UNCLASSIFIED

AD NUMBER	
AD842559	
LIMITATION CHANGES	

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; SEP 1968. Other requests shall be referred to Air Force Technical Application Center, Washington, DC. Document partially illegible. This document contains export-controlled technical data.

AUTHORITY

usaf ltr, 25 jan 1972

BODY WAVE MAGNITUDE AND SOURCE MECHANISM

30 September 1968

Prepared For

AIR FORCE TECHNICAL APPLICATIONS CENTER Washington, D. C.

By

H. S. Jarosch TELEDYNE, INC.

Under
Project VELA UNIFORM

Sponsored By

ADVANCED RESEARCH PROJECTS AGENCY Nuclear Test Detection Office ARPA Order No. 624

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST QUALITY AVAILABLE.

COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

BODY WAVE MAGNITUDE AND SOURCE MECHANISM SEISMIC DATA LABORATORY REPORT NO. 225

AFTAC Project No.: VELA T/6702

Project Title: Seismic Data Laboratory

ARPA Order No.: 624

ARPA Program Code No.: 8F10

Name of Contractor: TELEDYNE INDUSTRIES, INC.

Contract No.: F 33657-68-C-0945

Date of Contract: 2 March 1968

Amount of Contract: \$ 1,251,000

Contract Expiration Date: 1 March 1969

Project Manager: Royal A. Hartenberger (703) 836-7647

P. O. Box 334, Alexandria, Virginia

AVAILABILITY

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Chief, AFTAC.

Attn: VSC, Wish DC. 20333

This research was supported by the Advanced Research Projects Agency, Nuclear Test Detection Office, under Project VELA-UNIFORM and accomplished under technical direction of the Air Force Technical Applications Center under Contract F 33657-68-C-0945.

Neither the Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsible for information contained herein which may have been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary.

ABSTRACT

A new method is proposed for improving the body-wave magnitude determination by using the observed values of the body-wave magnitude (m_b) together with the first motion directions, to obtain by least squares analysis the best double couple source parameters; the resulting radiation pattern is then integrated spatially to provide a corrected estimate of the magnitude. Results for a number of events previously studied by other investigators are presented.

TABLE OF CONTENTS

A DOMD A OM	Page No.
ABSTRACT	
INTRODUCTION	1
METHOD	4
Algorithm for Obtaining Source Parameters	8
AMBIGUITY OF RESULTS	9
Second Solution of the Fault Plane	9
ESTABLISHING THE METHOD	14
INPUT DATA	15
Analysis of the Data	15
CONCLUSIONS	19
Suggestions for Future Research	19
ACKNOWLEDGEMENTS	21
REFERENCES	22
APPENDIX	

LIST OF TABLES

Table Title	Table No.
Fault Plane Solutions Using the New Method	1
Fault Plane Solutions Previously Obtained	2
Example of Input Data for the Banda Sea Earthquake of 21 March 1964.	3
Results for the Banda Sea Earthquake of 21 March 1964.	4
Results for the Rat Island Earthquake of 5 February 1964.	5
Results for the Rat Island Earthquake of 1 October 1965.	6
Results for the Rat Island Earthquake of 15 May 1966.	7
Results for the Rat Island Earthquake of 4 July 1966.	8
Results for the Rat Island Earthquake of 22 November 1965.	9
Results for the Rat Island Earthquake of 22 November 1965 (additional magnitudes).	10
Results for the Hindu Kush Earthquake of 28 January 1964.	11
Results for the Alaskan Earthquake of 28 March 1964.	12
Results for the Alaskan Earthquake of 28 March 1964 (additional first motions).	13
Results for the Niigata Earthquake of 16 June 1964.	14

LIST OF FIGURES

Figure Title	Figure No.
Observed Radiation Pattern for the Banda Sea Earthquake of 21 March 1964.	1
Calculated Radiation Pattern for the Banda Sea Earthquake of 21 March 1964.	2
Observed Radiation Pattern for the Rat Island Earthquake of 5 February 1965.	3
Calculated Radiation Pattern for the Rat Island Earthquake of 5 February 1965.	4
Observed Radiation Pattern for the Rat Island Earthquake of 1 October 1965.	5
Calculated Radiation Pattern for the Rat Island Earthquake of 1 October 1965.	6
Observed Radiation Pattern for the Rat Island Earthquake of 15 May 1966.	7
Calculated Radiation Pattern for the Rat Island Earthquake of 15 May 1966.	8
Observed Radiation Pattern for the Rat Island Earthquake of 4 July 1966.	9
Calculated Radiation Pattern for the Rat Island Earthquake of 4 July 1966.	10
Observed Radiation Pattern for the Rat Island Earthquake of 22 November 1965.	11
Calculated Radiation Pattern for the Rat Island Earthquake of 72 November 1965.	12
Observed Radiation Pattern for the Rat Island Earthquake of 22 November 1965 (additional magnitudes).	13
Calculated Radiation Pattern for the Rat Island Earthquake of 22 November 1965 (additional magnitudes).	14
Observed Radiation Pattern for the Hindu Kush Earthquake of 28 January 1964.	15

LIST OF FIGURES (CONT'D.)

Figure Title	Figure No.
Calculated Radiation Pattern for the Hindu Kush Earthquake of 28 January 1964	16
Observed Radiation Pattern for the Alaskan Earthquake of 28 March 1964.	17
Calculated Radiation Pattern for the Alaskan Earthquake of 28 March 1964.	18
Calculated Radiation Pattern for the Alaskan Earthquake of March 28, 1964 (additional first motions).	19
Observed Radiation Pattern for the Niigata Earthquake of 16 June 1964.	20
Calculated Radiation Pattern for the Niigata Earthquak of 16 June 1964.	e 21
Geometry of a Shear Dislocation Source.	22

INTRODUCTION

The body-wave magnitude of an earthquake was defined by Gutenberg and Richter as

 $m_b = \log_{10} A/T + Q -3$

where

A is the P-wave amplitude in millimicrons

T is the period in seconds

Q is the Gutenberg-Richter (1956) distance-depth correction.

This magnitude of course, depends on the amplitude recorded at a particular station observing the earthquake. For want of a better method, the arithmetic mean of individual station magnitudes was chosen to be representative of the true body-wave magnitude. This would be correct if the source were assumed to be purely compressional (azimuthally uniform).

However, our knowledge of source mechanisms has increased to a point where it is now known that the mechanism of most earthquakes may be well represented by a double couple source mechanism, Stauder and Bollinger (1964). This, in turn, implies that the body-wave radiation pattern is not azimuthally uniform. If we want to be still more accurate, we can also include the effect of a moving source. In any case, the arithmetic mean of the observations does not represent the mean of a radiation pattern caused by a fixed or moving double couple. Hence it is desirable to find a better way of defining the "true" body-wave magnitude.

We propose that a better measure of the "true" bodywave magnitude may be obtained by taking the amplitude of a purely compressional source whose radiation pattern has the same area as the observed radiation pattern. Naturally, this means that we have to know the source parameters, i.e., the dip direction, dip angle and slip angle of the fault plane and the auxiliary plane.

In order to find the source parameters, two totally different methods have been used to date. The first is a purely geometrical approach, using only the directions of the first motion of P-waves. More recently the study of the polarization angle of the S-wave has further helped to improve estimation of the source parameters. However, as Stauder and Nuttli (1965) point out:

"Examination of multiple solutions, i.e., by several different authors for one and the same earthquake, as also a comparison of groups of fault plane solutions for a given region evidense poor agreement and systematic differences in solutions by different authors. This evidence requires that caution should be exercised in drawing conclusions from the existing accumulation of published fault plane solutions."

Although some of the directions of the first motions of the P-waves are reported, no data are readily available on polarization angles, and hence a detailed visual study of the seismograms is necessary for the analysis of source parameters using the above method.

The second method which has been used is spectral equalization. This is applicable to both body and surface waves and source parameters may be obtained, but with this method it is necessary to use digitized seismograms of a worldwide network, which are not readily available.

The method which we propose here consists of using data which are readily available, i.e., reported first motion directions together with observed body-wave magnitudes as given by the C&GS Earthquake Data Reports and the ISC Bulletin.

Of course, the method is bound to be inaccurate if there are large gaps in the azimuthal coverage, but in this case the other methods also fail. It is hoped that for earthquakes of magnitude 5 and larger, an approximate solution of the source parameters may be obtained and hence a better value of the mean body-wave magnitude may be established.

METHOD

The method is based on a number of assumptions:

- l. Using only WWNSS stations, it is not necessary to make instrumental corrections since the m_b is computed on the basis of A/T and the instrument responses are nearly identical.
 - 2. Geometrical spreading is accounted for by the Gutenberg-Richter correction for distance and depth of focus.
 - 3. The major contribution to the difference in the observed variation of $m_{\tilde{b}}$ with azimuth is caused by the source radiation pattern.
- 4. A double-couple source accounts for the radiation pattern.
- 5. Sufficient azimuthal coverage exists in the observations to allow reasonably unambiguous determination of the source mechanism.

This method is not intended to replace the body-wave equalization procedure as given by Ben Menahem, et al (1965). It is intended to provide a small correction to the mean m_b .

The model taken is the linear regression with zero intercept

$$B_i = KA_i + e_i$$

where

 B_{i} is the observed amplitude $(B_{i} = 10^{1})$

K is a constant to be determined

A_i is the calculated amplitude (as given by Ben Menahem et al (1965)

e is the error in the ith observation.

The calculated amplitude at the i'th station is related to the source parameters by:

$$A_i = a_0 + a_1 \sin (\theta - \theta_0) + a_2 \sin 2 (\theta - \theta_0) + b_1 \cos (\theta - \theta_0) + b_2 \cos 2 (\theta - \theta_0)$$

where

 $a_0 = 1/4 \sin \lambda \sin 2\delta (3 \cos^2 i_h - 1)$

 $a_1 = 1/2 \sin \lambda \cos 2\delta \sin 2i_h$

 $b_1 = 1/2 \cos \lambda \cos \delta \sin 2i_h$

 $a_2 = -1/2 \cos \lambda \sin \delta \sin 2i_h$

 $b_2 = 1/4 \sin \lambda \sin 2\delta \sin 2i_h$

 $\boldsymbol{\theta}$ is the azimuth (east of north) of the station as seen from the epicenter

 θ_{O} is the azimuth (east of north) of the strike direction of the assumed fault plane.

δ is the dip angle

 λ is the slip angle

ih is the take-off angle

Figure 22 shows the geometry of the source parameters.

We wish to use a least squares procedure to determine the source parameters. To do this, we minimize the sum of the squares of the errors, i.e., we choose K so that

$$E = \sum_{i}^{2} = \sum_{i}^{2} (B_{i} - KA_{i})^{2}$$
 is minimized.

