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FOREWORD

This report was written for the solid rocket propulsion engineer
as a practical guide to measurement of solid propellant rocket motor
instability. As such, it stresses aspects of instability and measure-
ment problems that are likely to be encountered on the motor test stand
rather than in a scientific laboratory research endeavor.

The information contained in this repert was presented at the
Fifth Annual Meeting of the Interagency Chemical Rocket Propulsion
Group (ICRPG) Static Test Panel Working Group, 18-19 October 1967, in
Sacramento, California (CPIA Publication No. 161). It is being re-
leased in its present form to provide wider distribution and to make it
more accessible to persons responsibie for solid propellant rocket
motor development.

This report was prepared under sponsorship of Naval Ordnance
Systems Command Task Assignment ORD-033 103/200 1/F009-06-01, PA #3.

This report is transmitted for information only. It does not
represent the official views or final judgment of this Center.
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Aerothermochemistry Division Research Department
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“NTRODUCTION

Combustion instability has hampered development of a variety of
solid propellant motoxs cver the past 25 years. It continues to be a
problem today in spite ef a great increase of knowledge regarding its
causes and cures. At present, as in the past, motor design and test
personnel are faced with the possibility tl.at their next motor firing
will be unstable. This is particularly the case following changes in
motor or grain design or alteration of propellant composition.
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The intent of this paper is to emphasize the importance of proper
instability measurement and the methods used to attain that goal. The
subject includes consideration of the nature of combustion instability,
with particular attention being paid to the character of gas oscillations
in the motor, the determination of proper transducers for detecting in-

( stability, and the choices to be made regarding signal conditioning and
recording equipment. Other items of interest include the calculation of
oscillation frequencies, conditions which favor particular modes and
frequencies of Instability, and methods used to analyze instability data.

O
AL
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NATURE OF COMBUSTION-DRIVEN GAS OSCILLATIONS v

Combustion instability is the result of an interaction between gas F:ﬁ

flow in the motor and energy release from the combustion zone such that 5 v
small flow disturbances are amplified into larger ones (Ref. 1 and 2). i%;

The flow disturbances involve pressure and velocity variations in various
parts of the motor which are usually, but not always, periodic. Two
general classes of gas oscillation are observed: (1) acoustic oscilla-
tions in which the gas vibrates in one or more standing acoustic wave
modes of the motor and (2) nonacoustic oscillations which are related to
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determined by the internal motor dimensions, the "mode'" of oscillati-n,

and the speed of sound in the gas (Ref. 5). The environment imposed by

pressure and velocity oscillations in the motor often result in signifi-
cant deviations of motor pressure from the desired value due to the
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the gas discharge characteristics of the motor (Ref. 3 and 4). ﬁjﬁ

:5] ACOUSTIC INSTABILITY F;-‘;g;j
2 roe
;i This class of instability is the type most often encountered in Eﬁﬁ
i solid propellant rocket motors. The frequency of oscdillation and dis- iuf?
:3 tribution of the oscillating component of pressure and of velocity are !L_
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burning rate being altered from its normal value as shown in Fig. 1
(Ref. 6 and 7). The burning rate is always increased in the region of
velocity variations and it is always reduced in the region of pressure
oscillations ‘(Ref. 8 and 9). The net effect on the burning rate during
instability may be positive, negative, or neutral, depending on the pro-
pellant composition, the placement of burning surfaces in the motor, and
the structure of the gas oscillations. It is usually the motor pressure
deviations that make instability unacceptable.

Magﬁiﬁed High Frequency

V\AAN\N\ Response Record

S oo \ Y Design
e ’/5”’ Pressure
e - - - U W

Pressure

Time

FIG. 1. Sketch of Rocket Motor Pressure-
Time History Showing Typical Effect of Com-
bustion Instability. Gas oscillations in
the motor invariably accompany deviation of
pressure from design value when instability
is the cause of trouble.

Acoustic oscillations can be classified into two general categories:
(1) longitudinal oscillations, in which the gas moves in a direction
parailel to the motor axis and (2) transverse oscillations in which the
gas moves perpendicularly to the motor axis (Ref. 5 and 10). One of the
difficulties encountered in considering acoustic instability is the com-
plex internal geometry characteristic of most rocket motors. In the
following, therefore, it will be assumed that the motor interior can be
approximated by a circular cylinder which is closed at both ends. The
emphasis in the following will be on a qualitative description of the
types of acoustic oscillation, means of calculating frequencies, and
optimum locations for pressure transducers.

