UNCLASSIFIED

AD NUMBER
AD842917
NEW LIMITATION CHANGE
TO Approved for public release, distribution unlimited
FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Foreign Government Information; 15 MAR 1968. Other requests shall be referred to Department of the Army, Fort Detrick, MD 21701.
AUTHORITY
SMUFD D/A ltr, 15 Feb 1972

translation no. 2140

Date: 15 March 1968

DDC AVAILABILITY NOTICE

Reproduction of this publication in whole or in part is prohibited. However, DDC is authorized to reproduce the publication for United States Government purposes.

STATEMENT #2 UNCLASSIFIED This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Dept. of Army, Fort Detrick, ATTN: Technical Release Branch/ TID, Frederick, Maryland 21701

DEPARTMENT OF THE ARMY Fort Detrick Frederick, Maryland

Best Available Copy

INTERMOTIONS BEYMDEN PATHOCOMIC VITAL TYPES AND THUE HOST CHEES

[The following is a translation of an article by W. Scharer* which appeared in the German language periodical, Path. Microbiol (Pathology and Microbiology), Vol. 20, pages 917-935, (1965)]

The fact that proliferating animal-pathogenic viruses are dependent upon the metabolic apparatus of the cell has been known since the time of Loffler and Frosch; also the fact they are effective in many different ways was immediately apparent to clinicians and lead to the first histologic and histochemical investigations. However more precise studies became possible only when more sophisticated techniques were introduced. Only after the application of tissue-culture techniques could reproducible experimental results be achieved, the application of isotopes leading to great accuracy and sensitivity.

The study of the interactions between two partners can only lead to worthwhile results if the properties of each partner are well-known. For this reason only a few animal virus types which have been analyzed in detail, have so far been chosen. As the field of experimental virology is still in a state of flux I should like to limit my discussion to the studies performed by our own group. My collaborators in this work were P. and H. Hausen, R. Rott and C. Scholtissek (See references 1,2,3 and 4).

^{*} At the Max-Planck Institute for Virus Research, Tubingen.

Misses cal Mast cychems attribled.

In recent years our sphere of interest has involved three different types of carefully chosen virules. From are representative of three groups of viruses which have prescribed importance and which can be easily handled experimentally. The chosen types were: a Columbia SK strain, the DE virus, as representative of the Pikorn viruses; the classical Posttry-plague viruse (TD) of the Maxoviruses as representative of the influenza viruses and finally, the Newcastle disease virus (MDV) as representative of the Para-influenza viruses.

Over-simplified diagrams of these viruses are given in Figure 1.

Homagluttimin with Nourominidase

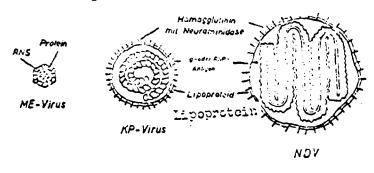
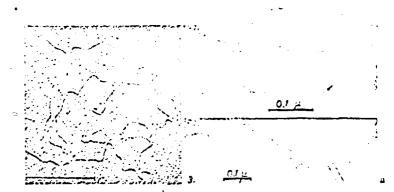



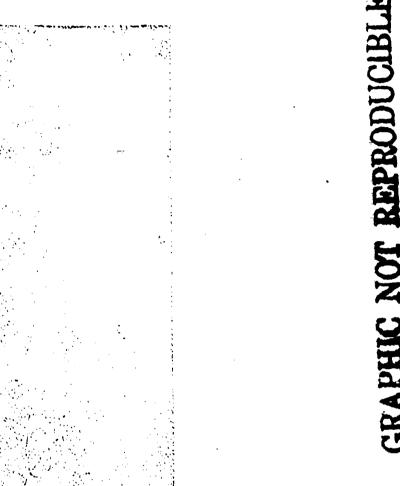
Figure 1. Diagram of three model viruses.