Hence the estimated value for K is given by

$$\hat{K} = \frac{\sum B_i A_i}{\sum A_i^2}$$

Since $A_i(\lambda) = -A_i(\lambda + 180^\circ)$ we determine which half-plane has the smaller error, by choosing

$$\hat{K} = \frac{\left|\sum B_{i}A_{i}\right|}{\sum A_{i}^{2}}$$
and then $e_{i} = \begin{cases} B_{i} - \hat{K}A_{i} \\ B_{i} + \hat{K}A_{i} \end{cases}$ for $0^{\circ} \le \lambda < 180^{\circ}$

Only stations for which we have values of m_b were used in the estimation of K. In order to include also stations for which m_b is not given, but the first motion direction is given, we assumed an observed value whose absolute value was that of the calculated value and whose sign was the sign of the observed first motion, i.e.,

$$B_i = sign (STA_i) \hat{K}|A_i|$$

so that the contribution $e_i = 0$ if the signs of the observed and calculated values were the same and $2K|A_i|$ if the signs were opposite. This helps to insure that the sign of the larger amplitudes will cause a larger error, if they are different from the observed.

In order to calculate the mean m_b , it is first necessary to define a mean amplitude for a radiation pattern. We intend to use as a mean amplitude the amplitude of a purely compressional (azimuthally uniform) source whose radiation pattern has the same area as the observed radiation pattern:

$$\pi \bar{A}_{i}^{2} = 1/2 \int_{0}^{2\pi} A_{i}^{2} (\theta) d\theta.$$

This leads to

$$\bar{A}_{i} = \{ \frac{1}{\pi} [a_{0}^{2} + 1/2 (a_{1}^{2} + a_{2}^{2} + b_{1}^{2} + b_{2}^{2})] \}^{1/2}$$

Now since the coefficients a_0 , a_1 , a_2 , b_1 and b_2 are functions of the take-off angle i_h (which is different for each station), we simply compute an arithmetic mean of the means \overline{A}_i , so that finally the mean amplitude is given by

$$\overline{A} = \frac{\hat{K}}{N} \sum_{i=1}^{N} \overline{A}_{i}$$

and hence the mean m_{b} is given by

$$\overline{M} = \log_{10} \overline{A}$$
.

We have thus calculated a new mean value of m_b which has been corrected for the radiation pattern. The standard error of estimation of the corrected m_b can be calculated from the t-distribution. Arbitrarily taking our confidence limits at 90%, we find

$$\hat{K}_{+} = \hat{K} + \frac{t^{N-1} S}{(\sum_{i=1}^{N} A_{i}^{2})^{1/2}}$$

$$\hat{K}_{-} = \hat{K} - \frac{t_{.95}^{N-1} S}{(\sum_{i=1}^{N} A_{i}^{2})^{1/2}}$$

where $S^2 =$

$$\frac{1}{N-1} \sum_{i=1}^{N} (B_i - \hat{K}A_i)^2 = \frac{1}{N-1} \sum_{i=1}^{N} \hat{\ell}_i^2$$

 $t^{N-1}_{.95}$ is the value of the student's t-distribution at the 95% confidence limit, for n-l degrees of freedom.

Hence the upper and lower confidence limit for the body wave magnitude is found from

$$\overline{M}_{+} = \log_{10} \overline{A}_{+}$$

$$\overline{M}_{-} = \log_{10} \overline{A}_{-}$$

where
$$\overline{A}_{+} = \frac{\hat{K}_{+}}{N} \sum_{i=1}^{N} \overline{A}_{i}$$

$$\overline{A}_{-} = \frac{\hat{\kappa}_{-}}{N} \quad \sum_{i=1}^{N} \overline{A}_{i}$$

These values are shown in Table 1.

Algorithm for Obtaining Source Parameters

The initial strike angle, step size and number of steps are given as input parameters. A coarse mesh search is carried out to find the best strike angle and dip and slip angles. The step size for the dip and slip angles is taken to be 10°.

A fine mesh search is then carried out keeping the strike angle found in the first stage fixed and varying the dip and slip angles to find the least squares fit, in steps of 1°. Details are given in the flow chart in the appendix to this report.

AMBIGUITY OF RESULTS

When one finds a fault-plane solution using first motions only, there exists an ambiguity in the result, in that it is not possible to decide which is the fault plane and which is the auxiliary plane. Similarly, using the radiation pattern, Ben Menahem et al., (1965) found the amplitudes and directions of compressional, SV and SH radiation to be:

$$\vec{U}_{p} = \left\{ \frac{L_{o}^{ds}}{2\pi v_{p}} \left(\frac{v_{s}}{v_{p}} \right)^{2} \right\} (\vec{a} \cdot \vec{R}) (\vec{n} \cdot \vec{R}) \vec{R}$$

$$\vec{U}_{sv} = \left\{ \frac{L_{o}^{ds}}{4\pi v_{s}} \right\} \left[(\vec{n} \cdot \vec{R}) (\vec{a} \cdot \vec{\theta}) + (\vec{a} \cdot \vec{R}) (\vec{n} \cdot \vec{\theta}) \right] \vec{\Phi}$$

$$\vec{U}_{sH} = \left\{ \frac{L_{o}^{ds}}{4\pi v_{s}} \right\} \left[(\vec{n} \cdot \vec{R}) (\vec{a} \cdot \vec{\theta}) + (\vec{a} \cdot \vec{R}) (\vec{n} \cdot \vec{\theta}) \right] \vec{\Phi}$$

where

 \vec{a} is the vector in the direction of motion \vec{n} is the vector normal to the fault plane.

Since the vector \vec{a} , the direction of motion, is normal to the auxiliary plane and \vec{n} is the vector normal to the fault plane, it can be seen that the radiation pattern is unchanged by the interchange of \vec{a} and \vec{n} ; thus the same ambiguity which exists for the fault-plane solution, also exists for the radiation pattern method.

Second Solution of the Fault Plane

In the previous section we explained that in finding a solution of the source parameters, there exists another solution, whose radiation pattern is identical with that already found. Hence, since we do not know which is the fault plane and which is the auxiliary plane, it is necessary to compute also the second solution. By comparing the mechanisms of groups of earthquakes from the same area having similar depth of focus, we might be able to see that one of the planes is similar in all cases in order to decide that this is the fault plane, assuming that the source mechanism does not change greatly.

It is assumed that one solution of θ_0 , δ and λ has been found already. In Ben Menahem et al (1965) the three coordinate axes are taken in the strike direction (x_1) , a direction opposite to the horizontal projection of the dip direction (x_2) and vertically upwards (x_3) .

Making a transformation so that we have x_1' pointing North, x_2' West and x_3' vertically upwards for a righthand system, we can describe the transformation of the unit vectors by the matrix relation:

$$\begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \\ \dot{e}_3 \end{bmatrix} = \begin{bmatrix} \cos \theta_0 & \sin \theta_0 & 0 \\ -\sin \theta_0 & \cos \theta_0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \\ \dot{e}_3 \end{bmatrix}$$

where θ_{o} is the strike angle measured clockwise from North.

Hence we can describe the direction of motion, the "null" vector and the vector perpendicular to the direction of motion

by the matrix relation

The vector \vec{a} lies in the fault plane in the direction of motion and hence its direction cosines are the direction cosines of the auxiliary plane, which is normal to the fault plane. The vector \vec{n} is normal to the fault plane and hence its direction cosines are the direction cosines of the fault plane. The vector \vec{b} lies in the fault plane normal to the direction of motion and hence it is the "null" vector, the intersection of the fault

plane and the auxiliary plane.

These relations are needed to compute the slip angles, assuming that each plane in turn represents the fault plane.

Given one solution of the source parameters θ_1 , δ_1 , λ_1 we wish to find the second solution θ_2 , δ_2 , λ_2 . We can do this by remembering that $\overset{\downarrow}{a}_1$ and $\overset{\downarrow}{n}_1$ of one solution become $\overset{\downarrow}{n}_2$ and $\overset{\downarrow}{a}_2$ of the other solution and hence by equating direction cosines, we have

$$\cos \lambda_1 \cos \theta_1 + \sin \lambda_1 \cos \delta_1 \sin \theta_1 = -\sin \delta_2 \sin \theta_2 \tag{3}$$

$$\cos \lambda_1 \sin \theta_1 - \sin \lambda_1 \cos \delta_1 \cos \theta_1 = \sin \delta_2 \cos \theta_2 \tag{4}$$

$$-\sin \lambda_1 \sin \delta_1 = -\cos \delta_2 \tag{5}$$

From these we can derive the expression for the constraint of perpendicularity between the two planes

$$\tan \delta_1 \tan \delta_2 \cos (\theta_1 - \theta_2) = -1 \tag{6}$$

and the reciprocal relations

$$\cos \delta_1 = \sin \lambda_2 \sin \delta_2 \tag{7}$$

$$\cos \delta_2 = \sin \lambda_1 \sin \delta_1 \tag{8}$$

$$\cos \lambda_1 = \sin \delta_2 \sin (\theta_2 - \theta_1) \tag{9}$$

$$\cos \lambda_2 = \sin \delta_1 \sin (\theta_1 - \theta_2) \tag{10}$$

Hence, having found one solution for θ_1 , δ_1 , λ_1 , we find θ_2 , δ_2 , λ_2 by finding δ_2 from equation (8) where δ_2 is defined to be between 0° and 180°. In order to find λ_2 we use equations (7), (9), and (10) and then we can fit λ_2 into the correct quadrant. Finally, we compute θ_2 by using equations (6) and (9) and thus we can fit θ_2 into the correct quadrant. When, 90° < $\delta_2 \leq 180^\circ$, it signifies that the dip direction lags 90° behind the strike direction, instead of leading by 90°, according to the sign convention used here.

ESTABLISHING THE METHOD

In order to show that the method yields significant results, the following test cases were tried:

- 1. Banda Sea Earthquake of March 21, 1964 (reported by Teng and Ben Menahem (1965). For this case the calculated amplitudes were also input to check that the method gives back the exact input values.
- 2. Rat Island Earthquake of 5 February 1965 (origin time 09 32 9.3). The Rat Island earthquake mechanisms were reported by Stauder (1968). The information for the first motion directions for the Rat Island sequence was kindly supplied by the Rev. William Stauder, S.J. in a private communication.
 - 3. Rat Island Earthquake of 1 October 1965
 - 4. Rat Island Earthquake of 15 May 1966.
 - 5. Rat Island Earthquake of 4 July 1966.
 - 6. Rat Island Earthquake of 22 November 1965.
- 7. Hindu-Kush Earthquake of 28 January 1964. Fault plane solutions were reported by Hedayati and Hirasawa (1966), and also by Ritsema (1966).
- 8. Alaskan Earthquake of 28 March 1964 (origin time 03 36 14.2). The input data was taken from the Bulletin of the International Seismological Centre. Solutions were reported by Stauder et al (1966), and Harding et al (1968).
- 9. Niigata Earthquake of 16 June, 1964. A fault plane solution was reported by Hirasawa (1965).

