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ABSTRACT 

A review of the current theory and methods for the computa- 

tion of maximum flow In networks 1s presented along with a simplified 

method for determination of a feasible -Mow 1n networks with upper 

and lower bounded arcs.   A computational procedure Is presented which 

Is used to calculate the maximum flow for a general network.    Tie 

network 1s reduced to an equivalent basic network.   An associated 

network Is used to compute a feasible, then the maximum flow for 

the basic network.    A computer program Is Included for use In 

computation of maximal flows In large networks. 
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CHAPTER I 

INTRODUCTION 

The growing uses for mathematical progrartming models In trans- 

portation and communication networks have prompted study In the devel- 

opment of computational methods to determine maximal network flows. 

The subject of this thesis is the mathematical problem of determining 

maximal steady state flows in networks which are subject to capacity 

limitations on the arcs and nodes of the network. 

An efficient and widely used method to compute maximal flow 

was developed by Ford and Fulkerson [7].    This method along with a 

review of the current theory will be presented in Chapter II in 

order to give the^reader the theoretical foundation upon which the 

remainder of the thesis is based.    Chapter III introduces a new 

method which utilizes the Ford and Fulkerson algorithm to compute the 

maximal flow in networks with non-zero lower bound limitations on the 

flow in the arcs.    Since many networks of interest are more general 

in nature, the geieralized network is introduced In Chapter IV along 

with a computational procedure for the determination of maximal flow. 

To illustrate the techniques proposed, an example is included.    The 

procedure can be used to solve small problems by hand, but the amount 

of work Increases rapidly with the size of the network.    Therefore, a 

computer program which may be used to solve larger problems is 

included in the appendices.   A brief description of the program is 

found in Chapter IV. 
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Definitions and Symbols 

In order to establish a common understanding as to the exact 

meaning of various terms and symbols used to present the material of 

this thesis» an Initial set of definitions Is presented.   Other terms 

will be defined throughout the material as needed to facilitate the 

presentation. 

Define a network, G, as a graph which can be represented on 

a plane In such a way that the set, N, of nodes are distinct points 

and the set. A, of arcs are simple curves which connect two distinct 

nodes.    Furthermore, no two arcs can meet except at the nodes which 

are their extremities.   The graph contains no loops. 

Define uTiH) to be the set of arcs or flows Incident to a set 

of nodes, N, and u (H) to be the set of arcs or flows Incident from N. 

A directed arc, a1 ,, Is defined as an arc Incident from a node 

1 and Incident to a node J. 

An undirected arc conr.^ts node 1 and node J without having an 

orientation. 

Flow can be thought of as a value of the steady state rate of 

movement of a homogeneous commodity along a path or channel.   Positive 

flow In a directed arc, a^ j, will move with the orientation of the 

arc and will be denoted by the symbol, y^ ,.   Positive flow In an 

undirected arc, denoted y^ ., may move 1n either direction but not 

In opposite directions at the same time. 

To each arc, a^ . c A, there will be associated two real 

numbers, b^ *, and c^ j, which represent, respectfully, the minimum 

and maximum allowable flow In that arc.   The bounds associated with 

undirected arcs, äj *, are denoted b^ *• and c^ ^ 
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An arc 1s saturated If y.  ^ " c,. *. 

Define X as the set of flows In a network G. 

Initially, the capacities of the nodes will be assumed to be 

Infinite.   The nodes will be classified according to the value of the 

difference of the sum of the flows Into the node minus the value of 

the sum of the flows out of the node.   A node Is designated as a 

source node If this difference Is negative, and as a sink node If this 

difference 1s positive.   For all Intermediary nodes, the sum of the 

flows Into a node must equal the sum of the flows out.   The set of 

source. Intermediary and sink nodes will be denoted as S, I, and T 

respectfully. 

Define F as the value of the flow In a network. 

y1>t»-(T) 1't 

A flow 1$ feasible If and only if: 

^   b1.J±yU±cU       Va1J^A 

(2)    F 1 +    y« 1 
ysJc*+(S) *'3 

(3) 

y1ttca)"(T) ̂ l.t - F 

- 0      1 ,J c I 
y^jCüTd) J'1    y1(Jc«+(J) ^J 

Define a chain as a sequence of arcs such that each arc, a. 4 

1,J c I, Is connected to an arc a^ 1 at node 1 and to arc a. , at node J, 

A cycle Is a sequence of arcs where: 

(1) The sequence Is a chain. 

(2) The sequence does not use the same arc twice. 
(3) The Initial and terminal nodes of the chain coincide. 

•^m 
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A cut 1s defined as any set of directed arcs containing at 

least one arc from every chain of positive capacity joining the 

source to the sink.   The value of the cut Is equal to the sum of the 

capacities of the arcs of the cuts. 

Basle Network 

Much of the Initial development of the material In this thesis 

deals with computation of flows In Mmple or basic networks.   There- 

fore, for the purpose of this paper, a basic network, G, Is defined 

as a network which has the following properties. 

1. The network has a return arc, an j, which Is added to the 

network for computational purposes only. 

2. Node 1 has only one arc, an i, Incident to it.   Node 1 Is n, I 

designated as the source. In the basic network there Is 

only one source node. 

