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TRANSVERSE PROPERTIES OF FIBROUS COMPOSITES

P. E. Chen* and J. M. Lin**

ABSTRACT

The transverse sciffness and strength -~ unidirectional
fiber-reinforced composites have been calculated by using the
finite-element method and the von Mises-Hencky criterion.

Both the squarc and hexagonal arrays have been considered for
the fiber configuration. The conditions of perfect bonding

and total debonding have been included in the strength calcu-
+ations. Experimental work has also been conducted on boron-
aluninum and stainless steel-aluminum composites. The trans-
verse properties of such systems have been measured as functions
of Iiber volume content. The theoretical results are compared
with the experimental data of our own for-the metal-matrix

composites and those of others for glass-epoxy composites.

“Central Research Dept., Monsanto Co., St. Louis, Mo.

*%. .aterials Research Lab., Washington University, St. Louis, Mo.
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INTRODUCTION

Various methods [1-7] have been proposed for the calcu-
ilation of transverse stiffness of fibrous composites. This
paper emplovs the finite-element method which is believed to
e relatively more accurate and rigorous. Perhaps more sig-
nificantly, the present paper deals also with the transverse
strength of fibrous composites using a method based on the
von Mises-Hencky criterion. It is assumed that the distortional
energy condition is valid. This assumption is substantiated
by the fact that the fibrous composites usually fail at a
relatively low level of transverse loading, and also by the
actual stress-strain behavior of the materials. Two limiting
conditions have been considered in the strength calculations.
for the first condlition the fibers are assumed to be perfectly
beonded to the matrix, while for the second conditinn the fibers
are assumed to be totally debonded from the matrix, thus pro-
viding the upper and lower bounds. It is also assumed that
the fibers are circular in cross section and unidirectionally
aligned. MNoreover, the transverse properties have been calcu-
lated for both the sqguarc and hexagonal arrays as the fiber
configurations in the normal plane. The theoretical recualts

are confirmed experimentally.
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The stresses and displacements of the composite in the
elastic region are calculated by using the finite-element
method [€-10]. This method utilizes the direct stiffness con-
cept which considers the composite system as an assemblage of
idealized elastic elements assumed to be joined together at
discrete nodes. By adding together at each node the stiff-
ness coefficients of adjacent elements a stiffness matrix for
the systen is obtained. This stiffness matrix relates the
external forces acting on the nodes to the displacements of
the nodes. By inverting the stiffness matrix one obtains an
influence matrix which gives the nodal displacements as a
funct;on of the external forces or loads acting on the svstem.
Using the same strain pattern for the elastic element that
was assumed for deriving its stiffness coefficients, one may
derive a matrix of stress coefficients which gives the stresses
in the element as a function of its nodal displacements. The
method is ideally suited for analyzing multi-phase materials.

It is founded on equilibrium and compatibility conditions.

The Typical Region

In order to render the problem more tractable, the fibers

are assuned to de ideally packed into square or hexagonal array




as shown in Figure la or 2a. Further, by invoking symmetry
anc compatibility conditions, it is only necessary to consider
a typical region as shown in Figure lb or 2b. The procedure
for analyzing the typical region is basically similar to that
described in Reference 1l1. The essential details in the

analysis of the typical region are given in the Appendix.

Various theories [12-153] have been proposed for predicting
the strength of materials. However, the theory introduced by
vea Mises [16] and reinterpreted by Hencky [17] is generally
recognized as conceptually most consistent, and it is also
supported by experimental evideiices.

The total strain energy stored in an elastic body can
be divided into two parts, the dilatational energy and the
{istortional energy. The von Mises-Hencky theory postulates
that yielding sets in when the distortional energy reaches a

critical value. For a uniaxial and plane state of stress the

criterion becomes
= i 2
0, = 0,0, + 0,5 = 8§ (1)

whére o and o, are the principal stresses, and Sm is the
strength of the matrix material. The quantity on the left
side of cquation (1) will be referred to as the normalized

Gistortional energy hereafter.




The Stiffness and Strength Calculations

To proceed with the calculation of the transverse prop-
erties, the typical region is first divided into a sufficient
number of finite elements, the procedure given in the Appendix
is then used to calculate the distributions of stress and dis-
placement in the region. Corresponding to the assumed displacec-
ment conditions, the applied normal stress can be calculated
from the stress distribution previously determined. The stiff-
ness is obtained by a simple application of the Hooke's law.

Assunming perfect bonding or total debonding, the norwal-
ized distortional energy is eQaluated for every element in the
domain, thus determining also the maximum normalized distor-
tional energy. For the condition of perfect bonding the fibers
are assumed to be in perfect contact with the matrix, and the
compcsite is considered continuous, from the mechanistic point
of view, at the interface between the constituents. For the
condition of total debonding the fibers are assumed to be
completely separated from the matrix. The transverse strength

of the composite can be calculated from the following equation:

_ 1
S, = Sp T/ (Wpax) /2 (2)

where 0, is the applied stress on the composite under the
assumed displacement conditions as described in the Appendix,

and Up... is the corresponding maximum normalized distortional

X
eanergy. Both EE and Upax are functions of fiber volume con-
tent, fiber geometry, condition of bonding, as well as the

constituent properties. .




