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FOREWORD

This report covers work performed during the period 1 January through 30 June
1968 under the Reentry Environment and Systems Technology (REST) Program contract.
kAvco's participation in this program, described in the REST program plan (AVMSD-
0419-66-CR CR Rev. 1), includes theoretical, analytical and experimental study
tasks in the general areas of aerophysics, observables and materials.

This semiannual progress report is comprised of the following Avco documents:

AVMSD-0217-68-RM Vol. I Displacement and rlow Separation on Cones at In-
cidence to a Hypersonic Stream

AVMSD-0217-68-RM Vol. II Kinetics and Thermochemistry of Sulfur Hexafluoride
Decomposition.

LAS-0217-68-RM Vol. III A.Shock Tunnel investigation of Hypersonic Laminar
Boundary Layer Separation on a 15-Degree Cone at
Angle of Attack

This document is subject to special export controls and each transmittal to
foreign governments or foreign nationals may be made only with prior approval
of Space and Hissile Systems Organization ;4 X

Information in this report is embargoed under the Department of State Inter-
national Traffic in Arms Regulations. This report may be released to foreign
governments .- ,.c--artments or agencies of the U.S. Government subject to approval
of Space an. Missile Systems Organization (SMYSE), Los Angeles AFS, California,
or highe- ai thority within the Department of the Air Force. Private individuals
or firms require a Department of State export license.

This technical report has been reviewed and is approved.

Lt. T. Graham, REST Project Officer
SMYSE
Air Force Systems Command
Norton Air Force Base, California
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ABSTRACT

A shock tunnel investigation of the pressure and heat transfer distributions on
sharp and blunted 15-degree half angle cones at angle of attack was conducted.
The test conditions were M.. = 13.5 and Re. /ft. = 1.5 x 106. Separation on a
sharp cone with increasing angle of attack is a gradual process which is char-
acterized by increasing heat transfer rates while the pressure is decreasing.
The two base geometries tested (flat and spherical) indicated that separation
was not influenced to a significant degree by base geometry. Limited experiments
with X/RN in the range of 13.5 to 27.5 indicated that bluntness did not signifi-
cantly affect separation in this range of X/RN. When X/RN was in the range of 2.1
to 6.4 there was no indication of separation at angles of attack up to 18 degrees.

EDITED BY.
EDITORIAL SERVICES SECTION
J. F. Dempsey
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1] NOMENCLATURE

= freestream Mach number

P. = freestream pressure

Pb = base pressureH q = heat transfer rate

qj=O = heat transfer rate for the sharp cone at zero angle of attack

Re. = Reynolds number based on freestream conditions

ReL = Reynolds number based on freestream conditions and the model
length

RN = nose radius

x = distance along the cone surface, starting from tip or
stagnation point

a = angle of attack

0 = cone half angle

I = cone meridian angle. Based upon a head-on view and starting

with the windward meridian

,

-vii-



1.0 INTRODUCTION

The motivation for these experiments resulted from certain analytical studies of
the three-dimensional boundary layer on blunted cones by Fannelopl. The approxi-
mate inviscid methods considered in Ref. 1 predict a favorable circumferential
pressure gradient in the leeward region of the cone at angles of attack for which
separation would be expected (a = Oc). Therefore, the mechanism to which separa-
tion could be attributed was not clear. It was thought possible that disturbances
from the near wake could propagate upstream and influence the separation process.
One way to explore possible base influence was to check the effect of varying base
geometry. This would alter the character of the flow in the near wake and the
manner in which the base pressure affects the boundary layer at the aft end of

-- the cone.

An experimental program using a conical model was formulated, having the following
primary objectives:

1) to determine if incipient separation is influenced to a significant degree
by base geometry, and,

2) to obtain pressure and heat transfer rate distributions at various angles
of attack.

It

-1-
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2.0 MODEL, INSTRUMENTATION AND TEST FACILITY

2.1 MODEL

The model was a 15-degree half angle cone with several nose and base configurations.
One nose attachment was sharp and the other two were spherically blunt with radii
of 0.25 and 0.84 inch. The blunt cone configurations provided data with blunt-
ness ratio's (X/R ) in the range of 13.5 to 27.5 and 2.1 to 6.4, respectively.n
The base attachments were flat and spherical with a maximum diameter of 4.5 inches
(see Figure 1). The model could be positioned at angles of attack between 0 and
22 degrees. The cone was supported by a strut on the windward meridian close to
the base. The strut was of minimum size, consistent with the load and instrumen-
tation lead wire requirements.

