compiler or assembler put in the original linkage segment to a reference-
by-address. This event may cause the attachment event to occur if this is
the first time the referenced segment has been used in this process.

3.5 Detachment of a Segment from a Process

This event includes the destruction of the linkage information which
was built during attachment to the process and linkage events but does not
include destruction of the body of the detached segment. It seems likely
that this event would only be triggered by the death or destruction of the
process.

3.6 Segment Destruction

This event is the converse of segment creation. It includes deal-
location of space for the body of the segment, the associated linkage segment,
and the segment symbol table, loss of the values in those spaces, and removal
of the entry for this segment from its parent directory. Like segment crea-
tion, this event may be triggered automatically for some segments but there
will be similar requirements for manual control for certain applications. 1In
general we can look on certain segments as "belonging to" the process which
triggered their creation in the sense that when this process ends its segments
are destroyed. However, segments whose creation and destruction are under
manual control should be considered to be only "associated with" the processes
which triggered their creation or to which they are attached. Such a segment
should not be affected by the end of an associated process and may be destroyed
only by the explicit command of a user with the proper access authority. The
mechanism by which this distinction is controlled is the specification of the
proper parent directery for each segment. A segment whose parent directory is
the process directory will be automatically destroyed by MILTICS system
routines when the process itself is destroyed.

4.0 CONCLUSIONS

The effects of the MULTICS.policies and conventions about segmentation enter
into all aspects of program production for MULTICS. Successful implementation
of any compiler requires an understanding of these policies to about the same
extent that compiler production of a compiler for the IBM-7090 computer
requires an understanding of its instruction set. The large volume of MULTICS
documentation and its changes and growth have precluded the analysis of all

12

of the segmentation aspects of MULTICS and the GE-645 computer. In particu-
lar, the MULTICS system routines by which a user can manipulate directories
require further study. The development of detailed plans for the use of these
routines will be & necessary part of the compiler design.

The introduction of allocation modes and the addition of segment declarations
to the JOVIAL language (at least for compool input) are significant extensions
beyond previous JOVIAL implementations. Also, the division of labor between
compile time and execute time is significantly different than previous JOVIAL
implementations. All of these changes are considered to be important for one
of two reasons:

1. Some are necessary to operate at all.

2. Some make it possitle to accomplish things for which both JOVIAL and
MULTICS are especially well suited, such as the reentrant data base
retrieval program described in paragraph 2.4 above.

The relationship between JOVIAL and segmentation should also be considered in
the user documentation for the compiler. Some tutorial material about segmen-
tation is expected from the MULTICS implementation project. However, it will
probably not be extensive enough or well enough oriented to JOVIAL to satisfy
the needs of the JOVIAL users.

5.0 SEGMENTATION OF THE OBJECT PROGRAM

This paragraph is intended to answer some of the questions related to the
segmentation of the compiler-produced object program. While specific recom-
mendetions are made, these recommendations should not be taken as gospel.
There is much room for the compiler implementer to shuffle things around and
perhaps evolve a more efficient and/or logical separation.

5.1 Available Segments

Available to the compiler for the deposition of data are the four
segments generally associated with any program: the text; linkage; stack;
and symbol segments. In addition, it is within the power of the compiler to
create any other segment either it (the compiler) or the user discovers to be
necessary. This creation may take place at either compile or execution time
(via a trap routine).

5.2 The Obviouc Choices

There is very little controversy in choosing the text (or procedure)
segment to contain the object program's executable instructions. There seems
little that can te gained from segmenting this object code any further (e.g.,
assigning each or a select few procedures to unique segments). Indeed, execu-
tion time will be impaired by attempting any such segmentation. Note that
some general purpose procedures may be shared by multiple users by compiling
them separately into their own segments (see Section IX).

13 J

At

Likewise, it is recommended that the program and compilcer-generated constants
also be allocated in the text segment. As they can be referenced only from
within the text segment and since by their very nature, never change, there
is absolutely no point in placing constants elsewhere.

If the user is provided the capability of speciiying a unique segment for
some of his data (this is the recommendation in Section V), then it is our
belief that this data should, in fact, be allocated within that segment.

The symbol segment is & rather obvious choice for the program compool (if one
is produced).

The natural place for the linkage pairs with fault type two's necessary to
make intersegment references would seem to be the linkage segment associated
with the text segment.

Finally, the system's mechanism for calling procedures in other segments
(CALL/SAVE/RETURN macros) places the machine conditions on a CALL in the
stack segment.

5.3 The No-So-Obvious Choices

Pertinent to the dilemma of where to allocate the object program's
data which has not been specified as belonging to a particular segment, are
the following facts:

A. To provide a reentrant capability, it is necessary that for each process
which calls upon a reentrant program, that some or all of that program's
variable data be allocated privately to that process.

B. The linkage segment associated with a particular text segment is auto-
matically copied as an addition onto the process linka.e segment for that
process which referenced this particular text segment.

C. The invocation of *he linker via indirzct references to the linkage seg-
ment and fault type two's should for efficivncy's sake, be held to a
minimum. ’

D. The system requires that a specific hase register pair (lbe=lp) contain a
pointer into the linkage segment itself; likewise, for the stack segment.
These base register pairs allow for direct efficient raferences into the
linkage and stack segments.

E. The segments containing the user's data private to this process must be
"destroyed" at the completion of the process (sce paragraph 3.6 above fer
discussion of segment destruction).

F. The linkage segment is automatically "destroyed" at process completion
time.

The above-outlined facts point to the linkage bpg”ent associated with a text
segment as the repository for the object program's data which was not

14

specified as belonging to a particular segment, and this is our
recommendation...with one exception: data sets which are "too.large" to fit
into the linkage segment should be placed elsewhere. The linkage segment is
finite in length (256K words) and care must be taken to prevent its overflow
as the system presently makes no checks on its size. Since it is literally
impossible at compile time to determine the eventual size of a process's link-
age segment, it is ruggested that some arbitrary size for a piece of data be
selected as the cut-off point for allocation in the linkage segment. Any
table, array, etc., larger than this number will be assigned to one (or more,
if needed) unique segment(s). The determination of how large is large is
left to the implementer. It should, of course, be a parameter which could
easily be changed as rniore experience with the system yields more data to
work with.

Thus, data vhich is not specifically assigned to a unique segment by the user
and which is not "too big" should be allocated in the linkage segment asso-
ciated with the object program's text segment.

The external symbol definitions may be allocated in either the text or link-
age segment. Since the linkage segment is to contain the program's data (as
described above) and since, with one exception, the symbol definitions are
constant, we recommend that these definitions be placed in the text segment.
The one exception mentioned above is the presence of a trap indicator within
the definition. Since this indicator may be changed (i.e., cleared to zero),
it is necessary that the symbol definition containing & non-zero trap indi-
cator be placed in its entirety in the linkage segment. (Note: this is done
in order to maintain the purity of the text segment, i.e., nothing within
text gets modified.) There is provision within the linkage segment fcor dis-
tinct linkage blocks, one of which has pointers into the text segment for
symbol definitions; the other of which has pointers into the linkage segment
itself. It would seem to be possible for those definitions which contain non-
zero trap indicators to te allocated in the linkage segment while all others
would be in the text segrent. While this is our recormendation, the extra
time and effort necessary on the part of the implementer to adhere to it, as
opposed to putting all symbol definitions in the same segment, should be con-
sidered beforera final decision is made on which methed to choose.

In order to maintain the integrity of all temporary registers used in the code
generated by the compiler, it is necessary to place them in a segment which
gets created, not only for each process which uses the particular reentrant
program in question, but couceivably for an intersegment function call. To
satisfy this requirement and to have maximum efficiency in the accessing of
these registers, it is recommended that they be allocated in the stack seg-
ment. The sbé=sp base register pair always contains the correct current
pointer into the stack and provides for an efficient, direct reference to
the data within. It is additionally recommended that the stack segment be
used to hold the necessary save information during intrasegment procedure
calls. This information would include the return address plus any index
registers used within the procedure being called.

The last piece of controversial data i1s the set of preset data or initial
values. As these cannot be set into the appropriate data segments until

15

execution time and as they are constant, it is recommended tt.' they be allo-
cated in either the text or symbol segment. Nothing we have ui.icovered to
this point, indicates that either is preferable over the otu:; thus, we

s

recommend leaving this allocation to the discretion of the iuplementer.
5.4 Summary

The following chart summarizes our recommendations for the alloca-
tion of data in an object program.

16

Juam@ss

HUTT O3uUT 31J O3
93181, 003 (0319
‘fexae ‘a1q983)
BaJIB BIB(J

B1ED
STY JI03J juswdss
JIB8TNOT 3aed

B parJroads-aasf

13930

(sanpadoad
yora I0J7

OM3 3SBIT 3®)
SI93ST834 PpoaAeg

SI193ST33Y
Axeaodway,

¥o®lg

sxajutod
dexq 0asz-uou yYiImM
SUOT3TUTFSQ TOqUAS

2I9Y 313 03

,93a8T, 003 30U pus
quaudas JeTnotiged
® 03 BurBuoTaq s®
patJroads j0u ®lEp
PaIBTO8pP-I3S()

i

(oma
ad£q 3TNBIY U3lIA)
sated 38ejyuly

Jut]

STQBY.O0M ST SqU3WIas om2 JO JI9UTH =

xS3NTBA TRIATUT

Toodwmo) ursxBoad

ToquAs

urexdoxg 30s(qQ 9y3z JO UOIIBIUSWISG

(sxa3utod

dexy 3noyzta)
SUOT3TUTI3(
ToqQuAs

#SoNTBA TBIITUL

3qUB3SUOD

SUOTAONILSUT

3X3L

17

SECTION IV

REENTRANCY

1.0 INTRODUCTION

A reentrant program is one that, as a single copy, can be called upon from one
process, interrupted, called upon independently from another process, inter-
rupted (and so forth), and independently resumed at each point of interruption.
For example, if a compiler is reentrant, only a single copy of the compiler
need exist, no matter how many programs are being compiled simultaneously.
Large savings in the use of high speed storage and the volume of input/output
traffic can be gained by compiling JOVIAL programs to be used with MULTICS as
reentrant programs. An important side benefit of a JOVIAL compiler that
produces reentrant programs is that the JOVIAL compiler itself will be reen-
trant since the JGVIAL compiler is used to compile itself.

The production of reentrant programs requires the capability to:

1) produce pure program elements
2) selectively allocate storage
3) efficiently select context

The following sections describe these capabilities and explain how they can be
satisfied in the environment of JOVIAL, MULTICS, and the GE-oL5 computer.

2.0 PURE PROGRAM ELEMENTS

The essential characteristics of a pure program element is that it does not
get modified during execution of the program. Tlhus, it can exist as a single
copy in high spred storage even if it is being used by several processes.
Furthermore, should storage requirements cause a pure portion of a program to
be swapped out of high speed storage, it need not be written out since it has
undergone no change and can be reloadsd from its original source when it is
brought back into core. The pure portinn of a program includes instructions
that do not get modified during program execution, constant data, and initial
values.

By contrast, an impure program element is one that does get modified during
execution of the program. Its usage dictates whether a single copy exists for
all users or vhether each user has his own individual copy. Whenever an impure
portion of a program is swapped out of high speed storage, it must be written
out so that a copy exists to bring back into core. The impure portion of a
program includes variable data and modifiable instructions.

Effective use of reentrancy requires the compiler to generate pure code to the
greatest extent possible and to isolate constant data and initial values from
variable data and modifiable instructions. The different types of pure infor-
mation must be concentrated in one cor a few contiguous portions of the
addressable space in order to minimize the housekeeping needed to distinguish
the pure portions from the impure.

18

+

e

3.0 SELECTIVE STORAGE ALLOCATION

Effective use of reentrancy requires two types of storage allocation for
program elements, single copy and multiple copy, and two modes of triggering
that storage allocation, automatic and controlled. Some program elements, such
as the pure portion of a program, must be allocated storage only once if we are
to gain anything from reentrancy; whereas, other program elements, such as the
compiler-generated temporary storage for intermediate results, loop variables,
etc., must be allocated for each using process.

However, it 1s not always possible for the compiler to determine the type of
storage allocation (single or multiple copy) for all data explicitly declared
by the programmer. Most of the programmer-declared data should have multiple
copy allocation but there are some important applications where there is a
clear requirement for multiple users to share a single copy of data. For
example, a reentrant data base retrieval program should be able to reference a
single copy of the data base while being used by many users. Furthermore, the
compiler cannot determine when to allocate storage for program elements it
recognizes as single copy elements. Therefore, there must be two modes of
triggering storage allocation: automatic, whereby the compiler provides the
mechanism, via a linkage trap, to trigger storage allocation for each process
that references the program element; and controlled, whereby the user, either
within his program or from a console, provides calls to the system programs

to trigger storage allocation.

It is necessary to provide the programmer some explicit control over the
storage allocation mode used. One way the programmer can indicate whether to
use controlled or automatic allocation is to include this information in the
Compool. Another way would be to allow the programmer to control the alloca-
tion mode of program-defined data by extending the JOVIAL language. At the
time storage is allocated, it must also be initialized if any initial values
are given in the program. The initialization cannot occur at compile time
since the number of copies of automatically allocated data is unknown.

Storage deallocation occurs in two modes as well; all storage that was auto-
matically allocated is automatically deallocated at the death or destruction
ot the process and all storage that was manually allocated must be manually
deallocated.

L.0 EFFICIENT SELECTION OF ENVIRONMENT

Whenever a single copy of a program is shared by different users and multiple
copies of data storage are allocated, there must be some medium by which the
connection between the single program and the proper environment is maintained.
This medium of connection will be used every time an instruction in the program
refers to an element which is separately allocated for each user. Efficient
operation is so important here that reentrant programming is seldom worthwhile
unless this connection can be made through hardware facilities such as index
registers or base registers.

19

The GE-645 computer does offer hardware facilities to expedite efficient
selection of environment. MULTICS has established conventions for usage of
these hardware facilities and for some standard segment allocation. In par-
ticular, the JOVIAL compiler must produce code which references a linkage
segment, a stack segment, and perhaps a symbol segment in addition to a text
segment that contains the pure portion of the program and other needed seg-
ments. The compiler can also take advantage of the fact that one address
base register pair always contains a pointer into the linkage segment while
another contains a pointer intc the stack segment by allocating data to these
segments whenever possible (a discussion of data allocation can be found in
Section III). The available address base registers should be used judiciously
and the number of segments produced for a single program should be kept to a
minimum.

5.0 RELATION BETWEEN REENTRANCY AND RECURSION

A recursive program is a program that can call itself or that can be called
by a program that it has called or both. It is necessary for a recursive
program to be reentrant to prevent a profusion of copies of the same program
from overcrowding high speed storage.

However, a recursive program has even more stringent storage allocation re-
quirements than a reentrant program. For a reentrant program, some storage
must be automatically allocated for each process that uses the program and
deallocated at the death of the process whereas for a recursive program, this
storage must be automatically allocated each time the program is entered and
deallocated each time the program is exited. When the recursive program
calls itself, the previous allocation of muitirle copy storage remains in
effect but becomes inaccessible and a new generation of multiple copy stor-
age 1s allocated. When the recursive program returns, the previous alloca-
tion again becomes the current one. Thus, in a recursive program, the
mechanism for the selection of environment must distinguish between more than
one generation of storage belonging to a single user and must connect the
program with the youngest generation of storage.