3. Node n has only one arc, an «, Incident from It. Node n 

It designated as the sink. In the basic network there Is 

only one sink node 

4. For each arc, a1 4, tne associated c^ ., Is positive and 

b1,j"0- 
5. TWo distinct nodes (1,j) may be connected by only one 

directed arc. The network contains no undirected arcs. 

10 



CHAPTER II 

REVIEW OF THE LI ERATURE 

In order to acquaint the re der with the subject of MBX1ma1 

f1 ow 1 n ne,tworks • a review of the current theory and 

t1ona1 techniques i'S presented in this chapter. 

Baste Network Theory 

ry cS1na-

A great deal of th oret1cal work 1n networks has already been 

do e. A ew Qf the relevant theorems are presented here 1n order to 

provide just1ficat1on and a rationale for the comb1~ator1a1 t chn1ques 

and algo it ms that are presented 1n later s t1ons. 

Theorem 1. l)pposite directed f1ows on· the smne· arc cancel (4]. 

Th1s theorem means that given an undirected arc, · i 1,3; w1th flows 

Yi,j ~ 0 and Yj,i ~ 0, these two flows can be replaced by the flows 

Y • i ,j and Y • j • i 

y'i.j c Yi,j- n(1i,J • Yj,i> 

Theorem 2. A set Y with F>O, satisfying the capacity con­

straints and node conservation equations can be decomposed into a set 

of positive chain flows from the source to the sink and a set of 

circular flows such that the direction of positive flows 1n any 

common arc is the same for all chains [4]. 

Theorem 3. There exists a positive flow from the source to 

the sink if th~re exists at least one chain of arcs with positive 

capacity from the source to the s1nk [4]. 

Theorem 4. A flow f 0 is maximal if and only 1f· the •x1•1 

flow is zero in a s~ond m!twork formed by replacing c1,j by c1,j -

Yt ,j y ai,j.£ A. 

11 



Theorem 5.    Given any partition of nodes Into two sets, where 

the first set Includes the source node and the second set the sink, 

then a feasible solution F 1s maximal, If every arc, a^ j, that Joins 

a node In the first set to a node of the second Is saturated [4]. 

Theorem 6.    The maximum flow In a network Is equal to the 

minimum cut. 

Tree Method 

Dantzlg [4] has developed a systematic procedure for com- 

puting the maximal flow In a network by using chains connecting the 

source and the sink of the network.    A knowledge of the tree method 

will give a better understanding of the Ford and Fulkerson algorithm 

which Is presented In the next section because the two methods are 

Identical in principle. 

A tree [1] Is defined as a connected graph with at least two 

nodes and no cycles. 

Consider a basic network such that: 

bi.j"0 ^.ji0     Va1.j^A 

The arcs may be directed or undirected.   Initially all arcs 

are iinmarked and the feasible flow is zero.    In order to determine 

the maximum flow: 

1. Create a tree such that the arcs are unsaturated. 

2. Select two sub trees - one T,, branching out from the source, 

node 1, and the other, Tn, branching out from the sink, n, such that 

each node is reached by Just one arc of the tree. 

3. Choose one unsaturated arc which connects the two trees. Thus, 

there will be Just one chain from node 1 to node n. If none can be 

found, go to step 7. 

12 
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4. Determine the amount that the flow can be Increased along the 

chain from node 1 to node n, by the following procedure.   Determine 

the amount that the flow can be Increased, AX, where AX « mln (c.. , • 

y1 1* yk 1^'    F^ow a^on9 the cha1n directed toward the sink Is 

designated y.   . and flow directed toward the source along the chain 

is designated   yk ,.    There are two cases: 

(a) AX > 0, Increase the flow by AX along the chain, go to 

next step. 

(b) AX = 0.   This means one arc In the chain Is saturated 

by a flow directed toward the sink, go to next step. 

5. Mark one of the saturated arcs. 

6. Eliminate the saturated arc from the chain.   Thus, there are two 

sub-trees.    Return to step 3. 

7. Check all marked arcs joining T, to Tn.    If all these arcs have 

flow from T, to T   then the optimum has been reached.    If any arc 

has flow from T   to T^, use this arc to connect T, to T   and proceed 

with step 4. 

Ford and Fulkerson Algorithm 

Given the basic network, the most direct method developed to 

date of computing the maximum flow Is the algorithm developed by Ford 

and Fulkerson.    This method Is the one most cited in the literature 

concerning maximal network flow.   The procedure is outlined below. 

1. Begin with a feasible flow in 0 in all arcs. 

2. Label each node as follows: 

a.    Label node 1, with the number 1. 

13 
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b. If node i is labeled and node j is not labeled, label 

node j with the number (i) if: 

(1) a.  . exists and y4 * < c* .. 

(2) a. . exists and y.  . > 0 

c. If the sink, node n, becomes labeled by this procedure, 

then the flow from node 1 to node n can be increased. 

3. If node n is labeled, construct a simple chain from node 1 

to node n by back tracking from n to 1 using the labels 

on the nodes. 

a. The chain created will have the property that all arcs, 

a. . on the chain directed toward the sink have a flow 
0 1 y-l i 1 ci < and all a^cs a-j k directed toward the 

source will have a flow y, L > 0. 

b. The flow can be increased by an amount AX where: 

AX = inin(cifj " Vij» y^)  V a1 J» al,k 1n cha1n- 

4. Increase the flow along the chain by an a.nount AX and 

return to step 2. 

