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ABSTRACT

A new method is proposed for improving the body-wave
magnitude determination by using the ohserved values of
the body-wave magnitude (mb) together with the first motion
directions, to opbtain by least squares analysis the best
double couple source parameters; the resulting radiation
pattern is then integrated spatially to provide a corrected
estimate of the magnitude. Results for a aumber of events
previously studied by other investigators are presented.
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INTRODUCTION

The body-wave magnitude of an earthquake was defined by
Gutenberg and Richter as

my, = log10 A/T + Q -3

where
A is the P-wave amplitude in milliwmicrons
T is the period in seconds
Q is the Gutenberg-Richter (1956) distance-depth
correction.

This magnitude of course, depends cn the amplitude re-
corded at a particular station observing the earthquake. For
want of a batter method, the arithmetic mean of individual
station magnitudes was chosen to be representative of the
true body-wave magnitude. This would be correct if the source
were assumed to be purely compressional (azimuthally uniform).

However, our knowledge of source mechanisms has increased

+ to a point where it is now known that the mechanism of most

earthquakes may be well represented by a double couple source
mechanism, Stauder and Bollinger (1964). This, in turn,
implies that the body-wave radiation pattern is not azimuthally
uniform. If we want to be still more accurate, we can also
include the effect of a moving source. In any case, the
arithmetic mean of the observations does not represent the
mean of a radiation pattern caused by a fixed or moving

double couple. Hence it is desirable to find a better way

of defining the "true" body-wave magnitude.

We propose that a better measure of the "true" body-
wave magnitude may be obtained by taking the amplitude of a
purely compressional source whose radiation pattern has the
same area as the observed radiation pattern.




Naturally, this means that we have to know the source
parameters, i.e., the dip direction, dip angle and slip angle
of the fault plane and the auxiliarv plane.

In order tc find the source parameters, two totally
. different methods have been used to date. The first is a
purely geometrical approach, using only the directiouns of
the first motion of P-waves. More recently the study of the
polarization angle of the S-wave has further helped to improve
estimation of the source parameters. However, as Stauder and
Nuttli (1965) point out:
"Examination of multiple solutions, i.e., by
several different authors for one and the same
earthquake, as also a comparison of groups of
fault plane solutions for a given region evi-
dense poor agreement and systematic differences
in solutions by different authors. This evi-
dence requires that caution should be exercised
in drawing conclusions from the existing accumu-
lation of publirhed fault plane solutions."

Although some of the directions of the first motions of
the P-waves are reported, nu data are readily available on
polarization angles, and hence a detailed visual study of the
seismograms is necessary for the analysis of source parameters
using the above m<thod.

The second method which has been used is spectral equal-
ization. This is applicable to both body and surface waves
and source parameters may be obtained, but with this method
it is necessary to use digitized seismograms of a worldwide
network, which are not readily available.

The method which we propose here consists of using data
which are readily available, i.e., reported first motion
directions together with observed body-wave magnitudes as
giver. by the CE&GS Earthquake Data Reports and the ISC Bulletin.
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Of course, the method is bound to be inaccurate if there are
large gaps in the azimuthal coverage, but in this case the
other methods also fail. It is hoped that for earthquakes
of magnitude 5 and larger, an approximate solution of the
source parameters may be obtained and hence a better value
of the mean body-wave magnitude may be established.




METHOD

The method is based on a number of assumptions:

1. Using only WWNSS stations, it is not necessary to
- make instrumental corrections since the my is computed on the
basis of A/T and the instrument responses are nearly identical.

2. Geometrical spreading is accounted for by the
Gutenberg-Richter correction for distance and depth of focus.

3. The major contribution to the difference in the
observed variation of my with azimuth is caused by the source
radiation pattern.

4. A double-couple source accounts for the radiation
pattern.

5. Sufficient azimuthal coverage exists in the obser-
vations to allow reasonably unambiguous determination of the
source mechanism.

This method is not intended to replace the body-wave
equalization procedure as given by Ben Menahem, et al (1965).