The cone meridian angle (0) is measured in a clockwise direction based on a head-
on view, with the windward meridian being designated 0 = 0.

2.2 INSTRUMENTATION

The model was instrumented with pressure and heat transfer gages. The pressure
gages were peizoelectric transducers with a response time of a fraction of a
millisecond and an operating range of about 0.005 to 100 psia. The transducers'I are described in detail in Ref. 2. The heat transfer gages are the conventionalF -thin film platinum resistance thermometer type gages 3,4.

2.3 TEST FACILITY

The experiments were conducted in the Avco 20-inch shock tunnel at a Mach number
of 13.5 and a free stream Reynolds number per foot of 1.5 x 106. The 20-inch
shock tunnel is described in Ref. 5 and additional tunnel calibration data were
presented in Ref. 6. The Mach number variations, both radially and axially, were
less thrn + 5 percent.

-2-
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3.0 TS RESULTS

3.1 STRb-T I-'IERFERENCE EFFECTS AMD BASE PRESSURE DATA

Strut interference on the near wake was of concern from the onset of the program
and for this reason a determination was desired early in the program of whether
or not the base pressures obtained were reasonable. To rake such a determination,
co-patible with the scope of the program, the base pressure evaluation was accom-
plished by a coparison with other experimental data. The results of Softley and
Graber7 were useful in this regard. In Ref. 7 high Mach nu=ber base pressure data
were obtained and the effect of support interference investigated. Shock tunnel

base pressure data were obtained from "free-flying" models and models supported
by fine threads (0.001-to 0.002-inch diameter) and smali diameter wires (0.016-

inch diameter). Figure 2 co=mares the base pressure data obtained in the present
study (strut mounted model) with those of Softley and Graber. Also shown are base
pressure results from other facilities obtained at lower Mach numbers. Keeping in
mind the differences in cone angles (a higher base pressure would be expected with

the larger cone anglel l ) , it was concluded that the strut ounting did not strongly

influence the base pressure.

Figure 3 presents the base pressure results, for the various configurations, as
a function of angle of attack. The base pressure data shown for the flat base was

obtained at a radial loc.tion 65 percent of the base radius in the plane of the

leeward meridian. A limited amount of data was cbtained at a location of 30 per-

cent of the base radius, also in the plane of the leeward meridian. The pressure
at this location was observed to follow si lar trends, at a slightly higher mag-

nitude. On the spherical base the pressure gage was located one-half inch above
the model centerline in the plane of the leeward meridian. The base pressure would

be expected to increase with angle of attack and with nose bluntness; however, the

increases found could also include the effect of support interference.

The possibility of cone pressures being indspendent of base pressure even when

the boundary layer has separated on the co te is significant and will be elaborated

upon briefly before presenting further experimental results. As the angle of

attack of a sharp cone approaches its half angle, one would expect the pressure
on the leeward meridian to approach the free stream pressure (p )*. At super-

sonic Mach numbers the cone base pressure is significantly below free stream

pressure (see Figure 2). This means that at supersonic Mach numbers a cone can
be at large angles of attack and maintain leeward pressures considerably larger

than base pressure. The experiments of Tracy are an example of such a condition.

For his experiments at a Mach number of 8, the leeward meridian pressure was al-
ways larger than the base pressure, even when the angle of attack was over twice
the cone half angle. This is analogous to the case of an infinitely long cone.
For the hypersonic case a significant difference may occur. The base pressure

can be larger than the free stream pressure and therefore, as the sharp cone
approaches an angle of attack equal to its half angle the leeward pressure approaches
the base pressure level. The difference between the supersonic and hypersonic

case is shown schematically in Figure 4. It is possible then, that in the hypersonic

case the base pressure may directly influence separation. It is therefore sug-

For example, inviscid solutions of flow over a cone at angle of attack (e.g., Gonidou
1 2

) produce this result.