LONGITUDINAL OSCILLATIONS

The simplest type of longitudinal oscillation, called the "first
mode" or sometimes the “fundamental mode", consists of gas motion paral-
lel to the motor axis with a maximum velocity (velocity antincde) at the
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center of the motor and maxima in pressure (pressure antinodes) at the
ends of the motor (Fig. 2). As is the case with all types of standing
acoustic waves, the envelope of pressure oscillations varies continuous-—
ly with distance and higher order modes are possible (Fig. 3), each of
which has a particular pressure distribution and frequency.

FIG 2. Longitudinal (Axial Mode) Oscillations Involve Gas
Motion Parallel to the Motor Axis. Regions of maximum pres-
sure variation (pressure antinodes) alternately occur at the
ends of the motor. Arrows indicate direction of gas motion
in the region where gas velocity oscillations have maximum
values.

The frequency of a longitudinal mode is calculated from the relation

Aa
£==

where f is the frequency, X is a positive integer (the mode number), a
is the velocity of sound in the gas, and L is the length of the motor
(Ref. 5). The various mode frequencies in real motors seldom bear a
simple integral relationship to each other that is assumed here., The
variations that are observed are due partly to complications induced by
the geometry of real motors, and partly to the effects of oscillatory
amplitudes much larger in magnitude than assumed by acoustic theory.

Optimum pressure transducer locations for measurement of this type
of instability are at either end of the motor, since every longitudinal
mode has a pressure antinode at these places. Generally, the head end
is to be preferred since there are no net gas flow complications as are
likely to be encountered in the nozzle region.
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FIG. 3. Acoustic Pressure Distribution for Longitudinal Oscil-
lations. Examples for the first three modes are shown. Small,
heavy circles denote pressure antinode locations. Solid lines
indicate the pressure distribution at an instant in time when
the pressure at the head end is a maximum while the dashed line
represents the distribution a half cycle later.
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TRANSVERSE OSCILLATIONS B

G

Two types of transverse oscillations are possible in a cylindrical .

geometry: (1) radial oscillations in which the gas moves in and out -

along radii of the motor and (2) tangential oscillations which involve Ny

gas motion in a circumferential manner, as shown in Fig. 4 (Ref. 10). B

Radial and tangential oscillations are closely related but they can 4

occur separately as well as in comoination. Transverse mode frequen- X

cies can be calculated from the relation (Ref. 5 and 11) P

th
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where f is the frequency, o ¢ 1s a coefficient whose value is determined té

by the value of the radial mode number p and the tangential mode number ?g

T, a is the velocity of sound in the gas, and R is the radius of the o

grain perforation. Values of the transverse mode frequency coefficient 12l

appear in Table 1. gL

ooty

. e

3; Optimum placement of pressure transducers for detection of trans- o
oy verse mode oscillations presents a problem since the locations of the gvj
E% pressure antinodes follow the regression of the propellant web. The . ﬁ}
*; tangential mode is the most difficult to detect due to the difficulty in %F
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(a) Radial Oscillations (b) Tangential Oscillations

FIG. 4. Transverse Mode Acoustic Oscillations Can Occur in Two
Basic Modes. (a) Radial oscillations involve gas motion along
radii as Indicated by arrows. Locations of maximum pressure ex-
cursion are on the motor axis and the curved surface of the
bounding cylinder. (b) Tangential oscillations involve circum-
ferential gas motion indicated by arrows. Pressure maxima occur
along lines on the cylindrical surface, which imposes stringent
requirements for optimum pressure transducer locations.

! TABLE 1. Values of the Transverse

Mode Frequency Coefficient, apT

LS]
el

[

¥ wd o md D
A i

" 0.000 1.220 2.233 3.238

LA

s
y “sexey

Sid
‘l"’~"-
ol e »

€ o XL,

B4
N

&
.

. 1 .586 1.697 2.714 3.726

e

.972 2.135 3.173 4.192

1.337 2.551 3.611 4.643

R YR
£y l. 4.
W

gy

.‘-
s

D)

predetermining its orientation in the motor, and the restricted distribu-
tion of the pressure antinodes. In addition, this mode may rotate in
circular perforations, making analysis of data more difficult. The

usual approach in choosing transducer locations is to arrange a pattern
cn the motor, such that one location will always be near a pressure
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antinode. A modification of a pattern suggested for liquid instability
measurement appears to be suitable as it permits determination of the
tangential mode orientation as shown in Fig. 5. (Ref. 12).
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FIG. 5. Suggested Transducer Distribution to Provide )
Information on Orientation of Tangential Mode Acoustic ;ﬁu
Oscillations. Comparison of outputs from the three X
transducers will identify acoustic oscillations of all
three types and will indicate the speed and direction
of rotation of the tangential mode, if that should
occur.,
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A pressure transducer location on the motor axis should be avoided.
While such a location is suitable for detecting any longitudinal or radi-
* al mode, an axial location theoretically cannot detect any tangential
mode.

