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TRANSVEP.SE PROPERTIES OF FIBROUS COMPOSITES 

P. E. Chen* and J. M. Lin** 

ABSTRACT 

The transverse stiffness and strength :f unidirectional 

fiber-reinforced composites have been calculated by using the 

finite-element method and the von Mises-Hencky criterion. 

Both the square and hexagonal arrays have been considered for 

the fiber configuration.  The conditions of perfect bonding 

and total debonding have been included in the strength calcu- 

lations. Experimental work has also been conducted on boron- 

aluminum and stainless steel-aluminum composites.  The trans- 

verse properties of such systems have been measured as functions 

of fiber volume content. The theoretical results are compared 

with the experimental data of our own for-the metal-matrix 

composites and those of others for glass-epoxy composites. 

•-Central Research Dept., Monsanto Co., St. Louis, Mo. 

*■■•••.-aterials Research Lab., Washington University, St. Louis, Mo, 



INTRODUCTION 

Various methods [1-7] have been proposed for the calcu- 

lation of transverse stiffness of fibrous composites.  This 

paper emplo/s the finite-element method which is believed to 

be relatively more accurate and rigorous.  Perhaps more sig- 

nificantly, the present paper deals also with the transverse 

strength of fibrous composites using a method based on the 

von Mises-Hencky criterion.  It is assumed that the distortional 

energy condition is valid.  This assumption is substantiated 

by the fact that the fibrous composites usually fail at a 

relatively low level of transverse loading, and also by the 

actual stress-strain behavior of the materials.  Two limiting 

conditions have been considered in the strength calculations. 

?or the first condition the fibers are assumed to be perfectly 

bonded to the matrix, while for the second condition the fibers 

are assumed to be totally debonded from the matrix, thus pro- 

viding the upper and lower bounds.  It is also assumed that 

the fibers are circular in cross section and unidirectionally 

aligned. Moreover, the transverse properties have been calcu- 

lated for both the square and hexagonal arrays as the fiber 

configurations in the normal plane.  The theoretical results 

are confirmed experimentally. 
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TKEORY 

The stresses and displacements of the composite in the 

elastic region are calculated by using the finite-element 

method [8-10].  This method utilizes the direct stiffness con- 

cept which considers the composite system as an assemblage of 

idealized elastic elements assumed to be joined together at 

discrete nodes.  By adding together at each node the stiff- 

ness coefficients of adjacent elements a stiffness matrix for 

the system is obtained.  This stiffness matrix relates the 

external forces acting on the nodes to the displacements of 

the nodes.  By inverting the stiffness matrix one obtains an 

influence matrix which gives the nodal displacements as a 

function of the external forces or loads acting on the system. 

Using the same strain pattern for the elastic element that 

was assumed for deriving its stiffness coefficients, one may 

derive a matrix of stress coefficients which gives the stresses 

in the element as a function of its nodal displacements.  The 

method is ideally suited for analyzing multi-phase materials. 

It is founded on equilibrium and compatibility conditions. 

The Typical Region 

In order to render the problem more tractable, the fibers 

are assumed to be ideally packed into square or hexagonal array 

MM 



as shown in Figure la or 2a.  Further, by invoking symmetry 

and compatibility conditions, it is only necessary to consider 

a typical region as shown in Figure lb or 2b.  The procedure 

for analyzing the typical region is basically similar to that 

described in Reference 11.  The essential details in the 

analysis of the typical region are given in the Appendix. 

The vor. I-lises-Kar.ckv Critaricr. 

Various theories [12-15i have been proposed for predicting 

the strength of materials.  However, the theory introduced by 

von Mises [16] and reinterpreted by I-Iencky [17] is generally 

recognized as conceptually most consistent, and it is also 

supported by experimental evidences. 