In MULTICS, the natural place to allocate the multipie generations of storage
subject to recursion is in the call stack segment. The standard MULTICS
calling sequence and the base register pair that conventionally reference

the call stack provide a reasonably efficjent method of allowing the pure
portion of the program to reference the youngest generation of the impure
portion.

6.0 SUMMARY AND CONCLUSIONS

The special multiple allocations for storage, characteristic of reentrant and
recursive programs, are costly. The design of the GE-645 computer and of
MULTICS helps to moderate the extra costs due to reentrancy and recursion,

but they do not completely eliminate the extra housekeeping. The extra house-
keeping operations due to reentrancy are not too great and are balanced by the
savings due tco sharing a single copy of common programs. In fact, the savings
due to a few heavily used large programs, such as the JOVIAL compiler, would
probably justify providing reentrancy as a general capability of all JOVIAL

20

programs. But the extra housekeeping due to recursion is considerable and can
be avoided by allowing the compiler to generate code that takes advantage of
the fact that a JOVIAL program cannot be recursive.

2l

SECTION V

A SYSTEM COMPOOL CAPABILITY UNDER MULTICS

1.0 INTRODUCTION

The following paragraphs describe how a system compool capability might be
developed for use by a compiler operating under the control of MULTICS. They
contain an explanation of the compool concept and list some of the advantages
and disadvantages of having a compool capatility. Alsc described is the de-
sign of the compool, how it could be constructed, and the methods which might
be used in accessing the defined data.

2.0 THE COMPOOL CONCEPT

In building a system of programs coded in JOVIAL, one of the major problems
which must be solved is how to provide a communication capability amongst the
programs of the system. In JOVIAL, this communication usually means the
sharing of data which is maintained at some location accessible by any pro-
gram in the system. This collection of data descriptions is referred to as
the compool.

Contained in the compool are complete descriptions cf all data which may be
used by more than one program in the system. During the compilation process,
if a program references but does not internally define a piece of data, the
compiler searches the compool for this data, and if found, generates code
using the description and address as defined in the compool. If the data is
not found, then it is assumed to te undefined.

The compool is usually built by a program referred to ac a compool assembler.
This program accepts as input data declarations which for convenience sake
should be as near the standard JOVIAL formats as possible. Data which the
assembler program should be capable of handling includes tables, table 1items,
simple items, arrays, and constants. Also acceptable as input should be
information concerning programs and procedures and their parameters.

A second program is normally included where there is a compool capability.
The two major functions of this program are to disassemble the compool into
some sort of symbolic output, and to perform an analysis of the compool in
which it checks for such discrepancies as duplicate names and unintentional
overlaying of data.

3.0 ADVANTAGES OF A COMPOOL CAPABILITY

If two or more programs are to communicate with each other using data as the
means of communication, then it is not only mandatory that each program be
able to access the data but that each program treat the data in exactly the
same manner. Use of a compool provides this capability in that the data are
structired in one place, the compool, instead of each individual program. It
is therefore possible to change the whole data structure of the system by Just
the generation of a new compool and the recompilation of the system programs.

22

Also contained in the compool are the system-dependent constants which,
especially in a mathematically-oriented system, will probably need changing
during the course of the development of the system. A change in the compool
eliminates the need for changing the constants in the possibly hundreds of
places they are used throughcut the system.

The use of a compool also serves one of the major purposes of MILTICS in that
it provides for the sharing of a relatively small area of memory by a possibly
large number of users.

Use of the disassembly function can prove to be a valuable tool in the areas
of program and system documentation.

4.0 DISADVANTAGES OF A COMPOOL CAPABILITY

The only disadvantage in having a compool feature is the cost involved in
building the compool assembler and disassembler, and in implementing the
compool capability in the compiler. However, much of this cost can be off-
set as explained in the following paragraphs.

5.0 BUILDING THE COMPGOL

As a minimum requirement, the compcol should contain descriptions and
addresses for tables, table items, simple items, arrays, constants, programs,
and procedures and their parameters. Data should be input to the assemble
function in a symbolic form compatible with the JOVIAL language.

5.1 Compool Assemble Function

The recommended method of building the GE-645 compiler (see Section
II) states that the compiler will have two major portions, the generator and
the translator. Tt is recommended that the compool assemble function be in-
corporated in this generator pertion of the compiler. The generator will op-
erate in an assemble compool mode, at the optional request of the user, in
which it performs only those operations needed to process a compool deck and
to prepare the output which is needed during the compilation of a source pro-
gram. Since the data descriptions in the compool deck will be very similar
to those found in the source deck of a program, advantage could be taken of a
great many of the processing features of the compiler, such as table packing,
presetting, and overlaying of data. The cost of the assemble function would
be greatly reduced and the user would be provided with capabilities, such as
table packing and thorough error checking, that might not be found in an
ordinary separate assemble program.

The input to the compool assemble function is a deck of data declarations and
overlays headed by a control card which should give control information such
as the compool name. The data declarations and overlays should be in a for-
mat as close to those described in the JOVIAL language specifications as pos-
sible. In addition to the data declaration cards, additional control cards
may be input which enable the assemble itunction to organize the data into

23

groups, or segments. As a minimum requirement, these control cards could have
the following format:

SEGMENT name, mode, access list $

The data which are to be segmented by a SEGMENT card should in some way be
easily recognized as being controlled by that card. This could be done by
enclosing the data within BEGIN-END brackets following the SEGMENT card.

The name field specifies the name of the segment. All data contained in this
segment can be addressed by this name and the relative word number within the
segment.

The mode field can be either a C for controlled mode or an A for automatic
mode. The controlled mode means that the user is responsible for creating
the data segment prior to the time he wants to reference it. In the auto-
matic mode, the allocation and the creation of data segments is done for the
user (via a trapping subroutine) and needs no extra activity on his part.
This creation and allocation will take place at execution time on the occur-
rence of the initial reference to the data segment. As this automatic allo-
cation will occur for each process using a particular program with a data
segment declared to have an automatic mode, that program will satisfy one of
the requirements of reentrancy (i.e., that of unique data for each of its
users).

The access list is used to control the availability of the compool data to
different users. It may contain the actual ID's of potential users or it may
be a pointer to some table which contains these ID's.

In the absence of a SEGMENT control card, the assemble furction should con-
sider the data as all being in one segment, the name of which can be some
derivative of the compool name.

It is recommended that the output of the assemble function be one segment.
The name of this segment is the same as the compool name specified on the
assemble function control card. Within this compool segment, each data
description could be in a format corresponding to that of the Segment Symbol
Table. This could possibly make the compool available for use by any MULTICS
system procedure which is geared to handle this table. Since this is the
same format recommended for the program compool (see Section VI), the system
and program compools may, to some degree, be interchangeable.

5.2 Compool Disassemble Function

This is a feature of the compool capability that is recommended but
which is not absolutely essential. The disassemble function may be handled
by a program separate from the compiler. Its primary function is to trans-
late the contents of the compool into a symbolic output. Concurrent with
this activity is a check for possible error conditions in the compool (e.g.,
inconsistent overlays) which were not detectable during the assemble function.

2L

6.0 ACCESSING COMPOOL-DEFINED DATA

In the compool mode of compilation, the compiler retrieves frcm the segment
containing the compool the information it needs to produce code which will
manipulate the data in the way specified by the source statement. Instead
of an absolute or relative address, the address of the data is formed by
using the segment name and word number within the segment.

The compool is accessed only if the program being compiled references data
which is not declared internal to itself. This means that in the case of
like names, the program-declared data are used.

7.0 RECOMMENDATIONS

The compool concept is entirely feasible in a compiler operating under
MULTICS. It is recommended that, as a minimum requirement, the assemble
function be incorporated in the generator portion of the compiler. It is
also recommended that the disassemble function be considered as desirable
but non-essential.

25

SECTION VI

PROGRAM COMPOOL

1.0 INTRODUCTION

The program compool contains complete descriptions of all data declared with-
in a source program and all data in the system compool referenced by the pro-
gram. It also contains information on all labels defined within the program.
In addition, there are descriptions of data and labels contained in any pro-
cedure compiled into the program. The program compool is optionally produced
by the compiler in response to a cequest by the user.

2.0 STRUCTURING

It is proposed that the program compool be structured in the format of the
Segment Symbol Table and that it be placed in the symbol segment. This makes
the program compool available for use not only by the debugging tools des-
cribed in this document but by other MULTICS system procedures as well.

The program compool is built by the compiler during the actual compilation
process. In addition to its normel function, the compiler, in response to
an optional request by the user, operates in an assemble program compool mode
during which time th= table containing the program compool information is
constructed.

3.0 ADVANTAGES OF A PROGRAM COMPOOL

The availability of a program compool allows a number of activities to be
carried on which would not otherwise be available to a user. 1In the area of
program debugging, several tools can be built around the use of a program
compool (see Section VII). Test data generation can be accomplished by use
of symbolic names (instead of any type of an address) in a language very
similar to that used in the source program. Data recording can also be
accomplished by specifying data names and locations symbolically. The data
may be processed and appropriately formatted entirely.dependent upon the
compool definitions.

'f the recommendations concerning the formats of the system and program com-
pools are followed, then the two compools are compatible. The program com-
pool may be used as input to the compool disassemble/analysis function des-
cribed in Section V, thus saving the cost of an additional disassemble pro-
gram. The output thus obtained is a useful tool in the preparation of system
and program documentation as well as being an aid in program debugging.

Because of this compatibility, a program compool, once generated, may be used
in lieu of a system compool for initial compilation purposes. The construc-

tion of system compools may also be assisted by the availability of numerous

program coumpools.

26

4.0 DISADVANTAGES OF A PROGRAM COMEOOL

The only disadvantage of having a program compool is the implementation cost.
However, this could Jjust as easily be considered as an advantage if a system
compool capability is to be built into the compiler. The same functions in
the generator phase which are used to build the system compool may also be
used to build the program compool, thus saving any need for extensive
additions to the compiler.

5.0 CONCIUSIONS AND RECOMMENDATIONS

A program compool is an invaluable aid in the use of debugging tools. It can
also prove useful in the area of system and program documentation and as a
backup to the system compool. Its construction is not forced in unwanted
cases due to the optional feature. The implementation cost is unprohibitive.

It is recommended that the construction of a program compool be incorporated
in the compiler and that this construction be controlled by an optional
request from the user.

SECTION VII

DEBUGGING AIDS

1.0 INTRODUCTION

Debugging aids can be divided into two categories: those which can be incor-
porated into the compiler and executed as part of the compilation process;
and those which are normally operated during the execution of a user's Jjob.
Each category can be further divided into two modes of operation, on-line or
off-line. The following sections describe these categories and the modes of
operation.

2.0 DEBUGGING AIDS FOUND IN THE COMPILER

There are at least four debugging aids which should be incorporated in the
compiler. The most important of these four aids is the list of program
errors output during the course of the compilation. This 1list describes
errors which are generated by the use of illegal language forms according to
the syntax of the language. The other three aids are a set-used listing, in
which a record is kept of all references to data, statement labels, proce-
dures, loop variables, and switches; a listing of the compiler's dictionary,
which is a symbolic description of each entry in the dictionary; and a listing
of the object code produced by the compiler.

2.1 Program Error Listing

The program error list should be divided into two major sections.
The first section contains a description of those errors which can be detected
during the scanning of the source language statements. The description of the
error is output at the time of its detection and as a result, the list of
errors is interspersed with the listing of the source deck. In this way, the
error can be more easily associated with the source statement containing the
error.

The second section contains those errors which cannot be detected until the
entire source deck has been scanned or until the object code is being gener-
ated. This list is output at the end of the source program listing or the
object code listing, or both, depending upon the type of error.

The program error description may be one of two formats. It may contain Just
an error number which refers the user to a list of possible error conditions
or it may be an actual description of the error with some sort of indicator

ac to where in the statement the error was encountered. In either case, the
description should ccntain a reference to the number of the statement in error.

2.2 Set-Used Listing
The set-used listing is generated by a program operating as an op-

tional phase of the compiler. It may accept as input either the same source
program as that used by the compiler or the intermediate language output by

28

the compiler. The listing is a record of all the references the program has
made to tables, table and simple items, statement labels, procedures, func-
tions, closes, loop variables, switches, arrays, and strings. The listing
is in a symbolic format and the references are to either a card sequence num-
ber on the source card or to a compiler-generated statement number. Also
contained in the listing is information concerning: references to undefined
data and sequence designators; items declared within a program but never
used; ranges for loop variables; and the ranges for all BEGIN-END brackets.
At the end of the listing are the totals showing the number of tables, state-
ment labels, etc., declared in the source program and the number of references
made .

During the course of its execution, the set-used program may build its own
dictionary which is maintained and sorted by data type and which may be output
for possible use by other debugging tools. Additional output could include
the blocks of reference data which are also maintained by data type and sorted
by card sequence number or by statement number.

2.3 Dictionary Listing

Each entry of the compiler's dictionary contains all the informa-
tion gathered by the compiler about a single entity (e.g., an item, a proce-
dure declaration). The dictionary listing is a symbolic representation of
this information. For example, the listing should contain, for a table item,
the item name, name of the parent table, item type, word number in the table,
starting bit number, and number of bits or bytes.

This listing should be available to the user on an optional basis and should
follow the source program listing or the object code listing in the output
stream.

2.4 Object Code Listing

This is a listing of the actual machine instructions generated by
the compiler. Its format should be the same as that required in the DIRECT-
JOVIAL brackets of a source deck. In addition, the address and octal nota-
tion of the instruction should also be shown. This output should also be
available on an optional basis.

3.0 EXECUTION-TIME DEBUGGING AIDS

The majority of program debugging aids available to a user are used to best
advantage when used at the time of the program's execution. This means that
if the aids are to be made available, especially in an on-line mode, they
should be under the control of a program or a series of programs operating as
an extension of the compiler or preferably, as a separate package. Since all
programs should be able to take advantage of the execution-time debugging
tools, any program operating under the control of the debugging package should
be a copy of the actual program. This insures that at the end of the debug-
ging activity there is still in existence an original copy of the program and
that the policy of reentrancy has been maintained.

29

It should be pointed out that it is the responsibility of the user to mske
sure his program is available for testing by proper classification of his
program segment (e.g., it would not be possible to use the debugging tools
on a segment classified as execute-only).

The aids which fall into this category require the use by the debugging pack-
age of either a program compool or the output from the set-used program, de-

pending upon the type of debug request. Therefore, a request can be consid-

ered as falling into one of two groups.

3.1 Requests Requiring a Program Compool

The majority of requests in this area require the debugging package,
at specified points during the execution of the program being tested to: (1)
print data according to the data descriptions found in the program compool;
(2) give a dump of the area of core memory occupied by a user's job; (3) dump
core memory from specified locations; (4) change data values; (5) alter the
flow of the user's job; (6) delete previously generated debug requests; and
(7) terminate both the debugging and the user's activity. Other requests
permit the switching of debugging output between on-line and off-line units.

In order to accomplish this, the user's job is initiated and control is then
passed to the debugging package. The user's requests are interpreted, his
program is modified at the specified locations in order for it to relinquish
control to the debugging package, and control is passed to the user's program.
Upon encountering one of these modifications during the execution of the job,
control is relinquished to the debugging package long enough for it to carry
out the request or requests. This continues until the Jjob has completed its
execution.