NONACOUSTIC INSTABILITY

Nonacoustic instability (NAI) involves an interaction between the
heated layer of the solid propellant, the combustion zone, and the gas
discharge characteristics of the motor (Ref. 4 and 13). The frequencies en- o
countered in this type of instability are generally below 100 cps, much
lower than the frequencies of the natuiral acoustic modes of the motor.
The pressure oscillations may be nonsinusoidal as in ''chuffing' or they
may be sinusoidal (Fig. 6). Nonacoustic theory treats only the sinu-
soidal oscillations. 1In both types of nonacoustic oscillation, the pres-
sure fluctuations are a function of time only. There are no spacewise
pressure varlations. This class of instability poses little difficulty
in measurement since the frequencies are low enough to be detected by the
usual instrumentation and the location of pressure transducers is not

critical. N
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FIG. 6. Sketch of Typical Nonacoustic Pressure-Time
History. Pressure spikes due to "chuffing" and sinu-~

soidal oscillations are possible.
refers to the latter behavior.

Nonacoustic theory

CHARACTERISTICS AND CLASSES OF INSTABILITY

Knowledge of conditions under which particular classes of insta-
bility are likely to occur is helpful in anticipating the frequencies
likely to be encountered in testing. Motor instability, however, de-
pends on the relative magnitude of a number of factors which include
abllity of the combustion to amplify pressure and flow disturbances,
effect of mean flow in generating or damping disturbances, energy losses
induced by solid particles suspended in gas, the influence of the nozzle

.on acoustic losses, and the participation of the propellant grain in

absorbing acoustic energy (Ref. 2, 14 & 15). Some of these factors can be
calculated and several are being routinely evaluated in laboratory ex-
periments but a reliable method of predicting motor instability behavior
remains for the future (Ref. 16).

Laboratory test techniques that are available for rating insta-
bility characteristics incliude measurement of combustion amplification
of flow disturbances and the effect of motor geometry on acoustic losses
(Ref, 17-19). Combustion amplification tests are conducted in "T-burners"
which normally test the pressure-goupled amplification characteristic
(Ref. 20-22). A recent modification to the basic T-burner design permits
investigation of velocity-coupled amplification (Ref. 23).

Although complete characterization of rocket motor instability be-~
havior is not yet possible on a quantitative basis, classes of instabil~-
ity can be identified and a general discussion made on the basis of past
experience and knowledge of the several definitive tests that are pres-—
ently available (Ref. 2 and 15). For this purpose combustion instability
will be classified into three regions on the basis of frequency.
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HIGH FREQUEN<Y INSTABILITY (HFI)

This class of instability involves frequencies from 1,000 to over
50,000 cps. It normally occurs in transverse acoustic modes but is
readily stabilized by solid particles in the gzs. High frequency insta-
bility is 1likely to be a problem in motors with circular (or nearly cir-
cular) grain perforations, with smokeless propellants, and with very
high energy compositions. Stability may be achieved in these cases by
introduction of a stabilizing rod or by designing the proper convolutions
into the grain perforation, both of which will tend to interfere with
the acoustic gas motion and will usually reduce or eliminate che insta-
bility. It 'should be noted that radial and mixed modes are rarely, if
ever, seen in solid propellant rocket motors. Transverse oscillations
occur most often in the first tangential mode.

Consideration of the interaction between the solid propellant web
and transverse mode gas oscillations indicates that acoustic energy
losses into the solid at certain times during burning can be large enough
to damp instability (Ref. 24-26). This explains in part the observations
concerning the appearance and disappearance of transverse modes at various
times during a firing. Transverse modes are more likely to be encountered
late in burning due to two other factors: (1) the star points have large-

ly burned away and (2) stabilizing rods occupy a smaller percentage cf
the cavity.

