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THE EFFECT OF NOISE ANISOTROPY ON
DETECTABILITY IN AN OPTIMUM ARRAY PROCESSOR

Franz. B, Tuteur

Department ot Engineering and Applied Science
Yale University
New Haver, Connecticut 06520
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ABSTRACT

L e

The effect of localized noise sources on the perform-
ance of the optimum, i.e., likelihood ratio detector, is in-
vestigated.

It e

P

Expressions werc obtained for the performance loss
of optimum detectors with noise which consists of (1) an
isotropic part, and (2) a component from multiple point
sources.

e

INTRODUCTION

The object cf this paper is to investigate the effect of localized noise sources on the per-
formance of the optimum (likelihood-ratio) detector.

g

In previous work! expressions for the performance loss of likelihood-ratio detectors when
the noise consisted of an isotropic part and a component from a single point source were ob-
tained. In the present analysis these results are extendea to the case of more than one point
source in an attempt to also get some estimate of the performance loss caused by anisotropy
sources that are not strongly localized. Such sources can, presumably, be represented by a
large number of closely spaced point sources.

NOMENCLATURE

The notation used is similar to that used by Edelblute, et al.%2 The detector is assumed to
be a directional array consisting of N hydrophones, and the received signal at the ith hydro-
% phone is x;(t). Then if the spectrum of x,(t) is limited to frequencies below ¥ Hz, and the
x(t) are observed over an interval, T, such that WT >> 1, x,(t) can be expanded in a Fourier
Series: .

t Ipeter M. Schultheiss, "Passive Detection of a Sonar Target in a Background of Ambient Noise
- and Interference from a Second Target," Yale University Progress Report No. 17, submitted
to General Dynamics Corporation, Electric Boat Divisicn, Septembezr 1964,

This report is included in '""Procegsing of Data from sonar Systems, Volume II1," Kanefsky,
Levesque, Schultheiss, and Tuteur, General Dynamics Corporation, Electric Boat Division Re~
port U417-65-033 (Aug. 23, 1965),

2David J. Edelblute, Joanne M. Fisk, and Gerald L. Kinnison, "Critéria for Optimum-Signal-

TR L

1P T

& Detection Theory for Arrays," J. Acoust. Soc. Am., 41, 199-205 (Jan. 1967).
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© | T8) .
x‘(t)'= x‘(n) e Innt/T , (1)
n®=-NY

where the x,(n) are complex Fourier coefficients satisfying x;(-n) = x}(n) and where the
asterisk stands for complex conjugate. All the available information about the signals received
by the entire array is therefore contained in the set of vectors

x,(n)
X(n) = : . 2
X4(n)
It is assumed that X(n) and X(m) are statistically independent for n # :m. Suppose that the sig-
nal x;(t) recelved at the ith hydrophone consists of signal and noise; then the signal component

is given by

T

3;(t) = Z yi(n) eI ¥VT (3)

n*- 9T
80 that the signal component at all hydrophones is represented by
yi(n)
¥(n) = . . @
yui(n)
Here again Y(n) are assumed to be independent from ¥(m) for n # tm. Also, the signal is ag-
sumed to be independent from the noise. The normalized noise covariance matrix is defined by
1 -
AR) = gy X K )

where the superscript T refers to matrix transposition and the symbol < >4y means ensemble
average subject to the noise-only hypothesis. N(n) is the average noise power at frequency
2m/T radians per second.

The normalized signal covariance matrix is

1 .
PO) = goy X0 Y0P, @

where S(n) is the average signal power at frequency 2»m/T radians per second. If the signal is
2 plane wave, the elements y,(n) of ¥(n) are all delayed replicas of each other; thus

InaTr,
. nl

T 4]

]
yi(n) = c;s(n) e '
where s(n) is the nth Fourier coefficient of the signal wave form; the ¢, are weighting factors

to take into account that the signal strength or gain at different hydrophones may be different,
and -, is the delay at the ith hydrophone. The c;'s are conveniently defined in such a way

that
<se(n) s(n)> = 1 ®

for all n. Hence
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and therefore

1+ S(n) Gy(n)N(n) '