-4-
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1

gested that the reader keep in mind the appropriate base pressure level when ex-
amining the cone pressure distributions of this investigation.

3.2 PRESSURE DATA

Figures 5 through 12 present the experimental measurements of cone pressure as a
function of angle of attack for the various configurations tested. The pressures

are nondimensionalized using the freestream pressure. The results on the windward
side on the sharp cone are found to agree well with Newtonian theory throughout
the angle of attack range tested. Pressures on the leeward side of the sharp cone

agree with Newtonian theory at small angles of attack, but as the angle of attack
approaches the cone half angle, the rate of change of the leeward pressure with
angle diminishes, resulting in pressures of a larger magnitude than would be pre-
dicted by inviscid theory. Separation would intuitively be expected at an angle
of attack in the neighborhood of the cone half angle. The pressure changes (for
a given meridian location) through this angle of attack range are very gradual
and in some cases the pressure was essentially constant. Such a pressure history
would indicate that incipient separation on a sharp cone did not greatly change
the inviscid flow from the unseparated case.

The blunt cone (RN = 0.84 inch) pressure at zero angle of attack was less than
the sharp cone value, which is characteristic of the overexpansion on a blunt cone
(see, for example, Ref. 13). In the leeward region of the blunt cone the minimum

V. pressure location would move downstream with an increase in angle of attack. If
the ....... half angle on the leeward meridian is considered to be 0c - a
(for small a ), then inviscid theory and experiment1 3 would indicate the blunt
and sharp cone pressures should be equal at approximately 5 degrees angle of
attack. As the angle of attack increased over 5 degrees the blunt cone pressures
would be larger than the sharp cone values. The experimental results of this in-
vestigation followed such a trend.

Data at 14, 16 and 18 degrees angle of attack were taken for a 0.25-inch nose
radius. It was found that the pressure levels were equal to the sharp cone re-
sults, indicating no effect of small nose bluntness at large angles of attack.
This result would suggest that for these angles of attack the leeward pressure

is dominated by crossflow effects when X/RN is large. Boundary layer transition
results 14 on both the windward and leeward meridians of a blunt cone at angle
of attack indicated a similar independence of nose radius as the cone approached
an angle of attack equal to the cone half angle. Since boundary layer transition
is dependent upon boundary layer history, these results would indicate the lee-
ward boundary layers at large angles of attack are not significantly influenced
by small nose bluntness, but are dominated by the crossflow.

Cone pressures with the spherical base were found to be the same as those with
a flat base. It was therefore concluded that for these experiments base geometry

did not have a significant effect upon separation. This conclusion is not meant

to be interpreted, however, as an indication of no communication between base and
leeward regions.

From the point of view of incipient separation the pressure data is more infor-

mative when viewed as a summary plot in terms of circumferential angle. Figure

13 presents the sharp cone data in such a manner. The pressure curves have been

-8-
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drawn from data on three meridians, and therefore are an approximate representa-
tion of the pressure variations. The trends are clearly evident; however, the

circumferential angle at which minimum pressure occurred can only be approximated.
A small adverse pressure gradient was observed at an angle of attack of 12 degrees,
with symmetric minimum pressure locations off the leeward meridian. As the angle
of attack was increased, the adverse gradient increased. At angles of attack less
than the cone half angle of 15 degrees, the entire leeward region of the cone
maintained pressures larger than the base pressure. At a = 16 degrees the minimum
pressure dropped to base pressure level, while the leeward meridian pressure re-
mained significantly larger than base pressure. At a = 20 degrees the minimum
cone pressure was below base pressure level and the leeward meridian pressure was
approximately equal to base pressure.

Tracy10 and Rainbird 15'16 have obtained cone pressure data at large angles of
attack at lower Mach numbers. Their data have the same general features as those
in Figure 13. Also, a comparison of cone leeward pressure at large angles of
attack with cylinder base pressure results 17 suggests a similarity between the
two flow situations.

From the data obtained in this investigation it was not possible to determine
accurately the angle of attack at which incipient separation occurred or the na-
ture of the separation phenomenon. However, the fact that incipient separation is
a gradual process, occurring without any significant pressure perturbation means
that knowledge of the precise angle of attack at which three-dimensional incipient
separation occurs is more of an academic problem than an engineering problem.