All three types of viruses contain single-stranded nucleic acids of the ribose type (RNA); in NE- and KPzvirus the amount corresponds to a molecular weight of about $2 \times 10^{\circ}$, in MDV it appears to be somewhat greater. In MZ-virus the RNA is surrounded by a relatively simply structured protein shell. According to the latest results of R. R. Rueckert (5,6), this consists of two, or even three, polypeptides. In KP-virus and NDV the nucleic acid together with a special protein forms a thread-like inner component, the gor RNP-antigen, whose structure differs for each virus. In the I moviruses the RNP-antigen is surrounded by a spiny shell, the Hemogglutinin, whose distinctive characteristic is the fact that it is the carrier of the hemagglutinising properties of the virus particle. Neuraminidase also appears to be contained within this component. Studies of KP virus show that the hemagglutinin is a carbohydrate protein complex. The entire structure is held together with lipoproteins which, as will be shown later, were originally components of the cell wall.

Of orest experimental significance was the possibility of carepal dispession of the complex structure of the mynoviruses to obtain the liberatifier - and handplutthin-complex in an essentially pure form (see Figure 2). It was also possible to prepare potent componentappoints anticera which we used for the localization of the various with components of the cell or for their isolation.

0.1 11

Figure 2. (a) RNP-antigen of NDV. Left: evaporated; Right: negative contrast obtained with Pnospho-Tungstic acid (DTA). (b) Hemagilutinin of LPvirus (PTA). As host call, we used mouse filtroblast of strain I for the NI virus, and primarily chicken fibroblasts for the nyxovirus.


Virus-Host cell interactions.

In the study of the interactions occurring between the virus and host-ocll we first followed the behavior of the virus-specific material and then attempted to correlate this with changes in the metabolic behavior.

a) Behavior of the virus-specific material.

The following picture for the MD-virus-L-cell system resulfed from studies of the behavior of the virus material: significant changes become apparent shortly after contact occurs between host cell and the infecting virus particle. It enters a phase which can be designated the "Eclipse" phase in which its infectiousness can no longer be detected by the usual means. According to accepted opinion this indicates that the virus particle has liberated its genevic material, nucleic acid. Apparently the NE-virus requires no special enzyme for this. By using highly-purified crystallized ME-virus we found that in 0.07 m. NaCl solution at pH 6.0 and 37°C its shell rapidly breaks up into fragments. In addition we observed, in electron-optic investigations, that substructures can detach from the virus shell at the weak points (without further preparation during evaporation on the slide) from which the nucleic acid threads emerged (Figure 3). The MI-virus shell is therefore a relatively unstable system which under quasi-physiological conditions can be split without enzymic participation, causing release of its mucleic acids. Drews made similar observations with polio-virus (Personal communication).

Under the direction of the liberated RNA, virus-RNA and -protein are formed on the new virus material in the host-cell (Figure 4). The RNA was found to be phenol-extractable, ribonuclease labile, and the infectious component. The kinetics of the formation of [page 922 is missing]

Partially broken ME-virus (evaporated). Liberation of Nucleic acid. Figure 3.

[p. 925] . . . virus proteins were followed scrologically and with Car-honoing fabiliting. Havurally we were also interested in seeing Whether double-surenued Fill any play a role in the formation of new single-suranced viral RMA. During these investigations we were able to isolate double-stranged REA from the infected cells, as Montagnier and Sandons (7) were able to do for EMS-virus and P. Housen (8) for ME-virus (Figure 5). Housen showed that its production essentially paralleled that of the single-stranded virus RNA. "Chase" experiments with radioactively labelled nucleic-acid precurrors indicated that a part of the double-stranded RNA is contimually replaced with nawly-synthesized material. Melting and purification experiments in which the "hot +" portion of the double strand is replaced by "cold" RNA isolated from the virus particle showed that the +-portion is continually renewed. All these findings can be understood most easily by assuming that the formation of MEvirus RNA follows the principle of asymmetric semiconservative proliferation (cf. 9) (Figure 6).

Double Strand RMA

Growing PMA-chains

wachsende RNS-Ketten

Figure 6. Schematization of the asymmetric, semiconservative proliferation of virus-RNA.

Topographically, according to the autoradiographic experiments described below, the proliferation of ME-virus-RNA appears to take place in the cytoplasm. In the same place one also finds virus-protein with fluorescent antibodies (Figure 7). As soon as sufficient quantities of both components are applied they combine to form the new infectious virus elements (Figure 4). Their liberation occurs

GRAPHIC NOT REPRODUCIBLE

as the cell ducays. More than 100,000 virus particles are formed per cell.