INPUT DATA

Input data were collected mainly from the C & GS Earthquake Data Reports and the Bulletin of the International Seismological Center, Edinburgh.

The first motion data for the Banda Sea earthquake were taken from Teng and Ben Menahem (1965).

The first motion data for the Rat Island earthquakes were supplied by the Rev. William Stauder, S.J., in a private communication.

The first motion data for the Hindu-Kush earthquake were taken from Hedayati and Hirasawa (1966).

The additional first motion data for the Alaskan earthquake were supplied by Harding in a preprint.

The first motion data for the Niigata earthquake were taken from Hirasawa (1965).

Analysis of the Data

1. Banda Sea Earthquake of the 21st of March 1964. For this earthquake 37 stations were used, 12 of them with magnitude and 25 with only first motions. Figure 1 shows the observed radiation pattern and Table 3 shows the input data. Figure 2 shows the calculated radiation pattern and Table 4 gives the results in tabular form. In our final solution, 36 stations had the same calculated and observed first motion direction and the one disagreement was near a nodal value. The new mean value of m_b came out to be 5.85 as against the C&GS value of 5.8. The stars in Figure 2 are calculated amplitudes for those stations which had observed values and the dots are calculated amplitudes for those stations which only reported first motion directions.

- 2. Rat Island Earthquake of the 5th of February 1965 (9h.) Figure 3 shows the observed radiation pattern. For this case 72 stations were used, 13 of them with magnitude and 59 with first motions only. The results are given in Figure 4 and Table 5. The resulting score was 72-12, i.e., 12 stations had the opposite calculated first motion. However, this earthquake showed clearly that the C&GS value of m_b was too low since most of the observations were near nodes. The new value of m_b was 6.3 as against the C&GS value of 5.9.
- 3. Rat Island Earthquake of the 1st of October 1965. This was a case where all the observed first motion consisted of dilatations. Figure 5 shows the observed radiation pattern. The results are given in Figure 6 and Table 6. The score was 80-0. Although the strike angle is quite far from that found by Stauder (1968), the pattern of signs of the first motion are completely similar to Stauder's and the solution was determined primarily by the observed magnitudes.
- 4. Rat Island Earthquake of the 15th of May 1966. All the observed first motion consisted of compressions. Figure 7 shows the observed radiation pattern. The calculated radiation pattern was also governed mainly by the magnitudes in this case, since the strike angle could be varied considerably without changing any of the signs of the first motion. 84 stations were used, of which 21 reported magnitudes and the rest only first motions. The results are given in Figure 8 and Table 7. This was another case where many of the stations were close to nodes and hence the new value of $m_b = 5.96$ as against the C&GS value of 5.8 reflects this.
- 5. Rat Island Earthquake of the 4th of July 1966. Figure 9 shows the observed radiation pattern. This is a more complicated source mechanism and hence the final score 80-18 shows

that the fit was not too good. 22 stations reported magnitudes and the rest reported first motions only. One of the difficulties was that no magnitudes were reported in the second quadrant, thus missing an entire lobe of the pattern. The results are shown in Figure 10 and Table 8.

6. Rat Island Earthquake of the 22nd of November 1965. This was another case of compressions only, with no stations reporting magnitudes in the second and third quadrant. Figure 11 shows the observed radiation pattern. A change of 30° in the strike angle did not change any of the first motion directions. The results are given in Figure 12 and Table 9.

Another run was made using additional magnitudes supplied by D. Lambert of SDL in a private communication. The new observed radiation pattern is given in Figure 13. For this case, there were magnitudes observed in the third quadrant, but not in the second quadrant. The strike direction did not change, but the dip and slip angles, and hence the second solution, did change somewhat. The results are given in Figure 14 and Table 10.

7. Hindu-Kush Earthquake of the 28th of January 1964. This was a complicated source mechanism. The observed radiation pattern is given in Figure 15. Values of Log₁₀ A/T were taken from the ISC bulletin and for the first motion, only those stations used by Hirasawa and Hedayati (1966) were included. The solution favours the one obtained by Ritsema (1966). The final score of 53-14 reflects the inadequacy of the solution. Again, one of the difficulties is that there are no magnitudes observed between 115° and 295° azimuth. The results are shown in Figure 16 and Table 11.

8. Alaskan Earthquake of the 28th of March 1964 (main shock). The 22 values of magnitude for this event were taken from the ISC bulletin and signs of first motion were taken from the bulletin and the C&GS Earthquake Datz Reports. The observed radiation pattern is given in Figure 17. The final score obtained, 86-22, suggests that quite a few of the stations reported erroneous first motions, since the solution agress quite well with that of Stauder and Bollinger (1956). The results are given in Figure 18 and Table 12.

Another run was made using additional first motions supplied by Harding in a preprint of the C&GS on the Prince William Sound Earthquakes (1968). The solution was improved considerably and the final score was 134-17. The results are shown in Figure 19 and Table 13.

9. The Niigata Earthquake of the 16th of June 1964. This was another case where m_b given by the C&GS was too low and the new value of 6.5 as against 6.1 is correcting in the right direction. The observed radiation pattern is given in Figure 20. The results, shown in Figure 21 and Table 14, do not agree very well with the solution found by Hirasawa (1965).

CONCLUSIONS

Comparison of the fault plane solutions obtained by the new method and those obtained using first motions only show that indeed it is possible to find reasonable agreement. The solution of the Hindu-Kush earthquake parameters show that although better agreement with the first motion directions was obtained by Hedayati and Hirasawa (1966), the amplitude radiation pattern does not agree as well with the observed pattern as that obtained by using a combination of first motion directions together with observed body-wave magnitudes.

The results of the Rat Island earthquake of the 5th of February, 1965 show that the proposed method compensates correctly where too many of the observed magnitudes were near to nodes. This shows that the proposed definition of magnitude is superior to taking the arithmetic mean of the observations of m_b .

The fault plane solution found by this method is probably not as accurate as that obtained by S-wave data. However, the new method gives two checks on the accuracy obtained, the first by simply the number of differences in sign between calculated and observed, i.e., the "score". The second is by examining the confidence limits of the magnitude.

The results also indicate that in order to take the radiation pattern into account when finding the "true" value of m_b, it is sufficient to use an approximate solution to the source parameters. This is possible by using readily available magnitude and first motion data without laboriously having to re-examine records.

Suggestions for Future Research

1. In order to make best use of the method outlined above,

there still remains to be determined the minimum number of input data which must be used in order to get a good solution. For the cases tried here, rather more points were used than really necessary.

- 2. Instead of the equal weights least squares solution, it might be possible to get some improvement by using a weighted least squares procedure.
- 3. If more emphasis is to be placed on the accuracy of the fault plane solution obtained using the new method discussed above, it is possible to add the S-wave data to the least-squares procedure.
- 4. A still better way to define the "magnitude" of an event may be to use the idea of moment, e.g., Aki (1966).

ACKNOWLEDGEMENTS

The author wishes to thank Dr. E. A. Flinn for helpful discussions and encouragement in this project, Dr. T. Cohen who helped collect the data from the film records of the observatories, Dr. R. Shumway who suggested how to obtain statistical estimates of the accuracy of the results, the Rev. W. Stauder for supplying the first motion data for the Rat Island sequence, Mr. S. Harding for the preprint of the forthcoming publication of the Prince William Sound earthquakes and the much appreciated cooperation of the C&GS in this project.

REFERENCES

- Aki, K., Generation and Propagation of G Waves from the Niigata Earthquake of June 16, 1964, Pt. 1. A Statistical Analysis. Pt 2. Estimation of Earthquake Moment, Released Energy, and Stress-Strain Drop from the G Wave Spectrum, Bull. Earthq. Res. Inst. Tokyo, 44, 23-72,73-88, 1966.
- Algermissen, S.T., S.T. Harding and R.W. Sherburne, The hypocenter, origin time, and magnitude of the Prince William Sound earthquake of March 28, 1964 (in press).
- Gutenberg, B. and C.F. Richter, Magnitude and energy of earthquakes, Ann. di Geofis. 9, 1-15 (1956).
- Harding, S.T., and S.T. Algermissen, The Focal Mechanism of the Prince William Sound Earthquake of March 28, 1964, and Related Earthquakes (in press).
- Hedayati, A. and T. Hirasawa, Mechanism of the Hindu-Kush earthquake of January 28, 1964, derived from S wave data: the use of pP phase for the focal mechanism determination, Bull. Earthqu. Res. Inst. Tokyo, 44, 1419 1434, 1966.
- Hirasawa, T., Source Mechanism of the Niigata Earthquake of June 16, 1964, as derived from body waves, Jour. Phys. Earth 13, 35-66 (1965).
- Menahem, B.A., S.W. Smith and T.L. Teng, A procedure for source studies from spectrum of long period seismic body waves, Bull. Seismol. Soc. Am., 55, 203-235, 1964.
- Ritsema, A.R., The fault-plane solutions of earthquakes of the Hindu-Kush Centre, Tectonophysics 3, 147-163, 1966.

- Stauder, W. and G.A. Bollinger, The S Wave project for focal mechanism studies Earthquakes of 1962, Bull. Seismol. Soc. Am., 54, 2199-2208, 1964.
- Stauder, W., S.J. and O. Nuttli, Investigation of phase velocities of long period surface waves and focal mechanism studies, Final Report August 1, 1960 August 31, 1965, AFCRL Project Vela-Uniform (1965).
- Stauder, W. and G.A. Bollinger, The focal mechanism of the Alaska earthquake of March 28, 1964 and of its aftershock sequence, Geo. Phys. Res., 71, 5283-5296, 1966.
- Stauder, W., Mechanism of the Rat Island earthquake sequence of February 4, 1964 with relation to island arcs and sea-floor spreading, Geo. Phys. Res., 73, 3847-3858, 1968.
- Teng, T.L. and A. Ben Menahem, Mechanisms of deep earthquakes from spectrums of isolated body-wave signals, Geo. Phys. Res., 70, 5157-5170, 1965.