A summary of the pressures on the leeward region of the blunt cone (X/RN = 4.5)
is presented in Figure 14. The leeward pressures were found to vary only slightly
with angle of attack and with circumferential angle. As the angle of attack ex-
ceeded the cone half angle, the data indicated the presence of a small adverse
pressure gradient. Since the pressure differences involved were within the ex-
perimental scatter the existence of the adverse gradient remains questionable.
This point is inconsequential, however, since an adverse gradient of this magnitude
would probably be insignificant in regard to separation.

These present results are consistent with one of the three-dimensional separation
models identified b Maskell 18 and observed experimentally by Ceresuela, Kretz-
schmar, and Rehback19 . In this case the separation line originates from a saddle
point on the leeward generator and the separated layer encloses a "bubble". A
pictorial representation of this separation pattern is shown in Figure 15. Up-
stream of the separation bubble the flow is nose-dominated whereas at large
X/RN (within the separation bubble) the flow is crossflow dominated, as it is on
the sharp cone. With this type of separation occurring it would then appear un-
likely that separation would be observed in the present investigations at X/RN =

4.5 and angles of attack up to 18 degrees.

3.3 HEAT TRANSFER DATA

Figures 16 and 17 present heat transfer rates in the leeward region of the sharp
cone as a function of angle of attack. The leeward meridian heat transfer rates
reached a minimum at angles of attack of 12 to 14 degrees, and then increased
with further increases in angle of attack. It is interesting to note that between

-18-
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the angles of attack of 14 and 20 degrees, the heat transfer rate is increasing
while the pressure is decreasing. This is apparently a characteristic of separat-
ed flow over a sharp cone. This same feature has been observed by Tracy1 0 . The
heat transfer rates on the 158-degree and 217-degree meridians maintained
essentially constant vslue at the high angles of attack. Figure 18 contains data
obtained for the blunt nose configuration at X/RN = 3.3. The heat transfer rates
are referenced to the zero angle of attack sharp cone angle. At angles of attack
in the vicinity of the cone half angle, the heat transfer rates were insensitive
to angle of attack changes.

Figure 19 contains a summary of the heaL transfer rate results. These curves
were constructed from data obtained on meridians of 158, 180 and 217 degrees, as
was the pressure data, therefore some a:bitrariness was necessary in the shape of
the curves. Characteristic changes in the sharp cone heat transfer rate data,
which are apparently associated with sep. ration, are evident, as was the case
with the pressure data, However, those features of the heat transfer data lag
the corresponding pressure data features by 2 or 3 digrees angle of attack. For
example, at a 12-degree angle of attack the minimum heat transfer rate was
at the leeward meridian, whereas the pressure data al.-eady indicated an adverse
pressure gradient for this angle of attack. A significant difference in the heat
transfer and pressure results can be seen at angles of attack greater than the
half angle. The heat transfer rate proceeded to increase as the pressure decreas-
ed, until at a = 20 degrees the heat transfer rate on the leeward meridian was
over 30 percent of the zero-angle-of-attack value.

Figure 19b contains a summary of the blunt cone heat transfer rate results. It
can be seen that the heat transfer rates in the leeward region of the blunt cone
were insensitive to angle of attack between a = 10 and 18 degrees. At a 18
degrees there was still no indication of separation.

-23-
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4.0 CONCLUSIONS

The following conclusions resulted from this investigation:

1) Separation on a sharp cone et angle of attack is a gradual process. This
means that precise knowledge of the angle of attack at which cone incipient
separation occurs is more of an academic problem than an engineering problem.

2) From the data obtained with the two base geometries (flat and spherical)
it can be inferred that separation was not influenced to a significant degree
by base geometry.

3) Increasing angle of attack in the range of flow separation on a sharp cone
is characterized by increasing heat transfer rates while the pressure is de-
creasing.

4) Limited experiments with X/RN in the range of 13.5 to 27.5 indicated that
bluntness did not significantly affect separation in this range of X/RN.

5) When X/RN was in the range of 2.1 to 6.4 there was no indication of sep-
aration at angles of attack up to 18 degrees.

11
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