INTERMEDIATE FREQUENCY INSTABILITY (IFI)

Intermediate frequency instability includes the frequency range of
100 to 1,000 cps. It most commonly occurs as longitudinal (axial mode)
oscillations and in rocket motors with large length to diameter ratios.
This class of instability is also seen with heavily metallized propellants.
Solid particle damping is relatively ineffective in the frequency ranges

? encountered and evidence suggests that the presence of metal in the com-
) bustion process may even contribute tv this class of instability. The fre-
g:f quencies of oscillation are close to those calculated by assuming gas

557 motion in a chamber closed at both ends. The influence of the nozzle is
s important in that it tends to stabilize axial instability. Acoustic tests
2: in model rocket motors show that the nozzle losses vary in proportion to
ﬁj- the nozzle throat-to~grain port area ratio (J). Observations in rocket
%:' motor firings indicate that motors which were stable early in burning may
:5' become unstable later in the firing, which appears to be due, at least in
e part, to a decrease in the J-factor (Ref. 27).

AN

E! Another feature of axial mode IFI is the importance of velocity

e coupling, in contrast to pressure coupling which tends to dominate in the.
O other ranges of instability. Velocity coupling causes a nonsinusoidal

E] distortion of the pressure oscillations and it may be accompanied by a

o threshold velocity requirement such that a flow disturbance above a limit-
%g ing level may be required in order for axial mode instability to persist
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. (Ref. 2, 15, 28, 29 and 30). Such behavior offers a perplexing situ-
ation to motor design and test personnel for an apparently stable motor

may suddenly become unstable following any finite disturbance in the
motor (Fig. 7).

Axial mode instability has only recently come under study. Much
remains to be learned of this complex phenomenon.

Initial Disturbance Design

Pressure

Pressure

Time

FIG. 7. Sketch of Motor Pressure During Axial Mode
Intermediate Frequency Instability. Requirement of
a triggering pulse is sometimes encountered in this
class of instability. Another characteristic is the
presence of periodic, nonsinusoidal oscillations,
which are caused by velocity-coupled combustion-flow
interaction.

LOW FREQUENCY INSTABILITY (LFI)

Low frequency instability generally occurs at frequencies below
Y 100 cps and it includes nonacoustic and acoustic oscillations.
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i Nonacoustic instability depends on the relative thermal wave thick-
' ness in the propellant and the internal volume to nozzle throat area
; ratio (L*) (Ref. 4). This type of instability is most likely to occur
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in motors with a high propellant load ng factor and designed to operate ;;}ﬁ
at low pressure (low burning rate) (Ref. 2 and 15). Laboratory experi- e
ments with small motors that oscillate nonacoustically have provided %ﬁf

@

stability limit data for metallized and nonmetallized propellants (Fig. 8)
3 (Ref. 31). It remains to be determined, however, that the small motor '
5 , data is capable of predicting larger motor behavior.

oy

Interest in low frequency acoustic instability has grown recently
due to the possibility of its occurrence in very large rocket motors.

o

:} Present knowledge of this class of instability comes almost entirely

v from large T-burner tests (Ref. 32 and 33). It can occur with heavily

- metallized propellants since solid particle damping is ineffective at the
X low frequencies encountered. Instability with metallized propellants can
< also show a 'preferred frequency" behavior in which instability occurs
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FIG. 8. Nonacoustic Stability Data From a Small
Research Motor. Comparison of this data with
larger motor behavior may result in this informa-
tion being useful in predicting conditions for
stable motor operation.

over a narrow range of frequency at a given pressure (Ref. 34). Similar-
ities in the mechanism between low frequency varieties of nonacoustic and

acoustic instability has brought forth attempts to describe both aspects
_with a single theory.

The high cost of testing full scale motors of the sizes planned for

bnosting outer space missions puts great emphasis on development of labor-

atory techniques and theory which can be applied to prediction of LFI.
INSTABILITY MEASUREMENT PROBLEMS

DETECTION OF INSTABILITY

- In a general sense, any physical property related to combustion-
driven gas oscillations can be used to determine the presence of insta-
bility and to identify the modes. Motor case strain, acceleration of
motor components, motor thrust variations, and measurement of the acous-
tic field outside the motor offer the possibility of detecting instabil-
ity and of correlating the effect of instability on these aspects of
motor behavior (Fig. 9) (Ref. 35). Detection of instability is better ~
accomplished, however, by using pressure transducers chosen especially
for that purpose. The pressure transducers routinely used on motor fir-
ings are seldom suitable for detecting pressure oscillations because
they lack the frequency response. This is not too serious in detection
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FIG. 9. Var.cus Methods that can be Used to Detect Com-
bustion Instability. Measurement of gas pressure oscil-
lations is the most direct and the best developed of all
methods.

of LFI but it becomes more acute when one encounters IFI and HFI where
use of the proper transducer becomes a necessity if meaningful measure-
ments are to be made (Ref. 36).

