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THE EFFECT OF NOISE ANISOTROPY ON

DETECTABILITY IN AN OPTIMUM ARRAY PROCESSOR

Franz. B. Tuteur

Department ot Engineering and Applied Science
Yale University

New Haven, Connecticut 06520

ABSTRACT

The effect of localized noise sources on the perform-
ance of the optimum, i.e., likelihood ratio detector, is in-
ve stigated.

Expressions were obtained for the performance loss
of optimum detectors with noise which consists of (1) an
isotropic part, and (2) a component from multiple point
sources.

INTRODUCTION

The object of this paper is to investigate the effect of localized noise sources on the per-
formance of the optimum (likelihood-ratio) detector.

In previous workI expressions for the performance loss of likelihood-ratio detectors when
the noise consisted of an isotropic part and a component from a single point source were ob-
tained. In the present analysis these results are extended to the case of more than one point

4 " source in an attempt to also get some estimate of the performance loss caused by anisotropy
sources that are not strongly localized. Such sources can, presumably, be represented by a
large number of closely spaced point sources.

NOMENCLATURE

The notation used is similar to that used by Edelblute, et al.? The detector is assumed to
I be a directional array consisting of M hydrophones, and the received signal at the ith hydro-

phone is xi(t). Then if the spectrum of xi(t) is limited to frequencies below W Hz, and the
x(t) are observed over an interval, T, such that WT >> 1, x,(t) can be expanded in a Fourier

t ~Series:

IPeter M. Schultheiss, "Passive Detection of a Sonar Target in a Background of Ambient Noise
and Interference from a Second Target." Yale University Progress Report No. 17, submitted
to General Dynamics Corporation, Electric Boat Divisic", September 1964.

This report is included in "Processing of Data from 6onar Systems, Volume I11,11 Kanefsky,
Levesque, Schultheiss, and Tuteur, General Dynamics Corporation, Electric Boat Division Re-
port U417-65-033 (Aug. 23, 1965).

ZDavid J. Edelblute, Joanne M. Fisk, and Gerald L. Kinnison, "Criteria for Optimum-Signal-
Detection Theory for Arrays," J. Acoust. Soc. Am., 41. 199-205 (Jan. 1967).

297 UNCLASSIFIED

ofl. Offtf Na..1 5, h MCob 4, WaWA&.6 DC•C .



£]

298 F. TUTEUR UNCLASSIFIED

L Xi(t)= Xi(n) eJ2ent/T 1)
n-- "T

where the xi(n) are complex Fourier coefficients satisfying xi(-n) x(n) and where the
t i asterisk stands for complex conjugate. All the available information about the signals received

by the entire array is therefore contained in the set of vectors

[Y X n). (2)

It is assumed that X(n) and X(m) are statistically Independent for n X ±m. Suppose that the sig-
nal x1(t) received at the ith hydrophone consists of signal and noise; then the signal component
is given by

Si(t) : yi(n) e
3 

.nt/T (3)

so that the signal component at all hydrophones is represented by

[~n (4)
3!~

Here again _(n) are assumed to be independent from YX() for n Pt tim. Also, the signal is as-
sumed to be independent from the noise. The normalized noise covarlance matrix is defined by

Q(n) = <X(n) XT(n)>N (5)

(

where the superscript T refers to matrix transposition and the symlol < >N means ensemble
average subject to the noise-only hypothesis. N(n) is the average noise power at frequency
2nn/T radians per second.

The normalized signal covariance matrix is

'_'i- et(n) <Y-*•-(n) Y- (n),,,.1
S(n)-

where S(n) is the average signal power at frequency 2?m/T radians per second. If the signal is
a plane wave, the elements yj(n) of Y(n) are all delayed replicas of each other; thus

Syi(n) = cis(n) e T ,(7)

where s(n) is the nth Fourier coefficient of the signal wave form; the c. are weighting factors
to take into account that the signal strength or gain at different hydrophones may be different,
and ri Is the delay at the ith hydrophone. The ci's are conveniently defined in such a way
that

<s*(n) s(n)> 1 (8)

for all n. Hence
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IT
S Y(n) = s(n) S(n) V_ (n) , (9)

T

and therefore

I ~Pk"-) V;()•() (n) yT(n) t.o1
5Sn)

(n) _ v*(n) V0 (n).S(n)

P(n) is seen to be of rank 1. Because of the independence of signal and noise the covariance

matrix of signal and noise together is N(n) g(n) + S(n) P(n).

