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ABSTRACT

Volume VI deals with the following topics:
1) Optimum Passive Detection

The problem of passive detection and target location by means of a linear array is
analyzed from a rather general point of view for the case of stationary Gaussian signals
and noises with known statistical properties. Relatiorships are developed between
detector performance indices and such parameters as array dimensions, observation
time, signal bandwidth, hydrophone spacing, signal source location and noise model
properties. Isotropic and anisotropic near and far field noises are considered. Array
gain and directivity measures are treated in detail.

2) Optimum Passive Bearing Estimation

Lower bounds are set on the rms baring error attainable with a linear array when
signal and noise are stationary Gaussian processes with known spectra and the noise
is statistically independent from hydrophone to hydrophone. The results are compared
with the rms error of a split beam tracker, modified by insertion of an appropriate
spectrum-shaping filter intoc each array half. The split beam tracker reaches the
lower bound for a two-element array and comes very close to the lower bound for
arrays of arbitrary size. Thus it is a very nearly optimal instrumentation under the
given circumstances.

3) Active Sonar Signal Design

The signal design problem is considered for the case of an ideal transmission medium
and reverberation modelled as reflections from a series of independent, Poisson dis-
tributed scatterers. Primary interest centers on the redesign of the pulse waveshape
in accordance with information gained from an earlier return. The results indicate
the possibility of some improvements in principle, but the highly idealized nature of
the assumption leaves the question of practically important gains open to consider-
able doubt,
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FOREWORD

This is the sixth in a series of reports describing work performed by Yale University
under a subcontract with Electric Boat division of General Dynamics, prime contractor
of the SUBIC (SUBmarine Integral Control) Program, contract number NOnr 2512(00).
The Office of Naval Research is sponsor of the SUBIC Program; LCDR E. W. Lull is
Project Officer for ONR. Mr. J. W, Herring is Project Manager for Electric Boat
division under the direction of Dr. A. J. van Woerkom, Chief Scientist of the Applied
Sciences Department,
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I INTRODUCTION

The following is a summary of work completed under contract 8050-31-55001 between
Yale University and Electric Boat division during the period from 1 October 1967 to
30 June 1968. More detailed discussions of the results as well as their derivations
are contained in a series of three progress reports which are appended. Two of the
topics, dealing with passive detection and bearing estimation, represent continuation
of efforts reported in earlier volumes of this series. The third item deals with initial
results in a new area, optimum design of active sonar signals.

II OPTIMUM PASSIVE DETECTION

Report No. 35 contains the most comprehensive and general treatment in this series
of the optimum passive detection and target location problem. Signal and noise are
assumed to be stationary Gaussian processes with known statistical properties. The
receiving array is assumed to be linear and uniform hydrophone spacing is postulated
whenever specific computations are carried out. The basic analytical procedure
follows initially the familiar technique of representing the observed time function at
each point in space by a Fourier series. Then, following a basic suggestion by
Vanderkulk, the spatial structure of the data is treated by projecting the Fourier co-
efficients onto the spatial Eigenfunctions of the noise. Thus, each Fourier coefficient
is represented by an orthogonal expansion whose coefficients are statistically indepen-
dent in the absence of signal. This approach produces particularly simple versions of
the primary performance indices. Thus, one finds that the single frequency on target
array gain G0 of the optimum detector for a plane wave signal is given by a sum of the
form

2
k "k

where the )\k are the normalized Eigenvalues of the noise and h.k is the projection of

. th
the signal on the k™ Eigenfunction of the noise. The corresponding expression for the
conventional power detector assumes the form

Ak




where L is the array length. Straightforward comparisons of optimal and conven-
tional detector performance are now possible.

In the above formulation, the noise field is completely described by its Eigenvalues

lk. When the noise originates in a region remote from the array compared with the

array dimensions, the spatial correlation function (which generates the kk) becomes

stationary and is therefore specified completed by a spatial spectrum. Spatial spectra
are derived for various forms of sea noise, self noise, and interfering targets. Their
study sheds considerable light on the relative magnitudes of the Eigenvalues and un
the nature of the detection process. One finds, as expected from Vanderkulk’s
results, that the linear array has a much higher array gain in the endfire direction
than in the broadside direction when the noise consists predominately of spherically
isotropic sea noise. The effect is much less pronounced when the noise is circularly
isotropic, a fact readily explained by the concentration of noise power at spatial fre-
quencies associated with the endfire direction. The advantage of the endfire direction
in either case is drastically diminished by the presence of even a small amount of
self-noise (whose spatial spectrum is white, whereas the spectra of all far field noises
cut off sharply at a spatial frequency of 2x/A rad/ft, A being the acoustic wavelength).
For noises of a generally isotropic type, the advantage of the optimum detector over
the conventional detector is largely due to decreases in hydrophone spacing below a
half wavelength, This may be interpreted loosely as oversampling the spatial spectrum,
thus permitting recovery of signal energy shifted to frequencies outside of the basic
noise band by passage through the finite spatial window cof the array. The presence of
self-noise beyond the basic cutoff frequency of 2r/A clearly does much to offset that
advantage. On the other hand, spatially concentrated noise such as interference from
a point source remote from the target yields a spatial spectrum largely disjoint from
the signal spectrum, so that the optimal processor can eliminate most of the inter-
ference. As a result, one finds a high array gain in all directions except in the im-
mediate vicinity of the interference bearing. If the interference originates very close
to the array, the array gain is high even in the interference direction, because one
can now utilize the different attenuation rates of signal and interference across the
array to achieve the necessary discrimination.

Report No. 35 also discusses the directivity of the optimal and suboptimal detectors,
using as a criterion the ratio of the array gain off target by a certain angle to the
array gain on target. As one would expect, the sensitivity curve is considerably
broader for endfire than for broadside targets. A less obvious conclusion is that the
sensitivity curve of the conventional detector does not, in generrl, peak at the true
target bearing, eveu if the noise is isotropic. The magnitude and even the sign of
this bias varies with noise field geometry. The directivity curve of the optimum
detector, on the other hand, always exhibits a peak at the true target. Finally, the
report discusses the error in estimated target location resulting from the use of
optimum or conventional detectors. A convenient figure of merit is closely related
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to the likelihood function of the target location. Since the true likelihood function
varies randomly with the observed data, an average version is employed. For the
optimal detector this figure of merit always peaks at the true target location, whereas
the conventional detector exhibits the bias phenomenon mentioned earlier. At low
signal-to-ncise ratios the bias effect can be quite appreciable. The modified likeli-
hood function is plotted as a function of bearing and range. It permits not only com-
parisons of different detector types, but also allows study of the effeci of parameters
such as observation time, frequency band and target bearing on the target-locating
ability of a given receiver. As one might anticipate, the range discriminating ability
of the array is small except at very short ranges.

Il OPTIMUM PASSIVE BEARING EST(MATION

Report No. 37 generalizes the results given in Report No. 32 (Volume V), with regard
to array size and spectral properties of signal and noise. The earlier report used the
Cramer-Rao technique to set a lower band on the rms bearing error attainable with a
two-element array when signal and noise were stationary Gaussian processes with
spectra of the same shape and the noises received at the two hydrophones were statis-
tically independent. Report No, 37 allows an arbitrary number of hydrophones arbit-
rarily spaced on a linear array (the final comparison with a split beam tracker is only
carried out for equally spaced hydrophones). It also allows arbitrary signal and noise
spectra. All other assumptions of the earlier analysis (notably that of ncise indepen-
dence from hydrophone to hydropiione) are retained.

For an array of M equally spaced hydrophones, one finds a lower bound

D(9) on rms error given by

F"w Sr (w) BR%:
237 ¢ s 2 2
D(6) > duww N (»)
o
d\/'-l‘-cos 0 MJM2-1 o 1 4 M—(—)-J

N(w)

S{(w) and N (w) are the signal and noise spectra respect‘ively, d is the spacing between
the hydrophones, T the observation time, 0 the bearing angle relative to broadside,
wmax the upper end of the processed frequency range, and c the velocity of sound.

If M S(w) / N(w), the signal-to-noise ra.io after beamforminq )s large over the entire
processed frequency range, the lower bound varies as (S/N) For M S(w)/N(w) <<1,
the lower bound varies as (S/N)~ 1 The former is a type of behavior often associated
with coherent systems, whereas the latter is generally identified with incoherent
processors. Qualitative physical justification for these conclusions is furnished by
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where L is the array length. Straightforward comparisons oi optimal and conven-
tional detector performance are now possible,

In the zbove formulation, the noise field is completely described by its Eigenvalues

lk. When the noise originates in a region remote from the array compared with the

array dimensions, iiie spatial correlation function (which generates the )\k) becomes

stationary and is therefore specified completed by a spatial spectrum. $patial spectra
are derived for various forms of sea noise, self noise, and interfering targets. Their
study sheds considerable light on the relative magnitudes of the Eigenvalues and on
the nature of the detection process. One finds, as expected from Vanderkulk’s
results, that the linear array has a much higher array gain in the endfire direction
than in the broadside direction when the noise consists predominately of spherically
isotropic sea noise. The effect is much less pronounced when the noise is circularly
isotropic, a fact readily explained by the concentration of noise power at spatial fre-
quencies associatea with the endfire direction. The advantage of the endfire direction
in either case is drasticrlly diminished by the presence of even a small amount of
self-noise (whose spatial spectrum is white, whereas the spectra of all far field noises
cut off sharply at a spatial frequency of 27/A rad/ft, X being the acoustic wavelength).
For noises of a generally isotropic type, the advantage of the optimum detector over
the conventional detector is largecly due to decreases in hydrophone spacing below a
half wavelength, This may be interpreted loosely as oversampling the spatial spectrum,
thus permitting recovery of signal energy shifted to frequencies outside of the basic
noise band by passage through the finite spatial window of the array. The presence of
self-noise beyond the basic cutoff frequency of 2r/A clearly does much to offset that
advantage. On the other hand, spatially concentrated noise such as interference from
a point source remote from the target yields a spatial spectrum largely disjoint from
the signal spectrum, so that tne optimal processor can eliminate most of the inter-
ference. As a result, one finds a high array gain in all directions except in the im-
mexiiate vicinity of the interference bearing. If the interference originates very close
to the array, the array gain is high even in the interference direction, because one
can now utilize the different attenuation rates of signal and interference across the
array to achieve the necessary discrimination.

Report No. 35 also discusses the directivity of the optimal and suboptimal detectors,
using as a criterion the ratio of the array gain off target by a certain angle to the
array gain on target. As one would expect, the sensitivity curve is considerably
broader for endfire than for broadside targets. A less obvious conclusion is that the
sensitivity curve of the conventional detector does not, in general, peak at the true
target bearing, even if the noise is isotropic. The'. magnitude and even the sign of
this bias varies with noise field geometry. The directivity curve of the optimum
detector, on the other hand, always exhibits a peak at the true target. Finally, the
report discusses the error in estimated target location resultiig from the use of
optimum or conventional detectors. A convenient figure of merit is closely related
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to the likelihood function of the target location. Since the true likelihood function
varies randomly with the observed data, an average version is employed. For the
optimal detector this figure of merit always peaks at the true target location, whereas
the conventional detector exhibits the bias phenomenon mentioned earlier. At low
signal-to-noise ratios the bias effect can be quite appreciable., The modified likeli-
hood function is plotted as a function of bearing and range. It permits not only com-
parisons of different detector types, but also allows study of the effect of parameters
such as observation time, frequency band and target bearing on the target-locating
abhility of a given receiver. As one riight anticipate, the range discriminating ability
of the array is small except at very short ranges.

I OPTIMUM PASSIVE BEARING ESTIMATION

Report No. 37 generalizes the results given in Report No. 32 (Volume V), with regard
to array size and spectral properties of signal and noise. The earlier report used the
Cramer-Rao technique to set a lower band on the rms bearing error attainable with a
two-element array when signal and noise were stationary Gaussian processes with
spectra of the same shape and the noises received at the two hydrophones were statis-
tically independent. Report No. 37 allows an arbitrary number of hydrophones arbit-
rarily spaced on a linear array (the final comparison with a split beam tracker is only
carried out for equally spaced hydrophones). It also allows arbitrary signal and noise
spectra. All other assumptions of the earlier analysis (notably that of noise indepen-
dence from hydrophone to hydrophone) are retained.

For an array of M equally spaced hydrophones, one finds a lower bound

D(6) on rms error given by

B 2 . N1/2
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S(w) and N(w) are the signal and noise spectra respectively, d is the spacing between
the hydrophones, T the observation time, 0 the bearing angle relative to broadside,
wmax the upper end of the processed frequency range, and c the velocity of sound.

If M S(w) / N(w), the signal-to-noise ratio after beamformin }s large over the entire
processed frequency range, the lower bound varies as (S/ N . For M S(w)/N(w) <<1,
the lower bound varies as (S/N)~ 1 The former is a type of behavior often associated
with coherent systems, whereas the latter is generally identified with incoherent
processors. Qualitative physical justification for these conclusions is furnished by




the observation that one can obtain a good estimate of the signal waveshape when the
post-beamforming signal-to-noise ratio is high. Hence, basically coherent techniques
are available in this situation. No such option exists when the post-beamforming
signal-to-noise ratio is low.

A second interesting feature of the lower bound is its dependence on the number of
hydrophones (M). If M > 1, one has a dependence on M2 and M-1 for low and high
pcst-beamforming signal-to-noise ratios respectively. Since dM = L, the length of
the array, a more significant observation is perhaps that the lower bound varies as
(LM)~1 and L-1 M-1/2 and high post-beamforming signal-to-noise ratios respectively.

Finally, the lower bound exhibits an anomaly which deserves some comment. The
dependence on (cos 0)~1 leads to an infinite lower bound for the endfire direction. In
order to understand this phenomenon, we note first that the version of the Cramer-Rao
inequality used in the derivation gives the minimum variance unbiased estimate.
Secondly, we observe that the basic data furnish information concerning relative signal
delay from hydrophone to hydrophone. Since delay is proportional to sin 6, it is
perfectly possible for noise-perturbed estimates of sin 0 to exceed unity, so that no
natural interpretation in terms of 6 is available. If one resolves this problem by
assigning 0 = 909 to all such cases, one clearly has a finite variance estimate, but
one which is now biased, It is clear, therefore, that hiased estimates exist whose
meanu square error is smaller than that of any unbiased estimate for some specific
value of 8. This suggests that one should look for a "best' bias function b(6). The
Cramer-Rao inequality with bias is not significantly more complicated than the un-
biased form, so that no serious obstacle exists on that score. However, there is

a certain arbitrariness in the use of bias, for one can in principle make the error for
any given target bearing as small as one pleases, at the expense of larger errors

for other bearings. At best, therefore, one could search for a bias function optimum
in an average sense, which in turn implies a priori knowledge concerning the prob-
ability of various target bearings. The question is perhaps worthy of some further
study. However, if one excludes bearings very close to endfire and if the observation
time T is long enough to make the indicated bearing practically useful, any improve-
ments due to bias should be quite small and would probably be outweighed by the
practical advantage of working with an unbiased instrumentation. It appears reason-
able, therefore, to regard the unbiased figure as a lower bound for most practically
interesting situations.

A more significant question concerns the ability to realize the lower bound. The
Cramer-Rao inequality gives a value of rms error which cannot be reduced, but
which cannot always be reached. In our case, the obvious instrumentation to check
rgainst the lower bound is the split beam tracker, which is unbiased for the postulated
noise field. If one obtains the required 90° phase shift with a differentiator and if
one modifies the conventional instrumentation by inserting into the summed output of
each array half a filter with transfer function H(jw), satisfying
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then the rms bearing error D(6) assumes a form similar to the lower bound. In fact,

°O £ [T
Lower bound vV 3 M2

This function increases monotonically from 1 to/4/3 as M increases from 2 to ©,
Thus the split beam tracker, with the minor modification described above, is an
optimal unbiased bearing estimator for M=2 and a very nearly optimal estimator for
arbitrary M.

Efforts to extend the above results to noise fields not necessarily independent from
hydrophone to hydrophone are now in progress,

IV ACTIVE SONAR SIGNAL DESIGN

Report No. 36 contains the results of the initial study in this series concerned with
the design of active sonar signals. Only the most idealized case is considered. The
reverberation model is based on independent Poisson distributed scatterers in indepen-
dent motion. Signals are assumed to remain undistorted in transmission and the tar-
get is modeled as a perfect reflector, changing the signal waveshape only by a fixed
doppler shift. The target is assumed to be moving on a straigit line course at a
constant velocity and its bearing is regarded as known (presumably from passive
sonar measurements), Thus only range and range rate must be estimated from the
active sonar return. The question of ultimate interest is the target position some
substantial time after the active sonar return has been received (e.g. at the time of
possible intercept). The study deals in particular with the possibility of using in-
formation from a first sonar ping to improve the design of a second ping.

In signal design, one is concerned with two distinct but interrelated problems:
ambiguity and accuracy. A return is ambiguous if two or more distinct regions in

the range-doppler shift plane represent probable locations of the target. The term
raccuracy" refers to the dii .ensions of a single such region of possible target
location. The analysis concentrates on the accuracy problem, the assumption being
that the signal-to-noise ratio is sufficiently high so that the gross errors of ambiguity
cannot occur with any significant probability. However, one cannot ignore the
ambiguity problem entirely, for one finds rather generally that signal designs cal-
culated to improve accuracy tend to increase ambiguity. Thus, bounds on attainable
accuracy are often set by the maximum tolerable level of ambigity.
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As time elapses after a pulse has been received, the region of uncertainty describing
the accuracy problem elongates in the range direction, but retains a fixed dimension

in the velocity direction. This is simply due to the fact that the target velocity is

fixed by assumption, but that any error in the velocity estimate reflects as a constantly
growing error in future range estimates. If there is substantial ""wait time" (time
between transmission and the instant at which the target position is ultimately required),
the error is largely due to this velocity component for any reasonable signal waveshape.
One is therefore led to the conclusion that the initial pulse of a two-pulse sequence
should seek primarily to establish target velocity, i.e. it should be a narrow band
pulse. If the target happens to be moving rapidly enough, - this will also improve the
signal-to-noise ratio because the reverberation will be spectrally disjoint from the
target return. This, however, is merely a fortuitous circumstance, for in the absence
of a priori information on target velocity one could not design a first pulse to discrimi-
nate against reverberation.

The function of the second pulse is primarily to measure target range. It appears
clear on intuitive grounds that this pulse should be sent as late as possible, but ther2
are two conflicting factors affecting the choice of waveform: For a given signal-to-
noise ratio, best range accuracy is achieved by a wideband signal, but a wideband
signal does not permit spectral separation of signal from reverberation and therefore
leads to lower signal-to-noise ratios when the target is moving. If the first pulse
return indicates a target moving above the same minimal velocity (depending on rms
scatterer motion), some compromise in signal design is clearly indicated. The
matter is further complicated by the ambiguity problem mentioned above. The re-
sulting complexity is such that straightforward analytical optimization becomes im-
practical and one has to resort to numerical procedures instead. The results indicate
that substantial improvements in final accuracy can often be made in principle by
proper design of the second pulse. However, the required waveshapes tend to be
rather complicated and critically dependent on the velocity information gained from
the first pulse. Furthermore, if one hopes to extract most of the information coded
into the complex waveshape of the second pulse, one cannot relax the postulate of
distortion-free transmission appreciably. Thus there ia serious doubt whether impor-
tant gains over the most obvious signal designs can in fact be made in many interesting
situations. To resolve this question, one must deal with more realistic transmission
models, Studies directed toward this end are now in progress.
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PSTPACT

"Optimum' weak signal passive detection is studied for a linear
array of hydrophones in & Gaussian noise field. Relationships are
developed between the detector performance and the array length, otser-
vation time, processing frequency band, hydrophone spacing, signal
source location and characteristics, and noise model properties. The
basis for the analysis is the eigenfunction expansion introduced ty
Vanderkulk (3). The roise models considered are two types of isotropic
sea noise, a noise of local origin, interference frim a previously
detected source, and the self noise in the hydrophones. Particular
attention is paid to self noise limitations on endfire detection. The
measures used to describe the arrey performance are the output signal-
to-noise ratio, the array pain, and directivity measures that indicate
output changes as a function of either steering angle or of noise
source location relative to a fixed steering angle. A new measure of
the ability to locate a given signal courcc is also employed. The
conventional power detector and nne other suboptimum detector are
analyzed for comparisor with the "optimum" detector. A measure of the

weak signal bias in the conventional cetector is introduced.
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CHAPTER 1

INTRODUCTION

s Background and Objective

Much recent progress has been made in the analysis of passive sonar
detection using an array of hydrophones. In 1962 Bryn [1] shoved how to
calculate the array gain and directivity of ln'artay vhose elements are
so closely spaced that significant noise dependence exists between neigh-
boring elements. He went on to indicate how op’imum (likelihood tltiol)
processing might be implemented using a combination steering and shading
filter folloving each element of the array. This analysis and design are
valid for the detection of low level Gaussian plane wave signals in a
wideband Gaussian noise field with arbitrary continuous power spectra.
Specifically, Bryn discusses the processing characteristics of a cubic
array operating in an isotropic noise field. He concludes that "at low
frequencies the optimum detector offers marked improvements over the
standard delay-square-integrate detector...”, and that "the degree to
which the improvements can be realized in practice depends largely on the
extent to which self noise can be eliminated in the input circuits of the
detector."

In 1963 Vanderkulk [3] made a more complete study of the effects on

1The relationships between this and certain other processing objectives
such as the maximization of output signal to noise ratio are the subject of
a mathematical comparison by Edelblute, Fisk, and Kinnison [2]. It is shown
that Bryn's optimum detector maximizes the output signal to noise ratio.
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array performance of self noise and the number of elements composing the
array. The low frequency advantage was restated but with the warning
that it could be offset by measurement errors in parameters required by

the optimum detector. The analysis was carried out for spherical, linear,

and ring shaped arrays operating in isotropic noise. It was mentioned
that optimum processing might be most useful when the noise process is
nonisotropic.

Supporting this study, Vanderkulk introduced the use of an eigen-
function expansion for the single frequency covariance matrix of the

noise. The mathematical structure of the detector which results from

el R N NN e e D BB

the use of this expansion provides significant additional insight into
array behavior. It is the object of the present study to exploit this 53 |
expansion in a more extensive and somewhat less restrictive analysis of = J
optimum linesr array processing. !2
Bryn's assumptions regarding the noise field are used here, that is, -
the noise field is assumed to be Gaussian and ergodic with an arbitrary 5§ %
continuous power spectrum. Model fields of nonisotropic as well as ,?
| isotropic noise are considered. In particular, the nonisotropic ¢ffects !5 f
of interfering targets and of local noise erising from sources on or ncar ;i %
the array are discussed and simple examples presented. The medium . = %

surrounding the array is assumed to be homogeneous and nvndispersive (so

[
L

o

| that the velocity of propagation will be constant). Spherical, attenuating

i signals from the target ere included so that the effects of the target 'T
|

| range may be studied. |
M

| In making these assumptions and particularly in selecting the noise !

| models, no attempt is mede to set up special situations in which the

!

‘i

'a f
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optimum processor could significantly outperform the conventional detector.

Such situations do exist, but our aim is to give a somewhat more detailed

account of optimum processing under familiar and ecsily analyzed conditionms.

Even though optimum processing undcr these conditions may yicld small
performance gains over conventionel processing, the enalysis itself is
valuable because it provides an easily calculated ond understood upper
limit to the performance of any detector. Thus we shall usc performance

measures defincd for the optimum detector to deal with the basic "detect-

ability" (for a fixed array) of the target signals themselves. For example,

a new measure is proposed to indicete how well a signal sourcc mey be
located, given the observation time, the array length, the signal to noise
ratio, etc.

In the analysis made here it beceme convenient to define & detector
vhose processing includes thc eigenfunction expansion used by Vanderkulk.
Although not a practical detector from an operational standpoint, it
processcs optimelly as defincd by Bryn and provides far more insight into
the behavior of 2n optimum processor undur a variety of signal and noise
conditions.

The analysis using this detcctor proceeds through the usual perfor-
mance meesures, the output signal to noise ratio and the array gein. The
cffects of the significant properties of the noise models are discussed.

A rough criterion is given for equivalence between the optimum and conven-
tional detectors (see also [4]). Comparisons are made with a detector
that is similar to thc conventional detector in [1] and [3] end also with
another simple suboptimum detector introduced here.

Since the output of zarrsy detectors is commonly shown plotted egainst

steering direction, an account of the dircctivity properties is also

A-3
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incluced. Terms ere identified in the optimum detcctor output which are
unimportant when analyzing detection in a single fixed direction but which
can be prime factors in a directivity plot. An explanation is offered for
bias that develops in the conventional detector display as the observation
time is increased.

The representation of the detector in terms of the eigenfunction
expansion permits a simple and direct analysis of the behavior mentioned
above. The question then arises whether this representation can also lead
to a simple and direct processing algorithm for practical detectors. Much
further study is required to provide a conclusive answer; some initial

thoughts are presented in appendices E and F.

L

v

.i&._‘-’
[z mar]

-



. I [ . ' [T I [ & i

4

: "y ‘ ) [ & 4 [ 3 L] 8 -

1.2 Description of the Detection Proller
a) The Received Signal

An origin is placed at the center of a straight line array of hydrophones

(acoustic transducers) and an x coordinate axis is aligned with this array

and centerea at the origin (Fig. 1 - 1). A member of the random process

" observed at the hydrophone outputs at time t (in seconds) and position

x (in meters) is denoted by v(t,x) . The time interval used for detection
1s denoted by T and the length of the array by L . Though in practice
hydrophoncs cannot be placed at every x within the interval (- % . 12‘") ,
cvery x 1is available to the array; for now, x 1s allowed to assume all

valucs within (- -211 , L) . Dectection thus begins with an observed

0<«<t <T
v(t,x)L L 1-1

-=< X < ¥

2 2

The array is surrounded ty a homogeneous, nondispersive medium occupying
the real space ({ . (This mzy be cffz or 6{3 depending upon whether the
problem is to detect in a pl :e or in a volume). Various stationary
Gaussian noise processes arc assumed to propagate within this medium, and
the statistics of the resulting disturbance along the array are assumed
known. Now ir oddition to these noise processcs, it is assumed that 2 low
level Gaussian sigrzl process may or may not be emanating from 2 single
point sourcc somewhere within (R . Presence of this signal is exprcssed
by the statement Y e ({ where the tip of the vector Y is the location
of the point source, and the ebsence of signal is expressed by Y tﬁ’ .

The ¢ priori probabilitics

plth(lcQ) 1 -2

posPr(_gt(f() 1 -3 1
]
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Figure 1 - 1 The Array with a Target Signal Present
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are assumed known. The spcctrum of the signal proccss (when Z,e'{) as
observed at the center of the array is assu:cd known. The detection
problem treated here is to decide on the basis of the received signal v
whether !_e(ﬂ . Some of the assumptions made above may bte somewhat
unrezlistic, but at this point they provide the basis for a straightforward
analysis. Some of them may later be droppud (completc knowledge of pl end
po) and others mcy be satisfied approximately by adaptive techniques
(knowledge of signcl and noise statistics). For a more inclusive hypothesis
see [5].

According tc the aliove hypothesis, then, v{(t,x) 1is a member of &

Geussien process; that is, all sets of the random variables
v(tl, xl), v(tl, xz), oo
cer v(tz, xl). v(tz, xz), 500
for

t1. t2| LI I

Xis Xg g oon € (- L 2)

a2re normally distributcd. Th: mean of this process is assumed to be zcro.
The covariance function R 1is defined by
R(t, x, s, y) = <v(t, x) v(s, y» . 1 -4

in which the brackets <: :> denote the ensemble average. Because

stationarity is assumed,
k(t, x, s. y) = R(t - 8;x,y) . l1-5
When no sigrel source is present,

R(t-s; %, y) = G(t-s; x, y) . l1-6

A-7
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The signal to be detected is assumed independent of and additive to the

noise background so that when a signal source is present,
R(t-s; x, y) = Q(t-s; x, y) + P(t-s; x, y) . 1-7

When the sigual source alone is present the covariance function R is

equal to P .

b nf sion for the Received Signal
Since v(t,x) 1is defined for all t ¢ (0,T) and x € (- %3 %) ’

the member v represents the joint occurence of events at all points
t,x in this interval. To avoid having to consider this infinite
'mensional representation, v is replaced by a finite dimensional
vector u . The vector u will not contain all the detection information
in v, but by giving u a sufficiently large number of properly chosen
components, the practically retrievable detection information in v that
i left out of u may be made arbitrarily small. These components, in
fact, are obtained by the projection of v onto a set of orthonormal

basis vectors {Oi}, 1ieD where D 1is a finite index set. That is

(u) 1eD

u
- i

T L
2

u, = f f 01*(t,x) v(t,x) dx dt
.

in which #* denotes the complex conjugate. The resulting transformation

is denoted by

E-Ev. 1"9

Since the rows of E (the basis vectors 01 ) are orthogonal, a

i



pseudoinverse of E 48 E*° whcre ° denotes transposition. Operation

on u with E*° produces
veEty 1-10

and it will be presumed that the set of basis vectors is chosen such that

the relation

vav | 1-1
may be accepted for the purposes of detcction. Then

vE*¥yu ., 1-12
The covariance matrix of u 1is

A= (aij) i, €D l1-13

where

- <u1 uj*)
j f 0 * (t,x) dx dt [ [ R(t-8; x,y) Oj(s.y) dy ds . 1-14
L

] - L
2 2

A particularly simple form for A results vhen the ¢, are

i
chosen to be a set of orthonormal eigenfunctions of the 'noise only'

covariance function Q . In fact, let the ¢, solve the equations

i
L

2

f Q(t-s; x,y) Oi(s,y) ds dy = Ai Oi(t,x) 1-15
L

° =2

A-9
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and {
(0, ¢) = & 1- 16 -
1* ") 13 {
7 1 3
l 1=
where A, 1s a scalar quentity and §,, = . Then, when no
1 1) [
0 143 l
signal source is present,
1
A-A:(l16ij), i, eD. 1-17 "’i
When a signal source as well as the background noise is present, 1
=
A= pA+C 1-18 (%
waeTe
{1
& 0
2 T 2 I
$19 ~ f [L ¢, *(t,x) dx dt f f P(t-8; %,¥) ¢,(a,5) dy ds . -
o -3 * L {
2 o -3 1-19 §
For the gnalvais that will be presented here, it is required that ii
¥
the e¢igenfunctions ¢ defined on t and x be scparable into two
factorsz. one depundent only on t and the other only on x . For the i}
-
separativn that w’..1 be made here, the following two conditions are

assuned - 1) that the nolse process is stationary, «nd 2) that the

FLopcTy
[ I |

observation time i3 at least an order of magnitude greater than the

[ Gl 8

coherence time of the noise process.

1(01. Oj) stands for the inner product of * and °j 5

2See Courant and Kilbert [6]. p.56.

A-10




Under assumption 1) the covariance function Q may be written

Q(t-s: x,y) = E% J[. ql(w.x.y) ejw(t-s)du 1-20
in which
ql('w. X, Y) - ql*(w. X, Y) » . 1 -21
ql(w. Yy X) - ql*(w. X, Y) ’ 1 - 22
and
j s V - 1 ) 1 - 23

The intermediate form q; may be rerarded as either a cross power
spcetral dengity in the time frequency  or a single frequency spaticl
covaeriance function. Then assumption 2) means that at all pairs of x
and y in (- %3 %) the cross power spectral density 9 is relatively
constant (smooth) over ( intervals (uw - W, w+ W) , for W significantly
greater than Z% . Consequently
T
]f Q(t-s; x,y) ¢,(s) ds = q)(w, x, y) ¢,(t) , 0 <t <T 1- 24
o

in which oi telongs to a sct of sinusoids. These sinusoids are

ej“’it
@1(t) - = ' @(;0, ), 1€0 1 -25
T

wherc QD is the "boxcar" function defined by Eq. A-1 (in Appendix A)
end pictured in Fig. A-1l. The index set § contains integers such that

the frequencies w, (positive and negative) given by

i

2ni
wi - T 1 - 26

A-11
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are vithin the frequency bard of interest. Note that
o= 04" 1-27
and that the ¢1 form an orthonormal set, i.c.

T

f ¢y*(t) o ,.(t) de = 5., . 1- 28
o

Now for earh 1 ¢ q , a set of eigenfunctions Vi k € Di is

deternined by

(X1

L L
j ql(wi’ X, y) wik(y) - xik *1k(x) s T i S ope s 2 1-25

e

cnd the orthonormality condition

L
2

N e

Also, according to Eq. 1 - 21,

Yo " Yut e 1-31

Though D, could be infinite in general, it will develop later that

i
only 2 finite number of $1k can serve useful detection purposes.
Consider D1 to be composed of the double indices ik of this finite
set.

Replacing the indices in D with double indices, the separation

of the ¢ is achieved by writing

ik
¢1k(t.x) = ¢i(t) wik(x) 1 -32
ikeDs= U D1 . 1 -33
iefl
A-12

—

b |

[ ==
LS

—

. =
.

) 59



bod Gud Ond Geowk fem O od w O v 0 0 O OO0 D B B G &

The function oi(t) will be called & time eigenfunction and wik(x)
will be called a space eigenfunction. The eigenvalue associated with
¢

1k in Eq. 1 - 15 1s now A Projection of the reccived signal v

ik °
onto this sct of time and space eigenfunctions to obtain u will be the
first major operation in the detection analysis. The result u of this

projection (Eq. 1 - 8) of the real process v is constrained by

LA 1- 34

gty
Since further analysis will begin with u it is useful to relate the

total average noise power in v :9 quentities directly associated with

u . In particular the relations below are useful in normalizing detector

performance measures and in calculating absolute noise levels using

measurements at a single hydrophone. According to Eq. 1 - 20, the total

average noise power N in v {s

L -
2 L
N« Q(0; x, x) dx = 27 j’ nl(w) dw l-35
L -
)
where ny is defined by
L
1[2 .
nl(w) L qu(u, x, x) dx , 1 - 36
)

The form q, is Hermitian (Eq. 1 - 22) and can therefore1 be expressed

lﬂalnos {7}, p. 38.
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sleg Xy = ) ¥y () gy bt 1-3
ikeD,

Consequently,

1 Z -
nl(wi) I Ail_c' 1 - 38

:I.keD1

¢) _The Received Cignal through Discretely Located Hydrophoncs

The usc of hydrophones along the array imposes a sampling function
on the space dimension x . For simplicity in approximating the integral
form along the erray length or "aperture" (- L3 %) , the m discrcte
hydrophones will be assumed to be cqually spaced at a separation of ﬁ'.
They will be centercd within (- %3 %) » 80 that there is an interval %ﬁ
before the first hydrophone and beyond the last onc (see Fig. 1 - 2).
Strictly spcaking, then, the length of the hydrophone array is L(1 - ﬁp
or very nearly L for large m .

With the above convention, spatial sampling may be introduced at

the positions Xy » h=1,..., m by replacing the mcasure dx with

m
% Zd(x - x,) dx 1-3¢
h=1
in which the function (the Dirac delta function) is such thaot

d(x)-O.x#O 1 - 40
and
€
frd(x)dx-l,e#o. 1 - 41
- €
A-14
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Por instance, with hydrophone sampling Eq. 1 - 29 becomecs

l‘ m
f Qg X V) v N 2 ) Ay -y dy
-k h’=1
2
2
L ]
B gl x w0 Y1 Ohe) = Ay Pp(xy) o 1-42

h’=l

h-l.ooc.mo

The orthonormality condition given in Eq. 1 - 3C becones

n
&Z Vi (%) g ex) = Syl 1-43
hel

As the hydrophones approach a spacing that is small relative to the
variation in a particular space eigenfunction defined on thc unsampled
array dimension, the corresponding space eigenfunction on the sampled
dimension becomes proportioncl at the sample points (hydrophone locations)
to this particular eigenfunction. The detection characteristics using the
sampled dimension then become the same as thosc obtained without sampling.
On the othur hand, if the hydrophone spacing is increased, the array
performance will vorsen from that obtaincd without spece sanmpling.

Depending upon the noise mod:l and the time frequency, the received
noise from separate hydrophones may become independent as their distance

apart incrcases. With independent hydrophoncs the simple set

{*k} k=1, ... ,m 1 - 44
defined by
&
% (x) = QQ S X ®Xpy oeey X 1 - 45
A-16
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is a valid set of space cigenfunctions. In the analysis to follow, the

unsampled integral forms will be preferred for their simplicity. The

space dimension will be sampled only when 1) the specific effects of

hydrophone spacing arc being considered and 2) actual arrays are analyzed

for 1llustration.

d) The Dctection Problem

After the transformation from the received signal v to the

equivalent finite dimensionel vector u , the detection problem is to

deternine from u whether Y ¢ (R . The best that can be done toward

this is to fcrm

7,y

PrreRlw - MACKEERRD) LE=pec

where f o(g) is the probability density function of u when background
noise alone is present, and fl(g) is the probability density of u
when a signal is also present somewhere within R . By hypothesis,

fo and fl ere (complex) Gaussian probability density functionc.l

Using
the notation C||c| |2 to denote the quadratic form ¢*“Cc
-1 2
I Sy e 1) =
fo(g) detmn © - Sl
and
£, (w) -I £l £ @® o 1 - 48

lSee Arens (8], p. 205.
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vhere

-1 2
= Y - (A + G(X)) u
£, @D detn(A + CQO) © D) el 1-49

and tl(;) is the g priori probebility density function of X knowing
Y 1is somevhere within tR .

With the likelihood ratio £ defined by

. p, £, (v _EL £ (_\_.|,|_X_)f1(£) ' i
Laer v _LL_Pofo‘E) ~ ‘x—l—fo——-@ dx 1-50

the detection probability in Bq. 1 - 46 may be written

PriYce® |w = 1 . 1-51
since £ 1s = monotonic function of Pr(Y e ®R |v) , £ may replace

Pr(Y ¢ R |u) as the dctection statistic. According to Eq. 1 - 50, this
likelihood £ factors into

P £ (D, G
- f—l—‘%-)-(—.j—:)-dg : 1-52
pO (Q Ou

The second factor provides & measure on all possible u that zllows thenm
to be arranged in order of increasing likelihood that they arose in the

P
preseace of a signel source. The factor p—l- is used in getting a detection
° P
threshold within this continuum of ordered u . Since ;]* is almost always
()
only veguely known, this threshoid will usually be approximate. Further-

more, in practice, not all the steps in processing u prescribed by

£,@lpE®
dX may be implemented, and the crdering itself may be cnly
g D 2
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approximately realized. In fact, an cpproximate likelihoo¢ ordering of u

may be performed subjectively by observing the shape of the integrand
£, £,

fo(g) displayed on a screen as a function cf X for each u

that is observed. |
£, (u|X) £,(X)
1 1 may be
fo(y)

For c¢xample, for each u , the integrand

duisplayec et X of fixed length (range) and angle of incidence (bearing

B in Fig. 1 - 1) between 0° ana 180° . The observer mey feel thet o

A
r»-w-ﬁ..rw--—\f . /\,M—-.._‘

180° 0°

shnpe

is more indicative of signel presence than

B
M‘-JWWV\/\M/’ \I\'V\-c
180° 0°
Thus i (gA) would be judged larger than X (9{3) . Next, the threshold

for deciding that a signal is in fact present is determined from a sub-
P

jective estinate of p—]‘ , end the cost of errors. In sumary, the
o

nthematicel processing cf the received signel may end in practice with

& display of the stipe of f(gjg) f;fé) versus X . An experienceo
f (v
o

cbserver may then complete the detection process subjectively.

Uncder the assumptions meade in this study, further mathematical
£(u D) £,

fo(g)
however, this possibility will not be considered here. Instead, only the

f](glli) £, Q@
tern f (0 in L (Eq. 1 - 50) will be analyzed. Explicitly,
o

processing of could lead to a decision without an obscrver;

this tern is
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fl(l‘.l.&) f1® i eb(!'-x-)

) 1-53
vhere
b(u,X) = x(u,X) - In det (A + G(X)) + 1ln det A + 1n fl(y 1-56
and
X(!:D"[(M’G(E))'l-l\'l] lull? . 1-55

A cetector labeled the b-detector will form b(u,X) from u .

£ £
Since the shape of ) . (considered as & function of X)
o

is the key to detection by an observer, it is significant to note theat
the signal source location probability density function f1(§_|9) has
the same shape. In fact,

fl(!ly fl(.x.) e b(u,X)
£, Xlw » == @ " X® 1-56

where K(u) i1s independent of X . Thus in addition to being a detection
statistic, the shape of eb(-'-“-’-x) will also determine the location of
the signal scurce a2s accurately as possible.
Conditions for deciding that a signal source is present are thut
p.f (u in Eq. 1 - 50 be small and that p [f (u|® £,7X)dX te
oo 1 " 1% 1
large. The first of these conditions alone may in some cases serve cs
an indicetion of signul presence. 1f this approach is used, errors
that will be made when both p £ (u) and »p ff (u|X) £.(X)dX. are
oo 1 &1 1
small nust be accepted. But, these errors may be infrequent enough for
a detector forming pcfo(g) to perform usefully. Since fo(g) is
very simple to form and is affected by signal preserze over a large

region of scan, the following suboptimum detector is oroposed. This

A-20

M

¥

—

- e R s N R e e

]

I
I

L g

-



detector, labeled the f-letector, will fomm

£

l(g.y--ln(;-i@)- A ||y_||2+1ndetﬂl\+ln£1(_!) v 1-957

The g pricri probability of signal absence P, is assumed clcse
enough to unity to be omitted. To make this detector crudely

steerable, the set D of incices of the conponents of u will be

mede & function of the steering vector X . That is,

A method for choosing the indices to accomnlicsh ‘he desired steering
will be discussel after perfornance measures have been defined.

This chapter has given a general deceription of the detection problem
end outlined the signal processing procedure. The aims in the remainder
of this etudy are to

1) Determine the spatial set {wik' Aik}’ ik e D (Eq. 1 - 29)
snd the resulting signal covariance matrix G (Eq. 1 - 19) for
specific noise fi:lds.

2) ’ Define perfcimance measures for detectors forming b and

£ (Eqs. 1 -~ 5S4 ancd 1 - 57) and use these to analyze cdetection

in the specific noise ficlds of 1).
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CHAPTER 2

SIGNAL AND NOISE MODELS

2.0 Introduction

This chapter begins with a description of various noise fields and the
sets of eigenfunctions and eigenvalues they determine. Then, with the
eigenfunctions in mind, characteristics of the signal covariance matrix G
s«re given. The intent is to supplement some of the definitions in the last
chapter with examples. The quantities discussed are important in under-
standing and constructing the detectygn statistics b and £ (Eqs. 1 - 54
and 1 - 57),

The noise fields considered here are the superposition of four possible
independent components. These components are

1) Sea noise (acoustic background noise) - noise from surface

vaves, and other noise that is not highly directional.

2) Interfering target noise - noise from signal sources that

have already been detected and located.

3) Local noise - noise generated in the immediate vicinity of

the array. The primary source of this noise is the ship or

other platform supporting the array.

4) Self noise - noise that is generated in the hydrophones

composing the array.
Since all the components are assumed Gaussian (with zero mean), they are
completely described by their covariance function. This function is given
in the following for forms of the noise components that are both typical
end easily represented mathematically. Examples of the eigenfunctions and

eigenvalues determined by the covariance function are also included.

A-22
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2.1 Sea Noise

The sea noise observed in time t and in the space dimension x
is assumed to be homogeneous.1 Consequently, the covariance fuaction Q

may be written

Q(t-s, x, y) = Q(t-s, x-y) = Q(r, X) , 2-1
where
T e t-s 2 -2
and
X = x-y . 2 -3

The Fourier transform of Q yields the power spectrum n(w, v) in
which w (in radiens/second) is called the time frequency and v

(in radians/meter) is called the space frequency. That is,

n(w, v) = f j e~ Jlut #+ vx)Q(t, x) dt dx 2 -4

-0 -g0

and inversely,

Q(r, x) = L 2 jﬁ /' ej(wT + vX)n(w, v) dw dv . 2 -5
(2m) -

Since the noise proccss is real,
n(-w, =v) = n(w, v) . 2 -6

The transformation from Q(t, ») to n(w, v) may be considered either

“See Yaglom [9], pp. 81-84,
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a transformation from Q(t, x) to an intermediate form ql(“” x) and
then to n(w, v) , or a transformation first from Q(t, x) to an inter-
mediate form qz(t. v) and then to n(w, v) . The transform pairs

describing the Q +*q, < n transformation are

q, (ws x) = f atr, ) o 394, 2-1

Q(t, x) = %; j ql(w. X) e3*%au 2 -8
and

n(w, V) = ] q, (w, X) e IVXgy 2-9

q,_(w. X) = %—; f n(w, v) e3VXqv ; 2 - 10

L4

The transform pairs describing the Q+* qzﬂ n transformations are I
: :
q,(1, V) = j acr, 0 o IVax 2-1 d
. 2
L ]

[ ]

A Jvx - f
Q(r, x) = 53 jqz(r. v) e’ “dv 2 - 12 [ .
. |
|
and - I :
n(us \’) = j qz(To V) e- ijdT 2 -13 . f.
e -
g 5
- ]
1 10T .
q?_if. v) = o f n(w, v) e dw . 2 - 14 : 3

8 g
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Eq. 2 - 8 1s recognized as Eq. 1 - 20 in the last section. Since

ql(u. x-x) = ql(w. 0) , Eq. 1 - 36 for n, becomes '
nl(W) - ql(wy 0) . 2 - 15

For sea noise, then, nl(u) is the power spectrum of the time process
observed at eny point along the array. By Eqs. 2 - 7 and 2 - 10 n,

is related to Q and n through the equatioms

1
|
j
i

o
nl(w) = %—; [n(u. v) dv 2 - 16 d
-
and j
nl(w) = j Q(t, 0) e JuTye 2 - 17 }
The relation !
nl(- w) = nl(w) 2 - 18 ﬁ

follows from Eqs. 1 - 21 and 1 - 22 for this two-sided spectrum. The
spectral normelization implied by Eqs. 1 - 20 and 2 - 15 is such that
the noise power in bands of width Aw centered at 0, and - W, is E
2 nl(wc) Aw/2r  when ny is flat over these bands. (This normaliza-
tion is also employed by Helstroml).