TABLE 1 Solution Using The New Method

	E											
	Y LIN	•	0	0	9	w	9	0	-		6	-
	90% CONFIDENCE UPPER LIMIT	Ś	6	9	5.	Š	5.	9	9	•	9	9
	IMIT						_	•	10	.0	_	
	903 UPPER L	6.0	9	9	6.3	9	5.8	9	9.	7.6	7.1	6.1
	ECTED											
	MEAN CORRECTED "b	5.84	. 28	. 36	96.	.15	.78	.07	. 39	7.26	. 25	6.53
	MEA						•				_	•
	200	5.8	5.9	6.3	5.8	6.2	6.9		6.1	8.5*		6.1
	SCORE	Ξ	21-1	0-0	0-	-18	. 2-	E-	1-14	86-22	-17	71-9
	S	33	7.5	8	80	80	99	80	53	88	134	7
~	SLIP	172.	38	106	78.	173	.901	115	20.	168	+	37.
PLANE 2	910	31.	12.	\$3.	:	•18	31.	432	•08	•19	*11	.95
	DIR.	•	•	•	•	•	•	•			•	
	910	88	-	241	9	189	34	331	357	231	7	23
	SLIP	300	100	.062	100	350	.00	70.	170	30.	200	140
	910	.98	82.	.04	•05	. 78	.09	.05	.02	80.	96.	.09
PLANE 1	DIR.		_	ē		_		_				
•	410	185	145	215	105	280	180	.00	8	135	340	135
	•••	1964	1965	1965	9961	9961	1965		1961	1961		1961
	DATE	2	5.	-	15.	•	22.			28,		Jun 16. 1967
			4.						5	=		269
	2	_	~	•	•	•	•		1	•		•

The observed values of $m_{\rm b}$ were too small, the value of 8.5 is not based on them.

TABLE 2 Results Previously Obtained

		SCORE SOURCE Ben Menahem et al	(1965) 63-0 Stauder (1968)	74-0 Stauder (1968)	67-0 Stauder (1968) 67-0 Stauder (1968)	70-1 Stauder (1968)	56-0 Stauder (1968) HedayatışHfrasawa (1966)	L.S. Sol. (1) L.S. Sol. (2) Graph. Sol. (1) Graph. Sol. (2) Ritsema (1966) Aki (1966)	Harding (1968) Harding (1968) Harding (1968) Harding (1968)	5555
		SLIP						80.0°+4.1° 80.4°+4.0° 75° 90°	89.2.47.9	
	PLANE 2	010	15°	°05	34°	85°	22°	71.1°±2.0° 76.3°±2.1° 70 68° 62° 20°	\$25°52°50°50°50°50°50°50°50°50°50°50°50°50°50°	1
•		OIP OIR.	325°	40.	349	187°	354°	116.1°±3.8° 115.8°±3.7° 100° 116° 140°	332° 248° 220° 45° -79.9°+5.1°	
		SLIP 315°						63.0°+12.1° 65.0°+11.9° 54.5° 90° 90°	60 60 90 80	
		01P	75°	.05	61°	85°	20°	21.3°±4.3° 21.9°±4.2° 25° 22° 28° 70°	32° 82° 87° 62° 31.2°+1.4°	
	PLANE 1	01P 01R.	141°	175°	136°	97°	145°	-35.2°±12.8 -37.5°±12.8 -118° - 64° - 40°	152° 152° 310° 135° 101.7°+13.9°	
		. OATE Mar 21, 1964	Feb 5, 1965	Oct 1, 1965	May 15, 1966 Alternate	Jul 4, 1966	Nov 22, 1965		Mar 28, 1964	
		. L	2	m	•	2	ø	_	a a	

Table 3. Example of Input Data for the Banda Sea Earthquake of 21 March 1964.

20200000000000000000000000000000000000	21
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-
44 44 <td< td=""><td></td></td<>	
M 4 4 4 4 4 4 9 9 9 9 9 9 4 4 9 4 8 4 8 4	
4 4 4 4 4 9 9 7 9 6 9 4 4 8 4 8 4 8 4 8 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
00000000000000000000000000000000000000	
4000 V M O O W W W W W W W W W W W W W W W W W	
000	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
7 3 9 9 4 4 9 4 4 4 9 4 4 4 9 4 4 4 9 4 4 4 9 4 4 4 9 4 4 4 9 4 4 4 9 4 4 4 9 4 4 4 9 4 4 4 9 4 4 9 4 4 9 4 9 4 9 4 9 4 9 4 9 4 9	
000 44 00 44 00 44 00 44 00 46 00 00 00 00 00 00 00 00 00 00 00 00 00	
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
0 4 V V O O O O O O O O O O O O O O O O O	
7 0 0 4 4 0 4 4 4 9 4 4 9 4 9 4 9 9 9 9 9	
60 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6	
64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
04.10 04.00 04.00 04.00 04.00 05.00	
20.50 20.70 40.70 50.10 50.10 50.10	
23.74 42.14 55.64	
42.10 55.20	
- 54.63	

Table 4. Results for the Banda Sea Earthquake of 21 March 1964.

2.4467F U2 CUNYK" 1.1500E U2 MEAN MAGE 5.85 95 PERCENT CONF. UPPER I IMITE 4.11 95 PENCENT CONF. LOWER I IMIT 5.4 SAMPLE VARIANCE 3.212rt 113 1 STACES AZCES CALE. CIU MAS. CIU MAU(1) MAC. (1) ARU 9.0 6.4 6.0 2 COL 25.0 5.9 5.3 3 KIP 5.8 67.0 5.7 100.0 PMG 4.9 5.8 5 145.0 RIV 6.0 6.1 4 CAN 149.0 6.0 5.9 NHA 315.U 5,5 5.3 NUR 330.U 5.8 5.2 9 KJN 334. U 5.8 5.7 10 KEV 340.U 5.8 5.5 11 BAG 342.0 5.8 5.3 ANP 15 349.U 5.9 6.0 13 MAT 12.0 6.1 0 14 MTJ 14.5 6.1 0 15 GUA 40.5 6.1 0 14 HON 66.0 5.8 0 17 HAH 86. U 5.6 0 HNH 18 97.5 4.6 0 19 AFI 102.3 4,5 U 21 LUG ٠ 106.0 5,3 0 21 PVC 109./ • 5.5 0 55 KOU 115.4 5.6 0 23 NOU 117.1 5.7 U 5.9 24 CTA 129.1 U 25 ARS 134.5 6.0 0 24 WEL 137.5 5.9 0 27 TAU 157.0 6.0 U 24 ADE 162.1 6.1 0 29 MUN 201.0 5.9 0 PRE 30 243.3 5.3 0 31 BUL 248.4 5.2 0 32 SHI 301.4 5.6 0 31 151 310.5 5.0 0 34 SHL 313.1 5.6 0 35 MAN 342.1 5.8 0 34 HKC 335.6 5.8 0 37 SEU 358.4 6.0

Table 5. Results for the Rat Island Earthquake of 5 February 1964.

XFG		AF U2 CUA	¥4. J.	いとてント	U2 PEA	-	0.78
95 PE	HCENT		PEH 11	11.	4.4		
95 Pt	10110		MER 11.	11.	A . n		
BAMPL	E VAI	1 4/11/	.435ml	6.40	PHE.	C/U	
	<1.11	-/.,	4A . []]	() 0	HALLE	170	
1	1115	29.1	0. 3	•	A.1	•	
2	CHC	37.4		•		•	
	CPU	54.1	5.6	•	5.4	•	
4	PHO	40.0	4 . H	•	3.0	•	
4	110	71.3	5.3		4.0	•	
,	150	74.1	5.7		5.3	•	
	F116	200.0	5.1	-	5.6	•	
	DAV	239.4	5.4	•	5.4	•	
1 0	FAL	250.3	6.1	•	4.0	•	
11	HUH	301./	6.4	•	4.2	:	
17	STU	349.4			6.0		
14	HOH	2.4	6.4	•		•	
15	VAL	7.4	4.4	•	U	•	
14	AKU	5.8	6.4	•	U	•	
17	ALF	9.4	6.5		U		
10	HFS	24.1	6.4	·	ŭ		
20	COL	42.1	6.1	•	0	•	
21	-	45.3	6.1	•	*	•	
22	AFC	47.4	6.1	•	•	•	
5.3	900	4R. Y	4.0	•	•	•	
54	SCP	51.1	6.0	:	U	•	
24	ALA	53./	5.0		0		
27	SJP	55.1	5.5	•	·	•	
24	MUS	56.>	5.0	•	0	•	
56	CSC	57.1	5 . P	•	:	•	
30	ATL	40.3	5.7	•		•	
\$ 0 \$ 9	FLO	AB. 6	3.7				
33	TOM F	63.4	3.6	•		•	
34	MCD	43.6	5.4	•		•	
39	407	47.1	4.1	•	•	•	
34	SPU	67.9	4.6	•	0	•	
37	DAL	49.4	4.4	•		•	
34	COL	49.3	5.1		:		
40	101	73.1	5.1	•		•	
41	TUC	79.4	5.7	•	i	•	
47	630	01.0	5. 5	•	•	•	
4.5	HIV	100.1	3.4	-	•	•	
44	CTA	407.1	3.6		:		
44	MAN	448./	6.1	•		•	
47	ANP	294.5	6.2	•		•	
40	MMA	457.5	6.2	•	•	•	
4.	HKC	460	4.8	•	•	•	
91	SEO	278.4	6.3				
57	SHL	400./		•		•	
91	MOU	461.1	6.3	•		•	
54	KUP	481.C	0.3	•	0	•	
37	NO!	200.5		•		•	
37	COH	297.4	6 . 4 6 . 4				
-50	341	391.9	4.4	•			
50	TEH	317.4					
• •	JFH	324.1		•		•	
•1	181	334.3	6.5	•	•	•	
63	MEU	J37.1 J41.5				:	
	ARU	349.5		•		•	
	141	146.3		•		•	
64	#E+	344. 4	6.5	•		•	
67	SHE	347.4	6.5	•	0	•	
44	COP	340.3	4.5	•	•		
79	654	J9A.>	6.5				
71	TOL	190./		•		•	
79	-	190.0		•		•	

Table 6. Results for the Rat Island Earthquake of 1 October 1965.