The detection performance of the optimal processor is defined In terms of the standard
detection index.

3

d (12)

where A, and P0 are the mean values of the output signal when signal is present, and absent,
respectively, and where a. is the standard deviation of the output under the condition that sig-
nal is absent.

By means of a trivial exten.sion of the result of Edelblute et al.,2 it can be shown that

IT
':;:~K EKn) S(n) G,2 (n) :

Sd ,(13)ITI

- K
2
(n) N

2
(n) Go2 (n)

where G0 (n) is the maximum value of the array gain at frequency 2nn/T, given by

Go (n) V T(n) Q"(n) V*(n), (14)

and where

• Z(.) : s(n)/N'(n) (5
n I + S(n) Go(n)/N(n) (

Equation (13) can be simplified somewhat by using a small signal approximation: if

3 F. Bryn, "Optimum Signal Processing of Three-Dimensional Arrays Operating on Gaussian
Signals and Noise." J. Acoust. Soc. Am., 34. 289 (Mar. 196Z).
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S(n) G0(n) N(n). (

then

F S(11)(S~~~~~K(,) f 21---•(1/

and

!• -'• /•, s•(")Go (n) 1

d , N2(n)

Equation (18) will be employed in the sequel, under the assumption that Inequality (16) usu1lly
holds.

EFFECT OF DIRECTIONAL INTERFERENCE

Suppose that the noise component of xi(t) consists of two parts, an isotropic part and an
interference part. It is assumed that the interference is generated by R point sources. The
rth point source is located at an azimuth angle 0,, and its spectral density is I,(w1); hence the
interference power from the rth Interference source at the frequency w. is I,(n). The desired
target Is at the azimuth angle 00 = o, and it is assumed that the array is steered in the target
direction. The isotropic noise power at the frequency w is N0(n). The isotropic noise compo-
nent, the interference sources, and the target signal are all assumed to be mutually independent
Gaussian processes with zero mean. Then the total noise power density is given by

N(n) No(n) + 1,(n) (19)

and the normalized noise covariance matrix has the form

" "NO No(n) Lr(n) T (20)
F ' 

_ n) n Qo N() - Vr(n) VM (n)

where Q,(n) is the normalized covariance matrix of the isotropic noise component and where
each element of the summand results from one of the interference point sources. By direct
analogy to Eqs. (9), (10), and (11)

(0)2wflr1

C1 e

(21)

(,r)

cme

where r~)is the delay of the plane wave f rom the r tb interference source at the i th hydro-
phone.
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The matrix Q(ni) can be inverted by using the following matrix Identity: if A is a non-
singular matrix Rf dimension M and 8 is a matrix of M rows and R columns, then

*(A PD")' A" - A--'D (q , DTA- IH) 'DTA'' (22)

This identity is easily proved by multiplication.

In the present application let

A Nicn) (23)
N(n)

and
?rS- 1 v.,(n) : 2( V / Y<'-• ;""' 1

B Yo V*1) =211) *()V 5~(n)I (24)
- LN~) ~(i) 1.(nV() J~n

Also, to simplify the notation let

-Kr Kr(n) for r I ... R' (25)

and

i: ~G,,: ,,(): v_ (n) _Q '(n) _'(n), (26)

Note that Gr,(n) has the general form of an array gain (see Eq. (19)); we can call it a "cross
array gain." It is clear that

G%,(n) = Gr(n) (27)

In terms of this notation the matrix I + BT A- I B' of Eq. (22) becomes

+1 4i KGil V1C7K 2 r .12 vTIRK 031L-K-K , Gil I K, . . . vl2"t G2R + G (28)

,KRK. G 1+. .. . . . . . . +KGnJ

by an obvious definition of the "cross-array-gain" matrix G. Note that G is square, of dimen-
sionality R, and Hermitian.

By defining a vector of cross-array gains & such that

T ... VR GO[ R (29)

and detection index d, as given in Eq. (18) can be written in the form

! d =F(n) ,
n-ILNo(n)

UNCLASSIFIED
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where

F{n) -- V_0 (1) Q." I(n) Y001)

S0 + G]" I I t" (31)

It is clear that Goo is the optimum array gain with Isotropic noise and that gT (I + G]" -*
represents the effect of the interference. In general, the evaluation of the interference term
in specific instances is difficult for two reasons:

1. The cross-array gains, G,, arc quadratic forms involving the inverted 9Q(1) matrix.

2. Even if the G, j are known the R- R matrix [I * a] must be inverted. Thus it is neces-
sary either to solve Eq. (31) by computer or to make approximations permitting an analytic
result.