Pressure transducers are commercially available which permit mea-
" surements from dc to frequencies exceeding 50,000 cps. They character-
istically feature an external mounting thread and a flush sensing dia-
phram (Fig. 10). Model variations are available that are either un-
cooled or water cooled. A relatively new type is available in which a
flow of helium cools the transducer and serves to communicate between
the gas in the motor and the sensing ar=a in the transducer (Ref. 12).

. The preferred mounting of high frequency pressure transducers is an
?: arrangement such that the sensing area is flush with the inner motor
}} : wall. While this is desirable from a frequency respomse standpoint, it

is out of the question for uncooled transducers and may even be hazard-

i)

Z! ous to those with cooling. The usual solution to the heating problem

- is to recess mount the transducer and utilize a grease or other insulat-
7 ing medium that will communicate the gas pressure tc the sensing area.
e While solving the heating problem, recess mounting does affect the fre-
37 quency response (Ref. 36 and 37). An alternate method of heat protec-
3 tion that may not cause the problem of frequency response degradation is
&l the application of an ablative material to the face of the transducer.
ﬁ? Synthetic rubber discs of thicknesses up to one-fourth inch have been

- used with apparent success.
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FIG. 10. Typical High Frequency Response Pressure
Transducers. External mounting threads and a flush
sensing diaphram are characteristics of these devices.
Water cooled transducer diaphram is a necessity for
flush mounting in a rocket motor.

SIGNAL CONDITIONING AND RECORDING

Problems of signal conditioning and recording include filtering and
amplification of high frequency pressure transducer signals, choice of
recording techniques and knowledge of frequencies likely to be encoun-
tered during the test.

The use of filters to provide high-pass, low-pass, and band-pass
characteristics is nearly always required in HFL and IFI measurements
(Fig. 11). High-pass filters are needed to block the dc signal compo-
nent caused by mean pressure in the motor. This permits small amplitude
signals from pressure oscillations to be amplified to a useable level,
yet avoids saturating the recording equipment with an excessive dc signal.
The low-pass filter is used to provide a 'clean'" pressure-time history
from the high frequency transducex. The high-pass and low-pass signals
can be advantageously recorded on a dual beam oscilloscope to provide a
quick-look record within seconds after a motor firing (Fig. 12) (Ref.

35 and 36). Low-pass filters for such applications can be simple de-
vices constructed from passive components with the cutoff frequency
somewhat below the first longitudinal mode. Band-pass filters are use-
ful in cases where several modes are present during a firing. Each band
is set to pass a particular portion of the frequency spectrum so that

12
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i i BE L HiGH SPEED

TRANSDUCER FILTERS AMPLIFIERS ~ RECORDERS -
I 1 r 1 T 1 1 1

- SCOPE

‘s

CAMERA

‘ RECORDING

PRESSURE, °"’f{"’"

STRAIN, |——t\
ETC.

LOW PASS /i RECORDING
O'GRAPH
NAGNET.C
BAND TAPE

PASS

FIG. 11. Instrumentation of a Typical High Frequency Channel
for Instability Measurement. Filters split the signal up into
more easily handled and interpreted segments. Multiple band-
pass filters are useful for dividing a complex signal into dis-
crete frequency segments so that real-~time recorded data can

be analyzed for frequency and amplitude variations as a func-
tion of time during burning.

{~'——— 8 seconds ———»{

FIG. 12. Oscilloscope Camera Record Taken During a Motor Fir-
ing That Exhibited Axial Mode Intermediate Instability. Pulse
fired into motor at 4.8 seconds initiated instability. This

type of record is useful for quick-look purposes and provides a
compact, conveniently handled and stored history of motor firings.
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frequencies and amplitudes of the various modes are separately dis-
played (Ref. 36).

The use of filters requires some knowledge of the frequencies like-
ly to be generated in the motor. The equations for acoustic vibrations
(given in the section entitled Nature of Combustion-Driven Gas Oscil-
lations) ‘can be used but uncertainties often arise in judging the cavity
dimensions of motors with complex internal geometries. The nature of
this problem is that unexpected frequencies may be encountered because
the gas oscillated in a different manner than predicted. Solution of
this problem is to provide at least one channel with broad frequency re-
sponse. This has the disadvantage that signals with widely varying ampli-
tudes may be either saturated or lost in noise. Use of a logarithmic
voltage compressor in such instances offers the possibility of recording
a wide range of amplitudes without exceeding the recorder's limits.