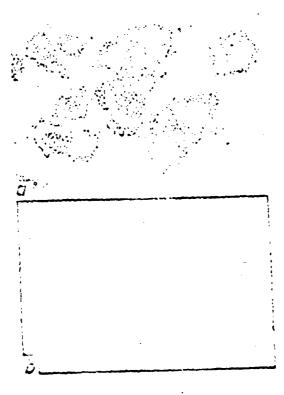


Fig. 7. (a). Autoradiograph of RNA-synthesis in ME-infected-L-cells. 5 hours post-injection. 5 minutes RNA-uridine. (b). Demonstration of ME-antigen in infected L-cells, using fluorescent antibodies. (4 hours post-injection).

Since the proliferation of KP-virus in chicken fibroblasts has been dealt with frequently. I will summarize it in a diagram (see Figure 8).

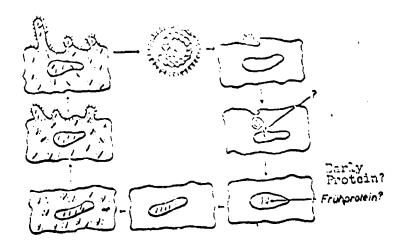


Figure 8. Diagram of the KP-virus. = RNP-Antigen, = RNA; and / = Nemagglutinin.)

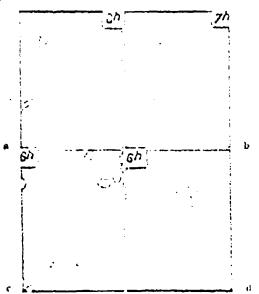


Figure 9. Diagram of NDV-antigen in infected cells with component specific fluorescent antibodies. (a) Chicken fibroblast 8 hours post-infection (p.i.). RNP-antigen-antibodies. (b) Chicken fibroblast 7 hours p.i., Hemagglutinin-antibodies. (c) Chicken embryo-lung-cells 6 hours p.i., RNP-antibodies. (d) Chicken embryo-lung-cells 6 hours p.i., Hemagglutinin-antibodies.

The first various one less that is not after infection which KT- and, the virus-kill allow influes a fallowed and kill-carager is the model of the influence new hemogeneration appears in the epocylam. As the influence produce both components have now rate the ord professery where, using the cell wall interial, they can induce form the new influentions elements. Release of mature virus course consistently under the action of virus-neurosidase. The total question of virus which a single call our produce is significantly. Less than in the kil-virus-less of system.

jerne<u>jša jedenije</u>nog

The proliferation cycle of NEV, the other approximas, shows corrain similarities with that of the RP-virus but also characteristic differences. These refer primarily to the localization of the RNP-antigen and therein to the Virus-RNA-symthesis. While the RNP-antigen appears in the cell nucleus with RP-virus, with NDV in the cytophasmit is found on the nucleus (Nigure 9). Furthermore the proliferation of RP-virus is stopped by actinomycin, however that of NDV is not. The meaning of this is not yet clear.

b) Makebolic behardor of the inflated heat calls.

How does this phenomenon affect metabolism of the host cell? The emphasis of our studies to-date has been on RA- and protein metabolism which was followed using $p^{N} = 0^{-1}$ and R^{N} -labelled compounds. The kinetics were studied using Geiger- and Scintillation-counting, the topography by autoradiographic methods.

The studies showed that inflation of L-cells with IM-virus leads to marked changes in metabolism. Soon after infection the autoradiographic picture shows extensive interference of RNA-synthesis in the cell nucleus, which at the time of the virus-RNA is followed by marked RNA-synthesis in an unusual location i.e., the cytoplasm (Figure 11). This phenomena was studied quantitatively by labelling the RNA with Citaridine and determining the rates of incorporation using a scintillation counter. The results are graphed in Figure 11.

As the incorporation studies with radicactively labelled leucine showed, an inhibition of protein synthesis parallels the reduction of normal RNI synthesis in the nucleus which is, however, interrupted at the time when RNA synthesis takes place in the cytoplasm (Figure 11). Cessation of cell-DNA-synthesis was also demonstrated using Tritium-labelled thymidine.