5. This procedure is repeated until the sink cannot be 

labeled. Flow is maximized when this is the case. 

Now consider the more general problem in which the lower bounds 

on the directed arcs are no longer assumed to be zero. Thus the flow 

in each arc is bounded both above and below. 

Such that: - 00 £ b.j .. 1 y.j * lc*  -i 1 + 0B  a* * £ A 

Theorem 7.- In the case of networks with lower bounds on the 

arcs, C is defined as the subset of N such that if node 1 k C the node 

n 4 C or if node 1 c C then node n £ C. 

14 
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A flow y. . exists and is feasible If and only if: 
' »J 

h    b1.J-yiJ^C1J     VaiJ^A 

a^jCuTU)   1,J     a1  .C(ü(C)     1,J 

This more general type of problem can be satisfactorily worked 

by using the Ford and Fulkerson algorithm If a feasible flow can be 

found. 

The Ford and Fulkerson algorithm can be used to solve for a 

maximum flow In an associated network G1 which Is derived from the 

original network, G.    This irethod Is outlined below. 

1. Create an associated network G* such that G' contains 

the nodes and arcs of the original network G with arc 

capacities c'-| ■« ' c.j  ■» - b^ * •   The lower bound, 

b'.   . equals zero. 

2. Add a new source, labeled 0, and a new sink, labeled m, 

(m = n + 1), to G'. 

a. If the arc, a^ ., exists, then construct two new 

arcs according to the value of the lower bound, b.  .. 
■ »J 

If b^ . > 0, then construct the arcs, a',  of capacity 

c,1,m ' 
b1,J ana a,o.j w1th "P«1^ c,o.J " b1.J ' 

If b, 4 < 0, then construct the arcs, a' 7'With 
>»J 0,1 

capacity C . = - b. .  and a' m with capacity 

b. The Ford and Fulkerson algorithm can then be used to 

determine the maximum flow in G' from node 0 to node m. 

3. Two cases can result from step 2b. 

a. Case one: If the flow in each arc, a' . and a'. 
o,j     J,m 
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j c N', equals the capacity of each arc, then the flow 

is feasible for the network G and the problem has a 

solution, 

b. Case two: If for any arc, a' 4 or a',  j £A,, 

the flow In that arc does not equal the capacity of 

the arc, the problem has no solution. 

4. If a feasible flow for G can be found by the above pro- 

cedure, transfer the flow from G' to G by using the 

following transformation: 

s y + b. 
t,j  ■M.JTU1.j Va1.J^A 

5. Ford and Fulkerson's algorithm Is then used to determine 

the maximum flow using the feasible flow as a starting 

basis. 

16 

■ 4 
*-■* 

  

. ■ ■ - ■, ■ 

* 



«w 

4 —"•-•■- 

f 

CHAPTER III 

A SIMPLIFIED METHOD FOR COMPUTATION OF MAXIMAL FLOW 

To compute a maximum flow In networks with non-zero lower 

bounded arcs, an Initial feasible flow must be determined.   The method 

presented In the last chapter produces a complex associated network, 

6', aven with a relatively simple network, G.   The principle advantage 

of the method presented here [10] Is that an Initial feasible flow 

can be determined by use of a more simple network, G', than In the 

previous method. 

Proposed Algorithm 

The development of the algorithm Is based upon a conseqjence 

of the flow balance equations.    In order to provide a rationale for 

the procedures presented, the development of the associated network 

will be presented now. 

Given a basic network G where the flow In each arc Is bounded 

as follows: 

--<b1tj<ynjic1J+-       a1tJcA 

The problem of determining the maximum flow In G can be stated as 

follows: 

Maximize: yr 

Subject to: 

fn.l 

z  -   ^i i "       z +   y* * 
yJt1 c W (1) J'1     y1tj ca)+(i) ^J 

» 0   V 1 c N 

< c. Vai,j^A D1J-y1.J-M,J 

Now transform the entire network G into an associated network 

G'  using the change of variables: 

f1,J = y i.j + bi.j Vai.j^A 

17 
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the problem then becomes: 

Maximize: 

Subject to: 
n.l 

2 + y' E   y 1»J K  c ..rm J»1 

Let b1.jad1 1 c N 

zero. 

I   .     b. . » 0  V 1 c N 
b1 j c u) (1) 1,J 

and: 0 < y'^ < c'u - c^j - ^^ 

Z b. . -    S +  » 
b. 1 c ü)"(1) J*

1  b1 . c w (1) 

Note two things. First the sum,  £ d., Is equal to 
1c N 1 

Second, If a flow r.f -d. was passed through each node, the problem 

would be exactly the problem of flow maximization In a basic network. 

Hence, a technique similar to Berge's [2] can be used In which new 

nodes 0 and m « n+1 are added to the network G*. Therefore, only a 

maximum of one arc per node Is added to G1 In this method. 

Procedure 

Using the results of the previous section the solution to the 

maximal flow In the above network can be determined using the following 

procedure. 

1. Add a new source and sink node, denoted 0 and m (m - n + 1), 

respectfully to G'. 