APP A.71095 H2 CONYK S. S. S. VE BO HEAD MARE 5.36 95 PERCENT CONF. UPDER LIMITE A.5 95 PERCENT CONF. LOWER LIMITE A.5 SAMPLE VANIANCE . S. HYTAE H4 I STATES AZIES CALC. COM nur. CIU HAULTI HARELL 7.V 9.5 7.8 9.3 NOH 5.7 ALE 21.4 57.6 CUI PHC 5.11 T 1911 6.4 CPI 61.5 6.3 6.4 6.3 ATL 42.5 A.1 CAR A4.1 6.4 10 WHO 70.5 6.4 11 119() 72.0 4.3 4.5 74.8 75.4 79.4 12 13 14 JCT A1.13 TFU 4.3 87.0 HKS A. 5 214.4 PHG 5.7 6.3 RAG 6.2 255.4 202.7 346.2 349.4 351.4 POO NUH 4.5 PRI A. 0 MOR 6.4 COP 311 352.0 151.2 4.4 FSR U MAL PTU VAL 5.1 5.3 7.4 35.9 46.9 AKU CHU 5.5 6.2 MEN 49.8 50.7 52.8 39 34 37 38 39 RFC 6.3 ogu SCP 57./ 57./ 58.1 58. Y AAM 6.3 HOS EDH 48 831 41 42 43 44 45 46 47 61.7 64.7 67.5 FLO 4.3 OXF SPO 6.3 70.1 BOL DAL LUH 71.U 73.5 74.1 74.4 74.4 DUG 49 COH HHP 23 001 79.4 TUC An . / #1.Y RAH 15A.6 34 34 37 34 39 WEL <11.0 >11.5 <27.4 >44.4 <50.0 CTA 6.4 ATE MUN DAV 40 MND ANP HEU 61 67 63 64 en1.1 261.7 465.4 850 SHL KOU 471.0 6.2 794.5 484.7 496.5 44 44 44 70 NII I LAH Jan./ SHI JA4. V 0.3 314.2 ... 71 72 110.0 4.3 TAH 323.0 73 JEH 74 75 74 77 70 80 Ula 134.1 ... TRI TRI TRI TRI 340.1 149.7 344.1 144..

Table 7. Results for the Rat Island Earthquake of 15 May 1966.

94	PENCEN	tyr agains Lighter a	*** 1		1 19 1 1 18 1		9.96
	Pf 11 1	Contra a se	VI 11 1 1		4.4		
SAN	PL. VAI	. 1 4 1 1 1 0	.29404	114	510		
	1 51411		aur.	110	ru.	17.11	
			Ma . ())		-41.111		
	4 NUN	1.7	4.0	•	4,5	•	
	7 MTG	71.4	4.1	•	5.4	•	
	4 110-	21.4	6.4		5.4		
	9 NF-	21. *		•			
	A \$ 11C	\$1.4	A . 6;	•		•	
	7 CM	17. *	5.1	•	5.4	•	
	• 60 m	5 K		•	4.4	•	
1		64	5.7		A . !!	•	
i		4.0.1	5.1		5.5		
1	> 5511	10.1	5.6		5.7		
1		71.4	9.0	•	5.1	•	
1		75.6	5.1	•	6.7	•	
1		117.7	* . *	:	5.4	•	
1		74.7	5.1	:	5.1		
1		. 14.1	5.0		4.0		
1		. 17.1		•		•	
5		.57.4	5.4	•	5.0	•	
31		14.1.5	A.1	•	4.4	•	
3:		2.4	4.1	•	U	•	
71		4.5	!	•		•	
2		4 4	4.1				
24		7.5	6.1		ĭ	•	
21		7.1	4.1	•		•	
34		21.5		•	0	•	
34		50.7 52.3	A . 11	•	10	•	
31		55.4		:	U	•	
37		57.1	5.4	•			
31	+ 110	+1.4	5.7	•	11	•	
34		41.7	6.0	•	0	•	
39		44./	5.0	•	49	•	
34		65.4	5.4	•	٠	•	
34	MCII	67.0	9.7	:	•	•	
30	-	AH. 6	5.0	·	•		
48	SHA	78.0	5. V	•			
41	MUS	10.5	5.0	•	ñ	•	
47	OUL	73.3	5.1	•		•	
43	FUN	75.0	5.5	•	•	•	
45	000	77.		•	0	•	
44	BHP	77.0	4.0	•	0		
47	JCT	77.0	5.4	•	Ü		
44	FUH		5.0	•	7	•	
30	LPS	A1.0	5.9	•			
91	TUC	A4.1	5.5	•	U 11	•	
97	65C	05.0		•			
53	elf	91.7		•		•	
3.	KIP	144.5	5.5	•		•	
39	M4H 614	.13.9	0.0	•	•	•	
37	94	<31.4	3.4			•	
54		153	6.0	•			
30	**	154.1	3.0	•	•	•	
64	MED	443.4	5. Y			•	
67	MAC	444.1		•		•	
41	3F0	.71."	3.4			•	
	CHG	c76.4	4.0	•	•		
44	SHL	can	4.9	•		•	
66	MO-	486.7		•	3	•	
67	MUI)	495.4	4.1	•			
40	401	/ OM . O	0.1			:	
74	L 44	302./	•	•			
71	Dile	307.4	0.1	•			
79	-	319.1	A. 1	•		•	
74	744	111.4	* . 1	•	•	•	
79	J64	131	• • •		•	•	
74	181	114.5	6.1			1	
77		147.1	4.1	•			
70	-	347.5	4.1	•		•	
70	101	100.	4.1		J	•	
01	CUP	151.1	• • 1	•	ů	•	
	STU	254.	• . 3		U	•	
• 1	- 0[144.		•	,		
••		154.1	4.1	•	3		

Table 8. Results for the Rat Island Earthquake of 4 July 1966.

