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FOREWORD

This report covers work performed during the period 1 Januwary through 30 June
1968 under the Reentry Eavironment and Systems Technology (REST) Program contract.

Avco's participation in this program, described in the REST program pian (AVMSD-

0419-66-CR CR Rev. 1), includes theoretical, analytical and experimental study
tasks in the general areas of aerophysics, observables and materials.

This semiannual progress report is comprised of the following Avco documents:

AVMSD-0217-68-RM Vol. I Displacement and Flow Separation on Cones at In-
cidence to a Hypersonic Stream
AVMSD-0217-68-RM Vol. II Kinetics and Thermochemistry of Sulfur Hexafluoride
Decomposition.
yéQQSD—0217-68—RH Vol. III A,Shock Tunnel Investigation of Hypersonic Laminar

Boundary Layer Separation on a 15-Degree Cone at
Angle of Attack

This document is subject to special export controls and each tramsmittal to
foreign governments or foreign nationals may be made only with prior approval
of Space and Missile Systems Organization mmm
forniay-22400.

Information in this report is embargoed under the Department of State Inter-
national Traffic in Arms Regulations. This report may be released to foreign
governments 3y r-vartments or agencies of the U.S. Government subject to approval
of Space an.’ Missile 3ystems Organization (SMYSE), Los Angeles AFS, California,

or highc: aithority within the Department of the Air Force. Private individuals
or firms require a Department of State export license.

This technical report has been reviewed and is approved.

Lt. T. Graham, REST Project Officer
SMYSE

Air Force Systems Command

Norton Air Force Base, California
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ABSTRACT

A shock tunnel investigation of the pressure and heat transfer distributions on
sharp and blunted 15-degree half angle comes at angle of attack was conducted.
The test conditions were M, = 13.5 and Re_ /ft. = 1.5 x 106. Separation on a
sharp cone with increasing angle of attack is a gradual process which is char-
acterized by increasing heat transfer rates while the pressure is decreasing.

The two base geometries tested (flat and spherical) indicated that separation

was not influenced to a significant degree by base geometry. Limited experiments
with X/RN in the range of 13.5 to 27.5 indicated that bluntness did not signifi-
cantly affect separation in this range of X/Ry. When ¥/Rywas in the range of 2.1
to 6.4 there was no indication of separation at angles of attack up to 18 degrees.

EDITED BY:
EDITORIAL SERVICES SECTION
J. F. Dempsey
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NOMENCLATURE

= freestream Mach number

= freestream pressure

base pressure

heat transfer rate

heat transfer rate for the sharp cone at zero angle of attack

Reynolds number based on freestream conditions

Reynolds number based on freestream conditions and the model
length

nose radius

5l

= distance ciong the cone surface, starting from tip or
stagnation point

= angle of attack
= cone half angle

= cone meridian angle. Based upon a head-on view and starting
with the windward meridian
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1.0 INTRODUCTION

The motivation for these experiments resulted from certain analytical studies of
the three-dimensional boundary layer on blunted cones by Fannelopl. The approxi-
mate inviscid methods considered in Ref. 1 predict a favorable circumferential
pressure gradient in the leeward region of the cone at angles of attack for which
separation would be expected (a 2 6.). Therefore, the mechanism to which separa-
tion could be attributed was not clear. It was thought possible that disturbances
from the near wake could propagate upstream and influence the separation process.
One way to explore possible base influence was to check the effect of varying base
geometry. This would alter the character of the flow in the near wake and the
manner in which the base pressure affects the boundary layer at the aft end of

the cone,

An experimental program using a conical model was formulated, having the following
primary objectives:

1) to determine if incipient separation is influenced to a significant degree
by base geometry, and,

2) to obtain pressure and heat transfer rate distributions at various angles
of attack.
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2.0 MODEL, INSTRUMENTATION AND TEST FACILITY

2.1 MODEL

The model was a 15-degree half angle cone with several nose and base configurations.
One nose attachment was sharp and the other two were spherically blunt with radii
of 0.25 and 0.84 inch. The blunt cone configurations provided data with blunt-

ness ratio's (X/R_) in the range of 13.5 to 27.5 and 2.1 to 6.4, respectively.

The base attachments were flat and spherical with a maximum diameter of 4.5 inches
(see Figure 1). The model could be positioned at angles of attack between 0 and

22 degrees. The cone was supported by a strut on the windward meridian close to
the base. The strut was of minimum size, consistent with the load and instrumen-
tation lead wire requirements.