3.2 Requests Requiring Set-Used Output

The purpose of these commands is to enable the user to find out
where in his source program he has made references to certain data or types
of statements. The output is similar to that produced by the set-used program
except the user can request information on a single type, i.e., a table,
table or simple item, statement label, procedure, function, close, loop vari-
able, switch, array, or string. He can request information on all references
or just on either the set references or used references. What he receives is
actually a partial set/used listing. In addition to the reference information,
the requester may also ask for information concerning the ranges for loop
variables and BEGIN-END brackets by specifying the card sequence number (or
statement number) of the loop variable or either the BEGIN or END card or
statement number.

The requests utilizing the output of the set-used program are not used during
the actual execution of a job. They can best be used either before or after
the execution in order to better take advantage of the aids described in
paragraph 3.1l.

30

4.0 MODES OF OPERATION

The modes of operation refer to the location of the input to and the output
from the debugging package. If it is to a primary device at which a user can
take immediate action, then the package is operating in an on-line mode. If
it is to some other type of device, then the mode is off-line.

The modes of operation in regard to output are controlled by the user through
requests to the debugging package. He may request that all output is to be
in a particular mode or he may request a mode for an individual request by
prefacing that request with the mode indication. The output in either mode
is in exactly the same format.

5.0 EXAMPLES OF DEBUGGING REQUESTS
The following examples illustrate possible formats for the debugging requests.

Similar formats have been incorporated in existing debugging packages and
have proven to be successful.

5.1 Requests Requiring a Program Compool
All the forms immediately following assume the availability of a

program compool. The upper case letters denote the actual requests. The
lower case letters denote the variable sections.

1) AT loc PRINT data $

2) AT loc DUMP FROM loc TO loc $

3) AT loc DUMP PROG $

L) AT loc SET statement $

5) AT loc GOTO loc $

6) AT loc DEIETE $

T) AT loc RETURN $

8) AT loc QIT $

9) AT loc IF relational statement THEN action ELSE action &
10) ONLINE $

11) OFFLINE $

12) GOTEST $

31

AL

where:

AT

PRINT

DUMP

FROM
TO

PROG

SET

GOTO

DELETE

RETURN

QUIT

IF..THEN. .ELSE

ONLINE

OFFLINE

causes a breakpoint to be inserted in the user's job
at the location specified. Upon reaching the break-
point, the debugging package is entered and the request
executed. It is not necessary to repeat the AT for
successive requests if the location is to remain the
same .

causes the data to be output in the format specified
in the program compool (i.e., as the user declared the
data in his program).

causes data, or instructions, to be output in an octal
format.

specifies beginning location of dump.
specifies ending location of dump.

causes a dump of that area occupied by the instruc-
tions and data of the program being. tested.

directs the debugging package to alter the user's Jjob
as prescribed by the statemernt portion.

causes the normal flow of the job to be altered.

causes a breakpoint previously inserted in the user's
Jjob to be removed.

allows the user to interrupt the execution of his job
to return to the debugging package for the purpose of
accepting more requests.

causes the debugging package to terminate itself and
the user's Jjob.

provides the user with conditional operations.

causes the output of the debugging package to be
directed to the primary unit.

causes the output of the debugging package to be
directed to a segment or file to be printed at some
later point in time.

Operation in either the ONLINE or OFFLINE mode remains
in effect until changed by the opposite request. If
the user wishes a mode to be in effect for only one
request, he may preface that request with either ONLINE
or OFFLINE.

GOTEST

loc

data

statement

relational
statement

B v

causes the debugging request to start execution of the
user's Jjob.

label name (for express labels)
procedure name.label name (for local labels)
segment name .word number

table name (refers to all occurrences of all items in
the table)

table name ($entry number$)
table name ($first entry ... last entry$)

table item name (refers to all occurrences of the
item)

table item name ($entry number$)

table item name ($first entry ... last entry$)
simple item name

nent (table name)

procedure name.data

nent (table name) = integer constant

table item name = constant list (constants must match
item descriptions)

table item name ($first entry$) = same as above

simple item = constant (constant must match item
description)

item EQ 1item or constant
item NQ item or constant
item LS 1item or constant
item [Q item or constant
item GR item or constant

item GQ item or constant

33

item table item name ($entry number$)
simple item name
nent (table name)
procedure name.item
If a constant is used in a relational statement, it
must correspond to the item type. The exception to

this rule is the use of octal constants.

action any debugging request which was legal follows the "AT
loc" term (other than IF).

5.2 Requests Requiring Output from Set-Used Program

The following examples use the output of the set-used program:

1) REFS data name $
2) REFS data name SET $
3) REFS data name USED $

4) REFS BEGIN card number/statement number $
5) REFS END card number/statement number $

6) REFS lpvar card number/statement number $

where:

REFS signals the debugging package that the outputs of the
set-used program are to be used instead of the program
compool.

data can be either TABLE, ITEM, LABEL, PROC, LOOP, SWITCH,
ARRAY, or STRING. This tells what type of data to
search for in the set-used output.

name is the name of the data called for by data. If it is
data local to a procedure, then the form is
procedurename .name .

SET indicates that only SET references are to be output.

USED indicates that only USED references are to be output.

Absence of SET or USED indicates that all raeferences
are to be output.

34

For number 4, the card number/statement number is the card sequence number or
the compiler-generated statement number (whichever was used during the execu-
tion of the set-used program) on which a BEGIN is found. The output from the
debugging package is the card number/statement number of the corresponding
END card.

For number 5, it is reversed.

For number 6, a card number/statement number for either the beginning or end-
ing range of the loop variable specified by lpvar is input. The output is
the card number/sta.tement number of the opposite range.

Some sort of octal patch capability should also be provided. This could be
taken care of by the following request:

AT segment name.word number PUT octal constant $

In the octal constant section of the request is the actual content of the
word which is to be placed at the memory location specified by the segment
name .word number. There may be more than one octal constant per request and
they need be separated only by a space. The constants are inserted in con-
secutive locations and are terminated by the dollar sign.

6.0 RECOMMENDATIONS
It is recommended that only those requests using the progran: compool be con-
sidered as an initial capability. The requests utilizing the output of the

set-used program, as well as the program itself, could be considered as
desirable but not essential.

35

Ly

SECTION VIII

ON-LINE COMPILING

1.0 INTRODUCTION

This section discusses the methods of on-line compiling under MULTICS. The
possible types of printable compiler output are also analyzed.

.0 ON-LINE COMPILING

The term "on-line compiling" implies that a user requests the compilation of
a JOVIAL source program from a console-type terminal (e.g., IBM-1050, Tele-

type Model 37). The user then expects compilation results directly via his

terminal, or at least, results which he can examine at his leisure via sup-

porting software (e.g., print the contents of a segment).

2.1 Method of On-Line Compiling

A user can prepare a JOVIAL source program for on-line compiling
in two possible ways: ‘

A. 1Input a card deck representing the JOVIAL source program into the MULTICS
Basic File System via on-line, on-site techniques (e.g., card to tape to
MULTICS, etc.).

B. Input a JOVIAL source program into the MULTICS Basic File System by typing
at a console terminal via the MULTICS Editor program.

These are only two methods of inputting a program. These methods do not pre-
clude others, as long as the JOVIAL source program resides in the MULTICS
system in some segment which is available to the JOVIAL compiler.

After the \ser has created the file containing the JOVIAL source program, &
command lince c¢f the following form is typed:

Jovial alpha

The term "Jjovial” requests the MULTICS Operating System to invoke the JOVIAL
compiler with the argument alpha. The term "alpha" represents a pointer to
the directory in the MULTICS Basic File System which, in turn, points to the
location of the user's source program, which is assumed to have been pre-
viously created by the user within a segment (e.g., beta.jovial).

2.1.1 Options
The various possible options to the compiler (e.g., SET-USED

ON, COMPOOL_ASSEMBLE ON, BRIEF OFF) can be input in a number of different
ways.

36

One method is by a direct use of the MULTICS option command. This command
permits a user to establish a permanent record of the types of options that
he desires. The format for the option command is:

option optionname setting

For each compilation, the user need not re-type all the options. The
"jovial" command will result in the calling of the read-opt procedure which
determines the status of the various options whether they be peculiar to the
JOVIAL compiler (e.g., COMPOOL ASSEMBLE) or to all translators in the MULTICS
system (e.g., BRIEF ON). -

If a user wishes to override his current option settings for a particular
compilation, he can include an interjected option command within his JOVIAL
request. The following command line is an example of an interjected option
command:

jovial alpha (option brief off)

In the above example the option command is invoked to set the brief option to
off before the compiiation of the contents of the segment pointed to by
alpha. In this case, the system does all the work.

Another method of inputting options to the compiler would be & command line
of the following form:

Jovial alpha (list brief no_setuse)

This example shows the JOVIAL command to have two input arguments. One, the
term "alpha" and, two, a list (array) of character strings that the compiler
must scan and interpret itself. In tals example, the illustrated options to
JOVIAL are not known to the MULTICS system unless the JOVIAL compiler calls

the systeil routine which records option settings.

In summary, the option command has been provided co that the user need not
re-type all his options for each compilation regardless of the language
involved. These options are available to any MILTICS subroutine and, for
efficiency sake and MULTICS standardization reasons, all language translators

are expected but not required to interface with the option facility. As long

as a user has created an option setting, ary language translator may access
it via system subroutines.

2.1.2 Output

The JOVIAL compiler processes the source program pointed
to by alBha. All output from the compiler is directed into new files in the
same location pointed to by alpha. Examples of these compiler created files
are:

beta - contains the binary equivalent of

the JOVIAL source program that was
contained in beta.jovial.

37

beta.error - contains diagnostic messages from
the compiler.

beta.link - contains the linkage segment for
the binary program in beta.

2.2 Advantages of On-Line Compiling

The user can compile his JOVIAL source program and receive imme-
diate output. Job through-put will be as expedient as possible.

3.0 USER OUTPUT

As the source program is being compiled, syntactical errors may occur. These
errors should be reported by the compiler immediately as they occur, on-line,
so that the user may either correct his errors and reinitiate the compilation
or completely abort the compilation from his terminal. The error messages
may possibly also be written into a segment (e.g., bote.error) which the user
may print or retain as a continuous history of the compilations of beta.

The compiler should also produce a segment in which will be included errcr
messages interleaved with the source program, set-used listing, source program
dictionary, etc. This segment could, at a later point in time, be prianted

via off-line software or directly on the user's terminal. Whichever method

of printing the user selects, the compilation will not have been restrained
by the relatively slow speed of the user terminal.

4.0 BATCH-PROCESSING COMPILING

A batch-processing compiler serially processes & number of JOVIAL source pro-
grams and produces binary output for them. This type of compiler normally
operates under the complete control of an operating system such as GECOS.
Another alternative would be a free-standing compiler which handles all its
hardware interfaces by itself.

It is felt that this type of compiling would be neither useful nor feasible
in the MULTICS envircnment and should not be considered at this time.

38

SECTION IX

PARTIAL COMPILATION CAPABILITY

1.0 INTRODUCTION

Partial compilation provides the capability to compile a small portion of a
program without the need to compile the entire program. More specifically,
partial compilation provides a means to modify a program symbolically by com-
piling additions of new symbolic code or deletions of existing symbolic code
without recompiling the entire program. Since only a small portion of a
program is recompiled for each modification, partial compilation is quicker

and less expensive than recompilation of an entire program. Since the modifi-
cations are made symbolically, partial compilation is simpler and more reliable
than machine language changes such as octal patches,

The extent of the partial compilation capabtility implemented is reflected in
the complexity of the resultant compiler. A compiler that allows the compila-
tion of individual program statements or small groups of statements would
differ considerably in complexity from a compiler that merely allows the
compilation of distinct program parts such as individual procedures. Many new
techniques would have to be developed for the implementation of an extensive
partial compilation capability.

One experimental JOVIAL compilier with a partial compilation capability is
currently being studied at SDC as part of the Interactive Programming Support
System (IPSS), which was suppcrted in part by RADC. A tentative conclusion
of the IPSS project is that it is not feasible to compile individual program
statements. They are now investigating the feasibility of compiling small
groups of statements. We feel that duplication of the IPSS effort is unwar-
rantea and that the final decision about implementation of an extensive
partial compilation capability be reserved until the IPSS study is completed.

2.0 RECOMMENDATION

We recommend implementation of a somewhat limited partial compilation capabil-
ity which allows the compilation of individual procedures separate from the
compilation of the main program or any other procedure. We use the term
"external procedure" to refer to a procedure that is compiled all by itself
and hence is external to the program or procedure calling it. Whenever an
external procedure is compiled, the control jinformation to the compiler would
identify the procedure as an external one, in response to which the compiler
would generate the instructions and storage required for subsequent linkage
with the calling program. Whenever a program or external procedure that calls
an external procedure is compiled, some information about the called external
procedure must be supplied to the compiler. The reason for this is twofold:
it signals the compiler to generate the instructions and storage required for
linkage with the external procedure and it supplies the compiler with informa-
tion about the formal input/output parameters of the external pro:xedure.

One way to provide the compiler with the necessary information about an exter-
nal procedure is to define the extarnal procedure in the Compool. Another

39

way, which is not absolutely necessary but is desirable, is to allow for a
prototype procedure declaration of an external procedure within the program
and hence within the JOVIAL language. The prototype procedure declaration
would consist of the procedure heading followed by a procedure body that
contains no statement 1list. For example, the prototype procedure declaration
of external procedure XYZ might be:

PROC XYZ(AA,BB = CC) $
ITEM AA F $
ITEM BB F $
ITEM CC F $
BEGIN
END

3.0 ADVANTAGES OF LIMITED PARTIAL COMPILATION

A partial compilation capability that allows for the compilation of individual
procedures can provide most of the benefits of a more extensive partial com-
pilation capability. Moreover, the implementation cost for such a capability
would be quite low since the linkage mechanism of the MULTICS system can be
used to combine the external procedures and the rest of the program into a
single unit. While such linkage does introduce some inefficiency, in many
cases the irefficiency will be negligible. In other cases, it might be desir-
able to reduce the linkage time by using the planned binding mechanism of the
MULTICS system. The amount of inefficiency introduced would be considerably
less than that introduced by the more extensive partial compilation. Further-
more, since partial compilation is of primary value during. program checkout,
the program can be compiled as a single unit after the completion of its
checkout, thus eliminating any unnecessary linkage.

4.0 DISADVANTAGES OF LIMITED PARTIAL COMPILATION

The limited partial compilation is neither as flexible nor as convenient to
use as the more extensive partial compilation capability. It necessitates
that a program be physically divided into parts. In addition to any procedure
the programmer chooses to compile as an external procedure, each procedure
called by an external procedure must also be an external procedure and compiled
separately. Several restrictions are Imposed on the external procedure: it
will no longer be allowed to reference data declared in the main program,
requiring such data to be defined in the Compool; it will no longer be allowed
to branch to a main program statement but will be required to execute the
normal return processing. The amount of data defined in the Compool will

be increased.

Lo

SECTION X

STRING PROCESSING

1.0 INTRODUCTION

This section outlines the advantages and disadvantages of implementing JOVIAL
STRING items in a GE-645 JOVIAL compiler. In addition to a possible implemen-
tation approach, a tentative conclusion is reached regarding the feasibility
of the inclusion of STRINGS in the compiler. For formal definitions of STRING
and bead, the reader is referred to AFM-100-2k.

2.0 ADVANTAGES

A.

