# UNCLASSIFIED

# AD NUMBER

## AD842489

## NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

## FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; SEP 1968. Other requests shall be referred to Commanding Officer, Fort Detrick, Attn: SMUFD-AE-T, Frederick, MD 21701.

# AUTHORITY

Biological Defense Research Lab ltr dtd 13 Sep 1971 AD 842489

ŝ

in E

. بالاستانية فريقا زير

TRANSLATION NO. 165

DATE: Sept 1965

3

DDC AVAILABILITY NOTICE

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, Fort Detrick, ATTN: SMUFD-AE-T, Frederick, Md. 21701.

NOV 6 1968

7

15

- 1

DEPARTMENT OF THE ARMY Fort Detrick Frederick, Maryland Zeitschrift Viatiam Hormon Vermentforsch , 1951. Pages 278-304 hanson, H. and Tannert, S. - Investigations on Sulfur-metabolism. 1. Reciprocal Action of Bacteria coli and Cystin, and a Discussion of Enzymatic Adaptation Ŧ

([0,0])

#162

As end-products of S-metabolism of S-containing aminu acids in animals and man appear chiefly sulfate in the form of (a) free sulfates, (b) ester-sulfates, and (c) known sulfo acids (taurine), and in certain microorganisms H2S also appears. It is now of interest that lately the evolution of H2S has been established in isolated animal organs (liver-sections, liver-slurry, and liverextract, and from kidneys) under anaerobic conditions (1, 2, 3). Under aerobic conditions, however, practically no H2S appears from the same organs. Bither the H2S formed in vivo is rapidly oxidized, or else - and this would bring the situation into harmony with the "economic laws" of the metabolic intermediaries no H2S is evolved but rather an oridation of the S has already occurred in the organic combination. A series of studies favors the latter possibility. Grace (4) Medes establishes that, in carbonate-buffer, liver-section and also kidney, heartmuscle and other organs are able to form inorganic sulfate rapidly from cysteine cystine, sulfoxide and cystein-sulfinic acid (COOH. CH (NH2) CH2.SOOH). Diverse. enzymes were held responsible for these activities. A similar mineralization of the S in feeding with cysteine-sulfinic acid with pronounced rise of the rhiosulfate liberation in the urine was observed in rabbits by Fromageot, et al (5). Rabbit-liver slurry can form no thiosulfate from cysteine-sulfinic acid, but very probably can form sulfite. According to the findings of Barrenscheen (6) an oxidation at the S to methionine-sulfoxide is necessary to permit the CH3-donor-function of the methionine.

The above mentioned discoveries of the H2S-formation from cysteine by liverslurry and liver-sections, and the assumption of a liver-engyme which transforms the cysteine to pyroracemic acid,  $NH_3$ , and  $H_2S$ , do not jive with these ideas that a mineralization of the S occurs only after a resulting oxidation in the organic molecule. Smythe takes the stand that the  $H_2S$  from the liver under aerobic conditions partly oxidizes to sulfate, partly becomes polythionate, and partly enters into the formation of organic molecules, for example, alanine, in cysteine-formation. (C. V. Smythe) (7)

whereas no doubt whists that the  $H_2S$  is a metabolic product in microorganisms, accordingly, concerning the  $H_2S$ -formation in the animal organism it can only be stated that  $H_2S$  has been obtained up to now only from isolated, excised, and therefore more or less damaged organs, and thus perhaps is only the product of accessory metabolic pathways, which do not normally operate.

an an adam ta

,如此是我们的,我不是我们的是是我们的是我们的是我们的是我们的是我们的,我们就是我们的人,也是我们能们的是我们的。"

a. Spanial Statistics and statistics

Purely formularily, in the case of the H<sub>2</sub>S-generation from cysteine, in the assumption of reaction-events which biologically constantly occur (Hydrolysis I, Reduction II, Cridation III), products are given whose occurrence in the intermediary metabolic processes are in part demonstrated (serine, alanine), and in part can only be inferred (aminoaldehyde carboxylic acid), and which in the course of metabolism can undergo further obanges (deamination, etc.).