The cone meridian angle (¢) is measured in a clockwise direction based on a head-
on view, with the windward meridian being designated @ = O.

2.2 INSTRUMENTATION

The model was instrumented with pressure and heat transfer gages. The pressure
gages were peizoelectric transducers with a response time of a fraction of a
millisecond and an operating range of about 0.005 to 100 psia. The transducers
are described in detail in Ref. 2. The heat transfer gages are the conventional
thin film platinum resistance thermometer type gages “»%.

2.3 TEST FACILITY

The experiments were conducted in the Avco 20-inch shock tunnel at a Mach number
of 13.5 and a free stream Reynolds number per foot of 1.5 x 106, The 20-inch
shock tunnel is described in Ref. 5 and additional tunnel calibration data were
presented in Ref. 6. The Mach number variatiomns, both radially and axially, were
less than + 5 percent.
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Figure 1 SKETCH OF 15-DEGREE CONICAL MODEL
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3.0 TEST RESULTS

3.1 STIRUT INTERFERENCE EFFECTS AND BASE PRESSURE DATA

Strut interference on the near wake wzs of concern from the onset of the program
and for this reason a2 deternination was desired early in the progranm of whether

or not the base pressures obtained were reasonable. To make such 2 determinatioa,
co=patible with the scope of the program, the base pressvre evaluation was accoz=-
plished by 2 corparison with other experirental data. The results of Softley and
Graber’ were uvseful in this regard. In Ref. 7 high Mach nucber base pressure data
were obtained and the effect of support interference investigated. Shock tunmel
base pressure data were obtained froa “free-flying" rodels and models supported

by fine threads (0.001-to 0.002-inch diarceter) and s=z211 diaceter wires (0.016—
inch diameter). Figure 2 cocpares the base pressure cata obtained in the present
study (strut counted codel) with those of Softley a2nd Graber. Also shown are base
pressure results fron other faciilities obtained at lower Mach nucbers. Xeeping in
mind the differences in cone angies (a2 higher base pressure would be expected with
the larger cone angle1 ), it was concluded that the strut mounting did not strongly
influence the base pressure.

Figure 3 presents the base pressure results, for the various configurations, as

a function of zngle of attack. The base pressure data shown for the flat base was
obtained at a radial loc.tion 65 perceant of the base radius in the plane of the
leeward meridian. A limited acount of data was cbtained at a location of 30 per-
cent of the base radius, also in the plane of the leeward reridian. Tne pressure
at this location was observed to follow similar trends, at a slightly higher mag-
nitude. On the spherical base the pressure gage was located one-half inch above
the podel centerline in the plane of the leeward meridian. The base pressure would
be expected to increase with angie of attack and with nose bluntness; however, the
increases found could also include the effect of support interference.

The possibility of cone pressures being irdcpendent of base pressure even when

the boundary layer has separated on the co:c is significant and will be elaborated
upon briefly before presenting further experimental results. As the angle of
attack of a sharp cone approaches its half angle, one would expect the pressure

on the leeward meridian to approach the free stream pressure (p, )*. At super—
sonic Mach numbers the cone base pressure is significantly below free stream
pressure (see Figure 2). This means that at supersonic Mach nuzbers a cone can

be at large angles of attack and maintain 1eew8rd pressures considerably larger
than base pressure. The experiments of Tracy1 are an example of such a condition.
For his experiments at a Mach number of 8, the leeward meridian pressure was al-
ways larger than the base pressure, even when the angle of attack was over twice
the cone half angle. This is analogous to the case of an infinitely long cone.

For the hypersonic case a significant difference may occur. The base pressure

can be larger than the free stream pressure and therefore, as the sharp cone
approaches an angle of attack equal to its haif angle the leeward pressure approaches
the base pressure level. The difference between the superscnic and hypersonic

case is shown schematically in Figure 4. It is possible then, that in the hypersonic
case the base pressure may directly influence separation. It is therefore sug-

*For example, inviscid solutions of flow over a conc at angle of attack (e.g., Gonidoul 2) produce this result.
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gested that the reader keep in mind the appropriate base pressure level when ex—
amining the cone pressure distributions of this investigation.