Tatili Ayri Gale, Colombia COU None COU	
1 ALF 10-0 5.7 5.4 5.7 5.4 5.7 5.4 6.6 6.7 5.8 6.7 5.8 6.7 5.8 6.7 5.8 6.7 5.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6	
1 ALF 10.0 5.7 5.4 5.8 7.7 5.4 7.8 8.9 8.0 7.7 5.4 7.8 8.0 8.7 7.4 6.7 8.0 8.7 7.4 6.7 8.0 8.7 7.5 8.0 8.0 8.7 7.4 6.7 8.0 8.0 8.7 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	
2 MAC	
NP-	
4 CMC	
A SJG An. 4	
7 THI	
CPU A3.2 5.9 5.0 6.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	
10 1.AU	
12 WHU	
13 UHU 74.0 5.9 A.5 14 DUG 76.0 5.7 A.5 14 DUG 76.0 5.7 A.5 15 ALU 77.0 5.7 A.5 17 RAH 252.2 5.9 5.0 18 PHG 25.4 5.9 5.0 19 PHG 25.4 5.9 5.0 21 COP 352.0 5.0 A.2 5.0 21 COP 352.0 5.0 A.2 5.0 22 STU 353.7 A.4 5.5 24 ROR 3.3 5.1 U	
14 DUB 76.0 5.7 A.J A.J ALB 77.0 5.7 A.J ALB 77.0 5.9 A.5 ALB 77.0 5.0 A.J ALB 77.0 A.J ALB 77	
19 ALU 77.5 5.7 A.3 10 19 H H1.0 D.4 5.9 11 19 H H1.0 D.4 5.9 12 PMB 215.4 5.7 A.5 10 PMB 215.4 5.7 A.5 11 PMB 215.4 5.7 A.5 12 OUE 365.6 A.2 5.8 A.5 21 COP 352.6 5.8 A.2 5.8 A.5 22 STU 355.7 A.8 5.1 0 23 ESR 1.7 5.1 0 24 ROW 3.3 5.1 0 25 MAL 3.9 5.2 0 26 PTD 6.4 5.3 0 27 VAL 6.5 5.4 6 27 VAL 6.5 5.4 6 28 PMA 20.0 5.6 0 29 PMA 20.0 5.6 0 31 COL 39.1 A.5 0 32 MES 49.2 6.6 0 33 MEC 51.1 5.8 0 34 SCM 54.4 6.6 0 35 MRG 56.6 6.0 0 36 ST MRG 56.6 6.0 0 37 SJM 68.4 6.0 0 38 SCM 54.4 6.0 0 39 ROL 65.4 5.7 0 40 IMH 67.3 6.0 0 41 SMA 68.0 6.0 0 41 SMA 68.0 6.0 0 43 GOL 72.5 6.1 0 44 CON 75.7 6.1 0 45 MRG 76.6 5.7 0 47 JCT 76.8 5.5 0 48 CON 76.1 0 49 CON 76.2 5.2 0 40 LPS 60.3 5.3 0 41 TOC 76.8 5.9 0 42 DOL 75.7 6.1 0 43 GOL 75.7 6.1 0 44 CON 75.7 6.1 0 45 MRG 66.6 5.9 0 46 LPS 60.3 5.3 0 47 JCT 76.8 5.9 0 48 CON 76.1 0 49 LPS 60.3 5.3 0 40 LPS 60.4 5.3 0 41 TOC 76.8 5.9 0 42 DOL 76.1 0 43 GOL 77.6 5.9 0 44 CON 77.6 5.9 0 45 GOL 77.6 5.9 0 46 LPS 60.3 5.3 0 47 JCT 76.8 5.9 0 48 CON 77.6 5.9 0 49 LPS 60.4 5.3 0 40 LPS 60.4 5.3 0 41 TOC 76.8 5.9 0 42 DOL 76.1 0 43 GOL 77.6 5.9 0 44 CON 77.6 5.9 0 45 GOL 76.2 5.6 0 46 GOL 77.6 5.9 0 47 JCT 76.8 5.9 0 48 CON 77.6 5.9 0 49 CTA 217.3 5.3 0 40 DAV 45.0 6.3 0 40 DAV 45.	
1A IFH	
18 PHG 215.4 5. V A.5 19 PHO 793.5 5. V A.5 21 COP 352.6 5. N A.2 21 COP 352.6 5. N A.2 22 STU 353.7 4. N - 5.1 23 68N 1.7 5.1 0 24 NOW 3.3 5.1 0 25 MAL 3.9 5.2 U 26 NTO 6.4 5.3 0 27 VAL 6.5 5.4 1 1 - 2 28 NTG 6.4 5.3 0 29 PHA 20.11 5.6 0 20 PHA 20.11 5.6 0 31 COL 39.1 6.5 0 32 NES 49.2 6. N 0 33 NEC 51.1 5.8 0 34 SCP 54.8 6.0 8 35 MRG 56.6 6.0 8 36 SAM 56.5 6.0 8 37 SJP 66.2 5.0 8 38 RDL 65.4 5.7 0 40 IM1 67.3 6.0 0 41 SMA 68.5 5.7 0 42 NOZ 69.7 6.1 0 43 GOL 72.3 5.9 0 44 LON 73.7 6.1 0 45 NOZ 69.7 6.1 0 47 JCT 76.8 5.7 0 48 COR 77.6 5.9 0 49 LPS 60.3 5.3 0 40 LPS 60.3 5.3 0 41 LON 73.7 6.1 0 42 DOZ 69.7 6.1 0 43 COR 77.6 5.9 0 44 COR 77.6 5.9 0 45 NOZ 69.7 6.1 0 46 COR 77.6 5.9 0 47 JCT 76.8 5.9 0 48 COR 77.6 5.9 0 49 LPS 60.3 5.3 0 40 LPS 60.3 5.3 0 40 LPS 60.3 5.3 0 40 LPS 60.3 5.3 0 41 TOC 84.0 5.7 0 42 COR 77.6 5.9 0 43 COR 77.6 5.9 0 44 COR 77.6 5.9 0 45 NOZ 69.7 6.1 0 46 COR 77.6 5.9 0 47 JCT 76.8 5.9 0 48 COR 77.6 5.9 0 49 LPS 60.3 5.3 0 40 LPS 60.3 5.9 0 41 LPS 60.3 5.3 0 42 LPS 60.3 5.9 0 43 LPS 60.3 5.9 0 44 LON 73.7 6 5.9 0 45 LPS 60.3 6.3 0 46 LPS 60.3 6.3 0 47 LPS 60.3 6.3 0 48 LPS 60.3 6 48 LPS 60	
19 POD 293. N 5.5 5.8 2 21 COP 352.6 5.8 5.8 2 5.8 252.6 5.8 6.9 5.1 6.5 7 22 570 353.7 4.0 7 5.1 7 23 688 3.3 5.1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
20	
21 COP 352.6 5.8 6.5 7 22 8 19 353.7 4.6 5.1 9 2 2 3 19 353.7 4.6 7 5.1 9 2 2 4 10 6.4 3.5 5.1 9 9 2 2 4 10 6.4 5.3 9 9 9 2 2 4 10 6.4 5.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
27 STU 353./ 4.A	
23	
25 MAL 3.9 5.2 0 0 - 26 PTO 6.4 5.3 0 0 - 27 VAL 6.5 5.4 0 0 - 28 RTG 6.0 5.6 0 0 - 29 PDA 20.0 5.6 0 0 0 - 30 GDH 20.7 6.0 0 0 - 31 GOL 39.1 6.5 0 0 0 - 32 MES 49.4 6.0 0 0 0 - 33 MEC 51.1 5.6 0 0 0 0 - 35 MRG 56.6 6.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2A PTO 6.4 5.3 . 0 - 27 VAL 6.5 5.4 . 6 - 28 RTG A.0 5.6 . 0 - 29 PDA 20.8 5.6 . 0 - 30 GDH 20.9 6.0 . 0 - 31 COL 39.1 6.5 . 0 - 32 MES 49.2 6.6 . 0 - 33 MEC 53.1 5.6 . 0 - 34 SGP 54.4 6.6 . 8 - 35 MRG 56.6 6.0 . 0 - 36 AAH 56.6 6.0 . 0 - 37 SJP A0.2 5.5 . 8 - 38 RDC 65.4 5.7 . 0 - 40 IM1 67.3 6.0 . 0 - 41 SMA 68.5 5.7 . 0 - 42 GOZ 69.7 6.1 . 0 - 43 GOL 73.9 6.1 . 0 - 44 LON 73.9 6.1 . 0 - 45 MDC 45.2 5.9 . 0 - 46 LON 73.9 6.1 . 0 - 47 JCT 76.8 5.5 . 0 - 48 COH 77.6 5.9 . 0 - 49 COH 77.6 5.9 . 0 - 40 LPS 68.3 5.3 - 0 - 51 TOC 84.8 5.9 - 0 - 51 TOC 84.8 5.9 - 0 - 52 GHV 83.2 5.9 - 0 - 53 TAC 64.6 5.9 - 0 - 54 GIP 90.6 5.8 - 0 - 55 RIP 149.1 7.6 - 0 - 56 GIA 290.3 6.3 - 0 - 57 MNH 69.1 4.5 - 0 - 58 RTV 63.6 5.9 - 0 - 59 CTA 617.3 5.6 0 - 60 GUA 290.3 6.4 0 - 60 DAY 45.8 6.3 0 - 60 DAY 45.8 6.8 0 -	
27 VAL 6.5 5.4 6 6 7 20 7 20 PDA 20.11 5.6 6 9 9 3 3 GDH 20.7 6.1 6 6 7 8 9 3 3 GDH 20.7 6.1 5.6 6 7 8 9 3 3 HEC 53.1 5.6 6 7 8 9 9 3 3 HEC 53.1 5.6 6 7 8 9 9 9 3 A A A B A B A B A B A B A B A B A B A	
2A KTG A.U 5.6 U - 20 PDA 20.0 5.6 U - 30 PDA 20.0 5.6 U - 31 PDA 20.0 5.6 U - 32 PES A9.2 A.E U - 33 HEC 51.1 5.6 U - 34 SCP 54.9 6.0 U - 35 MAG 5A.0 6.0 U - 37 SJP A0.2 5.5 U - 4 PDA 20.2 A.E U - 37 SJP A0.2 5.7 U - 41 SMA AR.5 5.7 U - 41 SMA AR.5 5.7 U - 41 SMA AR.5 5.7 U - 42 BOZ 69.7 6.1 U - 43 GOL 72.5 5.7 U - 44 LON 73.7 A.1 U - 44 LON 73.7 A.1 U - 45 AD. 5.7 U - 47 JCT 70.8 5.5 U - 48 COH 77.6 5.7 U - 47 JCT 70.8 5.5 U - 48 COH 77.6 5.7 U - 49 COH 77.6 5.7 U - 40 COH 77.6 T - 40 CO	
30 GDH	
31 COL. 39.1 A.5 B B B B B B B B B B B B B B B B B B B	
32 MES	
33 HEC 51.1 5.8 0 0 34 86 54 54 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
34 SGP 54.4 6.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
3A AAH 56.6 6.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
37 SJP	
38 SLM 63.0 6.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
30 RAC	
40 (M1 67.5 6.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
42 902 69.7 6.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
43 GOL 72.3 5.0 6 44 LON 73.7 6.1	
44 LON 73.7 A.1	
45 ANN 74.9 5.2 - U 4A HMF 76.2 5.2 - U 47 JCf 76.8 5.9 U 48 COH 77.0 5.9 U 40 LPS AN.3 5.3 - U 50 OUL AS.U 5.5 - U 51 TUC AS.U 5.5 - U 52 OHV AS.C 5.9 - U 53 TAC U4.6 5.9 - U 54 GIF VA.C 5.4 - U 55 RIF 142.1 /A - U 57 HNH 762.1 4.5 U 58 RTV 463.6 5.9 - U 59 CTA 212.3 5.6 U 60 GUA 229.3 A.4 U 61 DAV 745.0 A.3 U 61 DAV 745.0 A.4 U 62 HNH 751.6 A.4 U	
4A HHF 2A.2 5.2 - U 47 JCF JA.H 5.5 - U 48 COH J7.0 5.9 - U 49 LPS AH.3 5.3 - U 50 OH H3.0 5.5 - H 51 TUC H3.H 5.1 - H 52 OHV H3.2 5.5 - H 53 TAC H4.6 5.9 - H 54 GIF VA.6 5.4 - H 55 RIF 142.1 - A - H 57 HNH 22.1 - A - H 58 RIV 463.6 5.9 - H 59 GTA 212.3 5.6 - H 60 GUA 229.3 A.4 - H 61 DAV 245.H 6.3 - H 62 HNH 251.C A.H	
4A COH 77.0 5.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
90 001 63.0 5.5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
90 001 63.0 5.5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
91 TUC	
92 (HV HJ.2 5.5 H - H - 53 TAC H4.6 5.5 - H - H - 54 GIF VN.6 5.4 - H - 55 KIF 147.1 7.5 7.5 - H - 54 GIF VN.6 5.4 - H - 55 KIF 147.1 7.5 7.5 - H - 57 KIF 147.1 4.5 - H - 58 KIF V 463.6 5.7 - B - 59 CTA 217.3 5.6 + H - 60 GUA 279.3 A.4 + H - 61 DAV 245.4 6.3 + B - 62 KIF VA 251.6 A.4 + H - 62 KIF VA 251.6 A.4 + H - 63 KIF VA 251.6 A.4 + H - 64 KIF VA 251	
54 GIF	
5A ATV 463.0 5.9 - 0	
5A ATV 463.0 5.9 - 0	
5A ATV 463.0 5.9 - 0	
58 874 463.6 5.9 - 0	
60 GUA 229.3 A.g	
A7 HAN 451.6 A.N	
A7 HAN 451.6 A.N	
63 man 154.1 5.5 ·	
ed HAG ASSIC A.A . U .	
05 ANP 717.1 A.3 . # .	
67 HEC (A5./ A./	
6A SEU 27n.c n.l . u .	
60 MA CHAN S.A	
76 NOT 497.5 5.4	
73 36- 330-7	
74 ML - 24d 5.; - 4 -	
75 151 144.5 4.7 - 4	
7A ATU 341. 5.1 - 11	
77 TM1 (51.4 4.4 - 1) -	
79 16" 350,7 4.4 - 11 -	
en ess 155.3 3.5 - u -	

Table 9. Results for the Rat Island Earthquake of 22 November 1965.