The total strain energy stored in an elastic body can 

be divided into two parts, the dilatational energy and the 

distortional energy.  The von Mises-Hencky theory postulates 

that yielding sets in when the distortional energy reaches a 

critical value.  For a uniaxial and plane state of stress the 

criterion becomes 

a*   -   o.a,  + a2
2 = Sm

2 (1) 

where a    and o    are the principal stresses, and S is the 

strength of the matrix material. The quantity on the left 

side of equation (1) will be referred to as the normalized 

distortional energy hereafter. 

mmm- 
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The Stiffness and Strength Calculations 

To proceed with the calculation of the transverse prop- 

erties, the typical region is first divided into a sufficient 

nuruber of finite elements, the procedure given in the Appendix 

is then used to calculate the distributions of stress and dis- 

placement in the region.  Corresponding to the assumed displace- 

ment conditions, the applied normal stress can be calculated 

from the stress distribution previously determined.  The stiff- 

ness is obtained by a simple application of the Kooke's law. 

Assuming perfect bonding or total debonding, the normal- 

ized distorticnal energy is evaluated for every element in the 

domain, thus determining also the maximum normalized distor- 

ticnal energy.  For the condition of perfect bonding the fibers 

are assumed to be in perfect contact with the matrix, and the 

composite is considered continuous, from the mechanistic point 

of view, at the interface between the constituents. For the 

condition of total debonding the fibers are assumed to be 

completely separated from the matrix.  The transverse strength 

of the composite can be calculated from the following equation: 

St = Sm äc / (Umax) ^ (2) 

where ö",, is the applied stress on the composite under the 

assumed displacement conditions as described in the Appendix, 

and UITiax is the corresponding maximum normalized distortional 

energy.  Both äc and Umax are functions of fiber volume con- 

tent, fiber geometry, condition of bonding, as well as the 

constituent properties. 
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EXPJRIMENT 

Materials 

Two types of metal have been used as the matrix materials, 

namely the 6061 and 2024 aluminum alloys.  Boron and t'tainless 

steel fibers have been used for the reinforcing phase. The 

mechanical properties of the constituent materials relevant 

to the theoretical calculations are given in Figures 3-6. 

Technique 

Solid state diffusion bonding technique was utilized to 

fabricate the composites used in the experimental work. 

The general bonding conditions were 3 hours at 11,000 psi and 

900oF for the boron-aluminum system, and 30 minutes at 6,000 

psi and 900oF for the stainless steel-aluminum system.  The 

equipment used for diffusion bonding is shown in Figure 10. 

Tensile specimens were prepared by first shearing or wet 

grinding to approximate size and then polishing with #180 SiC 

paper under running water to final size of 0.30 in. wide by 

2.75 in. long, with the thickness varying from 0.030 in. to 

0.116 in.. A typical tensile specimen is shown in Figure 11. 

All specimens were tested by an Instron machine at room temp- 

erature. 
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RESULTS AND DISCUSSION 

The theoretical approach as described previously was used 

to calculate the transverse properties of boron-6061 aluminum, 

stainless steel-2024 aluminum, E glass-epoxy and S glass-epoxy 

composites, as functions of the fiber volume content. The 

theoretical results are compared with our own experimental 

data obtained for the metal-matrix composites, and the experi- 

mental results obtained by other investigators [3,18,19] for 

glass-epoxy composites, as shown in Figures 3-9. 

The composite transverse properties have been calculated 

for both the square and hexagonal arrays as the idealized fiber 

packings in the matrix.  It is interesting to note from the 

calculated results that the square array gives relatively higher 

transverse stiffness, but lower transverse strength than those 

of the hexagonal array.  However, the stiffness seems to be 

less sensitive than the strength to the change in fiber geometry, 

Strictly speaking, the fiber geometry is neither square nor 

hexagonal, but it appears to be closer to the square array. 

Perhaps, it should be mentioned in passing that all curves for 

the square array terminate at Vf = 78.5%, and those for the 

hexagonal array terminate at Vf = 90.6%.  The above-mentioned 

fiber volume contents are the geometric limitations for the 

respective arrays. 