3.2 PRESSURE DATA

Figures 5 through 12 present ithe experimental measurements of cone pressure as a
function of angle of attack for the various configurations tested. The pressures
are nondimensionalized using the freestream pressure. The results on the windward
side on the sharp cone are found to agree well with Newtonian theory throughout
the angle of attack range tested. Pressures on the leeward side of the sharp cone
agree with Newtonian theory at small angles of attack, but as the angle of attack
approaches the cone half angle, the rate of change of the leeward pressure with
angle diminishes, resulting in pressures of a larger magnitude than would be pre-
dicted by inviscid theory. Separation would intuitively be expected at an angle
of attack in the neighborhood of the cone half angle. The pressure changes (for

a given meridian location) through this angle of attack range are very gradual

and in some cases the pressure was essentially constant. Such a pressure history
would indicate that incipient separation on a sharp cone did not greatly change
the inviscid flow from the unseparated case.

The blunt conme (Ry = 0.84 inch) pressure at zero angle of attack was less than
the sharp cone value, which is characteristic of the overexpansion on a blunt cone
(see, for example, Ref. 13), In the leeward region of the blunt cone the minimum
pressure location would move downstream with an increase in angle of attack. If
the effective conc half angle on the leeward meridian is considered to be 6, -«
(for small « ), then inviscid theory and experimentl3 would indicate the blunt

and sharp cone pressures should be equal at approximately 5 degrees angle of
attack. As the angle of attack increased over 5 degrees the blunt cone pressures
would be larger than the sharp cone values. The experimental results of this in-
vestigation followed such a trend.

Data at 14, 16 and 18 degrees angle of attack were taken for a 0.25-inch nose
radius. It was found that the pressure levels were equal to the sharp cone re-
sults, indicating no effect of small nose bluntness at large angles of attack.
This result would suggest that for these angles of attack the leeward pressure
is dominated by crossflow effects when X/RN is large. Boundary layer transition
results 14 on both the windward and leeward meridians of a blunt cone at angle
of attack indicated a similar independence of nose radius as the cone approached
an angle of attack equal to the cone half angle. Since boundary layer transition
is dependent upon boundary layer history, these results would indicate the lee-
ward boundary layers at large angles of attack are not significantly influenced
by small nose bluntness, but are dominated by the crossflow.

e pressures with the spherical base were found to be the same as those with
flat base. It was therefore conciuded that for these experiments base geometry
did not have a significant effect upon separation. This conclusion is not meant
to be interpreted, however, as an indication of no communication between base and
leeward regions.

From the point of view of incipient separation the pressure data is more infor-

mative when viewed as a summary plot in terms of circumferential angle. Figure
13 presents the sharp cone data in such a manner. The pressure curves have been

-8
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Figure 11 PRESSURE VERSUS ANGLE OF ATTACK FOR X = 6 INCHES AND ¢ = 338 DEGREES
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Figure 12 PRESSURE VERSUS ANGLE OF ATTACK FOR X = 6 INCHES AND ¢ = 277
DEGREES AND 97 DEGREES

W

L TN

=16~

S

Y




N RO R NS MR NS S XS e

B | ot

G

i\ s Mmﬁ?}“’jm

Y

Lo

B

SHARP CONE
X = 6inches

a,degrees

66— 10

PRESSURE RATIO, p/pw

<
I\

o

_/
_
=

o

o

120 140 160 180 2

CIRCUMFERENTIAL ANGLE, degrees
88-4527

Figure 13 SHARP CONE PRESSURE VERSUS CIRCUMFERENTIAL ANGLE
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drawn from data on three meridians, and therefore are an approximate representa-
tion of the pressure variations. The trends are clearly evident; however, the
circumferential angle at which minimum pressure occurred can only be approximated.

A small adverse pressure gradient was observed at an angle of attack of 12 degrees,

with symmetric minimum pressure locations off the leeward meridian. As the angle
of attack was increased, the adverse gradient increased. At angles of attack less
than the cone half angle of 15 degrees, the entire leeward region of the cone
maintained pressures larger than the base pressure. At a = 16 degrees the minimum
pressure dropped to base pressure level, while the leeward meridian pressure re-
mained significantly larger than base pressure. At « = 20 degrees the minimum
cone pressure was below base pressure level and the leeward meridian pressure was
approximately equal to base pressure.

TracylO and RainbirdlS’16 have obtained cone pressure data at large angles of
attack at lower Mach numbers. Their data have the same general features as those
in Figure 13. Also, a comparison of cone leeward pressure at large angles of
attack with cylinder base pressure resultsl? suggests a similarity between the
two flow situations.