| I.   | сн <sub>2</sub> -сн-соон        | сн <sub>2</sub> -сн-соон                  |
|------|---------------------------------|-------------------------------------------|
|      | SH NH2 + H2O                    | yields OH $NH_2$ + $H_2S$                 |
| II.  | сн <sub>2</sub> -сн-соон<br>I I | сн <sub>3</sub> –сн-соон<br>І             |
|      | SH $NH_2 + H_2$                 | yields NH <sub>2</sub> + H <sub>2</sub> S |
| III. | ск <sub>2</sub> -сн-соон<br>    | C-CH-COOH+H2S                             |
|      | SH NH <sub>2</sub> + 0          | yields H 1                                |

2

NH2

When Smithe, for example, establishes that a liver enzyme permits the evolution of  $H_2S$  from cysteine, in addition to pyroracemic acid and ammonia, thus is shown no more the connection with alanine as the amination-product of the pyroracemic acid. Fromageot, et al (1), in the liver desulfurase activity, find no  $NH_3$ -formation; they establish variously, in the cysteine-breakdown, cystine, in addition to  $H_2S$ , and they maintain that an intermediate formation of alanine rather than serine is probable. According to Desnuelles and Fromageot (8) a cysteinase in Bact, coli breaks down cysteins and cystine, with the formation of  $H_2S$ ,  $NH_3$ , formio acid, and acetic acid.

It is now of interest that in the investigation which Medes and Floyd (4) pursued concerning the break down of S-containing amino acids by the liver, H2S did not appear; nor was it mentioned as an intermediate. The discovery by Smythe (7) that under anserobic conditions the liver-section can form H<sub>2</sub>S from cystine, led Nedes and Floyd to the break down of intermediate thiosulfuric acid and  $H_2SO_2$ , without their actually having experimental evidence for this assumption. Their experiments, using the Warburg-method with rat-liver under aerobic conditions, lead them to the view that the SH-groups of the cysteine then would be oxidized, with water-deposition and concomitant dehydration, to cysteinesulfinic acid (RSOH), with the aid of a cysteine-oxidase which transforms itself to sulfinic acid (RSOOH) and cysteine (2 RSOH yields RSOOH + RSH). Cysteine sulfinic acid would then be split enzymatically (sulfinic-oxidase) into an organic residue and an inorganic sulfate (formed through further oxidation). Another pathway of cysteine-oxidation would be through the formation of cysteine-acid (cysteine-oxidase b). In in-vivo and in-vitro tests cystime forms sulfate slower than it does cysteine; also the formation of cysteins-acid occurs slower than that of cysline. The idea emerges that in contrast to previous assumptions the cystine is not turned reductively

into cysteine but hydrolytically to cysteine and cystinesulfinic acid (IV).

| IV. | СH | 2 <b>-</b> СН-С | 001 |        | сн <sub>2</sub> -сн-соон |        |                                                 |
|-----|----|-----------------|-----|--------|--------------------------|--------|-------------------------------------------------|
|     | S  | $^{\rm NH}2$    |     |        | SHH2                     |        |                                                 |
|     |    |                 | li  |        |                          |        |                                                 |
|     |    |                 | + 0 | yields |                          |        |                                                 |
|     | S  | WH2             | Н   |        | SOH NH2                  |        | NH2                                             |
|     | СН | 2-Cii-C         | юон |        | сн <sub>2</sub> -сн-соон | yiolds | о<br>н <sub>2</sub> s + <mark>с-сн.</mark> соон |

The authors assume a non-enzymatic hydrolysis. That must at first seem doubtful, if one considers the disregarded tests of A. Schoberl (10), k, Bloch and H. T. Clarke (11), and J. Routh (12) concerning the in-vitro hydrolysis of cystine and the changes of cysteine in aqueous solution. Cysteine shows itself to be more stable than cystine in heating in alkaline solution. However, under conditions (several-ho. heating in strong alkali) the cystine would hydrolyze, at pH which would be far higher than any sncountered in the organism. Then cystine-hydrolysis in-vivo, whether enzymatic or not, must remain as undemonstrated. Since, in the in-vitro hydrolysis of cystine, over the rapidly wider disproportioning of the succumbing sulfinic ecid, H2S is formed in addition to the aldehydic and keto-compounding, detection of in-vivo hydrolysis of cystine is perhaps more likely if the conditions of the H2S-formation from cysteinecystine in-vivo and the character of the compounds relaining after H2S-splitting were more accurately sought to be grasped. The assumption of H2S-formation from cysteine or cystime does not necessarily entail a special H2S-splitting enzyme, but can be explained by the assumption that in-vivo or under aerobic conditions in the fully intact organ the sulfinic acid is further oxidized at the S to SO4, but that in the use for example of liver-slurry the enzymatic break down to the