Equation (13) can be simplified somewhat by using a small signal approximation: if

: <s*(n) s(n)>
Bn) = g Yo(®) Vd(m) (10)
. | T
BR) = 55 Yn) Yo'(n). (an :
: P(n) is seen to be of rank 1. Because of the independence of signal and noige the covariance J
g matrix of signal and ncise together is N(n) Q(n) + S(n) B(n). “
z The detection performance of the optimal processor is defined in terims of the standard 1
bo: detection index.3 :
i 7 i
i Hy~ Mo ¥
dzs——-, i
o (12) j
© i
£ where 4, and #, are the mean values of the output signal when signal is present, and absent, ;
i respectively, and where o, is the standard devization of the output under the condition that sig- 4
nal is absent. ‘1
i By means of a trivial exte~sion of the result of Edelblute et al.,2 it can be shown that
i 3
i 2. Kin) S(n) G’ (m) 4
R d = el . i
s v (13) j
2. XK%(n) N%(n) Gg? (n)
n=} :1
where G)(n) is the maximum value of the array gain at frequency 2m/T, given by ;
Go(m) = Vg7 (n) Q" '(n) Va(n) (14) ?
£ and where i
£
; 2 .
'».. K(n) = S(n)/N¥n) (15)

'; 3F. Bryn, "Optimum Signal Processing of Three-Dimensional Arrays Operating on Gaussian
: Signals and Noise," J. Acoust, Soc. Am., 34, 289 (Mar. 1962).
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$(n) Gy(n) << N(n). (16) ’
then
: S(n) ‘
: K(n) =
? IR (11
r Z $7(n) Gy(n)? (18)
' N’("\)

Equation (18) will be employed in the sequel, under the assumption that inequality (16) usually
holds.

EFFECT OF DIRECTIONAL INTERFERENCE

Suppose that the noise component of x;(t) consists of two parts, an isotropic part and an
interference part. It is assumed that the interference is generated by R point sources. The
rth point source is located at an azlinuth angle ¢_, and its spectral density is I1,(w); hence the
interference power from the rth interference source at the frequency «, i8 I (n). The desired
target is at the azimuth angle 0 = 0, and it is assumed that the array is "steered in the target
direction. The isotropic noise power at the frequency «_  i8 N,(n). The isotropic noise compo-
nent, the interference sources, and the target signal are "all assumed to be mutually independent
Gaussian processes with zero mean. Then the total noise power density is given by

M Dttt SNl

TP

T

T

N(n) = No(n) + 3 I.(n), (19)

st A BESANE ¢ D A ITREL AN EOATACN TCEE L BV oA AR R e A

and the normalized noise covariance matrix has the form

IR TR T T

i 3
H 1.(n)
3 Q(n) = Qo(n) * Z N' Vi) v (n), (20)
- H T
: : where Q,(n) i8 the normalized covariance matrix of the isotropic noise component and where
each element of the summand results from one of the interference point sources. By direct
analogy to Egs. (9), (10), and (11)
B )
Zﬂnfl
T
Cl (]
- Vo(n) = : @1
(r)
2ﬂn7.
i T
i C“ €

R

where -{"’ is the delay of the plane wave from the rth interference source at the ith hydro-
phone.
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The matrix Q(n) can be inverted by using the following matrix identity: it A i8 a non-
singular matrix of dimension M and B is a matrix of M rows and R columns, then

(A8 BT = A t- At BTA Yy BTA! (22)

This identity is easily proved by multiplication.

In the present application let
A= =22 () (23)
and

.
._ Ty(m) ' I,(n) . S (1
B - [V ToRCRRS ORISR0 @4

Also, tc simplify the notation let

I
K, = Ke(n) = P;((:)) for r=1...R" (25)
and
Gpy = Gpg(m) = VT (n) Q' (n) Ya(n) (26)

Note that G_,(n) has the general form of an array gain (see Eq. (19)); we can call it a "cross
array gain." It is clear that

Gro(n) = G, (n). 27
In terms of this notation the matrix 1 +BTA°1B* of Eq. (22) becomes

I‘l“ K6, VKK G, ... VKK Guz-|

VKK, Gl 1+K,6,, oo -Vk.zzn Gyr

VKgK, Glp ...1»!(,0"J

"I+ @G (28)

by an obvious definition of the "cross-array-gain” matrix G. Note that G is square, of dimen-
sionality R, and Hermitian.

