UNCLASSIFIED

AD NUMBER

AD841188

CLASSIFICATION CHANGES

TO:

unclassified

FROM:

confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; 01 SEP 1951. Other requests shall be referred to Commander, Naval Missile Center, [Code 5630], Point Mugu, CA.

AUTHORITY

30 sep 1964, DoDD 5200.10; USNMC ltr, 13 Oct 1970

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

THIS PAGE IS UNCLASSIFIED

1 SEPTEMBER 1951

J. Stevenson, Jr. unso

APPROVED BY: Commander NAMEC

BUREAU OF AERONAUTICS

5 SEPTEMBER 1952

UNCLASSIFIED

Best Available Copy

HANDLING INSTRUCTIONS

This document contains information affecting the mational defense of the United States within the meaning of the Espionage Laws, Title 18, U. S. Code, Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by Jaw.

It is forbidden to make copies of or extracts from this document by other than naval activities except by special approval of the Secretary of the Navy or the Chief of Naval Operations as appropriate.

Naval activities are forbidden to make copies of or extracts from this document except as provided in Article 9-10, U. S. Navy Security Manual for Classified Matter, OPNAV-32-P-1100.

This publication is classified Secret. It is a nonregistered document but shall be handled, stowed, transported, and destroyed as prescribed by the applicable regulations for Secret classification. No report of destruction is necessary.

* * *

* TRANSHISSION BY UNITED STATES REGISTERED MAIL OR REGISTERED GUARD MAIL IS AUTHORIZED IN ACCORDANCE WITH ARTICLE 7-5, UNITED STATES NAVY SECURITY MANUAL FOR CLASSIFIED MATTER.*

126

١.

SECTEV

SHUHH

SEART

Goreword

The U. S. Naval Air Missile Test Center was established at Poin⁻ Kugu, California, by the Secretary of the Navy (SecNav ltr Op-24/mad Serial 1373P24 dtd 17 September 1946) effective 1 October 1946. It is an activity of the ELEVENTH Naval District. The Bureau of Aeronautics exercises management and technical control over this activity.

The primary mission of the Naval Air Missile Test Center is the testing and evaluation of guided missiles and their components. NANTC is assigned cognizance over all facilities at Point Mugu, California, and outlying facilities on San Nicolas Island and the Santa Barbara Channel Islands, collectively referred to as the Saa Tes⁺ Range.

Commander, Naval Air Missile Test Center Captain J. N. Murphy, USN Commanding Officer, Naval Air Station Captain M. T. Evans, USN Director of Tests, Naval Air Missile Test Center Captain A. C. Packard, USN Chief Scientist, Naval Air Missile Test Center Dr. R. Weller

State State States

SEPHEN

table of contents

Wart's works

Section and the sector of the

	ge
SUGAARY ,	1
INTRODUCTION	2
CONFIGURATION	5
	5
Launching Devices	6
EQUIPHENT	9
Stabilization System	9
Control	0
Tracking ,	1
Telemetry	
Fuel and Propulsion System	
Flight Termination	
Ordnance Components	4
TEST PROCEDURE AT NAMTC	4
RESULTS AND DISCUSSION	
Problem Detail Provide	
Problem Detail Results	
Kellability	0
CONCLUSIONS	7
REFERENCES	9
Table I. Summary of Loon Flights	1
Table II. Summary of Component Performance	
Table III. Summary of Reliability	
Figure 16: LTV-N-2 (LOON) Missile	3
Figure 2. Cutaway View of LTV-N-2 (LOON)	4
Figure 3. XM1 Catapult With LOON in Launching Position	
Figure 4. Rolling Ramp Showing LOON and Four-Jato Launching	
Sled Immediately After JATO Ignition	5
Figure 5. LOON in Launching Position on NADC	
Zero-Length Launcher	б
Figure 6. LOON in Launching Fosition on NAWTC Short-Length	
Launcher	
Figure 7. Launching Installation on Deck of USS CUSK	7
Figure 8. USS CARBONERO Short-Length Launcher	
Figure 9. Schematic Diagram of LOON Control System 4	
Figure 10, Beacon Antenna Configurations	0

a Tanàn Mandairt ao Marine Ma

1.5

SHEALT

SERFET

table of contents (cont	'd)	(cont	ts	conten	of	le	ab	t
-------------------------	-----	-------	----	--------	----	----	----	---

,			Page
	Figure	11.	AN/ART-10 Telemeter Installation
	Figure	12.	Schematic Diagram of LOON Warhead-Detonating
			System
	Figure	13.	Location of Warhead Ordnance Components
	Figure	14.	Schematic Diagram of Quick-Detachable Nose
			Mount Configuration
	Figure	15.	Original Electronics Nose Mount
	Figure	16.	Modified Electronics Nose Mount
	Figure	17.	Single-JATO Launching Sled
	Figure	18.	McDonnell V-2 Altitude-Compensated Fuel
			Meter Installation
	Figure	19.	LOON With J-30 Turbojet Engine Installation
	Figure	20.	Missile and Warhead Immediately After Receipt
			of "Dump" Command
			-

AN 1998 25 415 + 2 (ANI 25 4)

SHIFT

interim report on LTV-N-2 (LOON) program from 1 March 1949 to 1 September 1951

summary

This report covers the progress of the LTV-N-2 (LOON) test program from 1 March 1949 to 1 September 1951. During this period, 46 LOON missiles were launched from shore launchers, 38 from submarines, and 3 from the USS NORTON SOUND. Significant progress was made in accomplishing the objectives of the assigned problem details. Completed problem details include tests of the quick-detachable electronics nose mount, dual- and single-JATO launchings, assistance to the NORTON SOUND, tests of the Summers gyro servo control system, acceptance checks of contractor-modified missiles, and Radioplane Recovery System tests.

Significant accomplishments during this period were the successful use of a Marine Guidance Computer, development of a promising radar guidance system, successful use of single-JATO launching sleds, flights with live warheads, a pulsejet-powered flight to an altitude of 12,500 feet, development and tests of a warhead-blowoff method of flight termination, and use of the missile as an antiaircraft target during fleet exercises.

Technical development of the radar guidance system was accomplished by Navy Electronics Laboratory. NAMTC performed ground and flight tests and co-ordinated the application of the system with LOON requirements.

From the results of the test program, it is concluded (1) that the quick-detachable nose mount has desirable features which should be incorporated in future missiles, (2) that single-JATO launching sleds are superior to four-JATO or dual-JATO sleds, (3) that zero-length launchings should be avoided if possible, (4) that tests of the McDonnell altitude-compensated fuel meter should be continued, and (5) that turbojet tests should be continued.

An analysis of component and missile reliability indicated that there was no significant change over that reported in reference 11. This fact led to the conclusion that the practical limit of the reliability of the missile with its present components has been reached. Newly manufactured or redesigned components would undoubtedly increase the reliability.

Martine and a solar new for which have no find and a solar and a solar solar and the solar and the solar and the

SEGHET

introduction

The LOON program, directed toward naval application of the World War II German V-1 missile (Buss Bomb), was established in 1944. Upon the recommendation of the Bureau of Aeronautics, and with the approval of the Chief of Naval Operations, it was planned to launch the JB-2 (Air Force copy of the German V-1 missile) from aircraft carriers against targets in the Japanese Empire. However, the war ended before the program had progressed beyond the developmental stage.

The initial program was conducted under the authority of directives that established the following two projects:

1. TED MTC PA-501.

(TED NAM 1837)*

Established on 26 December 1944 for the purpose of investigating the use of the JB-2 Flying Bomb from a CVE-class aircraft carrier.

2. TED MTC EL-302

(TED NAM 31396 and TED PAU 3101)*

Established on 6 August 1945 for the purpose of conducting tests of the electronic systems of the missile. The primary purpose of this project was to increase the accuracy of the missile by tracking it in flight with radar and controlling its course by means of a remote radio transmitter.

After the war the JB-2 was redesignated the KGW-1 (LOON). However, the program was still devoted to tests that would result in the development of a missile which could be launched from the decks of the naval ships. On 27 May 1946 the missile designation was again changed to KUW-1 and the missile was reclassified from a "service craft to a testing craft for various components of other P/A."

From 27 Ma¹ 1946 to 23 August 1950, the LOON test program was devoted exclusively to testing and improving existing or new components. A parallel program was devoted to training fleet personnel and perfecting missile handling and launching techniques aboard submarines. The missile designation was changed to LTV-2 on 30 July 1947 and to LTV-N-2 in April 1948. During this period projects TED MTC PA-501 and TED MTC EL-302 remained in effect but were revised occasionally by the addition or deletion of certain details. The following additional projects, which further modified or augmented the existing test program, were established:

1. TED MTC PA 501.1 (TED PAU 1801.1)*

Established on 17 September 1946 to conduct "experimental rocket-type launchings of the KUW-1 for the purpose of obtaining launching data and training personnel, leading to the launching of the KUW-1 from a submarine." In conjunction with this project, the Chief of Naval Operations directed

These designations were used prior to the establishment of MTC designations.

2 SECRET

and the second second and the second second

SEGRET.

that a fleet-type submarine be converted to an experimental bombardment $t_{2,2}$ for the launching of guided missiles.

2. TED MTC EL-301

Established on 13 November 1946 for the purpose of evaluating the Summers gyro servo control system in the LOON. The primary purpose of this project was to provide a greater degree of controllability during launching and greater maneuverability during the mid-course phase of flight. This was to be accomplished in part by modification of the LOON to incorporate aileron roll control in lieu of rudder control.

3. TED MTC AR-2301

Established on 8 March 1948 for the "development of a destructor system for severing the wings of the LOON in order to improve the terminal trajectory of the missile."

4. TED MTC 502.1

Established on 31 August 1948 for the purpose of equipping LOON missiles with smoke generating units for use as antiaircraft targets for fleet exercises.

5. TED MTC PA-501.3

Established on 7 January 1949, for the purpose of providing technical and material assistance during the launching of LOON missiles from the USS NORTON SOUND.

6. TED MTC AE-525001

Established on 17 January 1949 for the purpose of conducting flight tests and evaluation of various types of equipment and systems intended for the recovery of pilotless aircraft and pilotless aircraft components detached or ejected in flight. The Bureau of Aeronautics assigned four LOONs to this program on 8 January 1950.

7. TED MTC GM-209

Established on 1 March 1949 for the purpose of providing for LOON flight testing in connection with components improvements, launching, tests which cannot be performed by operational training vessels without the technical assistance of NAMTC, and special tests required by competent authorities. This directive terminated projects TED MTC PA-501, 501.1, and 502.1.

8. TED MTC DE-302.3

Established on 1 March 1950 for the purpose of developing facilities and techniques required to obtain aerodynamic data from free-flight tests of the LOON missile.

9. TED MTC EL-302.1

Established on 29 May 1950 for the purpose of evaluating the AN/ASQ-5 infrared homing equipment in LOON during flights to determine the suitability of this system for possible future use in ship-to-surface guided missiles.

┿╬╫╊┨

SEGRET

In August 1950 the general aspect of the LOON test program was changed by a series of directives from the Chief of Naval Operations and the Sureau of Aeronautics. On 23 August the Chief of Naval Operations, by reference 1, directed that a reserve of 25 LTV-N-2 (LOCN) missiles be established at NAMTC Point Mugu "to provide for operational contingencies until improved guided missiles are available for fleet use." On 30 August the Bureau of Aeronautics directed, by reference 2, that "any LOON's launched hereafter should have in their flight plan only objectives which contribute directly to the improvement of the LOON as an operational weapon." On 30 August, by the promulgation of reference 3, the Chief of Naval Operations directed that the Bureau of Ships and the Bureau of Aeronautics co-ordinate efforts to develop and test an improved command guidance system which would employ radar coding principles and be suitable for use with submarine launched missiles.

In conformance with these directives, projects TED MTC GM-209 and TED MTC EL-302 were revised. Revised project TED MTC GM-209 (reference 4, on 8 December 1950. It directed that the LOON program be devoted to the following specific details:

1. Modification of 25 missiles for assignment to the reserve pool.

2. Tests of improved launching systems and associated components. The emphasis was to be placed on the perfection of single-JATO launching techniques and their adaptation to launchings from submarines.

3. Tests of the armament components of the LOON.

4. Tests of electronic components and systems as outlined in projects TED MTC EL-301 and TED MTC EL-302.

5. Tests of power plant installations. These were to include tests on the existing 21-inch pulsejet engine and tests on the Westinghouse J-30 and the Ranger J-44 turbojet engines.

6. Tests to improve the predictability of the terminal trajectory of the missile.

7. Technica! assistance to, and support of, fleet training and evaluation programs using LOON missiles.

The directive that revised Project TED MTC EL-302 was promulgated by reference 5, on 7 March 1951. It established the following specific problem details:

1. Provision of consultive services to the Navy Electronics Laboratory and contractors during the development of the new command guidance system.

2. Continued testing and development of quick-detachable nose mount for electronic components.

SIGHT Л

SEGRET-

3. Development and test of an improved S-band radar beacon.

4. Tests of the AN/DPN-17, an improved radar transponder beacon that was designed to replace the AN/APN-33 radar beacon.

Several additional programs and projects were established to support project TED MTC GM-209. Project TED MTC PP-222 was established by reference 6 on 6 December 1950 for the purpose of determining the ability of the J-30 turbojet engine to withstand the launching accelerations which occur during LOON JATO launchings. On 8 January 1951, reference 7 extended the scope of project TED MTC PP-222 to include the J-44 turbojet engine. Project TED ADC GM-209 was established on 27 December 1950 by reference 8 to complete the development of LOON single-JATO launching equipment. This project also directed that 10 single-JATO launching sleds be manufactured by the Naval Air Development Center for tests at NAMTC.

Several miscellaneous assignments that were not a part of the actual test program were administered by LOON project personnel. They were directly related to the LOON missile and should be mentioned in this report. (1) In June 1949 a contract (reference 9) for the modification of 50 LTV-N-2 (LOON) missiles was awarded to the Marquardt Aircraft Company. The contract was modified by change order "D" in June 1950 to include an additional 27 missiles. Project personnel were charged with the responsibility of assisting the contractor in setting up a modification facility. Instruction to Marquardt employees and general assistance in setting up test equipment were to be provided. Acceptance tests of all modified missiles were to be conducted by NAMTC. (2) After the promulgation of the series of letters of August 1950, it was believed advisable to procure a complete set of up-todate LTV-N-2 (LOON) drawings which could be supplied to any prospective manufacturer of the missile. LOON project personnel were assigned the task of drawing up specifications for and technically administering such a contract. The contract was awarded to D & R Ltd., Santa Farbara, California in June 1951.

Previous progress reports have been issued (references 10 and 11) and should be consulted if a more detailed history of the earlier phases of the program are desired. This report covers the progress of the LOON program from 1 March 1949 to 1 September 1951. During this period a total of 46 LTV-N-2 (LOON) missiles were launched from shore launchers, 38 from submarines, and 3 from the USS NORTON SOUND.

configuration

MISSILE

The LTV-N-2 is an American-made copy of the German V-1 missile (Buzz Bomb), as manufactured in 1944 and 1945 under the direction of the U.S. Air Force. It is a pilotless conventional mid-wing monoplane powered by a

STOREI_

G

na sana manakan manakan kuta manakan kanakan kanakan kanakan kuta manakan kanakan manakan kanakan kanakan kana

21-inch pulsejet engine mounted above the rear section of the fuselage. It lacks ailerons but incorporates conventional elevator and rudder control. The characteristics of the missile with standard equipment installed are as follows:

PHYSICAL CHARACTERISTICS

GROSS WEIGHT	5025 LBS.
LENGTH	27 FEET 1 1/16 INCHES
NING SPAN	17 FEET 8 1/8 INCHES
VING AREA	60.7 SQUARE FEET
NING LOADING	82.8 LBS/SQUARE FOOT

PERFORMANCE (AVERAGE)

MAXIMUM SPEED (6,000 FEET ALTITUDE)	400 MILES/HOUR
MAAIMUM RATE OF CLIMB (SEA LEVEL)	800 FEET/MINUTE
SPEED 'N A CLIMB (OPTIMUM)	240 MILES/HOUR
SERVICE CEILING	6,000 FEET
RANGE	140 STATUTE MILES

Figure 1 is a photograph of the missile and figure 2 is a cutaway view showing the general arrangement of the major components in the standard configuration.

LAUNCHING DEVICES

8 SELIET

Two general methods are used to launch the LTV-N-2 (LOON) missile. In the catapult method, which was used exclusively during the early stages of the program, the missile is accelerated to flying speed before it leaves the launching device. In the JATO method, which has practically replaced the catapult method, the missile is accelerated to flying speed with the aid of one or more JATO units. There are two variations of the JATO launching method. One provides a short-length launching, and the other a zero-length launching. A short-length launching is achieved by aligning the JATO thrust vector so that the JATO sled slippers travel along the launcher rails. A zero-length launching is achieved by aligning the JATO thrust vector so that the JATO sled slippers the launching rails without any travel along the rails.

All catapult and booster launchers are equipped with a gasoline drip pan, which is located under the end of the pulsejet-engine tail pipe. A remotely-operated CO_2 smothering system is provided as a safety precaution. The outlet of the system is supported by the gasoline drip pan and is directed into the pulsejet tail pipe. The shore JATO launchers and the USS CUSK launcher are equipped with remotely-controlled water-deluge systems which spray the JATO units and the base of the launcher in the event a fire occurs in the missile prior to launching.