EXPLRIMENT
I‘laterials

Two types of metal have been used as the matrix materials,
namely the 6061 and 2024 aluminum alloys. Boron and stainless
steel fibers have been used for the reinforcing phase. The
mechanical properties of the constituent materials relevant

to the theoretical calculations are given in Figures 3-6.
Tachnicue

Solid state diffusion bonding technique was utilized to
fabricate the composites used in the experimental work.
The general bonding conditions were 3 hours at 11,000 psi and
900°F for the boron-aluminum system, and 30 minutes at 6,000
Psi and 900°F for the stainless steel-aluminum system. The
equipment used for diffusion bonding is shown in Figure 10.
Tensile specimens were prepared by first shearing or wet
grinding to approximate size ané then polishing with #180 siC
paper under running water to final size of 0.30 in. wide by
2.75 in. long, with the thickness varying from 0.030 in. to
0.116 in.. A typical tensile specimen is shqwn in Figure 11.

All specimens were tested by an Instron machine at room temp-

erature,




RESULTS AND DISCUSSION

The theoretical approach as described previously was used
to calculate the transverse properties of boron-6061 aluminum,
stainless steel-2024 aluminum, E glass-epoxy and S glass-epoxy
composites, as functions of the fiber volume content. The
theoretical results are compared with our own experimental
data obtained for the metal-matrix composites, and the experi-
mental results obtained by other investigators [3,18,19] for
glass;epoxy composites, as shown in Figures 3-9.

The composite transverse properties have been calculated
for both the square and hexagonal arrays as the idealized fiber
packings in the matrix. It is interesting to note from the
calculated results that the square array gives relatively higher
transverse stiffness, but lower transverse strength than those
of the hexagonal array. However, the stiffness seems to be
less sensitive than the strength to the change in fiber geometry.
Strictly speaking, the fiber geometry is neither square nor
hexagonal, but it appears to be closer to the square array.
Perhaps, it should be mentioned in passing that all curves for
the square array terminate at Vg = 78.5%, and those for the
hexagonal arrzay terminate at Vf = 90.6%. The above-mentioned
fiper volume contents are the geometric limitations for the
respective arrays.

In addition to the fiber geometry, the extent of debond-

ing between the matrix and the fibers also has significant



effect on the transverse strength of the composites, as can
be seen in Figures 4, 6 and 9. In order to see the actual
conditions of bonding and debonding, the specimens were
studied under the optical microscope. Three pictures taken
urier the microscope are included in this paper for illustra-
tion. Corresponding to the experimental data as shown in
Figure 4, the condition ¢f reondine of boron fivers in E€CEL
aluminum matrix is shown in Figures 12 and 13. Related to

the experimental results given in Figure 6, the condition of
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It is also important to woint out from the results

& thus Zar that in no case hasg the composite transverse

(1]

oztzin
strength exceeded the matrix strength. The decrease in trans-
verse strength for higher fiber content is basically caused

by the corresponding increase in stress concentration [20].
The increased transverse strength for hexagonrl array, as
compared with the square array, is believed due to a more
efficient shear transfer device similar to that as suggested

by Sadowsky [21].
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NOMENCLATURE

Strenyth of the matrix material.

Composite transverse strength.

Young's modulus of the fiber material.

Young's modulus of the matrix material.
Composite transverse stiffness.

Poisson's ratio of the fiber material.
Poisson's ratio of the matrix material.
Maximum normalized distortional energy.

Fiber wvolume content.

Rectangular coordinates.

Displacements in x and y-directions.
Displacements in x and y-directions for Case 1
in the Appendix.

Displacements in x and y-directions for Case 2
in the Appendix.

Principal stresses.

Average normal stresses in X and y-directions
for Case 1 in the Appendix.

Average normal stresses in x and y-directions
for Case 2 in the Appendix.

Average normal stresses in X and y-directions
for Case 3 in the Appendix.

Applied normal stress on the composite for Case 3
in the Appendix (E& = E% under the assumed condi-

tions). '
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Xy

Shearing stress in Xy-plane parallel to x or

y-axis.

Width of the typical region.
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APPENDIX

The determination of the stress and displacement distri-
butions in a composite as shown in Figure la or 2a can be
accomplished by analyzing a typical region, as shown in
Figure 1lb or 2b. The region is so chosen that under a normal
stress at infinity, the rectangular region after deformation
remains rectangular. The finite-element technique and the
method of superposition are used to solve the problem in the
follo&ing steps, assuming that the applied normal stress is
in the x-direction:

1. Solve Case 1 which is defined by the following bound-
ary conditions:

Txy = 0 along the entire boundary,
u =0 along AO (points remain on the y-axis because

of symmetry),

u =1 along BC (arbitrarily specified unit displace-
ment),
v =0 along OC (points remain on the x-axis because

of symmetry),
v =0 along AB (specified displacement condition).
The displacement field thus calculated is (ul,vl), and
the average normal stresses in the x and y-directions are 5;1

and 391 respectively.

Sl Dl o
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2. Solve Case 2 which is defined by the following bound-

ary conditions

Txy = 0 along the entire boundary,
u = 0 along A0,
u = 0 along BC,
v = 0 along 0OC,
v = 1 along AB.

The displacement field thus calculated is (u,,v,) and

the average normal stresses in the x and y-directions are Egh

-

and E&z respectively.

3. Solve Case 3 which is characterized by E& = 0, solu-
tion of Case 2 is multiplied by (-891/ E&z) and summed with
that of Case 1. Thus the corresponding applied normal stress

on the composite is
= - 71—
@y = =g = 5= @ (3)

Cc cx X1

Likewise for the stress and displacement components.
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{verse properties of such systems have-been measured as functions of

T fiber volume content. The theoretical results .dtre compared with the

.. experimental data of our- own-for the metal-matrix composites and those

{bf others -for glass-epoxy composites.
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method and the von Mises-Hencky criterion. Both the square and hexagon-
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