By defining a vector of cross-array gains g such that
=[\/KTG°, VE;G,, ...\m;co,,]. (29)

and detection index d, as given in Eq. (18) can be written in the form

? (30)
‘/n-l No(“) (n)] '
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where

F(n) = \‘..'or m e Y(n) Vo(n)

= Goo - ETll* Gl tet. (31)

It is clear that G,, Is the optimum array gain with isotropic noise and that g'(1 +6)- ' g* 4
represents the effect of the intexference. In general, the evaluation of the interference term :
in specific instances is difficult for two reasons:

:
&
g
£
=
%
1
z
=
I

1. The cross-array gains, G;;, are quadratic forms involving the inverted Q,(n) matrix.

A

2. Even if the G,, are known the R~ R matrix (] + G} must be inverted. Thus it is neces-
sary elther to solve Eq. (31) by computer or to make approximations permitting an analytic
result.

1
S

4

EEANRUAREE

The standard simplification that has been used in most previous analyses and which elimi-
nates part of the difficulty involved in evaluating the G; ; 18 to assume that there is no correla-
tion between different hydrophones due to the isotropic noise component. The effect of correla-
tion has been considered before and i8 not expected to alter the results obtained here in any
significant way. With this assumption Q,(n) = 1, and

LY ARG N VRN A1 1L 1 11 o

Gpo(n) = Gy (0) = ... = Gpp(n) = M (32)

. (r) (®)
G,.<n>=2:e’"n<'l SRS (39

B IPPRati R B AL

AL
i

Al vire

3 A further small simplification results from the assumption that the array is steered on target;
- : this implies that r{°) = 0, and therefore

Gy ((n) = Z RO (34)
w1

Equation (31) is now explicitly evaluated for a number of simple special cases.

'
iz
£

SINGLE POINT INTERFERENCE

If there 18 ouly a single interference, Eq. (31) becomes

xllcoll ! (35)

F(n) = Goo = 737K, Gy, * .

and with the simplification Q,(n) = I; this becomes

K,iGo, |2

TN 39)

F(n) = M -

by Eq. (34)

UNCLASSIFIED
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i1 k=1 i*l k=t
-1 N
1 N\ !
= M+2 cos (7~ 1),
1 ok=i
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@7

where, for aimplicity the superscript on =, has been omitted; i.e., v, = r{'>. Hence, the term

representing the loss of detectability due to interference in Eq. (31) becomes

KM el '
m—‘—M‘ 14 —M‘Z Z-‘ COS W (7 - vk) .
i) k=i+1

This result 18 essentially identical to Eq. (29) of Ref. (1).

The double summation term in this result can be represented as the sum of a large number
of phasors, which, for large M and sufficiently large «, appear at almost random argles. Hence,

to a first approximation this term makes a negligible contribution and therefore

KM

F(n)‘&:"-l—*’—xi—"-’e“",

(38)

(39)

where the second approximation is permissible if KM >> 1, Thus one obtains the well-known
result that asymptotically the cost of a single point interference is equivalent to no more than

the loss of one hydrophore from the array.

TWO POINT INTERFERENCES

With two interferences F(n) becomes

Ky(1+ Ky0,,)105,17 + Ky(1 + K, 6,)1Gg,? - 2K Ky Re (Gyy Gy,G5,)

F(n) = Goq | -
(n) oo[ (1 +K;Gyp,) (1 +KyGyp) - K K, IGy,l2

where Re { ) means real part. As before, the term in brackets represents the effect of the

interference. If, as before,

Qo(n) = I,
then
Goo = Gyp * Gyp = M,
-1 M LI N
1Goal* - Z }: cos wy(rg* - ity = My 2 cos w(7{* - (M),
w1 hel i1 kmiel
uei M
Gyl T = M+ cos uln('l'gl)-7§,)-Y§‘)+T‘(‘:))-
iel k=it
and