From the data obtained in this investigation it was not possible to determine
accurately the angle of attack at which incipient separation occurred or the na-
ture of the separation phenomenon. However, the fact that incipient separation is
a gradual process, occurring without any significant pressure perturbation means
that knowledge of the precise angle of attack at which three-dimensional incipient
separation occurs is more of an academic problem than an engireering prcblem.

A summary of the pressures on the leeward region of the blunt cone (X/RN = 4.5)
is presented in Figure 14. The leeward pressures were found to vary only slightly
with angle of attack and with circumferential angle. As the angle of attack ex~
ceeded the cone half angle, the data indicated the presence of a small adverse
pressure gradient. Since the pressure differences involved were within the ex-
perimental scatter the existence of the adverse gradient remains questionable.

This point is inconsequential, however, since an adverse gradient of this magnitude

would probably be insignificant in regard to separation.

These present results are consistent with one of the three-dimensional separation
models identified by Maskelll® and observed experimentally by Ceresuela, Kretz-
schmar, and Rehbackl9, In this case the separation line originates from a saddle
point on the leeward generator and the separated layer encloses a "bubble'. A
pictorial representation of this separation pattern is shown in Figure 15, Up-
streain of the separation bubble the flow is nose-dominated whereas at large

X/RN (within the separation bubble) the flow is crossflow dominated, as it is on
the sharp cone. With this type of separation occurring it would then appear un-
likely that separation would be observed in the present investigations at X/Ry =
4.5 and angles of attack up to 18 degrees.

3.3  HEAT TRANSFER DATA

Figures 16 and 17 present heat transfer rates irn the leeward region of the sharp
cone as a function of angle of attack. The leeward meridian heat transfer rates

with further increases in angle of attack., It is interesting to note that between
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the angles of attack of 14 and 20 degrees, the heat transfer rate is increasing
while the pressure is decreasing. This is apparently a characteristic of separat-
ed flow over a sharp cone. This same feature has been observed by TracylO. The
heat transfer rates on the 158-degree and 217-degree meridians maintained
essentially constant vzlue at the high angles of attack. Figure 18 contains data
obtained for the biunt nose configuration at X/Ry = 3.3. The heat trarsfer rates
are referenced to the zero angle of attack sharp cone angle. At angles of attack
in the vicinity of the cone half angle, the heat transfer rates were insensitive
to angle of attack changes.

Figure 19 contains a summary of the hea. transfer rate results. These curves

were constructed from data obtained on wmeridians of 158, 180 and 217 degrees, as
was the pressure data, therefore some arbitrariness was necessary in the shape of
the curves. Characteristic changes in the sharp cone heat transfer rate data,
which are apparently associated with separation, are evident, as was the case
with the pressure data. However, those fuatures of the heat transfer data lag

the corresponding pressure data features by 2 or 3 degiees angie of attack. For
example, at a 12-degree angle of attack the minimum heat transfer rate was

at the leeward meridian, whereas the pressure data al.ceady indicated an adverse
pressure gradient for this angle of attack. A significant difference in the heat
transfer and pressure results can be seen at angles of attack greater than the
half angle. The heat transfer rate proceeded to increase as the pressure decreas-
ed, until at a = 20 degrees the hest transfer rate on the leeward meridian was
over 30 percent of the zero-angle-of-attack value.

Figure 19b contains a summary of the blunt cone heat transfer rate results. It
can be seen that the heat transfer rates in the leeward region of the blunt cone
were insensitive to angle of attack between a = 10 and 18 degrees. At a = 18
degrees there was still no indication of separation.
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4.0 CONCLUSIONS

The following conclusions resulted from this investigation:

1) Separation on a sharp cone 2t angle of attack is a gradual process. This
means that precise knowledge of the angle of attack at which cone incipient
separation occurs is more of an academic problem than an engineering problem.

2) From the data obtained with the two base geometries (flat and spherical)

it can be inferred that separation was not influenced to a significant degree
by base geometry.

3) Increasing angle of attack in the range of flow separation on a sharp cone

is characterized by increasing heat transfer rates while the pressure is de-
creasing.

4) Limited experiments with X/Ry in the range of 13.5 to 27.5 indicated that
bluntness did not significantly affect separation in this range of X/Ry.

5) When X/RN was in the range of 2.1 to 6.4 there was no indication of sep-
aration at angles of attack up to 18 degrees.
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