2. The arcs a'    4 and a'4 m are added as follows.    If d. > 0, 
o,l    j,m 1   * 

thenan arc, a' ,, Is constructed with capacity d.. If d, < 0, an 

arc, a'* m. Is constructed with capacity -d.. If d, « 0, no arc Is 

added to G' for node 1. 

18 
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3. The Ford and Fulkerson algorithm is then used to maximize 

flow in G' from node 0 to node m. Again as in the previous method 

this maximum flow is equivalent to a feasible flow in the network G 

if and only if: 

y'^-d,   vt=,d>o 

^'"i   vt,d<o 

4. If the problem is solvable continue by eliminating all 

arcs incident from node 0 and incident to node m. Node 1 and node n 

are now the source and sink respectfully for 6'. 

5. Using the flow generated in step 3 as a starting basis, 

maximize flow from node n to node 1 by again using the Ford and 

Fulkerson Algorithm. 

6. Upon completion of step 5, transfer flow from G' to G by 

use of the transformation equation: 

y1.J=y,1J + bi.j   Vai.j^A 

The maximum flow in G is equal to y ... 

19 
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CHAPTER IV 

PROCEDURE FOR THE SOLUTION TO THE GENERALIZED MAXIMUM FLOW PROBLEM 

A proposed methology for the computation of a solution to the 

generalized maximal flow type problem as defined below Is presented. 

The generalized network Is first reduced to a basic network and then 

the technique presented In Chapter III Is used to solve for the equlv- 

falent maximum flow In the basic network. An example Is presented In 

order to demonstrate the techniques discussed in this chapter. A 

description of the computer program contained In Appendix A for use 

In solving maximal flow problems for large networks Is Included. 

The Generalized Network 

Generally maximal flow solutions are required for networks 

which do not fit the restrictive definition of a basic network. For 

the purpose of this thesis the generalized network Is defined as a 

modified basic network with a set of arcs A, and a set of nodes N, 

such that: 

1. Each set ü)"(1) and w (1) can contain any number of 

directed and undirected arcs. 

2. Let D be a subset of A such that If and only If the arc 

a. , Is directed It Is a member of D. 

3. Let U be a subset of A such that If and only If the arc 

a.. 4 Is undirected It Is a member of U. 

4. K Is a subset of N such that If the node 1 Is bounded 

It Is a member of K, To the bounded node, 1, we associate 

two real numbers, b., the lower bound, and, c,., the upper 

20 
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bound such that the total flow through the node 1, 

denoted y.,, is bounded: 

b^ £ y. £ c.       1 £ K 

5. All nodes, j, not bounded belong to the subset 1, where 

L c N. 

6. The network may or may not contain multiple sources or 

sinks, but shall contain at least one source and one sink. 

Procedure for Reduction of the Generalized Flow Problem 

In order to solve for the maximal flow In the generalized net- 

work by the techniques presented in Chapter III, the network must be 

transformed Into an equivalent basic network. 

The proposed methods for reduction are based upon results of 

the general theorems presented in Chapter II. References cited give 

further proof of some of the methods used. 

First, consider the case in which the generalized network, G, 

contains both directed and undirected arcs. This network can be 

simplified by replacing each undirected arc by two directed arcs as 

follows: 

Given an undirected arc a. . c U 

Replace a. 4 by a. .. and a. . c D 

Where 

0±yi.jiC1,J = 61,j 

o<yiti<citrcUi 

Upon reaching a solution for the maximal flow, the orientation 

by the flow in the undirected arcs can immediately be determined from 

the values of y. . and y,   . since one flow will be zero. 

21 
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Now consider a network in which two distinct nodes, 1, J, are 

connected by more than one arc.    Successive arcs, flows, and bounds 

are denoted by prime symbols.    For example If there are m arcs from 

node 1 to nod* j, the k     arc would be denoted a.  /  '.    It will be 

assumed that each arc has both upper and lower bounds. 

The set of arcs a. / ' k ■ (l,...m) may be replaced by a single arc 

anj, where; c^J^W      b1.J " ^ ^ 

Next assume a pair of nodes (1,J) are connected by two oppositely 

directed arcs a. . and a.. .. £ D. 

The pair of arcs may be replaced by a single directed arc 

In either direction as follows: If c. . > b. . 

Replace a, , and a. . by a. . such that:' 

C,1.j = C1,J ' b1.J 

b,1.jsb1.j-c1.j 
Otherwise orient the arc from j to 1. 

If a network has multiple sources and, or sinks, merely create 

a single source and, or single sink.   Then construct one directed arc 

of Infinite capacity from the new source to each old source and one 

directed arc of Infinite capacity from each sink to the new sink [8]. 

If the flow through the nodes is restricted to lie between 

two values, the character of the maximum flow problem itself remains 

unaltered.   Assume tve are given a network in which the flow is subject 

to both arc and node capacities, where all arcs are directed or have 

been converted to directed arcs by the previous techniques.   This 

network can be reduced to the basic network maximum flow problem by 

the following procedure.    Expand the network such that for each bounded 

22 
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node (1) c K, two n.-v. unbounded nodes (1', V)   n created, so that 

the single directed arc, a.,   .,, , joins the two new nodes with the 

upper and lower bounds associated with the bounded node In the reduced 

network.    To each arc, a.   ., create ar arc a'.   ,, 1n G' and to each 

arc a.  . In G create an arc a.,,   . In G'.   The bojnds on the other 
• »J ■    »J 

arcs remain the same. 