sulfinic-acid-stuff is the final step. In this case the sulfinic acid is disproportionate under  $H_2S$ -formation without special ferments. The otherwise very difficult-to-understand situation can be explained thus, whereupon the liver oxidizes cysteine at the sulfur, however, even still shall possess an enzyme to split  $H_2S$  from cysteine. त्र त्यह्र को तेक्ष किन्द्रां स्वत्राधारत किनिर्वित्यक के उन्हें को किन का के पितिय करते हैं है। किन्द्र किनिति

4

The proviously published researches on living material do not permit certain conclusion regarding the role of sulfinic-acid or other reaction forms of S-conturing amino acids. We are not certain about the first point of attack in the biological S-oxidation, nor do we know in which way t... amino group or other certain intermediate product of cysteine, for example those with aldehydeor keto-groups, passes in reaction with still S-containing intermediate products, and we do not know whether or to what extent the amino group in the cysteine or cystine is necessary for reaction at the S.

Before we go into our researches concerning the role of the liver in Sintermediary metabolism, we have to deal with the conditions of H<sub>2</sub>S-formation from cysteine or cystime by Bact, coli. On the basis of data in the "Handbuch der Experimentellen Bakteriologie und Infektionskrankungen" (by Kolle and Hetsch (22)), and the "Handbuch der Pathogenen Eikroorganismen" (by Kolle, Kraus, and Uhlenhuth (23)) we could assume that this microorganism has no or quite limited capacity for H<sub>2</sub>S production. But as we have shown with certainty, Bact, coli produces  $H_2S$  in considerable amounts from the cysteine and cystime. Here it is more proper to assume a specific H<sub>2</sub>S-splitting enzyme, than it was according to the investigations of the liver. We presently report observations, which make it imperative that we go rather thoroughly into the question of the dependency of the enzyme-formation and enzyme-co centration of the substrate. The present first part, in addition to methodical data, concerns these investigations. We must

#### METHOD

### General Discussion

1. Obtaining and handling of the Bact. coli.

والمعني بالمبينية المتارسين سرارة

Coli-bacteria were used which were freshly isolated from human feces and which were tested for the characteristic coli biochemical properties. For the maintenance of the constance of their strain properties they were transferred to schrag-ager (slanted agar) from time to time. From this ground-strain were innoculated the incubation-flasks, which mostly contained 100 cc bouillon with 1% glucose, or ½ glucose, or sugar-free; they were incubated at 37° for 48 hours. So far as the nutrient-bouillon contained sugar, the pH of the solution fell to about 4.3, measured with Lyphan-paper. The growth in the Liebig-bouillon without sugar showed no pH drop. A variously observed inactivation of the coli with regard to the cystine-breakdown we traced to an injury due to too long exposure to the low pH. By regulating the pH during incubation by buffering with NaHCO3 we stopped the loss of this activity. The first good growth must be conveyed to agar plates from want of material. After incubation the bouillon is centrifuged well, the liquid poured off in each test, where by more thorough washing is not remarked, in suspended in reduced Reichenbach-sol'n (5 g lactose, 5 g NaCl, 2.5 g Na2: PPO2, water to 1000, no peptone, no asparagin and no szolithmin), later only still in m/30 phosphate-buffer. Eventually thorough washing with m/30 buffer took place. The suspending of the bacteris occurred in such a way that the micro-