More than cne occurrence of the same item may be packed into one
computer word.

For example, if a program requires 900 entries for a 12-bit item on a
machine whose word size is 36 bits, a STRING item may te declared such
that only 300. '~ lieu of 900, computer words are necessary.

Instead of declaring a table with 900 entries and one item 12-bits
long, a table with 300 entries and one STRING item could be declared
as follows:

TABLE TB V300S 1 $
BEGIN

STRING SI T 12S ¢ @¢D13$
END

The table TB would have the following format:

¢ 11 12 23 24)

SI{$9,0: SI($1,0%) SI($2,0%)
SI($3,9

N

SI($897,0%) SI($898,0%) S1($899,¢%)

with a resultant saving of close to 600 words of core storage.

The words of a long literal item may be individually accessed.

This can be accomplished by declaring a STRING item to be literal, one
word in length, and overlaying a long literal item.

For Example:

L1

e A RGN

TABLETB V 1§ S 2¢ $
BEGIN
ITEM LONGL H 120 ¢ ¢ $
STRING OVERL H 6 ¢ ¢ 1
END

18

With the above declaration, any word of item LONGL may be accessed
with the expression OVERL(w,e) where w is the word number desired
(p £v &€19) and e is the entry number desired (0 & e £9).

" Without STRING items being implemented, the above outlined objective

could be achieved in one of two other ways. Fifteen different table
items could be added to this table, each of which overlays a different
word of LONGL. A much more preferable technique would be to use the
BYTE modifier. For example: "BYTE($6,6$)(LONGL(7))" refers to the
second word of the first entry of item LONGL. With £ ING items, the
programmer could write an expression one-half the number of characters
needed in the BYTE expression (i.e., OVERL($1,d$)) to reference the
same data area. In addition, in the case that the word number (thus,
first bead of the BYTE expression) is variable, a compiler would be
able to generate significantly better code for the STRING item than it
could for the BYTE modifier. This is because it does not know if the
expression "BYTE($X,6$)(LONGL($¢$))" refers to a data area within one
word or extending over two consecutive words. It would therefore, be
forced into always generating code to handle the worst case. The bead
of a STRING item, on the other hand, is known to the compiler to be
within one word, and the compiler can always generate the best possible
code when it is used in this manner.

The individual bytes of a literal item may be individually accessed.

For example, by adding the declaration:
STRING OVERBH 1 ¢ ¢ 1 6§

to the table used in Section B above, it is possible to access any one
byte of item LONGL with the expression OVERB(b,e) where b is the byte
number desired (f &b & 119) and e is the entry number desired
(p€eL9).

The STRING item, in this case, has the same two advantages cver the

BYTE modifier as it had in Section B; i.e., the programmer can write
half as much JOVIAL to accomplish his objective and the compiler can
produce significantly better object code in the event of a variable

byte number.

The ability to preset a STRING item gives the programmer a limited
capability to set certain individual bytes of a character string and
only those certain bytes.

By presetting the first word of STRING OVERL in Section B above, the
first word of ITEM LONGL would be preset without touching any of the

b2

S TR

other words of LONGL. Likewise, succeeding worfls of LONGL could be
preset without changing those words of LONGL which it is desired to
leave unset.

E. The presence of a control item allows the programmer to work with a
variable number of beads in each entry of a table.

Thus, a table containing data about an organization's personnel might
contain a STRING item which has some indication of each of the differ-
ent professional associations to which a person belonged. The number
of beads used in each occurrence of the STRING item could be variable
depending upon the number of associations to which that person belonged.
The table would, therefore, use only as much space for each entry as

i+ recessarily had to in order to contain its data. Extra space need
.. -2 allocated for every entry in order to allow for the maximum

+3¢ in every case.

F. The inclusion of the interval parameter in the STRING item's
declaration allows one to skip a specified number of words before
subsequent beads are accessed.

For example, STRING SI of Section A above, with an interval of two
would look as follows:

S1($p,9%) SI($1,0$) SI($2,08)
SI($3,0%) SI($L,p$) SI($5,0%)
SI1($6,0%) etc.

The words between the occurrences of SI could be used for other data.

G. In a character-oriented machine, the usage of STRING could allow a
programmer to conveniently address any one single character in core

memory.

Likewise, in a machine with powerful character manipulation instruc-
tions, the usage of STRING would allow one to reference different bead
lengths (up to one word) throughout core knowing that the compiler has
these instructions at its disposal.

3.0 DISADVANTAGES

I'he sole disadvantage of STRING items, albeit a consequential one, is the cost
of implementation. The primary problem area would be in the translator (code
generator) phase of the compiler. Since it is legal to use a STRING item any-
where any other variable is legal, the translator would have to be prepared for
STRING items used as subscripts, as beads, as input and output parameters, as
switch items, etc. There are a significant number of different areas of the
transldtor which would have to be aware of the possibility of a STRING item
being used. Upon discovering the use of a STRING item, a different and, in

43

some cases, unique set of code would have to be generated. This is no trivial
task. As an illustration, the following is, in general, the kind of code the
645 compiler must generate for the retrieval of a STRING item declared:

STRING SI descriptionc d e f $

and used:
SI(a,b):
LDQ a
DIV f
STA Templ
MPY e
& TemP2 Only needed if # wds/entry # 1
LDQ b Y
MPY # wds /entry Otherwise, ADQ b
ASQ Temp2 STQ Temp2

LDQ Texnpl

MPY (bead separation)
ADQ c + (bead size)
STQ 'I‘empl

LDA Temp,,

LDQ SI, AL
QLR Templ ’ ot

ANQ Mask = (bits=1 for bead size)
(i.e., clear to zero all but meaningful bits)

Note that the compiler has to create and keep track of two temporary registers;
likewise, it has to create registers containing the constants "f" and "e" and
make them a part of the user's program. Dependent upon the packing specifica-
tion, '"bead separation" must be calculated‘by the compiler and saved in a
register which becomes part of the object program. The "mask" used in the
final instruction is yet another variable which must be determined by the com-

piler. It should be noted that the code shown here is meant to handle the

general case, i.e., one in which the STRING item's subscripts are both variables.

In the event that either or both are constants, a good portion of this code can
be eliminated as the compiler could and should do the arithmetic calculations
itself and not generate code to do so (e.g., eight divided by two is always
four; there is never any need to generate code to calculate this within the
actual object program). With constant subscripts, the retrieval should be
possible in three instructions. This, of course, means that much more work for
the compiler, with the justification being a more efficient object program. One
further note; if the bead is literal, extra code must be generated to prefix it
with literal blanks rather than arithmetic zeros.

Ly

P |

L.0 CONCLUSIONS

STRING items can be used to good advantage by JOVIAL programmers. They answer
a number of different programming needs. However, STRINGs must still be con-
sidered a "frill" within the JOVIAL language. While they offer shorthand and
convenient methods of manipulating certain kinds of data, there is nothing that
the use of STRINGs accomplishes that can't be accomplished using other JOVIAL
forms such as long literals and the BIT or BYTE modifiers. It is therefore
recommended that STRINGs be implemented on the 645 JOVIAL compiler, but only
if it is done so as not to exclude any other language form. In other words,
STRINGs should be included only after everything else has been done and
sufficient time and talent remains for the implementation. Since this is
essentially a pogsitive recommendation (even though it may not read as such, it
is intended to be), it is consequently imperative that no portion of the
compiler be initially coded so as to preclude, either by design or accident,
the eventual inclusion of STRING items.

L5

SECTION XI

BINARY VERSUS SYMBOLIC OBJECT CODE

1.0 INTRODUCTION

This section addresses itself to the problem of whether a GE-645 JOVIAL com-
piler should produce binary or symbolic object code. Closely related to this
problem is the unique paging environment of MULTICS.

2.0 BINARY CODE

Binary code is that code produced by the compiler which is immediately
executable. This is to say that no subsequent processing of the compiler's
output is required to produce a usable computer program.

2.1 Advantages of Producing Binary Code

An edvantage of & compiler that directly produces binary object code
is the fact that the compiler can generate more efficient code for the paged
environment of MULTICS. In its processing, the compiler constructs large
internal tables of descriptive information. It is through an analysis of
these tables that the object code is produced. In the MULTICS environment,
the compiler should be cognizant of not Just efficient code, but efficient
object code that will be paged as well. It is the presenc: and usage of those
internal descriptive tables thst would help in the achievement of this goal.

Production of binary code causes & minimal amount of computer time
to be expended for language translation, thereby reducing the expense of
producing operational computer programs.

Not to be overlooked is the fact that official JOVIAL specifications
direct the compiler to produce binary object code and not interface with a
separate assembler.

2.2 Disadvantage of Producing Binary Code
The sole disadvantage of producing binary code is that the cost of
developing a compiler with this type of output would be higher than the cost
of a similar compiler which produces symbolic code.
3.0 SYMBOLIC CODE
The problem of binary versus symbolic object code is more than a problem of
feasibility in view of compiler development cost. Other considerations are,

in the case of symbolic code, the availability of a reliable assembler and the
completeness of the instruction set which that assembler supports.

46

3.1 Advantage of Producing Symbolic Code

In terms of cost, a JOVIAL compiler that produces symbolic machine
code would be less expensive to develop than a compiler that produces binary
object code.

3.2 Disadvantages of Producing Symbolic Code

The symbolic object code would have to be input to an assembler to
produce executable object code. Program production time would be increased
due to the separate compilation and assembly processes. This presents probably
tiie major obstacle to the production of symbolic object code: the availability
of a reliable assembler.

At the time of the release of the MULTICS Operating System, there
will be only two assemblers which will produce binary output suitable for
running on the GE-645. These are the EPLBSA and FL/1 assemblers. There is no
plan for EPLBSA to be released with the system. The FL/1 assembler will be
relatively new, and therefore its reliability would be insufficient to support
a compiler producing symbolic code. Although the EPLBSA assembler has been
used to produce the operating system, it has a limited macro capability and it
is questionable if its operating speed is sufficient to prove satisfactory in
the time-shared environment of MULTICS.

L.0 CONCLUSIONS AND RECOMMENDATIONS

Although the cost of a compiler producing binary object code is higher than a
compiler which produces symbolic object code, the time required to produce the
operational object program via the binary object code route is less.

The paged environment of MULTICS should not be ignored by language translators
if they are to generate the best possible obJject code. To do this, the
compiler should fully utilize all possible information from its internal tables
which can only be done by directly producing binary object code.

The availability of a complete and reliable GE-6L45 assembler is questionable
at this time.

Official JOVIAL specifications call for the output of binary object code.

In view of these conclusions, it is recommended that the compiler produce
binary code. However, this recommendation is qualified to some extent. To
achieve a usable JOVIAL capability under MULTICS at the earliest possible

time, and if the EPLBSA assembler is available, it may be desirable to at

least consider the production of symbolic object code and a temporary interface
with the assembler. Using this initial JOVIAL-to-symbolic object code
capability as a base, it may be possible to develop a more advanced and
efficient compiler by concentrating on the production of binary object code
with matured MULTICS subroutines for standard system interface requirements.

LT/48

APPENDIX
The following language forms are defined in the J3 language specification, but
are omitted from or altered in the JB (Basic) language specification:
ALL modifier
ARRAY declarator
boolean:item
CHAR modifier
dual:item, constant, etc.
exchange:statement
fixed:point:item, constant, etc.
IFEITH-ORIF
like:table
MANT modifier
MODE declarator
ODD modifier
STRING declarator
relation:lists
transmission code:item, constant, etc.
close, statement:name, table, array as procedure parameters
rounding as part of item:description,
range values
implied definition of simple:items via presetting
protected switches and closes
switch or close as switch branch point
unnamed table |

the two operands of literal assignment and comparison statements must
contain an equal number of characters in JB

L9

the two operands involved in entry manipulations must be of equal entry
size in JB

names are limited in length to six characters in JB (J3 defines no limit)
names may not contain embedded primes in JB

FIIE declarator

INPUTVOUTPUT operations

DEFINE may indicate a string of symbols (JB limits second operand to a
constant)

more than one OVERLAY may contain the same variable
OVERLAYS may include environment with preset data

ENT or ENTRY is acceptable (in JB, only ENT is accepted)

PART II - PRODUCTION OF OBJECT
PROGRAMS FOR A PAGE-ORIENTED

COMPUTER SYSTEM

SECTION I

INTRODUCTION

The purpose of this report is to present the results of an investigation into
the concept of Paging for the purpose of establishing techniques for the gen-
eration of code that operates effectively on a computer with paged hardware
features. The objective of this investigution was twofold:

1. To determine if the code generation process for paging can be
automatic (handled by software) or if present programming
techniques should be altered to rroduce efficient code generation.

2. To define an implementation approach which will allow rapid
implementavion of a Paged JOVIAL compiler ani the transfer of
existing JOVIAL programs to a paged environment.

Paging is a relatively new technique which allows division of programs into
equal blocks of information and which permits an easier allocation of physical
memory. Through this technique, it is possible to select any or all divisions
of a stored program to obtain the information desired. A paged memory allows
flexible techniques for dynamic storage management without the overhead of
moving programs back and forth in the primary memory. This reduced overhead
is important in responsive time-shared systems where there is heavy traffic
between primary and secondary memories.

The mechanism of paging, when properly implemented, allows the operation of
incompletely loaded programs. A supervisor need only retain in main memory
the more active pages, thus making effective use of high-speed storage.
Whenever a reference to a missing page is made, the supervisor need only
interrupt the program, retrieve the missing page, and reinitiate the program
without loss of information.

The balance of this report is divided into two main topics. The first is a
description of features that can be inserted into an object program by a
compiler to enable the program tc operate more efficiently in a hardware-
paged environment. The second is a description-of a compiling process that
produces object code optimized for computers operating within a page-oriented
system.

i

SECTION II

PAGING OPTIMIZATION FEATURES FOR AN OBJECT PROGRAM

1.0 INTRCDUCTION

With the development of computers with paged hardware features, it has become
evident that a reevaluation of program structure is in order. A compiler
which properly organizes the code of an object program can substantially re-
duce the cost of running this program under an interactive time-sharing system
that utilizes hardware paging features. In order to accomplish this, new com-
piler techniques must be developed and used in compiling program statements
into this more favorable program structure. Consequently, two major areas
should be investigated: the optimum organization of code; and the techniques
to be used in compiling into this form.

2.0 ORGANIZATION OF OBJECT CODE

In a typical JOVIAL program, the program statements control the order of
execution of the compiled code. Therefore, the flow of the resultant code is
fixed. However, this code may be ordered within core in various ways,
requiring the addition and deletion of control jJumps and thereby altering the
normal flow.

Variables should be examined before being assigned to a storage location.
Those that are never "set" but "preset" should be handled in a manner similar
to that of handling constants. It is profitable to locate some constants in
more than one location, and will be profitable to dynamically relocate some
variables during execution.

In the case of tables where the format is not specified by the user, the gom-
piler should determine whether the table is to be structured in serial or
parallel, according to its usage by the object program. 1In fact, a combina-
tion of serial and parallel constructions may be desirable for some applica-
tions. That is, a serial table may be divided into several parallel tables.

2.1 Compiler Requirements

In order that a compiler may properly structure a program, it is
necessary to collect enough information concerning the program to enable the
compiler to make certain decisions. A reasonable approach is to include this
information collecting in the generator phase of a generator-translator com-
piler and to maintein this information in the compiler's dictionary.