Example Using the Simplified Technique 

Given the gSoti-allzed network showi in Figure 1, we are 

required to compute the maximal flow from node 2 and 3 to node 10.    Or; 

Maximize F= * ^n = ^5,10 + ^7,10 + ^6,10 
r1,n -     v ' 

The flow in each arc is bounded as follows: 

3<y2>4<8 0<y2j6<4        3<y3>4<7 

5<y3t5<10       3<y495<8        0 < y4 , < 5 

(D (2) 
0iy4>6l3 Iiy4>6l2       0<y4t6<2 

3<y5)4<8 0<y5(6<8        3.<_y5.757 

2iy5J0i5       i<y6.7<3     3 1^6.10^ 9 

(D (2) 
l<y7t5<4 liy7t6l3        2<y7>6<5 

4<y7>1()<10 

The flow In all nodes except 5 and 6 Is unrestricted. The flow In 

node 5,6 Is restricted as follows, 

4 < y5 < 15   4 < y6 < 10 

This flow problem can be simplified by using the techniques 

presented In the last section. The procedure is outlined by ordered 

steps. Although many steps could be combined for this simple 

23 
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FIGURE 1 

GENERALIZED NETWORK G WITH UPPER 
AND LOWER BOUNDS ON ARCS AND NODES 

FIGURE 2 

GENERALIZED NETWORK WITH SINGLE 
ARCS REPLACING MULTIPLE ARCS 

24 
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example. It 1s felt that ^or hand and computer computation this Is the 

most efficient procedure. 

1. Add the single sou*^» node, denoted as 1, to the network. 

In addition, add the arcs a, » and ai 3 t0 the network 

such that: 

0 1 y l 2 - + 08 

0<ylj3 < + » 

2. Replace each undirected arc a.  . with upper bound c,  , > 0 

by two directed arcs a.. * and a. .. 

Therefore: 

ä4>5   becomes aj^ and a^]   0 < y^ < 5, 0 < y^] < 5 

(3) f3) 
a4,6 becomes a4,6 and a6,4 0 ^ y4,6 1 2' 0 1 ^6,4 ^ 2 

i 

a5.6 becanes a5,6 and a6.5 0iy5,6^8' ^^S^^8 

3. Combine all arcs joining each pair of arcs {1,J) according 

to the following procedure. 

a. Combine all arcs which are similarly directed. Into a 

single arc. Thus the arcs a4 g. a4 g» a4 ^ become a4 6 ^ 

c4.6 ' 'ill * 4*1 * c4!6 ' 3 * 2 + 2 - 7 
b4.6 ' 411 + "ill * b<^ - 1 + 0 + 0 . 1 

Similarly form the arcs a4 5» a5 4 and a7 5     ^ 

c4,5 = 13 

c5,4 = 13 

C7,6S   8 

b4.5 ■ 3 

b5.4 " 3 

b7.6 s 8 
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f MURE 3 

EQUIVALENT BASIC NETWORK 

FIGURE 4 

TRANSFORMED NETWORK G' 
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:1 . 
b.   Transform each pair of arcs which are directed In 

opposite directions between each pair of nodes 

into a single arc. 

Thus:    a^ 5 and ag » become a* g 3 

c4,5 * c4.5 - b5.4 = 13 - 3 = 10 

b4.5 = b4.5 - c5,4 '    3-13—10 

Similarly the pair of arcs a, g and ag 4' a5 e an<* 

a6 5; a5 7 and a7 5** a7 6 and a6 7 are co'nb1necl-    The 

simplified network Is shown In Figure 2. 

3. Complete the transformation to the basic network by the 

following procedure. 

a. Expand the network so that all nodes have Infinite 

capacity for flow as outlined earlier.   Thus for 

nodes 5, and 6 the new arcs ag « and ag « are 

created and the equivalent network shown In Figure 3 

Is established. 

b. Add the return arc a10 ^ for computational purposes. 

4. Transform the network G to 6' by using the change of 

variables equation    ^ j = y'i j + bi j       ai j ^ A 

yio.i-y'io.i     ^1.2 -y'i.z       yi.3'y,i.3 

^2.4   ^'2.4   +8   >2.6    sy,2.6 ^3.4 = ^3.4 + 3 

^3.5 -y'a.s +5 ^4.5 -y'4.5 -10 yA,e-y\te-] 

y5,8 5,8 
+ 4   y 6.9 -y 6,9 +   4 y7.6 7.6 

y7,10-y,7.10 + 4   y8,6    ^'8.6    "   8   y8,7 = y'8.7 " ! 

y8,10 - y's.lO + 2   y9,10=y'9.10+   3 

27 
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The equivalent problem 1s obtained: 

Maximize y'^ , with the node flow satisfying the balance 

equations as follows: 