The standard simplification that has been used in most previous analyses and which elimi-
nates part of the difficulty involved in evaluating the Gi ý is to assume that there is no correla-
tion between different hydrophones due to the isotropic noise component. The effect of correla-
tion has been considered before and is not expected to alter the results obtained here in any
significant way. With this assumption 2o(n) • 1, and

G00(n) (11,(n) ., 
0 Rt(n) M (32)

G,,(n) eJ• l "L) (33)

A further small simplification results from the assumption that the array is steered on target;
this implies that r10) 0, and therefore

Got(n) e wv(4

Equation (31) is now explicitly evaluated for a number of simple special cases.

SINGLE POINT INTERFERENCE

If there Is only a single interference, Eq. (31) becomes

F(n) = oo- ____ (35)i F~n) = GooI + KIG11'

anKd with the simplification Q6(n) -; this becomes

SKi(oI 0 (6
F(n) M (36)S~I +Kim

by Eq. (34)

UNCLASSIFIED
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iý I h I 1 1 k- I
: %I- I Ml.

:i~~ ~~~ =+ 2 • . o•,,(, k),!

.'I , -, 1,-, (37)

where, for simplicity the superscript on 1
L has been omitted; i.e., , r. '. Hence, the term

representing the loss of detectability due to interference in Eq. (31) becomes

S[ , , C O s ' . -. . ( 3 8 )

I k m I + I

This result is essentially identical to Eq. (29) of Re(, (1).

The double summation term in this result can be represented as the sum of a large number
of phasors, which, for large M and sufficiently large o,, appear at almost random angles. Hence,
to a first approximation this term makes a negligible contribution and therefore

K ?ASF(I) M - 1 - M - I (3q)N - + K1, '-

where the second approximation is permissible if KIM >; 1. Thus one obtains the well-known
result that asymptotically the cost of a single point interference is equivalent to no more than
the loss of one hydrophone from the array.

TWO POINT INTERFERENCES

With two interferences F(n) becomes

[ (I. + KO,)l0,z1 2 + K,(1 e KG 1 ,)1G2o1 - 2K, KRc (Goa Go2) (40)S~F(n) Goo . ....... 0)
•- ~~(I + KýOt (1IlG,± ,.

where Ro ) means real part. As before, the term in brackets represents the effect of the
interference. If, as before,

then

GO 0 1 r22 M,

0~o co - cos - M+ 2 <-cos,, (r-S) - r

i1 kij4 kl t

*- and
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Ii M

If the two interference sources are widely separated in angle from each other and from the
target, then -.( ) and -) differs substantially for all k and are not close to zero. Under these
conditions the coefficient of K1 K2 in both the numerator and denominator of Eq. (40) increases

t with M while the other terms increase with M
2 Hence, for large M these coefficients become

negligible with the result:

XKIGo0 I2  KIGO'1
2

S~~~F(n) :k M - !+KM +KM (42)

and

Sn K 1M K2M
F(n)M 1M+K ' (43)

where the second approximation involves neglect of the oscillating terms in IG0 1 2 and I G 2 2
Thus the effect of interferences is seen to be additive under these conditions. For small
interference-to- .mbient-noise ratios, where KM and K2 M are very much less than unity, F(n)
is reduced roughly by (K I + K2 ) M; while for very large interference-to-ambient-noise ratio, the
reduction is no greater than 2. Thus for small interference-to-noise ratio, the detection index
d decreases roughly with the first power of interference-to-noise ratio (see Eq. (29)), but the
maximum effect is no greater than the loss of two hydrophones.

Suppose next that the two interference sources are sufficiently close together so that for all
frequenices of interest, and for all i,

" "n - 0{1 o, (44)

then

I G 2  M G0 12
• ~~10,21 2 a

and
#.,[+-+Re ((0 ~ G = lol'(45)

ReGo, G12 G02) MIG~I. 115

t. Then
Fn)Goo K,(X + KM)IGo • 2 + K20(1 + K1 M)IGo , 1 2 - 2Mi 1K2IGoI 2 GO (2 + K2 )1Go 1I 2

F(n) • Go - K3(l 0  I + (K! + K)M° - I + (KI + K2)M (46)

Thus, the result converges to the case of a single plane-wave interference of strength K, + K2
- in this case.