### 1,9290F 02 Chave 4,8000 01 "#AN WAGE 5,78 95 PÉMERT CONT, LOUVE 1 INTE 4.A \$ SAMPLE VARIANCE 0 1,0-724 83 1 11011									
SAMPLE VANIBURDED 1, 6-704 A3 1 (1011) \$2(1) Cale. Cru	**					111	4.4	4	3,74
				T COSF. LO	464 1 1	111	4.4		
NOA	540								
1 NON 3.3 3 0 5.7 0 7 A178 0.7 5.8 5.7 0 7 A16 0.7 5.8 5.8 5.4 0 8 A16 21.0 5.8 5.8 5.0 0 8 CPO 03.4 5.0 0 8		1	*141	11 .5(1)		610		CIU	
7 A19		•	409	3.3		•		•	
A A C C C C C C C C		7		0.7	5.0	•		•	
Tem					5,8	•	9.4	•	
CPO 03.2 3.8 3.7 7 17 17 18 10 0 3.8 3.8 3.7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						•		•	
7									
Cam O. O. O. O.		7			5.0			•	
11 U90 74.2 9 7 9.5 1 1 U90 74.2 9 7 9.5 1 1 U90 74.2 9 7 9.6 0 1 1 1 U90 74.2 9 7 9.6 0 1 1 1 TFO 91.4 9 7 9 7 9.6 1 1 1 TFO 91.4 9 7 9 7 9.6 1 1 1 TFO 91.4 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			-		9 .			•	
17 EUG			-		3.7	•	4.2	•	
17 EUG					2.7		3.7	•	
11 170			_		5.7	•			
19 9ML 200.4 9.0 9.0 9.0 11					9.7	•	9.7	•	
14 POO					9.7	•	3.		
17						•			
14						•		•	
21 TOL 3.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0					3.0			•	
21 10L 3.7 3.8 2 2 2 2 3 4 4 4 4 4 5 5 0 4 4 4 4 5 5 0 4 5 4 4 4 5 5 0 4 5 4 5					3.0		9.		
27									
23 Fe					3.0				
29 COL							•		
24 SCP 94.7 9.0 27 40.6 27 40.6 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0									
27 486									
20 9L4 90.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.						•			
31 BCB					9.0	•			
31 BCB AA.3 5.A 3 7.A 3					9.0	•		•	
39 0 0 7	_					:			
37 SWA					3.0				
34 007	_			64.4		•		•	
3A LUB 79.3 5.8 3 7 8 3 7 8 8 7 8 8 7 8 8 8 8 8 8 8 8				46.3	9.1	•		•	
37 808 7A.2 3.7 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8									
38 180 286.0 3.0 39 048 217.4 5.7 40 C14 217.6 5.5 41 PM6 214.0 5.5 42 MAN 244.1 5.7 43 MAN 260.1 5.7 44 MAN 260.1 5.7 45 MAN 260.2 76.5 5.0 46 CM6 276.5 5.0 47 MAN 260 276.5 5.0 48 CM6 276.5 5.0 49 CM6 276.5 5.0 51 MOD 305.0 5.0 52 MOD 405.4 5.0 53 LAM 361.4 5.0 54 SMI 314.0 5.0 57 MON 324.0 6.0 57 MON 324.0 6.0 57 MON 324.0 6.0 57 MON 324.0 6.0 59 MON 324.0 6.0 50 MON 324.0 6									
4	-			484.9	9.0	•		•	
41 PW6					9.2	•		•	
47								•	
47	4:	•	-		5.7	•			
47					3.7		•	•	
4A WED 2A3.4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4								•	
4A \$60 470.7 3 6 40 6 470.7 3 6 40 6 470.0 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7								•	
00 CM						•		•	
90 000 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					3.0	•		•	
91 000 309.0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					3.0			•	
94 046 364.7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								:	
94 0UF 369.7 9.0 0 95 m5m 314.0 9.0 0 96 301 J16.0 0.0 0 97 148 330.7 0.0 0 98 000 330.7 0.0 0 98 197 330.5 0.0 0 98 47 340.1 9.0 0 97 47 340.1 9.0 0			100	407.0		•		•	
95						•	•	•	
94 JEA 330./ 0. 90 040 330./ 0. 00 137 330.5 0. 01 414 341.0 0. 02 464 340.1 5.			858				•		
94 JEA 330./ 0. 90 040 330./ 0. 00 137 330.5 0. 01 414 341.0 0. 02 464 340.1 5.	34	,	9-1	310.4					
90 040 330./ 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			149	174.0	7.0	•		•	
00 197 330,5 0.8 01 474 361,6 0. 07 487 360,1 9.0 03 701 390,1 9.0 04 600 190.0 9.0 09 400 391,1 9.0				330.		•	i	•	
01 47M 361.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				110.5		•	•	•	
87 487 360.1 5.0 83 101 350.1 5.0 84 600 350.0 5.0 85 400 351.1 5.0			414	301.0	0.0	•	1		
04 000 J90.0 9.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•		1.00.1	3.9	•	I		
95 auc J51.1 5.0	• 3		701	150.1	3.0	•	i	•	
04 405 354.7 5.6	• •			150.0	3.	•	•	•	
	04			394.V	3.4		1	•	
								1172	

Table 10. Results for the Rat Island Earthquake of 22 November 1965 (additional magnitudes)

77411 9 9 0 10L 10M 10M 10M 10M 10M 10M 10M 10M
70NF. W FONT
7 11 0 0 1 1 0 0 7 7 0 0 0 0 0 0 0 0 0 0
0;

Table 11. Results for the Hindu Kush Earthquake of 28 January 1964.

	1.604 FOCENT	Cour. III	1.FH 1 14		A . *	N HAGE	6.39
SAMP							
3 1 1	•		1 1241	45			
- 1	STATE		Calc.	1/11	UHE.	CAL	
			HA + (1)		MAR(1)		
1	(11-11)	0	6.4	•	6.3	•	
2	HO/	1 . 6	6.4	•	6.1	•	
•	MI	1.0	A . 4	•	4.1	•	
4	11	# . te	6.4	•	5.6	•	
4	£ 1111	9.11	6	•	4.2	•	
4	et 7 1	A. P 11	4.1	-	A.1	•	
7	AHIS	71 . 1.	6.1	-	A . 1	•	
	ANP	90.0	5.4	•	5.5		
9	HAG	101.0	5.4	-	5.4		
10	PHI	104.0	4.5	-	6.1		
11	NHA	135.0	5.6	•			
12	CHI	295.4		•	5 . 4	-	
13	1.15	200.11	0.6	•	7.0		
	-		6.6	G.	1.4	•	
14	LJU	301.0	/	•	6.4	•	
15	PSZ	303.11	6.7	•	7.0	•	
10	VIE	304.1	6.7	•	6.7	•	
17	STU	90000	6.1	•	5.4	•	
1 4	PRU	30/.1	4.1	•	6.5	•	
19	MUX	30H.11	6.7	•	7.0	•	
20	HNS	109.0	6.7	•	6.3	•	
21	-	55 11 . 11	6. 6	•	1.2	•	
22	KFW	311.0	6.7	•	4.5	•	
23	COP	315.0	6.8	•	6. 4		
24	NUH	324.0	6.4			Ň	
25	KTG	336.4		•	7.n		
24	BLA	137.0	6.7	•	6.4		
			6.5		5.5		
27	REV	334.0	6.7	•	6.6	•	
24	NOH	35H . U	6.6	•	6.2	•	
20	HCD	350.0	6.4	•	6.7	•	
3 n	HNR	44.1	4.1	•	C	•	
31	HAH	98.5	4.4	•	U	•	
32	HKC	98.5	5.5	•	0	•	
3.1	SHL	1,5.4	6.1	•	0	•	
34	CHG	11 H. U	5.4	•	0	•	
35	MUN	142.2	5.3	•	0	•	
.5 A.	NI) 1	143. *	6.11	•	U	•	
.17	DIL	KOM. n	6.0	•	Ü	•	
34	PHF	<19.50	6.3	-	U	•	
19	HUL	122.6	0.3	•	-	•	
4 n	NAI	127.8	6.5		0	•	
41	W1N	299.H	0.1		_		
42	AAE	234.7	6.5		(1		
43	SHI	1511.7			U		
44	_		0.0		0		
	HL W	210.3	6.1	•	U	•	
45	ATU	SHO.Y	6.6	•	U	•	
44	151	<91.1.	6.6	•	0	•	
47	MAL	244.5	6.6	•	U	•	
4.4	A OU	ZUK.II	6.1	•	C	•	
49	TOL	14h.1	6.6	•	U	•	
50	Ply	101.0	6.6	•	U	•	
71	PILA	31.4.1	6.A	•	U	•	
52	VIN	:13.3	6.7	•	11	•	
5.1	KOU	321.11	6.0	•	U	٠	

Table 12. Results for the Alaskan Earthquake of 28 March 1964.

*	1.30. 1.50. 1.004	CU	•0 • 1 1·	1974	***	4 4040	/,30
34-6			6060.	64 C/H	****	**	
1	v 16	11.4		•	7:		
3	***	17.0	6.0	•	:::		
	COT	; ;;	::;	:	* * *	:	
	O41					•	
11	646	00.0			3.2		
17	670	103.0			7.1	•	
10		105.0		:	7.0	•	
14	746	107.0	3:3	:	2.7	:	
i:	300	134.4	7:3		7.1	:	
91	946	700.0 707.0	7.4				
	197	3.0			• • •		
94	PUE	1::	7.0	•			
77	-	7.0	*. *	:		•	
3.	100	• •	• • •	:	:	:	
37	+00 +00	11."		:			
30	746	17.0					
34	CLL	13.4	;			i	
34	J64	19.0	•	•		:	
**	*L#	10.0		:		:	
47	300	77.		:		•	
44	9C0	77.0				:	
47	##L	74		•	•		
30	. 15	33	7.0	•		•	
37	C-C	37.4	4.1	•		•	
**	51C	•		:		•	
34	907 900	79.0				•	
94 97 94 90	140	**.					
•1	476	• • • • • • • • • • • • • • • • • • • •		•		•	
64 61 67 63 64 64 64 65	90-	101.4		•	Ĭ	•	
	577	100.0		•	•		
**	600	174.4				•	
74	900 900 700	179.	7.3	•			
71	900	130.0	; ;	:		•	
777772	001 001 011 000	100.0 100.0 110.0 170.0 170.0 170.0 170.0 170.0 100.0 100.0			•	:	
74	460	430	6.8 6.7 6.7 7.0 7.3 7.3 7.3 7.3 7.3	•	•		
70	900 900	.11.					
•1	10u	470.0	;;;	•	Ĭ		
	***	201.0	7.7	:	Ì	:	
238888	2	494 694	7.8 7.7 7.7 7.0 7.0 7.0				
		-31.1	7,0	•	•	•	

Table 13. Results for the Alaskan Earthquake of 28 March 1964 (additional first motions).

	1 01 1 05 1 05 0 07 0 07 0 07 0 00 0 00 0 00
90.0 91.0	17 11 11 11 11 11 11 11 11 11 11 11 11 1
	•

Table 14. Results for the Niigata Earthquake of 16 June 1964.

95 P			11-11	110		
	. WAL					
ı		ANLI. 4		0 to		
	*14111		1-1-1		. 740	CAR
1	CL+	74.1		•	440111	
,	C 110	33.		•	A . C.	•
3	CPA	35.1	4.1	•	7	•
•		44.1	*:/	:		•
7	0=0	.7.4	4.7		4.5	
,	ALO	49.1	4.1	•	5.0	•
•	4. C	5 1		:	4.4	•
•	THE		6.7	:	,	•
11	P45	****	4.4		7.1	:
17		176.1	5.7		7.1	
17	CAL	177.	A . P	•	4.4	
14	MUN	# 0.0. a 1		•	4.1	•
15		457.1	5.5	-	4.5	
17	104	1:5.0			4.7	
1.	810	35 4		•	A. 4	:
1.	Cel	131	4.1	•	7. 4	•
20	COP	335	. /	:		•
21	BOA	337.1	6.7		4.4	:
24		190.1	:::		5.5	
3 3		130.1		•	4.4	•
53	LIN	134	*:	•		•
34	604	330.1		•		:
27	PAL	34.1	6.7			
20	C-C	24.1		:		
30	CGL	25.6		:		
31	364	27.11	1.1	:		•
37	640	37.1	6.7			•
34		30.1	.,,			
39	C = **	17.1	1:-	:		•
34	M-11.	3	7			•
37	4 TL	34.5	4.1	:		:
3.	5-4	34.0	7.7			
48	604	43.2			6.	•
41	601	44.1		•		•
47	CUM	44.4	2.7	•		•
44	656	54	6.7		00	:
45	. 10	** . *		•		•
44	-04	**.*	4.1	•		•
47	4F (124.4		•		•
**		161.			•	
90	TAU	174.4		•		
31	Ant			•		•
37	-	*33.5	5.4	-		•
34	CHE	440.0				
99	5 m.L	41 6.		•		
94	GUA	400.1	4.9	:	•	:
37	401	474	>	•	i	:
;	444	474.5		:	•	
	044	40 5 . 1		•	:	
41	5-1					•
	141	49 4.4		•		•
• •	141	314	::;	•	0.	•
45	-	334.5		•	*	
	161	135.5	1.1	•	.0	•
.7	PTO	139.1	1	•	4 a	•
44	\$5.	1,10.	4.1	•	•	•
	\$5. \$46 816	300	1.5 0.7 0.5 0.5 0.5 0.5 0.6 0.7 0.6 0.7 0.7 0.7	•	b-	

Figure 1. Observed Radiation Pattern for the Banda Sea Earthquake of 21 March 1964.