1 y'lO,l ■'■1.3 -y,1.2 - 0 

2 >'l.2 -"'2.4 - y,2,6 - 8 - 0 

3 »'1.3 -»•3,4 " y'3,5 - 8 - 0 

4 »•3.4 + y,2.4 -y'4,5 - y,4.6 + 22 - 0 

5 »'s.B ^'4.5 " y'5,8 - 9 - 0 

6 »'2.6 ^'4.6 + y,7.6 ^'s.e ■y,6.9- • 13 » 0 

7 »'8.7 - y'7.6 "y'7>10 - 5 » 0 

8 y,5,8 " y'8,6 " y,8.7 -y's.io + 11 - 0 

9 ^6.9 "y'9,10 +    1 • 0 

10 y'o in +»'7 in +y,
ft   in ~  y  in  1 + 9 - 0 

Therefore tne values of the remainder d. are Immediately 

seen to be as follows: 

d1 = 0 d2 - 8 d3 » - 8 d4      » + 22 

- 9 d. 13 d7 - - 5 d8 - +11 d9 - +1 d10 - + 9 d, - - ,   U6 

Using the values of d^ 1 ■ 1,,,,10, as the capacities, the 

new source, sink and arcs are added to obtain the equivalent 

network G' shown In Figure 4. 

Then using the Ford Fulkerson algorithm to obtain a feasible 

flow In G the following values are obtained for the flow In 

G'. 

„<# 
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y' 1,2 12     y' 1.3 8  y' 2.4 ü   ^2,6   ^ 

^3.4   a   0     y'a.B80   y'4.5   s14   ^4.6   ^ 

y' 

y' 

y's.e "  5   y'e.g'5 ^7.6 0 y'y.io'2 

8,6 6   y'aj'7 y,8.ios  3 y'g.io 

y'io.i * 20 

6.   Note that the flow in all sink arcs and source arcs is at 

arc capacity, therefore, a feasible flow exists.   Dropping 

nodes 0 and 11 plus the associated arcs, maximize flow 

from node 1 to node 10 using the Ford Fulkerson algorithm. 

In this case the feasible flow computed is the maximum 

flow.   Then, using the change of variables equations the 

resulting maximal flow on G is determined.    Finally G 

is simplified by eliminating arcs a5 g and a, *.   The 

maximal flow is 20.   The flow In each arc 1s as follows: 

^2,4 x 8 ^2,6 " 4 ^3,4 ' 3 ^3.5 " 5 

^4.5 ' 7 ^4,6 " 7 ^5.4 ' 3 ^5,7 = 7 

^5,10 * 5 ^6,4 = 0 ^6,5 " 2 ^6,7 " 3 

^6.10 " 9 ^7.5 s 1 ^7,6 = 3 ^7,10 ' 6 

The flow in node 5 is 9 and in node 6 is 9. 

Computer Program Description 

Since it is often the case that it is necessary to solve the 

maximal flow in a much larger and more complicated network, a computer 

program for the solution of the generalized maximal flow problem as 

presented In this thesis has been written.    The program Is written in 

FORTRAN IV for use on an IBM 360 computer. 
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GENERAL  FLOWCHART CONTINUED 
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The maximal flow In generalized networks Is computed using 

the methodology outlined In this chapter.   In addition, a set of 

routines Is added to the program which will permit the user to 

transfer several networks to Input data d'rectly without first 

reducing the networks to basic networks by hand or auxiliary methods. 

However, as the program Is written each network must have a single 

source and sink and all undirected arcs are to be represented by 

two oppositely directed arcs.   The program has been checked out and 

functions properly. 

The present program Is written for a 50 node network. In 

order to solve larger networks the size of the arrays In the dimension 

statement must be Increased. The general flow chart of the entire 

program Is given on pages 30 and 31. For the Interested reader a 

detailed flowchart Is presented In Appendix A. A Fortran listing 

of the program is contained In Appendix B along with the solution 

to the nrevlous example. 

Conclusions and Recomnendatlons 

The general maximal flow problem can be solved more efficiently 

by use of the method developed by H. Greenberg.   The advantages of the 

technique are evident when solving small problems by hand.   The tech- 

niques presented provide a systematic approach to obtaining a solution. 

The problem of computing the maximal flow In a mixed network <n which 

the flow In the undirected arcs are bounded below by a positive 

number cannot be sclved by this method.    In fact, to the best of my 

knowledge this problem is unsolved In the general case except by 

complete enumeration techniques. 
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APPENDIX A 

DETAILED FLOW CHARTS 

This appendix contains the detailed flow chart of th» computer 

program 1n addition to a description of variables Uied.    The statements 

are written In FORTRAN IV with arrows Indicating the logical flow 

through the system.   The input and output statements are not enclosed. 

Description of Variables 

Variable Name Description 

Capacity of the directed arc from nnde 1 to node J. 

Lower bound of the dliected arc from I to node J. 

Initially used to read In data. 

C(I,J) 

B(I.J) 

YCI.JJ 

Y(I.l) The number of ehe node the arc a4 ., is Incident 
from. 1,J 

Y(I,2)    The number of the node the arc a. ^ is Incident to. 

Y(I,3)    Upper bound of arc a, .. 

Y(I,4)    Lower bound of arc a.. ,. 

Y(I,J) The value of the flow in a directed arc from I 
to J after input data is transmitted to arrays 
C(I,J) and B(I,J). 

XL(I)     Dummy array used to compute values of the 
capacities of the source and sink arcs for G1 

and then the label of the nodes in the label 
routine. 