If one correlates these results with those described above then one can conclude, with greater certainty, that the RNA which appears in the cytoplasm is virus-RNA and that the protein formed

GRAPHIC NOT REPRODUCIBLE

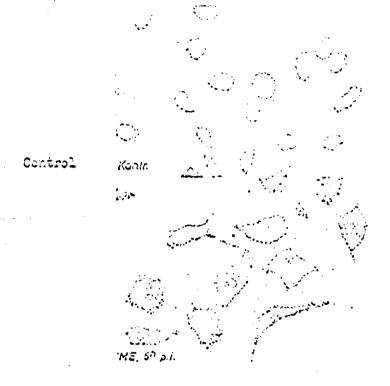
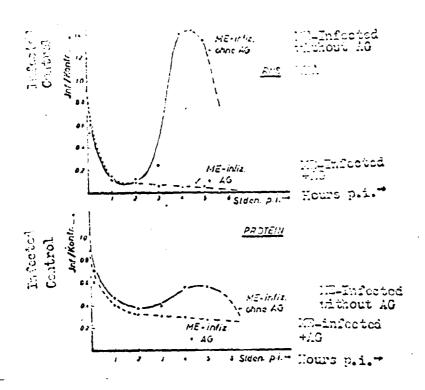



Figure 10. Autoradiograph of RNA-synthesis in ME infected L-cells (HD-uridine, 5-minute pulse).

simultaneously is virus protein. Pulse experiments confirm that RNA which later appears in the mature virus elements is actually identical to the RNA produced in the cytoplasm 3 to 6 hours p.i. The labelled protein which is formed at this time can be characterized as virus-specific protein with the aid of a precipitating antibody.

In the quest for the reason for the marked changes in RNAand protein synthesis we came upon substances which appear very early in the proliferation cycle and apparently have an albumin-like nature. Even though they are produced under the direction of the virus - RNA they still cannot be detected by virus-specific tests. They can only be demonstrated by indirect methods using substances which interfere with protein synthesis (Figure 12). These are designated as "early proteins." Previous results with MZ-virus and other virus-types of the same group suggest that there are at least three different types of early protein in the corresponding systems i.e.:

- l. an inhibitor of normal RNA synthesis;
- a substance which obviously independently inhibits normal protein synthesis;
- 3. a virus-RNA-polymerase.

意言言いた

人種語 見せる

Figure 13. Action of 8-Azaguanin (AG) or RMAand protein-metabolism of ME-infected L-cells. AG was added at time 0.

It was interesting to find that both inhibitors are already formed at a time at which no perceptable proliferation of virus-RNA has occured. Even though the proliferation is suppressed with 8-Azaguanine, which inhibits the synthesis of virus-RNA without significantly distrubing that of cell-RNA, the "early-proteins' will still be formed (Figure 13). We are therefore inclined to assume that their synthesis is induced immediately by the RNA of the infiltrated virus particle.

Figure 14 summarizes the total picture of the interactions between M2-virus and its host cell.

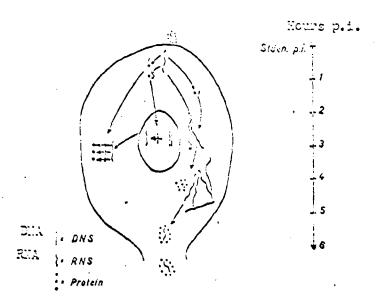


Figure 14. Diagram of the interactions between MEvirus and L-cells. On the right is indicated the time (after infection) at which the corresponding processes occur in the cell.

- 1: Inhibitor of normal protein synthesis.
- 2: Inhibitor of normal ANA synthesis.

AND THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PART

3: RNA-polymerase.

Unfortunately, an abridged and partially hypothetical picture, similar to the one for NE-virus, can not yet be presented for both mymoviruses. Early proteins also occur. We can only state with certainty that at least one of them is necessary for virus replication to proceed normally. It would be interesting to ascertain whether the transport of RNP-antigen in KP-virus, from the nucleus into the cytoplasm, is inhibited by the amino acid analog parafluorophenylaniline (PFPA) (see Figure 15). It is possible that a special protein is again required for this process.