This information should aid in the assignment of storage for data and, in
addition, will guide the compiler in selecting sequences of intermediate
language steps for translation to computer code. Before the translation
process, an analysis will be made to select sequences of the intermediate
language to be translated into computer code.

e

e e

2.2 Compiler Restrictions

A few considerations and adjustments are required before the anal-
ysis can proceed. Most important of these considerations are the aids pro-
vided by the programmer in specifying the construction of data. Specifically,
OVERLAY data declarations restrict all the references to any of the constit-
uent items to references to an ordered group. If all the items in the overlay
are invariant, then the group is considered as invariant. If any item in the
OVERLAY group is set or changed during execution, the entire group must be
considered as a single set-variable group. Completely defined tables or the
use of an OVERLAY declaration for table items will similarly group the items.

The use of the ENTRY variable also imposes restrictions. If it is set by any
assignment statement, all items within the table must be considered as set-
variables. If the ENTRY variable is used by a statement and never set, they
are not all necessarily set-variables. Thus, in some cases, references to
certain variables will be treated as a reference to a group in the analysis
that follows.

3.0 STRUCTURING TECHNIQUES

Before evolving compiler techniques for code optimization, it is necessary to
define the characteristics required of efficient object code. The following
descriptions set forth some of the characteristics that lead to efficient
"page" utilization by a program. Compiler techniques can be evolved to incor-
porate all of these ideas into object programs. In some cases, the character-
istic is explained in terms of the compiler techniques used.

3.1 Output Classification

For this analysis, the compiler output is classified into three
sections. The first section includes all the data variables that are set or
altered during the execution of the obJect program. The second section con-
tains the data and constants that remain invariant throughout the execution
of the resultant code. The third section consists of the computer instruc-
tions. These instructions are said to be "pure," that is, they will not be
altered during their execution. Any code changes that are required should
be stored with the variables.

3.2 High-Activity Area

A high-activity area for set-variables is required in addition to
the more voluminous area reserved for all set-variables. The high-activity
area can be used as a temporary storage area for data during their periods
of reference activity and can also serve as the only storage area for short-
lived data. 1In general, the data within this area are from one of three
groups: (1) the unnamed temporary intermediate values for which no general
slorage space is provided; (2) the named set-variables that have a short
local scope; and (3) data for temporary holding. The data of the third group
can be either preaccessed variables or set-variables that are to be moved into
their permanent assigned area at a more auspicious time.

53

WA Wim

3.3 Table Divisions by Data Classification

Each table that is declared can be subdivided into the items that
are invariant and the items that are set or altered during the execution of
the compiled code. Two parallel tables are produced. One contains set-
variables and the other, invariant data. Optimum storage assignment is then
possible, consistent with each type of data. Of course, some invariant data
items are tied to set-variable items. This results from completely defined
tables or OVERLAY declarations containing table items.

3.4 Multiple Store of Invariant Data

In some cases, it may be efficient to assign the same data to more
than one location. This would be especially effective if the references to
the data are isolated.

3.5 Assign Invariant Data With Instructions

Invariant dats assignments that are utilized in a1 segment of the
object program can be physically located on the pages together with the
instructions that access that data.

3.6 Block Invariant Data

Invariant data that are used throughout the object program can be
blocked in parallel to the segments in which they are used. These blocks are
useful in assigning storage so that the invariant data "page" circulation is
minimized. Two methods may be used to assign data to the same storage erea:
(1) the data from blocks that are essentially identical, and (2) the data
fror blocks that are used sequentially.

3.7 Separable Set-Variables

If the scope of a set-variable can be divided into nonoverlapping
sections, the variable can be treated as if each scope applied to a distinct
variable. Hence, each section can be assigned to a distinct storage cell.
In fact, if one section is of short local scope, it may only appear in the
high-activity area.

3.8 Storage Overlay for Set-Variables
The data storage assignment for set-veriables is considered to be
binding only from the time they are set to the time they are last used.
Hence, it is feasible to assign a storage locatici: to more than one variable

if their scopes do not overlay, and the page is active during the scope of
the variables.

3.9 Named Temporary Set-Variables

Set-variables that are local to o1y a short segment of program flow
need not be assigned a permanent storage area. The result may be held in a

Sk

R ————

general register for its subsequent use. More frequently, it could be held
within the high-activity area during the time it is needed.

3.10 Correlated Set-Variable Assignments

The sequences of access to the various set-variables may be com-
pared for similarities. Any similarities should be reflected in the storage
assignments of set-variables. Permutations of these patterns resulting from
a preaccess move to the high-activity area as well as a delayed storage
should be included in the comparing.

3.11 Parallel Subtables

Table items that occur in distinct progrum segments can be assigned
to separate parallel subtables. The items that are used in several segments
may be divided according to the reference pattern. This division should be
rerformed for the invariant item tables as well as for the s<t-variable
tables.

3.12 Serial Tables

If, in the analysis of segments that form loops, it is determined
that the subscripts are indexed systematically, it may be desirahble to order
the indexed table items serially. In the case of a search where one item of
an entry is used as a key until a match is obtained, it would be more effi-
cient to provide a table for these items as a separate table parallel to the
other items of the entry.

3.13 Instruction Assignment Order

The statements entered into the compiler specify the algorithm of
solution to be used by the object program. As such, this specifies the order
of execution of the pertinent statements. This does not place a restriction
ou the order of location for the object program. Unconditional jumps can be
added and deleted as needed. In addition, the conditional branches can have
their relational operations inverted to rearrange the object code.

3.14 Instruction Execution Order

A pair of adjoining assignment statements can be interchanged if
either does not access its companion's set-variable and if any function in-
volved does not affect any of the used variables. An interchange of state-
ments may be desirable to improve the reference pattern with respect to data.

3.15 Statement Elimination

Statements that are not executed should not be translated. 1In
addition, the assignment statements, together with set-variables that are not
used or that are reset before use, should be eliminated. In either case, error
messages would be supplied by the compiler. (This technique is primarily aimed
at code improvement although it may also aid paging.)

29

S R s i b L B R e Sl i o g G L W LT s o d e .

3.16 Loop Data Assignment

The reduction of page turning is especially important in loops.
Three optimizing techniques are available to improve the data referencing of
a loop. First, statements that are independent of the loop can be removed
from the loop. Those that set data to be used within the loop should precede
the loop. Those that set variables not to he used within the loop can follow
the loop exit. Care must be exercised if alternate exits exist. Loop-
invariant data can be precalculated before the loop is activated, and can be
moved to the high-activity area before entering the loop. The primary concern
is to reduce the loop references to storage areas outside the high-activity
area. A bonus effect should be the reduced computation within the loop.

3.17 loop Instruction Alignment

The instructions that execute the loop can be assigned to a mini-
mum number of pages. This may involve skipping some storege registers. This
skipped storage can be used for invariant data.

3.18 Jump Simplification

A Jump to & Jump may be simplified by inserting the second jump
for the first. In principle, excess Jumping is reduced as much as possible.
If the jumps involved are conditional, inserting the code in more than one
place to evaluate the conditions should be considered.

3.19 Page Utilization

A progrum's organization is calculated to minimize page jumping.
If frequency data relative to the branches of a conditional jump is available,
the assignment of instructions to pages should be adjusted according to this
information. In some cases, a set of instructions may be repeated if this
eliminates page turning without an appreciable increase in the program size.

3.20 Advise Executive

A final requirement is to advise the executive routine in advance
when additional pages will be required. To prevent overriding storage that
is still required, it is also necessary to advise the executive when a "page"
is not needed for further use. On a nonpaging computer, these executive
calls can he used for secondary storage assignment. The specified calls can
be altered to call special functions that load the requested data.

L.0 RELATED GAINS

In addition to the advantages gained for a "paging" computer, there are re-
lated achievable gains that are not considered to be strictly "paging" optimi-
zation. One gain is that only the set-variables need be saved before they are
over-ridden. Code can be reentrant, and computation for unused set-variables
can be eliminated. The resulting object code is easily made self-initializing
if the-first access of the set-variables is to the preset area and if their
subsequent saving and restoring is ‘never done on top of this pxreset area.

56

Another feature is that 1no date assignment is absolute. Each address is set
as a base address plus a fixed displacement. The base address is a variable
and need not be assigned until the program is loaded. If care is exercised
in generating the object code, it should prove easy to dynamically reassign
this base address value whenever the page is reloaded.

5.0 CONCLUSIONS

This section Las proposed several characteristics for "page" oriented object
progrem code. The compiler, in which the techniques to produce such an
object program are implemented, should collect information in the generator
phase. The optimizing routine will juggle the data and program statement
sequences and assign core locations. It will also direct the translator in
its translation of intermediate language into computer code. A sequence may
be translated more than once. The amount of improvement in program structure
can only be a matter of conjecture until the compiler using these techniques
is designed and implement<d.

5T

-

SECTION III

COMPILER PROCESSES TO PRODUCE PAGE-ORIENTED PROGRAMS

1.0 INTRODUCTION

Following the definjtion of paging optimization features for an abject program
is the design and development of compiler techniques which can best implement
these features, and the determination of a compiler algorithm that optimizes
object programs for efficient operation. Standard code improvements increase
processing efficiency within page-oriented systems. Some conventional code
improvements provide an extra bonus in efficiency for a paging environment.

A program optimized for paging may not be seriously degracded if executed on a
non-page hardware computer with a page~oriented software system. Conversely,
a program optimized without considering paging is superior to a non-optimized
program if executed on a page-oriented computer system. As stated previously,
one of the main objectives of this study is to determine the extent of addi-
tional gain a compiler can achieve through structuring and rearranging of
problem solutions for a pagirg system. Progrars proauced by such a compiler
will be more efficient on a page-oriented computer system than if optimization
was not, attempted.

The optimizing procedure is proposed as one algorithm, to take advantage of
data collection and data processing similarities, and to find the extent of
optimization feasible. Each optimization feature or code improvement does
not have to stand by itself. The important criterion is placed on the total-
ity of code improvement. Individually the code improvements are to be
measured against this total improvement. Although code uvptimization is feas-
ible and can be profitable, it is doubtful irf any particular code improvenent
feature is profitable by itself. Therefore, to establish the proper basis for
an evaluation of the individual page optimizing features, a comprehensive
code-imp.oving compiling method is required.

The optimizing features and techniques that comprise the propos¢d algorithm
are presented in the following paragraphs. Contained in the paragraphs are
the general assumptions for this compiler optimization, an overview of the
optimizing algorithms, and a detailed description of the individual procedures
within the analysis.

2.0 GENERAL ASSUMPTIONS

Before proceeding with the description of the optimizing process within the
compiler, it is necessary to deseribe some of the assumptions fundamental to
the processing procedure and its final result--an object program. The follow-
ing subparagraphs describe the form, nature, and content of the input, the
liberties permitted in permuting the order of execution in evaluations, and
data considerations.

58

2.1 Input Requirements

The input for this compiler process consists of an intermediate
language program with an associated dictionary. It is assumed that some pre-
vious compiler action, such as the generator phase, has transformed a program
from the source language into an appropriate intermediate language and has
produced a corresponding dictionary of the program symbology. The first pro-
cessing of the input data sets reduces the dependence of subsequent processing
on a specific source language. Only the first processes depend upon this
input. The initial optimizing task is to extract information from the input
data sets and to transform the input into a new intermediate language program
and a new dictionary.

Each instruction in the intermediate language consists of a function or oper-
ation code plus pointers to the cells that represent operands. The cells that
represent operands are either dictionary entries or other intermediate
language instructions. Thus, source language statements can be interpreted
as small trees in the intermediate language. These small trees represent
segments of programming such as would appear in processing boxes of a flow
chart. The source-language-derendent process mentioned above creates this
structure such tnat the intermediate language program is essentially source-
language-independent.

2.2 Execution Order of Instruction

It is assumed that the intermediate language instructions occur in
the order in which they are to be executed in solving the source language prob-
lem. This implied order of execution is not absolute. Liberties are rossible
with this order of execution without altering the problem solution. An inter-
mediate language instruction is eligible for execution as soon as the values
of its operands are available. This condition can occur during compilation
if the operands are all invariant. If an operand is the result of a prior in-
struction, then the prior inmstruction must be executed before the current in-
struction. That is, if an operand has a variable value, then the proper value
must be established before an instruction using the operand can be executed.

In changing the order of execution, the flow indicated by conditional branch-
ing and the consequent rejoining must be considered. An instruction that is
advanced past a branch point is included on all flow paths in which it is re-
dundant. An instruction cannot be advanced past a collection point if it
alters the result for any path. This move collects common instructions after
the flow paths merge. 1In moving an instruction backwards, the reverse
requirements are imposed. For a collection point, the instruction must be
inserted on all flow paths. For a branch point, if moving the instruction
alters one of the other paths, it cannot be moved. This move normally collects
common instruction that can be executed before branching.

2.3 Freedom in Algebraic Evaluations
An algebraic expression imposes an interdependence of execution

sequence on operations. Normal evaluation is from left to right for opera-

tions of equal Rriorit For instance, the evaluation of "A+B+C" is as if it
were written "(A+B)+C."

59

E

L

The evaluation of "A+BxC-D/(E+F)" is offered as an example of the normal free-
dom allowed. In the evaluation, the product of B and C is formed before the
product is added to A. The sum of E and F is obtained before dividing D by
that sum. The sum of A and BxC, as well as the quotient, are formed before
the subtraction can be executed. Using parenthesis, the expression is
evaluated as

"((A+(BxC))-(D/(E+F)))"

The accession of operands can be at any time between the point at which they
are established and the point at which they are required in the evaluation.
In fact, if B and C in the preceding example are both preset constants, the
compiler could perform the multiplication instead of the object program.

If the value of a function is required, some variable values may be changed
during the evaluation of the function. The necessary intelligence to identify
changed variables is available if the function evaluation is compiled with the
program. The function evaluation is able to change only the data defined in
comnon for the precompiled function evaluations. Procedures indicate the
established values within their actual parameters. In any case, the data that
are subject to change by a function evaluation are accessed before the func-
tion is evaluated if the operand occurs before the function within the problem
statement. Otherwise, the data are accessed after the function is evaluated.

2.4 Data Considerations

The principle data handling facility that the compiler provides is
the assurance that the proper values of *he operands are used in the execution
of the program. An absolute storage location is not required for the value of
each variable.

Values of simple variables that are invariant throughout the problem solution
can be treated as if they were constants. The values of constants are located
in any storage location convenient for their use as an operand. If the same
constant value is required as an operand in more than one instruction, the
value may be available in several storage locations for instructions isolated
from each other.

Values of simple variables that change during the program flow are considered
temporary. They exist only as long as they are needed as operands. Some
storage locations contain different variable values in different portions of
the program solution. Some values are dynamically relocated to avoid page
turning:. Thus, some values occupy more than one storage location. Some
values exist only temporarily in an arithmetic register and never occur in a
storage location.

Values of subscripted variables are necessarily more closely tied to storage
locations. The primary reason is the problem of accessing the proper value,
Specifically, this information exists as a block of information., As such, the
flexibility of its handling is more restricted than simple variables. A block
is treated as a simple variable that has extra storage requirements that
impose added restrictions.

60

3.0 OPTIMIZING ALGORITHM

An efficient manipulation algorithm is required for the profitable compiler
production of optimized object program code for a page-oriented operating
system. The analysis must be complete in crder to maximize the gains. The
various procedures must be integrated to avoid unnecessary compilier process-
ing. The proposed method integrates the techniques into one composite
algorithm. The program intelligence lists are designed for maximum informa-
tion with minimum processing.