] . (40)
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W N W b
Rc(GOlGHG;I):ZZ: cos “’n('rg‘)"'l(c”+Tl(c“"sa))- (41

WY E T TR e e s R R

L S U

i=t k=1 =1

If the two interference sources are widely separated in angle from each other and from the
target, then ~(1) and v{?) differs substantially for all k and are not close to zerc. Under these
conditions the coefficient of K K, in both the numerator and denominator of Eq. (40) increases
with M while the other terms increase with M*, Hence, for large M these coefficients become
negligible with the result;

KilGoyl?  K,1G,, 1"

Fo) M= 7K N - T KN (42)
and

Py won - —a KM

™ T+ KN 1T+KN (43)

where the second approximation involves neglect of the oscillating terms in {G,,|? and |G,,]2.
Thus the effect of interferences is seen to be additive under these conditions. For small
interference-to-ambient-noise ratios, where K, M and X,M are very much less than unity, F(n)
{8 reduced roughly by (K, +K,)M; while for very large interference-to-ambient-noise ratio, the
reduction i8 no greater than 2. Thus for small interference-to-noise ratio, the detection index
d decreases roughly with the first power of interference-to-noise ratio (see Eq. (29)), but the
maximum effect i8 no greater than the loss of two hydrophones.

Suppose next that the two interference sources are sufficiently close together so that for al)
frequenices of interest, and for all i,

walrit - 1P x 0, (44)
then
1Gy,! 2 = Gy, 1 2,
1G] 2 & w2,
and
Re (Gy; G2 Gg2) = MIG,,| 2. (45)
Then
Ky (1+K MGy, [* + Ky(1+ K M)IGy, | - 2MK,K, Gy, [ 2 (K, +K,) G|
F(R) % Gyg - T = Gyg - IR TRTATE (46)

Thus, the result converges to the case of a single plane-wave interference of strength K, +K,
in this case.

For a linear array of M elements spaced d feet apart we can set

1 | _ .1 d R .
o4 )_-r(i | = ||I/2- 1|F|sm 8, - sin 6,1 , 47

UNCLASSIFIED
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where the delay at the central array element is arbitrarily given the value zero. For small 3

b 6= 6 :
: , 6,-6 6,48 :
: 1§"—T§2)|:2|H/2-1|gsin‘ '2 2 cos( '2 z)x[kl/2-i|g|9‘—91| cos 9.,  (48) q
; )
A where 9, = (8, +8,)/2 is the angle halfway between the two interferences. Then, since », 1
L: ? is 2n7W nax ‘%
: writ? - D :nvm%[(?l-ﬁ,! cos 6 49) :
2 max :‘
i and the two interferences are close enough together so that Eq. (46) holds if
nwuﬁle -6,] cos 6, << 1
: c 1 2 .
: or
1
: 16,-6,| <«—g—.
BT WM < cos B (50)

£ As an example let W= 5000 Hz, d = 2 ft, ¢ = 5000/ft, and M = 10, then if {6,-6,| <<0.016/cos 4,
3 radians the two interference points have the same effect as a single cne with a higher power

12 level and therefore the maximum detectability loss can be no greater than a single hydrophone
as shown by Eq. (39).

Note that for 4_=7/2 the two interferences are located symmetrically to the end-fire axis
of the array; therefore their effect is nlways that of a single interference. This, however, is
due to the symmetry of the linear array and does not hold in other cases.

bt e

Note further that Eq. (50) is a rather conservative limit since neither the effect of integra-
tion over irequency or over hydrophone spacing has been considered. Depending on the exact
H form of the power spectrum these integrations should result in increasing the value of |6, -6,|
£ by a factor of 4 or 5 over that given in Eq. (50).

v Ll

If the interfersnce-to-noise ratio is small enough so that (K, +K,) M << 1, then Eq. {16} and
= Eq. (43) are approximately the same; thus under this condition the effect of wo interferences k

on the detectability is proportional to the interference power, and independent of the spacing of M
the two interference sources from each other. Note, however, that approximating 1G,,!? and :
[Gy,) 2 by N still implies that the interference direction is substantially different from the tar- o
get direction. 3