Striking differences come to light if one compares the influence of ME-virus on the one hand, with that of both myxoviruses on the other on the RNA- and protein-metabolism of the host cell. In contrast to the ME-virus neither the KT- nor the KD-virus intervenes to any great extent in the early stages of proliferation. NDV may be used as an example. In NDV normal RNA synthesis remains so intense that it masks the synthesis of virus-RNA in the autoradiograph (Figure 16). The latter can only be clearly seen in the auto-

GRAPHIC NOT REPRODUCIBLE

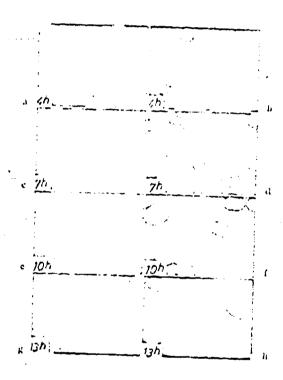


Figure 15. Localization of the RNP-antigen of KP-virus without (left row) and after addition (right row) of FFPA (2 hours p.i.). Stained with fluorescent RNP-antigen-antibody. (a)(b) 4 hours p.i. (c) (d) 7 hours p.i.: (e)(f) 10 hours p.i.; (g) (h) 13 hours p.i.: Chicken entryo lung cells.

radiograph if the production of normal ANA is suppressed by actinoxycin.

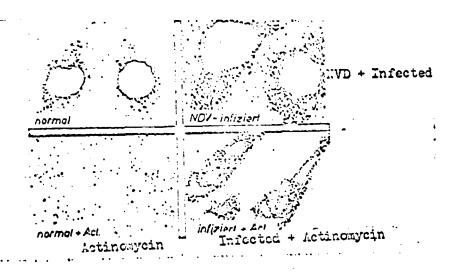


Figure 16. Autoradiograph of RNA synthesis (H2-uridine incorporation) in normal and NDV-infected KB-cells. Upper row without, lower with actinomycin addition.

Concluding remarks.

As these few examples show, virus types which contain the same type of nucleic acid can themselves be synthesized in the host cell and can affect its metabolism in many different ways. Whereas in KP-virus the synthesis of virus- RNA occurs in the cell nucleus, in ME-virus as well as in NDV, which in several respects resembles KP-virus, synthesis apparently occurs in the cytoplasm. Also, whereas there is an immediate, drastic, reduction of normal RNA-

and protein-metabolism with MI-virus, these are disturbed relatively little in the most important phase of the proliferation cycle in both nymoviruses.

Unfortunately/there have been no amblogous studies of tumor-producing, RWA-inhibiting virtues to date. He is most likely that these virtues, which speewhat resemble approximates morphologically and to which even the RR 8-influence virtue seems to belong, according to the very interesting observations of von Leuchtenberger et al (10), change the normal metabolism of the cell to a lesser extent than RR-virus or NDV. It appears that they have found a modus vivendi with the cell which the latter however must repay through unlimited proliferation. How this occurs will only be clarified by an extensive investigation of the interaction between both partners.

When we are faced, on the biochemical level, with the various activities of viruse: we must ask how information may be obtained from such minute organisms. The latest results of molecular biology show that even the smallest viruses contain large quantities of genetic material, in contrast to expectations. One-third of the RNA contained in RNA-virus suffices to transfer the information of the virus protein. The remaining two-thirds is available for other information. The range of variation thereby possible would explain why the quest for chemotherapeutic substances having a wide range of action has thus far been unsuccessful. We must also consider the fact that the only substances worthy of investigation are those which leave the metabolism which is normally a part of virus synthesis, substantially unchanged. In animal studies we observed that a compound X may have a marked effect on a certain strain of virus, but no effect whatsoever upon a closely related variety. On the other hand, a compound Y may have a relatively wide range of effects in the experimental animal. Closer analysis of its mechanism of action showed that it seriously interferes with normal RNA-metabolism of the cell.

However I should like to discuss not only the negative aspects of our findings but a positive aspect as well. Using ME-virus as an example it can be shown that there are viruses capable of inducing the production of materials which regulate the genetic functions of the host cell. In my opinion the possibility exists that such "virogene regulators" will prove to be of therapeutic value - e.g. in tumor treatment - and the viruses now known only as pathogenic agents, will be found to serve as transmitters of the desired information.