6

C

organisms, which had developed in 100 cc nutrient, were suspended after centrifuging in 15-20 cc phosphate-buffer. For similar coli-concentration in the single starts a test series would thereby provide, that the contents of the single incubation flasks (100 cc) be centrifuged, the liquid poured off, and that the coli bacteria-containing sediment of the centrifuge tube be suspended in some phosphate buffer. The entire coli amount was then placed in a Messcylinder with the amount of phosphate-buffer directed by the above directions. "until top"

2. Test set-up with Bact, coli.

The coli-suspension prepared as directed above was tested as to its capability (and the conditions necessary) to break down (liberate)  $NH_3$ ,  $H_2S$ , and variously  $CO_2$  from various substrates, s. that these and certain other breakdown products of the substrates would be detectible in the media. To this end the bacterial suspension was pipetted into a pyriform 50 cc volumetric flask with ground stopper in which was added the substrate to be tested in substance or in phosphate buffer. At the same time as control tests set up (plus cysteine minus bacteria or plus bacteria minus cysteine) were set up by filling up with phosphate buffer sol'n similar volumes of the single test starts. The further test set-ups are shown in Figure 1.

For  $GO_2$ -determination, a third absorption flask with  $Ba(OH)_2$  was inserted after thw WF<sub>2</sub>, which then to be sure was loaded with acidified  $CuSO_4$ -sol'n for the absorption of H<sub>2</sub>S and the better transmission of  $GO_2$ .

The apparatus was set up so that  $N_2$  was bubbled through the flasks at the rate of 45-60 bubbles per minute. At this rate by the end of the 16 hour test time all the gaseous metabolic products had been liberated, without residue, and absorbed. We convinced ourselves of this by interchange of wash-flasks and by

interchange of 2 wash-flasks with the same absorption material. In the shorter test time in which the rate of bubbling was not sufficient to leave any residue,  $N_2$  was passed through much faster at the end of the test time. Where the pH of the reaction flask was not favorable to the liberation of the gaseous metabolic products (i.e., pH too high in H<sub>2</sub>S- and CO<sub>2</sub>-tests), or when the metabolic process was to be cut off, the reaction flask was acidified with 5 co 20% trichloroacetic acid and N<sub>2</sub> or air was bubbled through rapidly for 30 minutes. Also here we have convinced ourselves that one absorption flask is sufficient to take out the gaseous metabolic products. In model tests we found in the second absorption flask no more than a trace, for example of cadmium sulfide, which was not even

na na Na 2011 - Andrea State (1997) Na 2011 - Andrea State (1997)



Explanation -

P: is alkali pyrogallol-sol'n (for  $O_2$ - and  $O_2$ -absorption).

- S: is sulfuric acid (for NH<sub>2</sub>-absorption).
- TH: is thermostat to maintain 37°.
- R: is reaction flask.

T: is funnel tube for adding substances (trichloroacetic acid, acda). WF<sub>1</sub>: contains n/20 sulfuric acid (for NH<sub>3</sub>-determination). WF<sub>2</sub>: contains cadmium-acetate (for H<sub>2</sub>S absorption).

3. NH<sub>2</sub>-determination.

For the determination of the liberated NH3, the NH3 was distilled

(after alkalization of the test flask with 10 cc 15% soda solin, NaOH being avoided to avoid secondary NH3-formation) in an absorption bulb with n/20sulfuric acid at a temperature of  $40^{\circ}$  at the highest, and in this bulb was determined step-photometrically by the Nessler-process using a Filter S-43. The most favorable conditions for the quantitative NH3-measurement were established in trials. It was found that under the conditions stated the NH3 was to be determined quantitatively only in vacuum-distillation. This was accomplished using the methods of G. W. Pucher, H. P. Vickerey, and C. S. Leavenworth (13). (See Table I)