TR g T £

MORE THAN TWO INTERFERENCES

Extension of the results obtained so far to more interferences is difficult and involves fur-
ther approximations. Consider first the large interference-to-noise ratio case, with all inter-
ferences widely separated. We assume as before that Q, = 1 and that therefore G, = M for
r= 0.1.2...,R. It can be seen from Eq. (41) that the off-diagonal elements of G are of order
vW. It can be shown in general (8ee Appendix) that for the purpose of approximate inversion an
n-dimensional matrix whose diagonal elements are of order k relative to the off-diagonal ele-
ments can be approximated by a diagonal matrix if k >> n. Thus if VN >> R the off-diagonal
elements of the matrix {1+G) can be neglected in forming the inverse, with the result that

B

tetiiTns MR aEl ALG e e
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R
K, G,,]2
F(n) » Gy, - 1—;}(-%- (51)
e 1 4 re
2 M=l ]
2 (ry _ _4r)
e AL D e A)]. e

where 7{*) is the interferadce delay from the rth interference source at the ith hydrophone.
Equatxon (51) is the direct extension of Eq. (43) and indicates that for widely spaced point inter-
ference sources the detectability loss is approximately equivalent to the loss of one hydrophone
per interference source. The approximation is good only for R <<\M.

EFFECT OF DISTRIBUTED INTERFERENCE SOURCE

A distributed interference source can be represented by a large number of closely spaced
point sources. Suppose that the interference source has a spectral density I(n) and that the
interierence power is uniform for angles inside the interval 6, < é < ¢, and zero outside,
Then the interference can be represented by R points of spectral density I(n)/R equally spaced
in the irterval, where R is a large number. Initially it will be assumed that the interference-
to-ambient-noise ratio is small. Although the result obtained under this assumption is some-
what academic (since the interference effect is very small in any casv) it is possible to obtain
an analytic result which is probably applicable with some mofidications to larger interference-
to-ambient-noise ratio as well, Under this assumption, the elements of the matrix G are all
very small, and it is approximately true that

I1+GaTl. (53)

Then the matrix inversion is, of course, trivial. The precise condition for Eq. (53) to be a good
approximation may be deduced from Ref. (4); a simple sufficient condition is that

R
ZVK,KS lG“| <«<1 forall r=1,...,R. (54)
s=1
In the present discussion K, = K;/R for all r = 1,..., R, where K; = I(n)/Ny(n) is the total

interference-to-ambient nmse ratio. A conservative upper bound on K; such that Egs. (53) and
(54) are good approximations is obtained by letting, |G_,| = M for all r,s {see Eq, (49)). Hence,

KM<<1, (55)

Eq. (53) is a good approximation, and under these conditions Eq, (31) becomes

F(n) = Goo - g7 8

R
Ky
=Gy - g 1Gy 12,
o0 “.Z; ° (56)

and by use of Eq. (41) this becomes:

4B, Freeman, Principles and Techniques of Applied Mathematics (John Wiley and Sons, New
York, 1957), p. 34.
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F(n) = Ggq - KM - % Zl Z: cos @, (‘ri” - 'r:(r)) . 67

We assume now that the azimuth angle subtended by the interference is small enough so
that the ~{"? do not differ very greatly as r goes from 1 to R. Then, it is possible to expand
7{*) in a Taylor series in r as follows:

T;") = r(i'“) t (r-m) a7, (58)

where m = R/2 is used as the point about which the expanslon is performed; 7<“" is effectively
the mean delay of the interference wavefront.