It is intended to provide a small correction to the mean m, . |

The model taken is the linear regression with zero

intercept
B. = KA, + e
i i i
)
where B, 1s the observed amplitude (Bi = 10 °)
K is aconstant to be determined i

A. is the calculated amplitude (as given by Ben
Menahem et al (1965)

R

e 1s the error in the ith observation.
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The calculated amplitude at the i'th station is related

to the source parameters by:

4L

A. = a, + a, sin (6 - 90) + a, sin 2 (6 - 90) +

bl cos (6 - Go) + b? cos 2 (6 - 90)

where
K 1/4 sin A sin 26 (3 cos2ih - 1)
a, = 1/2 sin A cos 26 sin 2ih
bl = 1/2 cos A cos 6 3in 2ih
a, = -1/2 cos X sin & sin 2ih
b2 = 1/4 sin A sin 26 sin 2ih

8 is the azimuth (east of north) of the station

as seen from the epicenter

8 is the azimuth (east of north) of the strike

o

direction of the assumed fault plane.

§ is the dip angle
A is the slip angle
ih is the take-off angle

Figure 22 shows the geometry of the

We wish to use a least squares
the source parameters. To do this,
the squares of the errors, i.e., we

€ 2
E=Je; =[(B, - KA,)

source parameters.

procedure to determine
we minimize the sum of
choose K so that

is minimized.

Hence the estimated value for K is given by

x>

"
|
> | w
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Since Ai(A) = -Ai(A+180°) we determine which half-plane

has the smaller error, by choosing

n JZB.A.
X = i 2
2
JA,
1
and then e. = |[B. - KA. for 0° < X < 18¢Q°
1 1 b1 =
B, + KA. 180° < A < 360°
1 1 ==

Only stationsAfor which we have values of m, were used in
the estimation of K. In order to include also stations for
which my is not given, but the first motion direction is given,
we assumed an observed value whose absolute value was that of
the calculated value and whose sign was the sign of the sbserved
first motion, i.e.,

B, = sign (STAi) §|Ai|
so that the contribution e, = 0 if the signs of the observed
and calculated values were the same and 2K|Ail if the signs
were opposite. This helps to insure that the sign of the
larger amplitudes will cause a larger error, if they are
different from the observed.

In order to calculate the mean m, s it is first necessary
to define a mean amplitude for a radiation pattern. We interd
to use as a mean amplitude the amplitude of a pureiy cumpres-
sional (azimuthally uniform) source whose radiation pattern
has the same area as the observed radiation pattern:

=2 2m 2
mAY = 1/2 { A (6)de.
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This leads to

1/2
- 1 2 2 2 2 2
A, = {-"—[ao + 1/2 (al tay + by ¢ bz)J}
Now since the coefficients ays al, ans b1 and b2 are

functions of the take-off angle iy (which is different for
each station), we simply compute an arithmetic mean of the
means Ki’ so that finally the mean amplitude is given by

. £ § oz
iel 4
and hence the mean m, is given by
M = log,, A,

We have thus calculated a new mean value of my which has Leen
corrected for the radiation patterr. The standard error of
estimation of the corrected my, can be calculated from the
t-distribution. Arbitrarily taking our confidence limits at
90%, we find




-

where 82 z

-
e

tNgé is the value of the student's t-distribution at

the 95% confidence 1limit, for n-1 degrees of freedom.

Hence the upper and lower confidence limit for the body
wave magnitude is found from

M, lo,g10 A,

M_ = log,, A_
-_— K+ N -
where A, = o~ [ &,
1=1
Asw LK
i=1

These values are shown in Table 1.

Algorithm for Obtaining Source Parameters

The initial strike angle, step size and number of steps
are given as input parameters. A coarse mesh search is carried
out to find the best strike angle and dip and slip angles. The
step size for the dip and slip angles is taken to be 10°.

A fine mesh search is then carried out keeping the strike
angle found in the first sta,e fixed and varying the dip and
slip angles to find the least squares fit, in steps of 1°.
Details are given in the flow chart in the appendix to this
report.
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AMBIGUITY OF RESULTS

When one finds a fault-plane solution using first motions
only, there exists an ambiguity in the result, in that it is
not possible to decide which is the fault plane and which is
the auxiliary plane. Similarly, using the radiation pattern,
Ben Menahem et al., (1965) found the amplitudes and directions

of compressional, SV and SH radiation to be:

Lds pvo\2) oy
p i () pED Geb
P P

(=

L 1

> L, ds -+ > -+> -»-
U, * {I*:_“s} [tn-§> (2:3) + (2-%) ('ﬁ-n)-

[(H-ﬁ) (2:8) + (3R <3-3>-§

where

a is the vector in the direction of motion

n is the vector normal to the fault plane.