A homogeneous Gaussian sca noise field may be constructed by

superimposing an infinite numbzr of independent, infinitesimally small ;

single frequency plane waves propagating within a homogeneous

1i101, pp. 2, 2.
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nondispersive medium. The space frequency v at which power is received

from any one of these planc waves is
Ve ':‘:’- cos § 2-19

vhere B 1s the angle of incidence of the wave (Fig. 1 - 1) and ¢ is

the velocity of propagation within the medium. (The quantity -c‘?- is

recognized as the wavenuaber.) Now for any 8 ,

]

c

2 -20

This band limiting in space frequency is an important characteristic of
sea noise.
Two simple examples of sea noise are the following isotropic models.
1) When the direction vectors of the infinitesimal wave
components are uniformly distributed and confined to a
horizontal plane, the total field is isotropic in two
dimensions and is labeled I2 sea noise. Physically, this
field might approximate noise conclitions in an expanee of
shallow water.
2) When the direction vectors are uniformly distributed in
three dimensions, the noise is labeled I3 sea noise. This
noise might approximate the noise backgroutid in deep water.

The power spectrun of 12 gea noise is (Appendix B)

2n,(w) '
au, V) s —t= @M -2, - 2-2

[o? w2
V2!
c
vhere @ 1s the "boxcar” function definzd %y Lq..A - 1. This spectrum

is sketched in Fig. 2 - 1 for the case in which the time peowcr spectrum
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nl(u) is a "boxcar" function (note the spatial frequency bandlimiting).
The spatial covariance function 9, » obtained from n through Eq. 2 - 10,

is
- O ¢ -
“1(‘“' x) = n,(w) Jo(c ) 2 - 22
wvhere
X*X-y.

The I3 sea noise power spectrum is

n(w, v) = 'f':' nl(u) @ ; - ‘:. ":) 2-23

and is sketched in Fig. 2 - 2 for the case in which nl(m) is a

"boxcar" function. The spatial covariance function 9, is

ql(w. X) = nl(m) sinc (£X) . 2 - 24

According to Eq. ) - 29, the spatial eigenfunctions and eigenvalues

associated with the I3 sea noise field solve the equation
L
2 wy
nl(wi) fL sinc [E-(x-y)] wik(y) dy = A, wik(x) : 2 - 25
T2

The eigenfunctions obteained are in fact prolate spheroidal wave-
functions [11].

Examples of these eigeafunctions are given in Fig. 2 - 3 for a-
time frequency of 40 hz and an array length of 50 meters. Since these
eigenfunctions are not periodic, they do not have a frequency in the
strict sense. However, some rough space 'frequency' is usually
assignable, based on zer¢ crossings or sometimes on sinusoidal appearance.

The spectrum {Aik} is plctted in Fig. 2 - 4 versus such a 'frequency'
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measure. The spatial spectrzl density function

2w, v) = =0 W) @ (v; - , f) 2 - 26

given in Eq. 2 - 23 and Fig. 2 - 2 is shown in Fig. 2 - 4 for comparison.

In normalized form, Eq. 2 - 25 is

! A L
8, (w,) j sinc — 2 (x"-y )J wiki'y’) dy” = =5 ¥, GE) . 2 - 27

It is of interest to note that since w and L appear only in product

form in the argument of the sinc function on the left-hand side of
W

ik obtained at E% = 40 hz and 1L = 50

meters are valid at all pairs of w

this equation, the solutions V¥

and L whose product is

i
wiL = 251 x 50 .
For example, if %; = 200 hz and L = i0 meters, then
A1k
b () = /Ew NC TRWEE o 2 - 28
will solve
L
2 wi
. Y - 2 -
nl(wi) .]’L sinc z (x-y) wik(y) dy = ik ik(x) . 29
-2
9y
where wik and Aik cre obtained at rri 40 hz and L = 50 meters

(Figs. 2 - 3 and 2 - 4). This is only characteristic of certain 'special'
noise models such as the I2 and 13 seca noise models; less regular

dependence on frequency cnd length may be expected in general.
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2.2 Interfering Target Noise and Local Noise

Interference noise and local noise as modcled here are Gaussian
processes that are stationmary but not homogeneous. Interference
originates at some presumably known location or locations, and local
noise originates in the vicinity of the receiving array. Interference
could be generated by a vessel that has already been detected and located,
and local noise could be generated by the vessel or other platform that is
supporting the array.

Since these noise processes are not homogeneous, there is no point
in defining the process on x beyond the interval (- %3 %) . The
spectral equations of Sect. 2.1 apply directly, describing the transforma-
tions Q « q - Repeating Eqs. 2 - 7 and 2 - 8 ,

ql(w. X, y) = f Q(r; x, y) e Jur dr 2 - 30

-0

Q(T; X, Y) - %—T; j ql(wp X, Y) eJUT dw - 2 - 31

The two dimensional spectrum n describing sea noise is not defined for
this inhomogeneous noise, and instead, the discrete set {Ak(w)} contains
the spectral information. In fact, composing Eqs. 1 - 29, 1 - 30 and

1 - 37 , the transformation q1 <+« )\ may be written

Ak(w) = ‘[ 2 wk*(w. X) J( 2 ql(m, X, y) wk(w, y) dy dx 2 - 32
L - _ L
T2 2
q,(w, x, y) = z Vb (@ x) AL (0) ¥ (w, y) 2-33
keD(w)
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A simple example of an inhomogeneous process is the noise generated

at a point source, and such a process is now described. Locating the

point source one meter beyond the negative end of the array (at x = - %'- 1),

a member of this process is

v(t, x) = f o Tl { () 2 - 34

where Y 1is a complex random point function with normally distributed

orthogonal 1ncrementa.1 In this equation Y 1s normalized so that

<dY(“’) dY*(w)) - %’7 ql(w. - %. - -12-") dw 2 -35
where ql(u. -'%.-%) is recognized as the power spectrum of the time
process measured at the end of the array x = - %-. Furthermore, since

v 1is real

Y(- w) = - YR(w) . 2 - 36

Néw according to Eqs. 1 - 4,2 -34 and 2 - 35
Q(t - s, x, y) = <v(t, x) vk(s, y)>

Yoo
- 1 fql(w, - 12‘-, - %) ej[w(t-‘) - c(x y)] dw .

mx+Len g+len 2 - 37

2

Comparing this with Eq. 2 - 31 in which Tt = t-s,

L _ L .- 3x-y)
q,(w, =5, - 3) ¢ “c .
ql(“" X, Y) - —l—' Lz 2 L . 2 - 38
(x+-2-+1) (y+2+1)
Yaglom (2], p. 38.
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1f this noise were present by itself, the set {wik, Aik} of
spatial eigenfunctions and eigenvalues would follow from Eqs. 1 - 29
and 1 - 30. In fact for each time frequency index 1 there wouid be

one nonzero eigenvalue

L L _L .
Mo " T4z Uler -3 =) 4138
with associated eigenfunction
wix
1 "%
e

Py LX) =[] e =——————— 2 - 40

2Q L X + % +1

In addition.Eqs. 1 - 29 and 1 - 30 indicate an arbitrarily large number
of spatial eigenfunctions with zero eigenvalues. In practice, however,
the continuous model discussed here is replaced by a discrete model
defined only at the hydrophone locations, so that the total number of
spatial eigenfunctions may not exceed m , the number of hydrophones in

the array. The total single frequency noise power n, defined by

1
Eq. 1 - 38 is

o) = w, =L _L -
AR e AL CUR (R U 2-4

In an actual detection problem there will always be some sea noise
(Sect. 2.3) present along with the interference or local noise. The
eigenvalues determined by the composite noise covariance function will
be nonzero in general. 1f the interference (or local noise) is strong,
the eigenfunction or eigenfunctions upon which this interference is
principally received will be close to those associated with the major
nonzero eigenvalues of the interference covariance function by itself.

As an example, consider a process made up of the noise from a

point source one meter beyond the negative end of the array (Eqs. 2 - 34 -

A-35
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2 - 41) 1in the presence of -10 db of 13 sea noise. (By -10 db it is

meant that n, for the sea noise (Eq. 2 - 15) 1s 1C db below n, for

1
the local noise (Eq. 2 - 41). The eigenfunctions are as shown in Fig.
2 - 5 for an array of length L=50 meters at a time frequency 'g; = 40 hz ,
Because of the nonisotropic component in the noise, some of the
eigenfunctions are necessarily complex. Any eigenfunction may be multi-
plied by a complex scalar of absolute value unity without changing its
normalization. The separation into real and imaginary parts, then, is
not unique. A separation is chosen here such that the real and imaginary
parts are orthogonal and such that the real part has the larger norm.
The spectrum (Xk} of the noise p&éer is plotted in Fig. 2 - 6
versus the index k . The sea noise level and local noise power are
plotted for reference. According to this spectrum almost all of the
local noise appears on the first eigenfunction. The shape of this eigen-
function evidences the attenuation of the local noise due to spreading,
and the phase relation between the real and imaginary parts indicatcs

that the noise cnergy is propagating from the negative cnd of the array

(see Eq. 2 - 40).
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2.3 Self Noise

In addition to thc acoustic noise just considered, there is always
some s.1f noise generated in the transducing elements (hydrophones) of
the array [12]. This sclf noise in any hydrophone is assumed to be
stationary and Gaussian with uniform power spectral density‘7z over all
frequencies w of practical interest. PFurthermore, the noise at cach

hydrophone is independent of that at all others, so that

q,(wy X = y,0) -‘h St 2 - 42
in which h 1s the hydrophone position index.
A direct spcctral comparison may be made with the sea roise processes
defined on the whole array dinensiﬁn (Sect. 2.1) under the following

conditions. 1) The hydrophones are spaced ﬁ- apart over the entire space

dimension (h = -», ..., ®») . 2) The space frequency v 1is significantly

less than the Nyquist cutoff frequency

m ™
Yo 2 2L L 4 -4
Under these conditions a power spectrum is adequately defined by a
sampled version ﬁ(w, v) of n(w, v) . From Eq. 2 - 9
- 2 N Ivxy,
n(w, v) = = L qy(w, xp) e . 2 - 44
h=-a
For self noise, since q, is 71 th, ,
nw, v) = €, 2 - 45
where
L
=2 N . 2 - 46
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Pig. 2 - 7 shows the shape of thc spatial spectrum at fixed time
frequency w of a noise proccss consisting of I3 sea noise plus self
noise (n = n (I3 sea noise) + n (self noise)) . Note that the spectrum
is not bandlimited to % as it was with sea noise alone (Fig. 2 - 2).
Although this spectrum is not defined in the vicinity of Vo and beyond,
this is a small restriction because m equally spaced hydrophones do not
permit effective processing above v, By increasing = , one decreascs
the self noise level ¢ (Eq. 2 - 46), and extends the effective process-
ing range (- Vor vo) (Eq. 2 - 43).

An important property of the intermediate form 93 for sclf noise

is that

m
i 2:: qqCws X, =y, £(y, ) -,tk £(x,)) = ¢ £(x,) 2 - 47
h*=1

for any f defined at the hydrophone positions Xys weey X Now

consider another noise process observed at Xps eees X whose inter-

mediate form is qi and whose spatial set at wy is
{wik(xh)’ Aik' h - 1, eeay m}, lk € Di 2 - 108

determined by Eq. 1 - 42. According to Eq. 2 - 47 the addition of

self noise to this srocess (q1 in Eq. 2 - 42 is added to qi) will
not change the spatial c¢igenfunctions. The only change, in fact, is

the addition of the constant level £ to each eigenvaluc Xik . In

any noisc model that includes self noise, then, none of the eigenvalues
can be less than £ . Since the self noise is added to the acousti:
noisc, the effect it will have dcpends on the r2tio of £ to the eigen-

values Ai; of the acoustic noise process. The relative self noise
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level, defined by

- g -
€D(w)
expresses this ratio. According to Eqs. 1 - 38 and 2 - 46 this is
also
o(w) = L JZL—‘ 2 - 50
m nl(w)

where 77 is the time spectral level of the self noise ot a single
hydrophone and ni(w) is nl(w) for the acoustic noise process alone.
When the acoustic noise is sea (homogeneous) noise, the ratio “i(w)

may be directly measured at a hydrophone output, using a narrow band
filter of center frequency w . If

Filter power output with acoustic

noisc absent (self noise) 2 - 51

Filter power cutput with acoustic
noise prusent (self noisc also present)

then

N R -
ar () I-® ° SEp

When 7{ < < ni .

i < 2 - 53

nl(w)
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4 ¢ Signal Ccvariance Matrix

The "signal only" covariancc mntrix G defined by Eq. 1 - 19
depends upon the cigenfunctions of Q and hence on the prevailing noise
conditions. Significant characteristics of the matrix G ere presented
ia the following for the noise fields discussed in the first part of
this chapter. To display these characteristics, a rcletive signal
spectrum on the cigenfunctions used will be constructed from principal
€¢lements of G .

To derive an explicit form for G according to Eq. 1 - 19, the

"signal only" covariance function P is needed. Repeating Eq. 1 - 4,

P(t, x, 5,y |1 = Q(t, x| Y) ve(s, y | }'_)> . 21- 54
signa

only
which depends, as indicated, un the signal source location vector
. cOf . Since the signal is assumed to 1) be emanating from & point
source et Y , 2) be propagating through a homogeneous nondispersive
medium and, 3) bc 2 member of a Gaussian process, the signal v received

from Y in the absence of background noise may be written

vit, x | Y) = fp(x |p JE+YETD) 4o 2 - 55

in which Z(w) 1is a complex Gaussian random point function with

orthogonal increments. Furthermore,

2(- w) = - 2*%(w) , 2 - 56
<dZ(w) dZ*(w)> - %ﬁ" dw 2 - 57

ana
s (- w =8 (w 2 - 58
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where s(w) 1s the two-sided signal powcr spectral density function

observed at the center of the crray. (For simplicity, the dependence

of 6(w) on Y caused by possible range dependent high frequency
transmission loss will be omitted from the notation, 1i.e.,
s(w) = s(ulY) ).

The time advance vy(x|Y) along each scparate wavefront relative to

the center of the crray (v(0]Y) = 0) 1is

vl = 2l e e 2 e 2yl o 8 L 258

The signal attenuation p(xll) » 21so relative to the array center

(p(0]Y) = 1) , is

2 - 60
p(x]Y) = 7
X

X et
e (77T <

(1 +

wher¢ € 18 the angle of incidence of Y (Fig. 1 - 1) and c¢ 1is the

velocity of propagation in the medium. When |[Y|| > > L,

2
ok L X 2 -
y(x|Y) = . (x cos 27 TYIT sin® B) 2 - 61

and in the limit when the sigrel may be considered a plane weve,

y(x|Y) = % X cos 8 2 - 62

and
p(x'!) =1 2 - 63

Now the covariance function P (Eq. 2 - 54) is

P(t.%,8,5|9) = 3= o(x|D) o(y|D) f Julesti D -1 g,

= 37 a(xy|D) fej“’(t-sq ®I1D)g ) aa 2 - 64
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where

a(x,y|¥) = o(xlY) o(yly) 2 - 65

and

T(x,y) s vyl - vxlp . 2 - 66

This coveriance function P leads to an explicit form for G
through Eq. 1 - 19. Howuver, before leaving the discussion of P
itself, it will be useful to obtain the total average signal powcr

S in v . This is

L ®
2 L
S = f P(0; x, x) dx-M(x_)z—"j 8(w) dw 2 - 67
L
-3 -
where
L
Nee
M(Y) = & j p (x|Y) dx . 2 - 68
L L -
T2

For plane wave signals,

M(D - 1 . 2 - 69
Now writing G according to Eq. 1 - 19 end rccalling Eq. 2 - b4,

G(Y) = (81k < ik (¥ ) 2 - 70

2 L
Bix x ik = fzwﬂt(*) _[i f o] (t) 'I'P(t.x,s,yIDO{(s) ds dt y7e(y)dy dx
2

) L ) )
2 o
L L
2 2
- IL Vi (0 p(xlD) jL Flef TOGY IV () o(y|D) dy ax 2 - 71
"2 T2
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where
T T ®
Fui(r) £ foI(t) j —;; j ej“’(t's") s(w) dw o{(e) ds dt . 2-172
o 0 -
When
1l jut
¢, (t) = =" @ (¢t; 0, T) 2 - 73
i /ﬁ? .
F assunes the siuople form
- j T
5@ “1 i={
Fii (1) = 2 - 74
0 141
(si z 8(uy) ) 2 - 75

under the following conditions.

1. The signal power spectral density s(w) 1is smooth over

intervals 4w = %1 in w.

cT

2. The constant 2 dcfined by & =
cosB

is very much greater
than the array length L .

In this analysis it is supposed that these conditions iold well

c¢nough so that

1 -
gkxkt(g) 1 - 1
). . 2 - 76
Bik x ik )
0 i¢1
L L
Sy 2 " j’Z -jwit(x,yll) g
Bxic D = j Vi p(x|Y) s, Le Vi) p(y|Y) dy dx
- L - - _
2 2 2 - 77
with negligible crror.
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Continuing with the nonzero elements of G , Eq. 2 - 66 indicates

that
3110&(!) = 8 hyp (D hg O s
in which
L
2 Ju,v (xlD) .
h, (@ = jr. v, i(x) e p(x]Y) dx . 2

2

Consequently with

B = (b, @), thed, £
the single frequency (wi) submatrix G1 of G defined by
. i
nay be written
- *
6,0 = 8.0, ® B*D . 2

This result will be of primary importance to the detection analysis
in the next chapter,

For the prescnt note that

.h.-i-h_i* 2

and, for normalization purposes, that
||k (Y)||2-LM(1) . 2
.—1-
In particular, for planc waves,

2
I I" =1 . 2

In describing the nature of G, for different noise backgrounds,

i

it is sufficient to consider ‘gi . For instance, the relative spaticl
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spectrum of the signal {Ihiklz), ik ¢ D, shows how signal pover is

i
distridbuted within G1 » Or equivalently, how it is distributed on the

spatial eigenfunctions {wik}, ik ¢ D, . This speétrun is now plotted in

i
two cxiamples using the eigenfunctions shown in Figs. % - 3 and 2 - 5.

As a first example, the relative spatial spectrum of the signal
(Ihk(w)lzl. k ¢ D(w) 1s given in Fig. 2 - 8 for plane wave signals incident
between 0° and 90° . The spatial eigenfunctions used are those obtained
for 13 sea noise at -g; = 40 hz with an array length of 50 meters
(see Fig. 2 - 3).

At 90° (broadside) incidence most of the average signal energy is
received on wo . At 55° 4incidence most of the average signal energy
is received on V) » and at 0° (endfire) incidence, on y, - When k > 3
the spectral component is a maximum for endfire signals. It is of intercst
to note that the angular interval in the endfire regiom over which thc
spectral component is large decreases as k increzses. That is, thc space
eigenfunctions become more selective over incidence angle as k 1is increasea.

As a second example, the spectrum {|hk(w)|2). k ¢ D(w) 41s obtained
using the cigenfunctions for I3 sea noise plus 10 db of local noise (sece
Fig. 2 - 5). 1In table 2 ~ 1, which contains the results , the k = 0
element in the spectra of 0° 1incident and 180° {ncident signals shows
that endfire signals from the negative end of the d.r2v have a large average
power component on wo in Fig. 2 - 5, whereas endfire signals from the
positive end of the array do not. This situation is reversed for wz and
03 :

In this chapter, noise m-iels for sea noisc, loczl noise, iuterferecnce

and self noise were introduced. Examples were then given of spatial

A-49



W T ey e e

e DU

.00?
001
.000

06005

00500

i e i

10 20 30 L %0 €0 70 co °

Angle of Incidence B8, —w

e e

L = 50 leters

w = 2mxlL0 = 291 RPS

¢ = 1509 Maters, Sec

Background loise s
I3 Sca Lcise

n = 12 Eydrornt -nas

G o amm Oy o o

g g g e 0 o0 e SE O



L = 50 Meters
w = 2% x 4C
= 251 Rads/Scc

¢ = 1500 Meters/Sec
Background Noise is

I3 Sea Noise

+ 10 db of Local Noise
from Source

at x = ~26 Meters
m = 12 Hydropliones

b o0 8|7
¢ 0.0° 90.0° 180.0°
|
' 2.61 5.28 21.8
626 39.5 611
2|13 592 7.37
i3 | 21,8 4. 54 14.3
: 5.40 10902 5.32
|
| 396 0409 514
a
| .0186 0000141 .0192
'[,_.
| .000491 0000453 000472

Relative Spatial Spectra of the Signal in I3 and Local Noise

Table 2 - 1
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eigenfunctions fitting these models according to the definitions in the
first chapter. Finally, G was expressed by its nonzero submatrices

(Gi =8 Lt.‘} and its characteristics were i)lustrated by two examples.
Overall, it was tlte obj:ctive of this chapter to provide a familiarization

with the elements A, ¥y, acd h which will be used in later descriptions

of detector behavior.
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3.0

Introduction

CHAPTER 3

CETECTOR DLFINITIONS

The three detectors whose behavior is analyzed in chapter 4 are the

following:

It should be remembered that analysis alone is the object here and that the

1. The b-detector defined on page 20 - essentially the "optimum"

detector of {1]) and [3]).

2. The c-detector - essentially the '"conventional"” or 'power"

detector. This detector will be derived by abbreviating the

realization of the b-detector.

3. The f&-detector - the suboptimum detector introduced on page 21.

equations and structures describing these detectors are not necessarily

directly realizable in a practical detection system. The adaptation of

the b-detector equations to practical realization is discussed in Appendix E.

s(w)

Throughout the analysis to follow, Condition 1 on the smoothness of

and Condition 2 that

£ >> L on page 47 are presumed.
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first chapter. Finally, G was expressed by its nonzero submatrices

(Gi - utgtgit’} and it3 characteristics were illustrated by two examples.
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with the elements A, y, ard h which will be used in later descriptions
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3.0 Introduction

CHAPTER 3

DETECTOR DLFINITIONS

The three detectors whose behavior is analyzed in chapter 4 are the

following:

1. The b-detector defined on page 20 - essentially the "optimum"

detector of [1]) and [3].

2. The c-detector - essentially the '"conventional" or "power"

detector. This detector will be derived Ly abbreviating the

realization of the b-detector.

3. The fi-detector - the suboptimum detector introduced on page 21.

It should be remembered that analysis alone is the object here and that the

equations and structures describing these detectors are not necessarily

directly realizable in a practical detection system. The adaptation of

the b-detector equations to practical realization is discussed in Appendix E.

Throughout the analyeis to follow, Condition 1 on the smoothness of

s(w) and Condition 2 that

£ >> L on page 47 are presumed.
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3.1 The b-Detector

The b-detector output, rccalled from its definition on page 20 1is

b(u, X) = x(u, X) = i det(A + G(X)) + 1n det A + In £, .

3=1

Now according to Eq. 2 - 76 and 2 ~ 82, the function x (Bq. 1 - 55)

may be expanded as follows.l

x(u, X) = - [(A 104 B N IIgII2

-

o -1 -
==Y (gt @t - n

1eQ
* -1 2
. eglh,” @ Ay

L -1 12 .
Rk R R 11 e

Similarly,

In det(A + G(X)) - 1n det A

- det(Ai + 8, b—i(D Li* X))
=/, 1o det A
ieQ i

1

) i *‘
- }_ Indec(t +8 2 p® 0" ®) .

1ef

Since the non-zero eigenvalue of the rank one matrix Ai-

1

A-54
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Ai-l ||hi| |2 , the above determinant may be expressed in the following

polynomial form. L

det(I+aA (_)h (_))-1+sA

_-1

These relations (Eqs. 3 - 2, 3 - 3 and 3 - 4) allow the output of the

b-detector as given by Eq. 3 - 1 to be written .

»

b © = ) [lg @ g1? - 1ma s 4 p @]+ g @

ieQ

with the functional 2z, defined by

i

Y lip, @112

5y

£ =

(Eq. 1 - 34) ¢nd

Z_l =

X
because h = h (Eq. 2 - 83) so that

-4 i
*‘

2
|=
e

=

Consequentiy, if O+ is the set of all positive indices in &,

b(u, X) = ZZ {lgi* X -‘-‘-1'2 - 1ln(l + s

ied+

lsee Middleton [13], pp. 724, 725.

-1 2
1+, A7 b1

*
[

9.1! = |z,

A-55
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The processing of the received signal v to obtain u and then
b(y, X) 1s shown schemiatically in Fig. 3 - 1. The conversion from v
to o and subsequent noise weighting by A-l is independent of the
steering vector X and takes place before steering is effected. Thus
processing logically separates into the production of the weighted

u
components ril‘- and the steering of the array according to X .

Altemati:ely. the same result may be obtained starting with v and
processing as shown in Fig. 3 - 2 (see [1]). The exact definitions of f .
j and S are left until after the following general explanation.

First, the received signal is delayed and attenuated along the
array to match the delay - y(x|X) and the attenuation p(x|X) along
a wavefront arriving from the location at which the array is steered.
Consider the received signal to be represented by(Eqs. 1 - 12 and 1 - 32)

v(t, x) = }: LY Qi.(t) wik(x) . 3-10
ikeD

Then since Qi(t) is sinusoidal, the form

Z Ui wik(x) 3-11

1.keD1

is the time frequency domain representation of v(t, x) , and the
delayed and attenuated version in the frequency domain is

= 3 wv(x|D

e D(XLX_) Z uik vik(x) . 3 -12
1keDi

Next, filters ,f(w. xlg) accomplish shading along the array. In
general, this shading is dependent on the time frequency ® and the

steering vector X . After shading the results are summed along
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x e(- % ,-L) and then the result is filtered according to éff(ulg) 0

These operations yield

(] [

- Ju v x|¥)
j e p(xlg(_){a(ui, x|X) wik(x) dx 3 -13

H
o “’1'39 Z Uik
1

L
ikeD -3

in the time frequerncy donain.

Returning to the time domain through multiplication by oi(t)
followed by summation over the time frequency index se: 0 , the
expression

L

- =Ju, v (x| X)
' g i
2¢(C)J(w ?L)E u fe x|X(w,» x|X)y,, (x)dx 3 - 14
%1 gl ik °|—>€w1 1D vy
ieQ ichi -3

is obtained. This is now squared and unbiased by subtracting a term
S(X) . And finally, the results are integrated over the observation
interval (0, T) and then weighted by adding &n fl(p . The overall
result 1is

L

T

w =Ju, v (x]X)
j”z‘oi(t)f(wd}) }_’ Ui fe g p(xll_()f(wi, xlpwik(x)dﬂz—s(l{_)]dt
) 1keD, -12‘-

+1n £,(0) . 3-15

When the square in the integrand is written explicitly, the integration
over time may be performed over the product pairs ¢1(t) ¢i,(t) . The

orthogonality of the {¢i} then reduces the above to

e

2
o -ju v (x|%)
Z,'f(“1|§) Z uikj e 1 p(xlpf(wi, xlg(_)wik(x)dxlz-TS(_)g)ﬂn £,0 .
ief ikeDi -12‘-
3 - 16
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This detector output is seen to be in a form similar to that in
Eq. 3 - 9. Hence if the above is equated with the right-hand side of
this equation, it is apparent that the total index set 0 may be replaced

with (4 , the set of all positive indices in Q , and that

L
2
-ju,v(x|X) _
1F @, 10| j:. e o x|V (wy, x|X) ¥, (x) ex
T2

L
2 '1 ‘ 1 2 ‘jin(xLx_)
- r-j Vg () e p(x|X) dx 3-17
1 ik

-1 2
+s, 0|, 1 _g.

and

@ =7y ma+ a7 in @D
1eft+

2 -}j In(1+s(w) A-l(w)||h(w. yllz) dw . 3 - 18

o

The phase of f(wll) is arbitrary. For each :I.kr:Di the two sides of
Eq. 3 ~ 17 may be regarded as elements of a vector relative to the
basis wik} . Returning to the space domain one obtains the following

expression for &"(will)f (w, yi® ,

A-60
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r"

- -Ju Y (x| X)
e

lf(w1|l‘)|z f PxIDF (o, x|D) vy, &) & v ()

L
1keDi -3
~Ju, v(y|X)
= [Fw, ©] eyl e T T f g, vID
L
2
“Juy v (x|X)
by (x) e p(x|X)dx
- L
2s i
/ i \ 2 *
- -1 2 L X Y ()
\/“51'\1 iy, @] 1keD, ik
so that
|5(w1|§)|-&(w. ylX) =
L
2
-Jw v(x|X)
| Wik(x) e o (x|X)dx
' Ju v (¥ X) L
2 s;i e 1 -3
=1 2 o(y|® A
s n, 7| b, (0] | i, 1k
' Ju v(y|X) *
.\/ 2 % e l 5 lu® .
-1 ACES X k'Y’
s A7 | |y (0 || thep, 1K

The magnitude of the space independent factor § may be separated

3 -~-196
*
Yy

3 -20
from

this. The phase of F may be assigned as is most convenient in the

design of the actual filters < and f G
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For signals from within a given region 02 » h is appreciable

ik

only for the set D, of indices ik . 1If Aik is constant over this

i
set, the b-detector implcmentation may be simplified considerably. The

resulting detector, labeled the c-detector, is similar to the¢ "standard"
or "conventional" detector. Without changing its structure, the defini-
tion of the c-detector is extended to cover conditions under which the
A 8re unequal. The c-detector is then considered a separate detector
and its characteristics compared with the unsimplified b-detector. In the
next chepter quantitative measures will establish typical physical condi-
tions for the c-detector to be equivalent to the b-detector. Wkhen it is
not equivalent, the c-detector will not perform as well as the b-detcctor.
The specific differences will also be discussed in the next chapter.

The mathematical dcofinition of the c-detector follows from two rela-

tions derived from the condition that the significant Ai cDi all be thc

k
same. Thesc rclations are

L
— b 2 -, v (x|
ik * ®
/\_, m Vi () = il—i z fL by (%) e 1 p(x|X)dx Vi ()
:I.keD1 ichi -3
1 'Jwiy(Y|§) )
- e oyl 3 -21
i
and
o h, M, @112 = 2 [1p, @117 = 22 i 3 - 22
i1 =1 Xi =1 Ai
in which Ai = Aik for all ikeD1 . If the first reclation is placed

in Eq. 3 - 20, it is observud that the shading1f (w, x|X) for the
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c-detector 1s uniform in x along the array. In virtue of the two

reclations, in fact, the assignments

,{@(m. x|X) = 1 3j-23
and
|5 @lp|® - et e A
A5 148 (WA (W | Ih(w, X)}]
- _S_Lszw 1 3 - 2
s
A" (w) 1+:%§% LM(X)

may bc made. Also

s =+ | 1029 ix)) ay . 3 - 25
1 A (w)

(o}

If the signals to be detccted are plane waves, then M(X) = 1 and the
second relation shows that the term 81A1-1||51(§)||2 does not vary
with the steering direction X . Hence, for plane wave signals, J?J
and S are indcpendent of the steering direction X , and the particu-
larly simple schematic shown in Fig. 3 - 3 rcsults.

in these assignments, when th¢ significant xk(m)c D(w) are
uncqual, A(w) 1s urndefined. A definition for A(w) that
is consistent when the significent Ak(w) are equal and which also
defines A(w) 1n a reasonable way when the Ak(w) are unequal 1is as
follows.

Aw) = A(w, 2)

L
2
- Z
- L 1 z A (w) [L ¥ (u,x) e i""Y(xl--)a(xlz_) ax |2
f 2, (x|zy? ax KD -3
2L
2
1 2
o 5TT3) Aw) | |htw, 2)1]° . \es 3 -26
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The vector Z 1s some representative vector in ﬂ . This definition
leaves the structure of the c-detector unchanged for all detection
situations within OE , and it can always be compared with the b-detector.
To facilitate this comparison, the output of the c-detector c(u, X) is

expressed in the form of Eq. 3 - 9 as follows. According to Eqs. 3 - 16

and 3 - 23’
c(u, X) =
3 )
-3 uw, y(x [X) , s
EE |f(mi X Z U j’ l;,ik(x)e i p(x |X)dx ‘-1n(1+ri-u4(_:9 +Inf, (X)
fen+ ikeD, - L& 1
i 2
-2y (| " 2 4 In £, (X
' (0 10 b Xy, -1n1+ri-m(§) +1n £, (%) . 3 - 27
1e6l+

As demonstrated above, this c-detector is equivalent to the b-detector

whenever the Aik are the same over the significant indices ikeD1 . In

the first example on page 49, h1k (Fig. 2 - 8) for broadside signals

(g = 90°) is relatively insignificant when k ¥ 0 . In this example,
then, the b and c-detectors may be expected to be approximately

equivalent when detecting broadside signals. According to Figs. 2 - 4

ad 2 - 2 and Eq. 3 - 24, the filter F would be described by

15 (uy, |2 = -2 o 1
U= - 2 2.2 8 () w_ o
nl(ub L 1+ nl(w) =y LM(X) 3 - 28

for detection in an 13 seanoise background. And according to Fig. 2 - 1,

F would be described by

2
2 s w 1
|F (ulX) |© =
n(w? ac? 1+ B Ly 3 - 29
X in a near 1 nl(w) 2c
broadside
direction
A-65
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for detection in an I2 sea noise tackground.
A quantitative comparison of the b and c-detectors is made once
performance measures are defined. It will be shown that broadside signal

incidence and high time frequency generally favor equivalence.
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3.3 The 2-Detect

or

The output o

ty, O = A7yl

'ZZ

le+

.22

leqt+

(The index set D

f the f2-detector defined on page 21 is written

|2 + ln det n A + 1n £,(X)

-1 2
Ay ||_u_i|| +1n det 7 A ) +1n £,(X)

lu,. |
z Ak 4 nra +1n £, (X) .
M 1% 1=

iksni(l)

i in this expression is allowed to vary with X

to provide a crude form of steering.) In the processing indicated

above, the quanti
of the processing
the processing is
Fig. 3 - 4, the e

the steering vect

ties u may be generated as in the first stages

ik
shown in Fig. 3 - 1. From this point on, however,

simple compared with the b-detector. Following
I“ikl
Aik ik
or X are included or not included in a summatioii,

lements + 1lnn ) formed without regard to

3 -3

depending upon whether the index ik 1is contained in Di(g) . Summation

over time frequency and weighting by the a priori probability density

function fl(g)

then complete the f-detector processing.
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CHAPTER 4

OUTPUT SNR AND ARRAY GAIN

4.0 Introduction

Now that the b, c, and f£~detectors have been explicitly defined,
performance measures may be employed to describe their behavior and
relate it to the cpecifications of the array and the characteristics of
the noise field. The performance measures used are 1. the output signal
to noise ratio [14], 2. the array gain {1, 3], which 13 related to the
output signal to noise ratio, and 3. directivity measures (to include
measures of the ability of the detector to locate the signal source).
Measures 1 and 2 are treated in this chapter and 3 is the subject of
chapter 5. Each of these performance measures is first defined in general

and then in particular for the b, c, and f-detectors (where appliceble).
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[ ¢ Output SNR and Ar Gain
The output signal to noise ratio ¢ for a detector steered toward
X 1n the presence of a signal source at Y 1s defined by

increase in average detector output
' (X|Y) = e to the presence of signal

standard deviation of the detector 4 -1
output when signal and noise are present . : )
If % (u, X) 1s the output of a detector focused on X , and the
subscript S(Y) denotes the presence of a signal source at Y , and i
N denotes the presence of a noise background, then the above may be
vritten 1
¥ @ D) - % XD )
U Y Y, &
'(!I_Y) - SQ"’N . N 4 _ 2 -
VY[ @ D)span . ||
At the low input signal to noise ratios assumed here N
V(’P(!, D)Sm . v(%(l-‘.t E)JN 4 -3 )
so that the equation &
% (2’ _x_) - %(u’ _x_) (&)
OQID'< 25 < 2 ——
0 . e
V(¥ D)y
may replace Eq. 4 - 2 with negligible error. For simplicity, this i
replacement is made throughout the following text. =
The output 1? of all three detectors considered here may be -
written in the form I
‘W(g,g)-zzwi(u,g)+cq) b -5
e+ I
in which € is a bias term and in which it is reasonable to regard
Y independent of gi‘ for 4 and 1‘e¢Q+ whenever 1 ¢ 1° (see I
A-70 '
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Eqs. 1 - 17 and 2 - 76).

for a detector of the form of kq. 4 - 5 1is expressed by

Z [ Wy, 9> S(Y)+N ~ <w1(9,_-1)>u]

o(xly) - 2E0%

Z Vlwi(u , L)); .
e+ )

Consequently the output signal to noise ratio

Since a long observation time is assumed, the above summations may be

replaced by integrals, the argument w now corresponding to the time

frequency index 1 .,

T 0

In fact, with negligible error

j [<Ke{26, w0 4} gy = CHluod o, 5)>N]"“’

'Y = {5

j V[W(_\_l_(w). ) 3))»:

o]

In a sufficiently narrow time frequency band of width 4w about

a frequency w , the output signal to noise ratio is

¢(w, lll) -

Tow 4’(2(“’)' v, X)) S(Y)+N ~ Wy, v, ’-(')>N

2n

The array gain éy is obtained from this narrowband output signal

\/V(W(p_(w). o X))y

to noise ratio by dividing out the dependence on the input signal to

noise ratio, the observation time and the bandwidth.

J(w, .’El!) - M_;_im
S /TAw

N 2n

In fect,

where S 1is the average signal power in u, and N the total avereage

noise power in u .

The self noise is thus included in N .

A-T1
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more explicit form for the above, it is noted that (see Eqs. 1 - 35 and

2 - 67)
S . 8(w) -
= = M(Y) Ay 4 - 10
over & band that is narrow relative to variations in s(w) and
nl(w) . Thus
¢(v, X|V)
J(w, Xl = 4 - 11
80w VE‘
nl(w) H(D) 2n .
N
If this definition of the array gain (Eq. 4 - 11) is inverted,
the relation
o(w, X|D) = N MY |38 @, XD 6 - 12

is obtained. It is apparent from this that the array gain is as signi-

ficant as the output signal to noise ratio in evaluating the narrow

band performence of detectors of the type described by Eq. 4 - 5. Since

the array gain does not depend upon the observation time, the bandwidth,

or the input signal to noise ratio, it is a much simpler performance

measure to use in comparing detectors.

In addition, 1f the detector is

known to detect as well as possible, the array gain may te used as a

direct measure of rhe detectability of given zignals.
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4.2 The Array Gain for the b and_c-Detectors

a8) General Definition

For both the b and c-detectors the single frequency output W

in Eq. 4 - 5 may be written

W(g(w), W, 2(_} - |}(w, l‘)*‘ p_(w)lz 4 - T3

where

FW '(3k(‘")J' k ¢ D(w) 6 - 14

is a linear functional. The signal and noise being additive and

independent, the everage <w> SN in the numerator of Eq. 4 - 8 may

be written

OITONSON s

Furthermore, the variance in the denominator may be written (Eq. C-18)

VW) = <w>§ 4 - 16

so that finally

Wulw), w, g(_)
ow, X|Y) = \/iﬁ‘“ § ( ‘,>5(1)
\w(.‘.{(w). w X))y

The array gain for the b and c-detectors may now be written

(Eq. 4 - 11)

<w(g(w). w, 5)> S(Y) 4

& (w x|Y) = 8(0) y(yy 4 - 18
w XjY <w(g(w). W, §)>N n, ()

In words, this expression is

average detector output when

array gein for input 1s a signel from Y

narrow band b or c- (no self or background noisc)

detector opercting about average detector output when 4 - 19
w and steered at X _ input is '"noige only"

input signal to noise ratio
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An explicit form for the singlc frequency array gain is obtained

froo Eqs. C - 17, 1 - 17, 1 - 18, and 2 - 82.

(i@, v, B gy = S, DIz o2

= 8@ b, D b" D30, DII* « s@l3 ", » b, pI° 4“-20
end

<W(3(w), 0, !9>N - A(u)ll}(w. 5)”2 . 4 - 21
Thus

5,1 @ 8, DI

& (, X|p = 3 4 - 22
M(Y) A(m)||?(w, ||
b) b-Detectoxr Array Gain
In single frequency notation, the functional j’ in Eq. 4 - 13 is
1 L&
}(w. L) - _z_(hh l() o _l.iﬂ) p) A-l(w)}_\_(w. &) . 4 - 23
= 1+s(wA (W | |h(w, © ||

The array gein & (b), then, for this detector is

. *” -1 2
n, (0 |h (w, X) A "(w) hw, ¥)
J(b)(w' _x_ll) = __1;‘/ | W _) w W | 4 - 24

M) A1) | htw, B ] :

Since the form

In* (e, © 472w hws |2

AW 18 0112 471w | [t D]

has a maximur over X e{ at X = Y, it follows that g ® (w, X|Y)

is also ¢ maximum at X = Y . That is,

B, Yy > P, X1 . 4 - 26
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It will be said that the b-dctector is 'focused" on Y when X =Y .
In that case the array gain simplifies to

n, (w)

P, 1y - gy Hline v11° =t

In explicit form this is

T I D1° W

d O, vy -

keD(w) ~ X (0) MY b= b
It is apperent from Eqs. 1 - 38 and 2 - 84 that
J® 4 - 29

For if éy(b) wvere less than one, then all the terms in the summation

would have to be less than one because all the terms are positive. But

this would imply that

1 O b D < —= Looaw 6 - 30
ML | op(w) ¥ o M eep(w) K
keD(w)

which is not true.

Equation 4-28 also indicates that !7(b) is the sum of individual

'channel factors' defined by

i n, (w) Ihk(w. X_)l2
M(Y)

G, D 4 - 31

lk(w) :

Since

J(b)(w. X‘:"‘ - E Gk(w) X) ’ 4 - 32
keD(w)

the relative size of (Bk‘“’ Y) may be used as & measure of the relative

significance to detection at time frequency w of the projection of v

A=T5



on the eigenfunction Q(w)wk(m) . When designing an actual detector,
this information is used to determine the elements that the index eet
D(w) will contain.

1f the overall noise process is sufficiently isotropic, the observed
processes at distinct hydrophones will become independent as the
hydrophone separation is increased (see page 16 ). Supposing that the
noise observations at the hydrophones are independent and in addition
that the overall external noise process is homogeneous, the eigenvalues
(corresponding to the eigenfunctions given in Eqs. 1 - 44 and 1 - 45) in

the exprescion (Eq. 4 - 28) for the array gain will all be equal. Sinc-

1 N
D =% L AW 4 - 33
1 L keD(w) F

(Eq. 1 - 38), their value must be

nl(w) L
m

A () = 4 - 34

where m is the number of hydrophones. Finally, placing this in the
right-hand side of Eq. 4 - 28 and veferring to Eq. 2 - 84, the b-detector

array gain equation

o ®,, 1|y = 4 - 35

is obtained for independent hydrophones in a homogeneous noisc field.
(Plotting this on polar coordinates, a circular pattern results.)
When there is only one hydrophone in the array, the array gain attains
its lower limit of unity (Eq. 4 - 29) regardless of the noise ficld.
The channel factors are plotted in Fig. 4 - 1 for the I3 sce
noise example given on pages 26 and 49 . The time frequency 1is 40 hz,

the array length is 50 meters and the incident signals are plane wavces
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(M(Y) = 1) . The channel factors are plotted at three levels of self

noise: 50 db, 30 db, and 20 db below the sea noise.

Recalling Sect. 2.3, sclf noise does not change the eigenfunctions,

but adds a scalar constant { to all the eigenvalues. For instence,
if (Ak(w)). keD(w) 418 the set of eigenvalues for sea noise alone, t

the set {Ak(u)}. keD(w) with self noise included is

Oy (@) = {A;(w) + €}, keD(w) .

When the relative self noise lavel ¢ 1is -50 db, for instance, then

(Eqs. 2 - 49 and 2 - 50)

' A (w) m .
L k n, ()
keD(w)

where‘71 is the time spectral level of the self noise at a single

hen

4 - 36 o

-

-

hydrophone and ni(w) is nl(w) for the sea noise process alone. In

this example the number of hydrophoncs m 48 12 so that

b P [o-sou]

n) () m =12

This may be related to a physical mcasurement through Eqs. 2 - 51 and
2 - 52,

Figs. 4 - 1 (aa), (ab) and (ac) show that in this example, the
highest channel factors for detection of broadside signals tend to
concentrate closer to the left-hand end of the sequence of factors
than for the endfire condition. In these figures, the eigenvalues
decrease from left to right. Therefore, the addition of self noise
affects the sequence of channel factors from the right, meaning that
cndfire channels are most sensitive to self noise.

In Eq. 4 - 31, es the self noise increases, Ak(w) and nl(w)

A-178
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increase (see page 41 and Eq. 1 - 38). The increase in Ak(w) decreases
the channel factors at the right, while the increase in nl(w) increases
those at the left. The increase due to the increase in nl(w) is usually
small. Physically, these changes are due to a change in the proportions

of sea noise and self noise in the total received noise energy, the latter
being a fixed quantity.

The array gain 13 (b) , which is the sum of the channel factors, is
plotted in Fig. 4 -~ 2 versus the angle of incidence of the signal. An
array of 12 -equally spaced hydrophones is assumed. For comparison, the
array gain obtained with 12 instead of I3 sea noise is also shown.