### Table I

|                              | est. NH <sub>2</sub> - | NH3-dete | rminat.       |                                       |  |  |  |
|------------------------------|------------------------|----------|---------------|---------------------------------------|--|--|--|
| Test-sol'n                   | content<br>in mg       | in mg.   | % of<br>input | Remarks                               |  |  |  |
| Empty distillation           | -                      | 0.02     | -             | -                                     |  |  |  |
| value (UTC)                  |                        |          |               |                                       |  |  |  |
| NH/C1 0.5 cc                 | 0.333                  | 0.330    | 99            | <b>—</b>                              |  |  |  |
| NH/C1 1.0 cc                 | 0,666                  | 0.634    | 95            | -                                     |  |  |  |
| NH/Cl 1.5 cc                 | 0.999                  | 0,946    | 95            | · · · · · · · · · · · · · · · · · · · |  |  |  |
| NH <sub>2</sub> C1 2.0 cc    | 1.333                  | 1,336    | 101           | -                                     |  |  |  |
| 3 cc ferment-sol'n           | -                      | 0,218    | -             | Emp. dist-value not det               |  |  |  |
| 3 cc ferment-sol'n           | 0,884                  | 0,816    | 92.3          | From found NH3-content                |  |  |  |
| plus 1 cc NH <sub>L</sub> C1 |                        |          |               | of ferment sol'n plus                 |  |  |  |
|                              |                        |          |               | 0.666 mg. NH3                         |  |  |  |
| 5 cc ferment-sol'n           | -                      | 0.330    | -             | Emp. dist-value not det               |  |  |  |
| 5 cc ferment-sol'n           | 0,996                  | 0.912    | 92            | From found NH3-content                |  |  |  |
| plus 1 cc NH <sub>4</sub> C1 |                        |          |               | of ferment sol'n plus                 |  |  |  |
|                              | • •                    | 0.600    |               | 0.666 mg. NH3                         |  |  |  |
| 10 cc ferment-sol'a          | -                      | 0.609    | -             | Emp. dist-value not det               |  |  |  |
| 10 cc ferment-sol'n          | 1.275                  | 1.266    | 99            | From found NH3-content                |  |  |  |
| plus 1 cc NH <sub>4</sub> C1 |                        |          |               | of ferment sol'n plus                 |  |  |  |
|                              |                        |          |               | 0.666 mg. NH3                         |  |  |  |

Trial Tests for NH3-determination

By the single "empty-distillation-value" given in the Table is meant the value of the Nessler-reagent mixture alone, which was mixed up fresh for this test. It must again be pointed out that in the case of several measurements of the Nh3 evolution "empty-distillation-values already had occurred which in their dependence on the use of soda solution, gave values equal to distilled water or even a little less. It was thus common, above all when we used new sody solution and new phosphate buffer solution (or water which on the basis of the qualitative N-test was not entirely pure), to carry out NH3-determinations using only the used sclutions without adding Eact, coli or substrates under conditions similar to those of the primary test. That no NH, was liberated from cystine under the chosen conditions (24 hours at  $37^{\circ}$  in  $k_{0}$  or air at various pH, then alkalization with soda solution at  $40^{\circ}$  bath temperature and vacuum of 12-15 mm Hg.) is obvious from the data in Table II, which gives similar values of the different emptydistribution values, and which demonstrates that when the reagent solutions are made up fresh the empty values should be redetermine, and should be taken into consideration in computing the NH -liberation from cystine.

| Experimental<br>Ingredients                                                    |       |       | Table II<br>2.4 mg<br>cystine in<br>10 cc phos-<br>phate-buffer<br>nH 6.7** | Cystine-empty-distillation-values<br>without correcting for the<br>H <sub>2</sub> O- and PO,-empty values<br>19.X. 23.X. 6.XII. pH 3.8 pH 6.0 pH 3.0 |       |       |      |       |       |  |  |
|--------------------------------------------------------------------------------|-------|-------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|-------|-------|--|--|
| illy found<br>in mg cel-<br>culated on<br>100% illy-<br>liberation<br>from 2.4 | 0.039 | 0.003 | 0.001                                                                       | 0.02                                                                                                                                                 | 0,031 | 0.037 | 0,03 | 0.023 | 0.034 |  |  |
| mg cystine                                                                     |       |       | مَد .                                                                       |                                                                                                                                                      |       |       |      |       |       |  |  |