SECHEI.

Shore Installations

(1) XM1-1 Catapult

The XM1-1 catapult is a multiple-cartridge, slotted cylinder type of launcher in which smokeless powder charges are used as a propellant. The LTV-N-2, the launching sled, and catapult piston are accelerated to an average end speed of 217 knots after a 150-foot run. The sled and piston drop from the missile immediately after clearing the catapult. The entire catapult structure is of aluminum alloy and steel and weighs approximately 33,000 pounds. The catapult is mounted in a horizontal position. Figure 3 shows the LOON mounted for launching on an XM1-1 type catapult. The catapult is built in 10 sections. The sections, which do not contain powder chambers, are interchangeable. The end speed of the catapult may be altered by varying the powder charge in the seven cartridge chambers. Experience obtained from a number of launchings has established a standard powder loading of 32 sticks in the No. 1 electric cartridge chamber and 58 sticks in each of the 6 remaining flash-ignited cartridge chambers.

The missile is f^{1} ced on the catapult on an inclined launching sled in order to give the LOON the proper angle of attack immediately after launching. Launching sleds that incline the longitudinal axis of the missile 3°, 6°, or 8° above the horizontal, are available for use.

Complete information on the XM1-type catapult is contained in reference 12.

(2) Rolling Ramp

CRET

The rolling ramp is a three-rail ramp designed for simulated shipboard launchings of the LTV-N-2 (LQQN). The over-all length of the ramp is 90 feet. The forward 50-foot portion of the ramp, actually utilized during a launching, is inclined 6° above the horizontal. The remaining 40-foot portion is horizontal, corresponding to that section which would be covered by a hanger in a submarine installation. Figure 4 shows the LOON on the launcher.

The entire structure may be made to oscillate in roll at amplitudes of 5° to 15° from top dead center at periods of 6 seconds to 15 seconds. Power to oscillate the ramp is supplied by a gasoline engine. No provisions are made to simulate pitch or yaw. The rolling feature was removed after several successful launchings had been accomplished from submarines, and the ramp was secured in the top dead center position.

This ramp was removed from the NAMTC launching area in August 1950 to make room for other launching installations.

SECRET-

(3) NADC Zero-Length Launcher

This launcher was designed and built by the Naval Air Levelopment Center, Johnsville, Pennsylvania for the purpose of conducting zero-length launchings of LTV-N-2 (LOON), CTV-N-2 (GORGON), and RTV-N-15 (POLLUX) missiles. It was installed at NAMTC in August 1950.

The launcher is a compact unit 107 inches long, 65 inches wide, and 50% inches high. It is rotatable in azimuth through 360° and adjustable in elevation from $+\frac{1}{2}^{\circ}$ to $+11^{\circ}$. The launching sled, with one 2.2-KS-33,000 JATO unit attached, is loaded on the launcher with either a crane or a special launching-sled handling cart. The missile is then loaded with a crane. A LOON in launching position on the NADC zero-length launcher is shown in figure 5.

(4) NAMTC Short-Length Launcher

The NAMTC short-length launcher was originally designed as a replacement for the rolling ramp. It is a rail-type launcher with four 8-foot rails for the two front and two rear slippers. The plane of the rear slipper rails is 5 inches above the plane of the front slipper rails. The rails are so designed that the front and rear slippers of the four-JATO launching sled leave the launcher simultaneously. This feature prevents the possibility of a tip-off and consequently and undesirable nose-down pitching acceleration of the missile.

The launcher is trainable in azimuth through an arc of 30° in increments of 5° and is adjustable in elevation from a rail angle of 8° to 16° in increments of 1° . The over-all length is 23 feet, the width is 4 1/4 feet, and the maximum height is 4½ feet. Figure 6 shows the NANTC launcher with a LOON missile in the launching position.

The launcher was originally designed for only the four-JATO launching sled. With the advent of the single-JATO launching sled, an auxiliary set of rails was installed and the launcher may now be used with either launching sled. Either short-length or zero-length launchings may be accomplished.

Shipboard Installations

SECHET

(1) Short-Length Launcher aboard the USS NORTON SOUND

The NORTON SOUND launcher was designed by NAMTC. It is a shortlength three-rail launcher made of mild steel in a box truss design with diagonal supports and was patterned after the rolling ramp. It is 207 inches long and allows the front slippers of a four-JATO sled to travel 36 inches before clearing the launcher. It is adjustable in elevation from 2° to 8° , but is not trainable.

SECRET

(2) USS CUSK Launching Installations

The LOON is stored on board the USS CUSK in a deck hangar, aft of the conning tower. The hangar is a cylindrical steel tank, 8 feet 6 inches in diameter. The tank is closed at the aft end by a hydraulically-operated door. No provision is made for entering the hangar directly from within the pressure hull.

Prior to January 1951, the launcher installed aboard the CUSE was identical to the forward 50 feet of the rolling ramp. It could be utilized only with the four-JATO launching sled.

A short-length launcher, patterned after the NAMTC short-length launcher, was installed aboard the CUSK in November and December 1950 during a regular overhaul period. The rail configuration is identical to the NAMTC short-length launcher. However, the supporting structure was strengthened and the launcher was provided with an air-driven training and elevating mechanism. Working platforms also were added outboard of the rails to assist the prelaunching checkout crew. This launcher was designed for use with either the four-JATO or the single-JATO launching sleds. Figure 7 shows the short-length launcher and the hangar installed on the CUSK. The launching installation aboard the CUSK is described in detail in reference 11.

(3) Installation Aboard the USS CARBONERO

The launcher aboard the USS CARBONERO is a three-rail short-length launcher similar to that previously described for the USS NORTON SOUND. The supporting structure was redesigned and strengthened to withstand water loads when the boat is submerged.

The launcher is mounted on the aft 5-inch gun mount with the longitudinal axis of symmetry rotated 15° toward the port quarter. The launching rails are elevated at an angle of 6° above the horizontal. No provisions for adjustment in azimuth or elevation are provided.

The four-JATO sled and the missile are loaded separately by crane directly onto the launcher because no hangar or other means of stowage is provided. Figure 8 shows the launcher installation aboard the CARBONERO. This installation is essentially identical to that described in reference 11 for the CUSK except for the actual launcher.

equipment

STABILIZATION SYSTEM

Stable and controlled flight is achieved with the aid of a pneumaticallyoperated autopilot, rudder servomator, and elevator servomotor.

SECRET

9

mer we compare a

SECHET

The autopilot contains a yaw rate gyro and a pitch rate gyro — each of which is restrained to precess in one plane only — and a free gyro, which measures angular displacements. In addition to the gyros, the autopilot contains two systems of air lines. One system provides air to drive the gyros, and the other system is used to transmit intelligence to the servomotors.

The servomotors consist of a diaphragm unit, an air value connected to the diaphragm, a double acting piston, a chamber, and three air pressure fittings.

The missile is stabilized by the action of the three gyros. The vertical reference is established by the displacement gyro, which rotates about an axis that is inclined 20° to the horizontal. The inclination of the rotational axis is maintained by a pair of pendulous vanes. If the missile pitches, the frame of the autopilot moves with reference to the displacement gyro. This displacement causes a differential pressure to be applied across the servomotor diaphragm and thereby opens the air valve. This allows high pressure air to enter the piston chamber and move the piston. The elevator, which is attached to the piston, deflects in a direction that returns the missile to its original attitude. Similar action deflects the rudder when the missile rolls or yaws. The rate gyros act in a conventional manner and are utilized to damp out oscillations in pitch and yaw by causing the elevator and rudder to be displaced in a direction that opposes the angular velocity.

The missile is stabilized in either an 8° climbing attitude or in level flight, depending upon the setting of an altitude control unit which is mounted on the autopilot frame. When flying at altitudes below that which is set in the control unit, the missile is stabilized in an 8° climb. When the preset altitude is reached, the control unit rotates one of the displacement gyro gimbal rings througn an arc of 8° . This creates a new ventical reference and causes the missile to stabilize in level flight and maintain the desired altitude.

The missile is turned by precessing the displacement gyro in the horizonta! plane. This is accomplished when one of two magnetic coils is energized by the radio command system. The magnetic coil attracts a soft iron shoe mounted on one of the gimbal rings and applies a precessional torque.

A more complete explanation of the stabilization system can be found in reference 20.

CONTROL

A schematic sketch of the LTV-N-2 control system is shown in figure 9. The AN/ARW-17 is a 30- to 42-mc, crystal-regulated, frequency-modulated, control receiver with five tone-channel selectors. The five relays of this unit operate in response to the five tone-channels of the command transmitter.

10 8ECHET-----

SEGRET

The control signals are transmitted by a modified T/24/ARW-3 command transmitter and AN-10/ARW-3 amplifier. The transmitter is crystal-regulated and contains 10 audio oscillators for frequency modulation of the carrier. Only the five highest audio-frequency oscillators of the transmitter are used in this system. The amplifier unit is used to increase the power output of the transmitter from 25 to 250 watts.

The coded commands to the missile are keyed by the C-33(XN)-ARW-3 flight-control box. A three-position rotary switch marked "code selector" makes connections in the box in order that the operator may select the code through which the command is sent. If three missiles were tracked and controlled simultaneously, each would be on an individual code.

In addition to the ARW-17 receiver, the missile control system consists of a C-363/ASW control relay box and a CP-28/ASW computer. The control relay box contains six relays that form parts of the "dump" circuits and the "turn-command" circuits. The CP-28/ASW computer is an electromechanical timing device which is used to energize the autopilot slaving coils for a given time interval. The time interval is dependent upon the number of turn-command pulses received by the ARW-17 receiver.

TRACKING

SFC RFT

The missile is equipped with either an AN/APN-33 or AN/APN-33A radar transponder beacon. The AN/APN-33 radar transponder beacon operates in the frequency range from 2,750 to 2,950 mc. It is mounted in the nose section and is equipped with a receiving and a transmitting antenna. The AN/APN-33A beacon is a modified AN/APN-33 beacon that operates in the 2,750 and 3,500 mc range. It is equipped with a single antenna which both receives and transmits. Several beacon antenna configurations are used. These are shown in figure 10.

Several different radars have been used for tracking. The model SV-1 radar is used during all flights launched from submarines. The SP-1M was formerly used for flights launched from shore launchers, but it has been replaced by the SCR-584/615R. The SV-4, a shore-based version of the SV-1, also is used for shore launchings.

The SV radar is a high S-band aircraft-warning radar designed for installation aboard submarines. It is a pulse-type manual tracking radar having a pulse repetition frequency of 400 per second and a peak power output of 500 kilowatts. Target information is presented on a 5-inch PPI (plan position indicator) scope, and on 3-inch A-scan and B-scan scopes. When used in conjunction with a radar beacon in the LOON missile, the average maximum range is approximately 100 statute miles.

The SV installations aboard the USS CUSE and the USS CARBONERO are equipped with a special B-type repeater which was designed and built by the Navy Electronics Laboratory. This unit presents missile range and indicates missile position relative to the course line.

11

. water to all i water the state of the stat

SECRET-

T e SCR-584/615B is an S-band radar that incorporates features of both the 5CR-584 and the SCR-615B radars. It is an automatic tracking pulse-type radar with a pulse repetition frequency of 1,707 pulses per second. Peak power output is 750 kilowatts. Maximum range is approximately 125 statute miles. When used in conjunction with LOON test flights, the radar data is presented on an Electronic Associates Model 156 plotting board.

TELENETRY.

Two types of telemetry are used in the LTV-N-2 (LOON). The AN/AKT-1A is a pulse time-sharing system designed by the Naval Research Laboratory • for use in the LOON. This is a 10-channel system that operates in the 520 to 525 mc band and transmits with a peak power output of approximately 250 watts.

The transmitter and the power supply are mounted in a cylindrical can, which is placed in the warhead section. The complete installation, with the exception of the end instruments, is accessible from the front of the warhead and may be readily replaced if a failure occurs during prelaunching checkouts.

The AN/AKT-1A system is being replaced by the AN/AKT-10 system. The AN/AKT-10 operates in the 215 to 230 mc range and utilizes frequency-modulated subcarrier oscillators to frequency-modulate the RF carrier. The normal peak power output is 3 watts; however, a power amplifier may be used to increase the peak power output to 30 watts. Six channels of continuous information may be transmitted. The sixth channel may be commutated to provide 15 items of information, each sampled at 10 times per second.

The complete system, with exception of the end instruments, has been packaged to form an installation similar to the AN/AKT-1A. The installation is shown in figure 11.

FUEL AND PROPULSION SYSTEM

The fuel and propulsion system consists of a 180-gallon fuel tank, fuel lines, cut-off valve, fuel regulator, and a 21-inch pulsejet engine.

The pulsejet engine is essentially a hollow cylinder that consists of an inlet diffuser, a combustion chamber, a transition cone and a tail pipe. A grill that contains the flapper valves, the starting air nozzles, and the fuel nozzles, separates the inlet diffuser and the combustion chamber. A spark plug is mounted at the top center of the combustion chamber. Total weight of the engine is approximately 300 pounds. It resonates at a frequency of 42 cps and develops 700 pounds of static thrust at sea level.

The fuel line leads from the bottom of the fuel tank, through the cutoff valve, through the fuel regulator, and thence to the fuel nozzles in the grill.

12 <u>SECHET</u>

SEGRET

The fuel cutoff valve contains a spring that holds it in a closed position. The valve is opened by compressed air, which forces the valve to move against the spring. When the valve is fully opened, a pin engages a detent in the valve shaft and holds it in the open position. Closing of the valve is accomplished by a solenoid that disengages the detent pin and allows the spring to move the valve shaft to the closed position.

The fuel-metering unit regulates the fuel flow according to the missile airspeed. An altitude-compensating bellows, although a part of the unit, is not used because early flights indicated that its operation was erratic. The fuel-metering unit also contains a control for regulating the fuel flow during engine starting.

Operation of the propulsion system is as follows: (1) pressurize fuel tank to 100 psi by compressed air; (2) initiate flow of starting air through starting air nozzles; (3) initiate flow of fuel to fuel nozzles by opening fuel cutoff value, and energize spark plug; (4) after engine has started, stop flow of starting air and change starting fuel flow to normal fuel flow. The engine continues to operate until fuel flow is cut off.

Maximum operating altitude of the standard propulsion system is 6,000 feet. Although engine operation is self-sustaining after the initial starting pulse, a continuous spark ignition system is employed. This system has successfully restarted the engine on several occasions when propulsion failures occurred.

FLIGHT TERMINATION

SECRET

Flight termination is accomplished by a radio command. Upon receipt of the command, the wings are severed from the missile, the control surfaces are streamed, and the fuel to the engine is shut off. A delay of 0.3 second occurs between the severing of the left and right wing. This delay induces a stabilizing roll in the missile during the terminal trajectory.

The severance of each wing results from the explosion of a shaped charge, of composition C3, which is retained within an annular groove machined into a mild steel disc. The disc is held inside of the hollow wing spar by machine screws. The composition C3 is ignited by an 1136 electric detonator contained in a mechanical detonator safe device secured to the outside of the spar.

The control surfaces are caused to stream by severance of the signal lines from the autopilot to the rudder and elevator servo actuators. This is brought about by a detonator guillotine, which is a 1-inch hollow tube approximately 6 inches long. The signal lines are threaded through four holes drilled through the tube at right angles to the longitudinal axis. At the receipt of the dump command, an explosive charge in the after end of the detonator guillotine tube is ignited and a metal slug, with a cutting surface machined into the leading edge, is ejected down the tube where it severs each of the four signal lines.

SECHET-

The engine fuel is shut off by a solenoid-operated value. The solenoid is energized when the metal slug of the detonator guillotine trips a microswitch as at leaves the forward end of the tube.

If the missile fails to respond to the dump command, a Veeder-Root counter energizes the dump circuit after the missile has traveled a predetermined distance. This is accomplished by a mechanical counter operating in conjunction with a small air log propeller mounted on the nose of the missile. Each propeller is calibrated and is labeled with the number of turns per mile.

ORDNANCE COMPONENTS

The ordnance components of the LTV-N-2 (LOON) consist of a 2,000-pound tritonal-loaded warhead, two T74 electrical fuzes, a T9 inertia switch, and a T8 nose switch. Figure 12 shows a schematic diagram of the installation. Figure 13 shows the location of the various components in the LOON missile. More complete information on the ordnance components may be obtained in reference 13. It should be noted that the T84 mechanical fuze originally was used in place of one of the T74 electrical fuzes. However, tests conducted by the Bureau of Ordnance during October 1950 proved the T84 fuze to be unsafe and it was removed from the system.

いいにはいいにはないにないのであるとう

test procedure at NAMTC

SECRET

بناه

1:4

Preparations for a LOON test flight normally commence approximately 3 weeks prior to the actual flight. At that time the detailed test objectives are assigned and the missile configuration required to accomplish the test objectives is selected.

Approximately 2 weeks are required for shop personnel to perform the routine checkout of the air, fuel, and propulsion systems and to install the electrical cabling, electronic components, and the telemetering system. The installation of other special equipment required for the test i also made during this period.

Approximately 20 people, including mechanics, technicians, engineers, and officers are assigned to the LOON project team.