This paragraph descrites how the techniques are integrated. The description
covers the data lists and indicates the various processing steps with their
appropriate input and output data.

3.1 Lists

The processing algorithm is concerned with data manipulation. These
data are contained in various lists, depending upon content and intended use.
In order to comprehend the algorithm, it is necessary to know the content and
uses of these lists. Therefore, a description of these lists is supplied
before the algorithm is presented.

Within these lists a pointer to another entry, whether in the same list or in
some other list, is an index of the entry within its list.

3.1.1 Intermediate Language Program

This list is one of the initial inputs to the algorithm. It
consists of the intermediate language instructions that represent the source
language program. Each source language statement consists cf a recognizable
chunk of these instructions. With each chunk is the identifying line number
of the source code. During the first modification, the program is subdivided
into logical units designed as program segments. Most program segments will
coincide with source program statements. Additional segments are added if
functions are used or if multiple conditions are imposed in decizion-meking
statements.

Each time the algorithm uses the intermediate language program as input, a
modified intermediate language program is produced. The latest version is
used as the next input in all cases. When there is a need to identify the
particular intermediate language program, the terms "input intermediate
language program,” "segmented program," 'reduced program," "realigned
program,” and finally "computer prograu" will be used.

3.1.2 Dictionary

This list i1s an initial input to the algorithm, and is scanned
only once. Information is extracted for three lists: one list contains all
the information necessary for a symbolic diagnostic capability. Another list
is an abridged dictionary used for the internal processing. The last list is
a dictionary trace that is used only during the first intermediate language

61

modification. This list provides the facilities for changing the operand
references from input dictionary entries to the internal abridged dictionary
entries. '

3.1.3 The Abridged Dictionary

The abridged dictionary is produced during the initial pro-
cessing of the dictionary. The entries correspond to the named values within
the source language program. The primary informaticn within these entries
consists of internal information, such as type of data and storage require-
ments for the data. After the accession lists are processed, there is a
pointer in each entry to the portion of the invariant value use list that
pertains to the pointing entry. This dictionary is updated every time the
intermediate language program is modified.

3.1.4 The Dictionary Trace

The dictionary trace exists ouly for the original translation
of the input intermediate language program into a new form that reflects the
new abridged dictionary. This list is generated when the dictionary is pro-
cessed and is rot needed after the input intermediate language program is pro-
cessed. For each program flow entry, there is sufficient information to glter
the intermediate program to point to program segments instead of the diction-
ary entries. The data entries provide the data type such that data conversion
conventions can be inserted within the intermediate language. In e¢ffect, this
list is the initial dictionary, with pointers to the abridged dictionary
entries, so that the segmented intermediate language progrum references that
dictionary.

3.1.5 The Segment List

The segment list is designed to provide the linkage between
the analysis and the intermediate language program. A segment entry Is
entered in this list for each source program staterent that is represented in
the segmented program. Some source program statements are divided into more
than one program segment. With each segment of the segmented prog.e:i that
represents a source language segment, there is a pointer to the segment list
entry, and there is a literal containing the source language line identifier.
Within each segment list entry there are pointers to the first and last en-
tries within the segmented program that pertain to this list entry. Each list
entry has a flag value. The next succeeding segments in the program flow are
indicated by the pointers to other segment list entries. Another pointer in
each list entry points to the connector list entry group that have this scg-
ment as a destination. Whenever the intermediate languuge program is modified,
this list provides a guide to the modification, and is modified to reflect the
program changes.

3.1.6 The Connector lList

The connector list is used to represent the Boolean connec-
tion matrix. The list has an entry for each flow ccunection, from program

segment to program segment. Program segments that are never reached are not
included.

Each connector list entry consists of a pointer to a segment list entry. The
pointer designates the source and destination segments as entries in the seg-
ment list. The connector list is ordered by the destination segment since
the list is used for backtracking the program flow of execution. Each entry
of the segment list has a pointer to the group of connector list entries that
have that segment as a destination. This list exists for two reasons: (1)
the full Boolean matrix requires excessive storage, end (2) the list is
easier to access than the matrix.

3.1.7 Accession List

The accession list is generated twice; while the intermediate
language program is segmented and after each program segment is reduced. The
list provides the information for the invariant value use list. Each entry
consists of a pointer to an abridged dictionary entry, a pointer to a segment
list entry, and a flag indicating whether the access represented is a fetch,

a store, or both. There is one entry in this list for each intermediate-
language-instruction access of a dictionary entry data operand.

3.1.8 Invariant Value Use List

The named values for which there is no value established
during the program flow are assumed to be invariant for the program. A list
of all the segments using each invariant value is constructed. A pointer to
the appropriate entries within the invariant value use list is added to the
abridged dictionary. The preset values are also located. An error condition
exists if the values are not preset.

3.1.9 Block Access List

This list provides the order of data access within each pro-
gram processing block after the relocated program is constructed. This 1list
provides the intelligence for blocking data preliminary to assigning storage
for the data values,

3.2 Processing Steps

The proposed optimizing algorithm consists of a series of related
tasks. These tasks are executed in processing steps. The order of the steps
and the tasks assigned to each step are dependent upon the input required and
the output desired for the individual tasks of a step. The input and output
requirements for the optimizing algorithm steps are presented in Table I.

This subparagraph presents an overview of the steps of the composite algorithm.

63

PROCESS STEP

Process 1
Dictionary

Process 2
Intermediate
Language

Process 3
Accession
Data

Consolidate 4
Program
Intelligence

Program 5
Relocations

Dictionary 6
Realignment

Generate T
Code

TABLE I

INPUT

Dictionary

Input Intermediate
Language
Dictionary Trace

Segment List
Connector List
Accession List

Segmented Program

Segment List

Abridged Dictionary

Invariant Value Use
List

deduced Program

Abridged Dictionary

Invariant Value Use
List

Abridged Dictionary
Block Access List

Relocated Program
Abridged Dictionary

64

OPTIMIZING ALGORITHM STEPS

ouTPUT

Abridged Dictionary
Dictionary Trace

Segmented Program
Segment List
Accession List

Connector List
Invariant Value Use List

Reoduced Program

Updated Segmeat List

Updated Abridged Dictionary

Updated Invariant Value Use
List

Relocated Program

Updated Abridged Dictionary

Updated Invariant Value Use
List

Block Access List

Updated Abridged Dictionary

Computer Program

3.2.1 Process Dictionary

The purpose of this step is to consolidate the source program
dictionary information. The input for this processing step consists of the
dictionary that was generated during the processing of the source language
program. The output information consists of two lists: (1) an abridged
dictionary, and (2) a dictionary trace.

The abridged dictionary is generated to produce a condensed dictionary version
suitable for the subsequent optimizing process. The dictionary trace permits
the alteration of the intermediate language program in the next processing
step, at which time the intermediate language program is modified to reference
the new abridged dictionary.

3.2.2 Process Intermediate Language Program

This step completes the task of extracting information from
the source data. The input to the algorithm step to process the intermediate
language program consists of the initial intermediate language program and
the dictionary trace. The dictionary trace provides the data necessary for
translating the intermediate language program to include the dictionary
changes. Data operands that are represented by dictionary .entries are changed
to the abridged dictionary. Source language data conventions are eliminated
by inserting conversion instructions in the segmented program. Program flow
control is changed to segment references. In addition, the extracted lists
reference the new abridged dictionary. These lists indicate the breakdown of
the source program into program segments and the accession of dictionary in-
formation within these segments. Thus, the principle outputs are the seg-
mented intermediate language program that reflects the abridged dictionary,
the segment 1list, and the accession list.

3.2.3 Process Accession Data

This step in the aigorithm determines the role of the individ-
ual named values of the source program. The input data for the processing
step consist of the segment list and accession list that are generated from
the intermediate language program.

A connector list is generated as an intermediate table in this process. This
table is produced exclusively for this processing step. (Another connector
list with the same format is generated later in the program.) Another output
from this processing step is the invariant value use list. Pointers are added
within the abridged dictionary to the corresponding entries within these lists.
An additional task for this process is the retrieval of preset values from the
source program. Appropriate error messages are initiated as needed.

3.2.4 Consolidate Program Intelligence
This processing step of the proposed algorithm is designed to
execute the intermediate language instructions that involve invariant data.

In the process, various lists are changed. A new intermediate language pro-
gram is produced. The segment list is modified tc reflect the new program.

65

New invariant values are added to the abridged dictionary and some values are
deleted. Some of the variable values will become invariant. The entries
within the abridged dictionary and the invariant value use list are modified
to reflect the changes.

The primary purpose of this algorithm step is to eliminate unnecessary inter-
mediate language instructions. Some instructions are deleted, since their
operands are invariant. In this case, the instructions are replaced by their
calculated results. Some statements are deleted because they are never exe-
cuted. The deletion of unnecessary intermediate language instructions and
unnecessary invariant data aids in program optimization. Less computer time
is required to execute the resulting object program, and less storage is
required to contain the object program; therefore, the storage requirement
reduction increase the chances for rearranging the program to reduce page
turning in the program execution.

3.2.5 Program Relocations

This step is the algorithm process produces program reorgani-
zation based on program flow. The intermediate language instructions are
accessed by program segment. Changes are then made in the intermediate lan-
guage instructions. The processing modifies all the ertrant tables as well
as the intermediate language program. A block access list is generated to
specify the order of access for data within each of the resultant program
processing blocks.

This program relocation moves program segments and intermediate language in-
structions from their original positions to locations in the program flow with
lower activity. Thus, it is obvious that the program execution time is re-
duced. If the movement is from inside a program loop to outside the program
loop, then the loop requires less computer instructions. Thus, less page
turning is required for instructions. In addition, the execution of these
program portions just prior to the loop tends to collect the data required

for the loop execution into a block. Thus, if these collected data are
properly allocated to storage, the execution of the loop will require less
page turning for data.

3.2.6 Dictionary Realignment

The input data for this processing step consist of the
abridged dictionary and the block access list. The process assigns the data
values to storage blocks.

The use of subscripted items is analyzed to determine how these items are to
appear in parallel and serial tables. The variable values are analyzed to
determine groupings and to determine the values to store within the high-
activity area. The invariant values are investigated to establish the type of
storage for each value. This analysis is designed to initiate storage group-
ing for subsequent storage assignments, such that optimum assignments can be
made for a page-oriented computer system.

66

3.2.T7 Generate Code

This is the final step in the algorithm. The process selects
the individual intermediate language instructions for translation to computer
code. Program relocation is included as allowed by parallel operation
considerations.

During this processing step, the analysis is performed to determine the final
execution order for the elements of the processing block. This order is
designed to minimize page turning. The instruction sequences are generated
as if they started with a displacement of zero from a base location. After
these sequences are generated, they are assigned to page areas. Intermediate
instructions are then provided to supply the link between these program
sequences, and invariant data blocks are assigned to unused page areas.

Loops are aligned to occupy a minimum number of pages. Some instruction
sequences will be repeated to avoid unnecessary page Jjumping. Calls to advise
the executive routine in advance of upcoming requirements are inserted.

3.3 Compiler Outputs

The outputs generated by the compiler process is produced as two
groups.

The first group consists of the object code. This output is the translated
program ready for execution as computer code. The mode has been optimized
for execution on a page-oriented computer system.

The second group of outputs consists of the program information gleaned from
the program during the compilation. This output consists of printed lists
that provide program documentation for program maintenance.

3.3.1 Optimized Computer Programs

The compiled computer code is produced in two sections: (1)
a directory, and (2) the computer code.

The computer code is optimized for execution within a page-oriented computer
system. This code exists as chunks of executable computer code. Each chunk
is relocatable at load time. If a code chunk is reloaded, the second load
location need not be the same as the first load location.

The directory maintains a record of the status of the computer code during
execution. This directory contains some page-oriented executive function
subroutines. The computer software system loads the directory, and the
directory loads the required computer code chunks as needed and supplies the
primury base location values. The advice-to-executive subroutines are con-
tained in the directory.

3.3.2 Compiler Printed Output

The printed output of the compiler is selective. The speci-
fics of the pertinent printed liste are contained within the sections of this

67

paper concerning the information within the individual lists. The different
lists include:

1. The input program.

2. The invariant value use lists.

3. The statement label use list.
4., The program code.
5. Miscellaneous program exceptions.
4.0 PROPOSED PROCEDURES -

The proposed compiling algorithm produces computer programs that are optimized
for page-oriented computer systems. Extensive data collecting &ni processing
is required prior to any optimization. An integrated scheme of data collec-
tion is used to avoid duplication of effort in the prccess. This section
supplies details concerning the individual procedures. The input to the al-
gorithm consists of the intermediate language program that has been parsed
from the source language program and a dictionary that contains entries for
the named values.

4.1 Extract Dictionary Information

The dictionary supplies valuable problem intelligence for the opti-
mizing algorithm. The specific entries were added in a haphazard manner when
the dictionary was constructed. This initial task introduces order into the
dictionary functions. This order is incorporated within the intermediate
language program during the processing step that extracts information from
the intermediate language prograr. The extraction of dictionary information
is the first algorithm step, because the dictionary rearrangement is indepen-
dent of the intermediate language program, and the converse is not true. The
dictionary information is reproduced into standard formats. Two lists are
generated during this process: (1) an abridged dictionary, and (2) a dic-
tionary trace.

The dictionary entries are partitioned intc blocks according to type of entry.
Three partitioned types are recognized: (1) flow entries, (2) data entries,
and (3) structure entries. The information contained within each block is
added to the lists in a format dictated by the type of entry in the block.

One partition feature of the dictionary contains the program flow entries.
These flow entries contain information concerning statement labels, procedures,
functions, and switches. Assigned to these flow entries are segment numbers,
which identify the intermediate language instructions that follow the flow
identifier. The segment numbers replace the flow branch operands for the
segmented intermediate language instructions. This flow information is not
required in the abridged dictionary. The remaining flow information is in-
corporated in the segmented intermediate language program during the next

68

B s —— s

processing step. Thus, this information plus the segment number is included
in the dictionary trace.

The dictionary entries concerning data and data structures form the remaining
dictionary partitions. Simple items are separated from subscripted items.
Aside from grouping the entries pertaining to each structure, there is little
processing that can be done during this step. Overlays and fully defined
structures are labeled within the abridged dictionary for future use. An
inspection of the intermediate language is required to separate the variable
data from the invariant data.

Additional information available in all dictionary data entries is the speci-
fication of data type. The dictionary trace includes this informaticn such
that the data conversions conventions can be inserted in the intermediate
language program. The conversions are added to the segmented intermediate
language program during the next processing step at the same time as infor-
mation is extracted from the intermediate language. Thus, the source language
data conversion conventions are quickly assimilated with no further concern.
The identification of each entry has been essential during the parsing.

L,2 Extracting Intermediate Language Information

The intermediate language program provides vital problem intelli-
gence for guiding an optimizing process. A primary purpose of this process-
ing step is to establish program segments. These program segments represent
sequences of intermediate language instructions. The program flow analysis
is primarily in terms of these program segments. This processing step pro-
duces a list relating the data accesses with these program segments. A
segmented intermediate language program is produced to reflect the abridged
dictionary and the program segments. Data conversion instructions required by
source language conventions are included within the segmented intermediate
language program.