For a linear array of m elements spaced d feet apart we can set

1(1 7 = 1 IW2 - i 1 11sin 61 sin 0 21 (47)

UNCLASSIFIED
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where the delay at the central array element is arbitrarily given the value zero. For small

0)--
- i-(1)1 1 2 1M/2 - ii d sin 1 1 cos (e, •) IM/2 - il A 101-021 cos 0. (48)

2

where 0,, (9 + 02)12 is the angle halfway between the two interferences. Then, since w,.

is 277W

nd2..=WE 101-021 COS (49)

and the two interferences are close enough together so that Eq. (46) holds if
!YWMd 10,-021 coS 6M << I

or

10,-0L921 d(.0
77rWM cos 0

As an example let = 5000 Hz, d =2ft, c =5000/ft, and m= 10, then if l0e-0I1 <0.016/cos 0.
radians the two interference points have the same effect as a single one with a higher power
level and therefore the maximum detectability loss can be no greater than a single hydrophoneF as shown by Eq. (39).

Note that for 0. = 7/2 the two interferences are located symmetrically to the end-fire axis
of the array; therefore their effect is always that of a single interference. This, however, is
due to the symmetry of the linear array and does not hold in other cases.

Note further that Eq. (50) is a rather conservative limit since neither the effect of integra-
tion over Irequency or over hydrophone spacing has been considered. Depending on the exact
form of the power spectrum these integrations should result in increasing the value of 01 - 021

by a factor of 4 or 5 over that given in Eq. (50).

If the interference-to- ,oise ratio is small enough so that (Cl + K•) M << 1, then Eq. (46) and
Eq. (43) are approximately the same; thus under this condition the effect of cwo interferences
on the detectability is proportional to the interference power, and independent of the spacing of
the two interference sources from each other. Note, however, that approximating I G., 2 and
IG.0 • 2 by M still implies that the interference direction is substantially different from the tar-
get direction.

MORE THAN TWO INTERFERENCES

w- Extension of the results obtained so far to more interferences Is difficult and involves fur-
ther approximations. Consider first the large interference-to-noise ratio case, with all inter-
ferences widely separated. We assume as before that Q. = I and that therefore Grr - M for
r = 0.1.2 .... R. It can be seen from Eq. (41) that the off-diagonal elements of G are of order
vV. It can be shown in general (see Appendix) that for the purpose of approximate inversion an
n-dimensional matrix whose diagonal elements are of order k relative to the off-diagonal ele-
ments can be approximated by a diagonal matrix if k - n. Thus if A > R the off-diagonal
elements of the matrix [I+ G] can be neglected in forming the inverse, with the result that

UNCLASSIFIED
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_, 1,.G,0 1 2

F(n) Goo - (51)

M- l + 1 s ( " - "(52i I• KrMi

where • ') is the Interference delay from the rth interference source at the ith hydrophone.
Equationý (51) is the direct extension of Eq. (43) and indicates that for widely spaced point inter-
ference sources the detectability loss is approximately equivalent to the loss of one hydrophone
per interference source. The approximation is good only for !R << «'.

EFFECT OF DISTRIBUTED INTERFERENCE SOURCE

A distributed interference source can be represented by a large number of closely spaced
point sources. Suppose that the interference source has a spectral density 1(n) and that the
interference power is uniform for angles inside the interval 0 1 < 0 < 02 and zero outside.
Then the interference can be represented by R points of spectral density 1(n)/R equally spaced
iin the interval, where R is a large number. Initially it will be assumed that the interference-
to-ambient-noise ratio is small. Although the result obtained under this assumption is some-
what academic (since the interference effect is very small in any case) it is possible to obtain
an analytic result which is probably applicable with some mofidications to larger interference-
to-ambient-noise ratio as well, Under this assumption, the elements of the matrix § are all
very small, and it is approximately true that

I + G •;.1 (53)

Then the matrix inversion is, of course, trivial. The precise condition for Eq. (53) to be a good
approximation may be deduced from Ref. (4); a simple sufficient condition is that

vrKK. IG,• << 1 for all r 1 . R. (54), =

In the present discussion K, = Kl/R for all r =. R, where K, I(n)/No(n) is the total
interference-to-ambient noise ratio. A conservative upper bound on K, such that Eqs. (53) and
(54) are good approximations is obtained by letting I Gr, M for all r.s (see Eq. (49)). Hence,
if