After the missile has been completely prepared, the weight and center of gravity are determined with an electronic weighing scale. The launching sled also is assembled and its weight and center of gravity are determined. The location of the center of gravity of the missile -- sled combination is calculated from the two measured values and the sled adjustment for obtaining the proper alignment of the JATO thrust vector with respect to the combined center of gravity can then be made. This work is normally completed 2 days before the launching is scheduled.

SECRET

THIT

Approximately 1 week before the test flight, a "Request for Scheduling Test" form is submitted to the Test Scheduling Officer. This form contains all pertinent information relative to the particular test flight. Copies are distributed to all interested supporting departments of NANTC to insure that equipment and personnel will be available for the scheduled test. Detailed arrangements with the supporting departments are usually made by telephone or conference after the "Request for Scheduling Test" form has been distributed.

On the day before the scheduled launching, the launching sled is loaded on the launcher and the missile is transported to a heated overnight storage building located in the launching area.

At 0800 on the morning of the launching, the missile is loaded on the sauncher and the missile check crew commences the prelaunching checkout. A briefing conference, which is conducted by the assigned Test Control Officer, is held at approximately 0900. The conference is for the purpose of insuring that the supporting departments are briefed on all the details of the test. Any last minute changes in the schedule or procedural detail- which have been omitted previously are discussed.

At 1030, an airplane in which a beacon and missile receiving equipment have been installed, commences a flight that simulates the expected flight of the missile. The tracking redars that have been assigned for the missile test flight are used to track the beacon in the airplane. Control signals are transmitted from the missile ground control station at periodic intervals and the field strength that exists in the vicinity of the aircraft is monitored. This flight assists in insuring that all ground command and tracking equipment is operating at peak efficiency

At 1200 or approximately 2% hours before launching time, area clearance airplanes are dispatched to the Sea Test Range. These airplanes, equipped with loud-speakers and signal lights, attempt to keep ships out of areas over which the missile will fly. The activities of the area clearance aircraft are co-ordinated from the area clearance center located in the launching area.

The 60-minute warning is the first official warning sounded. This is sounded when all the missile prelaunching checks have been practically completed. At the receipt of the 60-minute warning, all supporting departments commence active preparation for their part in the missile flight.

The 15-minute warning is sounded only if the Sea Test Range is clear and all supporting departments are completely ready for the operation. At the 15-minute warning, the two chase airplane pilots man their aircraft and the launching ordnance crew commences the final installation of the ordnance components (JATO igniters, wing blowoff igniters, etc).

SECRET-

At the 10-minute warning, the chase sirplanes are directed to take off. If both chase airplanes are airborne at the 5-minute warning, the count dow, is continued. Otherwise the warning is held until the airplanes are airborne.

At the 3-minute warning, the misuile internel air supply and telemeter transmitter are turned on and the launching pad is cleared of all personnel. All electrical circuits from the blockhouse to the launcher are armed and the missile is ready for launching.

The 1-minute warning is sounded by the chase airplane pilots when they are in a position that will allow them to pass over the launcher at the instant of launching.

At the 30-second warning, the automatic count down sequence is started by the Launching Officer. All functions, such as missile autopilot displacement gyro uncaging, camera starting, and JATO ignition pulses, occur automatically. The sequence may be stopped and a "hold fire" effected from any one of four stations at any time. The stations are located at the launching blockhouse, area clearance center, Tracking and Control, and telemetric receiving station.

The pulsejet engine is started manually at the 25-second warning. At the 10-second warning, the autopilot displacement gyro is uncaged and a return pulse, which indicates that the gyro has uncaged, illuminates an indicator light in the blockhouse. The cameras, which are used to cover each launching, are started at the 2-second warning. At zero time the JATO units are ignited and a reference timing pulse is transmitted to all apparatus on which flight data is recorded.

Immediately after launching, the center of activity shifts to the Tracking and Control Room, which corresponds to the Combat Information Center aboard ship. This room contains the missile-command-control console, radar plotting tables, radio transmitting and receiving equipment, and a direct telephone link with the telemetric receiving station.

During the flight, the Test Control Officer is continuously informed of the location and status of the missile from the radar plot and from verbal reports of the missile speed and altitude that are transmitted every 30-seconds by the chase airplane pilots. Any pertinent telemetered information may be readily obtained by telephone from the telemetric receiving station. Control commands, as directed by the test control officer, are transmitted to the missile by the control console operator. If the control equipment in the tracking and control room fails, control commands are transmitted from a secondary control station, which is ordinarily located in one of the area clearance airplanes.

The second second way and the second way and the

SECHET-

The test flight is terminated by the transmission of the "dump" command after the chase airplane pilots report that the area is clear. In the event that the dump command is not received, the missile is dumped at a predetermined range by the action of the air log propeller and the Veeder-Root counter, which was described under "Configuration."

During each test flight, all radio transmissions that concern the flight are monitored and recorded so that a permanent record may be kept. This includes a transcript of the chase airplane pilot's "talkback" and recordings of all commands sent to the missile. The telemetered information is recorded on a roll of photographic paper. Translation of the received telemetered data is performed by LOON project engineers.

Operations conducted from the USS CUSK and the USS CARBONERO are similar to those conducted from shore except that the primary tracking and control room is aboard ship. Telemetry is not used during test flights that originate from the submarines.

results and discussion

The LOON test program is conducted under the authority of several project directives, each of which consists of one or more problem details. The results of the over-all launching program, with particular emphasis on the general reliability of components, are presented at the end of this section. Table I, appendix A, contains a resume of each individual LOON test flight.

Because of the general complexity of the LOON program, the problem details will be discussed individually. The number to the right of the problem detail headings indicates the number of flights conducted which had that problem detail as a test objective and which were of sufficient duration to contribute usable data. Flight failures, or the adoption of equipment as standard, sometimes resulted in a greater number of flights than indicated.

PROBLEM DETAIL RESULTS

11113

1. Test of NAMTC and Sperry GM-1 Command Guidance Computer EL-302

(4 flights)

17

Only the NAMTC computer was evaluated with flight tests. The four flights indicated that the computer is capable of guiding the missile along a straight course from the launching site to the target. It was necessary to discontinue the tests when the SP-1M radar was transferred to another project. SECHET

No flight tests were conducted utilizing the Sperry GM-1 computer. It was planned to conduct simulated missile flights using the TO-2 airplane. However, the assigned airplane, which had been instrumented for the tests, was lost in a crash before any tests were conducted.

This problem detail was not reassigned by reference 5.

2. Test of the Quick Detachable (9 flights) Electronic Nose Mount EL-302

This unit was designed to permit quick changing of the electronic components. All the electronic units, with the exception of the power supply, are contained in the nose section in a shock-mounted box, as shown in figures 14, 15, and 16. The entire nose section and the electronic components may by connected in 60 seconds. Seven successful flights were conducted utilizing the original design (figure 15) which incorporated large springs and snubbers for the shock-absorbing units. Five flights have been made utilizing an improved unit (figure 16) which incorporates Lord shock mounts in place of the springs and snubbers. The units have proved to be very satisfactory for the following reasons:

a. They permit checkout of the major electronic components prior to actual installation in the missile and thereby decrease the time required for the missile to be on the launcher.

b. They allow quick replacement of electronic units that fail during the prelaunch checkout.

3. Marine Guidance Computer EL-302

18 SEGRET

(14 flights)

Statistictions and

The Marine Guidance Computer is an adaptation of the NAMTC computer and is designed for use in close-air-support operations. When used in conjunction with the LOON missile, the computer and radar were located in the vicinity of the target. The radar tracked the missile as it approached the target and provided missile position, course, and speed data to the computer. The computer then analyzed the data and transmitted course-change commands that would guide the missile toward the target. It also computed the position for the dump point and transmitted the "dump" command when the missile reached that position.

The Marine Guidance Computer participated in 14 flights. Ten of these were for the purpose of testing the ability of the computer to guide the missile over the target and did not include the sending of the dump command The dump command was actually transmitted on two flights. The miss distances were 360 and 600 yards from the target. On two other flights, faulty operation of equipment prevented the transmission of the dump command, although the computer demonstrated that it was capable of guiding the missile over the target. SECRET

These flights indicate that the computer is capable of performing the task for which it was designed when continuous and accurate data is provided by the radar. Except for several isolated cases, the failure of the system to operate satisfactorily could be attributed directly to poor radar performance. This problem detail was not reassigned by reference 5.

4. Assistance to Project TROUNCE* EL-302 and GM-209

(38 flights)

During this report period, 38 missiles were launched from submarines by TROUNCE personnel. Because this program was well established, very little technical assistance was required of NAMTC personnel. The major contribution of NAMTC was the provision of facilities and material.

Active support of the TROUNCE program by NAMTC personnel was provided during two shore launchings that were telemetered. The telemetric transmitters for these tests were provided by NAMTC and the installation and prelaunch checkout were conducted by NAMTC personnel.

5. Improved Command Guidance System (2 flights) EL-302

This detail was a joint effort that involved NEL (Navy Electronics Laboratory), Project TROUNCE personnel, and NAMTC. The development phase was assigned to NEL. Technical assistance was furnished by NAMTC and TROUNCE. Test flights were performed at NAMTC.

The system, designated TROUNCE I, was designed to eliminate the normal radio command system by utilizing the tracking radar to transmit control commands to the missile. This was done by coding the radar pulses. The missile equipment is identical to that used for the radio-command system except that the radio receiver was replaced by a decoder that converted the coded radar pulses into command functions. The physical dimensions of the decoder and the radio receiver were identical.

Before missile flights were conducted, numerous tests were made that utilized piloted aircraft equipped with the missile components of the system. These tests revealed that it was possible to transmit intelligence by radar pulse coding. to ranges of 150 miles.

Two missile flights were conducted utilizing the system. On one flight, the missile was launched from the NAMTC short-length launcher and control was shifted successfully from NAMTC to the CUSK, and then to the CARBONERO. Each station maintained positive radar track and successfully transmitted control commands. However, it was necessary to execute the "dump" with the stand-by radio control system. The second flight was also highly successful. The missile was tracked and controlled throughout the flight and was dumped at a range of 93 miles from the controlling station. In each case, the

* Originally Project DERBY

SECRET.

SECRET

20 SECTET

flight was terminated because the missile was approaching the radar horizon. It is believed that control ranges of 150 miles would be realized if the missile were capable of flying at higher altitudes.

6. Improved Launching System GM-209

(5 flights)

「あるというないないできたない」のため

This problem detail was promulgated essentially for the purpose of testing dual-JATO and single-JATO launching configurations. Zero-length launchings were conducted from the rolling ramp and the NADC zero-length launcher; short-length launchings were conducted from the NAMTC short-length launcher.

Two successful zero-length dual-JATO launchings were conducted from the rolling ramp. Dual-JATO launchings were discontinued in April 1949 because the more desirable single-JATO configuration was then undergoing developmental tests. A detailed report on the dual-JATO launching techniques was presented in reference 19.

One unsuccessful and one successful but unsatisfactory launching were conducted from the NADC launcher. The unsuccessful launching was attributed to a misaligned JATO unit that caused the missile to nose over and crash on the beach. The second launching was successful but was unsatisfactory because the missile had a 58° nose-up attitude at separation. These two launchings indicated that the JATO alignment tolerances for zero-length launchings are extremely small and this type of launching should be avoided if possible.

Three successful single-JATO launchings were conducted from the NAMTC short-length launcher. These tests indicated that the single-JATO launching configuration is satisfactory when used in conjunction with a short-length launching. Subsequent to these tests, all shore launchings and all shipboard launchings from the USS CUSK have utilized single-JATO sleds. These launchings have proved that the method is superior to the four-JATO launching configuration in that the JATO alignment procedure is simpler and the launching sleds are more compact and more economical to manufacture. Figure 17 is a photograph of the single-JATO launching sled.

This problem detail also included 'ests of a launching retarder which was designed to eliminate the shock bading transmitted to the missile at the instant of JATO closure disc rupture. A detailed report on the device, which functions by pulling a steel cone through a ductile brass tube, was submitted by reference 14. Tests indicated that the device caused the thrust loading to be applied gradually, and consequently decreased the peak loading applied at the tow hook by approximately 50 per cent. The device is now used during all shore JATO launchings.

SEGRET-

SECT

7. Armament Components Tests GM-209

Before flight tests were made with a loaded warhead, extensive ground tests and flight tests of inert detonation systems were conducted. These preliminary tests indicated that the T84 mechanical fuze was unsafe for operational use and, as reported under "Configuration", it was replaced by a T74 electrical fuze.

The first and third flight tests were successful. The system armed at the correct time and a high order detonation was observed at impact. The second test was unsatisfactory in that the warhead failed to detonate upon impact. The reason for the failure is believed to have been caused by the severing of the electrical lead that extends from the warhead to the arming micro-switch of the Veeder-Root counter in the rear of the missile. As a result of this test, it was recommended that the Bureau of Ordnance investigate the possibility of replaceing the present arming switch of the Veeder-Root counter with a mechanical latching relay which would remain closed in the event that an open developed in the Veeder-Root counter arming circuit.

8. Tests of Power Plant Installations (9 flights) GM-209

Propulsion system tests were conducted in an endeaver to improve the performance of the missile. These involved testing the 21-inch pulsejet with an improved altitude-compensated fuel meter, and testing J-30 and J-44 turbojet engine installations.

Eight flights were conducted that contributed usable data on the McDonnell V-2 altitude-compensated fuel meter. The fuel metering system with this unit installed is shown in figure 18. These flights indicated that it was possible to fly the missile at altitudes up to 12,000 feet. Considerable difficulty was experienced in maintaining the preset basic fuel meter setting after the missile was airborne. Telemetered fuel-pressure data indicated that, although the meter responded to changes in altitude and airspeed, the fuel pressure during a given flight was either higher or lower than that which would be expected from the ground setting. In most cases, lean fuel metering resulted in poor missile performance, whereas rich and normal settings resulted in excellent performance. The reasons for the shift in setting are being investigated. It is felt that the McDonnell fuel meter, when perfected, will increase the versatility of the missile by permitting flights at higher altitudes.

The turbojet engine installations are expected to increase the missile performance with respect to speed, operating altitude, and range. One missile, shown in figure 19, was modified to accomodate a Westinghouse J-30 engine. This engine had a normal rated thrust of approximately 1,400 pounds and was expected to increase the missile speed to 450 -- 500 miles an hour at an altitude of 20,000 feet. The missile was launched in August 1951 but, because of an apparent misalignment of the booster -- JATO thrust vector, it

(3 flights)

crashed immediately after launching and no data on flight performance were obtained. The short flight did provide vital data on engine performance which indicated that no adverse effects were experienced during the launcaing phase. It is planned to launch five more missiles as soon as the modifications are completed.

Preliminary tests are being conducted on the J-44 engine to determine the effect of launching acceleration on the bearings and general operation. If these tests prove that reliable engine operation can be expected, two airframes are to be modified to incorporate this engine.

F. Improved Dump Systems GM-209

(6 flights)

The method of dumping the missile has undergone a series of changes in an effort to improve the predictability of the terminal trajectory. The present method, which has been used with some success, incorporates wing blowoff with a 0.3-second delay between the severing of the left and right wing. A detailed report on this method was presented in reference 15. Experience with this method over the past two years has shown that the trajectory of the freely falling spin-stabilized missile is unpredictable in that a high-amplitude pitch oscillation is frequently observed.

Recent tests of a method that separates the warhead from the missile by means of explosive attachment bolts have shown great promise. It is believed that the high inertial and gravitational forces will overshadow the relatively low aerodynamic forces and result in a predictable trajectory. Six flights utilizing this method of flight termination have been attempted and all have been successful. Figure 20 is a photograph showing the action of the missile and freely falling warhead immediately after the receipt of the "dump" command. The tests have shown that some means must be devised to prevent the tumbling action of the warhead, in order to insure that the warhead attitude upon impact is nose down. It is planned to conduct future tests with a small parabrake attached to the after end of the warhead. This parabrake will be designed to prevent tumbling of the freely falling warhead.

10. Installation of Smoke Generators GM-209

(4 flights)

1

Smoke generator units were manufactured mainly for use in fleet exercises when the LOON was to be used as an antiaircraft target. Four units were flown during this report period. One was shore-launched in August 1949 and operated satisfactorily. Three units were used during the fleet exercises off Hawaii in November 1949. One unit remains for future use.

SEGRET

Dynamic Flight Measurements DE-302.3

This project was established to determine the feasibility of obtaining certain aerodynamic parameters from free flight tests of missiles and missile models. The LOON was selected as a vehicle for the preliminary tests because it has few space limitations for instrumentation and will fly reliably for a reasonably long period. One missile was assigned for directional stability tests and was delivered to the Douglas Aircraft Corporation for the installation of special instrumentation and test equipment. It was launched in July 1950 and was flown according to the desired test program. Complete telemetered data was obtained however, an irregular rudder oscillation, which persisted throughout the flight, caused an unwanted directional vibration to be superimposed upon the natural oscillations. Consequently the analysis of the data has been prolonged inordinately.

12. Furnish Technical and Material Assistance to the USS NORTON SOUND PA-501.3

During this report period, NAMTC provided technical and material assistance to the USS NORTON SOUND for the launching of three LOONs. All flights were nominally successful. One of these flights was particularly significant in that the missile was successfully launched and controlled in Alaskan waters where extremely cold and adverse weather conditions were experienced.