As R is allowed to go to infinity the summation in r can be converted into an integral.
Hence Eq. (57) becomes, after some reduction

M-t ] . oR h
sin 79~ (7 - &7i) () _ (m) (59
F(n) = Gog - Ky 1 M+ 2 @ R cos @y, (Ti T Tk ) )
n
T e 2 @it Ao |
L sin w, ('r;m - 'rlim) ]
=G, -Ry|M+2 cos w, ('r(im) - ‘r;m)) . (60)

w (Tm - Tm)
- n i k
L il k=ivl

where, in going from Eq. (59) to (60) we have used the fact that
%(A—ri - A7y) = m(bT; - by = T A (61)

As before, the term representing the loss of detectability is the bracketed term in Eq. (60).
Except for the sin x/x term the form of the double summation is the same as that which would
be obtained for a single interference, (Eq. 54) with mean delay 7{™ at the ith hydrophone,
under the condition XM << 1, In fact the argument that the summation of the oscillating terms
tends to become negligible applies here with ever greater force, because of the sin x/x term.
One can conclude, therefore, that for interference-to-ambient noise ratio small enough to sat-
isfy Eq. (55), and if the angle subtended by the interference is relativeiy small, a distributed
interference source affects the performance in essentially the same way as a single point
interference.

In order to obtain an ¢stimate of the magnitude of azimuth angle that can be considered
""'small," consider a linear array with M hydrophones spaced d feet apart. For such an array

7 =ilsineg,, (62)

1

where 6, is the azimuth argle of the rth interference point. Assume that the interference
power is uniform over the range 6, < 6 < ¢, and is zero outside this range. The center of the
interference is at the angle

1
€y = 36,46y (83}

Then, by analogy with Eq. (58) we expand sin #_about g_; i.e.,

sin 8, x sin 6, + (6,-6,) cos 6. (64)
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All the other steps leading to Eq. (60) can then be performed in exactly the same way, with the
summation over R replaced by an integration over 6 ., The final result ‘an be put into the form

u . {kwnd p 6,-6,
ke, d )sm e s O\ —3
- - - i : 65
F(n) = Gpo - Ky [ M+ 2 M-k) cos( — sin 6§, o ey . (65)
< °os 6 3

k=1

Except for the sin x/x term in the summation, this is again the expression that one would have
obtained for a single point interference location at the angle ¢,. It is clear that the accuracy
of this expression depends on the accuracy of Eq. (64) which in turn is a fairly good approxima-
tion for 6,-6, less than about 1 radian. Thus we conclude that an interference source spread
over no more than cne radian affects the detectability essentially like a single point interfer-
ence provided that KM << 1.

Since the effect of interference for KM << 1 is very small, the result just obtained is
somewhat academic and it would be desirable to extend it somehow to the case of KM >> 1,
Unfortunately this is quite difficult; in fact, the only simple result that has been obtained is an
extension of Eq. (48) to more than two interference sources. As in the case of two interferences,
it is assumed that the interference points are close enough together so that for all frequencies

of interest :

max @n |
r.n

=~ 0. (66)

i

R

The extension to R interference points is then quite straightforward, and the result is that the
detectability loss is again equivalent to that of a single interference source of strength X;. For
a linear array having M equally spaced hydrophones the maximum value of 6,-6, for which
this result holds is given by Eq. (50).

COMPUTATIONAL RESULTS

Since it has not been possible to obtain meaningful analytic results for cases in which the
approximations made in the above work are not applicable, F(n) has been evaluated on a digital
computer for a number of different array and interference patterns, and for specific frequen-
cies. The results of some of these computations are presented in Figs. 1 through 6. In all
computations it is assumed that the array is steered on target at an angle 6 - 0 and that an
interference exists at some angle 6,. The curves are then plots of F(n) as ¢, is varied." Thus,
if 6, is near O the interference is near the target in azimuth, and F(n) i8 small, Also, the as-
sumption that correlation of ambient noise waveforms between different hydrophones is zero
has not been used; instead the exact form of the Q,(n) matrix as given by Bryn? was used. As
a result F(n) # N in the absence of interference as would be inferred from equations such as
(36), (43), and (52). In fact, F(n) < M in all cases; however, this is a coincidence. It is possible
for F(n) > N as is shown by Bryn.3 In all cases the interference-to-ambient noise ratio is
large.

Figure 1 shows the effect of a single point interference with a small circular array. It
shows that if the interference directions differ by more than about 40 degrees from the target
direction the effect on F(n) is essentially negligible. It must be borne in mind, however, that
this is only demonstrated for a single frequency (5000 rad/sec). The picture looks different at
other frequencies, and the integrated effect of all frequencies therefore has the effect of the
loss of one hydrophone as is predicted by the analysis in the section on single point interference.