ML(I)     Dummy array used in the label routine as a check 
to determine if all nodes have been checked and 
then to store the path used to increase flow. 

XNC(I,1) Number of the node that is bounded. 

XNC(I,2) Upper bound on a flow through a node. 

XNC(I,3) Lower bound on flow through a node. 

XNC{I,4) Value of flow through a node. 

NN Number of networks. 
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N 

M 

KX 

NA 

NC 

Number of nodes 1n the original problem. 

Value of tlie designated number of the sinl' node. 

Value of the designated number of the source node. 

Number of arcs In tht original problem. 

Number of bounded nodes. 

Input Card Format 

All entries on the card format in this section are right, 

justified and are fixed point entries if the variable r^me begins 

with I, J, K, L, M, or N and are floating point entries for all other 

variable names. 

Card #1 

Col umn Name 

1 - 4 NN 

Card #2 

1 - 4 N 

4 - 8 NA 

8 - 12 NC 

Card #3 through Card NA + 1 

1 - 10 Y(I.l) 

11 - 20 Y(1.2) 

21 - 30 Y{1.3) 

31 - 40 Y(1.4) 

35 
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Card INA + 3 through Card NC •>• 3 

Column Name 

1 - 10 XMC(I.l) 

n - 20 XNC(I.2) 

21 - 30 xNcd.a) 

Detailed Flowchart 

The detailed flowchart of the program Is given In the next 

11 pages. 
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KX    = 1 

M     » N    + NC + 2! 

RET - 0 

I 
DO I 

NL(I) 

XL(I) 

1,50 

0 

0 

DO J     =1,50 

B(r,j) - 0 

C(I,J) - 0 

DO I     « l.NA 

I 
L - Y(M) + 1 

K= Y(I,2) + 1 

I 
C(L,K) = Y(1.3) 

+ e(L,K) 

I 
B(L,K) = Y(r,4) 

+ B(L,K) 

DETAILED FLOWCHART 
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L - N + 1              j 

K - N + NC + 1 

I 
DO I - 1,M 

♦ 
C(I.K) - C(IfL) 

B(I.K) - B(r.L) 

* 

C(I.L) - 0 

B(I,L) - 0 

C(J.I) - - C(J.I) DO I - 1.N 

DO J - 1.N 

C(I,J) 

B(I.J) 

C I.J 
BJ.I 
B I.J 
C(J.I: 

C(J.I) 

B(J.I) 

C(J.I; 
B(I,J 
B(J,I 
cd.jj 

NO 

cd.j) - -C(I.J) 

DETAILED FLOWCHART 
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L « N + 1 

I 
DO I » 1,NC 

K = XNC(I,1) + 1 

I 
t > 

DO J = 1 ,M 

. i 

NO     X 
^v 

C(K.J) > 0 

/ 

C(K,J) = - C(K,J) 

DETAILED FLOWCHART 

39 

YES 

C(L.J) = C{K,J) 

B(L,J) = B(K.J) 

'    Mil Mi 



DO I • 1,M 

SI - 0 

SO - 0 
^ 

SI - SI + B(J.I) 

DO J  - 1 ,M 

Y(I,J) « 0 

XL(I) - SI - SO 

DETAILED FLOWCHART 
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C(I,M) - -XL(I) NO 

C(M-1.2) - .9999 

MX « M-l 

I J 

DO I = 2,MX 

C(M) -XL(I) 

li 
1    ? 

! 

DETAILED FLOWCHART 
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Hid)  - 0 

DO J - KX.M 

XL(I«) - KX 

I 
DO L - KX.M 

I - L 

LN - L 

DO K • 1,LN 

NO 
I - K 

XL(J) - I NL(J) - XL(J) XL(J) - I 

DETAILED FLOWCHART 
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I = I + I 

NL(I) » XL(K) 

K • NL(I) 

DO I - l.M 

K - NL(I)     ff 

L - NL(I+1) 

DETAILED FLOHCHART 
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f    c    ) 
DO I - 1.M 

K - »L(I) 

L - «.(I) \l 

YES | 

4 

ZERO OUT ARRAYS 

NL AND XL «.ül^/'    L > 0    N 

JYES 

♦-!!2-Xc(r.L) > o J> Y{L.K) - 

Y(L.IC) + X 
Y(K.L) - 

Y{K.L) - X 

1 4 

^DOES X 
NETWORK    \ 

WE A FEASIBLE 
FLOW "/ 

DETAILED FLOWCHART 
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DO I = KX.M 

DO J = KX.M 

YES. 

C(I.J) " C(I,J) 
+ B(I.J) 

Y(I,J) = Y(I,J) 
+ B(I,J) 

NO DO I = 1.NC 

K = XNC(I,4)+1 

C(K,L) = 0 

Y(K,L) = 0 

I 
XNC(I.4) = Y(K.L) 

C(K.J) - C(L,J) 
Y(K,J) - Y(L,J) 
Y(L,J) = 0 
C(L,J) = 0 

DETAILED FLOWCHART 
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2 
00 I » KX.M 

00 J - KX.M 

pj.D - - C{J.I) 

Mi.J) m * 
i 

B(I.J) - 
B(I,J) + C(J.I) 

L ■ N + 1 

K ■ N + NC + 1 

I 
00 I   - KX.N 
C(I.L)- C{I.K) 
B(I,L)- B(I.K) 

l 
Y(I,L) - Yd.K) 