The larger amount of I2 sea noise in the endfire region (Fig. 2 - 1)
results in poorer endfire detection. Since less noise power is present
in the broadside region, broadside detection is better when 12 sea
noise is present.

In both cases, the endfire detection is markedly affected Ly the
level of self noise. In fact, 1f k 18 increased indefinitely, the endfire
detection is limited only by the amount of self noile.l To show this, the
numerator Ihk(w,!)l2 (the factor M(Y) is omitted since it is unity in this
example) and denominator Ak(w)/nl(w) of the channel factors é (w,Y)

(Eq. &4 - 31) are plotted in Fig. 4 - 3 versus k . In both the I2 and I3
sea noise cases, the ratio of the numerator to the denominator approaches a
nonzero constant a8 k is increased. In the I2 sea noise case, this constant

is 2.2, and in the I3 noise case, it is 14. Therefore, without self noise,

lBut note that k + » {implies that an infinite number of hydrophones
is available.
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the array £:4in (Eq. 4 = 32) will diverge as k 1is increased. Self noise,

however, adds a constant to the denominator so that as the numerator lhk(w.l)lz

becomes small (Fig. 4 - 3), the channel factors approach zero, and the

array gain converges. To achieve a large endfire array gain, the self

noise level must be small. The number of hydrophones m effects the level
of relative self noise according to Eq. 2 - 50. The relative self noise

may be made arbitrarily small by increasing the number of hydrophones.
tpecifically, if the number of hydrophones is increased by a factor of ten,
the relative self noise level o 4{s reduced by 10 db . The cost in hydro-
phones of relducing relative self noise quickly limits the practical reduction
that can be obtained.

The number of hydrophones also limits the number of available space
eigenfunctions or channels. If m eigenfunctions are desired, at least m
hydrophones are required. In qualitative terms, i{f m hydrophones are
used, the noise power on eigenfunctions (channels) of index k greater
than m-1 1s received on the existing eigenfunctions. This can seriously
impair detection et all incidences. I1f in this example m were to equal
2, for instance, then the noige power % 2;;(w)xk(w) would be received

k>2
on wo(w) and wl(w) . From Fig. 2 - 4 the added noise is roughly % of

the total noise. A noise increase of roughly 252 on wo(w) and wl(w)
would decrease the broadside detection by roughly the seme amount.
Even worse, the endfire detection would be practically eliminated because
the eigenfunctions wz. w3, ... which are the principal endfire channels
would not e defined. Fig. &4 - 4 shows the array gain for m = 4 and 2,
i.¢. with and without wz and w3 .
In the example discussed above, the noise processes received at

separate hydrophones are dependent. However, if the time frequency is
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raised from 40 to 60 hz, the hydrophones become assentially independent
for m < 4 . The result is the circular array gain patterns pictured in
Fig. 4 - 5 for m < 4 . The principal endfire channels in this example
are .03 and *6 . Therefore when m 1s incressed beyond 4, the array
gain pattern goes almost immediately from circular to lobed toward endfire
and never does exhibit the endfire deficiency opown in Fig. 4 - 4.

When m > 4 , eigenfunctions are defined to receive most of the noise
at its normal incidence. Beyond this, more hydrophones have little effect
on broadside dctection. Endfire detection, however, is significently
improved as morc hydrophones are added. At first the added hydrophones
define new endfire channels that are not self noise limitced. After this,
further hydrophones define self noise limited channels, one or two of
which may provide significant detection. Beyond this point, adding
hydrophones will improve the detection on the self noise limited channels
by decreasing the relative self noise level. As mentioned before, howcver,
it takes a large number of extra hydrophones to reduce the relative self
noise level significantly. The patterns in Fig. 4 - 5 illustrate this
development of the array gain as m is increased.

In the rcmainder of this section some examples are given to illustrate
the behavior of the array in the presence of local noise and interfering
target noise. The first example is of detection in the presence of local
noise from a point source located one meter beyond the negative end of the
array (pages 34 and 49), and the sccond is of detection in the presence of
an interferin- target locatcd 75 meters off the negative end of the

array (x = -100 meters). Both the local and the interfering target noises

are 10 db above a background of I3 sea noise. The self noise is 50 db

below the total externzal noise. The array length is 50 meters, and the
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raised from 40 to 60 hz, the hydrophones become assentislly independent
for m < 4 . The result is the circular array gain patterns pictured in
Fig. 4 - 5> for m < 4 . The principal endfire channels in this example
atre W3 and 0‘ . Therefore when m 1is incressed beyond 4, the array
gain pattern goes almost immediately from circular to lobed toward endfire
and never does exhibit the endfire deficiency ohown in Fig. 4 - 4.

When m > 4 , eigenfunctions are defined to receive most of the noise
at its normal incidence. Beyond this, more hydrophones have little effect
on broadside dctection. Endfire detection, however, is significently
improved as morc hydrophones are added. At first the added hydrophones
define nev endfire channels that are not self noise limited. After this,
further hydrophones define self noise limited channels, one or two of
waich may provide significant detection. Beyond this point, adding
hydrophones will improve the detection on the self noise limited channels
by decreasing the relative self noise level. As mentioned before, howcver,
it takes a large number of extra hydrophones to reduce the relat*-e self
noise level significantly. The patterns in Fig. 4 - 5 illustrate this
development of the array gain as m 1s increased.

In the remainder of this section some examples are given to illustrate
the behavior of the array in the presence of local noise and interfering
target noise. The first example is of detection in the presence of local
noise from a point source located one meter beyond the negative end of the
array (pages 34 and 49), and the sccond is of detection in the presence of
an interferinc target locatcd 75 meters off the negative end of the

array (x = -100 meters). Both the local and the interfering target noises

are 10 db above a background of 13 sea noise. The self noise is 50 db

telow the total external noise. The array length is 50 meters, and the
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time frequency i{s 40 hz.

The channel factors in these two examples are plotted in Fig. 4 - 6.
In the local noise case, eo is practically zero, because most of the
local noise is received on Yo (sec Figs. 2 -5, 2 - 6 ond 4 - 6). Since
the local noise is attenuating significantly over the array, it is easily
distinguishable from 180° signals arriving from : distance so great that
they do not attenuate significantly over the array. These 180° signals
are principally detected on 2 and Vg As shown in Pig. 4 - 6,
decection in the presence of this local noise is almost as good at 180°
as it 1s at 0° .,

For interfering noise at x = -100 meters, however, the situation
is different. As before, the bulk of the interfering noise is received
m wo » making this channel useless for the detection of signals. But,
the interfering noise does not attenuate significantly in this case and
*.herefore 135 difficult to distinguish from distant signals also incident
at 160° . Since the remaining chennels do not match the interfering noise,
they do not match 180° signals either. This is evident in Fig. 4 - 6
(ba) . The array gain for this cace is plotted in Fig. 4 - 7, and the
detector at 180° 1s seen to be severely impaired by the presence of the
intertering noise.

As a final example, it is assumed that the noise process consists of
a single interfering target signal with a source vector i_ plus self
noise as described in Sect. 2.3. At a frequency w , tiie zero order

spet {al eigenvalue for the total noise process is

Ao(w) - XI(w) + ¢ 4 - 39

where AI is the spatial eigenvalue of the interference clone, and
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€ 1s the self noise level (Eq. 2 - 45). As for the remaining eigenvalues,

Xk'ﬁ k'l,-'-’m'l 4 -

in which m 1is the number of hydrophones in the array. The ratio of the
self noise to the interference given by Eq. 2 - 49 is
| 4 -

o= .
Ay

Now Eq. 4 - 26 for the b-detector array gain 159 (b) and Eq. 1 - 38

for the total noise n, indicate (following a certain amount of algebra)

1
that
m-1
\ 2
2_: |hk(w, V|
(b) Jltmo 1 k=1 .
IO, yp - LBy, 1 D . 4
The lowest b-detector array gain, labeled G{b) _ 18 attained when
Y- i . Then
m-1
N -~ 2
) I G, DI% =0 4 -
k=1
so that
(b) _ (b) Sley g LtmoO _
GL J’ (u,)) X_I!) 1 +0 . 4
Corresporndingly if Y 1is such that1
m-1
\ 2
) I, p)® =i 4 -
k=1

lyote from Eq. 2 - 84 that ||h(w,1)||2- IM(Y) .
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then the array gain is

(W
3 )(m’!'!)-l"'mosc(b). 4 - 46
o} U
Suppose that the ratio of self noise to interference is

1/10, that is,

. 1 4 - 47

n,° Mo * 10

in Eq. 2 - 50, suppose further that the array has eight hydrophones.

Then the minimum b-detector array gain is

®) _ 88 - 48
GL T 1.086 . 4 - 48

Since the interference power is assumed known, a signal from i

is still slightly detectable by the increase it will make in the power

received from i_. This is reflected in GL(b) being slightly above
unity, the general minimum for the b-detector array gain (Eq. 4 - 29).
The upper limit GU(b) » which is never completely attained, is

6, = 88 . 4 - 49

These levels are marked in Fig. 4 - 8 which shows the array gain of a
50 meter array at 60 hz in the presence of an interfering target from
a range of two kilometers at an incidence of 49.1°

In the plot in Fig. 4 - 8 only the shape, and not the scale, may
be used in making direct comparisons with other examples in which the
interference power is different. If the background or self noise is
fixed and the interference is to vary, the array gain may be replaced
by an “apparent array gain' defined as follows. Whereas the array
gain a” is obtained by normalizing the single frequency output SNR

o~

with respect to the total .aoise n o the "apparent array gain" J
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wvill be obtained by normalizing with respect to nos the background or

self noise without the interference. That is,

~ n, (w)
I, x|y » —2w XD B d, x| . 4 - 50
Slo)o yqyy |/ B0
nb(w) 2n
In this example,
B _pmt g
nl(w) N l(m ) - -1—-0%5 ) 2
AL |
so that the new minimum 'El(b) becomes
s () mg (b))  _mg -
6y 1+mo CL 1+0 e
and the new upper limit 8.(b) becomes

U

AOTE .

U l4mg U * 4 =53

A comparison can now be made with the array gain obtained with no
interference at all (with independent noise from hydrophone to hydrophone,
such as self noise). According to Eq. 4 -~ 35 this array gain is m so
that it may be concluded from Eq. 4 - 53 that an interference from i
does not diminish the "apparent array gain'' 1f the signal source location

Y is far ¢nough from i that

LA Eu(b)-m. 4 - 564

(At low frequencies there may not be any Y ¢ ® for which the above

holds) .
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c) c-Detector Array Gain

For the c~detector, the functional 2, in Eq. 4 - 13 1is

1

) s(w)

(w, X) = h(w, X) . 4 - 55
= Aw) s(w) =

Z 1+ X (o) LM(X)

According to Eq. 4 - 22, then, the c-detector array gain is

n () |B*, © b, DI

&), xlp = 5 4 - 56
MDA (W) | |h(w, X)|] .
This is not necessarily a maximum when X = Y , so that steering the
c-detector toward Y does not necessarily focus it exactly on Y .
When the c-detector is steered toward Y ,
© a @, 2* W uE 12
F ), vy - > - — - 4 - 51
M@OAW o, DT AW |he, DT .
For comparison, the b-detector array gain is
) n 2
(w, !ll) - M) A (W) | |h(w, .Y.)” . 4 - 58
The ratio of the array gains for the two detectors is
$ P @ 11y 2w (i, D12 AW |, p12
F) 0, vly mp? L2
27w int, D1E AW b, D12
| lbtw, D114
= 4 2 2 (W) + 0@
Z_/ |hk(wn.¥.)| * Z 'llk(w:!.)l Ihk’(wl.Y_)l Ak(w) Ak‘(w)
keD(w) k,k“eD(w)
F k<k”
4 2 2
by (0,0 | + 2 b @D |by (0,1
keD(w) k,k“eD(w)
k<k” 4 - 59
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All the terms in this last expression are positive and

2 2
Ak(w) + Ak‘(w) l 2 . 4 - 60
A (W) AL (w)

Therefore,

dPw, 1y 2 A%,y . 4 - 6l

The equality holds when Ak(w) - Ak,(w) for all k and k° € D(w) .
Indeed, it was shown in Sect. 3.2 that when ) (w) = A, .(w) for all
significant indices k and k-’, the b and c-detectors are
completely equivalent. Practically, when the average noise energy
Xk(w) is approximately equal on all b-detector channels for which

2
either Ak(w) |hk(w. X)|2 or Ihk(”’ I)| 18 relatively significant,
Ay (w)
k

then the c-detector may te expected to have almost the same array gain

as the b-detector. This is illustrated in the following example.
Cousider a 12 hydrophoney 50 meter array at 100 hz in a background

of I3 sea noise. The space spectrum for this array as shovn in

Fig. 4 - 9 (a) 1is alreaay approaching the limiting form ahown in

Fig. 2 - 2. That is, it is practically flat for k < 5 . Now for a

plane wave (u(x) - 1)incident at eY-75.9°and a sclf noise level 50 db
s nl(w) 'h-k(mnl)

2
|

below the sea noise, the b-detector channel factors C&(w.x) "= (w)
k

A, (w)
k ( '2 N
are plotted in Fig. 4 - 9 (b), and the terms “17:’7 Ihk\w,_&;)| in the

c-adetector array gain (kLq. 4 - 57) are plotted in Fig. 4 - 9 (c¢).
Almost che entire b-detector array gain is on channels whose indices

Ak(w)

k are less than five, and all of the significant terms = |hk(w,X)|2 in
1

the c-detector array gain have indices k < 5 . Therefore it is
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expected that the c~detector array gain will be almost equal to the
b-detector array gain at the 75.9° signal incidence. This is in fact
observed iz Fig. 4 - 10. It is also recasonable to expect even greater
similarity at incidences nearer broadside. This is also observed in
Fig. 4 - 10,

In general, the c-detector array gain will not be very close to
the b-detector array gain at endfire or near endfire incidence. At
these incidences the spectrum is changing significantly over the channel
factors of intarest. At broadside and nesr broadside ircidence, the
b and c-detectors will have almost the same array gain when the noise
model has a smooth spectrum in this incidence region and when the time
frequency is high enough so that the significant channel factors and
terms in the c-aetector array gain occur in this region. Self noisec
tends to equalize the b and c-detector array gains because it reduces
the span in k over which the channel factors are significant.

When the overall noise model is homogeneous and the noise processes
received on different hydrophones are independent, the spatial spectrum
is constant over all channels at a given time frequency. In this case,

then, the c-detector is exactly equivalent to the b-detector. (Accord-
n, (w)L

ing to Eq. 4 - 34, Ak(w) = for all k so that the filter JFJ

(Eq. 3 - 24) in the c-detector is described by

¥ olp|? - 3L 2

1
nfw b 1+%mﬁ(_&)

This is approximately the Eckart filter [15]).
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4 ¢ L-Detector Ar Gain
According to Eq. & - 8, the narrowband output signal-to-noise

ratio for the g-de¢ctector is

O - [ L tupa L0mthy
e} | . }

Obtaining the above mean and variance from appendix D, .

L Ay

s ! kCD(Uh.x) A (U)
om(m.&lx) - JI% 4 - 64
B s i W)
lk(u}
In the numerator of the above
< 2
A W) " AW
2
‘(0)"&(@-!"
- O = % n® C
4 - €65
according to Eq. 4 -~ 31. And in the denominator,
2\ 2
o Ly@Dy
& Al w)
eD(w,X) k
2
A, (w)
- v k ™ H(D(m.y)
a2
keD(w,X) 'k 4 - 66

where the function (D) 1s the number of elements in the index set

D . Thus
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Pre—

;. ey
Q(l)(u.gl) - 860 M(Y) Tow keD(w X)

() 2 Vulbw,n) .

Referring now to the definition of the array gain given in Eq. 4 - 11,

the f-detector array gain ﬂ(") is

e,y

g

ke

[
~

w,X)

V H(D(w.&)) .

Fig. 4 -~ 11 shows the array gain for f-detectors with various

J (1) (“"le) -

index sets. This gain is compared with that for the b and
c-detectors. The time frequency is 40 hz, the array lecngth is 50
mcters and the noise background is I3 sea noise. The data are

derived from Fig. 4 - 1 (ba), (bb), and (bc).
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CHAPTER 5

DIRECTIVITY MEASURES

5.0 Introduction

In detecting a target of fixed tut unknown location, the b, ¢, or
t-detector is stcered in particular directions. Directivity measurcs
are presented below which will describe specific average relationships
between these steering directions, the target locaticn aud the detector
performance. These measures serve to
1. provide e basis for selecting the steering directions,

2. dectermine the influcnce of a signal or noise on a detector stecred
in some direction, and

3. 1indicate how well the b-detector may locate a fixed target. (A
complete measure of the target locating ability of the c-detector is
not given; howevcr, a note on its bias is included.)

As mentioncd before, it 1is assumed that the input signal-to-noise
ratio is low and that the observation time is long. The measures derived
here under these cssumptions are thus strictly asymptotic measures, never
exactly representative at finite signal levels and finite times. However,
the error will be presumed te be small and the measures treated as though

thcy were exact.
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3.1 The Normelized SNR
a) Definition

The first of the directivity measures discussed, the normalized

single frequency output signal-to-noise ratio ﬂ » will be useful

s ensate. ot

primarily in making a practical assignment of detector steering

directions. It is defined by (see Eq. &4 - 12) .

0w, X|Y) &, X|D)

O (v, X|Y) = . 5 -1
(W. —|D .(U. i'_Y_) J(U) 1]!) .
This function of X 1s a measure of the change in output signal-to-
noisc ratio that results from steering the detector toward X not
coincident with the terget signal location Y . When © 1s close to
unity, there is little change.
b) The Normelized b-Detector SNR
The normelized SNR for the b-detector is (Eqs. 5 - 1, 4 - 24 end
4 - 27)
(b) J e, 3y
P XD = =55
P AR OT (30
® -
12" s ® 472w b, D)2
S| 2 -1 )
A (W) G, O1° AW ||hw, DI - 5-2

This mea2sure is never greater than when the stuering vector X
coincides with the signal location Y .

As an example, 9(b)(m. X|Y) 1is plotted in Fig. 5 - 1 for a case
in vhich the time frequency is 40 hz, the array length is 50 meters,
and the background noise is 13 sea noise with =20 db of se¢lf noise.

The postulated array has 12 hydrophones. In Fig. 5 - 1 (a) © 1
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plotted for signals incideat at 0°, 35°, 50.5°, 67.5°, and 82°. The
range ||Y¥|| to the source of these signals is 10° meters. Now if
the detector is steered at angles 26.0°, 62.5°, 59.S°, 76.5°. and
90.0° at a range of 10s meters, it is observed in this figure that
the signal-to-noise ratios for signals at the chosen incidences will
still be at least 80X of their maximum values. The signal-to-noise
ratios for signals at all other incidences should be an even higher
percentage of their maximum values.

The outputs of the b-detector steered toward a particular location
may be regarded as a sample of its output over the region of possible
signal locations. Concerning signals at a range of 10s meters,

Fig. 5 = 1 (a) indicates that steering the 12 element array toward
sampling incidences of 26.0°, 62.50. ez 90° will insure that no signal
of incidence between these sampling incidences will go undetected.

According to Pig. 5 - 1 (b), the b-detector output signal-to-noise
ratio is not appreciably affected by steering range until ||X|| is
less than 100 wmeters.

c) The Normalized c-Detector SNR
Referring to Eqs. 5 - 1, 4 - 56 and 4 - 57, the normalized output

SNR for the c-detector is

JOWwxn I wonwn]? 9 w1

o () (XD =
¥ .yl oML ¥ Qwyn .
This measure © for the c-detector is not necessarily everywhere
less than unity. That is, the output signal-to-noise ratio for the
c-detector may be improved in some instances by steering it toward o

location X other than Y , the location of the signal source.
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In Fig. 5 - 2, B () 15 compared vith ®® 42 both an I2

and an I3 sea noise background. The c-detector is seen to be

unbiased for both endfire and broadside target signals.

intermediate incidences the

However, at

c-detector may be strongly biased. In

L=

e

fact, wvhen a target signal is incident at 50.0° and the background is
I2 sea noise, the c-detector exhibits its highest output when steered
in a 55° direction. When the background is I3 seea noise the bias
is reversed, and the strongest c-detector output occurs at a steering
direction of 44° ., The measure ® for the b-detector with this
signal iacidence is unbiased and practically the scme in both I2 and
13 sea noise backgrounds.

d) The Normalize -Detector SNR

The normalized output SNR for the ft-detector is (Eqs. 5 - 1 and

v y
e

L

4 - 68).

I (x|

9(‘:) (ﬂh,_x_'!) e

P ATORS,

Vulo(w,1) kezm p Cwd

) Vu(oCw.x)

¥

keD(w 'D
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‘ 5.2 An Influence Measure (i)
j 2)_Definition

) The measure 70 1in the previous section provides an indication of
) the range of steering vectors X over which a signal emanating from Y
£ has essentially undiminished effect. Turning this around, the question

considered below is the change in response of a detector having a fixed
steering vector X as the signal origin Y ranges away from X . At
a frequency o , this response change mey be viewed (hrough the output
signal-to-noise ratio O(N.LL'D ; in fact, u general influence measure
® (wY|®) on Y c(R 1s obtained from this by dividing out the
implicit dependence on received input signal power s(w|Y) and by

normalizing with respect to ¢(w,X|X) . The result is (see Eq. 4 - 12)

B0 ¢ (u,X|D) /.mm
("N L) e
] o(w,X|X) s(w|X)

M) & (0,X|D)

X &wX|X) . 5-5
o Sincc the noise power in the output of the detector is practically
) independent of the low level signals being considered, this noise power
- is constant with Y for fixed steering vector X . For a given X ,
4 then, @ is the ratio of the everage dctector output deflection caused
- by a received signal arriving from Y to that caused by a received

signal of the scme strength arriving from X itsclf. Thus when Y = X ,
this measure is unity. If the signal from Y 1is not badly out of focus
end if the noise field interferes less with the signal from Y than with
the one from X , then the mecasurc () may be greater than uuity.

The quantity @ may be considered a measure of thi influence of

either signals or noise components. Should the object be to assess the
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influence of a noisc wave ¢ that is not expressible as a signal emanating
from some point Y , then (B)(XiX) may be generalized to (B (Y|¢) by
replacing h(w, Y) ‘sce Eq. 2 - 79) with

L
"2

b, #) = | | .k'(..,, x) ¢(x) &x | . 5-6

L
2

h)__jip‘jgt the b-Detector

Referring to Eqs. 5 - 5, 4 - 2§ and 4 - 27, the influence measure

for the b-dotector is

MO 020 |8V e 47w aep)?
r® IP0xn | 47w el ] .

®®w.yp -

As an illustration, (H) 1s plotted in Fig. 5 - 3 for the
b-detector (solid line) steered at a range ||X|| of 5 kilometers and
an angle Bx of 40° . Under the circumstances chosen here
(W e 2r x 40 , I3 see noise background, etc.) Fig. 5 - 3 (a) indicates
that the b-dctector so steered is significantly influenced by signals
of incidence 8, from zcro to about seventy degrees (1Y)] =5 km).
And signcls at 35° incidence cause an even larger output deflection in
a detector stcered at 40° than do signals at the 40° incidence itsclf.
This 18 of course no paradox since an approprictely steered b-detector
in generesl exhibits zpprcciably larger sensitivity as the signal incidence
approaches endfire. The 35° signel deflection observed at 40°
stccring 1s in fact the tail of the eatire 35° signcl response versus
steering anglec.

All signals having an incidence of 40° and a range greater than

the length of the array show approximately the same influence (Fig.5 - 3(b)).
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At shorter ranges, the influence of 40° signals is appreciably diminished.

By itself the influence curve in Fig. 5 - 3 (b) describes the variation
in the output SNR for signals which produce the samc input level at the
array. Now since the range varies, this curve does not directly describe
the overall variation in the output SNR for signals with the same gource
strength. To express this new circumstance, the varying imput level
s(¥|Y) may be attached as & simple multiplicative factor on (B (see
Eq. 5 - 5).

h =Detec
Placing the left-hand sides of Eqs. 4 - 56 and 4 - 57 1r the definition

of ® (Eq. 5 -5), the c-detector influence measure becomes

M 0, 5D |86, b, |

®“w, 1D -
M® I @, 2B aor |

This measure is plotted im Fig. 5 - 3 (dashed line) along with the
plot of @ (b) discussed in part b . The comparatively uniform
response of the c-detector to signals at diverse incidences is reflected
in the more reguler decay of ®(°)(1) awvay from the steering location

X .

d) @ for thc g-Detector

The measure () for the p-detector is (Eqs. 5 - 5 and 4 - 68)

u® IV, 5
u@ IV w, XD

® (':) (U. !'D -

2
(“’o_Y_)
w § ey L
e kDD  _kep@® W
2
hk(w..’.()
w T ews ¥ B
keD(w,X) keD(w,X) : 5-9

A-110

ti

el

(=

|




=

>~y

.d

L4

3.3 Uncertainty in Signal Source Location

A nev measure is proposed below thet will indicate how well a
detector can determine the location of a target signal source. This
measure will quantitatively illustrate how the uncertainty in the
signal source location depends upon the observation time, the sigual-
to-noise ratio, the noise model, the location of the signal, and the
geometry of the array.

The basis for this measure is the location equation (Eq. 1 - 56)

f(&ls.leo?)-s-b:—l("-;}ﬁ 5 - 10
The term b(u, X) 1is the output of the b-detector and K(u) 1is a
constant independent of the scanning vector X . The proposed
statistic is to be a measure of the shape of f(X|u, Ye®R) considered
as a function of X ; therefore it need not contain K(y) . In fact,
the ratio

S D

5D 5-11

will serve as well as f(X|u, Ye{) 1tself, where Y 4is the location
of a test signal. If this test signal is sent to the detector, this
ratio should be a measure of the ability of the b-detector to deter-
mine the location of the test source. That is, wvhen this test signal
is present, the above ratio will contain all the significant shape
information in f£(X|y, Ye®) . This ratio, however, is still somevhat
randon because of the randomness of u . Since this randomnesss tends
to mask the variations due to changes in the physical circumstances
(observation time, etc.) the measure proposed below is not this ratio,

but a nonrandom description of it. The measure is in fact obtained by

A-111

- — -



e e e i et

S e
—— e A ot s g

setting the ggmple variance of !‘.1*‘(96;121 equal to its variance. For
long observation times, b(y, X) 1s the sum of a large set of independent
compounents, many of which have approximately the same variance. The sample
variances obtained in forming b(u, X) are therefore expected to be quite
close to actual variances at long observation times.

Specifically, the index set Q+ of the positive time frequency indices

nay be partitioned into subsets ‘p of consecutive indices such that

- 5 ~-12
! {Apl
and

8, N8, =0 5-13

when p ¥ p° . As the observation time T 1is extended, the indices in
any Ap denote frequencies that become closer together. If the observed
process is smooth relative to the frequency spacing (the reciprocal of
the observation time), the signal and noise variances will be approxi-
mately the same over many consecutive discrete time frequenciez. Fach

Ap will be taken small enough that the same variance may be assigned

to all componentc whose indices are within it. The set of all p's

will be lebeled P .

With this notation, the output of the b-detector may be written

bD = 2) (I;i* Wy, 1 - 1001 + .1A1‘1||g1(5)||2)) +1n £,(%)
ieQ+ —

2 2Z Z I;: Q!)s;zil2 - zz ln(I + -1A1'1||31(p||2)+ o £,(0 5 - 14
peP 1€Ap == {eQ+
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in wvhich

s L
@ =7/- L A e . 5 - 15
be T T

Over the set of consccutive indices 1 {n Ap » the inner product tera

in Eq. 5 - 14 may then be written

3 134 @y’

ied ~
P

8
e Z J 'h C‘(x A -1 2

-1 7 Ihy @ Ay
1c6p1+.1A1 Ny @1

8 .

; f{P) Z |l_31' [09) Ai'l 21|2 5 - 16
1+ '1(9)A g (x)“2 1€l
1(p) —1(p) = P

vhere 1(p) 1s any index i belonging to Ap . Now if the frequency
band covered by Ap is denoted by Awp , the number of elements H

in AP may be written

dw T

- 2 -
HOO) = —B— 5 - 17

Consequently Eq. 5 - 16 may be written

3 3@ gyl

iecd
p

dw
. 1 21 L NV YAt 518
) 7 In .i(p)H(A)Z—i DAl
L -1(,)"“,,)Hb.1(p)(l)ll P 18,
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Por a fixed degree of location uncertainty, the longer the observatioa

time T , the smaller will be the signal power s This compensation

i(p) °

suppresscs the absolute size of the random variations in

T %) n(a) Z |h (,_)A1 __1| 5 - 19

icd
P

as T 1s extended (i.e. as the sample size is increased). For long
T , then, it appears reasonable in constructing a non-random measure,

to replace the sample variance

R(A)Z'hi U“t‘t' Set

icd
P

with the actual variance

.- -1 -1 2 .- -1 2
81 ) DN (1% 3] = Arpd | apy D117 + 8453114 () O3 by 5 O
5 - 21

(The actual variances of all components with indices {1 within Ap
are being assumed to be the same.) Making this substitution in
Eq. 5 - 18 and pluacing the quantity obtained back into the right-hand

sidec of Eq. 5 - 14, the resulting output statistic b 1s defined by

2 -1 2
T ’Z )II YOI+ 8,010y ‘-’“un.‘-ﬁ:(;z‘!"
“P’ ] 1+ by () ® 112
peP 1(p) 1(;) =1(p)

-22 1n(1+oA1||b_1(_)||)+1nf . 5-22

iefi+

These summations are approximated by integrels as follows,
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® [ s (W) | 110, |12 + 8 ?[8* (DA whtw,D |2

salp + 1 [ [

1+ l(w)A-l(w)||hKW.§)||2

- 1a[1 + s W | [ 12)] d + 10 £,@ .

Replacing b 1in Eq. 5 - 11 with b ,» the definition of the location

uncertainty measure j’ becomes

HEly = S——

[« 43
=

(x|

i<
=

¢ lY

Since this measure '7? describes the shape of the a posteriori

probability density function of the target signal source location, it

indicates the best location definition that can be obtained with any

detector of the given geometry.

Thus it is a fundamental measure of

the lecatability of a given signal source using a given passive array.

In addition to its use in forming # , the output statistic b

is useful in exeamining the structure of b . For example, it is

apparent from b that the term a(w)A-l(w)llg(w,g)ll2 , though small

compared with unity in the expression 1 + s(w)A-l(w)Ilhﬁw,§)||2 , can

yet be very significant.l Consequently the expression

lwriting the integrand in Eq. 5 - 23 as

a+b

] = — -

1+a

In(1+a)

b << a << 1

the approximetion 1l+a x 1 leads to I = a+b . However, this does not

agree with the expansion

2
I=b-2 +Ob) + G (a3

80 thet unity cannot replace

1+a .
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1+ c(U)A-I(U)llh(u.z)llz is an important pert of the structure of a
detector forming b(u,X) . (It appears in two places in Eqs. 3 - 6 and
3-9 for b(y,X) ).

Two examples are now presented 20 show how the mecsure # may be
applied. Im the first, a test signal source is placed at an angle of

60°

vith the axis of the array and 2t a range of 2 kilomcters from
thé center of the erray. The array is 50 meters long and consists of
12 equally spaced hydrophtiones. The background noise is I3 sea noise
plus =30 db of seclf noise in the hydrophones. The target signal source
generates Gaussian noise of constant spectral density 10 db below the
background noise at the center of the array in a band from 30 hz to
130 hz . The power outside this band is assumed to be negligible. With
2 uniform 8 priori location density function fl(g) and & 50 secona
observation time, thc location uncertainty according to Bq. 5 - 24 is s
shown in Fig. 5 - 4 (a). If en actual random waveform v(t,X) were reccived,
an exact but random location uncertainty function could be gencrated. The
measure ‘7? » which is itself not random, should be a reasonable
description of the significant shape aspects of this oxact, random location
uncerteinty function.

Fig. 5 - 4 (b) shows how a section through the measure plotted in
Fig. 5 - 4 (a) changes with observation time. The measure: 1? is plotted
at the test signal range of 2 kilometers over a range of angles around
the test signel angle of 60 degrees. Thc observation times are 10, 20,
50, and 150 seconds.
Fig. 5 - &4 (c) shows how the same section through the mecsure varies

a8 the low frequency cutoff is raised. Raising this lower cutoff until

the original bandwidth is reduced by 60X decrecases the bearing resolution
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by only 20X . In fact the detector still has over half its original bearing
resolution after the lower 80X of its frcquency band is removed. In this
example in which there is strong correlation between the noise received at
separate hydrophones, it is apparent that the highest frequencies present
carry aslmost all of the location informatiom.

As & second example, the angle resolution is determined for the seme
arrey in a background of both 12 geea noise and 13 sea noise. The same
signal source is moved to a range of 10 kilometers from its two kilometer
range in the first example. Assuming spherical spreading, this lowers the
signal-to-noise ratio to =-24 from <10 db 1in the first example. Now at

this range, the source is moved in 10° increments around the array. And

at each position, the constant range cross-section of the location uncertainty

# is plotted in Fig. 5 - 5. (Constant bearing cross-sections are virtuall
flat in the region of 10 km.) With the I2 see noise background, the
bearing resolution in the endfire region is worse then with the I3 sea
noiee¢ background. In the broadside region, the situation is reversed. This
is to be expected from a comparison of the two dimensional spectra for the
two noise fields p‘ tured in Fig. 2 - 1 and Fig. 2 - 2, In fact Fig. 4 - 2
shows that the b-detector array gain in an 12 sea noise background is
higher near broadside but lower near endfire than in an 13 sea noise

background.
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N ) . e _for the c-Detcctor
When a target signal is presemt at Y , the output of the c-detector
wili be 2 maximun when stecre! at some location other then Y . A noun-

(c)

random indicetion B of the differencc between this location and
Y 1is 2 measure of the bics in the c-detector. As in Eq. 5 - 14 for
the b-detector, the c-detcctor output may be written
s, |n'7( | 2 '
c(u,X) = 22 -12. 5_;% - ln(l + :—1134(;)) + 1ln fl(_l_) . 5 -25
fear (M 1 +:-:m(l_t) :

(c)

The bias measure B will be derived from this random output using the
notation, assumptions and methods of Sect. 5.3.

It has becen cssuned thus far that the signal power 8 eond the noisc
power n, are known. In interpreting the results of this section it
will bc of interest to note the significance of this assumption. To
allow this, a notational distinction is made between the values of the
signal end noiac power that arc used in implementing the detector and
those thet prevail in the received signel u . The values of the signal
and nois: power used in the implementation will be dcnoted by : and ﬁl
respectively.

The quantity A, celled for by the implementation according to

i
EqQ. 5 - 25 1is given by Eq. 3 - 26.

L0 .
a = (“l_z.ll)

. - 2,
ki 3 li(z_) - 4(2) A1||h1(.2)||

where 2 1s souc representative vector in the region of scan G?
(For most analyses, Z may be set equal to the signal source location

vector ¥ ).
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Furthermore, two simplifying assumptions are made:
1. only plane wave signals are considered, i.e., M(X) = M(Y) = 1 ;
2. the a priori location probability density fl(g} is assumed
uniform over the incidences of interest.
Under sssumption 1, the bias is expressed as an angular difference

between the incidence of the signal and the steering angle ex

“t
at which the c-detector output c(u,X|Y) 1s a maximum. And under

both assumptions this bias is determined by the first term in the

right-hand side of Eq. 5 -~ 25. This term 1is

- 2, *° 2
5w) & w22 @ |
z(u.x)-zz 1 1"“1-; 4 5~ 27
R 8
1el+ L2 ﬁl(wi)z (1 + - i J(C)(ui’ng))
nl(wi)
Now a non-random description of this term is obtained by the
methods of Sect. 5.3. First, t is written
o (Wi (p) ,_z_|_z_)2
t(.‘_{’.x_) - 22 a
a a(w ) of -
PP 12 L () |1+ 2L F(&)(, g0
11 (p)
Aw g(w ) .
.__E-r.‘_.lm___]:__ |h*(§)u|2 . 5 - 28
2 E ) H(A ) o -1
1Y*1(p) P e
Then the iample variance
1 < *° 2 -
Hey L by ® oy o
P fea
P
is replaced by the actual variance
A-121




®’ 2
v(h'l(P) (‘D!“P)) 1(9; ‘ =1(p) (—)” + s(‘"1(‘,)” (p) (D—i(p)ml 5-30 4

to yield the non-random quantity

2
t(y,X) =

(c)
-Lc .( ) a (wi(p) Dzl z) ‘E! ij (Dluﬂ ﬂ(w

2 (L
" "peP f, )2
171(p)

8w
,,__ue)._ a(c)(m y» z|_))

=

1) By by () D 1)

pr

. f 129 w.212? [rw|hw,D]]? + s 2" ,Drw,D |2
*2 ]
o A, @)? (1

[ _J
N B TR
Ln - 2
A nl(W)

1
o |1+ do .
( MJ(C)(‘»._YJX) n(C)(w’_XJD)

It 1s noted (Eq. 5 - 28) that this description t improves as the

observation time T is increased while the product of T and the

-
a

8(w)
+ “(w) J (e) (“’9.&'9)

ﬂ(c) (“oll.z)z Ih*‘(uhl{) !\.(w.!)|2

1+ 'i-(g)—ﬁ(c)(w, 2|2
i, @)

nl(u)

estimated signal-to-noise ratio ;'—(“—’) is held constant.

The term t provides the basis for the c-detector plane wave bias

(c)

measure B

produce essentially plane wave signals at the array, the bias in receiving

a signal from Ye R

as follows.

fnw)

is given by

3 -8g -8,
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in which _i_ e® 1s such that
E &y 2 @y 5-33

for all Xec @R .

The expression for E(&l!) evidences four factors that determine
3 (Y) . The first, © (c) (w,X|Y) , may be cunsidered the source of
the bias. The less the tias in the directivity" ) /] (c) the less will
be the bias indicated by B(c) . Fig. 5 - 2.shows, for example, that
vith a signal incidence of 50.0° at 40 hz in I3  sea noise, the
directivity measure D (c) has & 5° bias toward endfire. Since this

appears in the denominator of

1
nl?w) a(C) (Ohl|D g(c) (w ,?ill) s 5 - 2’

a c-detector bias toward broadside would be indicated by '(c)

The second factor deteruining the bias 1is the c-detector array
gain 0 (c) (w,Y|Y) at the signal incidence Y . The smaller this is,
the greater will be the bias. Though this separation into the factors
a(c) and ﬂ(c) scrves well in an analysis of the ties, it is of
limited interest to the designer because these factors cannot be
controlled independently. For a fixed noise field, in fact, a rise in
/] (c) is alvays accompanicd by a decrease in the bias evidenced by

ol

The third and perhaps most interesting factor in the bias is the

received signel-to-noise ratio %‘-‘2%—)- . The weaker the signal, the
1
greater will be the bias in the c-detector. This characteristic is

(c)

apparent in Fig. 5 - 6 (a) in which B is plotted versus signal-to-

noisc ratio for plane waves incident at 600. 750, and 85° . The
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frequency range is 30 to 130 hz and the background noise is 13 sca
noise. The received signal power s(w) and noise power nl(W) are
constant over this frequency range and the implementation valucs 5 and

él arc set equal to s and ny respectively. The term A in
Eq. 5 - 25 is determined by setting Z in Eq. 5 - 26 equal to the
signal incidence vector Y . FPig. 5 - 6 (b) shows the variation im the
bias with signal incidence. In this exemple the bias is less than a
tenth of a degree in thc broadside region (70o to 1100) .

The fourth factor is the frequency dependent multiplier

§ (w) i |

T 2

By L 8wy 15 . 5 ~ 35
ﬁl(w)

This factor embodies all of the dependence in t on the implementation

~

values s and ﬁl ;
Throughout the preceding analysis and in particular in the
preparation of Fig. 5 - 6 the received signal power s and noise power

n, were assumed known. This then permitted their use in the c-detector

implementation, i.e.,

®™>>
[ ]
]

and

ne=n 5 - 37

in Eq. 5 - 25. The influence of s and n, in determining the bies
may be assessed from the factor presented above (Eq. 5 - 35). Most
significantly, it is apparent (Eqs. 5 - 35, 5 - 36 and 5 - 37) that

the influence is negligible whenever
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frequency range 1s 30 to 130 hz and the background noise is I3 sca
noise. The received signal power s(w) and noise power nl(w) are

constant over this frequency range and the implementation valucs 8 and

-~
-~

n, arc set equal to s and n, respectively. The term A in
Eq. 5 - 25 1s determined by sctting Z 1in BEq. 5 - 26 equal to the
signal incidence vector Y . PFig. 5 - 6 (b) shows the variation in the
bias with signal incidence. In this exemple the bias is less than a
tenth of a degree in thc broadside region (70° to 110°) 5

The fourth factor is the frequency dependent multiplier

§ (w) 5
x .2 =
B ()7 4 8w F©@ (a1 5 - 35
ﬁl(w)

This factor embodies all of the dependence in t on the implementation

values : and ﬁl .
Throughout the preceding analysis and in particular in the

preparation of Fig. 5 -~ 6 the received signal power s and noise power

n, were assumed known. This then permitted their use in the c-detector

implementation, {i.e.,

W
[ ]
]

and

nen S - 37

in Eq. 5 - 25. The influence of s éand n, in determining the bies
may be assessed from the factor presented above (Eq. 5 - 35). Most
significantly, it is cpparent (Eqs. 5 - 35, 5 - 36 and 5 - 37) that

the influence is negligible whenever

A-125

5 - 36



1. the received signal power s(w) and noise power nl(w) are
essentially constant over the frequency band of intercst, and
2. the received signal-to-noise ratio .(u)/nl(u) is so small that
the quantity ﬁ‘%ﬁy ;9(°)(u.gjg) is negligible with respect to
unity. :
Suppose now that conditions 1 and 2 are known to be satisfied

but that the exact signal and noise levels s and n, are unknown.

(c)

1

The measure B will remain representative of the true bias if the

implementation values : and ; reflect the kaown ccnditions, that

1
is, if 5(«) and ﬁl(w) are constant with frequency and

2
%L‘Lb(c)(“-z.ll) << 1 s
nl(w)

When the input signal power s and noise power n, are not exectly
known, two design strategies are suggested by the above discussion. One
is to provide additional processing for estimating s, Py and tke noise
covariance matrix, and then correcting for the bias using curves similar
to those in Fig. 5.6. The other strategy also uses curves such as these.

It is apparent in Fig. 5.6 (a) that if there is a fixed limit on the

tolerable bias then there is also a minimum signal strength at each incidene:

that the c-detector should be allowed to detect. By limiting the observa-
tion time one could effectively limit detection to signals whose strength

exceeds this minimum.
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Appendix A The "Boxcar" Function

The "boxcar" function @ is defined by

1l a<cg <)
@(l;l.b)' 1/2 s=gorss=>5b
0 s<aors>»o

(see Fig. A-1),

Its Fourier transform Y is

Inversely ,1

® (2;a,0) ¢

¥(a;a,b) = 5%]@ (:;c.b)e"“ds

b
o[ Jdusy, . _]__eJab - eJ08
an n a
A J

W
® (s;a,b) = Lim ‘i’(a;a,b)e"’“da
Lo W

1.0
.S o L] 'y
.0
a b
8 =+

Figure A - 1 The "Boxcar" Function

lYaglcn.‘ p. U0,
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Three proportfol of ¥ are

1. '(O;C.b) L %

o din° ﬂ%-“)'
2. |¥(a;a,b)|¢ = iy %
" a
1l sin aa
3. Y(aj-a,a) = L PSR
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Appendix B Derivation of the Power Spectrum of I2 Sea Noise

An isotropic, Gaussian sea noise field in two dimensions (designated
I2 sea noise) may be constructed by superimposing an infinite number of
independent, infinitecimally small, single frequency plane waves, whose

direction vectors are uniformly distributed within a horizontal plane. Each

plane vave is a member of the set {uid)’ iJ ¢ A vhere

A= {i}} B-1
such that

0cicl

J<3<d . B-2

As observed by a horizontal arreay in time t and in the array dimensicn x,

each plane wave is
uiJ(t,x) = ZRe[ziJ]cOSui(t * fcossd) - 2Im[gid]sinwi(t + f-co:sa)

x x
Jwi(t g cosed) \ Ei:;e-,jmi(t +3 COSBJ) . -

- gide
The complex emplitude CiJ is a normally distributed random variable with
zero mean. The constant c¢ is the velocity of propagation in the medium,
end the angle g is the angle of incidence of the plane wave, in the coordinate

system piétured in Fig. l-1.

A member v of the sea noise process is defined by

Ju, (t + =X cos8 ) -ju, (t + % cosB,)
v(t.x) = Lim Z [zije i c J + gize i c ' J

ijeA
W >
MAXlwi-mi_l|->0 0-w°<w1<...<wI-W
MAxlBJ-BJ-ll.’O -ﬂ.B-J<B-J*1<...<BJ."
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FF et + Ecos)
. f e ¢ dMY("‘”) : Bl
o B

vhere Y is a complex random point function with zero rean and normally

distributed orthogonal increments. This function is constrained by

(]
Y(“U.B) = Y (U.B) . ) 5
The power spectral density function f on .a.nd g is defined by

£(w,8) = (21)2 Lin
Aw0 dwlB
8840

L (08)d, ¥ (0,8)

B-6
dwdB .
The constraint given by EQ. B=5 implies that

2(~w,8) = £{w,8) . BT

Since =r < 8 < v includes all possible incidence angles,

B>
f(w.B) =0 B - 8
or g<m ,

This truncation i. expressed by the "boxcar" function () (g; -m.,n) defined

by (App. A)

1l -1 < B <7
® (Bj=n,n) = 1/2 B"nor B = an
0 B < =n Org>q . B=9

Finally since the noise is isotropic, f may be written

£(w,8) = 2(u) @ (g5=nm) B - 10

Inperfect agreement at g= -y and ¢ is ignored.