Since the vector 3, the direction of motion, is normal

to the auxiliary plane and n s the vector normal to the fault
plane, it can be seen that the radiation pattern is unchanged
by the interchange of a and E; thus the same ambiguity which
exists for the fault-plane solution, also exists for the
radiation pattern method.

Second Solution of the Fault Plane

In the previous section we explained that in finding a
solution of the source parameters, there exists another
solution, whose radiation pattern is identical with that
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already found. Hence, since we do not know which is the fault i
plane and which is the auxiliary plane, it is necessary to ’
compute also the second solution. By comparing the mechanisms

of groups of earthquakes from the same area having similar depth

of focus, we might be able to see that one of the planes is

similar in all cases in order to decide that this is the fault

plane, assuming that the source mechanism does not change

greatly.

It is assumed that one solution
of eo, § and A has been found
already. In Ben Menahem et al
(1965) the three coordinate axes
are taken in the strike direc-
tion (xl), a direction opposite to
the horizontal projection of the
dip direction (x2) and vertically
upwards (xs).
Making a transformation so that we
have xi pointing North, x5 West and xs vertically upwards for a
righthand system, we can describe the transformation of the

unit vectors by the matrix relation:

[k | I 6 in 6 0- _*‘-
e, cos 8 sin 6 e)
- = -+,
e,| = [-sin 60 cos eo 0 €5
-+ +*.
e, 0 0 1 e

where 60 is the strike angle measured clockwise from North.

Hence we can describe the direction of motion, the "null"
vector and the vector perpendicular to the direction of motion

-10--
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by the matrix relation

[ 13

cos A ceﬂo-.ln A cos § ﬂnOo cos ) .la.culn \ cos & coﬂo oin ) oin & ;i

£ = in) cosd ~cos A cos § eind oin ) 0ind ocos A cos § coed cos A ein § o5 (2)

e

oim ¢ lll.e -oin § coaO. ooe § 'S

The vector a lies in the fault plane in the direction of
motion and hence its direction cosines are the direction cosines
of the auxiliary plane, which is normal to the fault plane. The
vector n is normal to the fault plane and hence its direction
cosines are the direction cosines of the fault plane. The vector
P lies in the fault plane normal to the direction of motion and
hence it is the "null" vector, the intersection of the fault




plane and the auxiliary plane.

These relations are needed to compute the slip angles,
assuming that each plane in turn represents the fault plane.

Given one solution of the source parameters el, 61, Al we
wish to find the second solution 92, 62, A2. We can do this by
remembering that 31 and 31 of one solution become 32 and 32 of
the other solution and hence by equating direction cosines, we

have

cos Al cos 91 + sin Al cos 61 sin 91 = - gin 62 sin 92 (3)
cos Al sin 91 - s1in Al cos 61 cos 61 =z sin 62 cos 62 (4)
- 8in Al sin 61 = - cos 62 (5)

From these we can derive the expression for the constraint
of perpendicularity between the two planes

tan 61 tan 62 cos (91 - 92) = -1 (6)

and the reciprocal relations

cos 61 = sin 12 sin 62 (7)

cos 62 = sin Al sin 61 (8)

cos Al = sin 62 sin (62 - 61) (9)

cos Az = sin 61 sin (61 - 92) (10)
=12-
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Hence, having found one solution for 91, 61, Al’ we
find 6,5 62, A2 by finding 62 from equation (8) where 62 is
defined to be between 0° and 180°. In order to find A2 we
use equations (7), (9), and (10) and then we can fit Az into
the correct quadrant. Finally, we compute 92 by using
equatione (6) and (9) and thus we can fit ®, into the correct
quadrant. When, 890° < 62 < 180°, it signifies that the dip
direction lags 90° behind the strike direction, instead of
leading by 90°, according to the sign convention used here.

-13~




ESTABLISHING THE METHOD

In order to show that the method yields significant
results, the following test cases were tried:

T S N — g . '.-..

1. Banda Sea Earthquake of March 21, 1964 (reported by
Teng and Ben Menahem (1965). For this case the calculated
amplitudes were also input to check that the method gives
back the exact input values.

2. Rat Island Earthquake of 5 February 1955 (origin
time 09 32 9.3). The Rat Island earthquake mechanisms were
reported by Stauder (1968). The information for the first
motion directions for the Rat Island sequence was kindly
supplied by the Rev. William Stauder, S.J. in a private
communication.