Figure 2. Calculated Radiation Pattern for the Banda Sea Earthquake of 21 March 1964.

Figure 3. Observed Radiation Pattern for the Rat Island Earthquake of 5 February 1965.

Figure 4. Calculated Radiation Pattern for the Rat Island Earthquake of 5 February 1965.

Figure 5. Observed Radiation Pattern for the Rat Island Earthquakd of 1 October 1965.

Figure 6. Calculated Radiation Pattern for the Rat Island Earthquake of 1 October 1965.

Figure 7. Observed Radiation Pattern for the Rat Island Earthquake of 15 May 1966.

Figure 8. Calculated Radiation Pattern for the Rat Island Earthquake of 15 May 1966.

Figure 9. Observed Radiation Pattern for the Rat Island Earthquake of 4 July 1966.

Figure 10. Calculated Radiation Pattern for the Rat Island Earthquake of 4 July 1966.

Figure 11. Observed Radiation Pattern for the Rat Island Earthquake of 22 November 1965.

Figure 12. Calculated Radiation Pattern for the Rat Island Earthquake of 22 November 1965.

Figure 13. Observed Radiation Pattern for the Rat Island Earthquake of 22 November 1965 (additional magnitudes).

Figure 14. Calculated Radiation Pattern for the Rat Island Earthquake of 22 November 1965 (additional magnitudes).

Figure 15. Observed Radiation Pattern for the Hindu Kush Earthquake of 28 January 1964.

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1		11		. i i		.]]	1
0 1/2 AVICE 1/2 STORE 30.00 35.00 49.00 0 1/2 AVICE 1/2 STORE 30.00 35.00 49.00 0 1/2 AVICE 1/2 STORE 30.00 30.00 30.00 49.00 0 1/2 AVICE 1/2 STORE 30.00 30.00 30.00 49.00 0 1/2 AVICE 1/2 STORE 30.00 30.00 30.00 49.00 0 1/2 AVICE 1/2 AV											
0											
0 2-10 1-11 1-11 1-10 1-10 1-10 1-10 1-1											
90.00 49.00 00.00 10.00 13.000 25.000 25.000 30.003 33.000 49.000 10.001					•						-
006-91 17 STEAM 15 -00 25 -00 30 -01 10 10 10 10 10 10 10 10 10 10 10 10 1											era
00-6-10 ACCEPTANCE 10-00 25-000 25-000 40-00 10-00-10-00-10-00-00-00-00-00-00-00-00-0											J
00E-01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1											_
00E-01 VECTOR 10 STRICE ANGLE 10 SOUR 25.000 30.000 49.000 10 SOUR 10			•								_
00E-01- VELT-1100-01- 10- STRIKE ANGLE* 10 20.00 25.00 30.00 49.00 15.0											-
06 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -			•								-
06-01 19C-01 19C			•								1
06-01 YSC LEE 17 SERIES ANGLE 19 25.000 25.000 30.003 35.000 49.000 20 21 PROCESS 10 20 20 20 20 20 20 20 20 20 20 20 20 20			•		•						-
00 - 01 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			•								-
006-01-75-02-02-02-02-02-02-02-02-02-02-02-02-02-			•			•					-
006-01 - 75-00-0						•					-
00E-01 - YSC-LEEL 030-E 3 - YSC-LEEL 030-0 35.000 49.0				•		:					-
00E-01-15-1			•								1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				:							
00E-01 YSCHERIONE BY STRIKE ANGLE 170 ST											-
20 21											•
11 1 1 1 1 1 1 1 1 1											•
11 1 1 1 1 1 1 1 1 1				•							wa ,
70 SLIP ANGLES 170 STRIKE ANGLES 3											
70 51 P ANGLES 170 STRIKE ANGLES 3											-
11											_
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					•						-
11 1 1 1 1 1 1 1 1 1					•						-
11 1 1 1 1 1 1 1 1 1											then !
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						•					-
11					•						
11 1 1 1 1 1 1 1 1 1											-
11					•						-
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											-
11											-
11 1 1 1 1 1 1 1 1 1					•						-
11											-
11											-
11											-
11											0 000
11											-
10 1 10 1											-
10 1 10 1											-
0 1 1 1 1 1 1 1 1 1											
10 1 10 10 10 10 10 10 10 10 10 10 10 10											-
0 1 00 5.000 10.000 15.000 20.000 30.003 35.000 49.0											-
10 1 10 10 10 10 10 10 10 10 10 10 10 10											-
10 1											
0 1 5.000 10.000 15.000 20.000 25.000 30.000 40.0 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.0000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.0000000 10.0000000 10.0000000 10.00000000											-
0											-
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											-
											-
100E-01 VSC-LET103UE 30 STRIKE ANGLE* 30 STRIKE*											-
0 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.0 70 5LIP ANGLE 170 STRIKE ANGLE 3			:	1	· · · · i · · · · i · · ·			.1			-
70 SLIP ANGLES 170 STRIKE ANGLES			.000	2	15.000 20	5	0.00	5.00	0	45.844	50.
TO SELECT TO SEL	100E 01.	1	2001	E 3n							
			U								

Figure 16. Calculated Radiation Pattern for the Hindu Kush Earthquake of 28 January 1964.

All and the second of the seco	
--	--

Figure 17. Observed Radiation Pattern for the Alaskan Earthquake of 28 March 1964.

Figure 18. Calculated Radiation Pattern for the Alaskan Earthquake of 28 March 1964.

Calculated Radiation Pattern for the Alaskan Earthquake first motions). 28 March 1964 (additional of Figure 19.

Figure 20. Observed Radiation Pattern for the Niigata Earthquake of 16 June 1964.

Figure 21. Calculated Radiation Pattern for the Niigata Earthquake of 16 June 1964.

Figure 22. Geometry of a shear dislocation source

APPENDIX

Program RADPAT - Input Card Formats and Parameters

Part I (only read in once) Ritsema i - A table.

1st card

NTAB Col. 1-5 Number of values in table (I5)

2nd and subsequent NTAB/4 cards (8F10.2)

ANG(I) Col. 1-10 Δ° (F10.2)

XIO(I) 11-20 ip (F10.2)

Repeat for columns 21-40, 41-60, 61-80 as necessary

Part II (only read in once) - Gutenberg-Richter Distance-Depth

Correction Table (for use with input values of log10 A/T).

108 cards, each has format (4X, 17F4.1), hence every card contains 17 fields, for a depth of 0(25)100, 150(50)700 kilometers.

Part III - Earthquake data

1st card

N Col. 1-5 Number of earthquakes to be treated (I5)

2nd card

ID Col. 1-80 Earthquake identification (10A8)

3rd card

M Col. 1-5 Number of stations (I5)

ITAB 6-10 .LE.O magnitudes are given as input (I5)

.GT.0 log₁₀A/T is input and the Gutenberg-Richter correction is to be applied.

DEPTH 11-20 Depth of the hypocenter (F10.1)

STRIKEO 21-30 Initial strike angle for the search (F10.1)

DELSTRI 31-40 Increment in strike angle (F10.1)

NSTRI 41-45 Number of increments to be used (I5)

Subsequent M cards contain the station data

STA(I) 1-5 Station identification (A5)

DIST(I) 11-20 Distance in degrees (F10.1)

THETA(I) 21-30 Azimuth-epicenter-to-station in degrees (F10.1)

MAG(I) 31-40 Magnitude or log_{10} (A/T) (F10.1)

ISIGN(I) 41-45 First motion direction (I5)

-1 indicates dilatation

l indicates compression

0 or blank - if unknown, will be taken as compression

DOCUMENT CONTROL DATA - RAD (Security classification of title, body of abetract and indexing annotation must be entered when the everall report to also affect)			
I ORIGINATING ACTIVITY (Corporale author)		. REPOT	T SECURITY C LASSIFICATION
TELEDYNE, INC. ALEXANDRIA, VIRGINIA		Unclassified	
		26 GROUP	
1 REPORT TITLE			
BODY WAVE MAGNITUDE AND SOURCE MECHANISM			
4 DESCRIPTIVE NOTES (Type of report and Includive derive) Scientific S. Author(5) (Lost name. Brot name, Initial)			
Jarosch, H.S.,			
E REPORT DATE	A STATE OF THE PARTY OF THE PAR	70. TOTAL NO. OF PAGES 75. NO. OF S	
30 September 1968	68		13
64. CONTRACT OR BRANT NO. F 33657-68-C-0945	F. ORIGINATOR'S REPORT NUMBER(S)		
A FROJECT NO.	225		
VELA T/6702			
ARPA Order No. 624	St. OTHER REPORT NO	(8) (Any i	other numbers that may be seelighed
ARPA Program Code No. 8F10			
10 AVAILABILITY/LIMITATION HOTICES			2
This document is subject to special export controls and each trans-			
mittal to foreign governments or foreign nationals may be made only with prior approval of Chief, AFTAC.			
1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY			
	ADVANCED RE	SEARC	H PROJECTS AGENCY
			ECTION OFFICE
13 AOSTRACT	WASHINGTON,	D. C	
A new method is proposed	for improving	the !	avew-vhod
magnitude determination by using	ng the observe	av be	lues of
the body-wave magnitude (m.) together with the first motion			
directions, to obtain by least	squares analy	ISIS 1	the hest
double couple source parameters	s; the result;	ing ra	adiation
pattern is then integrated spatestimate of the magnitude. Res	crarry to brow	/lde a	corrected
previously studied by other in	vestigators an	imber	of events
		e pro	senced.
100	feel con		
1. (2)			
14 KEY WORDS			
Body Wave Sour	ce Mechanism		
Magnitude			

Unclassified
Security Classification