Three types of recording devices that find application in other
measurement work are utilized for gathering instability data. The major
concern is to assure that the recorder does not unduly limit the frequency
response. In the case of long sweep time on the oscilloscope, of course,
frequency response is not really an issue as a resolution of about 50
lines per inch on the screen is the maximum capable of being observed.
Recording oscillographs offer a convenient means of recording data and
frequency response can be as high as 13,000 cps. All high frequency gal-
vanometers, however, need the proper driver amplifieyx as they require
more power than most instrumentation provides. Oscillographs have the
disadvantage of requiring high paper speeds if high frequency response is
to be achieved. Another disadvantage is that the data is in graphical
form and the analysis of complex waveforms from such records is tedious
if not impossible. Many of the objections to recording oscillographs are
solved by magnetic tape recorders. In fact, these recorders exceed all
others for frequency response and duration of recording time. Use of
magnetic tape data is particularly desirable if any extensive analysis of
high frequency data is to be done. Ability to reproduce the electrical
signal also has advantages in that the signal can be played back, filtered,
and re~-recorded on an oscillograph. In this manner, information that was
originally recorded incorrectly on the oscillograph can be retrieved.

METHODS OF ANALYSIS

Analysis of data comprises determination of frequency and amplitude
of the oscillatory component and the time of occurrence of particular
oscillations during burning. Characteristics of several methods of anal-
ysis appear in Table 2. Analysis of graphical data acquired at low re-
cording speed is limited to determination of amplitude and occurrence of-
oscillations as a function of time. No information concerning frequency
is available from such records except possibly in the case of LFI. High
speed oscillograph records, cn the other hand, can be assessed for fre-
quency but the degree of success in frequency-amplitude determination
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TABLE 2. Methods of Analysis

TYPE OF DATA .
R tia CHARAGTER OF INFORMATION

LOW SPEED AMPLITUDE & TIME - LOW FREQUENCY RESOLUTION
GRAPHIC
RECORDS

HIGH SPEED ANPLITUDE, TINE, & FREQUENCY TC~ I2ke

TIME SCALING SAME AS ABOVE - FREQ. DEPENDS ON SCALE FACTOR
MAGNETIC | gpecrrUM ANAL. | AMPLITUDE 8 FREQUENGY ~ NO TIME RESOLUTION

TAPE
SONIC ANAL. CONTOUR MAP OF AMPLITUDE, FREQUENCY & TIME

depends on the complexity of the signal. Signals which are composed of
several frequencies at various amplitudes are difficult to assess accu-
rately. Graphical methods for attaining a frequency-amplitude analysis
are available but archaic in light of modern methods utilizing magnetic
tape and electronic instruments for the task.

Capabllity to recreate the electrical impulses generated during the
test offers a variety of approaches for analysis of data. The methods
used in analysis of instability data are similar to those used in acous-
tics and vibration studies and depend on magnetic tape playback of the

test signal. Tape signals can be analyzed by octave or third octave band,
multiple band-pass with oscillograph recording to provide time resolution,

electronic spectrum (heterodyne analyzer), and sonic analyzer techniques
(Ref. 35, 36 and 38). Some of these methods require costly, specialized
equipment and their use depends to a great extent on the nature of the

data, the speed with which datailed analysis is required, and the ulti-
mate utilization of the information,

CONCLUSION

Measurement of combustion instability manifestations presents a
variety of problems ranging from selection of transducer locations to
choice of data analysis methods. Success in making instability measure-
ments depends largely on using a systematic approach which includes the

following steps:

1. Expect instability on every motor firing, especially following
motor design, grain design, or propellant composition changes.
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2. Calculate fre:quencies of the first longitudinal and first tangen- ¢
tial acoustic modes.

3. Provide instrumentation and transducer mountings that will de-
tect and record signals through the first tangential frequency. A single

broad frequency response channel is often adequate for instability moni-
toring purposes.

X

Unfortunately, not all rocket motor firings are equipped with in-
strumentation which is suitable for instability measurement. While it
i8 recognized that instability is only one of a large number of problems
facing motor development engineers, instability is encountered often
enough that plans should be made to provide every motor firing with some
capability for instability measurement., Such provision is insurance
against having to refire a motor in order to determine whether or not
instability was the cause of anomalous behavior and will usually pay for
itself in the time and money saved.
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