3. Rat Island Earthquake of 1 October 1965

4. Rat Island Earthquake of 15 May 1966,

5. Rat Island Earthquake of 4 July 1966.

6. Rat Island Earthquake of 22 November 1965.

7. Hindu-Kush Earthquake of 28 January 1964, Fault
Plane solutions were reported by Hedayati and Hirasawa (1966),
and also by Ritsema (1966).

8. Alaskan Earthquake of 28 March 1964 (origin time
05 36 14.2). The input data was taken from the Bulletin of
the International Seismological Centre. Solutions were reported
by Stauder et al (1966) , and Harding et al (1968).

9. Niigata Earthquake of 16 June, 1964. A fault plane
solution was reported by Hirasawa (1965).

-14-
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INPUT DATA

Input data ware collected mainly from the C & GS Earthquake
Data Reports and the Bulletin of the International Seismological
Center, Edinburgh.

The first motion data for the Banda Sea earthquake were
taken from Teng and Ben Menahem (1965).

The first motion data for the Rat Island earthquakes were
suvplied by the Rev. William Stauder, S.J., in a private
communication.

The first motion data for the Hindu-Kush earthquake were
taken from Hedayati and Hirasawa (1966).

The additional first motion data for the Alaskan earthquake
were supplied by Harding in a preprint.

The first motion data for the Niigata earthquake were i
taken from Hirasawa (1965).

Analysis of the Data

1. Banda Sea Earthquake of the 2lst of March 1964. For
this earthquake 37 stations were used, 12 of them with magnitude
and 25 with only first motions. Figure 1 shows the observed
radiation pattern and Table 3 shows the input data. Figure 2
shows the calculated radiation pattern and Table 4 gives the
results in tabular form. 1In our final solution, 36 stations
had the same calculated and observed first motion direction
and the one disagreement was near a nodal value. The new
mean value of m, came out to be 5.85 as against the C8GS value
of 5.8. The stars in Figure 2 are calculated aimplitudes for
those stations which had observed values and the dots are
calculated amplitudes for those stations which only reported
first motion direc.ions.

-15-
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2. Rat Island Earthquake of the 5th of February 1965 (Sh.)
Figure 3 shows the observed radiation pattern. For this case
72 stations were used, 13 of them with magnitude and 59 with

u——— R s i, i i

first motions only. The results are given in Figure 4 and
Table 5. The resulting score was 72-12, é.e., 12 stations

had the opposite calculated first motion. However, this earth-
quake showed clearly that the CEGS value of m, was too low
since most of the observations were near nodes. The new value
of m, was 6.3 as against the CEGS value of §5.9.

3. Rat Island Earthquake of the 1lst of October 1965. This
was a case where all the observed first motion consisted of
dilatations. Figure 5 shows the observed radiation pattern.
The results are given in Figure 6 and Table 6. The score was
80-0. Although the strike angle is quite far from that found
by Stauder (1968), the pattern of signs of the first motion
are completely similar to Stauder's and the solution was
determined primarily by the observed magnitudes.

4. Rat Island Earthquake of the 15th of May 1966. All
the observed first motion consisted of compressions. Figure 7
shows the observed radiation pattern. The calculated radiation
pattern was also governed mainly by the Bagnitudes in this
case, since the strike angle could be varied considerably
without changing any of the signs of the first motion. 84
stations were used,of which 21 reported magnitudes and the
rest only first motions. The results are given in Figure 8 and
Table 7. This was another case where many of the stations
were close to nodes and hence the new value of my = 5.96 as
against the C8GS value of 5.8 reflects this.

S. Rat Island Earthquake of the uth of July 1 66. Figure 9
shows the observed radiation pattern. This is a more compli-
cated source mechanism and hence the final score 80-18 shows

~16-
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that the fit was not too gocod. 22 stations reported magnitudes
and the rest reported first motions only. One of the diffi-
culties was that no magnitudes were reported in the second
quadrant, thus missing an entire lobe of the pattern. The
results are shown in Figure 10 and Table 8.

6. Rat Island Earthquake of the 22nd of November 1965.
This was another case of compressions only, with no stations
reporting magnitudes in the second and third quadrant. Figure 11
shows the observed radiation pattern. A change of 30° in the
strike angle did not change any of the first motion directions.
The results are given in Figure 12 and Table 9.

Another run was made using additional magnitudes supplied
by D. Lambert of SDL in a private communication. The new
observed radiation pattern is given in Figure 13. For this
case, there were magnitudes observed in the third quadrant,
but not in the second quadrant. The strike direction did not
change, but the dip and slip angles, and hence the second
solution, did change somewhat. The results are given in
Figure 14 and Table 10.