13. Summers Gyro Servo Control System(4 flights)EL-301

The Summers gyro servo control system was an electronic system designed to replace the present pneumatic autopilot and control system. Its main advantages over the present system were increased maneuverability and controllability of the missile. These were achieved by removing the rudder control and replacing it with aileron control.

Four flights were attempted with this system The first three flights indicated that the system apparently lost vertical reference during the launching phase and during 'urns. These flights were all terminated prematurely for causes directly attributable to loss of reference. The fourth flight, which utilized a system that was modified to eliminate the loss of correct vertical reference, was successful in proving that the system was capable of increasing the controllability and maneuverability of the missile. However, the missile exhibited a decided directional drift to the left which had to be corrected by control commands throughout most of the flight

SEGRET-

(3 flights)

(1 flight)

SECRET-

A MEN EXERTING

24-SECHET

The project was terminated in June 1951 by the promulgation of reference 16.

Progress on certain details that did not involve actual missile flights is discussed in the following paragraphs.

14. Study of AN/APA-76 Autopilot Study of AN/ASQ-5 AN/ASA-6 Heat Homer EL-302

These two problem details were actually assigned as two different items; however, they were actually a joint effort because the ultimate missile installation was to incorporate both systems.

An extensive study was conducted to determine the compatibility of the missile --- APA-76 combination. This study indicated that the autopilot was capable of stabilizing and controlling the missile. The ASQ-5 -- ASA-6 study was essentially for the purpose of preparing an engineering proposal for the flight testing of 14 LOON missiles equipped with the ASQ-5 heat homing equipment. The study was completed and the report was submitted to the Bureau of Aeronautics by reference 17.

15. Acceptance Checks of Marquardt Nodified Missiles EL-302

From August 1949 to May 1951 LOON project personnel inspected and accepted 77 LOON missiles which were delivered under contract N123s-63366 (reference 9) by the Marquardt Aircraft Company.

16. Develop New S-Band Radar Beacon Antenna EL-302

This antenna was to be designed for ultimate use with the improved command guidance system. The desired antenna pattern was based on the requirements for possible tactical missile use. It was envisioned that such a flight would involve a launching submarine that would track and control the missile to a rendezvous point in the vicinity of a second submarine. The second submarine would guide the missile to the target by means of an automatic guidance computer.

A prototype antenna was designed and constructed. Preliminary ground tests indicated that the antenna had a horizontal pattern of 105° centered at a relative bearing of 180°. The vertical pattern was '0° centered on a line rotated 18° below the longitudinal missile axis. A minor lobe existed forward. The back-to-front ratio was greater than 6 to 1. This pattern was considered very desirable from an operational standpoint. Extensive aircraft flight tests and ground tests of the antenna installed on the missile are in progress.

SECRET_

ĩ

17. Consultative Service for Design and Construction of CP-98 (XN)/UPW Command Guidance Computer EL-302

The CP-98 (XN)/UPW command guidance computer contract was awarded to the Ultrasonics Corporation, Cambridge, Massachusetts, and will be built according to specifications originated at NAMTC. The computer will be designed for installation aboard a submarine and, by analyzing missile position and velocity data with respect to target position, will cause proper control commands to be sent to the missile so as to score a hit on the target.

Since the awarding of the contract, NAMTC personnel have been in attendance at numerous conferences with the contractor, NEL personnel, and Project TROUNCE personnel. Problems relative to the computer have been discussed at these conferences.

Ready Missile Program GM-209

In accordance with reference 1, a stockpile of 25 missiles has been established at NAMTC. This was a joint effort which involved LOON and TROUNCE project personnel. To insure that the missiles in the stockpile are maintained in the best possible condition, a rotational plan has been established whereby all newly modified missiles are assigned to the stockpile and all missiles utilized for submarine launchings are taken from the group that has been in the stockpile for the longest period of time.

A shortage of launching sieds existed during the early phases of this program. However, NAMTC is currently manufacturing four-JATO launching sleds and delivery of single-JATO launching sleds from O & R, San Diego commenced in August 1951. Consequently, sufficient sleds are now available for both the stockpile and the test program.

19. Cancelled or Incomplete Problem Details

The following problem details wern assigned but either were cancelled before any progress was made or are awaiting the delivery of equipment

	TROULOT
SIMULTANEOUS TRACK AND CONTROL OF TWO OR THREE LOONS. (CANCELLED,)	EL-302
INSTALLATION AND TEST OF SPERRY GM-1 COMPUTER ABOARD A SUBMARINE. (CANCELLED.)	EL-302
EVALUATION OF AN/DPN-17 MINIATURIZED RADAR BEACON. (AWAITING EQUIPMENT.)	EL-302
EVALUATION OF AN/ARW-55 AND AN/ARW-56 400 MC RADIO CONTROL EQUIPMENT. (AWAITING EQUIPMENT.)	EL-302
EVALUATION OF AN/APW-11 CONTROL EQUIPMENT. (CANCELLED.)	EL-302

\$E\$₽Ę<u>Ţ</u>___

The second states and a state of the second states of the second states and the second states and the second states of the second state

PROBLEM DETAILS

25

PROJECT

SECHET

RELIABILITY

Despite a concentrated effort for improvement during this report period, the reliability of the missile and its components has not changed appreciably over that reported in reference 11. Table II, appendix A, presents the performance of the components during each LOON flight test. Table III, appendix A, summarizes the performance of the components and presents a comparison with the reliability of components presented in reference 11. It is realized that a more detailed breakdown of the failures would be desirable. However, in most cases, the failures could be isolated only as far as one of the components listed in table II. For example, if a propulsion failure occurred, it was usually impossible to attribute it to one of the direct causes, i.e., loss of air pressure on fuel tank, obstruction in fuel line, faulty fuel meter, or grille failure. Consequently it had to be classified as a propulsion failure, with no further breakdown possible.

As stated in reference 18, the over-all reliability of a missile is the product of the individual reliabilities of "series" components. If the components of LOON are considered to be launching sled, beacon, receiver, autopilot, propulsion system, and dump system, then the maximum expected reliability of the missile can be calculated as follows:

Pover-all = Plaunching X Psled X Pbeacon X Preceiver X Pautopilot X Ppropulsion X Pdump

 $P_{over-all} = 92.6 \times 91.2 \times 95.3 \times 89.5 \times 92.7 \times 92.7$

Pover-all = 61.8 per cent

The discrepancy between the calculated reliability of 61.8 per cent and the actual value of 55.9 per cent can be attributed to certain miscellaneous components such as batteries, airframe structures, etc. that actually should be considered as one of the "series" components. These additional components were neglected because failures occurred only in isolated instances and they represented a multitude of components whose reliability approached 100 per cent. and the gran a station of the station of the station we want to a state of the state of the state of the state

Recause the reliability of the missile has remained essentially constant since 1 January 1948, it is believed that the practical limit has been reached. This does not imply that no progress in LOON testing technique has been made in the past 3 years. It indicates that the improved techniques have just kept pace with components deterioration. It is pointed out that all the missile components, with the exception of CP-28 computers and the C-363 control relay boxes, were manufactured prior to 1946. Certain components, such as beacons and receivers were delivered to NAMTC from other agencies, after prolonged use on their projects.

It is believed that the reliability of the missile could be improved if newly manufactured components, or components of improved design, were used in place of the components on hand.

28 SECRET

3F89E1___

conclusions

During this report period, the LGON missile has continued to demonstrate its versatility as a test vehicle and as a training vehicle for fleet personnel. The main factors that contribute to its value are relatively long range and endurance, simplicity of its basic systems, adequate internal space for installation of experimental equipment, reasonable reliability, and relatively low initial cost.

Significant progress has been made in accomplishing the objectives of the assigned projects. The conclusions seached from the results of the flight test program may be enumerated as follows:

1. The use of automatic guidance computers in controlling the missile is both feasible and desirable. However, provisions for manual control must be provided until the reliability of the radar — computer link is improved.

2. The quick-detachable electronic nose mount should be incorporated as part of the standard configuration, as soon as sufficient units can be manufactured. Experience with the LOON has shown that the ides of packaging all the electronics components in an accessible and easily removed carrier box, should definitely be considered for future missiles.

3. Fleet personnel assigned to the USS CARBONERO and the USS CUSK have reached a degree of proficiency in preparing, launching, and controlling a LOON missile that should allow these vessels to use the missile operationally if conditions so warrant.

4. The TROUNCE I guidance system is very promising and should provide greater security against countermeasures than the radio command system now in use.

5. The relative simplicity of the single-JATO launching sled in regards to both alignment procedure and construction, make it superior to both the dual-JATO and the four-JATO launching sleds.

6. Short-length JATO launchings are more reliable than zero-length JATO launchings.

7. The NAMEC-designed hunching retarder decreases by 50 per cent the peak loading applied to the missile tow hook.

8. With minor modifications to the electrical circuits, the present warhead-detonating system should prove adequate for operational use.

9. Test of the McDonnell altitude-compensated fuelmeter should be continued because, if perfected, it will increase the versatility of the missile by permitting flights to altitudes of at least 12,000 feet.

10. Tests of the J-30 and J-44 turbojet installations should be continued.

\$66961____

SEGALT

THE TRACK STREET, IN A DESCRIPTION OF THE PARTY OF THE PA

26 SEGAT

11. A method of increasing the predictability of the terminal trajectory must be devised. The present method of wing blowoff results in an unpredictable trajectory. Further tests of the warhead-blowoff method, with particular emphasis on the prevention of tumbling, should be conducted.

12. The Summers gyro serve control system proved that it was capable of increasing the maneuverability and the controllability of the LOON missile. Nowever, lack of a reliable vertical reference system and excessive directional drift made it unacceptable for use in the LOON.

13. The reliability of the missile and missile components has reached a practical maximum. It would probably increase if newly manufactured or redesigned components were provided.

12 Pt

きょうい なまて、 いたをない いちょう
SEGRET

references

- 1. CNO Secret letter OP-512/mm Serial 0082P51 of 23 August 1950.
- 2. BuAer Secret letter Aer-GM-241 Serial C01042 of 30 August 1950.
- 3. CNO Secret letter OP-512B/1ct Serial 0010P51 of 30 August 1950.
- 4. BuAer Confidential letter Aer-GM-?41 Serial 012829 of 8 December 1950.
- 5. BuAer Confidential letter Aer-EL-745 Serial 02901 of 7 March 1951.
- 6. BuAer Confidential letter Aer-PP-211 Serial 012728 of 6 December 1950.
- 7. BuAer Confidential letter Aer-PP-212 Serial 0226 of 8 January 1951.
- 8. BuAer Confidential letter Aer-GM-241 Serial 013534 of 27 December 1950.
- 9. Contract No. N123s-63366 dated 17 June 1949.
- 10. NAMTC Technical Report No. 28, "Interim Report on LOON Program to 1 January 1948," dated 26 April 1948.
- 11. NAMTC Technical Report No. 54, "Interim Report on LOON Program from 1 January 1948 to 1 March 1949," dated 8 July 1949.
- 12. NAMTC Technical Report No. 8, "The XM-1 Catapult," dated 1 Fobruary 1947.
- War Department Technical Bulletin TB9X-108, "Ordnance Components for JB-2 Bomb," dated 27 March 1945.
- 14. NAMTC Technical Memorandum Report No. 41, "The Launching Retarder," dated 21 April 1950.
- 15. NAMTC Technical Report No. 48, "LTV-N-2 (LOON) Wing Blowoff System," dated 15 June 1949.
- 16. BuAer Restricted letter Aer-EL-4211 Serial 58672 of 14 June 1951.
- 17. NAMTC Confidential letter Serial 02-324 /f 27 January 1950.
- 18. NAMTC Technical Report No. 75, "A Study of Methods for Achieving Reliability of Guided Missiles," dated 10 July 1950
- 19. NAMTC Technical Report No. 66, "Dual-JATO Launching of the LTV-N-2 (LOON) Missile," dated 20 January 1950.
- 20. T. O. No. 11-75 BA-3, "Assembly, Preparation and Launching of Pilotless Aircraft type JB-2," dated 1 June 1945.

SEGRET_

SECHEL

at an in the second second

TABLE I SUMMARY OF LOON FLIGHTS

					IDENTIFICA 8. CONFIGUR	TION ATION		L/			•			E
2475	, on	MISS.	#G7 40	"auncires	Steb Configuration	resr Obuccitures	446.6 Or 455.	41717tuge	The second se		5 /		<u>ا ج</u>	1400 OF 01
1949 3-31	-172	1002		INI-1 Catapult	6 ⁰ Catapult aled	1. Test and evalu to jumnes gyro servo control system	6°	Good	700	245	353	5800	Dump sig- nal not sent	73 mi 22301 fion NATO
4-20	173	1051		XMI-1 Catapult	6 ⁰ Catapult aled	1. Test and evaluate electronics components nose sount and automatic command signal computer to maximum range	6 °	Satisfactory L.W. down 10	500	234	234	1100	Dump signa not sent	13mi 1210 ⁰ 1 from NAMIN
4-2]	174	614	5140	Rolling Ramp	2-Jato Northrop slod	1. Zero length launch 2. Test sled recovery device 3. Theodolite tracking of red 60,000 cp ilare 4. Evaluate command signal computer	9 0	Satisfactory left wing down	700	200	200	£970	sisul- tan- sous sing blow- off	38mi 213° from MAMT
1-28	175	599		Rolling Ramy	2-Jato Northrop aled	1. Zero length launch 2. Collect data on terminal trajectory	y o	Good	700	235	338	4900	scus wing	1500 yds. BE Bogg Rock
5-10	176	1074		XMI-'. Catepult	6 ⁰ Catapult aled	1. Evaluate automatic command aignal computer 2. Track and control	60	Satisfactory slight laft wing down	400	230	280	1	0008	118mi 223°T from MAMIC
5-19	177	1046		USS Cartonero short langth launcher	1-jato	 Zero length ' unch from neely installed launcher Track and control to geo- graphical target 	90	Satisfactory left wing down 10°	800	230	325	5200	eous	1,000 yds. 060°3 from Begg Rock
6-2	178	738		USS Carbonero short - length laumerer	4-Jato	1. Train Carbource personnel 2. Conduct sero - Length Launch 3. Track and control to Begg Rock	9°	Satiafactory left wilg down 10°	500	206	347	4700	simul tan- eous wing blow- off	1,00 Y S. from Begg Rock
6-14	179	590	5180	USS Carbonero short length launcher	4-Jato	1. Zero Length Lavanch 2. Track and control to Begg Rock	9°	Peer 5º nose down 10º right wing down	500	235	372	4500	simul tan- ecus wing blow-	-1.5 213° from Degg Dock
6-20	180	243	5090	XMI-1 Catepult	6° watepult also	1. Test and evaluate electronics components mose mount 2. Evaluate vertically polar- ised command receiver antenna	60	Pailure						150 fi from mad o cata- pult
6-29	181	586	5240	USS Gmek 40 ft. ramp	4-Jato	 Zoro length launch Track and control to Begg Rock Practice relaying of control Rvalante vertically polarised receiver antenna 	90	5'ailure						250 rds. ster cusk
6-29 •5econd	182			UBS Carbonero short length launcher	4-Jato	Same as No., 586 above	90	Satisfactory 10° left wing down	70-1	220	355	4700	simu tan- eous sing biog off	-131m 2204 from MAN

SECRET

1

H

	TAE	BLE J	
SUMMARY	OF	LOON	FLIGHTS

			PHAS		1	NID-C	OURSI ASE	E		MINA	L	ELECTRON	ICS	GENERAL
issr obvectures	⁴ NG(E OF M5E.	""""""""""""""""""""""""""""""""""""""	Wax .		20'50	· /		1450 00 00 01.	250	TEL OF OLIMO	CONTR.			S Har Brit.
valu.te gumnen gyro irol system	6°	Good	700	245	353	5800	Dump sig- nel not	from	chano	AKT- 1A Pail- ed at 1.31 win- utes	Good re- sponse to 4 left and 3 right durn commands	SV-4 Raiar APN-33A Beacon Good track	stabilisat	saful Ammers light to date. Excellent ion and control except that altitude wer reached 5500 feet lock on altitude.
valuate electronics nose mount and command signal to maximum range	6°	Satisfactory L.W. down 10	500	234	234	1100	շտար	from	No chara	1A Good	Responded to left and right turn com- mands from com- puter	SP-1MB radar APN-33 Beacon Goud track		utopilot feilure. Missile fell off om and crashed into sea.
th launch recovery device tracking of red flare command signal	9 0	Satisfactory left wing down	700	200	200		sisul- tan- cous wing blrw- off	38mi. 213°I from NAMIO	HAMTO	No	to left	3P-1MS radar 42%-33 Beacon Good track	Engine tor Transmitte fest.	ched, lost thrust, missils stalled. d dump signal after loss of about 3,000
th launch lata on terminal	- 7 0	Good	700	235	338		simul- tan- sous	yds. SE Begg	NAMTC	Io	Good	5P-1MB radar APN-33 Beacon Lost beacon at 20 miles		
automatic command aputer control	6 ⁰	Satisfactory alight laft wing down	400	230	280	5200	simul- tan-	223°r from		ALT- 1A to St Poor 100 M		SP-1MB radar APM-33 Beacon Good track		
th launch from talled launcher i control to geo- target	90	Satisfactory left sing down 10°	800	230	325	5200	simul- tan-	1,000 yds. 060°T from Begg	KANTC		Good	SV-4 on Corb. SV-4 at MANTC APM-33A Beacon Good track	track thro	ching from Carbonsro. 57-4 had good ughout. 57-1 lost beacon at 35 miles ad it at 45 miles.
bonero personnel ero - length launch control to Begg	9°	Satisfactory left wing down 10°	500	208	347	4700	simu- tan- eous wing blow-),000 yds 240°T from	Car- bon- ere	No	Good	SV-4 on Carb. SV-4 at MAMTC APN-3? : Beacol Good track	Foor sled	separation
th launch control to Bogg	90	Peer 50 hose down 100 right wing down	500	235	321	4500		-1.56 2139 from Begg Rock		Io	Good	SV-4 on Carb. SV-4 at MAMTC APN-33A Beacon Good track		
valuate electronics some mount wrtically pelar- and receiver	6 ⁰	Failure					1	150 ft. from ond of cata- pult		AKA-1A Good fo: 0 6 sec MER ARTENRA BROKE DFF				ated from missile . is on ostapult. cabed on beach.
th launch control to Begg veloying of control pertically polarised integra	90	Failure						250 rés. stori cf Cusk		Jo			Sled faile	d to separate from adjeile.
586 above	90	Satisfactory 10 ⁰ left wing down	700	220	355	4700	simu) tan- eoum wing blog- ol:	-131m 2209 from KAND	to re spons from Epster S.C.I		sponse from ell	SV-4 on Larb. SV-4 at MAMIC AFM-33A Bercon No track		system failed. No control response, no ck, VRC failed to function. Missile flow haustion.