\* Corrected for water values

\*\* Corrected for Phosphate and water values

\*\*\* Using fresh soda solution

Nessler-test: contents of the WF (10 cc n/20 sulfuric acid) transferred to 50 cc volumetric flasks, almost neutralized with carbonate-free n/20 sodalye, and filled to the mark with water. An aliquot was Nessler-tested. Then (depending on  $Ab_3$ -content) 5 or 10 cc of this was transferred to a 25 cc volumetric flask, to which was added 2.5 cc of a mixture of the Nessler-researt (1 part solution-A (potassium mercuric iodide) and 5 parts solution-b (2.78 n carbonate-free soda-lye)), filled up with water, and then with Filter S-43, using the 1 cm Cuvette in the step-photometer, a measurement of  $KH_3$ -content obtained. Although no screen-colloid was used in the Nesslerization to maintain the clarity of the solution, the determinations were only rarely messed up by turidity. If the qualitative preliminary test showed relatively high  $NH_3$ content, the solution was diluted with water so that a reading could be obtained in the photometer, and correction was made for the dilution. The dilution of the measuring solution was such that the extinctions, using the 1 cm Cuvette, lay between 0.1 and 0.5.

### 4. H\_S-determination.

As in NH<sub>2</sub>-determination,  $N_2$  was bubbled through the apparatus for the determination of H<sub>2</sub>S. (See Figure 1) The NH<sub>2</sub>-absorption flask was situated after the second absorption flask (with 10 cc 0.4-0.8% cadmium acetate solution) which we adjusted to pH 7-7.5 with a drop of soda-lye. In the tests with pH-values of 7-8.5 in the reaction flask, toward the end of the test the reaction flask was acidified with 5 cc 5-n HOl or 5 cc 20% trichloroacetic acid, and a rapid bubbling of N<sub>2</sub> or air for 30 minutes resulted in a complete recovery of the H<sub>2</sub>S. The CdS-suspension of the absorption flask was transferred into accurately measured n/100 iodine solution (5-10 cc), which was acidified with

2 co 2-n HCl, and was titrated with  $n/100 \text{ Na}_2\text{S}_2\text{O}_3$ . In trials with  $\text{Na}_2\text{S}$  solution we ascertained the limits of variation, which we used in computing the values (Table III). When the test was continued 8 hours or more we observed deviations from the theoretical values, which induced us to assume certain divergences in the compared values only in the case of differences of more than 20%. The Cd-acetate preparation showed a slight iodine loss when it was left standing, and this was taken into account.

|                  |                       |           | S-content<br>after Cd S- |            | H <sub>2</sub> S precipitated by acidification |      |                       |      |                       |      |                        |     |  |
|------------------|-----------------------|-----------|--------------------------|------------|------------------------------------------------|------|-----------------------|------|-----------------------|------|------------------------|-----|--|
| Solution<br>used | S-content             |           | precipitation            |            | 2 hrs. N <sub>2</sub>                          |      | 4 hrs. $N_2$          |      | 8 hrs. N <sub>2</sub> |      | 21 hrs. N <sub>2</sub> |     |  |
|                  | cc<br>n/100<br>iodine | mg_S<br>¥ | cc<br>n/100<br>iodine    | mg S<br>** | oc<br>n/100<br>iodine                          |      | cc<br>n/100<br>iodine |      | cc<br>n/100<br>iodine |      | oc<br>n/100<br>iodine  |     |  |
| 1 00             | 1.34                  | 0,21      | 1,46                     | 0.23       | 1,53                                           | 0.24 | 1.44                  | 0.23 | 1.19                  | 0.19 | 1.58                   | 0.2 |  |
| 2 co             | 2.58                  | 0.41      | 2.65                     | 0.42       | 2.42                                           | 0.39 | 2.57                  | 0.41 | 2,58                  | 0.40 | 2.35                   | 0.3 |  |
| 4 cc             | 5,17                  | 0.83      | . 5.09                   | 0.81       | 4.98                                           | 0.80 | 4.85                  | 0.73 | 4.75                  | 0.76 | 4.74                   | 0.7 |  |

Table III

E-----States

\* By direct titration of the sulfide-solution without separation of the GdS.
\*\* The Gd-acetate-empty-value was determined for example, using 10 oc Cd-acetate 0.24 cc n/100 iodine.
\*\*\* Separation of the H-S by addition of 5 oc 5 n HCL. 30 minutes ventilation.