The member v is now written in a form that leads to a spectral represen~

tation and spectral power measure on: and y instead of , and g + Splitting
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the domain of integration in the right-hand side of Eq. B-k,

e 0 x ® =
Ju(t + = cosB) Ju(t + £ coss)
v(t,x) = fje ¢ dw.BY(“'B) + fj e ¢ du.af(w.ﬂ)
w B w B

n

r Ju(v + £ coeB) T Ju(t + £ COIB)

-J je 8, g Yo.-8) + ff S¥(0,8)
> 0 o =
w B w B

Y Jw(t+§coss) .
- 0
w B

Changing the variable according to

W

v = S cosf B -12
the above becomes
© /e
v(it,x) = [ J(wt * vx) [Y(w.-cos “levy Y(m.cos'l & )]
w W w
- oy
v
w w/c
= f f dw'vZ(w.v) B - 13
- /e
w v
where
-1 CV -1l cv
Z(w,v) = Y(w,=cos e ) = Y(w,cos = ) I B - 1L

Since Y is a random point function with normally distributed or:hogonal
increments, 80 is Z. The constraint on Z correspcnding to the constraint on
7 in Eq. B=5 is as follows,

Z(ew,=v) = Y(-w.-cos'l % ) = Y(ew,cos™t % )

= -Y"(m,-cos'zL % ) + Y’(m, cos™? % ) = -Z.(w,v) .B =15
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The measure n(w,v) of spectral power on u' and y is
alu,v) = (202, Zuvie, 2"(e,0)

- (2:)2@N.V[Y(m.-col']’ % ) = Y(w,con™t 'c—:,' )]

» - L -
- dw,v[Y (w,~cos L _c_:;_ ) = ¥ (w,cos : c—::- )]

- (2")2<dw vY(w,-cofl c_} )a, vY'(N.-'coa'l .‘% )>
L4 ’

-] ¢V d -
+ <dw.vY(w,c0l c_u_ )dm,vY (w,cos s 5’% )> . B - 16
Evaluating the first term in this expression,

2 -1 ev . -1 ¢V
(2n) <du.vY(w.-cos = )dw.vY (w,=cos = )>

-1 eV
9 =cO8 = =
= £(u) @(V.‘ - i:-,g )aw =] av
ov

o Eol @ (v; - L2 )auy . B - 17

-‘/'-._ 2
c

The second term in the right-hand side of Eq: B-16 is also equal to

[0

N

—Ho) @ (v;- 202 Judv , B - 18
-V

£ 2
Va
c

and therefore,

n(w,v) = 228 @ (v;- L2 )auwv . B - 19
w2 2 '
2=V
c

A more useful form of this result is obtained by expressing f(w) in
tcrms of the one-dimensional power spectral dcnsity function nl(w) defined

by Eq. 1=36. Restating Eq. 2-16,
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nl(m) = %;In(w,v)dv

. ;_]‘ 2f(w)

-t -w_z- v2
5 -
¢
so that Eq. B-19 becomes
on, (w)

® (v;- %.% Jav = £(w) ,

n(w,v) = e ® (v;- %.% ) .
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Aceanddx C_Output Statistics for the General Detector

Some output statistics are derived here for a general detector whose

output ¥ is
’V'zz Iai““—'ilz*ci o
iefl+
vhere

is some linear functional and (:1 is a bias term., With the defirnitions

"
vi®9; Y ¢ =43
and

w-|w|2 C-b

this output may dbe written

W"“Z‘"z*ci) : Ca5

ieQt+
Both the b and ¢ detectors are of this type. The mean <1(> and the variance
V('i( ) are derive. for use in perforrance measures for these detectors.

Assuning u independent of u; for 1,1° ¢ Q+,, each outnut component W

-1
“for i ¥ 4 and 1,1 ¢ 2. Then

i

will be independent of wi

<1v> <§:(W¢c -22(@1 D . e-

iefi+ iefi+

and

"W"V(Z“’i*"i)) )-hZV(W) : c-7

ieQl+ iee

For use in the ahove expressions, the mean <wi> and the variance v(wi)
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are determined from the moment generating function for the distribution of

vt
Mi(t) - <e > cC-8

| By definition,

10

80 that the mean

aM (t)
¢y = 5 - =
and tie variance
%, (t) 2
V(W,) = -—L— <"1> . C - 10

The moment generating function is obtained from the distribution of Wi.
vhich in turn follows from the distribution of vy

The distridbution of v, is now derived, Since v, is obtained from Yy
by & lineer operation, and w, is assumed normally distributed, v, is also

normally distributed. The mean of vy is

1> <81”->'31<-1>'° ’ Cu=l ot

W) = Qg=Ge¥) = Gy F
=31 Cun g = Qo Mgl 1= Al lgl1?

C =12

aad the variance is

vhere the matrix A is the covariance matrix of u, (Eq. 1-13). .The probability

density function of w, is therefore

i

)r;—-————-—-e Py 0-13



The distridution of “1 {s obtained from this through the change of
varisble VW, = |"1|2 in t(vi). The term W, is real and nonnegative. The

probability that "1 lies vithin a dwi is equal to the probadbility that vy
lies vithin an origin-centered annular ring in the complex plane., The area
of this ring is
aw, .
v W a( VW) = ¢ VW, =& = yaw, C -1k
{ i i 2‘,‘? i .
i
The probability density function of wi is therefore
W
-__L.?
Allg,ll
i A . “2 i
i Bﬂi

The moment generating function Mi(t) is now written for the distribution

of Wi.
W
wit- _1——?
Aj_“ai“ 1
M, (t) = el . aw, = 3
ﬂbﬂl 1Al 11
C =16
In virtue of Eqs. C-9 and C-10, then, the statistics of the component wi are
2
¥y = aligyll Ce_ 17
and

V(4D = 20 lg 11" = Mlgy |1 = ayllgyl1* = (v f . c - 28

Substituting these results into Eqs. C-6 and C-T,

(10'22“1“&“2"’1) C-19
iente
and
o W4
Vi) = "L_.‘i'bi”, : C-20
i=Q-
A-136
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endix D A-Detector Stat

In this appendix the mean and variance of the g-detector output are

obtained. The usual

1 ¢ 0+ wvhenever 1 ¢

<:l(ux>>
SI)

iefls ich

and

V(t(y)) =

ey v L

icﬂ+ ike

AN
- EZ;+ Z;D

- gm Li;n

assumption is made that u

Y, is indevendent of

91? for {1 and

1“. Referring to the t-detector definition (Bq. 3-30),

A

| “u )
D [. + lnnkik + In fl
2
Z '“1k| 5' <lug | >
1keD, My ﬂ?’n Ak

(logel®
Y

Z Clugel® lug-] 2> [2‘ Clugl

1k’ D, Ak Mk mcv1 Ak

<|"1k|‘> Y 3 Qlogel*log-| 2>

. A Aqp-
Aik ich ik e:D1 ik "1k
\
T (=
LRCD
2
2 2
- l: <|“1k| > Z QgD ]
2
1eﬂ+ 1keD ik Ak
2
LT <|“1k| >
1eﬂ+ 1keD, xik
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Appendix E Approximate Eigenfunctions for Use in a Practical b-Detector

Some of the performance characteristics of the b-detector are discussed in
the text, but no mention is made of the reslization of this detector. In fact,
the exact equations used to descride the b-detector, though well suited for
analysic, are not in a form that is practical for actual detection. Such a
functional form can be obtained in two weys:

1. by returning to the power detector with shading shown in Fig. 3-2, or

2. by an approximation to the form used in the analysis (Fig. 3-1). The first
approach was covered in [1) and the second will be considered in the following.
This second form has been very successful in the analysis of the b-detector,
snd it seems reasonable to guess that it may also have advantages in the
synthesis. Already it is apparent that delay lines are not required,

‘nd that there is a logical separution of internal functions, vhich

makes the configuration flexible. A limitation on this application is the
capacity of the processing computer in storage and speed. This may be a major
obstacle when a large scale detector is planned.

The approximation to the analytical form of the b-detector that makes it
practically realizeable is a further approximation in defining the set of
eigenfunctions of Q (Eq. 1-15). This is the subject of appendix E. Appendix
F concerns the description of the "signal only" covariance matrix G that re-
sults from the use of particular approximate eigenfunction sets. The nature
of G will largely determine the amount of computer processing required in the

system.

a) A Practical Requirement

Specifically, the main objection to using the eigenfunctions as they are
defined so far is that their duration is the whole observation time T.

Consequently, no elements Yy of u can be available for further processing
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until this total observation time has elapsed., In practice, processed
detection information i{s required more or less continuously from t=0 until a
final decision is made,
b) Breakup of the Observation Time into Subintervals

An approximate set of e¢igenfunctions consisting of comsecutive functions
of short duration is proposed here to meet the above requirement., The
sinusoidal form for the time eigenfunctions (Eq. 1-25) will be retained. Now
to construct the approximate set, sinuscids will be defined over a system of
subintervals vithin (0,T). The most easily analysed system is obtained by
breaking up (0,T) into consecutive subintervals of duration T°., In fact, the

orthonormal set of time eigenfunctious {Qi(n)(t)} considered first will be

defined by
Ju,t
n i n n . eni
01( o) we 1@ (ese™ e 4o R E-1
vhere t(n) is t Ybeginning of the nth time interval. This set is represented

(n)

by & set of horizontal lines in Fig. E-1(a). The frequency of N is

represented by the vertical intercept Wy and the time duration is represented

by the length of & horizontel line having this intercept. The line for .i(n)

(n) and ends at t(n*l). When T=T°, the set is the original one

begins at t
defined by Eq. 1-25 and is represented, for comparison, by the time-frequency
plot in Fig. E-1(b).

The quality of the above approximation depends upon the "smoothness" of
the intermediate form ql(w.x.y) in Eq. 1-2k, Indeed, if ql(u.x.y) is
relatively constant over all » intervals (ui-w.mi+w) such that ie¢Q and W is some-
what greater than %g-then the approximation will be good. The error intro-
duced by using the new set of time eigenfunctions thus increases as T°

decreases; the variation in the form 9 is an important factor in determining how

small to set T°, (Other factors, which will be considered in a later part
A-139
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of this appendix and in Appendix F, are the processing frequencies and the
nature of the resulting signal matrix G).
As developed below, the set of approximate time eigenfunctions defined in

Eq. E-l suggests another set which may be even morc gractical,

c) Frequency Dependent Time Intervals

In going irom sinusoids of duration T to those of duration T, the spaciné
between frequencies (wil increased. If the design of the detector requires
separate time filters at each frequency W s it is desirable that this spacing
be set as wide as possible. Another set of sinusoids is now provosed in an
attempt to cover a given frequency band with sinusoidal time eigenfunctions
at as few frequencies as possible. It is noted that the '"smoothness" is a

local condition on Qy and this suggests determining the duration T1 of a

sinusoid at frequency w, by the smoothness of the spectra in the neighborhood

i

of wi.

With T1 varying with frequency, however, iL is not generally possible
to choose a spacing bectween frequencies such that the resulting set of
sinusoids is orthogonal. To obtain approximate orthogonality, the spacing

between adjacen fraquencies may be determined by

bn
W ) W T e E-Z
1”4 TT AT
With this spacing, the approximately orthogonal set {Oi(n)} is defined by
jwit .
o, V() s E—@ct; £, @, ¢, ™ 1) &3
T
i .
where ti(“) is the beginning of the nth time interval at frequency wy .

For example, if the smoothness of the noise process spectra is directly
\
proportional to the frequency w, an appropriate set of time durations T1 is

N periods of the oscillation at w, with N a positive integer, i.ec.,

i
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T = -21! E=4
i wy .
The lowest permissible Ti is datermined by two factors:

1. the gmoothaess of q as described in the previous section, and 2. the
orthogonality of the set. Error associated with each of these factors de-
creases as N is increased.

Eq. E-2 sets the local spacing of the frequencies at the inverse of the

average local time duration. Solving this equation and BEq. E~4 simultancously,

Wiel . P“’i E-5

vhere

p;\/u%/u%.r.—..— . E-6

The multiplier p versus N is plotted in Fig. E-2. The resulting local spacing
is most simply expressed in terms of the average local frequency

weey Yo
W —-1_+_1.T—1. E=7
U.in‘ !qo E‘S.

dw ™ 0)1,.,1 = ui = mi(P"l)

iad _un ty wypn
(1] 2 2 .
Dividing,
AQ— - —-(L—ll -1 E-B
w ptl .

Using this result and Fig. E-2, the ratio Aﬁ- is plotted versus N in Fig.
E-3.

A typical sequence is now given for N = 3 and a lowest freéuency of
10 iz, Using Fig. E-2,

= pw, = 1,38 0,

Y141 1 .
The sequence of frequencies is therefore

10 ..z, 13.8, 19.0, 26.2, 36.1, 49.9, 68.9, -,

According to Eq. E-4, the corresponding time durations are
A-142
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3 8€C., 022. 016. 011. 0083. 00605. .0“, ree,

These durations are plotted in Fig. E-4 at their respective frequencies.

d) Time Intervals with Space Dependent Phase

In the example just considered, the time intervals decrease with time
frequency. At sufficiently high frequency, the coherent wavefronts of oignaly
near endfire will extend over a number of time -intervals. As is showni, rig,
F-5(b) this will cause signal power received in one time subinterval to be
dependent on that received in adjacent time subintervals. To eliminate this
dependence, the time subintervals may be phased to match the signal wavefront:
If the time delay relative to the center of the array along a signal wavefro:
1s - v(x|Y) then the set of sinusoidal time eigenfunctions may be written

{.1(n)} wvheze
jw t
(n) (t,x) =

®(t. - y(x|D), ¢ (n) - y(x|]») +T) . E-9
1
A disadvantage of this set is that it changes with signal incidence.

e) Breakup of the Array Dimension into Subintervals

The above discussion of sinusoidal eigenfunctions and their definition
over subintervals may sometimes be appliec to the space eigenfunctions as wel®
as the time eigenfunctions. Since preliminary design calculations of G are
simplified when the space eigenfunction may be approximated by sinusoids and
since a breakup of the array into subintervals may simplify the processing, th:
relevant conditions and observations from the preceding are restated below
for the space eigenfunctions.

Conditions for a sinuosidal function
jv

2rk
@x; = -. - v - -I.l‘- E-10

wik(x) -

of duration L < L solving the space eigenfunction equation (Eq. 1-29) are
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1. that the time eigenfunction * is approximately sinusoidal,

2. that the noise process is homogeneous,

3. that the spectrum n(wi,v) is relatively constant over the v interval
(vk-H. kau) in which W is somewhat less than %} X

In Appendix E calculations of G will be carried out using sinusoidal space
eigenfunctions for which L” = L,

When a breakup of the time duration into subintervals is combined with
a breakup along the array dimension, the result is a rectangular grid on the
t,x domain. This domain and grid are pictured in Fig. E-5 for the following
example: the time frequency is 1000 hz, the array length is 50 meters, and the
background noise in I3 sea noise. The time subinterval T° and the space
subinterval L’are twice the period of their respective oscillations. The
smoothness condition 3 on the noise spectrum is satisfied for Vi somewhat les-
than 1.3, The space frequency chosen for this example is T, corresponding to
a plane wave incident at 41.4°, Wavefronts at this incidence are shown in the
t,x domain in Fig. E-S.

An advantage of this grid pattern is that blocks containing the same
wavefront may be grouped and processed together. The processed output from
distinct groups of such blocks are then almost independent. The same
result is obtained using the phased time subintervals discussed in part d.
However, this grid configuration has the advantage that is does not change
with signal incidence.

The grid concept is also useful in the design of an array when portions

of (- %5 %) are unavailable. This occurs when it is not possible to place

L,

hydrophones within some subinterval of (- %, 3
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ix P The 8ignal Covariance Matrix G
a) The General Form of G
The consequences of the subinterval breakups discussed in appendix E are
expressed in the following in terms of the resulting signal covariancc matrix
G. It is the nature of G that determines the ease with which the forms
A+ G)-l and det(A + G) may be realized for use in the b-detector (Eqs. 1-54

and 1-55). At its simplest perhaps,

G . [ N N G ’ L 3 N )
B F-1
Gy =8 hyhy

in the analysis of the prececir_. chapters; however, the co:litions (pg. 47)
under which this form is valid are not satisfied for all sudinterval choices.
Properties of G under other conditions are presented in the following.

In the development below, the set of approximate eigenfunctions defined
over the system of time subintervals of duration T” is used (part b of App. E)
Use of this set most simply demonstrates the effect of time subinterval
duration on G. The set of eigenfunctions defined over the system of frequency
dependent subintervals could be used, but the notation is more complicated
vhile the results are virtually the same. With subintervals, the generali-

zation of Eqs. 2-70 and 2-71 for G is

- o) =[efpie o] r-2
L/2 L/2 |
L] 3 xn”’ 5
s = [y ietxlp) r[ F0) (g ) oy (3 Vo (y | Dy
I -t ro3
in vhich
(nxn ) (n_) Jw(t“'f) ( ) ) :
Fini- (1) = ‘1 (t) f‘-‘ s(w)dw N (s)dsat Fe
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But after replacing ¢ by the right-hand side of Eq. E-1, changing the order of

the integration, and using Eq. A-2,

i::',‘ o) - fs(u)e'd""\r( i.t( B) oo )y (ym i.t('ﬂ (8°) o )y
~ .5

The signal powver spectral density function s(,) must be specified before
the above integral can be evaluated, Functions s(y) that are relatively

constant at

Bi s l(mi) F-¢€

over an interval surrounding wy and Wyoo and that do not become extremely

large in the vicinity of this interval allow a simple approximation to

plnxn’ )(t)

Figs Specifically, choosing w,>w,., vhen s(w) is such that

j 8(w)e 9Ty ( -ui.t(“’ (0), 299" (umu, L ot P27 D)

-td 1”
w, +W

=8, f[e""""r(m 1.t(n) (2o ) * (o 1,;t(n‘).t(n')+'1")dw F-1
w-W

(nxn-
ixi-

complex convolution of the Fourier transform of y with itself., The same

for W somevwhat larger than {wg.» then F )(r) is approximately the

result is obtained if Wy oWy This result is

s, - ~dw, . (v=¢)
j(-n;!‘l )( ) = Tf M1®(£’ )"T‘)e ui ™ @ E-t .t(n )'.'T‘)d{
. Y(wi,-mi;t(n) ’t(n»)w,ﬁ) ¢(n)_, (0 )-T‘<1<t(n)-t(°')
28, -du,. ) ‘ ‘
= T: g T < y(mi,-mi;t(n )ﬁ» ,t(n)vr‘) () () o J(n)_ (0°) 0,
0 elsevhere
\ F-38
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As |1-1‘| increases, the interval ("1'“1‘) lengthens until at |1-1‘|

equal to some integer r it may no longer be stated that s(w) is relatively

constant over this interval and its vicinity. When |i-1°|>r, the approximation

in Bq. P=T is invalid and Eq. P-8 for rg";’,") does not hold, Portunately,

howvever, the ¥ term in Eq. F-T (see Eq. A-5) indicates that unless there is

(nxn*)

considerable variation in ri(w), r will be large enough that Ly

will

have become negligibly small before |i-1“| reaches r.

(nxn”)

x4 ° simplifies consideradbly

The above approximate expression for F
vhen i=i°, According to Eq. A-l4 ia fact

( R LY O B R T L

ri::l:‘)(t) . % 30t ({80 (070 g o () o (87) gy (B) 4 (87D pe

) 0 elsevhere F«9
With the definition of the triangle function

Tpup(®) = (1 = |x=rer*|) @ (x;r-r -1,r-r*+1) F - 10

(see Pig. F-1), the above may be written

-Jwit

ri::“‘)(r) = e ‘jnxn'(%‘) ) F-1
Returning to Eq. F-3, then,
L/2 L/2
P L ] . .
‘i::kz * ‘["’u(") J“(*oyll)l’i::n )(t(x.}'lx_)l*ik,(y)dvdx
-L/2 -L/2
Lyg, W3 ~duyt(x,y]Y) rlxy] 1)
€8, f“’ix(") f“("""!-) . o |~ T |V 1~ (V) dyix
-L/2 -L/2 F-12

In interpreting this result it is recognized that the term

0(‘.Y|¥_)F§::E‘)(t(x:Y|!_)) F =13
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L 2

is the spatial covariance functior. of the signal process. Thus vhen i=i~
this signal covariance is

F-14

~Jo v(x,y|Y) 1(x,y|Y)
lio(x,yl_!_) e nxn“T—

vhose basic form depends upon J relative to the array lencgth. If, for
instance, J 1s approximately unity over the domain x and y within (- !2".!2").

the covariance function is

-1“’1‘ (x .Y l_!)

s alx,y|Y) e F-15

In this case the signal process of index i is a sinele att~-uatine sinusoid.
If on the other hand J decays rapidly with respect to th- size of the
interval (- %3 %) in x and y, then the spatial signal procecs of index 1 is
a wideband random process. Independent spatial components of the orocess ar~
widely spread in the space frequency domain. These two cases are considered
in greater detail in pert b. In general, the first applies in most analyses
of optimum detection and in the design of broadside detectors. The second
applies in the design of hieh frequency off-broadeicde detectors.

The expression fecr g in general (Eqs. F-3 and F-R) and when i = {°
(Eq. P-12) ar3 now usel to determine or at least bound terms g in <. Simole
results are obtained in certain special situations. An exhaustive account
of the possible situations is not attempted; only a few of the morc easily
analysed situations are discussed.

In describing these sit.ations, the parameter & introd ‘ced on page 47

will be extensively used. Physically

PR - F-16
cos 8

is the distance that a plane vave signal wavefront travels alone thc array
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in time T, For a signal vith a curved wavefront and source vector }, the
number £ is defined to be the same as that for a plane wave wvhos» source
vector is parallel to Y, Thus an ¢ is associated vith every signal as soon
&3 the time subinterval duration T~ is set,

Elements of G are determined in the followins cases.

1. 1 =4~ ¢ > L.

This condition on t holds when detecting broadside signals (¢ is then in-
finite) or at any incidence angle if T is large enoush. This was the case
in the analysis of Sect. 2.4.

2. Plane wave signals, sinusoidal ¥, { = {*, k = k“, n = n”, ¢> L.
Though this and the following casc require plane wave signals, unless the
analysis or design specifically concerns the effects of curvature of the
signal wavefront, the results are quite generally applicable.

3. Plane wave signals, sinusoidal ¢, 1 = 4", ¢ << L.

This condition on y holds off broadside at hip!. time frequencies if T~“ is
being kept small as it might be in a detector desipgn. It is recalled that
use of sinusoidal space eigenfunctions requires that n(wi,v) meet a smooth.

ness condition in the ncighborhood of the space frequency v In general,

K
higher w favors this condition and since w must be fairly high anyhow when
2 << L, the sinusoidal approximation may be expected to be valid. In case
2. above, this approximation may or may not be valid depending uvpon wiand L.
Approximate upper bounde on elements of G are obtained in the followine
cases.
1. Plane wave signals, n=n", ¢ > L.
2. Plane wave signals, £ >> L.

3. Plane wave sirnals, 2 «< L,

Subsections below for each case contain the derivations, results and some
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sample calculations. The above list provides tlhie order and headings for the

subsections,

bl Elements of G When i=i”

When i=i- , the elements g may be obtained using Eq. F-12, which is repeated

here for convenience,

L/2 L/2
(axn”) / . / -Juit(X.Yl_Y_)- v(x,y|Y)
sikxika 'i J*ik(x) c(x.yl!_) e e -—E'T—- wik‘(y)dydx.
-L/2 -L/2 T
T(xtYL!,) -
In this the argument o of J is approximately equal to xl— (exactly
equal for plane wave signals), It follows that
t(x,y]|Y)
[ A ] s L F-18
T L .
X and y
e(-2,2)
2°2

Tl
Opxn*? |n-n“| > 0, is small within the domain of integration. The:xefore,

Now according to Fig. F-1, if MAX ['Lﬂ-]« 1, then anxn is almo:t unity, and

vhen ¢ >> 1, EqQq. F«1T7 may be written

( L/2 L/2
=dut (x,y X_) .
.i Jw:k(x) Q(X,le) e = l wik,(Y)dydx n n
8(nxn') P /2 -L/2
ikxik-
0 n#¥n .
F - 19

\

But this is the same form as Eq. 2-77 and may be written (recalling Eqs. 2-65,

2-66, and 2-79)

(Dn, (Y) n=n

i Ly

(nxn”)
g .8
ikxik 0 n#n . F-20

The calculation of g using this form has already beer. discussed and illustrated
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on pages 4f - 51,
Elements of G for Plane Wave Signals, Sinusoidal y, i=i’, kek”, nen‘, and £>L.

If plane vaves alone .re considered,

e

(x,y|Y) = %-ﬂ- (y-x) = ¥ (y-x) = = (y=-x) F-21
mi L
and
alx,y]y) =1 . F-22

If, in addition, the set of space eigenfunctions may be approximated by the set

wik} in which
Jvkx
, . L - 23k -
«bik(x) vy ® x;-g-.a) v " F - 23
then the expression for g in Eq. F~1T becomes
L/2 L/2 )= )
(nxn”) = % J[(v-vk x=(vev, . )y x .
8ikxik* = T e 1-| 5 -neo’|
-L/2 -L/2
. @F—?—,n-n'-l,n-n‘ﬂ’ dydx . F -2k

The domain of integra.tian in the right-hand side of this equa.tikb'n is the
square shown in Fig. F-2. With napn”®, the condition £>L insures that @
in the integrand is unity on the entire domain, Rotating and expanding this
square domain with the change of variable

€ = y=x

n = y+x , Fa«?25
Eq. F-24 becomes

(nxn)

(vev, )(n=t )=(v=v,.)(n+F)
Sijesk” = BT [ . ](1-1-51-’&:165 . F-26

"
I
.
LS.
o
N
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This integral, with k set equal to k’, is nov evaluated.

(nxn) 81 - 'J(V-\’ )E _J,;L
Bikxik ~ 3L [ (1 ) dndg
-(L-lcl )

= s,L 1-0{‘- sinc2 %‘"""k)] (cos[L(v-vk)]- sinc [L(""’k)]

lL(v-vk

) L 2 |L uL L2 2,6 b 4 ]
s,L 1’:‘ sinc -g(v-vk)] = [:“ 31 (v-vk) T L (v-vk) - )
F « 27
The above expression shows the signal selectivity of G, For instance, if

the signal incidence g is such that

v-‘g-cmp-gﬁ

L-vk F-28

for some k, then g&:ﬁ performs the greatest interception of this signal, and

(nxn) L
Bieik = %11 =37 ), T =5ed
V'\)k

As the angle of incidence of the signal changes, the decrease in interception

by 85.:!1)1)( is given by the above, In particular, vhen the change is such that

Ve . for some k-¥k so that

2
- = ZL (k- = a2
vev, = v v = T (ke-k) , F - 30
then
gloxm) o gy -sL—H—"-— F - 31
€1 xxik i L( ) i 2(k—k‘ )2
vy LLlvev, .
k“ ¥k
Thus the signal interception by sii::l)( is decreased by the factor
(nxn) »
€1 xxik VIV ok ’“‘ L/p F - 32
Tnxn) .)
) vm e R
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When the processing interval T° is large or when the signal incidence is

near 90°, £ is large. Por ¢ sufficiently large,

(nxn) -
8ixxik " %t F-33

Vav
k

(nxn) -
Eixxix ©
vav, .

k“¥k . F - 34

0

An example is nov considered. Let the arrasy length L be 50 meters and the
time frequency be 200 hz, and let the time interval T  be determined by
EqQ. E-b with Ne3, Using Eq. F-16, the inequality condition 2>L is then
satisfied for $>63,2°,

Continuing, let the noise background be I3 sea noise., 8Since the spectr::

w
n(ui.V)(r:lg. 2-2) is flat for \K-‘:$ » sinusoidal space eigenfunctions of

frequency

Lw
may be used as long as k is somewhat less than -2—"%- = 6,6,

In Fig. F=3 the term gi’k‘:ﬁ is plotted versus signal incidence for
63.2%B<90° and k=0,,.,, 3. The selectivity of the array in this example
may be compared with that of the array in the first example considered on
page 49 (Fig. 2-8) in which the time frequency is 40 hz and £>>L.
Elements of G For Plane Wave Signals, Sinusoidal y, i=i °, and #<<L,

When ¢ is very much smaller than the length L of the array, the expression

i:::kZ'in Eq. F-1T is an integral over e rarrow, diagonally located

for g
strip in the x,y rlane. This integral is evaluated after aligning new co-

ordinate axes £ and n with this strip, and neglecting a slight error at the
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Figure F-3 Pelative Spatial Cprectra of the Signal
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ends of the strip. Let

§ = yox-(n-n’)t F - 36

n = yéx F =37
(rig. F-k). Then

() o %4 f'g-((v-vk)(n-c-(n-n‘)z)-(v-vk,)(n+£+(n—n‘)z)l

L-|n-n*|t 2
&xxik’ 3L
L

o(l-|n-n’|2) =

O (l - -I-%L, dEdn@ (n—n‘;-ﬁrl-'-,

[ 38

V &V,
. i o),,(..“_..k_ -v) ¥
= .11 anm(.k:.)i’ A nD=n 2 sinc [anxnlin_.:_u" n(k-k')]

VL S
. linc2 [% (_L*.éL -v)] . F-38

The function d was defined by Eq. F-10 and pictured in Fig. F=1, In
particular, vhen n=n”

2

L (v . .
'1" sine A (\ok v) ks=k

(n"n) 3
Er aie
ik 0 kfk” . F -39

th

The spatial signal process observed after the n time subinterval is there-

fore composed of essentially independent components over a band of discrete

space frequencies vk'
As previously mcntioned, these results apply when the time subinterval
duration T and the signal incidence angle are small enough that z-?:?s-s-

is much smaller than the length L of the array, If the design described in

part ¢ of App. E is used, in which the time subinterval duration T° is a fixed
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number N of periods of time oscillation at mi(tq. E-4), this condition that

£ << L may be written

— e~ ¢< L. F-40
"’1 cosf

As an example, Eq. F-38 1s now used to obtain G at 1000 hz for a plane
wave signal in I3 noise. The array length is 50 meters and the processing
subinterval T  1is determined by Eq. E-4 in which N = 2, As shown in Fig. 2-2
the noise spectrum n(y,v) is flat for v <<ﬂ. Consequently sinusoidal space
eigenfunctions of frequency v " 3%! may be used as long as Vi is somewhat
less than gw Using the above parameters, k must be somwhat less than 33. The
signal incidence g is chosen such that ¢ <<L. According to Eq. F-40, 2 < %6
for g < 53°,

Some representative elements of G are given below for the plane wave
signal that is maximally intercepted by the eigenfunction whose index k is 25.

Its incidence B 1s 41.4°. The diagonal elements g::x;: y 20 < k < 30 of the

diagonal submatrix Gi(n) (::“i)k.) are pictured in Fig. F-5(a). A large

signal spread in space frequency is apparent. Elements g:;:f:) for k = 25
are pictured in Fig. F-5(b) to show the signal dependence from one time
subinterval to another. Both the signal spread in thz space frequency domain
(Fig. F-5(a)) and the signal dependence between time subintervals (Fig.F-5(b))
are reduced by increasing L. 1In a design, ¢t may be made large by increasing

T, by using phased time subintervals (part d of App. E), or by processing

along separate subintervals of the array (part e of App. E).

c¢) Upper Bounds on Elements of G When 1 ¥ 1

In the preceeding subsections some of the elements of G were derived
under the condition that 1 = 1°, Upper bounds on elements of G are obtained

below without this condition,
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Applying the Schwar: inequality to Eq. F-3

( oy L/2 L/2 L/2 L (x YIY) 2
lettes 1 < gy () %ax [ [v, o .(9) 1%y ffla(&‘»ll)'g—-;,:’ dydx
=L/2 <L/2 -L/2 =L/2
L/2 L/2
- r(x.le)
- ] f a(x,y|Y) 121’.’ )( )I dydx . F-l
=L/2 =L/2 |
The magnitude of F is determined from Eq. F-8 using the magnitude of ¥ given
in Eq. A-5
|,(u1‘_ui.t(n) (n* )ﬂ..")'? £(8)_¢(0%) _qpocreg(B)_ (%)
(nxn*) "'2'2 (n°),_ .(B) ,ovi2  L(0) (0°)___.(2)  (n°)
"1!1' (v)] -—Tlv(ui,-ui;t ] +r,t\B +7°) | TR AL PEPTALI IR L RN T
0 elsevhere
\

2 - (n)_(n?)
._st sin l(m | NP e=(t )'j@(t;t(n)_t(n‘)_,r..t(n)_t(n')ﬂ-a).

. e
T (uio.“i) F « 42

ot,.
Since (ui.-ui)'l“-i’u(i‘-i) and -‘L—'l = nen”, the above may be written

s zlinzlw(i-i‘)(l-l%.-ﬂ )]

( X ‘) 2 4 1 P PR
|F1:13 ()€ s '2(1-1’)2 @(%,;n-n =1l,n-n -n)
2.2 . '
- | in ["(1'1 )anxn“"}") Fo L3
2 -2 : -
21 (1~1°)

vhere J is defined by Eq. F-10, When ifi’, this simplifies to

2[nt

sinc| =, (1-17)
s L PR P
191° T SE)

As & result, Eq. F-Ul1 becomes
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(nxn*)
|84 xxs k-

calculated using this expression may be compared with those terms g

-L/2 =L/2

1(x,y|1)
D[ —F

} D=n‘el,pn=-n ‘#l) dydx

calculated using Eq, F-17 in the preceding subsection,

When T°>>|t(x,y|Y)| then

. x and y
c(-%.%)
Consequently the integrand in the bound on 8.'(L!1::?:l)<‘
Terms g

[IT(*oyl.Y..)'] -
T SIC

condition are determined by Eq. F-27.

Now with plane wave signals,

and

‘*1’.(EQO F-hh) and

r(x,y|y) = 2L (yx) = -f-'(y-x)

alx,yjY) =1 ,

so that Eq. F-US becomes

(nxn*)

'8ikxi‘k"2 s

ivi-

" 2 L/2 L/2
> i 5 / .1,,2[151"1'“!"‘2]
n (1-1’) = /2 -L/2

- ® (y-x;2(n-n*-1),2(n-n-+1) )dyax

L/e Lf2 .
§ 2 2 mr(x,y|Y)(1-1°)
* B [ st

(nxn)
ikxik

)

F - 45

where the symbol ¢ means "less than or approximately equal to"., Bounds

(nxn”
1kxik~

)

F - U6

under the same

F

This integral is easily evaluated in the three cases listed on page 153

A Bound on Elements of G for Plane Wave Signals with n=n- and psL.

- U9

This bound is determined from Eq. F-U9 using the domain of integration

' hence the bound itself are approximately zero.
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pictured in Fig. F-2, With n=n“ , the condition that £>L insures that ®
in the integrand is unity on the entire domain. Rotating and expanding this

square domain with the change of variable

£ = yx
n = yx F - 50
Eq. F-U9 becomes
. L L-|e]
sii‘:ﬁk,la s m f ! ,152[15. (i-i‘)] dndg
1¥1° =L -L(L-|€])
- 2'2(::‘)2 (1-a1nc2[-'% (1-1')]) . F - 51

When £ is very much larger than L, this upper bound is close to zero.
Consider again the example given on page 156, In this example, the time

frequency is 200»iz, the array l;ngth L is S0 meters, the processing interval

T is determined by Eq. E-U in which N=3, and the noise background is I3

sea noise., Bounds on the elements 81;::2k‘ i¥i’ of G are plotted in Fig.

F-6 for plane wave signals with incidence such that 63,2°¢g<90°, 1In Fig.

F=3, the most prominent terms in G are on the order of 50 8. Since the

bounds calculated here are 20% of this when |i-i’|=1, exact calculation of

(nxn)
gikli ok‘ [ ]

detector., At the 10%f level, it is unnecessary to calculate such terms vhen

|1-1‘|-1, may be necessary in the specification of an optimum

|4-17]22.

A _Bound on Elements of G for Plane Wave Signals and £>>L.

According to Eq. F=AT

t(x,y|Y)
MAX [ = ]- MAX [Y—'l‘-] F - 52
) ’
xand y x and y
(=22 (k)
2'2 2'2
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so that vhen £>>L, the integrand in Eq, F-4S is approximately zero,

(nxn?)
ikxi‘k”

A Bound on Elements of G for Plane Vave Signals and g<<L.

Therefore the upper bound on |g | 1is practically zero.

A bound in this instance is determined by the right-hand side of Eq.
F-49 in which the domain of integration is the diagonally located strip
shown in Fig, P-4, Changing the variables of integration to

€ = y=x-(n-n*)t F - 53
and
ne=ytx F - Sk

and neglecting a small error at the ends of the strip, Eq. F-U49 beccmes

‘ i L-|n-n’|2 1
sit::zk‘ia £33 : Y f ,1n2[17_ﬂ-_;_1__)_ E]didn®(n-n‘;-{-'o%)
" (1-12)°_ L-|nen|2) 21 SR

Carrying out the integration,

2 liLl

s*

“2(1-1,)2 nxn

(nxn)

(nen-)g
€ xkxi“x~ . F - 56

L

The function J was defined by Eq. F-10,

This bound in plotted in Fig. F-T for the example on page 1062 in which
the time frequency is 1000 hz, the array length is 50 meters, the processing
interval T’ is determined by Eq. E-U4 with N=2, and the noise backéround is

I3 sea noise,
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ABSTRACT

The problem of designing sonar signal waveforms, or 'pings',
to locate a submarine target is considered. It is assumed that a single
target is present, and that the observer has measured its angular bearing
and bearing rate by means of passive sonar equipment. The active sonar is
used to measure the target's range and range rate. The target is ass'med
to be moving on a fixed course with constant speed.

In Chapter 2 the optimal single ping estimation of target parameters
in colored gaussian noise is considered using a maximum inverse probability
philosophy. The ambiguity problem is analyzed, and for the case of large
signal-to-noise ratio, the optimal estimator is evaluated in terms of the
signal and noise spectra. The pronounced effect of target range rate on
the estimation accuracies in the colored noise case is discussed.

In Chapter 3 the results are extended to multiple ping situations,
and the effect of interping times is evaluated. Tt is assumed that the
observer must wait a fixed amount of time following the final ping before
using the estimates obtained, and the performance measure adopted is the
range estimate variance at the end of the wait time. The important csse
of two pings is considered in detail. The severe degradation due to a
long wait time is analyzed, and shown to be ameliorated by using a long
interping time. Optimum signals are designed for the white noise case,
and a design philosophy is developed for the colored noise case. It is
shown that, when a long interping time is used, the roles of the two pings
become separated. Then the first ping should measure target range rate,
and the second pir~ should estimate range.

In Chapter 4 signal design is examined for the specific problem of
a strong reverberation (clutter) environment. The reverberation spectrum
is derived, and the implications of its dependence on the transmitted
signal are examined. It is shown that the first ping should be made very
narrowband to obtain an accurate range rate estimate, and that this range
rate knowledge can then be used to redesign the second ping. Greatly
increased range estimate accuracy is achievable by this procedure for, over
a wide range of target speeds and reverberation parameters, proper signal
design can completely eliminate the effect of reverberation once the target
range rate has been measured.

Chapter 5 summarizes the main results of the research and recommends
further areas for study.
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CHAPTER 1

Statement of the Problem

l.1 Introduction

The research described in this report deals with the
estimation of a target's position relative to an observer,
and with the design of efficient systems and sonar waveforms
for this use. The problem of first detecting the target's
presence is not considered in detail, for it is assumed
that the observer has been monitoring his passive sonar
equipment for some time, has picked up the emissions of
the target and consequently knows that it is present. It
is also assumed that the observer has a reliable estimate
of the target's bearing and bearing rate (it is well known
that passive sonar systems have direction-measuring capa-
bility).[ll The observer has the advantage of time in
these measurements, for he can monitor the passive signals

for a long period before making a decision. Thus these

e




estimates can be quite accurate. .en the observer has
decided that a target is present, and has estimated the
bearing and bearing rate, he uses the active sonar equip-
ment to measure the target's range and range rate.

The measurement requirements are thus divided
between the active and passive sonar systems. This report
will consider only the role of the active sonar measure-
ments, so that the problem reduces to the estimation of
range and range rate of a target with known bearing and‘
bearing rate. Such an assumption also allows the observer
to send the active bursts (or "pings") in a single direc-
tion, rather than requiring a scanning procedure.

The p;oblem is extended in two directions over this
simple formulation. First, it is assumed that the observer
may send two separate pings (each ping may be a complicated
waveform), and may redesign the second ping according to
information received from the first. The pings may be
separated by a substantial time interval, at the discretion
of the observer. This permits a certain amount of adupta-
bility. Secondly, it is assumed that the observer is inter-

ested in a precise estimate of the target's position ¢t a
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certain time after the second ping is sent. This time may
be as mugh as a few minutes, and could be the time re-
quired for preparing and sending some type of interceptor.
Thus the sonar system is being used for tracking the target
over a period of time. The observer will estimate the
target's present range and range rate on each ping, and

use this information to calculate the target's range at

the later time. This range estimate, along with the bear-
ing estimates (which may be updated passively between
pings) will serve to locate the target.

The accuracy of these estimates is diminished by
the presence of interfering noise. One common source 1is
circuit noise generated in the receiving apparatus, com-
monly caller "white noise' for its broadbaud nature.
Another souice is ambient noise generated by surface wave
motion, as well as fish or crustacean sounds.[zl These
sources are uncontrollable by the observer, although he
can attempt to reduce their effect by signal processing.
A third type is reverberation, (called "clutter" in the
radar case) due to sonar echoes from scattering objects

in the ocean, such as fish, flora, and the ocean boundaries.
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This type of interference depends on the transmitted signal

waveshape, and thus requires special attention when one

is deoiéning sonar signals, in order to reduce its effect.

There are two main types of reverberation: boundary

reverberation, caused by reflections from the ocean sur-

face and bottom; and volume reverberation, caused by scat- n
terers located throughout the bulk of the enviromment,

This report will consider in detgil only white noise and \J
volume reverberation, although many of the derivations
are applicable to other kinds of noise. Ll

1.2 Statement of the Problem and Assumptions

1. It is assumed that a single target is present in the
surveillance region, and is maintaining a constant
course and speed.

2. The observer is stationary, has acquired the targerc, -

and has estimated its bearing and bearing rate.
3. The observer can send two pings, but after these are o

sent there is a fixed and known wait time required

before the "action" time.

The observer may choose the '"interping' time, although .




it will have a minimum value due to signal processing
time limitations.

4. The Qbserver's goal is to estimate the range of the
target at the action time. The criterion of accuracy
is the statistical variance of the range estimate.

The sequence is illustrated in Figure 1-1,

ging'#l ping #2 action time
t:1‘:_-t::l._">t:24 tw )ta  ——
time

L, = interping time; t, - wait time

Figure 1-1 Sequence of events

5. The target range as a function of time is described by
r(t) = r, + vo(t-tl) (1-1)

so that r, is the true range at the time of ping #1,
and A is the true (receding) radial speed for all
time. In Appendix A this relationship is examined
and shown to apply to remote targets proceeding in

any direction.
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6.

9.

Propagation in the ocean medium is assumed to be recti-
linear, and all scatterers including the target are
poiﬂt reflectors, so that the signal received from
each is a Qersion of the transmitted signal, delayed
and Doppler shifted.

The reverberation model (considered in detail in
Chapter 4) assumes that the scatterers have random
locations and motions, that all scatterers have iden-
tical statistical properties, and that they are mutu-
ally independent in all respects.

The interfering noise is & stationary guassian process
with spectral density N(w). In Chapter 4 for purposes
of signal design this spectrum is specialized to that
of voluue reverberation plus white noise.

The waveforms allowed are narrowband in the sense that
only Doppler shifts in the carrier frequency need be
considered in the reflected signal. The sonar system
is assumed to have a bandwidth limitation of 2ZW radians
per second, and signal durations are limited to d sec-
onds. The equipment is also assumed to impose a peak
power limitation on the waveforms, such that the signal

envelope is limited to LR volts.
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10. The sonar system operates through an array of hydro-
phones, but due to the narrowband nature of the sig-
nals; this array is considered as a point source with
directional properties.