B

SECRET

TABLE I SUNMARY OF LOON FLIGHTS

					IDENTIFICA 8 CONFIGUE				PHA			MID-C	OURS	E		MINA	
2476	4	WISC.	*c7 40	'auncries	St ED COmeingan	rest Obs crites	angle or Mice	artiruoe		CL. F.C. F.L.	Speed	Speed	Wer, 67 075	18	ORIC POSITION	76. 0 0 000 0 000 0 0 000 0 0 0 0 0 0 0 0	CMETERINE CONAL
7-15	183	1061	5100	XMI-1 Catapult	6 ⁰ Catapult sled	1. Test Summers gyro - servo control system	60	Jatisfactory left wing down			270	900		12 mi 240°T Trom NAMIC		ART- 1A Good	Goo
7-21	184	742	5060	XMI-1 Catapult	6 ⁰ Catapult sled	1. Test detachable electronics noce sount 2. Test sutcestic conmend signal computer. 3. Test vertically polarised re- ceiver antenna 4. Test delay wing blowoff	6°	Satisfactory 10° left wing down	700	210	334	4900	Delay wing off off 0.3 mc delay	70 mi 232 T from MANTC	Mo re- sponse tilito tive from sorr	AKT- JA Good	Goo
8-5	185	244		USS Norton Sound Short length launcher	4-Jeto	 Train Norton Sound personnel in LOON launching, tracking and control Use LOON as antimircraft target 	9	Satisfactory alight left wing down				5000	Lan-	59 mi From Sound	for top Sound	DE0	Go
8-9	186	534	5040	XMI-1 Catapult	6° Catapult sled	 Test detachable electronics nose mount Test subcastic command signal computer Test vertically polerised receiver antenna & Test delayed wing blowoff 	6°	Satisfactory slight left wing down	400	220	320	5000	Delay wing blow- off	Not. known	MAMIC, secon- dary con- trol plane result not	1A Good	Ined ate trol alth resp affi affi ativ
8-26	187	1067	5220	USS Cusk 40 ft. ramp	4-Jeto	1. Track from Cusk, submerged 2. Zero-Length launch 3. Test vertically polarised re- colver antenna 4. Fractice rolay of wrack and control 5. Test smoke generator 5. Test shoke generator	90	Poor 30° left wing down	500	210	355	5400	Delay wing blow- off	80 mi From MANEC	Cusk, secon- dary con- trul plane	[]	Go
8-26	188	821	5150	USS Carbonero short lengt launcher	4-Jeto	Same as 1067 above	90	Satisfactory slight left wing down	700	205	350	5200	Celay wing blow- off	Not known	All sta- tions no re- sponse	¥0	G
8-26	169	836	5025	XMI-1 Getapult	6 ⁰ Catapult slod	 Test detachable electronics noses mount Test vertically polarized receiver antenna Test delay wing blowoff 	6°	Failure					no	Crom NAMTC	no re- sponse	AKT- 1A Good	Non att ted
9-28	19	778	52.00	USS Carbonero short lengt launcher	4-Jato	 Track and control from Guak submerged and Carbonero on surface Zero length launch Test verically polarised re- petret dotably Test verically of track and c tract 	90	Satisfactory slight left wing down	700	226	365	4800	Deley wing blow- off	87 mi from MAMTC	All Sta- tions Distant ordary control plone	No	G
9-29	191	776	5270	USS Cupk 40 ft. ramp	4-3680	trol Same as 778 above	90	Satisfactory slight left wing down	900	225	355	5100	Delay wing blow- off	Tron	None sent	No	G
10-3	192	256	5060	XM3-1 Catepult	6° Catapult alod	1. Test detachable electronics nose mount 2. Test vertically polarised receiver antenna 3. Test delay wing blowoff	6°	Good	700	220	350	5100	Delay wing blow- off	93.5 214 [°] T from NAMTC	Secon- dary con- trol plane	AKT- IA. Good to 1 secs. after dump	
10-12	193	249		USS Murton Sound short length launcher	4-Jato	1. Test ABN track and control relay system	9°	Satisfectory slight loft wing down			3%0	5000	sous	from Nor- ton	NO RE- SPONSE FROM NORTON SOUND RAMTC SECCH- DARY CONTROL PLANE	No	-
32		S	Ef	₽₽₽	ť	t											

;

2

;

10000

ada an													
Laborate Street													
وللم المناسبة والمستحدث		SUMMARY	TABLE		IGHT	5							
distant.									11		 .		
A LANGE AND			FHAS		<u> </u>	PH	OURS	E /		MINA HASE		ELECTRON	ICS GENERAL
alwan Sindan Ba	wiss.	MEN E			Speed The	SPEEC THOTS	5 / L .	1 5	COSITION	OF CLAND	I'MC John	resource reaconse	
- A DATE AND A DECIMAL AND A	ancie or moss.	A TITUDE	* **		1 4 A B S C	****	Mer. 41.	00 × 00	ORICIA	7.E. 00	CONTRO	"4044 Et CON	Remains
	60	Satisfactory Laft wing down			270	900		12 mi 240°T Crom MANTC		AET- 1A Good	Good	SP-1MB -adar APN-33 Beacon Good track	No altitude commands were given, as the altitude of the missile was not known. Engine torched, missile lost altitude and created. Chase pilot failed to report missile slitude.
	60	Satisfactory 10° left wing down	700	210	334	4900	Delay blow- off 0.3 mc delay	70 mi 232 T Trom MANTC	NO TO sponse NITC ALLTC ALLT- ative stive from ary	ART- 1A Good	Good	SP-116 radar APN-33 Bescon Good track	Engine torched at 65 miles and missile crashed. Computer sent impropar course changes.
A Martin Strategic	9•	Satisfactory alight left wing down				5000	simul tan-	59 mi.	dary con- trol forton Sound	Ho	Good	SP-1MB radar APN-33 Beacon Lost track after 5 minutes	Detailed flight data was not submitted by the Morton Sound. Flight was apparently successful.
2. Brown desticity 10 . 15. Barry the will be the face	60	Satisfactory slight left wing down	400	220	320	5079		lot. mown	Con- tery con- trol plane resub- not not	LET- LA Good to 75 miles	Inadequ- ate cun- trol, although response	SP-128 radar AFN-33 Beacon Good to 75 mi.	Rudder apparently full 15° left for most of flight. Missile disappeared in fog bank at 75 miles, altitude 3500 ft.
alexandra march	90	Poor 30 ⁰ left wing down	500	210	355	5400		80 mi.	NAM.C.	No	Gcog	SV-1 on Cuak APN-33A beacon Good track	All objectives achieved, except only left wing detonator operstad.
and a second a sector of a	90	Satisfactory slight left wing down	700	205	350	5200	Delay		All sta- tions no re- sponse	Хо	Good	SV-4 on Carb, AFR-33A Beacon Good track	All obje et actieved except meither wing detonst- or operc. Entime outoff failed to operate, missile les to 107 miles before losing beacon track. Chase plane turned back at 100 miles due to low fuel cupply.
1 - Ballis Cashella	6°	Failure					laine	TY OB	HANTC no re- sponse	AET- 1A Good		SV-4 at RAMIC AFN-334 Beacon	Fuel pressure dropped from normal to sero just before missile cleared end of catepult. Believe engine cutoff dn unseated due to catepult acceleration.
Cale State State State State	90	Satisfactory alight left wing down	700	226	365	48 00	Delay wing blow- off	87 mi. From MANTC	All Sta- tions Durte Durte ordary control plone	No	Good	SV-4 at HAMPC SV-4 on Carb. SV-1 on Cusk AFN-33A Beacon Good track	All objectives achieved.
Sale Liber Townshill	9°	Satisfactory slight left wing down	900	225	355	5100	Delay wing blow- off	60 mi. Crom	None	No	Good	SV-4 at MAMTC SV-4 on Carb. SV-1 on Cusk AFN-33A Beacon Good track	Right wing sheared off during violent turn maneuver.
adam With the Area by and the	÷°	Good	700	220	350	5100	Delay wing blow- off	Tros	trol plane	AKT- JA. Good to 15 secs. after dump	Good	SV-4 at NAMTC AFN-33A Beacon Good track	Considered excellent flight. However, only left wing blowoff, although voltage was applied to both detonators. First flight to employ modified fuel cutoff pin.
and share the second	9°	Satisfectory slight left wing down			350		simul- tan- eous ring blow- off	Parente .	NO RE- SPONSE FROM NORTON SOUND NANTC SECON- DARY CONTROL PLANS	No	Good	AFS-20 radar AFN-33A Beacon Good track	Missils successfully vectored over target, but failed to respond to dump signal, or VEC. Flew to fuel arbanation

B

1

1.12

SECRET

میں ہے۔ محمد ہے اور ایک سرید میں مرکز کا میں رکز میں کروں میں کروں میں کر

and the second second second

TABLE I SUMMARY OF LOON FLIGHTS

---- -

					IDENTIFICA & CONFIGUE				LAUNC			MID-C	OURS	E	$\ $
041E	0.	MISS.	*Cr 40	"autorice	S. ED CONFICURATE	les, oeucritues	Auci, or Miss	Arrives	, //	61. R.C. F.L.	20 EE		, . , .	18	Cruch Course
10-31	194	592	5120	USS Cusk 40 ft. ramp	i-Jato	1. Launch, track and control missile to geographical target	90	Good	700	215		4500	Not in- stall ed	<u> </u>	No
1-4	195	246	5060	XMI-1 Catapult	6° Catapult sled	 Test automatic command signal computer Test detachable electronics nose mount Test vertically polarized re- ceiver antenna Test delay ming blowoff 		Good	400	210	347	4500	Delay wing blow- off	1.9 ml.o 270 T from Begg Rock	1
1-7	196	640	5245	USS Cusk 40 ft. ramp	4-Jato	 Launch, track and control a LOON which had been prepared at an advanced base Provide high speed asrial tor get for fleet. 	9°	Poor 60° left win down	3				fot in stalle		B
1-7	197	535	5310	USS Carbonero short length launcher	4- j ato	Same as 640 above	9°	Satisfactory slight left wing down			340		Not in stalled	-Not	þ
11-8	198	814	5140	XMI-1 Cetapult	· 6° Catapult sled	 Test automatic coavend signal computer Test horizontally polarized receiver antenna Test delay wing blowoff 	6°	Gooû	400	217	340	5600	Delay wing blow- off		Astns
12-5	199	935	5050	XMI-1 Catapult	6° Catapult sled	 Test automatic command signal computer Test detachable electronics noce sount Test delay wing blowoff 	6°	Good						tron MANTC	1.
	200	230	5240	Rolling ramp	4-Jato	 Conduct seve length launch Test simultaneous wing blowoff. 	9°	Good	\$00	210	312		sous	79 miles 209 T from MAMOL	1
12-21	201	1075	5090	Rolling ramp	4-Jato	1. Conduct zero length laurch 2. Test cable stabilizer 3. Test aled separation device 4. Test #cDonnell fuel meter 5. Test continuous spark 6. Test delayed wing blowoff	90	Poor laft outboar Jato burst safely diaph at .25 secon	╼╢	210	340		Delay ed wing	99 miles from NAMIC	I.
950 1-12	202	903	5150	USS Cusk 40 ft. ramp	4-Jato	1. Test MEL Precision B scope radar replator. 2. Test vertically pollrised receiver antenna 3. Conduct zero length launching	9°	Good	850	230	360	560C		miles from	
1-16	203	227	5060	XMI-1 Catapult	6 ⁰ Catapult sled	1. Test detachable electronics nose mount 2. Test Marine Gidance Computer 3. Test McDonnell fuel meter 4. Test detonator guillotine device.	6 ⁰	Good	1000	200	320	8500	ed wing blow-	11-5 226°1	
1-16	204	1199		USS Norton Sound short length launcher	4-Jato	 Practice launching, tracking and controlling LOON under adverse weather conditions Test autopilot compartment heater installation 	9°	Good			350	5000	siaul tan- eous wing blox- off	Un- known	

St - Mark Ball Bar - ----

. ... **.**........

4

H

- ----

SEGALT

2

		SUMMARY	TABLE OF LO		I GH TS	5								
		10	PHAS		1		OURS	E	TEP	MINA	L	ELECTRON	ICS	GENERAL
SJN12378 SSJ	Aucie On Later Missie	AlTIJUQE	***	C. S. C. T. W.	Max Speco W	Max Speco Thors	Mer. 11 - 13	IMPRO OF OF	ORIGE DOSITION	Tele Dumo Sie	CONTROL	and the sponse		S to to to to to to to to to to to to to
k and control sographical target		Good	700			4500	Not in- stall ed	Not	lona	No	None	SV-1 on Cusk APN-33A Bencon Lost beacon track at 25 miles	Believe en obscured by emercise of	gine failed at 25 miles. Missile was y overcest, and not seen again. Floet
tic command signal able electronics ally polarised re- man ing blowoff	6°	Good	400	210	347	4500	Delay wing blow- off	1,9 mi.o 270 T from Begg Rock	KAHTC	ANT- LA Good	Good	SP-1MB radar APM-33 Beacon Lost abruptly at 11 miles	blowoff in	beacon failure not known. Delay wing duced escillations in pitch az well as d roll rate.
ik and control a ad been prepared ad base a speed asrial ter- at.	9°	Poor 60 ⁰ left wing down					Not in stalls	i Ft. as- tarn of Cusk	sent	No.	None sent		Attempted	d sharp left wing down at sled separation. to recover but had insufficient sltitude. to sea. Floot exercise off Exami.
above	9°	Satisfactory slight left wing down			340		Not in stalled	known		No	TO GAR-	SV-1 on Cusk SV-4 on Carb. APE-33A Beacon Good track to limit of radar scope	Dump signa ation, but Hawaii.	l sent at 80 miles. No visual confirm- los" beacon. Fleet exercise off
tic command signal stally polarized some ing blowoff	6°	Good .	400	217	340		Delay wing blow- off		All sta- tions no re- sponse		No re- sponse	SP-Life radar AFN-33 Beacon No track	Electronic did not fu	s system failed. Believe delay timer motion.
tic command signal ble electronics fing blowoff	6°	Good						t nile from MANTC		AKT- 1A Good	None attempt ed	SV-4 at MANTC	110° and c	on and of catapult missile rolled right ranked in water. Autopilot functioned to oppose roll. believed caused by wing failure.
b length launch meous wing	9°	Good	800	213	312			uiles 209 T from	NAMTC	No	Good	SV-4 at NAMIC APN-33A Beacon Good after 40 miles	All object	ives achieved.
e length launch stabliser peration device all fuel meter mous spark wing blowoff	<u>- 90</u>	Foor left outboard Jato burst safely diaphra at .25 seconds	800	210	340		Delay- ed wing	99 miles from NAMTC	LANIC	No	Good	SV-4 at NAMIC APN-33A Bescon Good track	Engine smo	cable parted at drum during launching. thered by Jato smoke. Restarted by a spark. Altitude record established.
icision B scope ter. ally pol risad tenna s length launching	9°	Good	850	230	360			miles from	088 Cusk	No	Good	SV-1 on Cusk AFN-33A Good track	Le l't wing	only severed at dump.
ble electronics Guidance Computer all fuel meter tor guillotine	6°	Good	1000	200	320	8500	wing blow-	116 mil>s 226°T from NAMTC		AKT- JA Good	Good	SV-4 at NAMTC 615B-584 on San Nicolas Island APN-33A Good track to 114 miles	New altitu utilized 1	nde record. Marine guidance computer not beyond 35 miles due to low missile speed.
nching, tracking ing LOON under her conditions lot compertment allation	9°	Good			350	5000	simul tan- eous wing blow- off	Imown	Un- known if com- mand sent	No	Good to 30 mile	·	then faile	in Alaskan waters. Miusile turned 70° ed to respond to further turn commands. st st 102 miles.