The problem flow is reduced to program segments, and none of these program
segments includes more than one source language statement. Each conditional
comparison of compound conditionel statements becomes a program segment.
Functions within assignment statements become special program segments that
split the source statements into the program segments that precede the function
and those that follow the function. Each ,program segment has an assigned
number. The segment number assigned during the dictionary processing is

used for labeled source statements. The segmented intermediate language
instructions refer to program flow by these segment numbers. For each segment
list entry, four values are obtained. Two of these values specify the first
and last instructions of the program segment within the segmented intermediate
language program. The other values specify the normal continuing segment and
the alternative segment if it eoxists.

The intermediate language program is altered to form the segmented intermediace
language program, and individual instructions are processed in groups by source
statement. Operand pointers to dictionary entries are transformed to reference
the abridged dictionary. Operand pointers to intermediate language results are
modified to agree with the segmented intermediate language program sequence.

69

Data conversion instructions are inserted as required by source language data
conventions into the segmented intermediate language instructions.

The operand pointers to dictionary entries initiate the generation of acces-
sion 1list entries. This accession list relates the abridged dictionary data
pointer with the segment number. If the accessed data items are part of a
completely defined structure, the dictionary pointer will indicate the struc-
ture. If an overlay declaration is involved, the lower dictionary index is
used. A coded flag indicates the type of access--whether fetch, store, or
both.

4.3 Process Accession List

The accession list contains an entry for every access to the values
represented by dictionary entries. Each accession list entry consists of a
pointer to the abridged dictionary entry, the number of the program segment
containing the access, and a coded type-of-access flag. This list supplies
the intelligence necessary to determine if a value is variable or invariant
within the program execution. The accession list is ordered by dictionary
pointer in order to group the accesses by dicticnary entry. If an access is
a store within a dictionary entry group, the value is assumed invariant.
Source program overlay statements combine dictionary entry groups before this
determination. The accesses from statements that are never executed are elim-
inated. The invariant values are tabled and reported as a list.

L4.3.1 Establish Flow Connectors

An initial task is to establish a connector list which is
extracted from the segment list as directed segment pairs. These connectors
represent all the possible paths of execution of a problem solution. Extra-
neous paths are not included.

The connector list is established by tracing the problem execution flow as
designated in the program segment list. The problem segment list entries

are marked as they are used. Two pointers are used to trace the flow; one
designates the next available connector entry cell, while the other designates
the next connector path to trace. The program segment list entry designated
as the destination in the connector list is investigated. 1If the entry is

not marked, the one or more exits from the program segment generate the cor-
responding connector list entries to be added. The generation terminates
when the two pointers are to the same entry, that is, when all paths to be
traced have been traced.

The extraneous program segments are the program segments that correspond to
the unmarked program segment list entries. The data accesses from these seg-
ments are eliminated from the accession list. Thus, the accesses from the
extraneous statements do not unduly influence the optimizing process. After
these entries are deleted, '.e accession list is ordered by dictionary pointer.
Thus, the accession list entries are grouped according to the dictionary
entries.

T0

k.3.2 1Invariant Data

If no store exists for a value group, the data are invariant
within the program flow. A list of the invariant value uses is maintained
for subsequent listing. A test determines if preset values exist for all the
invariant data. ‘

4.3.3 Extraneous Named Values

Occasionally, some data dictionary entries exist for values
that are never accessed. This conditior. occurs either for truly extraneous
data declarations or for named values accessed only from within extraneous
segments. The dictionary entries that pertain to these values are deleted
from the dictionary in the subsequent optimization processing.

L.4 Consolidate Program Intelligence

Refore a detailed analysis is made of a program execution flow, the
collected intelligence is analyzed. The information is adjusted to reflect
the interdependence of the information. Program instructions that can be
executed at compile time are replaced by their results. The invariant value
use list is expanded to include the results of executed instructions and con-
tracted to reflect the elimination of instructions and their operands. The
program execution flow is compacted to reflect the elimination of the executed
instructions. Finally, extensive reports are generated to reflect the
compiler's knowledge concerning the object program.

L. 4k,1 Compile Time Executions

As a first step of the program consolidation, the inter-
mediate language program is simplified. The intermediate language instruc-
tions that can be executed at this time are replaced by their results, and
each program segment is processed independently. Extraneous statements are
ignored.

The intermediate language instructions are executed by the interpretive rou-
tines. Each instruction execution depends upon the specific operation in-
volved. As an example, an arithmetic operation involving two invariant values
would result in a constant value. This simplification is also used to reduce
evaluations where one of the operands is some special value such as zero or
one. For example, an instruction to multiply a variable by one is replaced

by an access of the variable. Each program statement is simplified indepen-
dently, since no cross reference for intermediate results occurs between pro-
gram statements., After a statement is simplified, a reduced intermediate
language instruction sequence is generated for the prior instruction sequence.
An accession list is generated that designates all the variable values
accessed from the reduced intermediate language program by segment. As each
use of an invariant value is eliminated, the corresponding entry in the invar-
iant value use list for the value should be deleted. If all uses of an invar-
iant value are deleted, the value is eliminated from further considerations.

71

T D E——

Additional invariant values are added to the dictionary by this evaluation,
and corresponding entries are made in the invariant value use 1list.

If an instruction assigns a constant value to a variable, additional simplifi-
cation is possible in other program segments that use the variable. If a
fetch of the variable is dependent only upon this particular store, then the
segment containing the fetch is subject to additional execution simplifica-
tion. The fetches that occur of preset variable values only are treated as
fetches of invariant values.

During this process, a list of the null program segments is generated. 1In
some cases, program segments become null. Additional null segments exist in
the original problem. All unconditional transfers of control are null seg-
ments since they consist of an exit only. Additional null segm>nts are gen-
erated when conditional branching segments involving invariant data become
unconditional transfers during the compile time executions. The connector
that is to be deleted is marked for subsequent attention. New extraneous
statements can be generated by this process.

L.4.,2 Consolidate Program Intelligence

Before proceeding with the optimizing process, the segment
list is adjusted by the deletion of null segments. Each non-null program seg-
ment is checked to determine if an exit is to a null program segment. Each
exit to a null program segmeant is extended through all null program segments
until the exit points to a non-null program segment.

Another task is the creation of a new connector list. Beginning with the
starting program segment, a connector is generated for each segment exit.
Segments that occur as destinations in these connectors are used in generating
connectors for each of their exits. A number is attached to each connector to
indicate the number of alternative exits from the origin segment of each con-
nector. When this connector list is completed, it includes all the execution
paths in the problem solution. This newly created connector list is sorted
by destination to meet the subsequent optimization processing requirements.

At this time, all extraneous program segments are known. This informaticn is
translated into statement numbers and from there into input line numbers.
Thus a printed listing of all extraneous source problem statements is readily
available. The null statements in this list are marked as null.

L.4.3 Reported Intelligence

At this time, the compiler has collected extensive intelli-
gence that should prove useful to the programmer. The following is reported
as & minimum:

a. An invariant value use list of the original program
accesses for each of the invariant values.

b. The extraneous named values.

T2

c. The compiler executed instructions, with their results.
This 1list is ordered by source language statement.

d. The statements that exit to each of the labeled source
program statements.

e. The statements that are extraneous to the execution of
the problem solution.

4.5 Construct Processing Blocks

The initial stage in establishing processing blocks collects program
segment into strings for the initial processing blocks. Later, these process-
ing blocks are extended by appending decision blocks as elements within the
processing blocks. If a decision block can be appended on two processing
blocks, then the processing blocks are concatenated with the decision block
as an element that separates the elements from the two original processing
blocks.

The connector list and the segment list are used in the initial assignment of
program segments to processing blocks. During this process, a program block-
ing list is started. The first list entries indicate the first and last ele-
ments within processing blocks. A processing block is formed by identifying
a starting element and appending all the succeeding segments that form a
linear string. That is, segments are added that have oniy one entrance path
and only one exit path. The exit path condition is established from the seg-
ment list. The entrance path condition is established from the connector
list. The connectors that leed into or out of the processing block are altered
to indicate the program blocking list entry rather than the first and last
program segment list entries.

A starting program segment of a processing block is characterized as having
one exit and being either a collection point or a first element following a
branch point. Therefore, two methods of identification of first segments are
required. The first method checks for program segments that have multiple
path entries in the connector list and only one exit in its segment 1list
entry. The second method checks the program segment list for multiple exits.
Each exit leads to a first element of a procecsing hlock or to another
program segment with multiple exits.

When this process is completed, the remaining program elements are the pro-
cessing block elements and the program segment elements with multiple exits.,
All the program segment element: with single exits have been incorporated
into processing blocks. These processing block elements are designated by
program blocking list entries.

These remaining elements form a massive decision block that encompasses the
entire problem solution algorithm and is divided into minimum decision blocks.
As each minimum decision block is formed, it becomes the sole element of a
new processing block. This new processing block is concatenated with the
adjoining processing blocks if no alternative entrance exists within the

T3

_— T ——— ——
-~ -
.

interior of the potential processing block. Processing blocks are concate-
nated by setting the exit of the last element contained within the first
processing block to point to the first element of the second processing

| block. Then the last element indication of the first processing block is
changed to the actual last element from the second processing block. The
second processing block is dropped as a program blocking list entry.

4.6 Construct Decision Blocks

Decision blocks are designed to contain a minimum number of ele-
ments. A dec¢ision bluck has one common entry segment within the block and
one common exit segment outside the block. Each decision block becomes an
element of a processing block, possibly the only element of that processing
block. The decision block elements are program decision segments and
processing blocks.

The search for the elements that comprise the individual decision blocks
uses the connector list, the segment list, and the program blocking list.

| The connector list is used in determining the predecessors of an element,
while the segment list and the program blocking list are used in determining
the successors of the decision segments and the processing blocks respectively.

When a decision block is isolated, a decision block list entry is cresated
withir the program blocking list. This list element contains pointers to the
first element of the decision block and to the exit element of the decision
block. The connector list locates all the elements that exit from the deci-
sion block. These elements are flagged as decision block exits. The connector
list entries are marked as decision block exits and the destination pointers
within these list entries are changed to reference the decision block 1list
entry. This decision block becomes the sole element of a new procecsing
block. A new processing block entry is added to the program blocking list.
This processing block entry points to the decision block entry as the first
and last elements of the processiug block. The destination pointers of all
the connectors' that lead into the first segment are changed to pointers to the
new processing biock list entry. The source pointers of these conunectors
locate the elements for which the exits are changed from the first element of
the decision block to the new processing block. The resulting processing
block is concatenated with its neighbors, if possible. The resulting element
replaces its constituents before the search for decision blocks is continued.

Thus, the connector list entries, segment list entries, and program blocking
list entries that designate a processing block are isolated within the lists.
These list elements are accessed by the decision block list entry in the
program blocking list. The designated decision block becomes an element of a
processing block tkat is an element of the remaining program flow.

The decision block determination begins with a forward trace from the initial
, program element on all paths of problem flow to the first program elements
that have alternative entrance paths. If two or more paths are traced to one
program element, the paths are backtracked to determine if a decision block
precedes the collection point. The connector list is used tc backtrack to the
} next prior decision segment. If two or more paths are traced back to a common

T4

decision segment with no intermediate dangling paths, then a decision block is
isolated. If there are intermediate dangling paths, then the flow is traced
backwards from this decision segment to the next prior decision segments
before repeating the testing. Backtracking is terminated on decision segments
that are not reached on all their exit paths.

If the replacement of a decision block element eliminates a collection point,
the program-flow forward trace is extended to the next collection points.

The forward trace is also continued if no decision block is found and if all
the entrance paths are traced. Eventually, an impasse occurs if any loops
exist within the program flow. The program execution flow forward trace from
these elements is the same as above. Backtracking terminates at these program
elements. If the program flow track reaches a collection point that has been
traced beyond, then this collection point may complete a program loop. After
the normal decision block testing is completed, additional tests determine if
a loop exists. The flow is backtracked from the suspected element. This
reverse flow trace can be past decision segments that exist as potential loop
exits, Backtracking is terminated as the collection point elements for which
all entrance paths have not been traced. If the program loop has only one
exit, then the entrance paths are checked to determine if a common starting
program element exists with no alternative dangling side paths. If so, the
loop and its entrance paths back to the common starting element form a decision
block to be isolated. If the program loop has multiple exits, then these mul-
tipie exits must reach a collection point before the existence of a decision
block is determined.

At this point in the optimizing process, the individual elements are in a
sequence that reflect an acceptable order of execution for the program. This
order can be altered within limits without changing the resultant values of
the stated problem solution. Data dependencies establish the limits of reor-
dering the execution with no change in the problem solution. The remaining
analysis determines the specific changes within these limits that optimize the
resultant computer program.

4.7 Move Program Segments

The initial analysis that determines the favdrable program movements
concerns decision blocks only. A pushdown table is employed to maintain posi-
tions of postponed analysis. The analysis starts with the all-encompassing
processing block that represents the entire problem solution. As sub-blocks
are found, the current block analysis is tabled and remains tabled until all
the sub-blocks are processed. Thus, the inner block analysis is completed
first. The most inner blocks are processing blocks that contain program
segments and no decision bdlocks as elements. The analysis relies on the fact
that the decision blocks are elements of processing blocks and contain pro-
cessing blocks as elements.

The techniques of the initial analysis depend upon the program execution flow
wvithin decision blocks. Attempts at gross improvements precede finer adjust-
ments. The first optimizations move program segments to processing blocks of
lover activity than the original processing blocks. Examples include moving

75

statements from loops and moving statements from absolutely executed to condi-
tionally executed processing blocks. A tentative processing block is estab-
lished for the moved statements. If possible, this block is concatenated with
other processing blocks. The gross improvement analysis does not involve any
program division smaller than a segment. Thus, the individual intermediate
language instructions are not accessed for this analysis level.

The analysis depends upon the form of the decision block being analyzed. The
movements are limited by the processing blocks that are elements of the
decision block and by the processing block that contains the decision block
as an element. The analysis of a decision block with no loop differs from
the analysis with a loop. Data dependencies determine the program segments
that can be moved.

4.7.1 Res...ctions on Moving Statements

The range of possible positions for a program segment depends
upon the processing blocks. The possible positions within this range for the
program segment within decision blocks depends upon the program flow. Fach
element of a processing block is executed if the processing block is executed.
The order of execution of the individual elements within a processing block
is independent of the program flow. The primary reordering restriction within
processing blocks is the cbvious restriction that a value must be established
before it can be used.

Within the decision blocks, the movement of program segments is complicated
by the conditional execution of some elements and the repeated execution of
elements in a loop. The normal movement within a decision block transfers a
program element from one processing block to another processing block within
the same decision block. If a program element is moved to a position- where
its execution is unconditional whenever the decision block is executed, that
program element is transferred to the processing block that contains the
decision block as an element. This program element is eliminated from the
decision block and becomes an element of the processing block containing the
decision block in parallel with the decision block.

Data dependencies and program flow restrictions are considered before a pro-
gram segment is moved from one processing block to some other processing

block. An advanced calculation must follow the evaluation of any of its con-
stituent operands. A delayed evaluation must precede any new setting of valueg
for the variable value operands. Established values must be calculated before
they are used. An evaluation in a new position must not adversely affect cal-
culations on any program flow path. This condition is verified by the execu-
tion flow within the decision block.