Figures 2 and 3 are similar to Fig. 1 except that the interference consists, respectively, of -
two and of four points, separated by 0.1 radian. Since the interference covers a large azimuth
segment, the effect on F(n) covers a larger angle; however, it is still true that for interference
sources at angles far removed from zero the effect on F(n) is small. A similar result is shown
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F(n) FOR CIRCULAR ARRAY CONSISTING OF 10 ELEMENTS EQUALLY SPACED ON
A 6-FT DIA, CIRCLE, FREQUENCY IS 5000 RAD/SEC,
INTERFERENCE CONSISTS OF A SINGLE POINT AT THE ANGLE 9
10 TRE ARRAY IS STEERED IN THE DIRECTION oy = 0.
"] K =5
1

r(n)s-- —r-——-————/-v

WITROUT
INTERFERENCE

3

[.E|

v — — : - v ¥ ————
(4 20° «° &° 80° 100° 120° 140° 160° 100°
AZIMUTH ANGLE O,

Fig. 1. Effect of single point interference

F(n) FOR CIRCULAR ARRAY CONSISTING OF 10 ELEMENTS EQUALLY SPACEDON A
6-FT DIA, CIRCLE.
FREQUENCY 3 5000 RAD/SEC.

INTERFERENCE CONSISTS OF A POINT AT THE ANGLE o . AND ANOTHER POINT

AT 8 . 0.1 v
10{ THE ARRAY IS STEERED IN THE DIRECTION , -0
K =Ky s
: Fin) |
i ———
H J
i e
oo WITHOUT
S INTER FERENCE
(2
:
i 4
i
3
24

T T i ‘lu T o T T °
o° 20° 40° 60° 80’ 100 120° He° 180
AZIMUTH ANGLE %

Fig. 2. Effect of two interference points spaced
0.1 radians apart in azimuth
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F(n} FOR CIRCULAR ARRAY CONSISTING OF 10 ELEMENTS EQUALLY SPACED ON A
6-FT. DIA. CIRCLE. FREQUENCY 1S 3000 RAD/BEC,

INTERFENENCE CONSISTS OF 4 POINTS LOCATED AT 4, 4, + .1, 4, + .2,
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Fig. 3. Effect of four interference points spaced
0.1 radians apart in azimuth

F(n) FOR CIRCULAR ARRAY CONSISTING OF 10 ELFMENTS EQUALLY SPACED ON A

6 FT DIA, CIRCLE
FREQUENCY IS 5000 RAD/SEC, o
INTERFERENCE CONSISTS OF ONE POINT AT #, AND ANOTHER AT L 90,

Klﬁszs

errmur INTERFERENCE

WITH TWO
POINT INTERFERENCES

a4

T T A T
~120° -100° -80° -60° -40° -20° o 20° 40
AZIMUTH ANGLE o,

Fig. 4. Effect of two interference points spaced
90 degrees apart in azimuth
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b F{n) FOH LINEAR ARRAY CONSISTING OF 10 ELEMENTS, SPACED 2 FT APART
: FREQUENCY IS 4000 RAD/SEC.

INTERFERENCE CONSISTS OF 20 POINTS LOCATED AT 9, 4 +.9°% ¢« 1.6°
H cor g atn®

2.

H 84 Keme200

ARRAY STEERED ON TARGET AT #: 0°

3 (LY} S U ( e e e e e e e
H WITHOUT INTERFERENCE
T 61
WITH INTERFERENCE
2 4
: 24

o

R T al AT — Y Y T -t
-80° -60” -40° -20° o 20° 40° ° 80°
INTERFERENCE AZIMUTH ANGLE #

Fig. 5. Effect of a disiributed interference source approximated
by 20 point intexferences spac:d 0.9 degree apart. Frequency is
4000 rad/sec.