.

ク

SECREL

ęs?

• 1

and the design of the second second

GRANG.

.

the second 1

TABLE I SUMMARY OF LOON FLIGHTS

				<u> </u>	IDENTIFICA B. CONFIGUR			[L/	UNCH		M	ID-CO	OURSE	E		MINAL
2475	j. j.	MISE.	WG7 40	, «INC.	Curatio.		Andre or Mise.	4171740E		E.C. F.L.	\$ / .	JOEED KNON	411 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	The CO	COSITION	* Outo Sin.
2-7	205	1165	5085	INI-1 Catapult	6 ⁰ Catapult also	1. Test detachable electronics nose mount 2. Test Marine Guidance Computer 3. Test McDonnell fuel meter	6°	Good	1000	222	357		Delay 510 - 011 di not re- spond	from	MANTC Cusk, stand by con trol	AKT- 14 Good
2-8	206	794	5100	USS Cuak 40 ft. ramp	4-Jato	 Conduct sero length launch Test NEC precision B scope rada: repeater Tes' vertically polerised receiver antenna Test Marine Guidance Computer 	9°	Satisfactory 10° left wing down	600	220	347		simultan- eous wing blow-	3000 090°r	USS Cuelk	No
2-8	207	247	5140	USS Cunk 40 ft. ramp	4-Jato	1. Conduct sero longth launching 2. Test HEL precision B scope reday repetter 3. Test vertically polarised receiver antenna	90	Failure						1.5 miles from Cusk	None sent	lio
2-28	208	231	5100	Rolling ramp	4-Jato	1. Conduct sero length hunching 2. Test aled separation device 3. Test detachable electronics noce mount 4. Test McDonnell fuel meter 5. Test McDonnell fuel meter	3°	Good				11	Delayad wing blow- off actuat ad pre- maturn	TYON .	None sent	AXI- IA Good
3-22	209	1200	5140	USS Cusk 40 ft. remp	4-Jato	1. Conduct sero length launching 2. Test Marine Guidance Computer	90	Satiafactory 15° nose up, alight left wing down	1000	220	355	5900	ed wing blow-	360 yds. 090°T from Begg Rock	Nar- ine cuid- ance Sisti-	No
3-28	210	221	5080	INI-1 Catapult	8 ⁰ Catapult sled	1. Test detschable electronicc mose mount 2. Test McDonnell fuel mater	80	Wing blew off before launch was complete		_			Delay Solay Solay Solay Solay Solay Solay		None sent	AET-
4-12	211	1004	5120	USS Cusk 40 ft. ramp	4-jato	1. Conduct sero length launching 2. Test Marine Guidance Computer	9°	Good	1000	210	350		Delay		USS	lio
4-12	212	644	5100	USS Cusk 40 ft. ramp	4-Jato	1. Conduct a sero length launching 2. To hit a target 1 mile square contered on Degg Mock 3. To track and control while submarged	9°	Goại	No Teorri	No record	390	5000	belay ed wing blow- off	2000 yds 130°r from Begg Bock	Cusk	Жо
5-1	213	1147	5200	XMI-1 Catapult	8 ⁰ Catapult also	1. Test Marine Guidance Computer		Good	1000	230	350 :	5200	Delay ed wing blow- off	7ds 0330T	tuiden compu- ter (si tomati	
5-3	214	890	5140	USS Cusk 40 ft. ramp	4-Jato	1. Test Marine Guidance Computer	8°	Satisfactory slight left wing down	800	230	345	5250	ed wing blow-	213°T from	Suid- ance sta- tion ually	No
5-3	215	639	5160	USS Cusk 40 ft. ram;	4-Jato	 Train Guak personnel Test MEL SV-1 rader range unit 	9 [°]	Satisfactory left wing down	800	200	220	8400	simultan- eous wing blow- off	105 miles 226°T from Cusk	USS Cualt	No
34		<u> </u>	EEI	TET	X											

.

- -

•

ar ~~

1 1

TABLE I SUMMARY OF LOON FLIGHTS

-		<u> </u>			I				n		—			
ran h tist			AUNCI		1		OURS	E		HASE		ELECTRON	ics	GENERAL
Sime of the work of the set of th	andle or miss.	4171100E	" «	CLIM FIC	\$ /	Max SPEED NOTS	Mer 11 51	18	OPIC DOSITION	TEL OF OURD	CONTO	"OL PESBONSE PADAR BEACON		Predatys
	6°	Good	1000	222	357	9200		140 miles 230°T from MANTC	MAMTC Cusk, stand		Good	SV-4 at NAMIC SV-1 on Cusk 6156-584 on San Nicolas Island AIN-33A Beacon Good track	New altitude an	1 distance record.
	9 ⁰	Satisfactory 10 left wing down	600	220	347	5100	simultan- eous wing blow- off	Rock		20	Good	SV-1 on Cusk SV-4 at KAMTC 615B-584 at San Nicolas Island APN-33A Beacon Good track		unable to control missile due to mitting equipment.
radio di Manda Da Nobela	90	Failure						1.5 miles from Cusk	None sent	Жo	None attempt- ed	SV-1 on Cusk AFN-33A Beccon	Missile rolled : inverted into wa	160° du ing launching - Flow attr.
	90	Good					Delayer wing blow- off actual ed pre matur	1.5 miles	None sent	ART- 1A Good	None attempt- ed	SV-4 at NAMIC 615B-584 at San Nicolas Island AN/AFN-33A Beacon	climb. At 1.5 m detonated. The timer which was	the missils commenced a normal illes the right wing blowoff charge cause was attributed to the delay tripped during launching. When mar ran dorn, woltage was applied instart.
A Sameran	90	Satisfactory 15 nose up, alight left wing down	1000	220	355	5900		yds. 090°I from Begg Rock	Mar- ingios	Жо	Good	SV-1 on Cusk 615B-584, at San Nicolas Island AFN-33A Beacon Good track	of 30 miles from successfully con	Ned to Marine Computer at a range a San Micolas Island. Computer trolled missile and transmitted First successful employment of ils flight.
zh. B ernstater ez ma	8°	Wing blew off before launch was complete					Delay ed wing bios- of set usted presst		None sent	AKT- 1& Good	None attempt- ed	SV-4 at MANTC	wing of the miss crashed on the l	ar clearing the categorit, the left ils was detorated and the missile seech and ricochstited into the se of the pressture actuation is
to an and to make the	9°	Goat	1000	210	350	5900	Dolay		USS	Мо	Good	SV-1 on Cusk 615b-584 at San NJ-71as Island APN-33A Beacon Good track	plane. After en assumed control	station arroneously tracked chase ror was discovered, the Cusk of missile which had taken divergent a series of control commands the transmitted.
	9°	Good	No	No Tecor	390	5000	Delay ed wing blow- off	Vijon 130 m Begg	Cusk	No	Good	SV-1 on Cusk SV-4 at NAMIC APN-33A Beacon Good track	All objectives a ses wide of targ	achieved except that impact position set area.
tor	8°	Godd	1000	230	350	5200	Delay ed wing blow- off		ter (m tonati		Good	SV-4 Lt MANTC 615B-584 at San Nicolas Island APN-33A Beacon Good *rack	Island at range vectored to Begg This was second guidance compute	
	8°	Satisfactory slight left wing down	800	230	345	5250	wing blow- off	213°T from begg Rock	Marine guid- ance sta- tion ually	Ко	Good	SV-1 on Cusk SV-4 at NAMTC 615B-584 at San Nicolas Island APN-33A Beacon Good track	range of 32 mile track was lost a tracking unit was	the to Marine guidance station at ss. At range of 3 miles the radar then radar automatic elevation as activated. Missils had passed track was regained.
1	9°	Satisfactory left wing lown	800	200	220	8400	simul tan- eous wing blow- off	105 niles 226°T	USS Cualt	Xo	Good	SV-1 on Cusk SV-4 at NAMTC APN-33A Beacon Good track	10,000 ft. Low fuel meter performant	seter installed Autopilot Set to speed and altitude due to poor rmance. Tracking range mus 1 to date by submerged submarine. At despite poor performance,

R

SECHET

ţ

.

ł

.

*

3

TABLE 1 SURMARY OF LOON FLIGHTS

					IDENTIFICAT & CONFIC' RA			L	PHAS		N	HU-CO	SURSE	
Oure	0.	wiss.	*67 *0	⁴ uncues	Si 60 CONFIGHATION	Fist OBUCTIVES	Augle or Missi	arrirues		e /	\$ /	Sher		Inc. or on
5-17	216	992	5160	USS Carbonero short length isuncher	4-Jato	1. Train Carbonero personnel 2. To test vertical command an- tenna and SV-1 radar on Carbonero	9°	Good	1050	240	342	5600	Delay ed wing blow- off	eiles 214°T from
6-8	217	238	5200	Rolling Ramp	(alato	 Test NEL B score relar repeaks 1. Test McDonnell fuel meter 2. Conduct long range flight with 90° beading change. Dress rebearsal for Arro Tree flight missile. (DE 302.3) 		Good	650	250	330	12400	Delay ed sing blow- off	а1148 23001 Ггон
6-12	218	1080	5090	Rolling Reap	4-Jato	1. Test Marine guidance compute 2. Test eled separation device	9 ⁰	Good					Delay ed wing blow- off	yard: fron
6-22	219	1078	5150	USS Carbonero short length launcher	4-Jato	1. Train Carbonero personnel 2. Bit geographical target 3. To test vertical command antenna	9°	Satisfactory Loft wing down	1000	220	370	5000		from
6-22	220	630	5070	IMI-1 Catapult	8 ⁰ Catapult sled	1. Test Marine guidance compute	8 ⁰	Satisfactory 10 left wing down	1000	260	350	5400	wing blow-	11e 213 ⁰
7-28	221	242	5150	Folling Ramp	4-jato	i. To determine directional acrodynamic data on the LOON missile. (This was the firm- missile to be launched undar project TED MCC DE 302.3)	t	Setisfactory left wing down	1500	240	265	4500	Deto- nator guillo tine	210°
8-9	222	1064	5160	IMI-1 Catapult	8° Catapuit sled	 To test a Marquardt modified missile as received from the contractor To hit a geographic target (1 sq. mile centered on 	80	Satisfectory left wing down	1000	235	330	4500	blow-	mil 210
9-15	223	250	5125	USS Cusk 40 ft. ramp	4-Jato	Begg Rock) 1. To hit target on western tig of San Nicolas Island 2. To test ordnance components of warhead	. <u></u> 8°	Salisfactory left wing down	500	220	350	4500	blow-	aila 211
9-18	224	636	5100	XMI-1 Cata- pult	8° Catapult sloo	1. To test Marine guidance computer	ε°	Good					Delay ed wing blow- off	yard
9-18	225	207	5100	NAMIC short length launcher	4-Jato	 Test Marine guidance computer Test NANTC short length launcher 	9°	Good	1200	220	355	5800	Dela- yed wing blow- off	213
10-12	226	945	5090	USS Car- bonero short length launcher	4-Jato	 To hit a land target on wes end of San Nicolas Island To train Carbonero personne 		Poor nose down left wing down	1000	220	350	4300	Dela- yed wing blow- off	.7

Ĥ

SEGAFT

ł

	TÁE	11E I		
SUMMARY	05	16.38	F1 1G	iτ

· · · · · · · · · · · · · · · · · · ·														
			PHAS		1	MID-C	OURSE	Ξ		MINA		ELECTRONI	cs	GENERAL
rest Objectives	anole or Mose.	41117405E			Sefe o		Mer. 57	100 OC		reic Como Sco	CONTRO.	adda Bedcon		FEW4 BYS
bonero personnel artical command an- SV-1 radar on B scope ratar repeater	9 ⁰	Good	107.3	240	342	5600	wing blow-	80 miles 214°T from Mantc	USS Carb- onero	жо	Good	SV-1 on Carbonerd SV-4 at MAMIC API-33A Beacon Good track	on the Car	t was primarily to test new equipment bonaro. All equipment operated as Chase plane broke off chase at 65 miles weather.
Denell fuel meter ong rungs flight beeding chauge marsal for Aero free metle. (DE 302.3)	90	Good	650	250	330	12400	blos-	miles 230°T	NAME	AKT- 1A Good	Good	SV-4 at MANYC APE-33A Beacon Good track	Excellent record est by missile	flight in all respects. New altitude ablished. Total of 150 wiles traversed
ne guidance computer Separation device	5°	Good						-1000 yards /ros NAMIC		ж)	None attempt- ed	SV-4 at NAMIC 615B-584 at San Nicolas Island APN-33A Beacon	crashed in	ter turnout the missile nosed over and to sea, carrying sled with it. No onclusions as to cause.
benero personnel sphical target strical command	- <u>9</u> 0	Satisfactory left wing down	1000	220	370	5000	Delay ed wing blow- off	miles		ho	Good	SV-1 on Carbonero SV-4 at RAMTC AFN-33A Beacon Poor track	Poor beaco Carbonero veciaroot	n performance prevented tracking by or NAMIC. Missile was dumped by counter.
ne guidance computs	80	Satisfactory 10° left wing down	1000	260	350	5400	wing blow-	miles 213 T	Marine guid- ance statum (man- ually	L	Guod	SV-4 At NAMTC 615B-584 at San Nicolas Island AFN-334 Beacon Good track	computer o	ry flight in all respects. Marine parated satisfactorily. However, error prevented dump signal from being d.
Ine directional ic data on the LOON (This was the first be launched under ED MTC DE 302.3)	80	Satisfactory left wing down	1500	240	265	4500			NARTC	Bendiz DICT-3 Good	Good	615B-584 at NALTC and San Nicolas Island APN-33 Beacon Good track	constants	seable data for directional stability were obtained, it was clouded by a rudder oscillation and slow speed.
Marquardt modified received from the geographic target le centered on	ę	Satisfactory left wing down	1600	235	330	4500	Delay ed wing blow- off	55 ciles 210°T from NASTC	NAMTC	No	Poor	615B-584 at NAETC APN-33 Beacon Good track	A severe r from respo	udder oscillation prevented the missile nding to control commands.
get on western tip oles Island duance components	89	Satisfactory left wing down	500	220	350	1	Delay- ed wing blow- off	65 211° from MANTC		No	Good	SV-1 on Cusk SV-4 at NAKTC 615D-584 on San Nicclas Island APN-334 Beacon Good track		failure in range unit on Cusk prevented on being dumped on target.
arine guidance	80	Good				1 1	i blow-	vards	sent	N.,	None attemp- ted	615B-584 at S- Nicolas Ieland and NAMTC APN-33 Beacon	and missil	off pin actuated during estapult run e cleared catupult with dead engine. ided to splash point.
e guilence short length	9°	Good	1200	220	355	5800	yed wing blow-	111es 213°T		N>	6000	615B-584 at NAKTC and San Nicolas Island APN-33 Bescon Good track	of 37 mile when missi passed over	ifted to Marine guidance station at ran s. hadar contact at that station lost le was 12,000 yds. From target. Misri ir warget and was dumped by MANC. Firs frod MANC short length launcher.
and target on west Nicolas Island arbonero versonnel	90	Poor rose down left wing down	1000	220	350	4300	Dela- yed wing blow- off	.7 mile	bon- ero	Жо	Good	SV-1 on Carbonero SV-4 at NAK"C 615B-584 at San Nicolas Island AFN-33A Beacon Good track		cessful attempt to hit a land target.