1.3 Previous Work

The problem stated is one in the theory of esti-
mation of signal parameters, and certain aspects of it
have been studied extensively before. Most of the work
has been done for the case of gaussian white noise inter-
ference only. The most notable case in pcint is the funda-
mental work of Woodward and Daviec,[3] which in 1950 applied
the concepts of inverse probability to the radar problem.
They derived the form of the optimum estimator for deter-
mination of tnrget range only, and demonstreted that the
accuracy of the range estimate was proportional to the
signal bandwidth. Thus all signals having the same band-
width were equally good. WOodward[al collected these re-
sults in an elegant book in 1953, and further introduced
the concept of ambiguity, which has become a cornerstone
in radar theory. The idea of ambiguity is as follows:

due to certain characteristics of the gignal, the optimum

|
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processor will indicate that certain distinct values, or a -
range of values, of the range parameter all have high

probability of being the correct one. In the noise-free
case the correct one will always be indicated as the most
probable, but when noise enters the system it can alter -
the indicated probabilities, and make a false value appear -

most probable. Proper signal design can reduce this pos-

sibility, however, and consequently researchers have sought \
ways of designing signals to fit prescribed ambiguity re- :
quirements., Cook and Bemfeld[S] have collected many of i
these results in a recent book. E
In 1957 Kelly, Reed & Root[6] (hereafter KR&R) =
reported a rigorous analysis of the maximum likelihood ¥
. estimation problem for several parameters in general :
stationary noise. They obtained the statistics for the -
accuracy of the estimates in the case of large signal to 44
noise ratio. Their results are unfortunately rather dif- =
ficult to apply to the signal design problem, as they re- :
quire the solution of an integral equation. However, -
they did obtain simple results for the white noise case, L
which showed that the target range rate estimate accuracy re
B-8 A
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improved as the signal duration increased. Correlation
between the range and range rate estimates degraded all
of the éstinatel, and the degradation was severe if the
correlation was significant. No readily usable results
were given for the "colored" noise case. Hence one of
the goals of Chapter 2 here will be to adapt their answers
for signal design in the more general noise case.
Helotron[7] collected previous work into a useful
volume in 1960, in which he outlined and compared the many
estimation philosopbies which one might apply to the sonar
situation. He alsc considered in more detail the KR&R
white noise example, relating it to some important wave-

forms.

On the subj2ct of the effect of elapsed time be-
(8]

tween data taking and data usage, Cahlander considered
the sonar signals of bats, and noted that bat signals were
designed to yield the best position information at the
time of interception with the prey. Cook and Bernfeld[sl
and Rihaczek[lsl have also mentioned the evolution of the
ambiguity function with time, but an extensive analysis

of the situation has not been made.



The combination of data obtained from a sequence
of pings was touched upon by wOodward[al in a krief expos-
itory uiy, but not developed in any detail. The problem
of signal redesign based on previous signal information
has not been examined previously to the knowledge of the

writer.
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CHAPTER 2

THE_ESTIMATION OF RANGE AND RANGE RATE

FROM A SINGLE PING

The method of KR&R is presented in this chapter
in summary form, adapted to the more interpretable Fourier
coefficients. The inverse probability philosophy is first
discussed, then applied to the particular problem following
the lines of KR&R, and the form of the optimum estimator
is derived. The performance of the estimator is then
evaluated, and the results given in terms of Fourier trans-
forms of the signal, instead of the KR&R Karhunen-Loéve coef-
ficients.

2.1 The Estimation Problem

A signal is transmitted into the medium, and the
target echo plus noise is received. It is desired to obtain
a measurement of the target's range and range rate. The
range manifests itself in the signal delay, while the range
rate causes a Doppler compression in the time structure of
the signal. For narrowband signals this Doppler compression

may be approximated by a Doppler shift in the carrier frequency.
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Consider transmitted signal st(t):

s, (£) = m(t) cos(Qt+n(t)) = Re s(t)el" (2-1)+

(7

with complex envelope s(t)

s(t) = m(t)el 2O (2-2)

m(t) is the amplitude modulation, ¢(t) the phase modulation,
and Q is the carrier frequency. (The approximation in using
the complex exponential form instead of the precise but
awkward ''analytic' form is discussed in Cook & Bernfeld(s),
p. 61. The representation is perfect if the spectrum of
s(t)eth vanishes for negative frequencies. For time-limited
signals this is impossible, but if the signal is suf-
ficiently narrowband, the approximation is a good one.)

The signal received from the target is
srec(t) - oom(t-fo)cos [kQ-wo)(t-rc)+o(t-to)]

= Re gos(t,Go)eth (2-3)

where
Jw_(t-7 )
s(t,8,) = s(t-t_)e ° ©

+Re = real part

B-12
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In these relations To is the true target delay and Y is
the target Doppler shift.* The target '"state" is conven-
iently denoted by 00-(ro,w°). o, is the target reflection
coefficient (including propagation loss, etc.) and is
conveniently extended to the complex version g5 above which
includes the rapidly fluctuating phase term: go-ooe-jQTo

The total complex envelope of the received signal

may be written,

y(t) = gos(t,eo) + n(t) (2-4)
where n(t) is the complex ervelope of the noise received.
The estimation problem ther takes the form: Given y(t),

estimate 0 .
o

2.2 The Inverse Probability Approach

The ten~t that supports all of the work to follow
is this: If a quantity x is converted in some random way
into a quantity y, then the most one can ever know about the
value of x from observing the value of y is the function
Pr(x=X/y=Y). This function is read "the probability that

x=X when one knows that y=Y.'" It is taken as a function of

*
v =2r /c, w_=-2Qv_/c, for propagation speed c, true target

range r_, and tru target range rate v _ (receding).

B-13
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X for a fixed (observed) value Y. If the observer calculates
Pr(x=X/y=Y) for all pcssible values of X, th2n it represents

his tota) ''state of mind" regarding the value of x. (WOodward(az
p. 62).

By Bayes law, one can rewrite this function

(ibid p. 63),
Pr(x=X/y=Y) = Pr(x=X)Pr(y=Y/x=X)/Pr(y=Y) (2-5)

where Pr(x=X) is the a priori probability function for

x, representing the totality of the observer's knowledge
concerning x before y was observed. Pr(y=Y) is just a
constant after y has been observed, and thus can be ignored.
Pr(y=Y/x=X) is called the likelihood function. It is taken
as a function of X, and may be thought of as.the likelihood
of observing the value Y when x=X.

In the present sonar context the quantity x
corresponds to the parameter set 8=(t,w) while the observable
y is the received waveform y(t). The inverse probability
philosophy then directs the observer to form p(8/y(t)) for
each possible 0, and to display this functicn in some fashion.

A possible result is shown in Figure 2-1.

B-14
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Hopefully this function will reach its maximum at a

value @ near the true value 00. The observer, who must eventual-

ly make a decision as to the value of 8, will clearly choose
the O-GP at which the function peaks, since this is the
most probable value of 8 given all available information.
Making decisions destroys some infcrmation (WOodward(a),

p. 60), but this is unavoidable if action is required.

2.3 Maximum Inverse Probability vs. Maximum Likelihood

Many writers prefer to use a similar decision
method called the maximum likelihood estimator (hereafter
MLE). This process differs from the inverse probability
function (hereafter InvPF) method in only one way: the
elimination of the a priori probability function. Referring
to (2-5) one sees that Pr(x=X) is one of the factors in the
InvPF, Many investigators criticize the concept of a priori
distributions, saying that the observer rarely would know
them, if indeed they existed at all. WOodward(a) (p. 74)
and Seibert(g) (p. 206) answered these criticisms by saying
the MLE scheme just begs the issue. If the observer ever
makes a decision by choosing the 8 having maximum likelihood,

then he has effectively chosen a priori probabilities anyway,

B-16
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in this case saying all ® are equally probable a priori.
They say that instead the observer should use all the
information at his disposal and make an educated guess at
the a priori distribution. In many cases the observer will
have so little to go on he will use a uniform distribution also.

In this work it will be assumed that the observer
has insufficient information to guess at any a priori
distribution -- here denoted po(O) -- other than a uniform
one within the surveillance region. Th2 surveillance region
requires some guess work on his part, and it is assumed he
has decided to look in a delay interval T seconds long

(beginning at some t, and going to cb+T), and in a Doppler

b

interval (-w ), determined in this narrow-band case

max ’ “max
mainly by the possible target speeds anticipated. Because
of this unitorm po(O), (at least for the first ping), the
InvPF and MLE tech:iiques become essentially identical.
Hence, the likelihood function of (2-5), given now by
p(y(t)/8), will be the function of prime interest.

2.4 Derivation of the Estimator (following KR&R)

The signal processing operations which the IivPF

estimator must perform on the received signal are now

B-17



derived. The main difference between the analysis here
snd that in KR&R is the use of Fourier coefficients
instead of Karhunen-Loéve coefficients.

Since the a priori probabilities have been
chosen uniform, the estimator form must be embodied in
the likelihood function p(y(t)/8). This function is
derived by hypothesizing a particular value of @ as well
as a value of the unknown reflection coefficient g, (2-4),

and thus hypothesizing that the received waveform is

y(t) = gs(t-8) + n(t) (2-6)

In order to form the probability function for the entire
waveform, y(t) is represented by an orthogonal expansion.
The most convenient schemes are those yielding uncorrelated
coefficients. The Karhunen-Loéve coefficients used by KR&R
are alweys uncorrelated, but require the solution of an
integral equation. The Fourier coefficients have much more
intuitive appeal and have been shown to grow less correlated
as the expansion interval (which is here the observation
interval) grows larger. (If the observation time is much

larger than the correlation time of the process, the error

B-18
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in assuming the coefficients uncorrelated goes down as
1/T2.(7’10) We assume here that the observation time is
indeed sufficiently long.

The Fourier coefficients for any complex waveform,

say y(t), are given by
1 “layt
Y " T fy(t)e de - (2-7)
T

where i. « =2rk/T
ii. the integration limits are indicated by T, meaning
the interval T: (|t|<T/2), centered at the origin
for symmetry.
For the noise waveform n(t) we define coefficients ng,
and for the received signal waveform s(t,0) we define the

set sk(e). Thus from (2-4) we have

Yo = 9 8 (8) +n (2-8)

The n, , being the result of linear processing of the

k’
gaussian process n(t), are themselves jointly gaussian. -
(Helstrom(7) p. 50). Lack of correlation therefore implies

independence. In addition the real and imaginary parts of

B-19



each coefficient are independent, and each part has variance
%N(wk)/T (Davenport & Root (10) p. 94). N(«) is the spectral
density of the process n(t).*

KR&R(G) (Eq. 17, p. 323) use this information to

form p(y/9):

2
1y 8, ()|

P(y/®) = K, exp l:-r ) ok ] (2-9)

K

where g, 6 are hypothesized values and K, is a normalization
! constant. The maximum value of p(y/®) occurs when the ex-
ponent is a minimum. We expand the exponent, and name the

significant parts:

2 2
«T V' lyk-g 3;((9)| . -TV lykl +2meo*\_‘ ykst(g)
= L Lo N(oy) /. TNGe,)
| 2
| |'s, ()|

2 k

]_ -To g N(a:k)—
ly I2

- -Tg N(Zk) +2Re9-*D(0)K(O)-02D2(9) (2-10)w#

*

The real noise process of which n(t) is the complex envelope
has spectral density N.(«), equal to N(«w-Q)+N(-c¢-Q)
(Helstrom(7), p. 50).

notation: Re=real part, Im=imaginary part,*=conjugate

B-20
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where we have called

*
Y, S, (8)
K(8) = __D%G) T Z kk
k

2 (2-11)

The first term of (2-10) depends in no way on the hypothesized

0, and is simply a constant once the waveform has been

received. It is incorporated into Kl. K(8) is the actual

signal processing term, as it alone depends on the waveform

y(t). The other term, coupled with the reflection coefficient

g, is a post-processing signal-to-noise ratio (hereafter SNR).
We call the latter two terms of (2-10) L(¢,9),

and complete the square:
2 2
L(g,8) = -|gD(8)-K(8)|"+|K(8)| (2-12)

The observer desires to eliminate the unknown reflection
coefficient g rather thar display all possible values,

and he does this by making a MLE estimate on g, and substi-
tuting the estimate back into (2-12) (Helstrom(7) p. 205).
As this is equivalent to maximizing L(g,0) with respect to
g, the observer of course chooses g:

g = K(9)/D(8) (2-13)
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which eliminates the first part of (2-12), leaving only IK(O)lz.

The observer must display the inverse probability function:
P(8/y) = k p_(6) exp(]K(®) (%) (2-14)

Thus K(8) is clearly the important term to the observer,
and it merits discussion. We pass to the integral form of
the sum (2-11). This will yield Fourier transforms instead

of Fourier coefficients:

Y («0) -f y(c)e'J‘”t dt (2-15)*

But for waveforms that are zero outside of the interval T,
the infinite limits may be reduced to T/2 and -T/2. Then the
only difference between the transform and expansion coeffi-
cients is the scaling factor T. From (2-7)

Y(wk) = T Yy (2-16)
We similarly define S(wk,e) = T sk(O). To determine the

form S(«,0) in terms of the transform of the transmitted

signal S(ax), we note

-ju, t -
S(wk,O) - Tsk(O) = /\ s(t=1)e k ejw(t ) dt

T

-ja, T =j (o, ~wu
e k /‘ s(u)e k du (2-17)

T
-jo, T

= S(wk-w)e

%
When the integration limits are omitted, the integration
interval is taken to be (-w,®).
B-22
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Thus the effect of the target is to cause a frequency tranas-
lation by amount w, and a phase shift by amount @ T

We pass to the integral forms for K(®) and nz(e)
directly by noting that the frequency interval between suc-
cesssive Fourier coefficients is 2r/T, and approximating the

sum by the integral.

Ja, x
Y(a, )S*(, ~w)e
1 S/ 97 e 1
KO = 5y Z Nz T
jax
S ¢ Y(a)S*(ac-w)e du -
YO N (@) = (2-18)
Similarly
2 .
p2(9) = f J—q—N(“('T“)-‘)J— - (2-19)

It is noted that D2(9) depends on w but not on T. Thus
the SNR will depend on the target speed, which is not so in
the white noise case.

The form of K(0) is recognized as a matched filter

(11)

(Helstrom(7) P. 214 ; Wainstein & Zubakov p. 266), which
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passes the received waveform with spectrum Y(«) through

a filter with transfer function:

1 S* (w-w)
D(0) N(w) (2-20)

then passes the filter output through a magnitude squaring
device (Cook & Bernfeld(s) p. 285), and examines the output
at time t. The filter divides by the noise spectrum level
at each frequency, in order to 'prewhiten' the noise portion
of y(t). A different filter would be needed for each
hypothesized Doppler shift w, since both D>(8) and S*(c-w)
depend on w.

The main results of this section are (2-14), (2-18),
and (2-19), showing the inverse probability function which
the observer must form, and the dependence of the component
functions on the signal and noise spectra. The observer
displays p(8/y), and chooses as his estimates the Op at
which it peaks. Due to the presence of noise in y(t), however,
this maximum will not necessarily occur at the true value
90. It is consequently important to examine the accuracy
of the estimator statistically.

2.5 The Performance of the Estimator

The actual received waveform contains the true

parameter values:

B-24
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y(t) = gos(t,Oo) + n(t) (2-21)

Thus from (2-14) tue observer will have formed the

essential quantity

S (a-w_)S* (w-w) Jetery)
2 1 O:'Wo w=w)e db
|K(@)|© = . o
b2(9) %H f N (@) 2r
n(w)S*(w-w)eij da -
+ f o o (2-22)

This consists of a "signal function' and a ''noise function"

N'(8), (to use terminology corresponding to Woodward's case(a)
p. 86) and it is convenient tn rename the former through
the equation
jw(r-ro)
‘e o< ‘-
Sl 1= 1 [~ S(w wo)S (w-w)e & T
o D(O)D(Oo) J N(w) 2w

so that

1K(©®) |2 = |g.D(8_)6(8,0,) + N'(8) |2 (2-24)

=0 ‘o "o
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The function IG(O,OO)I2 is & generalized ambiguity function,
extended from Woodward's form to the general noise spectrum
(p. 120). It reaches a peak of unity height at 9-90 (see

6) p. 484). Thus if the noise function happened to be

KR&R(
zero in a particular received waveform |K(9)|2 would peak
at the true value and the observer would obtain a perfect
measurement. However, the normal non-zero functional form
of the noise function perturbs the behavior of IK(O)I2 and
can cause the peak to occur at some other O-OP. The degree
to which |K(9)|2 is perturbed depends on the SNR and the
specific shape of |G|2. (Arguments of G are suppressed
for convenience).

1f IGI2 has a single major lobe near @, and is
small elsewhere, and 1f the SNR is large, the noise function
will with high probability merely cause the peak of IK(Q)I2
to shift from 90 to a nearby value still on the major lobe.
This is the situation examined by KR&R, and explored further
below. This type of error will here be called a ''small
error.'" However, if IGI2 has other lobes of non-negligible

height (rompared to that of the mair lobe), then the noise

function car actually cause the peak of IK(O)I2 to occur on
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one of these sidelobes, which may be located quite far from
the main lobe. This type will be called a ''gross' error.

It is the possibility of this kind of error that gives

rise to the term 'ambiguity', since large sidelobes of IGI2
can permit several regions of high inverse probability. The
various possible situations are sketched on Fig. 2-2, showing
IG(9.9°)|2 as a function of 8. Fig. 2-2a shows the case

of negligible ambiguity, since only a simple lobe is

present, and IK(O)I2 will with very high probability peak
somewhere on this lobe. Fig. 2-2b shows the appearance

of some significant sidelobes scattered over the 6-plane.

For such cases one must examine the probability of a gross
error occurence. For Fig. 2-2c¢ the sidelobes are so high
there is a very good chance that IK(G)l2 will peak on a
sidelobe, resulting in a gross error. The signal giving rise
to such a IG(O,OO)I2 would thus be unacceptable. There is
still another situation, illustrated in Fig. 2-2d, where

the sidelobes are rather high, but occur very near the main
lobe. In certain circumstances the observer may be willing
to accept this |G(9,9°)|2 since even if a gross error does

occur the resulting estimate will not be disastrously different
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from Oo. This last case will not be considered further here,

and it will be assumed that all gross errors are unacceptable.
If a gross error can occur with high probability,

ther the method of KR&R for measuring estimator performance

simply does not apply. It is important, ﬁherefore, to

study the inter-relation between i.) sidelobe heights

of |G|2, i1.) the probability that a gross error will

occur, and iii.) the SNR required to keep this probability

small. This is done in an approximate fashion below.

2.5.1 Approximate Analysis of the Ambiguity Problem

It would be very difficult to determine the pro-

bability of a gross error precisely, for this would require
calculating the probability that |K(8)|% will be larger

at one or more points @ not on the main lobe than it is at
any of the points on the main lobe. An observation of many
different |G|2 functions reveals, on the other hand, that
there are normally only one or two sidelobes of any
significant height, the others being quite small. Thus

we assume that gross errors will be caused by these one or
two sidelobes, the other lobes contributing nothing to

the probability of a gross error. We further assume that
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the behavior of IK(O)l2 on a lobe is predominantly
determined by the local maximum level of |G|2, since a
gross error will with highest probability occur at the

peak of the lobe. These two assumptions allow us to obtain
a simple but only approximate expression for the probability
of a gross error.

The computation is approached by finding the joint
probability density function of the two random variables
|K(9°)|2 = Kg and |K(91)|2 = Ki, where 91 is any point on
the 0 plane. It is shown in Appendix B that in the large

SNR case these variables are approximately jointly gaussian,

with moments:

2 2 _ 2
EKZ = SNR, EK. = SNR|G(8_,0,) |
var K° = 2SNR var K2 = 2SNR|G(® ,9.) |2

2 .2 2
covar Kl’ Ko = ZSNRIG(0°,91)|

2.2
where SNR aoD (00).*
Thus the statistics depend only on the SNR and the

height of the ambiguity function at 91. Given these statistics,

* |2 2

Igo =0, E is the expectation operator.
B-30
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it is a simple, although tedious process to determine the
probability that Ki > K:, which is approximately the pro-
bability of occurence of a gross error when only one strong
sidelobe exists. This is carried out in Appendix B with

the result,

P, = Prob(k; > k2 = @ [.J 3 sm<1-|c(e°»91)|2)] (2-26)

where
% 2

@ ) -[ L 12" 4y (2-27)
0 LT

is the normal probability integral (Handbook(1?), p. 966).

Pe is plotted in Figure 2-3 versus the sidelobe height
IG(OO,OI)IZ. It can be seen that for SNR of the order 15 dB,
sidelobes as high as .5 will only cause error probabilities of

the order of 10.3

, which can be acceptable in many situations.
As the SNR decreases the allowed sidelobe level rapidly

drops for a fixed Pe’ until the prescribed Pe cannot be met

at all. If tliere are two significant sidelobes of apprbximately

equal height, Pe will be larger, but no more than twice as

large as the value shown in Fig. 2-3 (Appendix B).
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These approximate results can be used as guidelines
when designing signals. In the signal design portion of
Chapter 4, an allowable sidelobe height will be fixed, and
only signals satisfying this constraint will be considered.

A more precise method would be to fix an ;dmissible Pe’

and then determine the allowable sidelobe height for each

value of SNR. However, the observer will not know the value

of SNR until after the signal has been received and processed,
and so an exact determination of the maximum permissible sidelobe
level could not be made beforehand. We choose to follow the
simpler scheme of selecting the maximum sidelobe height

rather than the Pe' This scheme thus assumes that the SNR

is sufficiently large.

2.5.2 Analysis of Egtimate Variance for ''Small'' Errors

I1f grc;s errors occur with very small probability,
then the KR&R ertimate variance method applies, for one
is almost certain that |K(®) |2 will peak in the immediate
vicinity of 90. Following KR&R for the large SNR case,
|K(0)|2 is first approximated by deleting the squared |

magnitude of the noise function N'(8) of (2.24):

1K(8) ]2 = SNRIG(G,GO)|2+2Reg°D°G(9,9°)N'*(O) (2-28)
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where Do = D(Oo) and SNR = ¢

2
o

tion is expanded in a Taylor series about Oo, with only

a few terms retained:

|K(®) |2 - Ko+Kr (1.'-1'0)-0-!(v (v-vo) -%[A(r-ro) 2+2!!(1:-r0) (v-vo)

where

K

+C(v-v°)é] ) PR

2 '
SNR IG(OO,OO)I +2Reg°D°G(Go,0°)N *(Go)

d 2
-SNR S |G(9,9°)| +2Reg°D° Y
o 2 -1
-SNR N IG(G,OO)I +2RegoDo v
2
o) 2
-SNR =— |G(0,0 )|
arz o Go
2
d 2
2
-SNR 9-7 |c(e,eo)|2
or *)
0
B-34

G(O,OO)N'*(O)

G(O,OO)N'*(O)

Dz (see (2.25)). Now this func-

(2-29)

e

..



That is, the first partial derivatives of the noise function
are retained in Kr and Kv, but only the deterministic
portions of A, B, and C are retained (KR&R show that after
making the approximation in (2-28) one may retain just these
deterministic parts with no further loss in accuracy.)

KR&R then calculate the value GP-(r ,v )t, (wherer , v

P P p P
are random variables) at which the expansion of IK(O)I2

peaks and determine the moments of the errors er-rp-ro,

ev-vp-vo. They show that e =e = 0, (so that the estimator

is unbiased), and that

~3 _
€. c/a

ee, = -B/a (2-30y+

iz
e, A/a

where A = AC-B2

If B0, then e’ = 1/A and e ® = 1/C.

In the work of KR&R these results were applied to

a simple white noise example, but no detailed answers were

+l-'or notational convenience we redefine 8=(r,v) where before
we had 6=(t,w). The two forms differ only by scaling constants.

The overbar is equivalent notationally to the expectation
operator E.
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developed. The remainder of this chapter will give a geometric
enalysis of the estimate error variances, and relate A, B
and € to unified forms involving the signal and noise spectra.
2.6 The Ellipse of Estimate Variances

A simple pictorial representation of the estimation
variances may be obtained by considering contours of equal
probability of p(8/y) in (2-14). 1t is shown in Appendix B

that p(8/y) may be written as:

bl
-1/2(9-0p) B C (O-OP)

p(8/y) = kp (8) e (2-31)

where Op is the observed location of the peak in p(8/y),
(It is noise dependent). A convenient choice for the
probability level is that which gives the exponent the
value 1/2, since this is the usual definition for the
standard deviation of a gaussian dersity function. The
resultirg contour is an ellipse, centered at Op, and given
by

2 2
A(r-rp) +28(r-rp)(v-vp)+c(v vp) 1 (2-32)

A typical illustration is given in Figure 2-4 (Helstrom(7)

p. 21 gives an analogous figure).
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A rectangle may b2 circumscribed about the ellipse, whereupon
each dimension of the rectangle is just twice the stardard
deviation of the corresponding estimate (see (2=30)). The
covariance between the estimates causes a rotation of the

ellipse. Thus the ellipse dimensions embody the average

——

Py

T

properties of the estimate errors. The quantities A, B
and C will hereafter be called the ''ellipse parameters."

They will prove very useful in the study of multiple ping and

elap . d time effects.

2.7 The Form of the Estimate Variances

The ellipse parameters of (2-29) are here related

to the signal and noise spectra. By evaluating the secord

deriv: .ives in (2-29), we obtain

DN(‘+w) DN((L‘-H:)

2
A= kSNR{ E;Jiiﬁﬁll—-d“ \/. cls@!? g
2

2 271' J
DQN(w+wo)

B = KQ SNR [Im ~/‘ @S (@) S* (@) da f u|S§uz|

*
Im f—z(‘)i‘m
DON(w+wo)
B-38
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DON(w+wo) D N(

where k = 8/c2, ¢ being the propagation séeed of sound, and
the dot indicates derivatives with respect to w. The details
are éiven in Appendix C.

In the white-noise only case, several simplifica-
tions are possible. As shown in Appendix C, the signal-to-
noise ratio (denoted WSNR for the white noise case) is
WSNR = ZEog/No for transmitted energy E and noise spectrum
level No. Furthermore, B and C may be given as integrals
in the time domair, and as such suggest useful definitions:

Helstrom(7) p. 18):

2
1 2) 5@y 2 e | s(e) |2 &
kwsmz[ﬁ- f «”|8()|” 57 [ZE f w|S(w)| 2,] :I

k WSNR[dispersion bandwidth]2 (2-34)

>
]

[els@)? &

= f:mz(c)dc]

kQ WSNR [coupling-(center frequeiicy) (epoch)]

QI"

B = kQ WSNR [%E f tmz(t) c.p(t)dt-
(2-35)

'n,-a
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2
C = kQ® WSNR [-213 f e2m? (t)de - [%E [ tmz(t)dt] _l

= sz WSNR (dispersion duracion]2 (2-36)

The terms ''dispersion bandwidth' and ''dispersion duration"
are used to distinguish these definitions, which involve
second moments, or moments of inertia of the signal functions,
from other definitions of bandwidth and duration which might
be used. These forms are frequently used for their
tractability, but they are not always appropriate from a
physical point of view, as will be seen in Chapter 4. The
"center frequency"* and the '"epoch' as defined above are
frequently made zero by proper choice of the time and frequency
origins. This choice deletes the second terms in each of the
expressions above. The coupling term disappears if there is
no frequency modulation, and the duration does not depend
on the frequency modulation in any way.

In the white noise case one can apply the

(7)

"uncertainty principle'" (Helstrom' ) p. 20) to demonstrate

*
This applies to the center frequency of the envelope s(t);
the center frequency of the actual signal lies Q radians per

second higher.
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that for any signal, the resulting A satisfies A 2> %{k SNR Q)%
with equality holding only for ''gaussian signals', of the
form s(t) = exp(-1/2(a+jb)t2). The derivation of this
fact is outlined in Appendix G. A similar result does not
seem to prevail in the colored noise case, although A > 0
in all cases.

A unified form for the ellipse parameters in the
colored noise case may be given in terms of an integral
operator. The operator has a kernel P(«) which is a density

function,™® given by

2
= |S (u) ]
P(«) T N(ahe)
o 0

(2-37)
The overbar operator notation indicates the operation:

E@ = [ P@se) ¥ (2-38)

We further define the phase spectrum y(«) for the trans-

mitted signal such that:

S(e) = |S(c)| eIV (2-39)

*A density function is any positive, unit-area function.
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and in addition a normalized derivative of the amplitude

spectrum;

2@) * T5e5T 35 5@ (2-40)

When these definitions are applied to (2-33), and simplifica-

tions are made, there results (see Appendix E)

A = k SNR (m-E)i

B = -kQ SNR (- (¥-¥)

kQZ SNR  (a-a) >+(y-9)° (2-61)

(@]
]

SNR = 02D = o? T %,—%f_‘%g o
where () = d/de y(x).

These unified forms show that the ellipse parameters
are analogous to central moments in statistics. The
expressions are particularly convenient conceptually
beceuse the noige properties and target speed dependence
appear only in P(«¢). For the white noise case P(w) simplifies
to IS(w)IZ/ZE. The unified forms also permit a very simple

proof that A-AC-B2 is always positive (see Appendix E).
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The terminology ''dispersion bandwidth', ''center
freqency' etc. used in (2-34) to (2-36) for the white
noise case may be employed here in the general case as
well. Now, however, the definitions refer not to s(t)
but to a signal s'(t) having traniform S((b)/\rn_(cm‘;’ , as

discussed in Appendix D.

Example 2-1: Pictorial Demonstration of the Effect of

Target Speed on P(x) and Dg

Sample shapes for lPGn)lz and N(a) are shown -
in Figure 2-5 followed by four examples of the ratio
ISQ»)IZ/N(w+wo). The area under IS(w)IZ/N(w+wo) is
Dg see (2-41) , whereas if each curve were adjusted for
unit area, it would show P(x).
Several features of this example are listed below:
1) N(«) consists of white noise level added to which is
a narrow-band noise portion, such as that due to re-
verberation.
2) IS(w)I2 and N(«) need not be symmetrical about w=0

(13) p. 131) since they are generated by

(Papoulis
complex processes. Nor need the spectra fall-off so

rapidly in practice.
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3) If the spectra are not symmetrical, then P(«x) and
D: will be sensitive to the sign of Wy Thus
receding targets could be easier to locate than
approaching ones, or vice versa.

4) For large v, the noise spectrum is completely shifted
away from the signal spectrum, and the estimator is
effectively white noise limited. Hence fast moving
targets could be relatively easy to locate.

5) P(¢) is entirely independent of the levels of |S(a:)|2
and N(«¢) because of its normalization, but depends
strongly on the relative level changes in the spectra.
Thus an important parameter is the narrowband noise-to-
white-noise level ratio, shown in Fig. 2-5 as 10:l.

6) The SNR is severely degraded by the narrow-band noise
portion of N(«), especially for low target speeds.

For large L there is no such degradation.

Example 2-2: Typical Values of A, B and C for Specific

Signals in White Noise

Two signal classes will be used in this example.
The first is the popular LIFMOP (Linear Frequency MOdulated

Pulse) signal, which has several desirable properties.
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FIGURE 2-6 A SIGNAL ENVELOPE AND TWO
EXAMPLES OF FREQUENCY MODULATION
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(Ramp and w1ngrove(14)). The signal s(t) = m(t)ejw(t) is
described by a nearly rectangular envelope lasting d seconds,
and a phase derivative that is linear. A so-called "up-

chirp" is shown in Fig. 2-6.

In Appendix F the ellipse parameters are evaluated
for the case where the roll-off portion of the envelope

m(t) is small:

A * k WSNR (%)2 -3-5 + leg
ud

B & kQ WSNR Pd/6

¢ & kQ% WSNR d2/12

a & (kq wsim)? ()2 313— (2-42)

The first term in A is due to the roll-off of the envelope.
It is assumed small here, but is retained as otherwise 2A=0
for this signal. It is shown in Appendix F that this form
for 3(t) yields the maximum B2 for a given A. This property
will be very important.

The second class of signals adds a degree of design

freedom by making B adjustable. Signals of this class will |
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be called RAFMOP (Rotationally Adjustable Frequency Modu-
lated Pulses) since they introduce an effective periodicity in
the frequency modulation. The frequency moduiation is
thought of as periodic, and may be translated with respect
to the time origin. The envelope picks out the portion

in te(=d/2, d/2). The set of translations of interest

are 8¢ (-d/4, d/4), for if P can take on positive and
negative values this exhausts the possible waveforms.
(Cook & Bornfeld.(s) p. 97, have considered the single
case 05=0, and we extend the class to other 5). Ignoring
the small effects due to envelope roll-off, the results

become: (App. F)

A = k WSNR 92/3

B & kQ WSNR Pd/8 (45/d)(2-4|6]/d)

O
]

- sz WSNR d2/12

A = (KQ WSNR)2(Pd/6)2 [1-(3b/d)2(2-4|6|/d)2] (2-43)

It is seen that B can be adjusted from 0 to +kQ WSNR Pd/8,
only .75 as large as B for the LIFMOP signal with the same

bandwidth. The appeal of this signal is its adjustability.
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The cnly effect of the translation of é(t) is in the value
of B, allowing independent variation of this parameter for
congtant bandwidth and duration.

We now consider the estimation performance achieved
by these two types of signals in the white noise, single-ping,
and no-wvait-time situation. Eq. (2-30) applies directly
to give the estimate error variances. We do the RAFMOP

case first, using (2-43).

RAFMOP :
Z._1 3 1-.9.(4_6)2 IR
r k WSNR P2 16 d d

and when 65=0

|
.y
o ]
2]
=
'Unlu
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The range estimate accuracy improves with the signal band-
width, while the range rate estimate accuracy improves with
the signal duration, the type behavior frequently noted
for matched filter estimators (6, 7, 11). By inspection the
highest accuracy is achieved for the choice =0, which
eliminates correlation between the estimates.

If one wishes to consider the performance of
this signal under a peak or average power constraint, it is
a simple matter to decompose the WSNR term into its
constituents WSNR = mzd o:/No and then consider the envelope
level m, as fixed.

For the LIFMOP signal we can apply (2-42) to
(2-30), and obtain:

LIFMOP:

R (2)
T ik WSNR

(e
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Here a rather different behavior is observed with respect

to the parameters involved. The range estimate variance

now increases with signal duration, and is independent of

the frequency modulation, while the range rate estimate

variance increases with signal bandwidth. This dependence

arises because of the very high range and range rate estimate

correlation, which causes the area of the estimate variance

ellipse to be independent of signal bandwidth and duration.

Referring to Figure 2-4, we note that as duration and band-

width grow, both 1A"A and 1A/C decrease (by (2-42)), and the

property of constant area thus forces the ellipse to

stretch out rapidly. The ellipse quickly becomes long and

narrow, yielding poorer estimate accuracies (See Fig. 2-7).
Because the range estimate accuracy does not increase

with the amount of frequency modulation P, the observer

musi attempt to reduce :Z by decreasing d or u, effectiyely

shortening and sharpening the pulse envelope. These considera-

tions indicate that the LIFMCP signal is not a good choice

of signal in the single-ping, no-wait-time situation. On the
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other hand, it \ L1 prove to be a very desirable signal

waveform when a wait time is involved. This case is developad

in Chapter 3.

The estimate variances of (2-44) are evaluated using

the set of sample parameter values given below:
¢ = 5000 feet per second
Q = (2r) 3000 radians per second
WSNR = 10
d = 1/2 second
P = (2r) S50rps
ue=,b1

This yields the following table:

— fo——
’ef, feet‘Je\z’ ft/sec -1- ft/sec. —= ft. e.e. sec -

JE JA rv
LIFMOP | 55.3 3.76 .206 3.08 -157.9
b=d/4 4.65 311 .206 3.08 -1.09
5=0 3.08 .206 .206 3.08 0.

TABLE 2-1: ESTIMATE STANDARD DEVIATIONS
The error ellipses for these examples are drawn in
Figure 2-7, and show the large size difference that makes

the LIFMOP signal less suitable here.
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A=1.0¢
A=,046
B=1.188
C=10.34
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FIGURE 2-7 ERROR ELLIPSES FOR RAFMOP 8 LIFMOP SIGNALS
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CHAPTER 3

MULTIPLE PING RECEPTION; EFFECT OF ELAPSED TIME

In the present chapter the optimum estimator for
two or more pings will be found and evaluated, and the
effects of inter-ping time and wait time will be deter-
mined.

3.1 Effect of Elapsed Time on Estimates

If the observer must wait for some reason after
he has taken data before he can use it, he must update the
measurements so that they apply at the time they are used.
In the present context, the observer has imperfect esti-
mates of range and range rate at t=0 (origin chosen at
ping time for convenience), and he wants to extrapolate
them to time t in an optimum fashion.

To do this extrapolation he must rely on one
basic assumption: the target will not alter its course
or speed after the ping i3 sent. (More generally, it may
alter its course and speed in some way known to the observ-
er.) The assumption here is that the target maintains
the trajectory described bv:
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r(t) = r, + Ve t (3-1)

Considering the true state vector eo(t) - (rowot,vo)
as a function of time, eo(t) may be obtained from 60(0)

by the linear transformation zt:

eo(t) - zt 60(0), where zt - : : (3-2)
The evolution of eo(t) is sketched in Figure 3-1 for a
few cases,

Sir.:ce the observer knows that the target has con-
stant course and speed, his hypothesis will also take the
form e(t)-zte(O). The Inv PF for the evolved target state
then follows immediately in terms of p(6(0)/y) of (2-31).
We simply substitute zt'le(c) for 6(0) and zt'lep(c) for

ep(O) to obtain
1 ' 1' AB 1
p(e(t:)/@-kpo(e)e- 3(9“)'9;:(':)) 2¢ [B (Jzt (e(t)l'ep(tD

1 . A B'At / >
-kpo(e)e- 5@(’:)'9;:“)) B-At At2-2Bt \e(t)-eP(c)

(3-3)
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which makes use of:

g |-t
2z, " - (3-4)
o 1

] ]
Thus the evolved elli ha ( >-
volved ellipse has center rp, vp (rp+vpt, vpt)

and ellipsc parameters

At-A

B, = B-At (3-5)
C, = C-2Bt+At?
The following points are noted:

1) the new ellipse has the same area for all t, since
z, has unit Jacobean. b, = A.

2) Bt evolves linearly with time, causing a rotation
of the ellipse. Ct always remains positive since
the roots of At2-23t+c-0 are complex (note: AN0).
We now consider the evolution of the shape of the

ellipse with time, introducing a method which permits a
oiﬁple understanding of the process. Instead of describ-

ing ellipse orientation by the slope of the major axis (see

Figure 2-4) we consider instead a '"regression line." it
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If we solve the ellipse quadratic equation

Atyz + Zntxy + ctx2 = 1 (using y-r-rl'),x-v-vl',), we obtain

2

1
y= (-B/A)x + -A_t.‘\ A, - bx (3-6)

fora = AC-BZ. Then in terms of the original parameters:

y = (t-B/A)x + %\,’A - sz (3-7)

Only the first term depends on time., The second is con-
stant, and determines the basic properties of the ellipse
for all time, For this reason we define the 'generic

ellipse" by

ys= j-_% ’A - sz (3-8)

Al

or Ayz +-ﬁ- xz =]
The time dependent term contributes a straight line with
slope (t-B/A). It is called a "regression line" by analogy

with the mean square regression line for bivariate
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distributions (Cramer, P. 272). The slope of this

line is called the '"'regression line slope' (hereafter RLS).
RLS = t-B/A ' (3-9)

These ideas are illustrated in Figure 3-2, for three
instants of time, and for a receding target. The middle
instant yields a generic ellipse. The regression line
intersects the points of maximum horizontal extension in
the ellipse. It coincides with the major or minor axis
only in the generic case. If the RLS is initially nega-
tive, the generic case will sooner or later occur. (Note:
the ellipses shown in Figure 3-2 are drawn to scale for
the RAFMOP signal of Example 2-2 using the typical values
listed there. The scales used are given in the figure.)
One immediate consequence of these considerations
is that the range error is smallest for the generic case.

This is easily shown by considering:

AtCt'Bt2+Bt2 Btz
AtA = (1 + -A-),At (3-10)

2 -
e = Ct/A
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Thus the standard deviation is‘%r = /L .
A

1 _
e J'A_ . [1 + 2(B-At) (3-11)

which clearly is minimized when B=At. Thus the observer,
who is assumed to know the wait time t, should design the
ping so that B/A=t, He thus '"pre-rotates" the ellipse by
choise of B/A so that it evolves into the generic position
at the correct time. This may not be possible, as will be
shown in Sect. 3-4,

1t may seem strange that the observer should be
able to obtain more accurate estimates just by waiting,
since he is obtaining no additional information after the
ping. The answer is that information is being transformed
into a more useful form for the observer's purpose. Be-
cause errors in the v estimite affect later errors in the
r estimate, the observer wishes to bias the measurements
so that on the average the v estimate errors do not enter
at the action time, He does this by designing B/A.

Thus elapsed time between data acquisition and
data usage alters the simple estimation problem by intro-
ducing another degree of freedom, which the observer

attempts to control by signal design.
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3.2 Multiple Ping Processing

The question here is: how should the observer
combine data taken from two pings separated in time?
The answer was basically given by Woodwnrd[a] (p. 64),
and follows from the Inv PF philosophy: After the first
ping has been processed, the Inv PF of ping #1 becomes
the a priori probability function for ping #2, because
it represents the observer's total 'state of mind" con-
cerning 6. Thus for the second ping (using subscripts

to index the corresponding ping):

p(e/y,) = k p(e/yl)p(yz/m-kpo(e)p(yl/e)p(yz/e) (3-12)

which can be generalized to n pings:

P(6/y,) = k p,(8)P(y,/BIP(5,/0)...P(y,[0) (3-13)

where the a priori function for the nth ping has been

broken down into its constituents. The noise must be inde-
pendent ping to ping so that the probabilities may be
multiplied.
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As Woodward points out, the quantities being esti-
mated may not change between data samples in order for this
scheme to work. In the present context the target is in-
deed moving, but the information desired about the target
(rb,vo) does not change. The transformation Z permits one
to extrapolate from any target position back to (ro,vo).
Thus we can use the result in (3-13).

Eq (3-13) causes a fundamental change from the
single ping case procedure, as it instructs the observer
to retain the entire Inv PF from each ping, rather than
just the estimates, Each ping's Inv PF is transformed the
appropriate amount, and they are all combined finally at
the action time,

Specializing to the two ping case, the joint Inv PF
for two pings is found using (2-14), the basic Inv PF.EOtm.
Referring to Fig. 1-1, the first ping has a total wait time

of t, =t +t:w seconds, while the second ping has a wait of

i
t, seconds. Since K(6) in each case appears as an exponent,
the properly transformed exponents must be added to comply

with (3-12). There the matrices
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-1 -1 -

-1 [A,B (A B
2 121! 2. and 2 2°2| 2
t, [nlcl] t, €, l_nch €,

simply add (see (3-3)), and the ellipse parameters for

the joint estimation ellipse are

.-
A A1+A2
.. - - -
B (B1 Altt:) + (32 Aztw) (3-14)
C'-(CMtZ-ZBt)-l-(C-O-Atz-ZBt)

1717t 17t 2727w 2w

Thus the joint ellipse parameters are simply the sums of
the properly evolved individual parameters. (Subscripts
indicate the corresponding ping.) The estimate variances
for the two-ping case then follow immediately from (2-30)
and 3-14):

2

- CV/AY
e. c'/a

3';5; = -B'/A" (3-15)

2

- AV/AS
e, A'/A
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12
with A' = A'C'-B

(1t is shown in Appendix I that A'>0)

A geometrical interpretation is given in Figure

3-3, where the ellipses are shown at cﬁree instants of

time: 1) time of ping #1 where ping #1 ellipse is shown,

2) time of ping #2 where the evolved ping #1 ellipse is

shown along with the new #2 ellipse and the joint ellipse

resulting, and 3) the evolved joint ellipse at the action
time. The following features are noted:

1) The centers of the individual ellipses need not coin-
cide. The centers have random (noise-dependent)
locations, and thus can be displaced from the true
centers. However, if noise were absent on both pings,
both ping centers would coincide on the true target
range and speed for all times thereafter.

2) The ellipses may differ in size, due either to signal
design, or to varying target strength (the weaker the
target return, the larger the area of the ellipie is).
For the ellipses shown, the #2 return had a SNR one

half as large as that of #1 (see example below).
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3) In the figure the interping time was so chosen that
the #1 ping was generic at the time of #2 ping. This
case was chosen for illustration only, and will later
be shown to be far from the optimum choice. The wait
time shown here was sufficiently large that the joint
ellipse evolved through its generic position. The
obgserver would like the joint ellipse to be generic

at the action time, but as seen below this is not

always possible.
Example 3-1. RAFMOP signals used on Both Pings

The ellipses shown in Figure 3-3 were based on
the use of RAMOP signals for both pings, each with t=d/4,
(see ex, 2-2) The white noise case was assumed, with
WSNR=10 for #1 and WSNR=5 for #2. It is informative to
see how much improvement two pings as opposed to one ping
affords in this example. We assume the observer waits
q' seconds after the final ping in both cases. In the
first case this is the only ping sent, whereas in the sec-
ond case there was a previous ping sent t:1 seconds before
the final ping. In the table below the estimate standard

deviations are given for three choices of t,. (Figure 3-3

shows c“pzo seconds). ti-ll seconds in each case,
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=3 =

e_: iy - PR St
r t' 0 t:' 10 tw 20 v all t:w
#2 alone | 6,57 4.4 5.8 44
ft ft/sec.
both pings | 2.65 2.9 4.4 . 23

TABLE 3-1: Effect of First Ping, and of Wait Time

There is a significant amount of improvement achieved in

i:hc two-ping case for small t,» but this degree of improve-
’e_z for the
r

#2 ping-alone case decreases for t:w-lo. This is because

ment diminishes for larger LI We note that,

its ellipse is generic about 11 seconds after ping time.
When both pings are used, the joint ellipse is generic
only 3.8 seconds after the #2 ping time, and so the joint
ellipse has evclved well beyond its generic position at
the action time,

It will be shown below that the ewards obtained
by using two pings over just a single ping can be very
great if the interping time and signal shapes are chosen
more carefully. The results in this example are less
dramatic since no attempt was made at an optimal selection

of either t1 or 6,
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3.3 The Final Range Estimate Variance
The stated goal of the observer is to minimize

the range estimate variance (hereafter REV) t, seconds
after the second ping. From (3-15) this is REV-erz-c'/A'
which may be simplified (see (3-10)):

1 p'2
REV = u (1 + Z-'—) (3-16)

Therefore the minimum value of REV is 1/(A1 +-A2), which

is attainable if the observer can make B'2s0, As the
structure of B'Z/A' is rather complicated, we first examine
the behavior of REV with respect to Al’ Az, Cl, and C2

in a general way. Taking partial derivatives, it 1is easy

to see that
] [} 2 02
aRBv/aA1 = -(C'+B :t) /A < 0
SREV/aA, = -(c'+8't )2/a' < 0 (3-17)

3REV/3C, = 3REV/C, = B'2/? ¢ o0
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Since the partial derivatives are negative, REV is a de-
creasing function of each variable for all values of the
others. Consequently, if the parameters A and C can be
designed independently for each ping, then the observer
must always maximize A and C on each ping, regardless of
wait or interping times, The dependence on Cl’ C2 vanishes
if B'=0. Once the A's and C's are maximized, the only re-
maining problem is to adjust the B's and t in order to
minimize REV,

The question of designing A and C {ndependently
in the white noise case is considered in Appendix J, where
it is shown that the maximum allowable values of A and C
can always be obtained independently. (The duration and
bandwidth constraints considered use the dispersion dura-
tion and bandwidth definitions of (2-34) and (2-36)).
However, in the general colored noise case no such results
have been obtained. It is possible that an attempt to
maximize, say, C, would restrict the attainable values of
A, B such that REV would be higher than for a reduced value

of C. It is felt, however, that a good design procedure is

to attempt to maximize A and C in any case.
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3.4 Behavior of REV as a Function of Design Parameters

As seen in (3-16), B'Z/A' represents the fraction-
al increase in REV over its absolute minimum of 1/A'. B'
can be made zero by making each ping ellipse generic at

the action time:

BllA1 -t H BZ/A2 it (desired) (3-18)

One need not know the target strength to achieve this con-
dition, since only ratios such as BllAl appear. If this
condition could be atiained for all tw the problem would
be solved. The observer would select a convenient ti’ and
design each B/A so that the corresponding ellipse would be
generic at the action time. The error would always be
1/A'.