4.7.2 Criteria for Moving Statements

A problem statement is moved from one processing block to
another processing block to create a more efficient object program. An ob-
vious gain occurs in moving a program element to a processing block with a
lover frequency of execution than the originating processing block. Various
levels of activity are readilv avvaArent for the elements within the program

76

flow of a decision block. The more active elements are the loop elements.

The less active elements are the conditionally executed elements that occur
after decision segments. Additional levels of activity occur for combinations
of these conditions. :

Since all the elements of processing blocks are executed, all processing block

i elements will have the same level of activity. The interchange of these ele-
ments reduces temporary storage requirements and in consequence reduces page
turning. This optimization is achieved only after additional dictionary
intelligence is available.

4.7.3 Decision Block Intelligence

Before program segments are selected for movement, the avail-
able program intelligence concerning the applicable decision block is pro-
cessed. The initial program intelligence consists of the accession lists for
the variable values that are accessed during the execution of the decision
program segments and of each element for all the processing blocks that are
contained within the decision block.

The processing of accession data is equivalent to the method described in
section 4.3 (Process Accession List). The major difference is that the

frame of reference becomes the decision block instead of the entire program.
Invariant values specify that the variable values are invariant with respect
to the decision block. The data details are carried to the depth of the ele-
ments of the processing block contained within the decision block. Hence,
this analysis produces an accession list of its data requirements for use in
outer level block analysis. Data used only interior to this block are not
included in the list. The type-of-access flag is expanded to include changed
and conditionally changed values.

The approach to flow analysis is direct. Each element is analyzed in turn to
determine its role in the program flow within the decision block. The entry
element is tne first element inspected.

Three operation modes exist in the flow analysis: (1) a forward trace finds
non-loop elements; (2) backtracking isolates a loop; and (3) a second back-
tracking identifies the loop elements. The initial entry element is used to
determine which mode is first used. If the first element is a loop element,
8ll the elements of the loop are isolated before continuing. If the first
element is not a loop element, all the initial non-loop elements are analyzed

first.

The forward trace finds the non-loop elements. The exits of the traced ele-
ments locate succeeding elements, elements with alternative exit paths to
trace are tabled, and the traced connector is flagged. If the entered element
is the destination in more ‘than one connector, and if all the applicable con-
nectors are not marked, the tabled elements supply another eligible path. The
element is tabled as & merge element the first time this occurs. If all the
pertinent connectors are flagged, then the element is removed from the table,
flagged as a non-loop element, and used to continue tracing. When all paths

7

are tracea, this mode of operation is terminated. If elements with unmarked
entrances remain in the connector list, then a loop exists in the decision
block.

The backtracking that isolates a loop is required if any elements remain from
the proceeding analysis. Since the connectors that lead outside the loop in

a backward direction are marked by the prior analysis, they are easily avoided.
The backward trace starts from all the elements remaining from the above
analysis and continues until all paths reach another of these elements. An
investigation is required to isolate all elements that mutually precede and
follow each.other. This operation mode isolates one loop. The loop elements
are flagged during a second backward trace. The exit paths from the loop are
tabled at this time. The forward trace continues from these exits to find
additional non-loop elements.

4.7.4 Decision Block Statement Moves

Each decision block element is classified in two ways: (1)
loop or non-loop and {2) decision program segment or processing block. The
individual components that enter into this analysis are (1) the decision
program segments, (2) the individual elements of the processing blocks con-
tained within the decision block, and (3) the elements that precede the de-
cision block within the processing block that contains the decision block.
Optimization at this level moves these components to positions of lower exe-
cution activity than their original positions. These moves include the re-
moval of program elements from loops.

Some components are moved from a position before a decision program segment
to a position after the decision program segment. This move is possible if
the element's execution is not required on all exit paths of the decision
program segment. An element may be removed from a loop past the exit test
in this process. Program elements contained within loops are removed from
the loop if their repeated execution is redundant.

4.8 Factor Common Expressions

The next task analyzes the intermediate language instructions. This
anulysis results in an instruction reordering with the insertion and deletion
of some instructions. The task is executed for each decision block immediate-
ly after the statement decision block moves are completed. The first steps in
the analysis apply to the instructions of each processing block within the
decision block.

The elements being analyzed consist of the intermediate language instructions
within the program segments of the processing block. Later, the decision
block is analyzed and tne elements then consist of the intermediate language
instructions within the .decision segments and the instructions that result
from analyzing the processing blocks that are contained within the decision
block. A realigned intermediate language program is produced at this time.

78

4.8.1 Processing Block Analysis

The decision blocks that are elements of the processing block
under consideration are analyzed and optimized before the processing block is
processed. . The process manipulates those decision blocks that are elements of
the processing.block as inflexible sequences of intermediate langusge instruc-
tions. These elements are repositioned within the flow of the processing
block as units. Their movement is limited by data restrictions.

The program segment elements of & processing block are analyzed after the
decision block containing the processing block is analyzed for statement
moves. The intermediate language instructions within these program segments
are collected into one sequence. Special intermediate language instructions
designate the decision block elements. The major optimizing processing de-
pends upon where the processing block occurs within a decision block. The
initial processing is independent of the covering decision block. Pairwise
comparisons are made on the intermediate language instructions of the block
to determine the instructions that are identical and require the same operand
values. Excess instructions are deleted, and the remaining instructions are
modified to accommodate the deletion.

4.8.2 Decision Block Analysis

The preliminary processing block analysis is completed for
all the processing block elements of a decisicn block before the decision
block is analyzed. In contrast to the preliminary processing of the process-
ing blocks, which is an intrea-block analysis within one processing block, the
initial decision block processing is an interblock analysis between the pro-
cessing blocks that are the constituent elements of the decision block under
consideration.

This initial process factors common expression sequences from two parallel
processing blocks. The factoring method depends upon the location or position
for the sequence. The sequences are inserted before the decision segment at
which the program flow diverges or after a point at which the program flow
merges. If more than two parallel processing blocks occur, then the factor-
ing is accomplished in a pairwise manner. 1In this factoring process, the
instructions within the computation portior. of a decision segment are also
included. The actual decision instruction remains unless all the alternatives
on both paths are identical.

If a program loop is involved within the decision block, an attempt is made
to remove all loop invariant calculations. Tentative intermediate language
instructions are generated for the pre-loop access of these values. If
the loop has multiple entrance paths, the instructions that are removed are
inserted such that these intermediate language instructions are executed
regardless of entrance path used.

19

4.9 Dictionary Realignment

The next step in the processing realigns the dictionary according to
the classification of the values that are represented. Within the classifica-
tions, the dictionary entries are blocked according to the order in which the
values are used within the program execution. One classification consists of
the program constants and the invariant values that are accessed by nonsub-
scripted names. Dictionary entries that represent values with duplicate
representations are combined in this process. Another classification consists
of the variable values that are accessed by nonsubscripted names. For ease of
symbolic reference, these dictionary entries are ordered alphabetically. The
remaining two classifications of dictionary entries represent the values
called by subscripted names. These entries are classified according to
vhether the represented data values are variable or invariant. The structure
values for dictionary entries cannot be completely divided if completely
defined tables exist or if data overlays are declared.

The subscripted named values allow the least processing; hence, they are pro-
cessed first. The nonsubscripted variable values affect the problem flow and
are stored with variable tables. The invariant data occupy whatever storage
space is available. Since invariant data have the most flexible storage
requirements, their analysis is last.

L.9.1 Divide Subscripted Data

The preliminary processing of subscripted data divides these
data into two groups according to whether the data values are invariant or
variable within the program flow. Data involved in overlay declarations are
all placed together in the same group. This group is placed in the invariant
data group only when all the values are invariant. The same requirement
exists when the data are from a completely defined table. This first division
produces two structure groups: (1) the subscripted named values that are
invariant throughout the program, and (2) the subscripted named values that
are changed during the program execution. Structures that have subscripted
named values in both groups are considered as two separate structures in the
remaining analysis.

Separation for subscripted named values is also done according to the use in
ilistinct loops where the subscripts are loop-dependent. These items are
grouped during the loop analysis. Parallel substructures are constructed to
represent this grouping. ™hus, vhen the loops are executed, the required
values will be in close proximity to each other. All subscripted named values
that are accessed from a single loop are tabled as serial entries within one
structure. The remaining values are in other parallel structures. Two loops
using some common subscripted named values complicate the situation. 1In the
case of invariant data, parallel tables can be used. Common values can be
duplicated if the storage requirements are not increased substantially. If
excess storage is required or if the data are variable, one structure is used
to include all the values. Subscripted data not referenced within loops are
maintained as serial entries within common structures according to the source
program declarations.

30

4.9.2 Group Variable Value

The manipulation of variable values is designed to group
these data such that the fetching and storing of data is a flow from group
to group that parallels the program execution. The accession lists that are
generated when the intermediate language program is realigned provide the
initial intelligence concerning accesses and order of eccess. The variable
value subscripted items are included within this analysis. A structure is
treated as a unit with extensive storage requirements. Values that are in
structures are accessed from these structures. Some velues are closely
related to these structures and are stored with the structures. -

The analysis begins from the innermost loops of the program and proceeds out-
ward. The goal is to locate the variable values in storage such that the
values are readily accessible during the execution of the loop. Various
storage methods are utilized to satisfy the differing access requirements.
Some values are accessed from fixed storages, which others will be accessed
before the loop is executed. This prior access involves precalculations for
instructions that use loop-independent operands. The values are grouped
such that the type of access is optimized. Variable values that are used
only within one loop or section of code are either assigned to the high-
activity temporary area or to the fixed storage area. The storage method
depends upon whether the value is saved from one loop execution to the next
loop execution.

4.9.3 Group Invariant Data

The process that groups the invariant data begins with a
check for values with duplicate representations. This first step compares
the values pairwise to determine if duplicate value representations can be
consolidated. Thus, there is some reductior in the storage requirements for
invariant data.

Subsequent steps are designed to arrange the invariant data for an orderly
access of the values in parallel with the flow of program execution. These
renaining tasks reduce computation time by properly assigning the data to
storage. Counts are accumulated to determine the number of program segments
that access each value., The values that are most frequently accessed are
grouped. The values that are used very seldom are included with the program
secticns that access that data. In some cases, the invariant data are
duplicated, it the data value is randomly accessed or if the data value
belongs in two logical program sections.

4.10 Computer Code Generation

At the time computer code is generated, the actual storage assign-
ments are unknown. The registers that willi contain the base location values
are assigned at this time. The displacements of data from the base locations
are known for the computer code being generated. Computer code is compiled
relative to base locations. The location values are contained in assigned
registers. 'Again, the displacement is the only compiling requirement. 1In

81

fact, an entire compilation can be made with the base location values consid-

ered as variables that are assigned at execution load time. It is easy to

generate the object code before determining where this code is located. As

an example, a loop is compiled before determining the loop's position on a '
page. After the compilation, the loop is positioned to fit on a minimum

nunber of pages. If there is an excess number of cells remaining on a compu-

ter page, some of the invariant data are located with the instructions.

The sequence of selecting the intermediate language instructions for trans-
lation to computer code is from the innermost program sections outward to the
entire program. This order is the same as the order that the program sections
were selected to factor common expressions. Thus, the process to factor
common expressions has rearranged the intermediate language instructions into
this order.

After the sequences of computer code are generated, the various sequences are r
combined into page segments. Between these page segments additional instruc-
tions are inserted to adjust registers for base locations. In addition,
calling sequences are inserted to the subroutines that advise the executive
routine in advance of the program requirements. Counting instructions are
also inserted. These counts are available to the executive advising sub-
routines to provide the capability for a dynamic determination of alternative
page loading.

5.0 SUMMARY

This section has presented a means of manipulating the program intelligence
available from an intermediate language program with an associated dictionary.
The procedure as outlined will produce more efficient code than is produced by
most existing JOVIAL compilers. An obJect program produced by this process
should prove to be effective and efficient when operating in a page-oriented
operating system. :

INCLASSTFIED

Secudtx Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing tation must be d when the overall report Ia classified)
1. ORIGINATING ACTIVITY (Cocpmn lu”lol) 28, REPORT SECURITY CLASSIFICATION
System Development Corporation Unclassified
Black River Blvd 26, CROUP
Rome, New York 134Lo0

3 REPORT TIiTLE
An Investigation of Advanced Programming Techniques

»

- DESCRIPTIVE NOTES (Type of report and jaclusive dates)

Final - July 1967 - June 1968

- AUTHOR(S) (Firet name, middle initial, last name)

Richard M. Dobkin

¢. REPORT DATE 78. TOTAL NO. OF PAGES 7h. NO. OF REFS
October 1968
8. CONTRACTY OR GRANT NO. 94. ORIGINATON'S REPORT NUMBER(S)

F30602-67-C-0321

b PROJECYT NO.

5581
c. b, OTHER REPORY NO(S) (Any other numbere tha! may be assigned
this report)
. RADC-TR-63-367

10 DISTRIBUTION STATEMENT
Each transmittal of this document outside the Department ot Defense
must have prior approval of RADC (EMIIF), nAFB, NY 13Lko.

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Rome Air Development Center
Griffiss Air Force Base, New York

13. ABSTRACY

The objective of Part I of the study described in this document was
to perform two services. The first service was to investigate four
existing JOVIAL compilers to determine which had the greatest potential
for conversion to the GE-645 computer. The four compilers were the oned
currently in operation on the CDC-1604B, the IBM 7090, the IBM 360, and
the GE-635. The second service was to investiigate and evaluate the
advantages and disadvantages of incorporating certain features into a
compiler which would operate on the GE-645 under the corirol of the
MULTI.S supervisor. These features included the production of programs
with »eentrant code, on-line compiling, partial compilation capabilitie
stri- g processing, advanced system and program compool features, on-lin
debugging aids, segmentation, and binary versus symbolic output. The
study and the conclusions reached were made by comparing and evaluating
‘he needs of the compiler with available system procedure and interface
sodules. In regard to an existing compiler, it was recommended that th
CDC-1604B JOVIAL compiler be selected for conversion to the GE-6LS. As
to the features to be incorporated, it was recommended that all the
features be implemented with the following exceptions: that there be no
batch compilation capability; only a limited partial compiiation
capability be made available; there should be no string processing in
the initial version; only a small number of the on-line debugging aids

be initially available; and that only binary output be produced. (Over)

. &

DD .">..1473 UNCLASSIFIED

‘Secuiity Classification

gcuﬁty §{uﬂ;k:nuon

l1e.
KEY WORD

LINK A

LINK B

LINK C

Computer Programming,
Compilers

Paging

Segmentation

(Continuation of Abstract)

The purpose of Part II of the study
described in this document was to investig
the concept of Paging for the purpose of
establishing techniques for generating cod
operates effectively in the GE-6L4S Paging
System. There were two major objectives o
investigation. The first was to determine
the code generation process for paging cou
automatic (handled by software) or if pres
programming techniques should be altered t
efficient code generation. The second ob}
vas to define an implementation approach w
allov a rapid implementation of a Paged JO
Compiler and the transfer of existing JOVI
programs to the GE-645. The study was acc
by making an investigation of which langua

paged environment. The conclusions reache
this study are detailed in Sections II and
Part II of this report.

pt e

P thi
ir
|d be
bnt

p pro
pctiv
hich
fIAL
AL
bmpli
pe ty

would be most efficient for paging, and hoy a p
can be structured for most effective operation

l dur
ITI

P Tua

yill

UNCLASSIFIED

Security Clsssification