B

	ſ	ſ	Q	E	T
1	I L	U	11	Ľ	-

gallani kanada

a Chila and the theory and to see

100

and the finite state of the sta

and a state of the second s

1

TABLE I SUNKARY OF LOON FLIGHTS

			,	,	IDENTIFICA & CONFIGUE	TION		L	AUNCH			MID-C	OURSE	:		MINA	
Dare	10	MISS.	No. No.	"autocites	²¹ ED CONFICURATES	No. OBUCCINES	Angle or MSS.	4111100C	Max.		Lee /			IMPAG OF ULL		*	Sien Sien
30-18	د	1031	5280	MAMIC Short launcher	4-Jato	1. Test McDonnell fuel mets. 2. Determine climb data by vary- ing missile pitch avtitude 3. Test MANT short length lawnchar	9°	Good	1000	200	300	1	yed wing blow-	32 miles 213°T from NAMTC	NANTC	AKT- IA good for com	
11-1	228	963	-300	NADC sero length launchar	Single Jato	1. Test MADC sero length laurche 2. Test single Jato launching configuration	- 9°	Failure						400 feet from laun- ther	Nona atten ted	No	
12-1	229	887	5100	USS Carbonero short length leunchar	4-Jato	1. To hit a land target on west end of San Micolas Island 2. To train Carbonero personal	9°	Good	1000	220	350	4500	yed wing blow-	83 miles 222°T from MAMTC	las	жо	
12-2	230	1018	5020	MANTC sLort length launcher	Single Jeto	1. Test single Jato Laumching configuration 2. Test MANTC short length launch er 3. Test McDonnell fuel meter	90 -	Four extreme nose up left wing down	No climb		290	25 0	War- head blow-	5 mile 213°T from NAKTC		No	
12-2	231	995	5040	UES Carbonero short lengti launcher	4-Juto	 To hit a geographic target l ad. mile centered on Begg Rock To train Carbonero personnel 	9°	Godd 1		Un known	Un- known	Un - known		Un- known	USS Carb- onero	Ho	
12-71	232	1364	5340	MANTC ebort lengt launcher	4-Jato	1. To test ordnance components of warhead 2. To hit a geographic target 1 sq. mile centered on Begg Rock 3. To test HANTC short length	50	Failure					wing blow-	500 yards from laun- cher	None sent	AKT- 10	
12-15	233	1028		BAMTC short lengt Launcher	4-Jato	1. To test ordnance components of warhead.	9°	Good	800	220	375	4700	wing blow-	58 miles 231°T from Aumic	USS Carb- onero	AKT- 10 Good	
27-15	234	950		USS Carbonsto short lengt Launcher	4-Jato	1. To test ordnance components of fully fused and loaded warbead	9 ⁰	Satisfactory nose up left wing down	800	205	360	5000	wing blow-	1.2 m'les 0.0°T fiom Begg		No	
1951	235	638		USS Cusk chort lengt isuncha.	4-Jato	 Test now short length launch on Cusk To hit geographical target 1 sq. mile centered on Begg Rock 	r 9°	Good	1000	220	340	3500	yed wing blow-			No	1
1-15	236	793	5330	NAMIC short lengt laupcher	4-Jato	1. Test Summers gyro-servo stabilization and control syste 2. Test MANTC short length launcher 3. Test McDonnsll fuel motor	9 [°] 261	Pour	1500	200	230	1500	Simul tan- eous wing blow- off	6 mile from NAMTO	NANTC	ANT- LA Good	
1-30	237	1048	5145	USS Carbonero short lengt launcher	4- Jato	 To hit a geographical target iOO miles 20507 from NAUTO To relay control of missile from Carbonero to Cusk 	93	Pogr left wing 30 [°] down at Begaration	10.00	210	345	5500	Dela- yed wing blow- off	105 miles 21901 from	USS Cusk	cić	7

\$

	TAI	BLE I	
SUMMARY	0F	LOON	FLIGHTS

i.														
			PHA				OURS	E		HASE		ELECTRON	ICS	GENERAL
and a stand of the second design of the second defined on	Anole or Mise	Arinung		CLUM FIC	29 29 29	Spec.	Mer. 11 - 1015	// &	ORIGE DOSITIC	TEL OLINO	CONTO CONTO	¹⁰ ⁴⁵⁵⁰ 0NSE ⁴⁰⁴⁶ ⁶⁶⁴ Con		^{Ac wa} n _{rS}
wary- bude	9 ⁰	Good	1000	200	300	5000		ailes 213°T		AKT- IA good for come u tatod	Good	6158-584 at NAMIC APW-33Beacch Good track	attitude ch and assumed	came erratic upon receipt of first mange commers. After missile stabilised, d normal clumb, the engine torched and alled and crushed.
rincher Ing	9 ⁰	Failure					None	400 feet from laun- cher	None att ;m ted	No	None installer	None used	an autopilo	dummy missile with no components except of installed. Failure due to at of Jato and retarder.
west d mnsl	3 [°]	Good	1000	220	350	4500		83 miles 222°T from MANTC	Mico-	Ко	Foor	SV-1 on Carbonero SV-4 at MAMTC 615B-584 at San Nicolas Island APN-33A Beacon Good track		i not respond to control consends due to ar sensitivity.
ng Jaumi	9 ⁰	four extreme nose up left wing down			290	250	War- head blow- off	5 mile 213°T from NAKTC	sent	No	None attempt- ed	6158-584 at NAMNG APN-33 Bearon		sconds of flight the dump signal was rematuraly and "light turning to.
et Des nnel	9°	Good	Un- known	Un- known	Un- kaown	Ur - Anor In	Dela- yed wing blou- off		USS Carb- on.vro	No	Unknown	SV-1 Carbonero SV-4 at NAMTC AFN-33L Bucco: No track	lrunching,	er prevented use of chase plane. After Carbonero and MARC were unable to Lative track. Dury command sent after of flight.
nte et egg	9°	Failure					Dela- yed wing blow- off	500 yards írom laun- cher	Nor 3	AKT- 10	Nons atteppt- e	SV-4 at RAUTS AN-33A Beacon	Apparant Ju during lau	ato misalignment crusei miscile to roll ruhing. It creshed just after separation
eta	9 ⁰	Gogđ	800	220	375	4700			onero	AKT- 10 Good	Good	SV-4 at NANTC SV-1 on Carbonerc APN-33A Beacon Good track	Ordnance co	paponents operated satisfactorily.
nts d	9 ³	Satisfactory nose up left wing down		205	360	5000	Dela- yed wing blow- off	from Begg	USD Carb- onero	No	Good	SV-1 on Carbonerd SV-4 at MANTC APN-33A Beacon Good track		omponents oper-ted satisfactorily. detomation on impact.
unchar et 1 g	9°	Goad	1000	220	340	3500	blow-	Rock 64 215°T from NANTO		ло	Good	SV-1 on Carbonero SV-4 at NAMIC AFN-334 Beucon Good track		ching from newly installed short length board USS Cust.
L ayst-1	9 [°] 26'	Fogr	1500	200	230	1500	Simul tan- eou wing blow- off	6 mile from NAMTC	NAMIC	AKT- LA Good	Poor	615B-584 at XANTC MFG at NAMTC AFN-33 Beacon Poor track	would not a they did re	ration, missile commanced left turn, and respond to control commands although each the missile. Dump command sent when it sea test range.
rget TC Hle	9 ⁰	Four left wing 10 down at syperation	1000	210	345	5500	Dela- yed wing blow- off	105 miles 219 ⁰ I from MANTO		No	Good	SV-1 on Cusk and Carbonero SV-4 at MANTC APN-33A Beacon Good track	Transmissic missile fro	on of erronsous tury corminds prevented of hitting target.

B

SEGNET

and the second states of the

Andres and

ALCO VIANA

NAME AND ADDRESS OF ADD

TABLE I SUKMARY OF LOON FLIGHTS

					IDENTIFICA 8 CONFIGUR			L	AUNCH		•		OURSE	:	TER	RMIN
Qure		The of	Nor No.	, advertes	Steb Colmenan	rest onderestines	Angle OF MER.	ATTITUDE				Second Second	÷]]	WARCS OF DUME	S.	
1-31	238	826	51.80	USS Cank short length lauxoher	4-Jato	 To hit a geographical target 100 siles 225 T from MERC To relay control of sissile from Cusk to Carbonero 	9°	Good	1000	220	370	5500	Dela- yed wing blow- off	ailes	USS Carb- onero	Jic.
2-1	239	492	5260	MANYC short lengt launcher	4-jato	1. Test McDonnell fuel weter 2. Test warheed blowoff	9 ⁰ 251	Good	750	210	220	¥,50	War- head blow- off	110 M miles 220°5 from NAMTC	ILLITC	11 10 60
3-8	240	882	5240	NAMPC short lengt launcher	4-Jato h	1. Test Radioplans Recovery System Lader Project TED MC AE 525001	9 ⁰ 751	Good	1600	210	330	4900	ory	3 mile from Nestern tip of San Nick.	HL MTS	A J G
3-13	241	1059	5310	NAMTC short lengt launcher	Single Jato	1. Test single Jato Launching configuration 2. Test marhead blowoff 3. Test new nosemount configurat	9°11'	Satisfactory left wing down, nose up	500	210	285	4500	War- Lead blow- off	Bick. 18. 1mDs 23C ³ T f.c 1 Beggi Fock	 10	A I G
3-21	242	1094		USS Cusk short lengt launcher	4-Jato	1. Test electronic mose mount 2. Test warhead blow-off 3. Test McDonnell fuel meter	9°	Satisfactory nose up left wing dow	700	200	340	8900	War- head blow- off	104 111es 216°T 17 m NAMIY	N. La NC	
3-29	243	1069	5100	N/DC Zero length launcher	Single Jato	1. Test MADC single Jato launche: 2. Test warhead blowoff 3. Hit geographical target 1 sq. mile centered on Begg Rock		Foor 50° nose up right wing down	900	218	330	4800	War- head blow- off	2600 yarda 102°T from Begg Rock	NAMEC	
6-5	244	560	5100	NAMTC short lengt launcher	'Single Jato	1. Test single Jato launching configuration 2. Test %cDonnell fuel meter	8 ⁰ 55†	Good	200	183	235	4300	Simil tan- cous wing blow-	Ē	NAMIC	
(-19	245	735	4890	NAMTC short lengt launcher	Single Jato th	 Test McDonnell fuel meter Test warhead stabilisation drug Chute 	9 ⁰ 101	Good	500	200	235	7200	blow- off Jar- head blow- off		NAMIC	
5-2	246	977	5050	USS Cusk short lengt launcher	4-Jato	 Tes' ordnance components of fully fused and loaded warhead Hit a geographical target 	90	Good	1500	235	320	4200	Simul tan- eous wirg blow- off		Stand by control plane	
5-2	247	975	5070	USS Cusk short lengt launcher	Single Jato	 Test single Jato launching configurit. 1 on USS Cusk To relay control of the missif from the Cusk to the Carbonare 3. Hit geographical target 100 miles bearing 225°T from Misri 		Gocà	1000	226	350	5100	i.ela- yed wing blow-	11er 219°T	None sent	
-14	248	982	5420	NAMTC short lengti launcher	Single Jato	1. Test unners gyro servo stabilization and control system	8°40 '	boci	800	210	315	5800	tan- eous wing		None sent	

SECRET

A

NA			SUMMARY	OF L	DON F	LIGHT	S								
[*]				AUNCH			MID-C	OURS	E		MINA		ELECTRON	ICS	GENERAL
	Cartes Jules	Ancie or Mar.	41 TITUDE			\$ /	A A A A A A A A A A A A A A A A A A A	<u>ا چ</u>	Way Or O.	Online Oxfro		Conrac	Padan Beacon		S. S
	corbonero	9 ⁰	Good	1000	220	370	5500	blow-	niles 22401		lio	Good	SV-1 on Cusk and Carbonero SV-4 at NAMTC APM-33A Beacon Good track to 25	Missile os beacon to hitting ta	millsted in pitch and yaw, causing fail. Beacon failure precluded rgat.
•	a fuel meter blowoff	9°251	Good	750	210	220	12,50	head blow-	110 miles 220°1 from NAMIO		áKT- 10 Good	Good	615B-584 at NAUTO APN-53Beacon Good track	New altitu satisfacto	de record. Harbesd blowoff 17.
	Project TED MTC	9 ⁰ 251	Good	1000	210	330	4900	ery system	3 mile from Wester tip of San Nick.	-	AsT- 10 Good	Good	SV-4 at NAMTC on chase plane None in aissile	parachutes	ystem consisted of 1 parabrake, 3 , and 2 flotation bags. Jystem worked except that parachutes failed ly.
	ato launching blowoff mount configurati	9°11' .on	Satisfactory left wing down, nose up	500	210	285	4500		ls. lile 210°I from Begg hock	NAMTO	AKT- 10 Good	Good	615B-584 at NAMTC APN-35 Beacon Good track	low speed setting.	believed caused by improver fuel mater
	blow-off	90	Satisfactory nose up laft wing down	700	200	340	8900	Her- head blow- off	104 miles 216°T from NAMIC	NAMTO	Жо	Good to 76 miles	SV-4 at NAMTC SV-1 on Cusk APN-33A Beacon Good track	Ail object receiver p Cusk.	ives achieved. Low sensitivity of revented control beyond 76 miles from
· / - · ·	gle Jato laursher blowoff cul target 1 s3. t on Begg Rock	- 90	Poor 50° pose up right wing down	900	218	330	4800	Mar- head blow- off	2600 yarda 102°T f.om Begg Rock	NALTO	No	Good	515B-584 at NALTU 4FN-33 Beacon Good track		exhibited excessive fluctuations in d prevented accurate determination of
ه. د ^ع	Jato launching	8 ⁰ 551	Good	200	183	235	4300	Simul tal- eous wing blow-	miles 217°1	NAMTO	ок	Good	6155-584 at NAMTO APN-33Beacon Good track	McDonnell	fuel meter apparently set too luan.
• _ ح	11 fuel meter Stabilization	9°10'	Good	500	200	235	7200	Har- head blow- off	84 miles 220°1 from NALTO	NAMIC	AKT- 10 Good	Good	615B-584 at NALTC AFN-33 Beacon Good track		fuel meter set too lean. Stabilizatior ed to prevent tumbling of warhead.
•	components of and loaded warhead phical target	9 ^c	Good	1500	235	320	4200	Simul tan- eous wing blow- off		Stand by control plane	[Negative	SV-J on USS Cusk SV-4 a. MAMTC AFN-33A Beacon Good track	Believed	ailed to respond to control commands. to have been caused by low receiver ty. Warhead did not detonate.
	Jate Launching in on USS Cusk trol of the missile it to the Carbonero dical target 100 g 225°T from NANTO		Good	1000	726	350	5100	Dela- yed wing blow-	miles 219 ⁰ 1		No	Good	SV-1 on Cusk and Carbonero SV-4 at NALTC AFN-334 Beacon Good track	Autopilot range of 4	failure caused missile to cresh at 5 miles.
	gyro servo an and control	8°40'	ûood	800	210	315	5800	Simultan- eous wing blow- off	miles 212 T from	bone sent	AKT- 1A fuile at 1. minut	Þ	615B-584 at NAMTO AFN-33 pescon Good track	and flew s	y erratic flight, the missile stabilized atisfuct.ily. Eussile exhibited high ility b t would not hold straight hout co_mands.

TABLE 1 SUMMARY OF LOON FLIGHTS

•

₽ 2012 2012

io ·

.....

B

SECHEF

2

44

TABLE I SUMMARY OF LOON FLIGHTS

					IDENTIFICA & CONFIGUR			l·	AUNCH		N	NID-CO	DURSE			MINA	
Dure	40 50	MISSIN .	*01	(autories	St 60 CONFICUTION	rest obucchines	ANCLE OF MUSS.	arrinug	max.		20 EE	Max Speco KNO	÷ //	Intege Or Oliv	, <u>'š</u>	C.C.	EWELE COM
5-49	249	1036	5180	USS Carbonero short lengt launcher	4-Jato h	 Hit geographic target 1 s₁. mile centered on Begg Rock To assist in evaluation of special redar and C/M equipment aboard USS Spinar. 	9°	Good	1000	210	340	.5200	War- head blow- off		USS Carb- onero	No	G
5-31	250	1068	5050	MAMIC short length launchar	Single Jato	1. Test McDonnell fuel aster 2. Test warhead b owoff	8 ⁰ 501	Good					War- head blow- off	l mile Crom NAMTC	None sent	AKT- 10 Good	
6-21	251	746		MAMIC short length launcher	Single Jato	1. Test Mclonn . fuel meter 2. Test we free blowoff	90	Good	500	210	225	8200	War- head Blow- off	21697	KANTC	AFT- 1A Good	Go
6-28	252	622	5130	US3 CUSK short length Launcher	Single Jato	1. Test Trounce I guidance system 2. Test single Jato isunciding configuration	92	Good	1000	210	210	3000	War- bead Blow-	18 riles	ione sens	¥o	Ga Or Ca
7-18	253	1173	5 13 C	UES CAREONERO short length leuncher	4 Jato	1. Ealay control from Carbonero to Cusk 2. Test warhead blowoff 3. Hit a geographical target 100 miles bearing 22197 from MANC	90	Satisfactory 30 ⁰ nose up	800	240	360	5900	Flow-	158 ailes 206°T from MANTC	tions None	Jo	Xe
7-20	254	1071	3050	NATE short Langth Launcher	Single Jato	1. Twat Trounce I gridance system	90	Satisfactory 20° left wig down	800	230	345	4300	wing blow-	130 miles 220°T from NANTC	Stand- by Con- trol	AKT- 10 Good	G
8-16	255	772	5090	USS CUSE short length laurcher	Single Jato	1. Test Trounce I guidance system 2. Train Cusk personnel	9 0	Good	700	217	217	2600	De- layed Wing blow off	12 dles from Cusk	None sent	Jo	¥(
9-2 2	256	596	548C	NAMIC short length launcher	Single Jata	1. Test J-30 Turbojet engine installation	9 ⁰	Failurs					Shoul wing blow off	yard	sent	AET- 10 Good	Х. 81
8-30	257	228	5160	USB CARLINERO short length launchar	4 Jato	1. Test ordnance components of fully fused and loaded warhoad 2. Sit a geograph, target 1 sq. alle centered on Begg Rock	9°	Goed	1200	210	320	5700	Simul wing blow- off	2 miles 220°7 from Begg Rock	USS Car- bonero	No	G
8-33	258	503	5075	HANTC short length launcher	Single Jato	3. Train Carbonaro parsonnel 1. Tevt 'rounce I guidance system	9°	Pour 45 ⁰ nose up	: 000	225	355	5300	wing	. 93	"	AKT- 10 Good	