7. Hindu-Kush Earthquake of the 28th of January 1964.
This was a complicated source mechanism. The observed radiation
pattern is given in Figure 15. Values of Log10 A/T were
taken from the ISC bulletin and for the first motion, only
those stations used by Hirasawa and Hedayati (1966) were
included. The solution favours the one obtained by
Ritsema (1966). The final score of 53-14 reflects the
inadequacy of the solution. Again, one of the difficulties
is that there are no magnitudes observed between 115° and
295° azimuth. The results are shown in Figure 16 and
Table 11.

=17-




8. Alaskan Earthquake of the 28th of March 1964 (main
shock). The 22 values of magnitude for this event were
taken from the ISC bulletin and signs of first motion were
taken from the bulletin and the C&GS Earthquake Datz Reports.
The observed radiation pattern is given in Figure 17. The
final score obtained, 86-22, suggests that quite a few of
the station. reported erroneous first motions, since the
solution agress quite well with that of Stauder and
Bollinger (1556). The results are given in Figure 18 and
Table 12.

Another run was made using additional first motions
supplied by Harding in a preprint of the CEGS on the Prince
William Sound Earthquakes (1968). The solution was improved
considerably and the final score was 134-17. The results
are shown in Figure 19 and Table 13.

9. The Niigata Earthquake of the 16th of June 1964.
This was another case where m,, given by the CEGS was too low
and the new value of 6.5 as against 6.1 is correcting in the
right direction. The observed radiation pattern is given in
Figure 20. The results, shown in Figure 21 and Table 14, do

not agree very well with the solution found by Hirasawa (1965).

-18-
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CONCLUSIONS

Comparison of the fault plane solutions obtained by the
new method and those obtained using first motions only show
that indeed it is possible to find reasonable agreement. The
solution of the Hindu-Kush earthquake parameters show that
although better agreement with the first motion directions
was obtained by Hedayati and Hirasawa (1966), the amplitude
radiation pattern does not agree as well with the observed
pattern as that obtained Ly using a combination of first
motion directions together with observed body-wave magnitudes.

The results of the Rat Island earthquake of the 5th of
February, 1965 show that the proposed method compensates
correctly where too many of the observed magnitudes were
near to nodes. This shows that the proposed definition of
magnitude is superior to taking the arithmetic mean of the

observations of my .

The fault plane solution found by this method is
probably not as accurate as that obtained by S-wave data.
However, the new method gives two checks on the accuracy
obtained, the first by simply the number of differences
in sign between calculated and observed, i.e., the
"score". The second is by examining the confidence limits
of the magnitude.

The results also indicate that in order to take the
radiation pattern into account when finding the "true"
value of My s it is sufficient to use an approximate solution
to the source parameters. This is possible by using readilv
available magnitude and first motion data without laboriously
having to re-examine records.

Suggestions for Future Research

l. In order to make best use of the method outlined above,




there still remains to be determined the minimum number of
input data which must be used in order to get a good solution.
For the cases tried here, rather more points were used than

really necessary.
2. Instead of the equal weights least squares solution,

it might be possible to get some improvement by using a
weighted least squares procedure.

3. If more emphasis is to be placed on the accuracy of
the fault plane solution obtained using the new method discussed
above, it is possible to add the S-wave data to the least-squares

procedure.

4. A still better way to define the "magnitude" of an
event may be to use the idea of moment, e.g., Aki (1966).

-20-
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Table 4. Results for the Banda Sea Earthquake of
21 March 1964,
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Table 5. Results for the Rat Island Earthquake of
5 February 1964.
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Table 6.
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Results for the Rat Island Earthquake of

1l October 1965.
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Table 7.

Results for the Rat Island Earth

15 May 1966.
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Table 8. Results for the Rat Island Earthquake of
4 July 1966.
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Table 9. Results for the Rat Island Earthquake of
22 November 1965.
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Results for the Rat Island Earthquake of
22 November 1965 (additional magnitudes)
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Table 11.

Results for the Hindu Kush Earth
28 January 1964.
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Table 12.

Results for the Alaskan Earthquake of

28 March 1964.
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Table 13. Results for the Alask
: an Earthquake
28 March 1964 (additional firgt notggns).
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Table 14. Results for the Niigata Earthquake of
16 June 1964.
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