However, there are two problems with this plan.

1) The observer cannot always predict BI/AI with certainty
except in the white noise case, because this ratio will
in gereral depend on target speed. (He may be able to
predict leAz if the first ping gives acceptable range

rate accuracy.)
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2. tw may be too large. Sirce all sets A, B, and C
satisfy AC-BZ>0, B/A is always smaller than JC/A.
Consequently if t, exceeds the attainable ¥ C/A then
condition (3-18) may not be used.

In view of these difficulties it is more appro-
priate to determine the general behavior of REV in terms
of the B's and interping time, in order to form guide-
lines for the observer. These guidelines will dictate
which ranges of the parameters are to be used, and which
avoided, in order to make REV reasonably smsll.

It is convenient to consider a normalized version
of REV. This allows us to compare the two-ping and single-

ping situations. The normalization is with respect to A

2’
since the error would be 1/A2 for a single ping and no
wait time:

REV = %— dJ
2
where
[}
J = R2(1 +B 2/A') (3-19)
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and

(3-19b)

For convenience we also define Rl-l-R2 = AL/(Al-f-Az).

J may be put into a more meaningful form by defining fur-

ther the quantities

5

JAICI

pl = » Y1 - CI/A]_ (3-20)
and similarly for Py and Yoo Yy has dimensions of time,
while p, is dimensionless and satisfies |p1|<1.* p is
called a correlation coefficient, since in the single ping

case (see (2-30))

p = ~mmmse— (3-21)

p may be made to approach +1 for signals with large time
bandwidth products (see Appendix G). Each p and vy is inde-
pendent of target strength and SNR (all this information

is now in Rl’ Rz, and Az), and v terms may be compared

%*
Similar statements apply to Yos Ppe
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directly with t, and t,o v and py are identified with the
slopes of the lines in Figure 3-4, It is noted that pvy is
the time required for an ellipse to evolve into the generic
position,

It is shown in Appendix I that J now takes the

form:

_2
Iktwrpzvz)+81(t1-9171+pzvz)J
2 2 2 2 2
Ry, (1=py )+R272 (1-p, )+81R2(t1+9272-9171)

(3-22)
and has the shape sketched in Figure 3-5. The quantities

noted in Figure 3-5 are given by

R
2
ty = (pympmty) + R (pyvy-ty)

2,,_ 2 2,02 )
AS = R]_'Yl (I'Pl ) + RZ"Z (1 Pz ) (3-23)
(tw-pzyz) is the RLS of the ellipse #2 at the action time,

tn is the interping time for which the joint ellipse is

generic (i.e. B'=0).
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) INTERCEPT LINE, SLOPE = y

REGRESSION LINE,
RLS = py

\ V’Vp

FIGURE 3-4 GEOMETRICAL INTERPRETATION OF y AND py
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Several features are apparent from (3- 22) and the

shape of Figure 3-5:

1) A desirable minimum for J exists at t

2)

3)

i-tn’ for which
J-Rz, or REV=1/A', its absolute minimum. Unfortunately
the values of tw to be expected in practice are much
larger than the PoY9 values attainable so that this
minimum cannot always be achieved.

For sufficiently small ty» the relative rotation between
the #1 and #2 ping ellipses is not significant and the
joint ellipse parameters at the second ping time are
simply: A1+A2, Bl+B2, and c1+C2 respectively., Thus

the performance is equivalent to a single ping situation
with these new parameters.

In the limit of large t, an asymptote is observed at
vhich J=1. For such large ti the first ping ellipse
will evolve iato an almost vertical line as shown in
Figure 3-6, When the second ping ellipse is added,

the joint ellipse will also be thin and nearly vertical,
with vertical extent determined mainly by Az. The

wait time will consequently have little effect on the

range variance. The resulting performance will be
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FIGURE 3-6 EFFECT OF LONG INTERPING TIME
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calied the "single-ping, known range rate" perform-
ance, since in effect the long interping time leaves
only a narrow region of the range-rate plane with
significant inverse probability, and thus eliminates
most of the range rate ambiguity. Then the second
ping can be used to obtain range information onmly,

and the REV will be approximately 1/A2. The use of
very large interping times thus separates the roles of
the two pings, using the first for range rate esti-
mates, and the second for range estimates,

For the single ping case (effectively Rl-O), the optimal
signal design (choice of pz) is determined using sim-
ple minimization techniques in Appendix K, yielding

Lo 1F € vy Jggnaneml for p,v,=t,

2
1, 4F €0y, Jyunonem(E,/75)7 for o=y, /t (3 5

Therefore for a single ping, t, causes the REV to in-
crease as t: (when tw>yz). For large wait times this

can result in a severe degradation of performance.
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The use of two pings can work to overcome this de-

ficiency.
5) The single ping case always results in a larger J

than the two-ping case (where RI#O). The single ping
case yields (use R,=0, R2-1 in (3-22)).

2
(epr,) o
2 2
Y2 (1"’2 )

Comparing this with the peak value of J observed in

J= 1+
Figure 3-5, it is easy to see that the distance be-
tween the levels is

Jgingle ping ~Jboth pings

2
2 2)
ty"PaYp) R Q'Pl
S YA 772
1-p, ) Rim1 (1'91 Ry, Q"’z)

(3-26)

which is large if tw is large and R1 is reasonably far
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from zero. Thus the use of two pings can yield a siz-

able improvement even for the worst choice of ty.

3.5 Design of p, and Py for Optimum Performance in

White Noise
In order to understand more clearly the effects of
t', ti and Rl’ we now consider the absolute minimum value
that J may have for given values of these variables. These
minima will occur in the white-noise-only case, since A and
C are maximized in this case (see Appendix G), and perfom-
ance improves monotonically with A and C.

For the white noise case, the values of 12 and Yq
are determined by the allowable bandwidth and duration con-
straints, Since these constraints will be the same on each
ping, and the observer will use the largest allowable
values in order to maximize his performance, the two values
will be equal: Yy " Yy " Ve

The observer will know only tw before he sends the
first ping, and he must choose Py before sending this
ping, and t, as well as Py before sending the second. He

will not know Rl until both pings have been sent. To deter-

mine an upper bound on performance, however, we choose values
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of c'. t and Rl’ and pretending they are known beforehand,

i
minimize J by proper choice of P1 and Py
With v common to both pings, it is convenient to

normalize the times t, and t, as well in (3-22):

i

*
Ty tw/'y $ T, - til'y (3-27)

Then J simplifies to

J = A, REV

[("w"%)‘"‘l (‘1"’1*"2)] 2

3
2 2
1-RyP; “Ryp, +R1Ry (1470 %0, )

(3-28)

=R, |1+

A numerical search procedure was employed to find
the p, and p, which minimize J for fixed values of 7, 7,
and Rl' The results are shown in Figures 3-7 through 3-10.
In figures 3-7 through 3-9 Join is plotted versus Ty for

different values of R1 and T® Jmax (the performance

resulting from the worst choice possible of Py pZ) is also

shown to demonstrate the variability of J with signal design,

% For reference purposes recall that y=15 seconds for the
LIMOP and RAFMOP signals of example 2-2,

B-82

]

——

[

=1 e

=

3

[

Pe

—

sl

-e

s |

&=

o= M

—

$)

ar

b &4




00l 0L 0e

o ¢

S

[

I 1

| 1

1="2404'2 SA M 2-€ 34N914

\

6'='y ¥04 z_s:.\

v

~

S

='y o4 NIN P

\

e

u I'='y ¥O4

NIN T

319NIS \

I//h

N

‘3S3HL SV INVS IHL AWNV3N
AY3A Y 1'="1 ¥O04 S1INS3Y

o]

o7/

oL
00l

B-83



= = =

(0]0]

e Lo B st P P B P B2 Ll sl U2 O L
Ol=M1 404 2SA r 8-€ 34N9I4
5]
oL 02 o 2 A 2 I
|
~
/1/
// N [
N ///,,/
// /ﬂ/ P LSHOM ——
/ / NINF —
\
/ 2
\ 6 ='4 O3 NIN P -
02
é NIW P
|
00! = 319NIS Y 404 Niw £ oL

|

0/0]]

i

B-84




g

0G ="2 404 2. SA P 6-€ 34N9I4

"

0001 004 00¢ ool 0L or4 o ¢ e |

00S2 = 3TONIS I

r ASHOM ——
NIN f —

(o]

02

oL

00!

B-85



e=d = GG 8 553 el g S Gl

e —— o =3
12 sA%d anNv !9 WNNWILJO O1-£ 3¥N9I4
m . -
ool oL 02 o L 1 2 Lo 2 v
—— T —— v 0.

/ mm..m.u”m* mom.nu_u;.uv“ “_l
/ / . I.l m.l
N

—+ - 4
|
|
.

9-
{6°='u‘01=M21}: ' N // | p L. |
_ .
///T/{ ST L

/

{66 ‘= 1My} '

><B = |
TN )
_ ~_ | |

i r<'yo1=M1}: ¢

1 o'l
{61 ="y *1=M2}:%¢ {6 ="yl {os‘01="1} 3¢

2d

N

{1 ='d ‘05 =M1}
7




J

single
Figures 3-10 the optimum values of Py and p, are shown for

given by (3-24) is also included. Finally in

the parameter values considered.

The three major issues of interest here are:

1) A comparison of the single ping and two-ping perform-

2)
3)

1)

2)

:
I

-

ances,

The importance of signal design on the value of J.
The effect of the interping time on the performance.
For large values of T the two-ping performance is
far superior to that for a single ping, especially

if the first ping return is strong (large Rl)' (As
R1 approaches zero, the two cases perform equally
well, of course.) This superiority requires that rea-
sonable choices for Py and Py be made. On the other
hand, when Ty is small only slight improvement is
possible for the two-ping case, and this requires
careful cloice of Py and Py

Proper signal design is seen to be very important for

small values of Tor and T4» a8 very different perform-

ance levels are exhibited for the best and worst
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choices of Py and Pye As 7, becomes large all signals
yield the same value of J, (J%1). This is the "single-
ping, known range rate'" situation discussed previously.
Also as Ty becomes large, the performance is poor re-
gardless of signal design due to the extreme ellipse evo-
lution,

From Figure 3-10 the best choices for Py and Py
are seen to form two rather distinct groups, such that
Py should generally be negative (ellipse #1 already
beyond its generic position at ping time) except when
T is very small, and Py should be positive in all cases
(ellipse #2 prerotated so that it will move toward its
generic position as time elapses). In many cases the
best choices for P1 and Py do not depend heavily on R;s

so that the actual lack of knowledge of R1 will not be

too significant., The worst choices were found to be:

P -1 always

-1 for 7, <1
P™

+1 for T4 >1 (3-29)
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The worst choice for p, always tends to align the two

ellipse RLS's.

3) The general conclusion that may be drawn with regard to

Ty is that it should be as large as possible if Tw is
large, in order to approach the "single-ping known

range rate' condition. Only for Ty of the order unity
can any gains be made by reducing Tye When T is large,
the value of Ty required to achieve the asymptotic con-
dition is about four times larger, and may be too large
to use in practice., These results indicate that large
waiting times can markedly degrade the estimator

performance,

3-6 A Design Perspective for the Reverberation Noise Case

The last section discussed the effects of signal
design for the white noise only case, for which the observ-
er will always use the largest A and C parameters permitted
by the bandwidth and duration constraints. The design pro-
cedure there was quite simple because the observer does
not make use of first ping information in designing the
second ping. However, in the general noise case discussed
in Chapter 2 the performance depends strongly on the true

target range rate, and so if the observer can accurately
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measure this quantity on the first ping, he may be able to
redesign the second ping to achieve a greatly improved
final range estimate. When the noise is signal dependent
as in the next chapter this will be particularly true.

We now show that the observer's best design pro-
cedure is to consider only range rate measurement on the
first ping, and range measurement on the second ping.

This vastly simplifies his task since he need only strive

to maximize C1 and Az, the other ellipse parameters having
little effect. We have shown that for large values of s
REV‘I/A2 (see Figure 3-5), and that this corresponds to the
performance level for the known range rate situation. The

absolute minimum for REV is REv-1/(A1+A2), (see (3-19))

but this value will not be significantly smaller than l/A2

since in practice Az > Al (the observer has more informa-

tion with which to design the second ping, and so can do a

better job), Thus if a sufficiently large t, is used the

i
final performance depends mainly on Az, and this is clearly
the quantity to maximize., The range rate needn't actually
be measured on the first ping to arrive at this conclusion!

the only requirement is that ty be very large. However,
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there are two important reasons for making an accurate
range rate estimate on the first ping: 1). The required
value of ty needn't be impractically large, and 2). knowl-
edge of target range rate permits much greater values of
Az to be achieved, The second point will become apparent
in the signal design study of the next chepter, but the
first point deserves more comment here. We must again
examine the behavior of J to determine the size of ty
required.

Because the signals used to combat reverberation
in Chapter 4 will have extremely small B1 and B,, we rewrite

2

J of (3-22) with p = p, = 0.

2

2
(t:w + thi)
2 2 2

+ Rzyz * R1R2ti

J=R, |1+
- R

1M1

[ a+ R1T1)2
, |1+ > (3-30)

r+ R1R2T1 :

where T, = tiltw and

e e R

i
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1
=5 | (3-31)

2 tw

J 1s plotted as a function of T, in Figure 3-11 for differ-

i
ent values of R1 and ', If I is of the order one then any

value of Ti will be acceptable (where "acceptable'" could
be considered as the region of J < 2, for instance). For
smaller values of T, ‘r1 must be about 10 when Rl-.Ol, and

must be about 30 when Rl-.001. The case R,=.5, which corre-

1
sponds to the situation AI-AZ as in the white noise cases

in Figures 3-8 and 3-9, requires that T, be about 3, Thus

i
two things are clear:

1) The value of t, required to keep J < 2 does indeed in-

i
crease as R1 becomes very small (due to disregarding a
careful design of Al for the first ping), but the
increase is not prohibitively large.

2) T should be made large (of the order one) if possible,
This may be accomplished by using a large value of Cl’
provided tw is not excessively great. Then any valﬁe

of T, is satisfactory. However, if I' cannot be made

|
more than about .1, then at the sizes of T, required

J is insensitive to T,
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The above arguments have shown that the observer
need only strive to maximize C1 on the first ping, and A2
on the second, The principal reason for obtaining a large
C1 is that an accurate range rate measurement will permit
careful second ping design to achieve much larger values

of A2 than otherwise possible, The details of this last

point are considered in the next chapter.
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CHAPTER 4

Signal Design of Two Pings in the Strong

Reverberation Environment

4.1 The Reverberation Noise Spectrum

The nnise model used here was recently treated
by Van Trees[16]. It assumes a distribution of scatter-
ers through a volume of the ocean medium, each scatterer
acting as a point reflector of sonar energy. The scatter- (.
ers are assumed to have random positions, velocities and
scattering strengths, and all of the quantities are statis-
tically independent one from the other. This model,
there fore, would rather poorly describe the case of surface
reverberation or of small clouds of interacting scatterers,
but it is a useful model for volume reverberation,

The reverberation model makes the following specif-
ic assumptions: The complex envelope n(t) of the noise -

waveform is given by

n(t) = y Zi s(t-ri) ejwit (4-1)

—

i
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where for the 1th scatterer

y" time delay of reflected waveform

w, = doppler shift of waveform

i
Z1 = complex reflection coefficient

s(t) is the complex envelope of the transmitted waveform
(see (2-2)).

The summation is performed over all scatterers that
yield noise energy in the observation interval T given by
T =t te(tb,tb+T) (see p. 2-6). Van Trees uses two
assumptions that will be retained here, The reflection
coefficient of the 1th scatterer is independent of the
scatterer's exact position, and the average number of scat-
terers per unit increment in range (or delay) is constant,
These assumptions are reasonable approximations if T/tb<<1,
as will now be indicated. Inverse square law spreading
loss causes the received power from a scatterer to decrease
as the fourth power of the distance, Hence the ratio of

the powers received from scatterers at delays t T and £, is

power from scatterer at tb+T tg

power from scatterer at tb (tb+T)4

&1 - 4T/t (4-2)
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if T<<tb. Similarly, a sonar beam intercepts an area which

increases linearly with range, so that if the average density
of scatterers in any volume is the same then

avg, number intercepted at t +T
=1+ T/t

avg. number intercepted at ty b (4-3)

which again will be nearly unity if T<<t Thus the approxi-

b.
mations involved in Van Trees assumptions are quite reason-
able as long as the target distance is large compared with

the distance covered by sound in T sec,

The statistics assumed for the random variables are

1) EZ;0 |, rslzil2 = 12|12  for all i
2) p, (7)) = VT et
i 0 otherwise

3) avg. number of scatterers in summation = ysT

4) prob, density function of wy is pw(w) for all i,
(4-4)
Statement 3 contains the additional assumption that the
number of scatterers present is large. We can then say that

the actual number of scatterers illuminated (a random
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variable) will with high probability be close to the stated
mean value y.T.

Van Trees uses these assumptions to calculate the
complex autocorrelation function R(t) for the noise process
consisting of the reverberation noise and an added white
noise component representing receiver noise. His result
is exact in the 1limit of large observation interval T, but
is a good approximation as long as the observation interval
is much larger than the correlation time of the process,

(but still short compared with t, above),

RCr) = AR ()] p () eI¥Taw + N_A(0) (4-5)

where

Rs(r) -\j—s(t) s*k(t+r) dt

No = gpectrum level of white noise component

2
A= 3ovgl2]

The noise autocorrelation function is thus the product of
the scatterer Doppler characteristic function and the

signal "correlation function." The noise spectral density
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N(w) is the Fourier transform of R(t), and is then the con-
volution of pw(w)'with the transform of Rs(r). Since the
transform of Rs(r) is simply |S(w)|2, (Papoulis(la), Eq. 2-71),

we have

M) = 2 fp (@) Istw) 1% dw + N (4-6)

The reverberation spectrum is essentially the transmitted
signal spectrum, ''smeared' out by the convolution with pw(w).

1f the scatterers do not move, pw(w) = 5(w), and
N() = AlS(e) %+, (4-7)

The dependence of the noise spectrum on the transmitted
signal spectrum adds significantly to the complexity of the
signal design problem.

4,2 Basic Signal Design Implications of the

Reverberation Spectrum

In Section 3-3, it was shown that the ellipse para-
meters A and C should be maximized in order to minimize REV,

the final range estimate variance, With the white noise
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level No fixed, A and C are always maximized when the effect

of the reverberation component of N(w) can be eliminated
(see App. G).

To see how this might be accomplished, we note that
in (2-41) the ellipse parameters, as well as SNR, are func-

tionals involving P(w) of (2-37):

2
1 [S(w) |
P(w) = = (4-8)
DZ N(uH-wo)
0
For the noise spectrum given in (4-6), this becomes
2
P(w) = — A sl (4-9)
D, |S (wte ) |p + N
where for convenience we have set
1) 12 = [p, 00 Is(ow) 12 aw (4-10)

Roughly speaking, in order to maximize A and C, the observer
will try to choose IS(w)I2 so that in the frequency ranges
where IS(w)l2 is large IS(uH-wo) |§ will be small relative to

the white noise level No. To do this he must take advantage
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of the shift v, due to the target range rate, If he is
successful, then the reverberation interference will have
been essentially eliminated. Figure 4-1 shows a sample
situation: a) a possible |S(w)|2, b) the "smeared" version
shifted by amount v, and added to the white noise level,
and c) the resultant P(w), scaled to unit area. In the case
shown, the shift w, was not quite sufficient to completely
eliminate the reverberation,.
4.3 Design of the First Ping

In order to design IS(w)l2 using these principles,
the observer must know W On the first ping, however, he
does not have the benefit of this knowledge, and so he must
use a signal which will perform well over a large range of
target range rates, Since the observer must concentrate on
maximizing C1 on the first ping, a natural signal to use
is a very narrowband ping with long duration, For a narrow-
band |S(w)|Z even rather small target range rates will be
sufficient to shift the signal spectrum off of the reverbera-
tion spectrum, leaving only white noise interference. 1In
the white noise case (2-36) applies, and so C1 is propor-
tional to the signal duration squared.

B-101



KA b o0 lems o - I T i RS SOw SN ot e N W

a).

T |Slu]|l
b). I Nlwtwg)
4. /L
* ':'u .
c). T Plw)
\

FIGURE 4-1 SAMPLE SIGNAL AND NOISE SPECTRA
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The observer is thus led to use a long pulse with
no frequency modulation, such as a pure tone lasting d
seconds, (This is a special case of the LIFMOF signal of
example 2-2, with P=0.) If w_ is sufficient to shift the
resul *ing narrow lobe of IS(M)I2 off of the reverberation
lobe, ther: the results of (2-42) apply. We see that B=0,
the SNR is maximized (for constraints of fixed d and jeak
signal amplitude mo), and so the signal is optimum in terms

of maximizing C S(w) for the constant frequency tone has

1°
significant amplitude only in the band |w|<2r/d, so that
v, % 47 /d is sufficient to eliminate the reverberation if
the scatterers are not moving.* A larger v, is required
if the scatterers do move, For insufficiently large v,
partial elimination will be achieved.

When only partial elimination is obtained due to
small W this is still a srood signal to use, since:
1) a narrowband signal has a very concentrated spectrum
lobe with high power density., Since scatterer motion smears
out this lobe to form IS(uﬁwo)!g, a significant amount of
reverberation power can be shifted out of the target echo

band. Thus P(w) of (4=%) can still be large over much of

its range even for small W

* Using tyrical values of (2-47), w_ = 4r/d corresponds to
a target range rate of 3.3 ft/sec.
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2) As a special case of the last comment, where the target
is not moving at all, it can be shown that C] will increase
as the signal be:zomes more narrowband under ordinary cir-
cumstances, A calculation of Cl is performed in Appendix H
for the gaussian-shaped signal:

1, -b(t/d)?

s(t) = m, T4 (4=11)

and for scatterer Doppler probability density function

2
1 =L (w/B)
pw(W) I © (L=12)

The signal here has a narrow spectral lobe similar to that
of the constant frequency tone above, and this signal form
leads to tractable mathematics. It is shown in Appendix H
that for the strong reverberation interference case

2,272

. 1 [1+428°d
%, =% [ 7| (4-13)

Hence if 8>>1/d (i.e., if the rms scatterer doppler shift

is much larger than the signal bandwidth) then 2. is

1
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2

proportional to 8d”, and d should be made large, or equiva-

lently the bandwidth should be made very narrow.¥*

4.4 Design of the Second Ping

The observer's primary goal with the second ping is

to measure range, and so he will strive to maximize AZ
given in (2-33)., Only the spectrum lS(w)I2 is involved in
the range measuring capability of a signal; the phase

function ¥(w) of (2-39) has no effect.

We assume that the estimate of target range rate
made with the first ping was sufficiently accurate that v,
can be con: dered known. The designer will make use of
this knowledge in an attempt to put signal power in fre-
quency bands disjoint from those of the reverberation.
However, the previous device of using very narrowband sig-
nals is unsatisfactory here since Az is essentially a
variance of P(w) as seen in (2-41), so that IS(w)l2 must
be dispersed over a wideband.

The problem is then to maximize (see (2-41) and

(4-9))

*
For rms scatterer velocity of 2 ft/sec.,, and the typical

values of (2-47), 28242 & 114.
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2 [ _o?s(w)|? doo
A= kno ; > > -
o plS(etw ) [0+ Ny
2 i o
Do [sls@ll g0’
2 N 2 2w
D, | == AlS(atw) |p + N _] (4-14)

The constraints imposed on the signal are:

£s time-1limiting: the signal is wholly contained in
|tlgd/2.

ii, band-limiting: the signal has bandwidth 2w,

It is not meaningful in the present context to use
the "dispersion bandwidth" of (2-34) as the bandwidth defini-
tion, because if only the dispersion bandwidth is restricted
in size, the designer is led to use totally unrealistic
signal spectra in order to eliminate reverberation. It is
shown in Appendix L that reverberation may always be elimi-
nated by spreading the signal power over a sufficiently
wide band., The band required would normally be exorbitantly
large, C onsequently a more realistic constraint is used;

an allowed processing band (-W,W)* is fijved, and is beyond

*
This bandwidth might be the fundamental passband of
the hydrophone array. Note: W is not to be confused
with w, which is a doppler shift.
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the control of the ubserver. All energy at frequencies
outside of this band is rejected. This constraint on
usable bandwidth is frequently used in practical systems
and is convenient analytically: 1its use simply requires
that the integration limits in (4-14) be altered.

The finite limits of integraticn in (4-14) pemmit
a very useful normalization, which will throw into per-
spective the quantities under consideration. We define
the normalized frequency variable x = /W so that the pro-
cessing band becomes |x|{l. Then we may define normalized

signal and reverberation spectra:

B(x) = o= [S(ux) |2

W 2
By (x) = g 1S(WK) | (4-15)
These functions have unit area (since lS(w)!2 has area
2E2r, as in (2-19):

1 %
[

-1 ~o

The infinite limits in (4-16) must be used since scne
of the reverberation power may be spread outside of the
processing band |x[<1.
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If we further define the normalized probability density

function of scatterer range rate p'(x) = pr(wx), then

from (4-10)

gp(x) = p'(x-y)a(y) dy
-1

(4-17)

Hence signal design in the x-domain amounts to zhoosing

appropriate positive unit-area shapes for g(x) in the inter-

val |x|<l1. Now using the definition of A in (4-14), we

obtain

1 9 1
A A y X g(x) 1 '
I -1

N emscnmm— 58 dx’

% Kk WSNR w2 -1 Rgp(x+ﬂ)+1 SNRF

where we define

2EA
R 2r Nw
)
t=w /W : normalized target range rate
° i
= . g(x)
SNRF = SNR/WSNR . Rgp Ot L dx
2E02
WSNR = (see page 2-2%)
o)
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A is normalized to Ag by isolating terms which the observer
cannot control, and Ag is dimensionless. R is a reverbera-
tion power to white-noise-power ratio, since E 1is propor-
tional to the total reverberation power received, and Now
is proportional to the white noise power in the processing
band., SNRF is the ratio of the signal-to-noise ratio
achieved by a particular set (g(x), a,R,p'(x)) to that
always obtained in the white noise only case, It is a mea
sure of the degradation in signal-to-noise ratio due to
reverberation, and equals one if the reverberation is elimi-
nated,

Efficient signal design must also consider the am-
biguity problem discussed in Section 2-5, since the per-
formance measure A applies only if gross errors occur with
very small probability. In the known range rate case con-

sidered here, th: ambiguity function IG(P,GO)I2 of (2-23)

becomes
w -
. . (w IS(m-wo)lzej (r-7,) . 2
|6(6,6 ) | w—_ = ;-E g N(w) 2r
o
(4-20)
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Thus the ambiguity function is the squared magnitude of the
Fourier transform of P(w) of (2-37). Normalizing as before,
with u;W(r-ro), the ambiguity function becomes:

1 |2

I O W YOS W ke
AMB(u1) SNRF :i R gp(x+a)+1 dx (4-21)

ex 4=-1: AMB(u) for a sample g(x) in White Noise

To show the basic characteristics of AMB(i.), we
choose a p(x) having two gaussian-shaped lobes separated
in frequency as shown in Figure 4-2a. The jlacement of
the lobes makes the value of Ag large. Now sinze SNRF=l

in the write noise only case, we have

1
r it Y2782 - (xem Y2742
AMB(i,) = 21}7?~f1 ejux [e s(x ml) /B e (% mz) /3 .

2 2
e~ u <}+cos(m1-m2)%> (4-22)

g

As seen in Figure 4-2b, AMB(u) has many larpe sidelobes
which would make the signal unacceptable, Ag, which is pro-
portional to the curvature of AMB(;.) at u=0 (see the defini-

tion of A, (2-2¢) is large, but the high sidelobes would

make gross errors quite probable so that Ag is a poor mrasure
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FIGURE 4-2. 2-LOBE SPECTRUM AND AUTOCORRELATION FUNCTION
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of performance., The dotted line in Figure 4-2b is the ambi-
guity function for a g(x) consisting of only a single lobe
centered at x=0, The curvature of AMB(i.) at u=0 is much
smaller for this signal, but there are no longer any side-
lobes. This simple example thus shows the tradeoff that
must be made between ''small error" estimate variance and
ambiguity sidelobes.

4,5 Some Bounds on Ag and Simple Cases

A_ 1is maximized when only white noise is present,
as discussed in Section 4.2. Choosing g(x) symmetrical for

convenience, we have from (4-18)

1
A= | %P a(x) dx (4-23)

g
This is clearly maximized with respect to g(x) by setting
g(x) = §<E(x-1) + ﬁ(x+li> , which yields Ag-l. Thus an
absolute upper bound for Ag is unity, However, this form
for g(x) implies a signal consisting of two sinusoids at
w=Hy, Such a signal (i), is not duration limited, and (ii)
has a totally unacceptable AMB(u). As may be seen be

setting =0, ml-mz-z in (4-22), AMB(u) is periodic in u.
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Another choice for g(x) would be a flat shaped

3 for |x|<1
g(x) =
0 otherwise . (4-24)
which yields
1 2
A8 - }f x2 dx = 1/3 , AMB(u) = [’%&J (4-25)
-1

A8 is 5 dB below the absolute maximum, but AMB(u) is now
acceptable with maximum sidelobe heights equal to .045.
This form for g(x) will be called the '"flat spectrum' case,
and will be used as a reference case below,

In contrast to these rather high levels of perform-
ance, the strong reverberation case will give an indication
of the degradation of A8 to be expected, If both the target
and scatterers are not moving, so that their sonar returns

look as much alike as possible, we have (see 4-18)

1 1 12
2 .
a =/ 28, L) [ _xgd
g R g(x)+1 SNRF 1 R g(x)+1

(4-26)
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with

1

.f_aLg_x
SHRE 4, R 8(x)+1 £

Now if R g(x)>>1 for all x in the band, then

A & fl -"—2- dx = 2/3R (4-27)
g8 4, R

-1
Consequently, all signai spectra having energy distributed
over the whole band yield equally accurate range estimates
when target and scatterers are stationary. For smaller
values of R where the approximation of (4-27) no longer
applies, the optimum g(x) was found using dynamic program-
ming techniques, as discussed in Appendix M. The resulting
Ag is shown in Figure 4-3 as a function of R, along with
the other examples discussed above, The asymptote Ag-2/3R
is rapidly approached as R increases,

4.6 Some Commonly Used Signals

Certain types of signals have been used frequently
in sonar and radar aystems(s), and it is well to examine
their ability to combat reverberation interference in the

present context.
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1) LIPMOF SIGNAL

For signals of this type with large duration-bandwidth
products, the corresponding spectra are approximately flat
over a wide beand, and then fall off rapidly outside of this
band (ref., 5, p. 208). Thus we can use as an approximation
of the LIMMOP spectrum the '"flat spectrum" case discussed
above, Ag was calculated for such a flat spectrum as a func-
tion of target speed, and the results appear as part of
Figure 4-4 for the case R=100 and no scatterer motion.
(Since this spectrum covers the entire processing band,
and typical bandwidths would be much larger than scatterer
doppler shifts, the effect of scatterer motion on the shape
of gp(x) would be very small in this example). A rather
slow rise in Ag versus a is noted over this range of target,
since a is such a small percentage of the total signal band.*

2) Signals with Sinc x-type Spectra

The spectrum of general shape

. 2
2 sinrvx
g(x) « sinc” vx [ i ] (4-28)

e Using typical values of (2-47) and W=2r(50), 2 and target
speed v are related by v=40a,
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arises repeatedly in radar signal theories[sl. Simple

pulses with rectangular envelopes have spectra of this

shape as do some important pulse trains. One such is the
"stagger pulse train'" class, (Cook & Betnfeld[S], p. 232)
consisting of a burst of, say, 8 short pulses positioned

at irregular instants inside the over-all ping duration.

The position staggering yields good over-all ambiguity
properties, Another signal class with roughly this spectral
shape is a pulse train with phase modulated according to

one of the Barker codes (ref. 5, p. 245).

Thus we consider the performance A associated with
the spectrum shape shown in Fig. 4-5, The spectrum is, of
course, bandlimited to |x|<1, so that different values of
v will retain different amounts of the basic sinc2 shape
within the band. For example with v=1 only the major lobe
of the spectrum lies in the band, For larger v the major
lobe is narrower, and one would expect more variation of A
with target speed in this case. The results are shown
in Figure 4-4 for various values of v, Ag is consistently
lower than that achieved for the widebanrd rlat spectrun,

and furthermore there is not a great deal c¢tf variation in
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I FOR CASE SHOWN: »=3/2

FIGURE 4-5 SINCZ SPECTRUM EXAMPLE
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As due to changes in y. One concludes, therefore, that the
LIFMOP signal would perform slightly better than the sinc2
spectra signals, but that neither seems to take real advan-
tage of the target motion in order to supstantially elimin-
ate reverberation., This drawback will be attacked in the
following sections, and the RAFMOP signal will also be

discussed,

4,7 Multi-lobe Spectra

We introduce the class of spectra consisting of n
identical lobes distributed over the band. Each lobe has
the basic shape go(x), and the lobes are centered at the n
frequencies m = (ml,mz,...,mn). A sample case is pictured
in Figure 4-6, The advantage of this spectrum class in che
known target range rate case is obvious: the observer will
attempt to construct the lobes sufficiently narrow and far
apart so that the reverberation lobes will not coincide at
all with the signal lobes, yielding com;>lete ~everberation
elimination. The ambiguity problem will be important here
as it limits the observer's ability to choose freely tﬁe
lobe shapes and positions,

If the chosen spectrum is successfui in eliminating
the reverberation then we can calculste the ambiguity

function AMB(u) using (4-21).
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FIGURE 4-6 SAMPLE n-LOBE SIGNAL SPECTRUM
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Then
n 1 ;
AMB(1L) = i ] g (x=m,) ej“r d:
n \{1 ) i -
i=]
n 1 2
|1 jmou ! juy
= e’ 1™ .+ g (y) e”™7 dy
i=] -1 '
2
- [ 6 w]| cw (4-29)

where Go(u) is the Fourier transform of go(x), and

n-l n

1

c(n) e’ 5| n + 2 cos(mi mj)u

=1 n im] jmi+l

(4=30)
is an oscillatory function consisting of all the intermodu=-
lation products, or 'beat frequencies' arising from the n
frequencies m. C(u) satisfies 0 < C(u) < C(0) =1,

The goal of the observer is to choose the function

go(x) and the set m, under the constraints imposed by the
known target range rate and scatterer Doppler spread, so

that R(u) will have no sidelobe levels above a permissible
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height., He must choose m carefully so that the white-noise-
only case is approximately maintained, and so that C(u)
remains small for all u up to some value where the "envelope"
IGO(u)I2 has dropped to the allowable sidelobe level, This
may or may not be possible depending on éhe constraints
imposed on m,

We consider the easily visualized case of a rectangu-
lar go(x), which drops to zero outside of a set band,
x| <\, so that IGo (W)| = sinc? (%&). Also, the probabile
ity density function of the scatterer motion is chosen
rectangular for convenience. (Actually, the only property
of p'(x) used is that it drops to zero outside of a given
band.) Using go(x) and p'(x) as shown in Figure 4-7a) and
b), the convolved version gp(x) is easily obtained and is
shown for two cases in Figure 4-7c) and d). From these
forms it is a simple matter to determine the target speed a
required to shift each signal lobe off its corresponding
reverberation lobe. Also one can infer how close the sig-
nal lobes may be spaced. The signal and reverberation.
spectra are superposed in Figure 4-8 for the case where

the reverberation interference will just be eliminated,
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FIGURE4-7 SAMPLE SPECTRUM, AND RESULTING REVERBERATION SPECTRUM
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FIGURE 4-8 NECESSARY a AMND LOBE SPACING FOR
REVERBERATION ELIMINATION
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such that any increase in the lobe width would cause some
overlap, This then illuminates the constraints that exist.
For any given a and y, we must choose A\ and each lobe

spacing Am = m Mg 1i=2,3,...n 80 tt?at

2\ +'yls a

sm, > a + (D+y)

my | < 10 , all i (4-31)

The last constraint on the size of each m, forces the lobes
to lie wholly within the processing band |x|<l. The first
constraint shows that if y>a (target range rate smaller
than maximum scatterer range rate) the reverberation cannot
be completely eliminated,

ex 4-2 Equally spaced lobes

If the observer places the lobes at equal intervals

so that m, = i-pm, i=0,+1,+2,...,+(n-1)/2, then C(1.) may

be written
yn-1) 2 2
1 7 jismu| _ |1 sin(namu/2 A
C(u) = = e l:n S—ﬁ#[ﬁsl:l (4-32)
i=-1(n-1)
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such that any increase in the lobe width would cause some
overlap., This then illuminates the constraints that exist.
For any given a and y, we must choose \ and each lobe

spacing 4m = m om0 i=2,3,...n 80 that

2\ +ya
Am12a+(2)\+'y)

m | < 1-2 , all i (4-31)

The last constraint on the size of each m, forces the lobes
to lie wholly within the processing band |x|<l. The first
constraint shows that if y>a (target range rate smaller
than maximum scatterer range rate) the reverberation cannot
be completely eliminated,
ex 4-2 Equally spaced lobes

If the observer places the lobes at equal intervals
so that m, = i-sm, i=0,+1,+2,...,(n=1)/2, then C(u) may

be written

}(n-1) e 2
C(n) = % b ejmm - l}"- ——LE‘;-H:(& 22] (4-32)
i=-3(n-1)
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scmetimes called the Fourier Series kermel (Guillemin[ZI],

pP. 485, Papoulis[13]

s P. 44), This function is sketched
in Fig. 4-9, and is seen to be periodic 2r/Am. For an even

number of lobes, omitting the lobe at x=0, we would have

1 2
- 1 sin[ (n+l)A 2
C(u) ;'f [ sin|Amu72i E IJ

which has the same periodicity, with slightly narrower large
lobes. In both cases the sidelobes are of height inversely
proportional to n and acceptably small, so that only the
periodic peeks need concern us. We must insure that the
function IGo(u)l2 is acceptably small for pu = 2r/Am in
order that this class of spectra be allowed. If the permit-
ted sidelobe height {s made equal to .5, then since sinc2
(\u/r) = 5 for \u = 1,39, we have the requirement on A and
A mg N (2r/om) > 1.3¢, 1If we push the constraints of (4-31)
to their limit and use A\ = %(a-y), (m=2a, then the condition

becomes

Fay)2r/2a = Z(1-y/a) > 1.39 (4-33)
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Thus if the clutter can move at speeds no more than 12% of
the known target speed then one may use équally spaced
lobes. Of course (4-31) also requires 2\ < a, and the
signal duration constraint places a lower limit on the size
of » (notes a spectrum width of 2\ implies a signal dura-
tion of order 1/2)\), so these results only pertain to the
case where a is sufficiently large., One must also keep in
mind that the above case yields a marginal situation. If
the acceptable sidelobe level were reduced to .4, for
example, the constraint on A and Am would be A(2r/Am) > 1.6,
leading to %(1 - y/a) > 1,6, which is obviously impossible,
Thus one sees that the equally spaced iobe signal has mar-
ginal utility except in special cases, and care must be exer-

cised in judging its performance.

ex 4-3 The RAFMOP Class of Signals
Signals of the RAMMOP class have very complicated

’ apﬁctra, because the frequency modulation 3(t) (see Figure

2-6) sweeps through its range of values more than once and
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in opposite directions, This causes phase interference

in the frequency domain, producing spectra with many
closely spaced lobes. The gencral form for IS(w)I2 is
derived in Appendix F for the case 5=0, and a sample spec-
trum is shown in Figure 4-10. A computer routine was used
to generate KAFMOP spectra, and showed that changing P or
5 can markedly alter both the number and spacing of the
lobes., For large values of P (desirable in order to achieve
a large bandwidth) the lobes are very close together and
spaced in a complicated manner (see Appendix F). Despite
the many narrow lobes this signal still has an acceptable
ambiguity function (at least in the white nnise case) as
discussed by Cook & Bernfeld[S’ P. 97].

Because of the complicated spectral forms for this
signal class, it would be extremely difficult to use RAFMOP
signals in an attempt to combat reverberation, since there
are only two degrees of design freedom (P and 5). The
nature of the lobe spacing could make the RAFMOP signal
useful only for very small target and scatterer speedé,
and even then there is no control over any ambiguity
problems that might arise in the absence of complete rever-

beration elimination., The observer should therefore avoid
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using RAFMOP signals, since they concentrate large amounts
of energy in small bands. For unfavorable target speeds at
least some of the signal and reverberation lobes will tend
to overlap due to the irregular spacing, causing worse
interference than if a flat spectrum had.been used,
Returning to the multi-lobe spectrum class of
Figure 4-6, for non-equally spaced lobes the periodic struc-
ture of C(u) can be destroyed, in hopes that these large
sidelobes will be reduced to acceptable levels, From
(4-30) the goal will be to prevent too many of the 'beat
frequency' cosines from adding constructively at any value
of u away from u=0, This requires that the beat frequencies
be in some way incommensurate, Considering the multiplicity
of constraints on the m,, no straight forward algorithm for
choosing m seems possible, Instead a trial and error method
was used for each pair 5, vy, selecting N and a permissible
m (for reverberation elimination) and determining the side-
lobe heights, until the desired conditions were met.

ex 4-3 Sample Result

Let a = ,1, v = ,05, and the acceptable minor lobe
height be .5, Then the constraints are )\ ¢ .025, Am > .2,

If \ = ,025 is actually used, then at most 10 lobes can be
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fitted into the band. The following vector m was found to
be satisfactory, with performance Ag also noted. (SNRF=1
since reverberation was eliminated.,) AMB(n) is sketched

in Figure 4-11,

E = [.9’.7,045,.2,0.,‘.25’-048’-082]

Ag = ,305 = -5,15 dR (4-34)

One can see by examining the differences mi-mj above that
there are several occurrences of /sm=,2 and .25. These
make up the major contributions to the main sidelobes

(at p=2r/Am, which here were u=8r and 10r). Only eight
lobes were used here, in order to allow more freedom in
placing them., The performance level Ag-.305 is very near
the level of .333 achieved for the flat spectrum signal in
white noise (see (4-25)). Thus the placement of several
narrow lobes across the band both eliminates reverberation
and achieves the same level of performance as the simple
broadband signal in white noise,

Other choices of m were made, and for slight shifts

of the lobes the function AMB(u) changed markedly, Therefore
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this scheme does not offer an easily implemented design
procedure, although with care the observer could indeed
construct such a signal by sending tones at the frequen-
cies m, either in rapid succession or simultaneously.

(The phase interference problem associated with the

RAPMOP signals would be absent since only different tones
are sent during the ping duration.) The important conclu-
sion here is that there exists a signal which eliminates

reverberation while yielding an acceptable ambiguity

function.

The trial and error procedure mentioned above
ylelded the results plotted in Figure 4-12, showing Ag
versus a, The sidelobe height permitted was set to .5
when SNRF=1 (reverberation elimination case). It can be
seen that for a certain range of values of a and v, A is
equal to or slightly above the flat spectrum in white
noise case (from (4-25) we had Ag-1/3--4.8 dB), so that
the effect of reverberation interference has been com-

pletely eliminated.* The regions in which this level is

* Actual levels of Ag vs o range + ,4 uB about the straight
line shown., The sfngle line is shown for clarity,
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attained have both upper and lower cutoffs, and outside
these regions the multi-lobe spectra class cannot be used,
due to excessive ambiguity.