It is natural to assume that we will succeed in making virus particles that contain a limited amount of information. Experimental

colutions to this problem already exist (11).

These studies were supported by the German Research Foundation.

TEXT NOT REPRODUCIBLE

Bibliography

All papers are in Forlish except:

- 4. Schafer W.: Basic and applied research on viruses. Vienna Verinary Monthly, Vol. 51. pages 15-30 (1964).
 - Scholtissek, C.; Rott, R.; Hausen, P.; Hausen, H. and Schöfer, W.: Comparative studies of itNAs and protein-synthesis with a Myxovicus and a smail polyhedra; virus, Cold Spring Harbor Symp. on Quantit, Biology 27: 245-257 (1962).
 - Schafer, W.: Structure of some animal viruses and significance of their components, Bact. Rev. 27: 1-17 (1963).

 - 4. Schüfer, W.: «Grundlagen» und «Angewandte» Forschung und dem Virusgebiet, Wiener lierärzth, Mschr. 51: 13-30 (1964). Y (2): Y S. (2)
 - Rucckert, R. R. and Schüfer, W.: Studies on the structure of viruses of the Columbia SK group, I. Purification and properties of Mil-virus grown in Ehrlich Aszites cell suspensions, Virology 26: 333-344 (1965).
 - Rueckert, R. Ra Studies on the structure of viruses of the Columbia SK group, 11. The protein subunits of Mil-virus and other members of the Columbia SK group. Virology 26: 345-358 (1965).
 - 7. Montagnier, L. and Sanders, F. K.: Replicative form of Encephalomyocarditis rinomucleic acid. Nature 199: 664-667 (1963).
 - 8. Hanson, P.: Studies on the occurrence and function of virus-induced double stranged RNA in the ME-virus recell system, Virology 25: 523-531 (1965).
 - Weissmann, C.; Borst, P.; Burdon, R. H.; Billeter, M. A. and Ochon, S.: Replication of viral RNA, 111, Double-stranded replicative form of M82 phage RNA, Proc. Nat. Acad. Sc. U.S. 51; 682-690 (196).
 - Leuchtenberger, U.; Leuchtenberger, R.; Brunner, Th.; Norlin, D. and Weiss, S.: Transformation produced by PRS influenza virus in primary cultures of mouse kidney and bronchus, and production of malignam kidney tumors mailer by subcumures. Proc. Nat. Acad. Sc. U.S. 55: 694-701 (1965).
 - 18. Schultizzek, C. and Rott, R.: Behavior of virus-specific activities in tissue cultures infected with Myxoviruses after chemical changes of the viral ribonucieic acid. Virology 22: 169-176 (1964).

DISCUSSION

F. Burke: According to jour findings IDV contains essential elements of the host cell in the shell; nevertheless it is a good immunogen. According to Baker, Herpes viruses are not immunogens because they have too much host material in their shell. Could you make some statement concerning the shell material of Herpes virus?

Do you consider the late fluorescence in the nucleus after infection with paramyxoviruses to be specific?

- W. Schafer: 1. The finding of RNP-antigen in the nuclear region of NDV-infected KB-cells can be explained by the fact that in later stages of the proliferation processes of degeneration phenomena appear in the nuclear membrane and the antigen passes through the membrane. However it is more likely that at this time RNP-antigen groups are demonstrable in the thin layer of plasma above or below the nucleus. Our studies were made on intact cells.
 - 2. I would imagine that there are gradual differences in the coating of virus particles with normal host material. In incluenza - and parainfluenza - viruses, large quantities of virusspecific material penetrate the host-shell; perhaps these are parts of the hemagglutinins which are present. - the situation appears to be different in myeloblastose virus which is of construction similar to that of the myxoviruses. The portion of normal host material is apparently much larger in myloblastose virus. It contains demonstrable amounts of ATPase derived from the cell membranes and can carry along cartilagenous naterial when it is produced by cartilage cells. We were able to show that when this virus is injected into rabbits, in which it does not proliferate, one finds that antibodies for host material predominate in the serum. These surround the Virus-specific material to such an extent that the immunogens... can no longer act upon it. - Herpes virus can behave in a manner similar to that of myeloblastosevirus in this instance.