In addition to the fiber geometry, the extent of debond- 

ing between the matrix and the fibers also has significant 
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effect on the transverse strength of the composites, as can 

be seen in Figures 4, 6 and 9.  in order to see the actual 

conditions of bonding and debonding, the specimens were 

studied under the optical microscope.  Three pictures taken 

ur-^er the microscope are included in this paper for illustra- 

tion.  Corresponding to the experimental data as shown in 

Figure 4, the condition of bonding of boron fibers in 6C61 

aluminum marrix is shown in Figures 12 and 13.  Related to 

the experimental results given in Figure 6, the condition of 

-"""' s w- --—-r.—ess £»=£_ ir. 202-»  a_urr.„r.uzr. rr^aurix is shown 

in Figure 14. 

It is also important to point out from the results 

o^zLine:: thus rar that in no case has the composite transverse 

strength exceeded the matrix strength.  The decrease in trans- 

verse strength for higher fiber content is basically caused 

by the corresponding increase in stress concentration [20]. 

The increased transverse strength for hexagonrl array, as 

compared with the square array, is believed due to a more 

efficient shear transfer device similar to that as suggested 

by Sadowsky [21]. 
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NOMENCLATURE 

S        =  Strength of the matrix material. m 3 

S =  Composite transverse strength. 

E-       =  Young's modulus of the fiber material. 

E        =  Young's modulus of the matrix material, 
m 

E.        =  Composite transverse stiffness. 

v,.       =  Poisson's ratio of the fiber material. 
f 

v        =  Poisson's ratio of the matrix material. 
m 

U        =  Maximum normalized distortional energy. max 

Vf        =  Fiber volume content. 

x, y      =  Rectangular coordinates. 

u, v      =  Displacements in x and y-directions. 

u , v     =  Displacements in x and y-directions for Case 1 

in the Appendix. 

u , v     =  Displacements in x and y-directions for Case 2 

in the Appendix. 

a   ,  a -      Principal stresses. 
12 

ö" , a    =  Average normal stresses in x and y-directions xi'  yi ^ 

for Case 1 in the Appendix. 

0,0    =  Average normal stresses in x and y-directions 
X2   y2 

for Case 2 in the Appendix. 

0,0"     =  Average normal stresses in x and y-directions x  y 

for Case 3 in the Appendix. 

0        =  Applied normal stress on the composite for Case 3 
c 

in the Appendix {0=0" under the assumed condi- c   x 

tions). 

uMamaammmmmm 
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xy       ~  Shearing stress in xy-plane parallel to x or 

y-axis. 

Width of the typical region, 

m 
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APPENDIX 

The determination of the stress and displacement distri- 

butions in a composite as shown in Figure la or 2a can be 

accomplished by analyzing a typical region, as shown in 

Figure lb or 2b.  The region is so chosen that under a normal 

stress at infinity, the rectangular region after deformation 

remains rectangular.  The finite-element technique and the 

method of superposition are used to solve the problem in the 

following steps, assuming that the applied normal stress is 

in the x-direction: 

1.  Solve Case 1 which is defined by the following bound- 

ary conditions: 

TvTr " 0 along the entire boundary, xy 

u  =0 along AO (points remain on the y-axis because 

of symmetry), 

u  =1 along BC (arbitrarily specified unit displace- 

ment) , 

v  =0 along OC (points remain on the x-axis because 

of symmetry), 

v  =0 along AB (specified displacement condition). 

The displacement field thus calculated is (u^Vj), and 

the average normal stresses in the x and y-directions are ä 

and ä  respectively. 



-15- 

2. Solve Case 2 which is defined by the following bound- 

ary conditions: 

T  = 0 along the entire boundary, 

u  =0  along AO, 

u  =0  along BC, 

v  =0  along OC, 

v  =1 along AB. 

The displacement field thus calculated is {u0,v ) and 

the average normal stresses in the x and y-directions are ä 

and a  respectively. 
y2    ^       ■* 

3. Solve Case 3 which is characterized by ä = 0, solu- 

tion of Case 2 is multiplied by (-a / O     )   and summed with 

that of Case 1.  Thus the corresponding applied normal stress 

on the composite is 

-.   _   _    Qyi     - 
aC = GX = aXX   - r-  GX2 . (3) 

yz 

Likewise for the stress and displacement components. 

-• 4-4HV 
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