K1 M - I . (55)

Eq. (53) is a good approximation, and under these conditions Eq. (31) becomes

SF(n) =Goo 0 ~*:

•: : °Goo - R 15
K 0 f 00~ 1oJ2.(56)

and by use of Eq. (41) this becomes:

4B. Freeman, Principles and Techniques of Applied Mathematics (John Wiley and Sons, New
York, 1957). p. 34.
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2K1 M .-1 M RC
F01) G oo- K11 Cos n kTi - (57)

i=1 k=i+1 =L

We assume now that the azimuth angle subtended by the interference is small enough so
that the TS.') do not differ very greatly as r goes from 1 to R. Then, it is possible to expand
TO') Ina traylor series in r as follows:

T(r) T .) + (r-m) A , (58)

where m = R/2 is used as the point about which the expansion is performed; T¶") is effectively
the mean delay of the interference wavefront.

As R is allowed to go to infinity the summation in r can be converted into an integral.
Hence Eq. (57) becomes, after some reduction

s-in w (AT, - 1T)
F(n) - + cos ) M)59)

S,=!~~~2 s~in,t 2 ( -• kK, [1 2 -i (r) rm) in] (0

i; where, in going from Eq. (59) to (60) we have used the fact that

!-.' 2 Ar - Ar,r) = (Ar - A.rtk) r.-~~ - (<)" 61) i

2L. i k

:• As before, the term representing the loss of detectability is the bracketed term in Eq. (60).
S~Except for the sin x/x term the form of the double summation is the same as that which would

be obtained for a single interference, (Eq. 54) with mean delay k at the ith hydrophone,
under the condition frm Eq 1. In fact, the argument that the summation of the oscillating terms

;: tends to become negligible applies here with ever greater force, because of the sin x/x term.One can conclude, therefore, that for interference-to-ambient noise ratio small enough to sat-

isfy Eq. (55), and if the angle subtended by the interference in relatively small, a distributed
interference source affects the performance in essentially the same way as a single point
interference.

In order to obtain an fatimate of the magnitude of azimuth angle that can be considered
"small," consider a linear array with M hydrophones spaced d feet apart. For such an array

"7(r) =i d sin O (62)

where or is the azimuth argle of the rth interference point. Assume that the interference
power is uniform over the range 01 e o _ &2 and is zero outside this range. The center of the
interference is at the angle

0, (61 +O) . (63)

Then, by analogy with Eq. (58) we expand sin or about 0.; i.e.,

sin 6, • sin 0 + (,- 6.) cos 06. (64)

UNCLASSIFIED

i- -- - :~



308 F. TUTEUR UNCLASSIFIED

All the other steps leading to Eq. (60) can then be performed in exactly the same way, with the
4P summation over R replaced by an integration over 0,. The final result an be put into the form

k d sin.-• co- ,. •(5

F(n) Goo - KI + 2 (M(-k) cos sin 8 f kc~d sin 0__

Except for the sin x/x term in the summation, this is again the expression that one would have
Y obtained for a single point interference location at the angle 0.. It is clear that the accuracy

of this expression depends on the accuracy of Eq. (64) which in turn is a fairly good approxima-
tion for 02 - 0, less than about 1 radian. Thus we conclude that an interference source spread
over no more than cne radian affects the detectability essentially like a single point interfer-
ence provided that KIM << 1.

Since the effect of interference for Km <- I is very small, the result just obtained is
somewhat academic and it would be desirable to extend it somehow to the case of KiM >> 1.
Unfortunately this is quite difficult; in fact, the only simple result that has been obtained Is an

0 extension of Eq. (46) to more than two interference sources. As in the case of two interferences,
it is assumed that the interference points are close enough together so that for all frequencies
of interest 1

max (66)

•r.

The extension to R interference points is then quite straightforward, and the result is that the
detectability loss is again equivalent to that of a single interference source of strength MI. For
a linear array having M equally spaced hydrophones the maximum value of 0, - 6, for which
this result holds is given by Eq. (50).