1) «+=0,

The lower cut-off is not actually shown in the
figure, 2s it is determined only by the minimum width of
each lobe, which depends on the signal duration constraint
(see discussion on page 4-26), and in practice would be
very small, Since the ratio y/a is here equal to zero,
we can always use equally spaced lobes (see example 4-2).
2) +40,

The lower cut-off now occurs when 2o approaches vy

in value, for then A must be made small in order to keep

the signal and reverberation lobes separate (see first con-

straint in (4-31)) and a smail A gives rise to exccssive
ambiguity. The upper cut-offs occur when only a few lobes
will fit in the band with the proper spacing (see second
and third constraints in (4-31)). when only a few lobes
may be used, there is little chance of choosing m so that

the beat frequencies will interact sufficiently to keep

C(u) small. It is indeed possible to find 3 suitable lobes

for some a and vy, but as a increases this ability finally

disappears.
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Beyond these cut-offs one must turn to different
kinds cf signals. Since the reverberation can no longer
be completely eliminated, the SNRF will be reduced. With
a smaller signal-to-noise ratio the allowable ambiguity
sidelobe level will have to be reduced, since gross errors
will become more probable (see Figure 2-3). Consequently
only signals which inherently have iow ambiguity levels
will be usable, The most promising of these is the flat
spectrum signal discussed above, and its performance dis-
played in Figure 4-4 is reproduced in Figure 4-12 with
R=100 as before. (Note: the multi-lobe spectra perform-
ance in Figure 4-12 applies for all levels of R since the
reverberation has been successfully avoided.) The value
of Ag is about 13 dB lower for the flat spectrum signal
than for the multi-lobe spectrum with the reverberation
eliminated., This is a significant change in the perform-
ance level, and shows that proper signal design with the
knowledge of the target range rate can yield greatly im-

proved range estimate accuracy.
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CHAPTER 5

Conclusions and Proposals for Further Research

The basic motivation for this research was a desire
to see what could be done to improve the target locating
abilities of active sonar in a reverberation-limited en-
vironment, The examination was enlarged to include improve-
ments attainable if the observer could send a sequence of
signal bursts, and alter successive sonar waveforms to
take advantage of information already gained. Thus the
problem was naturally divided into two categories: a)
estimation accuracy in the presence of colored noise, and
b) effect of several pings and of the interping elapsed
times. An additional effect was examined: the degrada-
tion of the estimator when the observer must wait after
receiving the data before making use of it: i.e., it was
asked: what is the accuracy of the observer's estimate
of the target's present location given data taken o seconds
in the past?

The approach taken was based on the inverse proba-

bility principle, which was used to derive the estimator
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for a single ping received in the presence of colored
gaussian noise., The estimator was shown in this case to be
a prewhitening filter followed by a filter matched to delayed
and Doppler shifted versions of the transmitted signal. The
inverse probability approach instructs the observer to exam-
ine the filter output for each possible pair of values
(delay and Doppler shift), and to choose as his estimate
that pair having the largest output,

The estimate accuracy was evaluated for the large
signal-to-noise ratio case in the manner used by Kelly,
Reed & Root(6), which relates the estimate error variance
to the curvature of the inverse probability function at
the true value of delay and Doppler. The applicability of
this method was examined, and a probability of ''gross error"
was defined, being the probability that the inverse proba-
bility function would not peak on the main ambiguity lobe,
If a gross error occurred the estimate error variance mea-
sure did not apply. This probability of gross error was
approximated and shown to depend on the signal-to-noise
ratio and the relative heights of the ambiguity function

sidelobes. That is, for a preset value of this probability,
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and a known signal-to-noise ratio, a certain ambiguity
function sidelobe level was permissible. The highest side-
lobes could occur anywhere in the delay-Doppler plane.

Assuming that a gross error did not occur, the
error variance measure was adopted, and was extended from
the Kelly, Reed & Root formulation to a form much more
easily dealt with, It was shown that the various estimate
moments that arise may be expressed in the form of central
moments with respect to a density function P(w), see (2-37).
This function described the errfect of the noise properties
as well as those of the signal spectrum, and its shape de-
pended strongly on the true target speed. The effect of
the target speed was to shift the signal and noise spectra
with respect to one another along the frequency axis, an
effect which has great significance in combatting reverbera-
tion,

The analysis was then extended to the multiple
ping, elapsed time case, and the important case of two
pings was considered in detail. The general expression for
the range estimate variance at time t seconds after the

second ping was found as a function of the individual ping

B-140

—— I = — S "




performances, the elapsed time between pings, and the wait
time tw. It was shown that the wait time, if sufficiently
large, could cause severe degradation of the range estimate.
The degradation resulted from the imperfect range rate
knowledge, since as time progressed an error in the range
rate estimate would adversely affect the observer's extra-
polation to the target's range at a later time. This de-
gradation could be ameliorated, however, by using a long
inter-ping time. This long time between pings effectively
separated the roles of the two pings, making the first an
estimator of target range rate, and the second an estimator
of target range. In this way the first ping effectively
reduced the region of the ambiguity plane to be considered,
so that the wait time following the second ping had only a
small effect on the range estimate accuracy. For the case
of white noise the optimum individual ping design parameters
were found, and the optimum amount of correlation between
the estimates of range and range rate was calculated. In
many cases this correlation should be as large as possible
(a conclusion very different from that when no elapsed time

considerations are made), and thus signals such as the

B-141



linear frequency modulated chirp would be very useful. In
other cases little correlation is desired, and a signal was
introduced that permitted an adjustable amount of correla-
tion, The use of two pings as opposed to a single ping was
considered, and it was shown that two pings could signifi-
cantly improve the final range estimate accuracy, especially
if long wait times were required., In the white noise case
adaptive signal design did not apply under the assumptions
used, for the knowledge of target ranze or range rate ob-
tained approximately from the first ping was of no use in
redesigning the second ping. The optimum second ping was
indeed different from the first ping, but the observer knew
which second ping to send before the first ping was sent,
The problem of combatting reverberation (clutter)
interference was then considered explicitly., The spectrum
for a process consisting of white noise plus clutter was
derived in terms of the transmitted signal spectrum, using
a scatterer model of Van Trees, and the estimator perform-
ance was evaluated in terms of this spectrum, It was shown
that when a long interping time was used (so that the first

ping should be used for range rate measurement), the first
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ping should be very narrowband, so that even small target
range rates would be sufficient to shift the signal spectrum
awvay from the reverberation spectrum., The degradation due

to reverberation was then eliminated, and only white noise
interference remained, The very accurate range rate estimate
that resulted had two important effects: 1) the interping
time required to cause the separation of roles of the first
and second pings was reduced, and 2) the knowledge of target
range rate could be put to excellent use in the design of

the second ping. 1t is in this sense that the signal design
is adaptive, for the observer must wait until the first ping
echo has been processed and an estimate of range rate has
been made before he can select the best second ping., Over

a wide range of target and scatterer speeds it was shown

that a signal consisting of several tones could eliminate

the effects of reverberation. Such signals have multi-lobe
spectra, the lobes of high power density being separated

by frequency bands of very low power density. The target
speed caused the signal and reverberation spectrum lobes

to be disjoint and interleaved, so that the reverberation

had no eifect. The tones had to be chosen carefully so that
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the signal had an acceptable ambiguity function. When the
target and scatterers were moving with nearly the same range
rate, or when their range rates were very large, no accept-
able multi-lobe spectrum was found due to excessive ambiguity
problems, and a more conventional signal had to be used,

Hence the effect of reverberation could no longer be eliminated,

and performance was severely degraded. It was shown that the

estimate variances of signals commonly used in radar and

sonar systems could be increased by about 100 times due to

strong reverberation., Thus the multi-lobe signal, when appli-

cable, could significantly improve the estimate accuracies,

Recommendations for Future Research

Probably the greatest single fault of the analysis
presented here is the simplicity of the models for the tar-
get and transmission medium. The assumption of a point
target and a single-path transmission is not supported by
actual measurements, and the true ocean situation can lead
to severc degradation of performance due to multi-path
arrivals of the target echo, The estimate accuracies cal-
culated here turned out very high, and it is believed that

the simple model used was the cause of this, The model was
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chosen for its mathematical tractability, since the multi-
path situation is extremely difficult to analyze. Future
work should consider extensions of the analysis here to two
or more transmission paths, as well as two or more target
reflection points, or "highlights.," This could alter the
conclusions concerning the signal design problem for ciutter
rejection, although it is not believed that the conclusions
concerning elapsed time and interping time would be signifi-
cantly changed.

Only the case of a target moving with constant
course and speed was investigated, while the interesting
situation where the target can change course after the first
ping was not examined., This could well lead to rather dif-
ferent conclusions about the effects of two pings over one,
and the effects of waiting time.

The reverberation model could be extended in several
useful directions. It would be interesting to know what
effect correlations between scatterer motions would have,
to see if schools of fish would generate radically differ-
ent clutter rejection problems than clusters of randomly

moving scatterers, The difficulty in distinguishing a
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coherently moving school of fish from a true target (with

multiple reflecting highlights) could then be investigated.
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APPENDIX A: Discussion of Target Motion Geometry

We consider the configuration shown in Figure
A-1, where the target is assumed to be located at range
r, at t=0, and is proceeding at speed vt'at an angle
a with respect to line L.

The range to the target is simply described by

r(t) -N[(ro-tvtcosa)2+(vtt sina)2

= |ro + votl (A-1)

wvhere v_= =y os a
5 ¢ cos

so chosen to make v, positive for receding targets.

The approximation used in (A-1) is clearly valid as long
as the target is sufficiently remote so that the distance
travelled perpendicular to L is always small compared to

the distance remaining along L.
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FIGURE A-1 TARGET MOTION GEOMETRY
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APPENDIX B: /pproximate Probability of Gross Errors

1. The Statistics of IKLG)I2

From (2-24) we can write |K(01)|2 as
2 2 2
IK(8,) | = SNR|G,o|” + 2Reg D G, N'*(8,) + N'(8,)| (B-1)*

where Do - D(Oo)
2.2
SNR OODO

G10 L G(OI,OO)

N'(Ol) -

L n(e)s*(w-w)edT @ _ 1 5 Py Syc* (6,
ICH) N(2) 2r "By L TR
k

and the n, are independent gaussian random variables, with
independent real and imaginary parts, each with variance
N(wk)/ZT. For the large signal to noise ratio case, we
can neglect the |N'(91)|2 term. Then |K(91)|2 is the sum
of a deterministic part SNR|G10|2 and a zero mean gaussian

part. Hence

2 ¢ 2
E[R(8;) | = SNR|Gy | (B-2)%k

L .
|20' =°° ’
¢+* E is the expectation operator
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The covariance c12 of two distinct random variables

|K(® )I2 and |K(® )I2 may be calculated as follows:
1 2

¢, - B[[ 1K(9,) 1 2-5R1 6,01 2] [ 1%09,) 12-5:16,12] |

- uERe [ g,0,6)oN'" (8))]re | ﬂo"oczo“'*(ez)]

-E %chmczo“’ (OI)N‘ (8,) + E["’ |"D Gloczz
* ' (B-3)
N'"(8,)N (ezﬂ
+E |g°| 2, c10 20N (el)N' (8,)
+E o, *2p25 *g N'(9 IN'(8,)
o 10 20
which makes use of the identity ReA = % (A+A%*) . Now
n,n, s *(9 (9
. 5 - 1 iy i j_-— -
EN (OI)N (92) D(gl)D(gz) }; zz N(wi)N(aj) 0
1 (B-4)

since A, = 0. Similarly for zn'*(el)N'*(ez). On the

other hand
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n.n * s *(9 )s,(9,)
. * . 14 "1 17742
EN'(8,)N' " (8,) }; Ej D(8,)D(8,)N(x,)N(x,)

b
(B-5)
*(0,)s, (8,)
8
2T D(0.)D(6,)N(w,) 1°72
1 2 i
Combining the results,
o 2.2 * % *
C12 = 906 (610820612 * 6106206 2)
(B-6)
* &
= 2 SNR Re(GloGlzbzo)
Thus |K(91)|2 has variance (use 92-91 in (B-6), and Gll-l)
var |K(8,)|% = 2 sSNR|G, |2 (B-7)
1 10
I1f we consider the correlation between |K(OPI2 and the
value IK(OO)I2 at the true peak, we have (use 92-90)
C,. = 2 SNR|G, |2 (B-8)
10 10 .
The correlation coefficient is then
C
p = 2 = 16,,] (B-9)

2 2
Jv.:lx(eo)l VarlK(Ol)l
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Thus the random variables x-|K(Oo)|2 and Y‘|K(91)|2 are

jointly gaussian with moments

Ex = SNR, Ey = SNR p>

var x = 2 SNR, var y = 2 SNR 02 (B-10)

so that their joint distritution is

—_— _-1
- 2 11 1 ey 2
P,y %+¥) [Z"ZSNR.” \’l'p _l xR [' 2 2SNR 1--2 [‘x SNR)

~2(X-SNR) (y-n>SNR)

+ & (y-pZsim)? ]]
p

(B-11)

2. Calculation of the Probability that 'K(GL)IZ Exceeds

k(o) |2
The probability that y exceeds x is the total weight
of px’y(x,y) in region II given by {(x,y):y>x} . We have
the line y=x and the function px’y(x,y) of Equation (B-11l).

To simplify these we use the following transformations:

I. Translation and Normalization:

x' = (x=-SNR)/ANZ SNR (B-12)
y' = (y-p2sNR)/p [T SKR
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II. Rotation of Coordinates in order to make the random

variables uncorrelated:

{ x"g - 1 1 J x'!

II1. Renormalization:

=

o ,

. N ) A

el
| I-p

These transformations result in the new probability

density function

2, 2
Pg q(Es) = ';?F e "H/2(E7MT)

and in the new line describing the border of Region II,

M¥p n=JI-p ¢ +.SR \,l-pz

This line has distance § from the origin.

The distance 5 is found by simple trigonometry to be
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oo BR[|y .2 (B-17)

Due to the symmetry, the probability that (£,n) lies in

Region II is easily found:

Pr(IK(8,)1%>K(8,) %) = Pr((g,n) ¢ Region II) =

= @ (-0) (B-18)
5 2
where (@) (x) = l,_;_— [ e (B-19)
Ve

is the normal probability integral, with tabulated values[lzl.

3. The Case Where Several Sidelobes are Significant
I1f there are 2 large sidelobes instead of only one, we

wish to examine the effect this has on the probability of

a gross error. We call the random variables
x_ = K%, x, = k@)%, x, = |K(s,)|> (B-20)
o o 2 1 1 % 2 2
and denote the events

A = event that x1 > xo

(B-21)
B = event that X, > xo
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(18]

Then using standard set theory notations, we have for

the probability Pe that a gross error occurs,

P, = Pr(AUB) = 1 - Pr(~A/~B)

. (B-22)
= 1 = Pr(~A)Pr(~B/adA)
Now due to the specific nature of the events A and B, it
is clear by inspection that
Pr(~B/ad) > Pr(~B) (B-23)
so that
P, = 1 - Pr(~A)Pr(~B/A)
<1l = Pr(~A)Pr(~B) (B-24)
= Pr(A) + Pr(B) (B-25)

the last form being a valid approximation when the
probabilities are small. Thus Pe is bounded above by

Pr(A) + Pr(B) for any degree of correlation between the

x's. The bound would be reached if the x's were indepgndent.
It is obviously bounded below by the larger of Pr(A) and
Px(B), since it is more likely that either A or B will

occur, then that only one will occur.
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This analysis may be extended to n sidelobes in

a straight-forward fashion, yielding

n
n
P S1- (oPrap) b ) Prap
i=1 '
2
for events Ai= X; > X, each x, = IK(Oi)I , where the
last equality is true for Pr(Ai) < <1, i=1, 2,...,n

L] L] [ [ ] L ] ] L) [ ) L o L . L ] [ ] L] K L] . .

2. Derivation of the Form for p(68/y) of Eq (2-31)

From (2-29) we have the expansion
|K(0)|2 =K +K (r-r ) + K (v-v_ ) - l'A(r-r )2
o T o v o) 2 o

-B(r-ro)(v-vo) - % C(v-v°)2 + teee

By setting g;-IK(G)I2 and %;IK(O)IZ O zero we can see

that IK(G)I2 is a maximum at OP-(rp,vp) given by

- 1 -
Y r, + S (KrC KvB)

<

[ |

<

+
>3 [o]

(KVA-KrB)

(Note: it is shown in Appendix E that A and A are always

positive. Thus we are assured that the above point is
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indeed a maximum.) By straightforward algebra, substituting

for TV, in (B-27), we can rewrite (B-27) in the form

2 o 1 2 2
K o - k. - o= [A - - - - ] -
|K(O) | o~ 2 (xr rp) +2B(r rp)(v vp)+C(v vp) (B-29)
where
' - 1 2_ 2 -
ko ko + EZ' A Kv ZBKrKv +C Kr .] (B-30)

Since we are going to use (2-14) to form p(@/y) which is
a probability density, the constant term k; will not
affect the shape of p(8/y) as a function of r or v, and
so may be incorporated in the normalizatior constant k
of (2-14). The remaining terms may be conveniently

written using matrix notation:

ACe-r ) 242B(er ) (vv 4G (v-v ) = (80" | B] (8-6_ ) (B-31
rr, (r ry) (V=v, vevy B B cl p) (B-31)

which is the desired form for (2-31), with

0-9 = ( r'rp(( (B-32)

V)

AN
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APPENDIX C: Derivation of the Ellipse Parameters

We wish to determine the forms of the second derivative
texms A, B, and C given by (2-29). We first find these
forms for derivatives with respect to 1 and w, and then
convert finally to those with respect to r, v. Naming
the forms for convenience:

2
--L- 2 =
a 32 lc(e,eo)l le 6,

S 2|gas (c-1)
Srow [6(8:6,)1716=8,

2
) 2

c w —= |G(6,0 )| le-e
awz "o o

with c(e,eo) given by (2-23)

S(wnwo)s*(w~w)ejw(1-ro? a0

1
G(e’eo) - D(G)D(GO)J[ N(w) 2w
(C-2)

This is conveniently written in the form of an inner product,

which will greatly simplify the ensuing derivation:

G(6,6 ) = (H_ ,H,)
"o 0'°6" g 158
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with Ho(w)-Heo(w), and

-j(nf
Hy(w) = S(ov)e (c-3)
D(6 N N(w)
The inner product form is given by
.f * dw * 4
(B ,Hy) = [B (®)Hg(e) 52 = (Ho,H.) (C-4)

We note in passing that G(eo,eo)-l, and that by the defini-
tion of D?(6) of (2-19), WK %= (H,,H )=1, for all 6,

Consider the result of taking derivatives with respect to ¢

L 1(H 1 ) 1% = 2 Re (H_,H)(H_,H)"

2 . oo
T .

Y - H (o =
with He(w) = He(a). Then at 6 6, we have

"2bmwm”2+”(“m J (C-5)

(o R ot 4
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wvhere Ht(m) 3 He(w) e'eo. The following argument is used

to show the relation

Re(H ,H_) = - [lH_|I’ | (c-6)

Derivation:
1, (He,He) =1 for all 6.

2. Thus any derivative of this term will vanish:

—g;(ue.ue) = 2 Re (H,H)) = 0
3. Likewise for the second derivative:
2Re [(He,ﬂe) + (He,l{e)] =0

4. So that at 9--9° we hawe the result (C-6)., qed

Similarly one can show the following identities:
2
1. Re (H,K_) = - [IH ] (c-7)

ii. Re (“o’Hﬂv) = - Re (HT,H')
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These identities allow one to write only first derivatives
of the He(m) terms in the expressions for a, b, and c. Thus

for a?
o -2 [Imi2 - jonm) 2 (c-8)

Similarly, for the remaining two parameters, one can show:

be-2|Re (H,H) - Re (“o»“u)(“o'“r)*]

A}

c = - 2[ M2 - 1ty 1] (c-9)

To discover what these forms mean in terms of the signal
and noise frequency functions, it is necessary to calculate
the expressions for Hr(w) and “w(m)' 1t is convenient to
separate the component D(6) from the rest of He(w) since
D(6) depends only on w, and derivatives with respect to w

must be taken, We define

Hy(@) = g, (w) D(6) (c-10)
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S(w—w)e-jm

JN(w)

so that ge(w) =

Thus by inspection,

H (@) = ;—o (-Jag, (o)) (c-11)

where we call D(eo)-Do. and geo(w) - go(w).

*

2 Jp? Sl 'ZReSLw-@é(a)fw‘ de
'g? LORE-DLNORS 5057 J N o
so that at eo it becomes
1 .
$PO) g = - 5 Re(gy8y) (c-12)

Hence we have for Hw(w)t

H (@) = g (@) - g (o) S5 & 01

o D
o
) S 1 Q
-3 [ g, (@) - ;—2 8, (®) Re(so.go)J (C-13)
o]
(o]
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Now combining the expressions to form a, b, and c?

2
1 2 1
Z[ﬁ llog, I~ - |D—2 (so.ws°)| J (C-14)

0 o

be- 2&[# (-sto.éo i ;-1'580“(80’&‘,))
o o

- D—la(go’éo o ;_l-z'goh(gooéo)) ('J“’Booso)]
o o

2Re [D%(-ngo’é") + ;17('.1‘”80:80)33(80’&0)
0 (o]

- B%;(so.éo)(-jwso.so)
o

- D—l-g(so.so)ne(so.éo)(-sto.so)] :
o

1 . 1 :
- -2 [,l;_z,lm (wgo’go)- D—EIE(SO:BO)(“’BO’BO)]
o o (C-i5)
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where the last form is obtained by noticing that in the

middle form the second and fourth terms cancel since

(8,:8,) = 2. Also, e use Re(-jog ,8,) = Im(wg ,8 ).

o
Finally,

LA L 1 * 2
c 2[0 zllso + Fsoke(so.so)!l
o (o]

l‘Dl—z(so.éo +—= n —=58,Re(g .s°)> I_J
o]

l .2 2 3y ;.2 . 1 .
-2 ;—i-llgoll - er (gc\’go)'l'D_Z(go’go)
o o o

1, 2 1 2
I Z[D—zllso!l - | o2 (8,:8,) | J (C-16)
o o
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P— =3 | [ ] T

| s |

Now these simplified forms may be written in terms of S(w)

and N(w) by using the definitions in (C-10):

waIS(w'wo)'z do fwls(w'"o)'z a |
&i=i=)2 2 o 2 2
D, “N(w) D, "N(w)
ok o
. 2[ Imf wS(w-wo)S (w-wo) do _ 0 s(w-zg)s (w-wo) g—m
p 2@ D, “N(w) ¥
2
L] g
DozN(w) 2r
. ° 2
'S(w-wo)lz T ' s(w-wo)S (w-wo) do
cC= « 2 -— - o——
f DOZN(w) 2 f DOZN(w) 2T
(C-17)

The remaining steps are simple!

1. Make a change of variable by translating w by amount We
Then expand the integrands (the terms such as (w-mo)z)
and note the cancellations between integrals. These

steps make N(wl-wo) appear in each denominator.
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2. Use the chain rule for derivatives to convert from

derivatives in 1 and w to those in r and v. That is,

(see page 2-3)

é/br -'%:-gi -'%:i/ar

o - LB . Ry (c-18)

3. Use (2-29) to add the appropriate constants, thus form-

ing the A, B, and C expressions given in (2-33).

Simplification for the White Noise Case

When N(w)-N° for all w, Do2 becomes equal to

ZE/NO, with transmitted signal energy defined by

2E -Imz(c)dc -j |s(w)|2%r’- (c-19)

This follows directly from Parseval's theorem (Papoulis,

P. 27). The terms remaining in B and C of (2-33) may be
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simplified by suitable Fourier transform substitutions, as

follows: (Helstrom[7] p. 18)

1 jo?|s( |2% HOIKT

2) fwlS(w)IZ% - Imfs*(t)é(c)dt

r [ ]
3) JlS(w)IZ%- tzmz(t)dt

K
OIn/s@s @ = [¢ nl(e)de

, oK .
5)19/0JS(GOS (w)%% - Iq/is*(t)s(t)dt (Cc-20)

The derivative definition follows from the transform defini-
tion.,
*
Vet

é (w)= iét sk(t)e dt (c-21)

Using this in #4, for instance:
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fs@)é*(«»)% - %’- dt t s(t)e I [dugw(uyped™

- Jja“(t)fdu us*(u)f%‘:r.’eﬂ“?(t-u)

- §/t|s(t)|2dt (C-22)

which is valid if the integration order can be reversed,
(requiring mild continuity properties of s(t)), and which

makes use of the "equality"

fej“’t -‘2‘—:’ - 5(t) (C-23)

for the Dirac delta function. Although this equality is
open to question on grounds of rigor, its use in an integral
as in (C-22) rests firmly in the theory of distribution,
(Papoulis,[13] P. 269). The derivations for the other
equivalences in (C-20) follow in the same way. However,

for #5 some more discussion is merited:
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\[d:s(w)é*(w% -f-‘zl—:’ w S(w)fj t s*(t)ejwt de

-fat ¢ s*(t)f% § o s(w)ed®t (C-24)

and the inner integral is recognized as s(t). The imaginary
(7]

parts are then taken to yield #5., Helstrom arrives at
the same result (p. 18)(with a misprint of a minus sign in
his Eq. (5.7)), but this form is considered much aimplerQ*
The forms above are finally simplified by using
s(t)-m(t)ejw(t), taking derivatives, and sorting out real

or imaginary parts., For the mean square frequency deviation

in #1 this gives
fw2|S(a>)|zg—:) - j,;.z(c) dt + [m2(t)p3(t) dt (C-25)
T T

showing that it consists of portions due to envelope.

derivatives and phase derivatives,

Note: B used here has the same sign as Helstrom's b,
P. 21, since his ellipse is at2-2btwicwlel and w is nroe-
portional to -v.
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APPENDIX D: Equivalent Signal for Matched Filtering

From (2-18) K(6) is a filtering operation on the
received signal with spectrum Y (w), where the filter has
transfer function as in (2-20). But as far as the value
of K(6) is concerned, the input could be the signal with
spectrum Y(w)/slm, passing through filter with

characteristic

1 S¥(w-w) D-1
DZGS f__N(w) ( )

Then the definitions of duration and bandwidth suggested
for (2-34) to (2-36) apply directly to the signal part of

this new normalized received signal. This makes the

colored noise case identical to the white noise case with a

new transmitted signal,
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APPENDIX E{ Derivation of Unified Forms of A, B, C
Here it is indicated how (2-41) follows from

(2-33). The forms for A follow directly from the substi-
tution of the operator form in the (2-33) version. The
others arise as shown now.

Use S(w)=|S(w) le”(w) and thus é(w)-IS(w) lwe“(w)
+j |S(w) l;(w)ejv(w) to expand B and C in (2-33), where

L Is(@=s(@) | ¢

2
|s§w2| a_»,a_g ) do | [w]S(w) ] dw
B = kQ SNR P f 2 27
D N(uﬂw ) Do N(wl-wo)

15(2) 1232(e) da

2 2r
Do N(a>+wo)

Ce= kQ S f IS(w)l +|S(w)| "’ 2(‘”) do

D, N(wc-w) o
2° 2
f IS(w) | |S(w)] =3 |S(w) | ¥ () do
D 2N(wt_) “r
d (E-1)
B-171

SRR



Now using the definition a(w)=|S(w) |‘,/|s(“’)| and substi-

tuting P(®) for its (2-37) equivalent:

B = -k sm[fai(w)l'(m)%’ - [pe@o £ fr(«»)&(w)iz‘%}

¢ = kQ? sm[fr(w)[.z(w) + iz(w)]%

- [/r(w) a@)-3¥(@)|§2

2]

Expanding the squared magnitude term, and resorting terms

yields (2-41) exactly.

To show that AC-B2 is positive one need simply

write it as

ac-B2 = k2Q?(snR)2

5

LWTD) -¥) = (0-B) (¥¥)

2 . %
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The first term is non-negative by the following argument.

(17]

(See Cramer P. 263)., For any values t, u, the follow-

ing function is non-negative:

-2 — _—
0< L“’-@) + u(v-;ﬂ - 1:2(u>-&>)2 + 2tu(w-_¢i>)(;-v) + uz(v-.v)z
(E-4)

and so this is a non-negative quadratic form in t,u., Hence

the matrix:

2

(@)% (@-3)(¥=¥)

- o % s v 2

(w=w) (¥=¥) (¥=¥) (E-S)
has a non-negative determinant, q.e.d. The second term in
(E=3) is a product of two terms which are positive by
inspection, since (w~cT>)2 and (a-‘i)2 are positive functions

of frequency.
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Appendix F: LIFMOP and RAFMOP signal examples

I, CALCULATION OF THE ELLIPSE PARAMETERS

For the white noise case, the ellipse parameters

are found using (2-34)-(2-36) and the time domain equivalent

forms given in (C-20). By the definitions of these signal

forms, both epoch and center frequency are zero.

. .
A = k WSNR %E f Lmz(t)-hnz(t:)qaz(t)] dt
T

(F-1)

B = kQ WSNR 3= f em? (£) (t) dt
T

Cs= sz WSNR %E' /\tzmz(t)dt

T

For both classes of signals, the envelope roll-off is

given by

o(t) = %-mo(l-coa ﬁ% (t-d/2)) |t|e(d/2(1-wn),d/2)

(F-2)

- 2T ..
L sin d (t-d/2)

so that the envelope derivative contribution to the band-

width is given by
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d/2

[m (t)dt = 2( > f si.n2 Ez (t-d/2)dt

—(l-u)
(F-3)
m 7T \2 ¢
. - ud
ud> 2
The signal energy is simply given as
2E = [m (t)dt = m, d(l -5u/8) (F=4)

For the LIFMOP signal the calculation of A, B, and C is

awkward but straightforward, and yields,

2 2 2.2
1 LA L P-d 3 9p 2
A = k WSNR = 2E 7nd + 3 (l1=p)~ + e I
2P
B=kQ WSNR l:— Pd (1l- u.) + = I:I (F=5)

3
C = k Q% WSNR 25 [-%moz (-g) (1-p)3 {I

T
A= AC- = (k Q WSNR/2E) < > <3 m (-) (l-u.) +I>
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where
d/2
1=2 f t2n?(t)dt = 3 m°2d3+0(u2) (F-6)
(1)

We have evaluated I only to terms of order u since the
envelope roll-off lasts a small fraction of the signal
duration. Now simplifying the above expressions, and

keeping terms to this same order, we obtain,

| 2
A=k WSNRI_ ; dz (1+5u/8)+P2/3 (l-Su/Z;] +O(u2)
" -

B = K Q WSNR [Pd/6] (1-5u/4)+0 (u?) (F-7)

k Q% wswk [d%/12] (1-su/a)+0(?)

(]
a

(>
8

2
(k Q wsm)z[ﬁ-&](l + g—;‘-‘ ) + 0(u)

Thus, for un << 1 we have the forms given in (2-42).
A is independent of the frequency modulation P, depending
instead on the envelope shape. The terms involving P have
cancelled out because they were of equal size in AC and 82,

a property peculiar to the LIFMOP sigial, as shown below.
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For the RAFMOP signal B2 is much smaller, and there
is no difficulty with A. Thus we may ignore the envelope
roll-off in all calculations except that of the first part
of A in (F-l). 1Igroring the roll-off makes A independent
of 6. For the B term we must compute the integral over
each segment of 6(:) separately. These calculations

finally give for the u << 1 case: (note: |3‘|.S 1)

2
A = k WSNR r %—]
L-Zud
B = k Q WSNR [Pd s (2-416|/d) (F-8)

¢ = k Q% WSNR d2/12

(>4
|

= (k Q WSNR)? [;411 [1 16( ) (2- albl/d)J]

The calculation of B is done for 6 > 0, and then the 6 < 0

case follows by inspection. A has a term in P2 which is

positive for all permissible 6.

I1. PROOF THAT THE LIFMOP SIGNAL ATTAINS LARGEST B FOR FIXED A
Neglecting the envelope roll-off and considering

class of o(t) such that the center frrequency is zero:
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[ oerae =0 (F-9)

then,

A= Kl.[ c'pz(t)dt, B =K, [t&)(t)dt (F-10)

(19)

and we can use the Lagrange parameter method page 151.

1) define J = B \A = ~/\ Kzté(t)+%K162(ti] dt

2) Differentiate with respect to o and set to zero:

Ryt + nxlé(c) -0

so that

o(t) = =(K,/2NK))t

Thus o(t) must be linear in t, which is indeed the LIFMOP

form.

III, THE RAFMOP SPECTRUM

We consider the case of 6=0 and neglect the envelope

roll-off. Then the RAFMOP signal has the Fourier transform:

d/2
S () - o f ejq’(t)e-jwtdt (F=12)
-d/2
Pt (14+2t/d) t<o0
where o(t) = (F-13)
Pt(1-2t/d) t>0
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Since (9(t)-act) 1is odd, S(x) is purely real:
d/2
2P .2 '
S(e) = 2m° | cos| 3= t“+(«-P)t | dt (F-14)
0

This integral may be evaluatéd in terms of Fresnel integrals
(ref. 12, p. 304, eq. 7.4.38)

X

FC(X) - { cos (212!- t2> de (F-15)

X
FS(X) - j; sin <§ t2> dt

The integral is given by

S (a) -J%‘El I:cos (3 *a-n?) [rco(xﬂ»-rc(y(x-l))]

+stn(F 2een?) [rs<7(x+1)>-rs(7(x-1))]:]

(F-16)

where y = J'P'anvr and X = «/P. Finally, the spectrum is
!'S-(cc)lz = sz(w). It is easy to show that the Fresnel term
differences Fc(y(xﬂ))-l-‘c('r(x-l)) and l-‘s(y(x-i-l))-l-‘s(y(x-l))

are nearly constant over the sigral band |x| {1, and then
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drop rapidly to zero. Thus the RAFMOP signal is significant
only for |a| { P. The sine and cosine terms oscillate
rapidly over this band, and when a’(x-1)2 = (2n+3/2), n=0,
+l, +2,.... they are equal in size and opposite in sign,

causing a null in S(ae). Thus S(«) has nulls approximately

at

x =143 \’2n+3/2 (F-17)

n

~
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APPENDIX G

l. Proof that A and C are Maximum for White Noisgse Alone

Consider noise spectra of the general form
N(®) = N_+LN () (G-1)

For any positive function, say Gz(w), the inequality is
obvious:

2 2
/e g | F2F (6-2)
o r o

For the ellipse parameter A, (see 2-41), Gz(w)-(w-B)ZIS(w) lz;
for parameter C, Gz(w) - [(a-:)z + (Jz-v.:)z] |S(w) !2; and for
SNR, Gz(w) = |S(w) |2. Consequently each of these is maximized
wheg L=0, This is not so for B, since the function (w-'cB)-
(;l-i./) IS (w) |2 is not always positive.

2. The Uncertainty Principle for A in White Noise

Helstrom (7) (p.20) uses Schwartz's inequality to show,

1 r22 o 2do [/ 2 j 1
(ZE)Z ,;J t“m (t)dtJ w® |S(w) | > - [JM (t:)tcb(t)dt] 2%

(G-3)

But from (2-34) - (2-36) A, B, and C are proportional to
these quantities when center frequency and epoch are zero, so
that when the constants are included, one has A = AC-B2 2%
(kQ WSNR)Z,

B-181



P

g

Helstrom has shown (p. 21) that the equality holds only for
gaussian signals

2
8(t) « e~ (atib)t a>0 (G-4)

which exist for all time., Now from (3-20) pz-leAC so that
the uncertainty principle asserts

1 - p? > F(kausNR)?/Ac (G-5)

Using the definitions of dispersion bandwidth and duration
of (2-34) and (2-36) we then hav:

2 1
p <1- 2
(2 bandwidth°*duration)

(G-6)

Hence for large values of the bandwidth-duration product the
upper limit approaches one. This limit can be attained by
using the signal of (G-4).
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Appendix H
Approximate Calculation of C for a Motionless Target

We assume that the signal has the form

1 -1/2(t/4)

s(t) = m, = (H-1)
J27d
8o that
-1/2 (d) 2
S(w) = m e (H-2)

If the probability density function of scatterer doppler

shifts is also gaussian

1 -1/2(w/9)?

P, (W) = (H-3)
N £&T
then using (4-10) we have
> 2 2 2
IS(w)lz | Jf e-1/2(x/8) -d“ (w-x) dx
P ° J 278 F
2 -(wd)2/7
=m “Jy e (H-4)

where

y=1+ Z(Bd)2 .
We note that for the motionless target case w, - 0 the

function
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N(w)

is odd, so that the second term of C in (2-33) vanishes,

leaving only

2.4 2 -aldl
a e

m d
C= sza: Jf <

2.2
2 _~a"d"/y
A%Nre AL

do
2r

(H-5)

Now if the reverberation level is much larger than N° over

all frequencies for which IS(a:)l2 is significant then we

may find an approximation to the value for C by deleting

the No term.

2
C=k Q20:~f77A a* /‘wz e (@) (1-1/7)

ot

2 2 2
N kQ g, [1+2ggd22 !
e 28d
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APPENDIX 1
Form of J

To find the for;n of J we analyze B'ZIA'. Using (3-14)
we have for A'-A'C'-B'Z:

2

A A B B
NP e S 1 . S ] 2
A A [‘1 + "2] +AA, [:1 x| + Az] (1-1)

where A1'A1C1 --Bl2 > 0 and similarly for Az. Hence A'>0,
To form J we simplify B'Z:

2 [oe _ 2
B (B,-Ayt,) + (B, Aztw)]

po

iz

e

& [fw TRE - Rm R2"2"’2]
= A2t oo v.) + R (t,-p.y.+ )_,2 (1-2)
w P2Y2 1'i7P1Y17PY)

using (3-19b), (3-20), and -R,=R.-1. Similarly from (I-1)

2 1

2 2 2 2 2 2
A'/A'C = [élyl(l-pl) + Rzyz(l-pz)‘+ Rle(t£+P272'91712] :
(1-3)

Combining these to form B'Z/A' we have J as in (3-22).
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The shape of J as a function of ti is simply discovered
by considering B'Z/A' as a function of x=t 17P1Y1 P55

2
[(tmpyv,) + Ryx]
7
A.-l-Rlex

B'2/s = (1-4)

2 2 2 2 2
where A = R v;(1-p;) + Ryvo(1l=p,). B'"/a' clearly has a
minimum value of zero when R)x = -(tw-pz'yz). It has a single
maximum when x = As/RZ(tw-pzyz) since

3> 8% 2 [“w'9272)+"1"J [As‘(tw"’z"z)kz"]
x A’ ' 21 2
[As + R1R2x

(1-5)

(The second derivative is negative at the x given above.)
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APPENDIX J

Demonstration that A, C are attainable in White Noise Case

claim{ Given bandwidth and duration constraints, W and
D, respectively, using the definitions

(bw)? = %EJ" [ﬁxz(t)mz(t)éz(t)] dt

(dur)? = &

T2.2
TN t'm“(t)dt (J-1)

signals may always be found having bandwidth and duration
allowed by the constraints,

Consider the class G1 of signals with gaussian envelope.

2
s(t)-m(t)eja(c)ec if m(t)-e'at for some ad0, (J-2)

it

It is easy to sec that

(dur)? = ﬁ? (J-3)
and

1 .2 a '
-Z_EJﬁ‘ (t)dt alva (J-4)
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Ore can always adjust m(t) so that (dur)Z-D2 just by making
m(t) of sufficient width, This condition is

am= (J=5)

4z
from which the contribution to the bandwidth from the ﬁz(t)
integral is 1/8D2. Now if this contribution is less than

the allowed wz, one can always adjust ¢(t) to make up the
difference, simply by increasing éz(t) until the contribution
it makes in (J-1) to (bw)2 yields Wz. Thus the only question
is whether the integral of ﬁz(t) can ever exceed w2. The
answer is no, and follows immediately from the uncertainty
principle (see Appendix G) which gives w202 1. For 1if the
ﬁz(t) Integral component were greater than W°, then we would
have WZD2<1/8, which is impossible. Consequently one can
always find a signal, having a guassian shaped envelope,

which meets any W,D with WD>1/2. qed
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APPENDIX K

Determine P2 For Minimum J in S’ -~gle Ping Case

From (3-25) we have immediately

2 (tw'pZ'YZ) Q’ZCW-'YZ) (K-1)

a 2 2\ 2
i (-ey')
and
2
2%y 4
s = 2 w,-y >0 (K-Z)
5o 2 —_ 2
P2 P2" Y2/ Yy

Now by inspection of (3-25) J has a minimum of one at
pz-tw/yz. This is attainable if tw/vyZ(l. If on the other
hand tw/'yz>1, then we can set pz-'yz/tw, which is then a
minimum for J, with value

2 2,.2 2 2
Jnin 1'H:w(]""'2/';\'9)/"’2 (tw/'YZ) 4

B-189




APPENDIX L

Clutter Eliminatiou under Dispersion Bandwidth Constraint

If we assume no target or scatterer motion for sim-
plicity, and choose IS(GD)I2 summetrical, then from (4-7) and
(4-14)

2 /mzls(m)l2 dw

A= ko =

o (L-1)

(o)

Under a dispersion bandwidth constraint we have some preset
value W% ]_see definition (2-34)] :

2 1 2 2 do 2 dw
Wy -Edfw |S(@) |© 5= , where 2E -u/ Is(w) |* 7= (L-2)

To show that an IS(w)I2 is always possible that satisfies
(L=-2) and eliminates the effect of clutter, consider the
class of spectra shown in Figure L-1, All but a fraction e
of the signal energy is put in a very narrow region about
w=0, while the fraction ¢ of 2E is distributed evenly over a
large band of width 2W. Then to satisfy (L-2):

W 2 1 [ﬁ (W3-b3) + 1%- b3:| --;- ew2+(1-e)b2] for b<<W.

1 3
(L-3)
We need only choose W such that
whal [3w12 - (l'e)bz] | (L-4)
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FIGURE L-I SPECTRUM FOR REVERBERATION ELIMINATION
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Now the ellipse parameter A becomes (using (L-1) and (L-5)),
as well as WSNR = ZEOOZINO ,

A = k WSNR w2 + (l’ﬁ}'i (L-6)
— T

2 2
2 3W1 - {l-¢)b 3

1-¢)b
3,32 Ewlz_(l_e)sz}ﬂ A(1-¢)+2b

If ¢ is now chosen very small so that Ae3/2<<2,J3w12-(1-s)b2,
then
. 1 2 .2 2]
A=k WSNR-§ A(3w1 -b )+6bw1 / (7A+2b) {(L-7)
Finally, if b is chosen small so that 2b<<, b2<<3W12, then
A = k WSNR W,° (L-8)

It is clear that this is the same value as would have been
obtained if no clutter were present (A=0). Consequently the
clutter has been entirely eliminated by using this peculiar
distribution of signal energy. Very large processing bands

W must be used however,

If the target and scatterers were movin~, the same
kind of argument would apply, since the basic stance of this
argument is that the signal energy is spread so thinly over
the band that A|S(whw ) lé <<, in (L-1).
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APPENDIX M

Optimum g(x) for no Target or Scatterer Motion

We wish to maximize Ag'given by (4-26) by selecting g(x)
under the constraint that g(x) is positive and has unit
area., We first show that g(x) should be symmetrical.

1. Show that the optimum g(x) is symmetrical about x=0,
Define P(x) = g(xV(Rg(x)+l) = Pe(x)-i-Po(x) (M-1)

where Pe and Po are the even and odd parts of P respectively,

Then
1 1 ! 2
=] = J[
A8 Jx Pe(x)dx LjPe(x)dx xPo(x)dx (M-2)
-1 -1 ! -1
which is maximized when Po(x) = 0, qed

2. Maximize Ag for symmetric g(x).

We now wish to choose a unit area symmetrical g(x) to

maximize:

1
" x%p(x
A = J FetoHT % (1-3)
-1
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Using Lagrange Multipliers (J. Tou, (19) p. 151), define

1
L= Ag - X\fg(x)dx , Ix] <1 (M-4)

-1
Then aF/ag = 0 yields

x2

(Rg(x)+1)2

-A=0 (M-5)

or

s = 2[Rl -] | miga

as sketched in Figure M-la, The difficulty with this solution
is that it goes negative for [x|< LA\ , which is not
permitted,

To determine the actual optimum g(x), a dynamic pro-
gramming technique was used on a computer., The problem here
is equivalent to the "allocation problem'" (Bellman (20),
Chapter 1) if we partition the interval |x|<l into, say 2n
equal subintervals, and select n quantities gy as the level
of g(x) in the ith _
question as: Given a total resource n/2, allocate amounts

subinterval. Then we rephrase the

8y to maximize

n
— 8 -
Ag 3 [, Rl 1%=1 + 3 (M-6)
nt a i
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FIGURE M-I LAGRANGE MULTIPLIER
AND DYNAMIC PROGRAMMING RESULTS

B-195



under the constraint

n

T g = n/2 , g 20 (M-7)
i-1

The algorithm for this class of Problems is given by Bellman,

and is easily applied to a computer program. .The result for
R=10 is shown in Figure M-1b,

In retrospect one can see that the Lagrange parameter solution
was very nearly optimum, In fact, 1if the solution in (M-5) is
simply altered so that g(x)=0 for lxl(l/Ji} and if A is now
found @ccording to the area constraint on g(x), the result is
%lxl/ E+R/2-\;";+:2—/4] 1f x> 1+R,'2-,\/'r;R—2/4
g8(x) =
0 otherwise

- (M-8)

This matches the computer solution within the resolution of
the program, and is thus a satisfactory result,
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Summary

This report investigates the minimum bearing error attainable with

a linear passive array. Signal and noise are stationary Gaussian processes

and the noise is assumed to be statistically independeat from hydrophone to

hydrophone. The Cramdr-Rauo technique is used to'te% a lower bound on the

ras bearing error for linear arrays with an arbitrary number of arbitrarily

spaced hydrophones. In order to obtain meaningful comparisons with the

performance of a conventional split beam tracker the results are then

specialized to the case of equally spaced hydrophones. One finds

1)

2)

3)

For a two hydrophone array (arbitrary signal and noise spectra)

the split beam tracker reaches the Cramér-Rao lower bound (and is
therefore optimal) if each hydrophone output is passed through an
appropriate linear filter prior to further processing. The
required filter is a generalized version of the Eckart filter.