F(n) FOR LINEAR ARRAY CONSISTING OF 10 ELEMENTS SPACED 2 FT APART
) FREQUENCY IS 2000 RAD/SEC.
INTERFERENCE CONSISTS OF 20 POINTS LOCATED AT ¢, § + 9%, & + 1.8°,
£ : . el AN
: o KM =200
Fin) ARRAY IS STEERED ON TARGET AT 6 = 0°
of N WITHOUT INTERFERENCE
. -
s
WITH INTERFERENCE
H ]
i
¢ o + v : v v~ v v — v
1 -8d® -60° “10° 1 I 20° 10° 80° a0°
INYERFERENCE AZIMUTH ANGLE ¢

; Fig. 6. Effect of a distributed interference source approximated

by 20 point interferences spaced 0.9 degree apart. Frequency is
2000 rad/sec.
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in Fig. 4 which shows the effect of two interferences separated by a large angle (90 degrees).
The last two figures show the effect of a strong interference (K- 200) distributed over a rela-
tively large angle (17 degrees). Again the effect at angles far removed from the target angle is
small, but, as is shown in Fig. 6, the relative effect is quite different at different frequencies,
as has already been pointed out. ‘

The computations leading to the results shown in Figs. 1 through 8 were quite time consum-
ing, with computing times on the order of several minutes on the IBM 7084 for the cases with
large numbers of interference points. For this reason no attempt was made to compute the
complete detection index, since this would have required summation of F(n) over a large num-
ber of frequencies. The computer results therefore still do not conclusively answer the ques-
tion of how serious is the effect of large distributed interferences. The indications are, how-
ever, that the results of the previous section are valid under considerably wider conditions
than those assumed there to produce analytical approximations. In fact, it appears that loss of
detectability for rather widely distributed interference is equivalent to, at most, a few hydro-
phones.

CONCLUSIONS

The major difficulty in obtaining general estimates of the effect of directional noise on the
detectability in an array processor is that the mathematical manipulations required to obtain
answers are quite complex. Results have therefore been obtained only in a restricted number
of simple cases.

The general tenor of these results is that if the anisotropic-to-isotropic noise ratio is
small the effect of a number of local noise sources is additive; that is, the loss of detectability
resulting from two noise sources of equal strength is twice that resulting from a single source.
For large anisctropic-to-ambient noise ratio the effect depends on whether the directional
noise spurces are close together or not. For a single point source it has been shown previously
and corroborated here that the loss in detectability is approximately equivalent to the loss of
one hydrophone from the array. If there are R noise sources, widely separated from each
other and from the target direction, the loss is approximately equivalent to the loss of R hydro-
phones, provided that R << yi, where M is the number of hydrophones.

Point noise sources that are close together affect the system like a single distributed noise
source, and the indications are that if such an anisotropy is spread over a relatively small
angle, ils effect is essentlally that of a single point noise. Unfortunately this has not been con-
clusively demonstrated, even by use of a digital computer, and only a rather conservative esti-
mate of azimuth angle that can be considered to be '"small'' has been obtained.

Appendix
APPROXIMATE INVERSION OF A MATRIX WHOSE DIAGONAL TERMS
ARE LARGE RELATIVE TO THE OFF-DIAGONAL TERMS
Let the nxn nonsingular matrix A be given by
A=D+B, (A-1)
where D is diagonal and B is a matrix with zero diagonal elements. It is assumed that all the

non-diagonal elements of B are of about the same order of magnitude, and that the elements of
D are of about K times that magnitude, with X >> 1.

The inverse of A is given by

At:@epts e Er D=

r—

1-mt+ (B’ ] . (A-2)
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Since the clements of D are of order K relative to B, the elements of Bb'! are order 1 K rela-
tive to unity.

It can be shown ® that a sufficient condition for convergence of Eq. (A-2) is

Z;u,ijiq. Cc b, (A-3)
: =

where b;; are the elements of BD''. Assuming all of these elements to be of about the same
order of magnitude, condition (A-3) can be expressed in the approximate form

U BN R SO0

nby < 1, (A‘4)
where b, is a representative element of 3D-!'. This element is of order 1 K; therefore con-
vergence requires :
nK <1, (A-5)
The convergence will clearly be more rapid if this inequality is sharper; hence one can ap- J
: proximately neglect the matrix B in the inversion of A if n/K << 1. K
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