COMPUTATIONAL RESULTS

Since it has not been possible to obtain meaningful analytic results for caaes in which the
approximations made in the above work are not applicable, F(n) has been evaluated on a digital
computer for a number of different array and interference patterns, and for specific frequen-
cies. The results of some of these computations are presented in Figs. I through 6. In all
computations it is assumed that the array is steered on target at an angle 6 = 0 and that an
interference exists at some angle 01. The curves are then plots of F(n) as 0, is varied. Thus,
if 0, is near 0 the interference is near the target in azimuth, and F(n) is small. Also, the as-
sumption that correlation of ambient noise waveforms between different hydrophones is zero
has not been used; instead the exact form of the 20 (n) matrix as given by Bryn 3 was used. As
a result F(n) x m in the absence of interference as would be inferred from equations such as
(36), (43), and (52). In fact, F(n) < M in all cases; however, this is a coincidence. It is possible
for F(n) > M as is shown by Bryn. 3 In all cases the interference-to-ambient noise ratio is
large.

Figure 1 shows the effect of a single point interference with a small circular array. It
shows that if the interference directions differ by more than about 40 degrees from the target
direction the effect on F(n) is essentially negligible. It must be borne in mind, however, that
this Is only demonstrated for a single frequency (5000 rad/sec). The picture looks different at
other frequencies, and the integrated effect of all frequencies therefore has the effect of the
loss of one hydrophone as is predicted by the analysis in the section on single point interference.

Figures 2 and 3 are similar to Fig. 1 except that the interference consists, respectively, of
two and of four points, separated by 0.1 radian. Since the interference covers a large azimuth
segment, the effect on F(n) covers a larger angle; however, it is still true that for interference
sources at angles far removed from zero the effect on F(n) is small. A similar result is shown

UNCLASSIFIED
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F(0) FOR CIRCULAR ARRAY CONSISTING OF 10 ELEMENTS EQUALLY SPACED ON
A G-FT DIA. CIRCLE. FREQUENCY IS SWO RADSEC.
INTERFERENCE CONSISTS OF A SINGLE POINT AT THE ANGLE 01.
THE ARRAY IS STEERED IN THE W:ECTION 61 0.

0SrF(n)
WITHOUT
INTERFERENCE

6-

22

AZIMUTH ANGLEeI

Fig. 1. Effect of single point interference

F(n) FOR CIRCULAR ARRAY CONSISTING OF 10 ELEMENTS EQUALLY SPACED ON A
4-FT DIA. CIRCLE.
FREQUENCY 2 5000 RAD/SEC.

INTERFERENCE CONSISTS OF A POINT AT THE ANGLE 4, AND ANOTHER POINT
AT 01,* 0.1

to. THE ARRAY IS STEERED IN THE DIRECTION -0

7 K K2 
.S

WIT14OUT
INTERFERENCE

4-

I '

I, •

do 20° 4;P t, 90° 8 lO1;° 12'P 14O° Ileo

AZIMUTH ANGLE •1

Fig. 2. Effect of two interference points spaced
0.1 radians apart in azimuth
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117) FOR CIRCULAR ARRAY CONSISTING OF 10 ELEMENTS EQUALLY SPACED ON A
I-AT. DIA. CIRCLE. FREQUENCY 0 8000 tAD/SEC.
INTER PERENCE CONSISTS OF 4 POINTS LOCATED AT 0, I, 1 * .2,

10 THE ARRAY IS STEERED IN THE DIRECTIION * 0
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Fig. 3. Effect of four interference points spaced
0.1 radians apart in azimuth

F(n) FOR CIRCULAR ARRAY CONSISTING OF 10 ELFMENTS EQUALLY SPACED ON A
6 PT DIA. CIRCLE
FREQUENCY 1S 5000 HAD/SEC.
INTERFERHENCECONSISTS OF ONE POINT AT 0 AND ANOTHER AT 0 *90.
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"Fig. 4. Effect of two interference points spaced
90 degrees apart in azimuth
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F(l) F"Ol LINEAR ARRIAY CONSISlING OF 10 ELEMENTS, SPACED 2 FT APART

FREQUENCY IS 4000 HAD/SEC.

INTERFERENCE CONSISTS OF 20 POINTS LOCATED AT 'l, 1"' l 8°'

. 17. 10
X- K,1-!20D

ARRAY STEERED dON TARGFT AT 0 O0

WIT INTERFERENCE

4:1.
-60' 4 7 20P 0. 200 40o 600' so

INTERFERENCE AZIMUTH ANGLE 01

Fig. 5. Effect of a distributed interference source approximated
by 20 point interferences spaced 0.9 degree apart. Frequency is
4000 rad/sec.