For arrays with M equally spaced hydrophones the split beam
tracker accuracy comes very close to the Cramér-Rao lower bound

if the combined output of each array half is passed through a
generalized Eckart filter prior to further processing. Under
these conditions the split beam tracker rms error exceeds the
lower bound by a factor depending only on the number of hydrophones
and increasing monotonically from unity at M = 2 ¢o &/3 at
M+so,

The dependence of the rms error on signal-to-noise ratio is the
same for the split beam tracker and for the Cramér-Rao lower bound.
1f the post beam forming signal-to-noise ratio is much smaller

than unity throughout the processed frequency band the rms error

C-1

e p—

— e s e e b el e W



varies as the inverse first power of the signal-to-noise ratio. i
If the post beam forming signal-to-noise ratio is much larger than =
unity throughout the processed frequency band the rms error we

varies inversely with the half power of the signal--to-noise ratio. &
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I. Introduction

The present report treats the case of a linear array with an arbitrary
number of hydrophones and arbitrary spacing. The Cramér-Rao lower bound on
rms bearing estimaticn error is derived in terms of samples of the Fourier
transforms of the hydrophone outputs over a finite observation time. We
assume a plane wavefront, emanating from a distant target. The bearing
angle © 1is measured from an axis perpendicular to the array axis. (See
Figure 1),

Noise is assumed independent from hydrophone to hydrophone. Hydro-
phone outputs due to signal and due to noise are assumed to be zero-mean
Gaussian variables.

For arbitrary spacing, the lower bound is obtained in a cumbersome

form, but for uniform spacing, the result is relatively simple.

to target 'bearing
[}

reference 4
( “‘veigon

o-Lop-9 - # - - - array axis
array r T, Ty Ty
origin
Figure 1

Array Geometry
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II. Fourier Transforms of Hydrophome Outputs

The voltage waveform fi(t) produced by each of the M hydrophones
in the assumed linear array may be written as the superposition of a signal
component si(t) and a noise component ni(t) . If the voltage induced by
the signal plane wavefront in a hypothetical hydrophone at the arbitrary
array axis origin is written as s(t) , then the signal waveform at the ith

hydrophone is s(t-Ai) » where 4, 1s the wavefront delay betwcen the

i
origin and the ith hydrophone. We shall use the following expression

frequently, with ¢ representing sound velocity:

(1 s, = Ti/c sin 6 . 1=1, ..., M

The hydrophone outputs are expressed as
(2) fi(t) - s(t-Ai) + ni(c) (1=1, ..., M

Note that attenuation of signal amplitude and nonuniformity of velocity
along the array are neglected.

We shall soon require an expression for the correlation between
hydrophone outputs. Let Rs(t) represent the signal autocorrelation, and
let Rni(T) represent noise autocorrelation at the ith hydrophone. Assume
that the noise is white, with the same power lcvel at all hydrophones; then
Rni(t) ®» N§(t) for all {1 .

This assumption is actually not at all restrictive: One can think of
each hydrophone output as hcving been passed through a filter which
prewhitens the noise prior to further processing. Such an operation
clearly does not alter the minimum rms error for, if necessary, it could
clways be reversed by the optirum processor. It follows that the results

are quite general with tegard to signal and noise spectrel properties, if

C-4
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one interprets the signal spectrum as the actual signal spectrum modified
by a linear filter which prewhitens the noise.
Assum¢. also that noise is independent from hydrophone to hydrophone

and independent of the signal process. Then,

(3) fi(ur) fj(t) - [l(t+r«£\1) + ni(t+m [l(t_-Aj) + nj(t) ]
= R'(r~A1+Aj) + N&(1) 611, vhere
1 1=
61 -
I o 143

The Fourier trensforms of the hydrophone outputs over an observation

time T may be written as
T/2
CEEXCEN B ACE LTS (=1, eny B)

-T/2

Henceforth we shall consider a hypothetical processcr which samples these

Fourier transforms at frequencies fk =k /T, or
2%
< -
(5) v k'f 5

Note that 1f s(t) and all ni(t) are assumed to be zero-mean Gaussian

variables, then all fi(:) are zero-mean Gaussian variables. The real

and imaginary parts of all the Fi(") , being the result of linear operations

on the fi(t) , are likewise zero-mean Gaussian variables.
The likelihood funciion, which depends on bearing 6 , is the joint
probabilivy density of all the frequency samples of the Fourier transforms

of all the hydrophone outputs; we write the likelihood function all

- transpose; * - complex conjugate.

C-5
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(6) T(0) =
where F 1s the vector of all samples, arrayed in the form
(7) ERe Fl(wl). ...,Fn(ul); Pl(uz), ceey FH("Z);'“; Fl(wn),..., Fu(wn) !

The corresponding Mn x Mn correlation matrix is qg , whose elements, in

terms of hydtophone indices i, jJ and frequency indices k, L, are

1, 3=1, ..., M

(8) &1. ks §, ¢ = M2 ERAG) FG) . O PP

In Appendix A, certain conditions are shown to be necessary to permit
the vriting of the joint probability density of Gaussian complex variables
in the form (6). Presently we shall verify that these conditions are

fulfilled for the variables F .

First we derive an expression for the corrclation Fi*(w) F, (o) ,

3

making use of the fundamental relationship between the autocorrelation

function and spectrum of any real stationary random process.

(9) S(w) = [ R(t)e-jmdr R(7) --;—"- f S(V)ej‘"dw

-ap

On thc basis of (3) and (4), substituting (9), we obtain

T/2

(10) F*W) Fj(o) = j £, fj(u) JWe-ow 4 4y
~f/2 ,

T/2
= f[ [R (t-8,-u + 83) + N&(t-u)bij) e
2

2 -
jJa(t-u + A,-4,) _
- ff de du %; f dalS_(a) + N61j] e 17 (wt-ou)

j(wt-ou)dt du

<1/2 e
- T/2 T/2
ja(b,-8,)
-3 fda(s'(a)msijle 1 j dt e“”")‘[ du ¢ (o)
- =T/2 -T/2
C-6
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In the above expressions, Ss(a) rcpresents the signal spectrum, and N
is the white noise spectral density. Consider the type of integral which

appears in the last line of (10).

1/2
(11) du e J(atdu

-T/2

e-J(m)le -ej(m)'rlz _ 2 sin(at) T2
-j(ato) . ato

In the limit as T + » , the above expression approaches 2n §(ato) ,
where 6( ) 1is the Dirac delta function. If o = - g , the value of the

cxpression is T . The limiting form of the correlation for large T {is

limit
(12) To+e Fi*(w)F (o)
h|
limit Ja(a,-a,) ,
N J 17 2 sin(atw)T/2 . 2 sin(g+g)T/2
T r da[Ss(u) + NGij] e poras =
2 Ja(8,-8,)
= 2n J’ da[Sa(u) + Néij] e J §(at+w) &(ato)

It is clear that for infinite observation time, samples at different
frequencies w and o are uncorrelated. We shall assume that the actual
observation time is sufficiently large so that the correlation of samples

at different frequencies is negligible compared with the correlation of
samples at the same frequency. At a single frequency, the correlation, with

the assumption of lerge T , is

2

(13) F *(w) F ju(Aj-Ai) [2 sin(atw)T 2]

atw

1
J(w) -7 f du[Ss(a)ﬂiéij] e

- j da(Ss(a)-tNéi

| e’““J'“i’ [2 ungawz'r(z] Saki)

J atw

-jw(a,-a,) jw(a,-8,)
] e j 1 Ts= T[Ss(w)+N61j] e 173

C-7
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The conditions (A-14) which must be satisfied in order for the formula-

tion (6) to be valid may be expressed

(14a) Pci(v) ch(o) - F.i(w) st(o)
(14b) Fci(w) F‘i(w) =0
(l4c) Fci(") st(a)--!"u(V) ch(°)

where Fci(w) and F'i(w) represent

Fi(w) » obeying the relations
(15) Fi(") = Fci(") +3 Fsi(w)

T/2
Pci(w) - j fi(t) cos wt dt
-T/2

In Appendix B it is proved that these

for the prescnt casc as

the real and imaginary parts of

T/2
Fsi(w) - .j’ fi(t) sin wt dt .
-T/2

conditions are asymptotically

satisfied as the observation time approaches infinity, so long as all

sample frequencies have the same sign.

We shall arbitrarily deal with

positive frequencies only. No information is discarded, since the Fourier

transform of a real variablc obeys the relation F(-w) = F*(w) .
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III. The Correlation Matrix, Its Determinant, and Its Inverse

In the previous section, it was established that samples at diffsrent

frequencies are asymptotically uncorrelated as the observation time approaches
infinity. The elements of the correlation matrix, by (8) and (13), are

-jwk(A j-A )

I 1
(16) aemm =b47¢ [S,(v,) + N6,

. T k .k (1,3=1,...,M)

le 2 Iij(s m&ij), (k.[-l,....n)

where the following notation is implicitly defined for convenience.

an g, = R 5,(w)

We are now ready to write out the correlation matrix in detail. For
reference, the F vector is written at the edges. Note that the matrix is
composed of nz submatrices of dimension M x M , each of which correlates
samples from all hydrophones at two sample frequencies. Only the diagonal

submatrices are nonzero.

r “
1l 1.1 1.1
(18) STHN aus TOG ams Fl(wl)
1.1.1 1.1
aus STHN ... 'Zus ST all elements Fz(wl)
. . - . zero 5
1.1 1.1 1l
R.I _'3418 'HZS oo S 4HN F“(wl)
— 2 L ] [ ] [ ] [ ]
; . n s n nnl|F Ew )
n .0 .0 n.n .
all elements . o . 0218 SN ... ZMs FZ(‘.)
zeto [ ] L ] L ] [ ] L]
a.n n.n n
'Mls ast ese S 4N Fu(wn)

Fl(wl). Fz(wl). ceny F!f(wl); i e 8 l-‘l(wn), Fz(wn), I PM(wn)

C-9




Appendix C furnishes verification of the results given here for the

determinant and inverse o. A .

The dc¢terminant is found to be independent

of becaring angle. The inverse, like @ itself, contains nonzero elements

only in the n diagonal M x M submatrices.

Each diagonal submatrix of

&-1 is the inverse of the corresponding oub.attij of @ . The determinant

and inverse follow.

n
19)  det@= (/)™ x™ D 1 (uns®)
kel
£ 12 11 7
(20) M-psten 2125 .. %S
ushean? mslwan?  mslnan?
1.1 1.1
.ZLS (M-]_.)SI-O-N ces -8’ 311 elements
M81N+N2 M81N+N2 M51N+N2 °* zero
Slsl gl .
11 a2 oo (M=1)S 4N
ushwn?  msinew? ms nan?
-1 2 [ ] L]
g T . .
n . Sn -au Sn
M-1)s"+N "%12° ... Ty
MSPN4NZ  MSTN4NZ MSPN4N°
n.n n n
all elenments -ans (M-l)s“m -ams
SEEO .o | usPnen? MsPwan? MSTN+N2
n.n n.n
~8,5 805 ... -1)s"wy
MS"N4NZ  MSTN4NZ MSPN4+NZ
C-10
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IV. The Likelihood Functiom

We are now in a position to write out a detailed expression for the
likelihood function L (8) in the form (6). F, det #@ and &.1 are
+aken from (7), (19), and (20), respectively; 1 and j are the hydrophone

indices; k and % are frequency indices.

1 -5ERYop

(21) L (e) .
(2n) det R

[ eadd
. 1 _ NN k o-1 )
(21)"det £ P klf—‘l - L o A s

1 . 5% k o-1 k\
i A R IR

- 1 X
@n® (/)"0 yM-DB B gk
kel
n M M Lk gk
ol Zpkl__u__pk*
LT ok pog? 3
kel {=1 j=1
i¥3

C-11
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V. General Results for the Lower bound on Bearing Estimation Error

The variable 6 , bearing, which in a practical situation has a fixed
but unknown value, appears as a parameter in the probability density (the
likelihood function L (6) ) of the set F of random variables. When an
estimate of 6 1is derived from a set of measured values of F , a method
is knownl for computing the lower bound on the variance of the estimate

8 of ¢ . According to this method,

(22) 0%(#) » [ l_.lex_!-. ]

where the average is taken over the random variables F .
In the finel form of (21), note that L(6) depends on 6 only through

the terms a:j . By (1) end (17),

L, =t
jwk -1—-1-sin 6

k ¢ k k k
(23) a,, = e aij = aji* = 1/a

i} i

Now we differentiate the logarithm of the likelihood function

n M M k
S
3 log L _23 _ < 2 j k
(24) 26 ”}:LZFT Fy*

26 7 &
S MS® NN
n M M k k
(3a%,/28)S
- Z Z Z F';% . Fy*
kel i=1 j=l S NN
143

1Harold Cramer, Mathematical Methods of Statistics, frinceton, 1963, §32.8

C-12

‘b—-l

| —

l



-

b

-e

-

n M M 17 k _k
1 - Z Z Fk jwk e cos B a“ S Fk*
T L 1 skl ]

k

Slcoeg) Y i AL i

Te i Hsk N+N2

Now, for the next step toward the lower bound, with k and 2t frequency

indices, and 1, j, p, and q hydrophone indices,

—_— n M M gk
(25) along_ jcosez T ka(r "g o SN
26 Tc oL Msk N j
kel {=l 4=l
n M M )
-1 cos 8 ¢ E: S gt Y Tg) %p S gt
Tc Lop us* nand q
tel pel q=1
n n M M M M k & k L
c‘z’s: Z Z Z kaFk*F*F A L Tl
L1y (Ms¥nen?] (s vend)

kel f=l {=] jml p=l q=l

In Appendix D we demonstrate that the following expansion is valid for
complex variables with zero-mean recal and imaginary parts, all jointly

Gauseian:

L, gk k, 2L
F % Fr . P pla
q 1q j p

F *F

-

k k., 2. 2 k
(26) Fr F°% F'% F* = FX PaoFia f* 4 F
13 p ¢q P 9 i

'-O-F'

K L,
3 P

The above correlations may be deduccd from Section II. Correlations between

1we discontinue writing "i#j," since the factor (t j) cencels
terms in which 41=§ anyway.

C-13
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samples at different frequencies are essentially zero. Temms of the form

l -
F: I-‘q ri(wk) 'q(“!.) require special attention. When this term is

developed as in (12), the result is

Ju(Ai-Aq)
(27) '1“'&’ rq("!.) & 2¢ j da[S.(u) + N61ql e 6(a-wk) G(Wl) .

-

Since we are considering only positive sample frequencies, this expression

must equal zero; Fk* F;* also equals zero. Returning to (26), substituting

3

the correlations (13), we have

kL L & L
(26) r: Fy* Bt Fle (o,

k k... k k
+ [‘pi T(S +N6p1)] [ajq T(S +N61q)] le

k L
TS ) (apq T8°)

This result is now substituted into (25).

3 a” sksl

2 B & X H vww,(r,-r,)(r -r )a
(29) |3_103_L_'_g_o_s_gV'(" C_k2™4 4" p g’"1i qp .
L L Z Z z . [MSKN+N2][1vis"N+N2]

2,k t _k k _k

L k... k
Tlagy ay, S°S° + ar, a (SHNG ) (SE4N6 ) 6]
n n M M M M kK k ¢ 2 k2, 272
_ coazev C C Z < vwkw"(r.i:t‘l)(rp-rg)al|a|182 a_(87) (8))
2 o L O L O L
5 o, rrer b By (s n+n?) us wan?)
n M M M M 2 k k k k ,6 k.2
. coszez z z Z Z (wk) (ri-rJLh'L-rq)aila a 1a| (s) .
2 sknan?) 2

k, 2 2 .\
[(s7) + sku(cpiﬁjq) + N cpiéquj

C-14
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Cr o —————
L4 L
4

=0

n n A M /__/\'_“ 2
i} co.zez Z Z Z z\ Z i‘:z(ri rj (r tq+tq-t ) (S S )

- ——— -

2
cos’p T‘l TH‘ \E‘ (1 < ("k)z"i"J).('p"q) (s
¥ Lol Ll Pz "
kel 4=] j=1 p=1 q=1 s van?)

+4.-4)

2
173 9" (s +2$kN6p1+N269165q]

w, (p,-0 +4 -4 +48 -4
Ju (o, I 9 pp

=0

n M M M Ho N K 4
_co;Q Z Z z Z Z (w)(rm:kr)w;r;‘r-rr r) (S)

3
n M M 2 K,
. Z Z Z (wk) (ri-rj) (ti‘fq) 2(s ) N
2 2
kel j=l j=1 qel (msknen?)

L

2

{=1 §=1 (vsku+u

3
n M M M 2 2 k
\_‘Zr v(wk)(r t) 2(S) N
éd L L

5 2
1 foi+l q=1  (MsFwen%)

n M M 2 2 k22
+ T (w‘,) 2(1‘1-!'1) () N
Lo L } 2
kel i=1 j=i+l (MSkN+112)

2
E: 2: r - ) (HS N+N )

n
_2coszgz (wS)
2
¢ ke ¢ =1 jmi+l

NSkN+N2)

|

1We replace (¢ +Gj
symmetries in the expression.

) with 26Pi » which is equivalent because of

C-15



For computational convenience, we use an integral with respect to
frequency to replace the summation on the frequency index k . by (5),
the interval between sample frequencies is Aw = 2%/T . We multiply and
divide the final result in (29) by 4w , then replace the summation by
an integral and Aw by dw . Ve assume that the observation time T
is large enough so that this approximation introduces little error, and
that the signal spectrum is essentially zero for frequencies above the

highest sample frequency, Voax From (22) and (29),

’

) 2 Vmax 22 MM
{30) DZ(G) > I ,2c08 9 w s (wdw [\~ Z (r.-r )2
L swnn? | & 1)

-1

~

el jmi+l

This result is entirely general for any signal spectrum and any hydrophone
spacing in a linear array. Equation (30) assumes a particularly simple

form when the elements of the array are uniformly spaced. In that case

(31) r, = 4d, i=1, ..., M

i

where d is the distance tetween hydrophones. Substituting (31) into

(30) and taking the square root of the result, we have

~ “max 2 2 M M ~
(32)  D(d) » —T— [ LEL 5" S (1)
d /T cos8 |J  MS(WNMN® ) o141
We show in Appendix F that
%i M 4.2 .2
2 _ M -MT _ MO(M41)(M-1)
3 ) ) u-n? =t 4

=] j=i+l

Substituting (33) into (32) we have

C-16
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|

L

™

--v

W 1
max

(34) D(é) > 2/5?c j wzszgwldw

~ 3T cosd MY(M+1) (M-1) . MS (w) N+112
_ ; -k

wmax S 2m
. 2¥3n ¢ ] dv w2 N
_ S(w)
4T coso uhE-1 | %o L+ M

Finally, invoking the fact that the signal spectrum of our derivation may
be regarded as the actual signal spectrum modified by passage through a

filter which prewhitens the noise (see p. 4 ), one obtains

2 "li
wmax S (w)
= 2
(35)  D(8) 2 2/3n ¢ j dw w2 —L%L )
dvT cos® Mv'gz-l o l+H N(w)

where S(w) and N(w) now stand for the actual signal and noise spectra.

C-17



VI. Comparison with Split Beam Tracker

We now compare the lower bound on rms error given by Equation (35)
with the rms error of the conventional split beam tracker (linear equally
spaced array) whose idealized block diagram is shown in Figure 2. The
basic theory of this tracker is developed in Report No. 29. Adapting1

the results obtained there to our present purposes and nomenclature we

obtain:

The average output 2 1is given by

M/2 M/2 “max
= SN 2 Myd -
(36) Tei) Z dw w S |13 |2 stnlu(e-1+ H(eta 0 - s1n 9]
t=]1 k=1 ‘o
@ 1is the target bearing, as before, while ¢ 1s the direction in which
the tracker is steered. An elementary computation now yields the on target

slope of the average tracker output curve.

- “max M/2 M/2
(37 -g-% - - g—ﬂ- [ dw w2 S(w..r)IH(;jw)I2 % cos 9 z Z (k-2 + %)
¢=6 [} i=]1 k=1

With the change of variable k-f = r one can reedily evaluate the double

sum.

1Note: In Report No. 29 the total number of hydrophones is 2M ,
here it 48 M . In Report No. 29 the 6S0° phase shift is obtained by an
element with transfer function jw/|w| , a prime phase shift, here it is
obtained by a differentiator with transfer function jw . Furthermore,
S(w) 1s here defined such that total power is ©

1

27 fS(w) dw .

C-18
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Hence, using the fact that S(w) 41s even,

- 3 Ymux
(39) g—:- ) = %% cosl’e % f dv v s(w) |H(§w) |2
=0 ~ ax ’

The on target tracker output variance o: is (by similar adaptetion of

results in Report No. 29)

(40) o: . 3-:—1 f dv wo |HGW) |4 0 s) N(w) + ¥iNW) )

It follows that the rms error is given by

hm‘x
/T x b e f aw w2 G |4 Q5 Nw) + N2}
oz - 0
@) o) = £ . .
& -
Blgm0 /T d cos 8 N j dw w? [H(w) |2 s(w)

-w
nax

There remains the adjustment of the spectrum shaping filter H(jw) .

Taking a clue from optimum detection theory one suspects that a good

C-19
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candidate for H(jw) would be the generalized Lckart filter

Sgw}
2
2 - N (w) - S(w)
62 G| 1+M %(L‘% M S(w) N(w) + N2(w)

Substituting Equation (42) into Equation (41) one finds

= 2 <=
Voax §2(w)
(43) D(e) » —L2L ke jdez—N—-(!%——
YT d cos 8 Hz 2. 1+M ﬁ%%%

Comparing Equation (43) and Equation (35) and using once more the fact that

S(w) and N(w) are even functions of w

(44) e , 5‘/1 -
oo I3 i-f

Equation (44) equals unity for Me2 and increases steadily to an asymptotic
value of Y4/3 for large M . Thus the split beam tracker reaches the
Cramér-Rao lower bound for M=2 , a fact which had alrecady been observed in
Report No. 32 for the special case of S(w) = N(w) ; For M=2 , therefore,
the split beam tracker is the absolute optimum instrumentation in thc sense
that it yields the minimum rms error. For M > 2 some improvement may

be possible, although one cannot assert in general that the Cralér-kao

lower bound is attainable. The important point to observe, however, is the
small factor by which D(8) can exceed D(9) [Equation (44)). One can
therefore reasonably conclude that the conventionzl split beam tracker
operating in a noise environment independent fvom hydrophone to hydrophone

is so close to the optimum that a search for better instrumentations would

Cc-21
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candidate for H(jw) would be the generalized Eckart filter

S(w)
2
2 _Nw) S(v)
(42) 13w | 1+M %% M S(w) N(w) + Nz(w)

Substituting Equation (42) into Equation (41) one finds

- . ~-k
v S (w)
max
s . 2
(43) D(e) = n 4 QE dv v° ——E-SE%T;T
T dcos oM 2. l1+M N(w)

Comparing Equation (43) and Equation (35) and using once more the fact that

S(w) and N(w) are even functions of w

(44) o) , %‘/1-%
D(8) M

Equation (44) equals unity for M=2 and increases steadily to an asymptotic
value of /4/3 for large M . Thus the split beam tracker reaches the
Cramér-Rao lower bound for M=2 , a fact which had alrcady been observed in
Report No. 32 for the special case of S(w) = N(w) . For M=2 , therefore,
the split beam tracker is the absolute optimum instrumentation in thc¢ sense
that it ,ields the minimum rms error. For M > 2 some improvement may

be possible, although one cannot asscrt in general that the Ctan;t-Rao
lower bound is attainable. The important point to observe, however, is the
small factor by which D(6) can exceed D(8) [Equation (44)]. One can
therefore reasonably conclude chat the conventional split beam tracker
operating in a noise environment independent from hydrophone to hydrophone

is so close to the optimum that a search for better instrumentations would

Cc-21



be very difficult to justify.

The dependence of D(8) and D(8) on signal-to-noise ratio is
precisely the same as that observed in Report No. 32. For low input

signal-to-noise ratios the rms error varies as (S/N).1 , whereas for

large input signal-to-noise ratios it varies as (SlN)’k .
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Appendix A

——

Joint Probability Density for n Complex Gaussian Veariables

We assume that every member of the n-dimensional vector X 1s a complex

R E——

Gaussian variable; i.e., when Xy is written xk - ak+jbk (kel, ..., n) ,
' the real variables ak and bk are Gaussian variables. For convenience,

cosume ;; = 3& = 0. We wish to establish the conditions on all the

f ¢ variables {ak. bk) which are necessary to permit writing the joint
- probability density of the n complex Gaussian variables in the following
-t form.1 analogous to the joint probability density for reel Gaoussian variebles:
£
T -1
- eyY®
il (A-1) p(x) = nl R B )
(27) " det P
¢ where P 1is the n x n correlation matrix with elements
L (A-2) Py = /2 X, *X, (k=1, ..., n)

As a first step, we derive the characteristic function corresponding to
the above probability density. The procedure parallels that used by Cramér2
for real variables. The characteristic function @(1) is related to the
probability density as follows, with dX = dal dbl T dan dbn and

1= {rk} - {yk+Jzk} :

1Notation: o transpose; * - complex conjugate

2Hatald Cramét, op. cit., §11.12
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(A"3) '( ) - joo- j jRE{T x_) (x’) dx.

N jRe{t*x}-lsXP X*
(2ﬂ) det P

Let C designate the unitary matrix which transforms P-l into the diagonal

matrix D as follows:

(a-4) D=Ck P C

Let D and D

(A-5) ERCE dil 0o ..
-1
0 d, ... 0 0 d .
.D.- [ .2 . 2-1- 3 02
0o 0 ... d 0 0 -
n b -

a-6) D lacHpg ofca1
n
det P = det DL = T dk'l
k=1

Let the n-dimensional vectors v and y be defined as follows:

(A-7) T=Cky Vi T Y IV
X = Cky ¥ = Pt Jq
We shall use the following results:
(a-8)  gx xmw gl oyl y
dx = |det C*| dy =1 dp, dq, ... dp_dq
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Substitute (A-7) and (A-8) into (A-3):

P f P

) 1
T T
. jzn j (2m" det ,Q-l ejRe{y_* 4} - Dy dy

J

1

- T T T -1, %
(A-9)  #(1) det p L Relyr w} -y CV P Ly

n jf d, ej(ukpk'wqu) -k (Pkﬂqk)dk(pkqu)

- I e dp, dq
k=1 2 27 k 'k
n d k d 2 . jv -kd 2
9% Ju Py KPk kI~ 49k
= ] 2 3 dp e qu
kel n k
-0 . -}
-1 2 -1 2
nod hy “H T uwT gmo=kd v
= 1 gev/a ¢ a c
k=1 k Kk
n - 3(u +jv.) d -l(u -jv.)
0 ck! %k k VK
- e
k=1
. gT 271 v !? QfT P C vt
.;kfz:

The next step is to set the above characteristic function cqual to
the characteristic function for the 2n recl variables ta,, bk) to
zscertain the nccessary conditions on these variables. The 2n real
variables may be arrayed in the vector x = (al, bl, d o an, bn) . Let
R designate the corresponding 2n x 2n correlation matrix, and let the

argument of the charecteristic function be the vector t = (yl,zl,...,yn.zn) .

The characteristic function is
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We shall now write out the logarithms of @(t)

compare them.

n o
(A-11) - 2 log B(t) = Z Z [y,2,] )
k=1 i=] bka2
n ——
" j{: Ly} fgf_ Ei}i; Yk
k=1 bkak bk2 2,

n n
v 3 Y e gy ﬁ] H +lyge,) [""’

kel fek+l b2, bb,| |z
n ___ =
N 2 2 2, 2
- zd Y &% Y ab by
kel
n n
ey
L, L.,
kel fLak+l

By the result (A-9) and definitions (A-2) and (A-7),

n n

and

bkbl

202

boay

#(t)

8

22k Pk
blbk zk

in detail and

b

ykyg(Zakag) + ykzg(Zakbl) + zkyl(Zalbk) + zsz(Zbkbl)

(A-12) - 2108 B0 = 3 Y (y,Hz) (53 T5) @ HP)) (3,-32))

k=l =1

n - e——— E———
- >L. %(yk2+zk2) (ak2+ kz)
k=l

n

k=l f=l
k¥e

C-26
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n o — —
v S nd elnd
k=1

n n
+k j{: E: [(ka2+zkzz)+j(zkyn-ykzz)] [(akaz+bkbz)+j(akbl-bkal)]
k=1 f=k+l

+ [ygy t2,2 )43 (2,5, -y,2,)] [(a a +b b )+3(a b -b,2 )]
n ——— —
=5 ) D gD
kel

n n
+ 4 z z [(Ak+JBk) (ckﬂok) + (Ak-jBk) (Ck-jDk)]

k=]l f=k+l
n e Tn‘ n
2, 2 2.2
=l Z (y +2, ) (g +b ) + [ Z 2(Akck-Bka) 5
k=1 k=1 L=k+1

where the following definitions are implied:

Ay BN
Bl = |AYe Vi
C, h—k—a;+bkbl
_Dk ! -akb E-bka 2]
To continue,
n —_— =
@1 0@ =y oM D
kel

n n
¥ z z [0y, 3 g¥2y29) (33 ¥by b ) =(2y, 7, 2y ) (3D By )
kel f=k+l
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We now ccmpare (A-11) and (£-13), equeting coefficients of like variable

products.
165 189

2 2 2. 2
Yy a, 4(a, "+b, )
Vi %k 2 akbk 0

2 2 N2
2, bk 5(ak +b, )
Yy 2 a8, - aa+b b,
Y% 2 ab, aby ey,
2.Y, 2 agbk bk'l-akbl
z,.2, {? bkbl_ I ‘kaz+bkb2_

The following conditions result from solving the above set of equations:

(A-14) a8, = bkb2

.kbk = 0 (k2 =1, ..., n)

When these conditions are satisfied, the joint probability density of the

n complex Gaussian variables may be written as in (A-1).
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Appendix B

Verification of Requirements on Fourier Cosine and Sine Transforms

The conditions (14) to be verifiec are

(B-1) Fci(w) ch(o) = Fsi(w) st(o)
(B-2) Fci(w) Fsi(w) =0
(B-3) Fci(") st(o) - - Fsi(w) ch(o) »

where, by (5), sample frequencies w and o are multiples of 2n/T .
To verify (B-1) we use a trigonometric expansion of both sides of this

equation, taking the definitions of Fc and Fs from (10).

i i

T/2
(B-44) Fci(W) ch(o) = J£[ fi(t) fj(u) cos wt cos ¢ u dt du
-T/2

T/2
= 44[ fi(t) fj(u) [cos(wt-ou) + cos(wt+ou)])
-T/2

T/2
(b-4b) Fsi(w) st(o) = 44[ fi(t) fj(u) sin wt sin gu dt du
-1/2

=l !' fi(t) fj(u) [cos(wt-ou) - cos(wt+ou)]
-T/2

gvidently the two sides of (B-1) are equal if the fcllowing relation is

true:
T/2

(B-5) Jg[ fi(t) fj(u) cos(wt+ou) = 0
/2
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To verify (B-5), we employ the mathematical procedure which is explained

in detail in Section 1I.

T/2
(B-6) f fi(t) fj(u) cos(wt+gu) dt du
-T/2
T/2
- ]] [R'(t-u-A1+AJ)+N6(t-u)l cos(wt+ou) dt du
-1/2

T/2

N - Ja(t-u+a, -A,)
-l f‘[ dt du 5= jdu[S.(c)ﬂiéijl e
-T/2

31 [ej(wt-bcu)+ e-j(wt+ou)]

T/2

c Ja(a,-8,) ~4(a-
- %—; f da[S.(u)méij] e LR f! dt du[ej(“""")t e 3(a=0)u
- =T/2 £ ej(u-w)t 73 (a+0)u]

; Ja(a,-a,)
i 1’ | 2 sin(agtw)T/2 , 2 sin(a-0)T/2
- e ]da[sa(a)mcij] e j [___EQ'H"

a-o
+ 2 sin(g-w)T/2 2 lin(a+o)'l'/2]
a-v . ato
i 2 Jalay-,)
-9 jrdals.(u)+Néij] e {8 (atw) 8(a-0)+6(a-w) 6 (ato) ]

We are assuming that the observation time T 1s sufficiently large so that
the last line atove is a good approximation., Unless w = -0 , the atove
expression must equal zero (or nearly zero in actual practice). By
restricting samplc frequencies to be of one sign orly, so that the reletion
w = -0 1s impossible, we can force the expression to be ze¢ro, so that (I-1)

is satisfied.

To test (B-2) and (B-3), we next derive Fci(w) st(a) .
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T/2
(B-7) F (v) F (o) - jf’ f (t) f f (t) £.(u) cos wt sin ou dt du

’ T(2 T/2
ja(a,-4,) )
¥ _2_1]?. f“[ss(ﬁ)*’mij] e I dt eI cos wt du e I%in ou
-® -T/2 -T/2
» T/2
Ja(a, - . )
- fdulss(a)ﬂléijl e 3 *) [ dt eIt (eI¥teeIVE)
- -T/2
T/2
r 4u e-jau(ejcu_e-job
/2 3

a,-4,)
-2 ]da[Ss(a)mé ) eju‘ i [2 sin(a-w)T/2 2 ungawmz]x

ij a-w a+y

1[2 sin(a-0)T/2 2 ein(o-m)TLZ]
b

a-0 a+o
-1 ¢ jQ(Aj“Ai)
=l jdalss(u)ﬂ‘.éij] e [§(a-w)+E(atw) ) x
1[2_sin(a-0)T/2 _ 2 sm(mmz]
] a-g ato
i f[s s, 1 4T [2stn@mo)1/2 _ 2 singeta)1/2]
4y L 5 13! © w=0 who

+ [Ss(-w)+N6 ] e

-jw(AJ-Ai) 2 sin(-w-0)T/2 2 sin(-w+0)T/2 l

13
Again, a long observation time is assumed to justify the approximation.

Using the fact that sample frequencies w and o are multiples of 2n/T ,
the fact that all sample frequencies have the same sign, and the fact that

Ss(w) - Ss(-w) , we conclude that
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(B-8) Fci(w) Faj(o) = 0
jw(a,-a,)
1 jt
- “3 [Ss(w)ﬂwij] (e T+
-jw(a, -4,)
e it (-1))

7 .
-3 [ss(u)m«s“] T sin w(Aj-Ai)

Simply by interchanging 1 and j, w and o , we have

(B-9) F.i(w) Fc (0) =0

J

1
-3 [sa(o)ma“] T sin o(Ai-Aj)

Comparison of (B-8) and (B-9) reveals that (B-2) and (B-3) are verified.
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Appendix C

Determinant and Inverse of the Correlation Matrix

The correlation matrix J_Z (18) is composed of n2 submatrices of
dimension M x M . Only the n diagonal submatrices, each of which corresponds
to a particular sample frequency, are nonzero. ‘Hence, the determinant of

in is the product of the determinauts of the diagonal submatrices. Each

submatrix has the form

kK k k '

(c-1) ™ ay; 83 o0 e
K Kk K

321 14y 8,4 B &,

k_ 1k . . ;

A - e L] L ] [ ] [ ] L ]

1 2 [ ] . . [ ] L[]

k Kk
L“m N

where

-jw, (8,-8,)
(Cc-2) ak - e k3 d

k k
1y x = N/S

We use an inductive method to establish the determinant of the following

matrix:

a e e 0
(c-3) 12 13

:JK

&, Gy A3 v X

We now expand the determinant of KM along the last columan, for arbitrary
M ; we shall expand det 5& simultaneously for a concrete illustration.

For reference,
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.'1+x a a a ]
C . a21 14X 823 826
-
a3) 23 X a4,
8,1 %2 %3 ¥

The notation |K§J| will be used to signify the (1,})th minor of K, .

M-1
- . 14N iM
1=
a21 1+x a23
g | - -
(C-5b) R, = (#X) |Ry| - &), |2y a5  1#X
81 %2 %3 |
1+x 612 313 14X a12 813
+ a26 831 832 1+X - a36 a21 1+X a23
81 242 %4 81 242 %)
The last row of each (N¥-1) x (M-1) matrix §1H is
K
] p !
(ay; o 23 ¢ B e ayglagy 849 243 -0 8 Moy
aiM m

Let 5\, represent the matrix obtained by changing the last row of !¥
1Y .

to [a a a 2 ] Then | 1M| = a |ﬁix|
110 3420 8430 ve00 & uyt LW 115

M-1

i+ o 1

(C-6a) 1K,l = 4x) (R ]+ z D7 ana, R
i=1

-1

- (14%) |$~.-1| . Z it ||A<;,;y’|

i=1

1
Note that 811 1l
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(C-6b)

A1l
Now let ﬁi designate
™

into the ith positionm. g

of rows; hence |ﬁ::ﬂ
(C-7a)

K, -
(C-7b) |K4| =

The (M-1) x (M-1) matrices K

|x4| = (14X) |x3|

8y, 1+X 854
- | 841 a32 1+X
L3, e
1+x a,, 84
+ a8y a4 1+X
a1 1

i is converted into éiﬂ by
i '=1-1,21iM .
= DR
M-1
+ -1-
(14X) |§M_1| + ET' ST B i
i=]
M-1
T oz oiM
40 Ry - K
i=1
(1+4x) |K3| 1 ay, a4
- | 2 1+X a4
a31 832 1+X
14X 21, 83 14+X a),
a5 1 28,3 | - | 221 1+X
a3; 83 1% 231 %3

iM
K1
iM

the matrix obtained by moving the last row of

12
a21 1+X
831 %32
(M-1-1) 1inte
"

13
223
1

differ from 5"_1 only in that the

ﬁiM

‘14
rchanges

(i,1)th term is 1 instead of 1l+x . If gﬂ is expanded along the ith
i

column, the minor corresponding to the

equivalent to lgu_zl

(1,1)¢th

element is equal or

. If the same expansion is made of |5u-1| , the
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coefficient of this same minor is (14Xx) . It follows that |K

lxu_ll - X I_l_cu_zl , for all 1 .

(C-8a) Igul = (14X) |1<M_1| - (M-1) llgM 1

| - x |k
-1 ™-2
= (24Xx-M) K + (M-1) X |K

ZH-) K+ 0D XK

(C-8b) |5:.| = (14X) |53| X 8, 8, X 8y,
-3 a21 14X 523 - X a32 1+X
811 a32 14X J
L

We assert that
M-1
c-9) K| =X X+) .
( Ik | (X+M)
We verify this formula by substitution into (C-8a):

xH" 3

(C-10) Wl = (24xm) M2 0m-1) + M-1)X M3 (xm-2)

o XM 2x2ex(hi-142-H) + (M-1) (2-1)]

M2 (M- X + 1) (-2))

o 22X + (M-1) (2-M) + QDX+ (1-1) (11-2))
= M2 %x)

o X1 (xem)

By reference to (18), (C-1) - (C-3), and (C-9), we obtain the final result

M M =

(c-11) n k n . N

det R = 1 [T—g—] Moy = 1 [—}] skyt-t [sk * ”]
kel kel

n
- (/)™ 1 W lwesk)
kel
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We now verify that @_.1 in (20) is the correct inverse of ’E . If

each diagonal submatrix of (8,-1 is the inverse of the corresponding sub-

matrix of @ , then Q.—l is the inverse of @ . In notation like that

of (C-1), we write each submatrix of Q:I as

(C-12)

Bk
=M

The matrices Bk
M

following matrix

(C-13)

We now show theat

(C-14)

o m
-ak

s 00 2“

oo e (H-l)+x

in (C-1) if the

(M—1)+xk —ak -ak
12 13
SN 1 k k k
TSk Xk(M+xk) -8,y (M-1)+x -2,4
_.k _.k -.k
fv1 22 %13
are the inverses of the matrices A;
5’1 is the inverse of K  in (C-3).
M
(M-1)+X "'812 -813 e e
K-l . 1 -821 (M-l)"'x -823 O
M X(M#X) . .
L -aHI -auz -8M3 eo e
X K_l equals the identity matrix.
™MM
J 14X i=y
Kty ™
8, 1#3
((-Dax
X (i1+X) ]
-1 _
Kig =
-a
1)
Qi s
C-37
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Y
-1 -1
(G3) X " kzl Kk B

(M

Bt . (M=1)+X
z L T I T TSy
ki (k=1)
L 21k T X(MX) 1§ X(H+X)

k#i,] (k=1) (k=J)

(M

Z -1 +(M-1)+M;g+2
x (M+x) X (M+X)

ksl

- kel

M

Z %44 + g ZIEO+M-1)+X
X (M+X) 1) X (M+X)

k=]

kei, ]

\

--1) (M-1) #tx+x>
X (MFX) X (M)

-ail(M-Z) . a, (M-2)
X (M+X) X (M+X)

”

1 1=4
0 14)

It follows that the expression for @_-1 in (20) is correct.
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Appendix D

Mean of a Fourfold Product

For four zero-mean jointly Gaussian real variables, the following

relation is known to be valid.

(D-1) abcd = ab-cd +@c-bd + ad*be

We propose to prove that for four complex variables, whose real and imaginary

parts are all zero-mean jointly Gaussian,

(D-2) ABCD = AB*CD + AC*BD + AD-BC

We use a strictly brute force" technique of expanding the left side of (D-2),

using (D-1), and recombining to obtain the right side of (D-2). We define

(D-3) . A = a+ja'
B = b+ib’
C = c+jc'

D = d+jd’

(D-4)  ABCD = {(a+fa') (b+1b") (cHic') (d+3d"))
-<[ab-a'b'+j(a'b+ab')] [cd-c'd'+j(c'd+cd')]>
- (abcd+a'b'c'd'-abc'd'—a'b'cd-(a'bc'dﬂ'bcd'+ab'c'd+ab'cd')
+j(a'bcd+ab'cd-a'bc'd'-ab'c'd'+abc'd+abcd'-a'b'c'd-a'b‘cd')>
- <abcd+a'b'c'd'—(a'b'cd+a'bc'd+a'bcd'+ab'c'd+ab'cd'+abc'd')

+j[a'bcd+ab'cd+abc'd+abcd'-(ab'c'd'+a'bc'd'+a'b'cd'+a'b'c'd)]>

-[(a'b'-cd+a'c*b'd+a'd*b'c)+(a'bec’'d+a'c’ ‘bd+a'd*bc’)

+(a'becd'+a'c-bd'+a'd’ *bc)+(ab'+c'd+ac’ ‘b'd+ad*b'c')

+(ab'*cd'+acb'd'+ad ' *b'c)+(abec'd'+ac' +bd'+ad ' *bc') ]}
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+3{(a"becd+a’c-bd+a’d-bc)+(ab’ -cd+ac-b'd+ad+b'c)

.

+ abec'd+ac' *bd+ad bc')+(ab+cd +ac bd '+ad" *bc)

-[(ab"+cTd"+ac"*b'd"+ad" b'c')+(a'b-c'd'+a'c' *bd'+a'd  *bc’)

+(a'blecd'+a'ceb'd'+a'd" b'c)+a'b' ec'd+a'c' sb'd+a'd-b'c') ]}

» {abecd+a'b'~c'd'~(a'b' +cd+abec'd'+a'bec'd+a'becd +ab’ +c'd+ab’ *cd')

+j[abec'd+ab cd'+a'becd+ab’ *cd-(a'b'*c'd+a'b ' rcd ' +a'bec'd’

+ab'+c'd")))

+{ac'bd+a’'c *b'd'~(ac'b'd'+a'c' +bd+ac' *bd'+ac'*b'd+a'c'bd '+a'c*b'a)

+J {acebd'+ac*b'd+ac’ *bd+a'cbd-(a'c'*bd'+a'c'*b'd+ac'*b'd’

+a'c:b'd")])

+{ad*bc+a'd’ *b'c'-(ad*b'c'+a'd ' *bctad'*bic+ad ' *b'c+a'deb'c+a'd-be')

+j[ad b ctad-bc'+ad  -be+a'd bc-(a'd *b'cta'd *bc'+ad *b'c’

+a'd'b'c)]))

- <ab-a'b'+j(a'b+ab')> <cd—c'd'+j(c'd+cd‘)>
+ ac-a'c'+j(a'c+ac')> <bd-b'd'+j(b'd+bd')>
+<ad-a'd'+j(a'd+ad')/\ <bc-b'c'+j(b'c+bc')>

= ((a+32") (b+3b")) {(eHe’) (¢43d"))
+<(a+ja') (c+jc')> <(b+jb') (d+3d')>
+((atga") (433D {(brgb") (e43c')>

= AB°CD+AC*BD+AD*BC
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An Intepgral

(E-1)

Appendix E

2n(fo+B/2) 3

j wzdw - .(.2%)_ [(fo+B/2)3 - (fo-B/2)3]
2n(f°-B/2)

3 .
- 13&1_ [fo3+3f02 B/2+3f082/6+33/8

3..2 2 3
-(fo -3f° B/2+3f0B /4-B IS)J

3
- Szgl—-(afoz B+BO/4) = (21)° (f°2 B+B2/12)
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Appencix F

ble Summation

Make the change of variable k = i-j . Then

MM M-1 M-l M-l
Z z (1-§)? - Z k> (M-k) = Zk Z K3
1=1 §=i+1 k=1 kel k=1

(r-1)

2 2 1

oy SMo1) MEM-D DM
6 4

- Zh'z(u-uﬂ!-llz- wle-n? | M) *2"1 [2(-1) - 3(1-1)]
1 1 "

Mz b-1) (M+l
12

IH. B. Dwight, Tables of Integrals and Other Mathematical Data,
Macmillan, 1964, §29,

C-42
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