38

1

SEGRET

الم المحمد المراجع المحمد ا

TABLE I SUMMARY OF LOGH FLIGHTS

	L/	AUNCH		'		OURS	Ë		MINA		ELECTRON	ICS	GENERAL
ancie or wiss.	arriruae	***		see.	MAX SPEED WWO	5	1 4	ORIGE POSITION		CONTO CONTO	RADAR BEACON		Start Res
9°	Good	1000	210	340 .	.5200	War- head blow- off	1 mile 305° from Begg hock	USS Carb- onerc	CH .	Good	SV-1 at NARTC SV-1 on Cusk and Spinax APN-33A Beacon Good track	All objec	tives achieved.
8 ⁰ 501	Good					hoad	l mil from NAMTC	Nons sent	AKT- 10 Good	attempt	615B-584 at NALT - APd-33 Beacon wood track	left out	sed by personnel error. Cotter pins of control rod hings pins. Hings pin or shaken out by vibration.
9 0	Goot	500	210	225	8200	War- head Blow- off	Trom	KAMIC	AKT- 1A Good	Goed	6158-584 at NAMCC APN-33 beacon Good track		mance caused by McDonnell fuel meter ently changed basic setting,
90	Good	1000	230	21.0	30:00	beed Blow- cff	niles 214°T Trom Cusk	Nons sent	¥o	Good Only 1 Command Sent	SV-1 on Cusk SV-4 at HAMTC AFN-33A beacum Good track	Autopilot f objective N	ailure precluded accomplishment of 0. 1.
	Satisfactory 30° 1000 up	800	240	360	5900	bead Blow- off	158 miles 206°T from MAMTC	Ncae	No	Negavivo	SV-1 on Cusk and Carbonere SV-4 st NAMTC APN-33A beacon Good track	Missile fai from any st	led to respond to any control cosmands ation.
9°	Satisfactory 20° left wing down	800	230	34.2	4300	wing	ailes 220°T	Stand- by Con- trol	AKT- 10 Good	Good	SV-4 at HAMTC SV-1 on Cusk AFN-33A beacon Good track	Trounce I c	Waful missils flight utilising control system. Twenty saven commands y transmitted.
9°	Good	700	217	217	2600	De- layed Wing blow- off	from	None sent	No	None sent	SV-4 at MAMIC SV-1 on Cusk APN-33A beacon Good track	Propulsion objective N	system failure provented attainment of 0. 1
	Failure					Stmul, wing blow- off	500 yardı frcm laun- cher	None sent	AIT- 10 Good	Nome sent	SV-4 at KAMIC APN-33A beacon		mmed 75 ⁰ attitude at separation. It but low speed caused it to crash.
90	Good	1200	210	320	5700	blow-	2 miles 220°T from Begg Rock	USS Car- bonaro	No	Good	SV-1 on Carboners SV-4 at NAMIC APM-33A beacon Good track	frequency a	mable to track beacon due to excessive proad. Commands sent at suggestion of consted at impact.
9°	Poor 45º nose up	1000	225	355	5300	blow-	93 miles 220°T from MANTC		AKT- 10 Good	Good	SV-4 at RAMC APN-33A beacon Good track	Excellent f	light in all respects

B

4 -- ¥---

SECRET

1950 Date	FIRING NUMBER	HISSILE NUMBER	ROCKET	XH1 LAUICH	BEACON ¹	TELE- ² METER	REC ³	AUTO- ⁴ Pilot	DUMP	PRO- PULSION	HISC. EQUIP. FAILURZ	REMARKS.
12 JAN	202	903	OK	-	OK	OK	OK	OK	OK	ок		USS CUSK
16 JAN	203	227	-	OK	ОК	OK	ок	OK	OK	OK	_	
16 JAI	204	1199	ОК	-	CK	OK	-	ок	-	0K	MISSILE FAILED TO TURN LATE IA FLIGHT	USS NORTON SOUND
7 FEB	205	1165	-	OK	OK	OK	OK	OK	-	OK		NO DUMP ATTEMPYED
8 FE8	206	794	OK	-	OK		OK	OK	OK	OK		USS CUSK
8 FE8	207	247	X	-	-	-	-	-	-	-		USS CUSK
28 FEB	208	231	OK	3	-	OK	-	OK	-	ok	DELAY TIMER FAILURE	
22 MAR	209	1200	OK	-	OK	-	OX	OK	OK	OK		USS CUSK
28 MAR	210	221	-	-	-	-		-	×	-	WING BLOWOFF ACTUATED PREMATURELY'	
12 APR	211	1004	OK	-	OK	-	OK	OK	-	OK		USS CUSK
12 APR	212	644	OK	-	OK	-	OK	OK	OK	OK		USS CUSK
1 MAY	213	1147	-	0K	OK	-	QK	OK	OK	OK		
3 MAY	21#	890	OK	-	OK	-	OK	OK	OK	OK	_	USS CUSK
3 .4AY	215	639	OK	-	OK	-	OK	OK	OK	OX		USS CUSK
17 MAY	216	992	OK	-	OK	-	OK	OK	OK	OK		USS CARBONERO
NUL 8	217	238	OK	1	OK	0.4	OX	OK	OK	OK		
12 JUN	218	1080	OK	-	-	-	-	-	-	-	SEPARATION DEVICE	
22 JU₩	219	1078	OK	•	x	-	OK	OK	-	OK		USS CARBONERO
22 JUN	220	630	-	OK	OK	-	0K	OK	OK	OK		
28 JÜL	221	242	OK		OK	OK	OK	-	OK	OK		SPECIAL AUTOPILOT CONFIGURATION
9 / JG	222	1064	-	OK	GK	-	OK	X	OK	OK		
15 SEP	223	250	OK	1	OR	-	OK	OK	OK	OK		USS CUSK
18 SEP	224	636	-	or	-	-	-	7	-	-	ENG" CUT- OFF PIN	
12 OCT	2 26	945	OK		OK	-	OK	OK	OK	OK		USS CARBONERO
18 OCT	2.27	1031	0¥	1	x	OK	OK	OK	OK	x		
1 NOV	228	963	ÔK	-	-	-	-	OK	-	-	· · · · · · · · · · · · · · · · · · ·	DUNNY NISSILE
1 DEC	229	887	OK	-	OK	-	OK	OK	OK	OK		USS CARBONERO
2 DEC	230	1018	OK	-	-	-	-	-	OK	-		
2 DEC	231	995	OK	-	X	-	-	-	-	-		USS CARBONERO
7 DEC	232	1066	x	-	-	-	-	-	-	-		
15 DEC	233	1028	OK	-	OX	OK	OK	OK	OK	ок		
15 DEC	234	950	OK	-	OK	-	OK	СК	OK	OK		USS CARBONERO

TABLE II

SUMMARY OF COMPONENT PERFORMANCE

X FAILURE

I

í

an the stand of the second distance of the second second second second second second second second second second

- NO TRIAL

OK SUCCESSFUL

L. 2640

NOTES:

and a series of the second second and the second second and the second second

INCLUDES BEACON, DYNAMOTOR, AND ANTENNAS.
 INCLUDES TELEMETRIC TRANSMITTER, BATTERY PACK, END INSTRUMENTS, AND ANTENNA.
 INCLUDES RECEIVER, CONTROL RELAY BOX, COMPUTER AND ANTENNA.
 INCLUDES AUTOPILOT, SERVOMOTORS, CONTROL SURFACES AND LINKAGES, AND AIR SYSTEM.

SEGRET-

SECRET

(A) Alice and the alice and

ALL REPORTS

Sec. 160

National States

1

NISC. 1000 FLEING MISSILE ROCKET 361 TELE-2 AUTO-EQUIP. 780 DATE NUMBER SEACON¹ REC NAME OF LANKCH LAUNCH HETER FILOT DIM PULSION FAILURE REMARKS 31 NAR 172 1002 _ οĸ oĸ x OK -oĸ SUMMERS 20 AI 9 173 1051 ЭK OK -OX ox x oĸ -Ó. 21 470 174 618 _ 0K _ ox OK ox X TWO-JATO 28 APR 175 599 OK -X -OK OK ox OK TWO-JATO AUNCHING 10 MAY 176 1074 oĸ OK OK _ OK oĸ ОK OK 19 HAY 117 1086 OX. -OK -OK OK οĸ OK USS CARBONERO 0K 0K 2 JUN 178 738 ON OK OK OK --USS CARBONERO 14 304 179 590 QK _ 0K -OK OK 0K 0 X USS CARBONERO 20 JUN 180 X -243 --_ . _ 29 JUN 181 597 OK _ --OK OK --PROBABLE BATTERY FAILURE USS CARGONERO 15 JUL 1061 0K 0K OK OK 143 -OK -_ SUMMERS 21 JUL 184 742 -0K 0K OK QK CK ЭK X 5.MG 185 244 OK USS NORTON Sound - No Data Available _ . -. --9 AUG 186 534 -OK OK 0K OK X OK -26 . AUG 197 1067 OK _ ox _ 0K OK OK 0K USS CUSK 36 - AUG 186 821 0K OK OK -0K X OK -USS CARBONERO 26 SEP 185 836 -QK -OK --x 28 - SEP 190 778 **GK** OK OK OK OK 0K --USS CARBONERO 29 - SEP 191 776 OK OK 0K х _ OK STRUCTURAL FAILURE OF RIGHT WING SPAR . -USS CUSK 3:0CT 192 256 ox 0K 0K OK OK ox ox 12:0CT OK 195 249 OK JK OK X ok --USS NORTON 31 OCT 196 592 ÔK OK -OK Ok OK _ _ USS CUSK 4 HOY 195 oĸ 246 x OK 0K OK OK OX 7 NOV 196 680 X --------_ USS CUSK 7 NOV 197 535 οĸ oĸ OK -0K OK OK OK USS CARBONERO 8 HOY 19 813 -OK --_ OX OK -DELAY TIMER FAILURE 5 DEC 199 935 ... OK ---_ -_ STRUCTURAI FAILURE 9 DEC OK OK 200 230 _ OK oĸ OK 04 21 DEC 201 1075 OK -OK _ oĸ ОK OK OK FAILURE OF ONE JATO

TABLE II SUMMARY OF COMPONENT PERFORMANCES

X FAILURE

40 SEGAET

.

- NO TRIAL

OK SUCCESSFUL

ł

NOTES:

1. INCLUDES BEACOR, DYNAMOTOR, AND ANTENNAS.

2. INCLUDES TELEMETRIC TRANSMITTER, BATTERY PACK, END INSTRUMENTS, AND ANTSINA. F

Ę

· Constitute start start under 1954

こうろうろうちんないないない

スラントノーのないのないのでもので

Posts & Statistics

1.101.1

3. INCLUDES RECEIVER, CONTROL RELAY BOX, COMPUTER AND ANTENNA. 4. INCLUDES AUTOPILOT, SERVONOTORS, CONTROL SURFACES AND LINKAGES,

AND AIR SYSTEM.

SECRET-

1951 Date	FIRING NUMBER	MISSILE NUMBER	ROCKET LAUNCH	XH1 Launch	BEACON ¹	TELE- ² METER	REC ³	AUTO- [#] PILOT	DUHP	PRO- PULSION	HISC. EQUIP. FAILURE	R EMARK S
4 JAN	235	638	OK	-	OK	-	OK	OK	OK	ok		USS CUSK
15 JAN	236	793	OK	-	x	OK	ок	-	OK	OK		SUMMERS AUTOPILOT
30 JAN	237	1048	OK	-	OK	-	OK	OK	OK	ок		LSS CARBONERO
31 JAN	238	826	OK	-	OK	-	OK	x	OK	ОК		USS CUSK
1 FEB	239	492	OK	-	OK	OK	OK	OK	OK	OK		
8 MAR	240	882	οκ	-	-	OK	ок	ок	ок	OK		RADIOPLANE RECOVERY SYSTEM
13 MAR	241	1059	OK	-	OK	ox	OK	OK	OK	OK		
21 MAR	242	1094	эк	-	ОК	-	X	ОК	OK	ox	1	USS CUSK
29 MAR	243	1069	OK	-	01	-	OK	OK	OK	OK		
5 APK	244	560	OK	-	OK	-	OK	OK	OK	OK		
19 APR	245	735	OK	-	OK	OK	OK	OK	OK	OK		
2 MAY	246	977	OK	-	OK	~	X	OK	OK	OK		USS CUSK
2 MAY	247	975	OK	-	0'	-	ОК) ×	-	OK		USS CUSK
14 MAY	248	982	OK	1	0×	X	OK	-	-	OK		SUMMERS
29 MAY	249	1036	OK	-	ÖK	-	OK	OK	ОК	OK		USS CARBONERO
31 MAY	250	1068	OK	-	-	-	-	-	-	-		
21 JUN	251	746	OK	-	OK	OK	OK	0.,	ЭК	-		MCDONNELL FUEL METER
28 JUN	252	622	OK	-	OK	-	-	x	-	-		USS CUSK TROUNCE I
18 JUL	253	1173	OK	-	OK	-	x	OK	-	ок		USS CARBONERO
20 JUL	254	1071	OK	-	OK	OK	-	OK	OK	OK		TROUNCE I
16 AUG	255	772	OK	-	OK	-	1	OK	-	x		USS CUSK TROUNCE I
22 AUG	2*6	570	x	-	-	OK	-	-	-	-		J-30 TURBOJET
30 AUG	257	2 h	OK	-	ok	~	OK	OK	OK	OK		USS ARBONERO
31 AUG	258	503	OK	-	OK	OK	1	OK	OK	OK		TROUNCE I

TABLE II

SU (MARY OF COMPONENT PERFORMANCE

X FAILURE

- NO TRIAL

UK SUCCESSFUL

1. INCLUDES BEACON, DYNAMOTOR, AND ANTENNAS.

2. INCLUDES TELEMETR'C TRANSMITTER, BATTE?/ PALK, END INSTRUMENTS, AND ANTENNA-

 INCLUDES RECEIVER, CONTROL RELAY BOX, COMPUTER, AND ANTENNA.
 INCLUDES AUTOPILOT, SERVOMOTORS CONTROL SURFACES AND LINKAGES, AND AIR SYSTEM.

SEGALT

Sin betreen in

41

,*

and the first of the second second

NOTES:

ંજ

SECTET

1

TABLE III

SUMMARY OF RELIABILITY

	ATTEMPTS	SUCCE89FUL	PER CENT RELIABILITY	PER CENT Reliability reported in reference 11
JATO LAUNCHINGS	68	63	92.6	94
XM1-1 LAUNCHINGS	18	17	94.5	96
BEACON 1	68	62	91.2	NOT REPORTED
TELEMETER 2	30	28	93.3	97
RECEIVER 3	63	60	95, 3	NOT REPORTED
AUTOPILOT 4	67	60	89.5	91.0
DUMP SYSTEM	55	51	92.7	90.5
PROPULSION SYSTEM	69	64	92.7	92.0

NOTES:

42 SEGALT

1. INCLUDES BEACON, DYNAMOTOR, AND ANTENNAS.

2. INCLUDES FELEMETRIC TRANSMITTER, BATTERY PACK, END INSTRUMENTS, AND ANTENNA.

3. INCLUDES RECEIVER, CONTROL RELAY BOX, COMPUTER AND ANTENNA.

4. INCLUDES AUTOPILOT, SERVOMOTORS, CONTROL SURFACES AND LINKAGES, AND AIR SYSTEM.

.

SECHET___

tradaction that the state of th

1

Ì

ł

SECHET

Fig. 1. LTV-N-2 (LOON) Missile.

あいちゃく

te dina solidi na tojih satisti

Cutaway View of LTV-N-2 (LOON). 2.

ł

Fig. 3. XM1 Catapult With LOON in Launching Position.

Fig. 4. Rolling Ramp Showing LOON and Four-JATO Launching Sled Immediately After Ignition.

STRAFT

SECHEF

Fig. 5. LOON in Launching Position on NADC Zero-Length Launcher.

Fig. 6. LOON in Launching Position on NAMTC Short-Length Launcher.

40 SECTION

CARANGE BETWEE

his an causin and all how here the law of the

いたち、中国の中国などの

Fig. 7. Launching Installation on Deck of USS CUSK.

SEBHET-

Fig. 8. USS CARBONERC Short-Length Launcher.

48 SECTION

Konne olehanden in Alusia

「おいたのまた」のないまたの

SECRET.

SEGAET

ł

Maria -

「日日本のない」のない

SECTET

ł

Dual Polycone

Wing-tip Polycone

Quarter Wave Stub

50-Stt#[]

10.00

Fig. 11. AN/AKT-10 Telemeter Installation.

SECRET

SECTET

A WYNARD

「たいの」というないというないである

見たいというない

WIRING DIAGRAM OF FUSING SYSTEM FOR MISSILE LTV-N-2 (LOON)

Fig. 12. Schematic Diagram of LOON Warhead-Detonating System.

2 - - - 5

. .

52 SEGALI

SECRET

and Manhood

Constant a Series

1

SECRET

▲ 1999年またようなための「新聞はおおおななななななななななななななな」、 ないできたななが、予定なためではないできた。 あざんたいできたいできたないたいです。

1

;

SECTE

Fig. 15. Original Electronics Nose Mount.

SECRET

Fig. 16. Modified Electronics Nose Mount.

SHAFF

大学がなられたななななないというないないないないないないないないない

SECRET

Statt

i.

Fig. 17. Single-JATO Launching Sled.

Fig. 19. LOON With J-30 Turbojet Figure Installation.

Fig. 20. Missile and Warhead Immediately After Receipt of "Dump" Command.

SECTET

HAYY BOPPO IIND PT NUSU CALIF 169/*3