F(n) FOR LINEAR ARRAY CONSISTING OF 10 ELEMENTS SPACED 2 rr APART
FREQUENCY IS 2000 RAD/SEC.
INTERFERENCE CONSISTS OF 20 POINTS LOCATED AT o0. el 9, I. 80g

e. K 1 M. -200

F(n)I ARRAY IS STEERED ON TARGET AT 600

0 WITHOUT INTER EFRRNCE

WITH IN'TERHFER ENCE

"--." -- - A0' -40' -20' 0 o0 450 -2o 5

INTERFERENCE AZIMUTH ANGLE '1

Fig. 6. Effect of a distributed interference source approximated
by 20 point interferences spaced 0.9 degree apart. Frequency is
2000 rad/sec.
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in Fig. 4 which shows the effect of two interferences separated by a large angle (90 degrees).
The last two figures show the effect of a strong interference (X, = 200) distributed over a rela-
tively large angle (17 degrees). Again the effect at angles far removed from the target angle is
small, but, as is shown in Fig. 6, the relative effect is quite different at different frequencies,
as has already been pointed out.

The computations leading to the results shown in Figs. 1 through 6 were quite time consum-
ing, with computing times on the order of several minutes on the IBM 7094 for the cases with
large numbers of interference points. For this reason no attempt was made to compute the
complete detection index, since this would have required summation of F(n) over a large num-
ber of frequencies. The computer results therefore still do not conclusively answer the ques-
tion of how serious is the effect of large distributed interferences. The indications are, how-
ever, that the results of the previous section are valid under considerably wider conditions
than those assumed there to produce analytical approximations. In fact, it appears that loss of
detectability for rather widely distributed interference is equivalent to, at most, a few hydro-
phones.

CONCLUSIONS

The major difficulty in obtaining general estimates of the effect of directional noise on the
detectability in an array processor is that the mathematical manipulations required to obtain
answers are quite complex. Results have therefore been obtained only in a restricted number
of simple cases.

The general tenor of these results is that if the anisotropic-to-isotropic noise ratio is
small the effect of a number of local noise sources is additive; that is, the loss of detectability
resulting from two noise sources of equal strength is twice that resulting from a single source.
For large anisetropic-to-ambient noise ratio the effect depends on whether the directional
noise sources are close together or not. For a single point source it has been shown previously
and corroborated here that the loss in detectability is approximately equivalent to the loss of
one hydrophone from the array. If there are R noise sources, widely separated from each
other and from the target direction, the loss is approximately equivalent to the loss of R hydro-
phones, provided that R - VW, where M is the number of hydrophones.

Point noise sources that are close together affect the system like a single distributed noise
source, and the indications are that if such an anisotropy is spread over a relatively small
angle, its effect is essentially that of a single point noise. Unfortunately this has not been con-
clusively demonstrated, even by use of a digital computer, and only a rather conservative esti-
mate of azimuth angle that can be considered to be "small" has been obtained.

Appendix

APPROXIMATE INVERSION OF A MATRIX WHOSE DIAGONAL TERMS
ARE LARGE RELATIVE TO THE OFF-DIAGONAL TERMS

Let the n x n nonsingular matrix A be given by

A D•+ B, (A-i)

where D is diagonal and B is a matrix with zero diagonal elements. It is assumed that all the
non-diagonal elements of R are of about the same order of magnitude, and that the elements of
D are of about K times that magnitude, with KX 1.

The inverse of A is given by

A- (_+)"•D' (!'+Y 3- )" -F1 1 --- "'+ (L--") .... (A-2)
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Since the elements of 1) are of order K relative to _B, the elements of 131)' are order I K rela-
tive to unity.

It !an be shown5 that a sufficient condition for convergence of Eq. (A-2) is

S• I~~biji < 1I -I i (A- 3)

where 1),b are the elements of BD -. Assuming all of these elements to be of about the same

order of magnitude, condition (A-3) can be expressed in the approximate form

nbo "-I (A-4)

where h, is a representative element of 13D- '. This element is of order I XK therefore con-
vergence requires

nK < I. (A-5)

The convergence will clearly be more rapid if this inequality is sharper; hence one can ap-
proximately neglect the matrix B in the inversion of A if i/K <ý I.
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