\*\*\* Separation of the H<sub>2</sub>S by addition of 5 oc 5 n HCl, 30 minutes ventilation. Collection of H<sub>2</sub>S in Cd-acetate solution.

5. Example of the production of an H<sub>2</sub>S-liberating solution from Bact, coli.

1000 cc bouillon, variously thinned with 1000 cc water, and eventually (with addition of  $\frac{1}{2}$  dextrose) innoculated with Bact. coli from agar culture, and incubated 48 hours at 37°. Coli bacteria centrifuged 20 minutes at 3500 rpm, the liquid poured off, then the coli bact. (the residue) suspended in 250 cc m/30 PO<sub>4</sub>-buffer pH 6.7. Allowed to work on cystime (4 mg) at 37° with N<sub>2</sub>-bubbling for 24 hours. In most cases great H<sub>2</sub>S-build-up, up to 99% of the S of the cystime

being recovered as  $H_2S$ . For example, when centrifuged two hours, 10 cc of the supernatant liquid put with 2.4 mg cystime and  $N_2$  bubbled through for 24 hours at 37<sup>°</sup>, 0.351 mg of sulfur was recovered as  $H_2S$  (55% of the S in the cystime). Under the same conditions 10 cc of the supernatant without the addition of cystime produced no  $H_2S$  whatever.

It should be brought out that at times there were failures in the production of the "ferment solutions". We thought that at times the coli bact. form no  $H_2S$ . But then, through pH control, it was established that the incubation flask was too acid (pH less than 4.2), that also the coli, by lying too long in the acid solution, had apparently lost their  $H_2S$ -liberating function. Or, at least, if they had <u>indeed</u> produced  $H_2S$ , at least we were not able to detect it in the supernatant. We have not been able to explain this phenomenon.

#### Results

a. Direct affect of Bact. coli on cystine or cysteine.

67

In the described method, the coli bact. were at first suspended in Reichenbach's medium (but with no addition of a nitrogen source). Later we used exclusively m/15-m/30 phosphate-buffer (pH 6.7), since it became apparent that in lactose- or glucose-containing media (through the ability of the bact.) occurred a pH-drop which also stopped the break down of the cystine (which we had investigated), although, as shown especially by culture experiments, the growth-ability of the coli bact. was not impaired. This discovery (phenomenon) compares favorably with the brief observations of Thiele and Deckart (21), according to whom the very low pH impaired not only metabolism but also indoleformation, so that (to be sure) the authors speak also of a diminuation of the

growth and reproduction abilities of the microorganisms. The solution of cysteine or cystine in the substance or in phosphate buf er, and the addition of media, leads almost regularly to  $H_2S$ - and  $NH_3$ -buildup. An example is shown in Table IV. The H25-buildup occurs faster when cysteine is used. But definite significant distinctions could not be established with respect to the maximal H2S-formation. In most of the tests cystine was used, proceeding on the assumption that when  $H_2S$  is liberated from cystine, the liberation must be much the same if cysteine is substituted for cystine. It remains still to be tested whether in the somewhat rare cases in which the coli bact, produce no  $\mathrm{H}_2\mathrm{S}$  from cystine, they could produce it from cysteine, or whether conditions can be found out under which coli bact, liberate H<sub>2</sub>S only from cysteine, not from cystine. By the use of smaller amounts of cystine (instead of 24 mg only 2.4 mg) it may be that the liberated NH3 can only partly come from the cystine, that a smaller proportion must come from other N-containing substances of the coli bact., but from these were then first liberated, when bact, coli can react with cystine. The H<sub>2</sub>S comes always from the added cystine. Table V demonstrates that (measured as the N-content of their protoplasm) the coli bacteria in 7 times greater concentration liberated the same amount of  $H_2S$  as the bact, coli at lower concentration, but that the NH3-formation rose as the coli concentration rose. The first cystime addition (supplement) appears as the initiator of the NH3-liberation from no cystine-N-substances, because the coli suspensions without cystine form only insignificant amounts of NH<sub>2</sub> (see Table V).