C(I.K) - 0 

DETAILED FLOWCHART 
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Y(J.I) ■ B(J.I) 

Y(I.J) --Yd.J) 

+ B(J.I) 

j '" 

Y(J,I) - Bd.J) 

- Y(I,J) 
Y(I.J) * B(I,J)  J 
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PRIKT 

SOLUTION 

OF METKOWC 
FLOW 

RETURH TO 

START READ 

IN NEXT 

NETWORK 

DETAILED FLOWCHART 
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APPENDIX B 

FORTRAN - IV LISTING 

This appendix contains the complet« l^svlng of the computer 

program.   The problem niustrated In Chapter IV was used to display 

the output format.   Comment cards are Included for clarification and 

Identification of the main sections of the program. 
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801 

3 
2 

NIC 

Jit J«K4) 

MATRIX   IS   LOADED   AND   ALL   ARCS   INCIDENT   TO 
FROM   THE   SAME   NODES   ARE   COHBINEP 

DIMENSTDN C(50,50»,B(50,50),Y(50,50), XL(50>«NL ( 50), 
IXNCf50,41 
REAO(5.80I)   NN 
F0RMAT(I4) 
00   800   lUMfNN 
REA0(5tl)   HjNA 
F0RMAT(3I4: 
00   2I»1.NA 
fiEA0(5f3)(   Yd,. 
FORMAT(4F10.4   ) 
CONTINUE 
00   8   1=1,NC 
READ(5t4)(XNC(I,J),J*I,3) 

4 F0RNAT(3F10.4) 
8  CONTINUE 

KX*1 
H»   N*NC*  2 
RET»0 
00   5   I«l,50 
NLff)>0 
XL 11)   =0 
00   5   J=l,50 
B( I,J)>0 
C(I1J)»0 

5 CONTINUE 
C THE CAPICITY 
C   AND   INCIDENT 

00   6   I-l.NA 
L=   Y(I,ll   ♦   1. 
K»   Yd,2)   ♦   1. 
C(L,K)=   Yd,3) + 
8(L,K)»  Yd,4)* 

6 "ONTINUE 
'» _   SUNDER ICAL   VALUE   OF   THE   TERMINAL 
•ALLOM  FOR   EXPANSION  OF   THE   NETWORK 

L»N-H 
K«N*NCd 
DO 11 1=1.M 
C(IfK)=C(I,L) 
8(I,KJ=B(I,L) 
C(I,L)«0. 

11 B(I,L)>0. 
C COMBiNE MULTIPLE ARCS JOINING  TWO  NODES IN OPPOSITc 
C OIRECriONS. 

00 15 1 = 1,M 
HO 15 J»1,M 
VF(Cd,J).GT. O..ANO. C(J,t).GT. 0.) GO TO 16 
GO TO 15 

16 IiMCd,J).LE.B(J.I)) GO TO 17 
CJ I,J)* Cd,J)-BU,I) 
6d,JI= Bd,J)-C(J,I) 
C(j.n«-c(j,r? 
GO TO 15 

17 C(J,I)=CU,I)- 8(1,J) 
B(J,I)=B(J,I)- C(I,J) 

C(L,K) 
B(L,K) 

NODE IS CHANGED TO 

49 

^am 
■"-"■  — ■      ■*'■' —   — 



mm 
h !■ ma* 

1 

CAPACITIES   OF   THE 
NOOES   IN  G« 

Cd.Jl'-CCI.JJ 
15 CONTINUt 

TRANSLATE  BOUNOEO NODES INTO BOUNDEO ARCS 
IF(NCI155,155,156 

156 L»N*l 
DO 34 I«1,NC 

00 32 J»I. M 
IF(C(K,J)) 32.32,33 

33 Ca»JI= C(K,J) 
BCL.J)' B<K1J) 
IF(C<K..I) .GT.O.I C(K,JI«-C(KtJ| 

32 CONTINUE 

B(KvL)«XNCTl«3) 
L»L«-l 

3A CONTINUE 
155 CONTINUE 
THE FOLLOWING OPERATION COMPUTES THE 
ARCS FROM AND TO THE SOURCE AND SINK 

00 9 I»1,M 
SI«0 
S0»0 
DO 10 JM,M 
Y(I.JI«0 
IF(C(I,J).GT. 0.» Cd.JI« C!I,JI-B(I,J) 
IF(C<I,J).GT.O.J SO-SO^flUtJ) 
IF(C(J«I).GT.O) SI«SUB(.l.r) 

10 CONTINUE 
XLin-SI-SO 

9 CONTINUE 
G'lS COMPLETED BY ADDING NEW SINK AND SOURCE ARCS 

CIM-1»2»»9999 
MX» M-t 
00 12 1=2, MX 
IF( XLIUI 13.12,14 

13 Cd.MI» -XLCII 
GO TO 12 

14 Cd.!)« XLU) 
12 CONTINUE 

DO 31 1*1,50 
31 XLdl«0 
20 XL(KX)—KX 

THE LABEL ROUTINUE AS  PRESENTED 
IS USED TO DETERMINE THE FLOW CAN 

DO 210 L«KX,M 

IFULdn93>93,96 
96 NLd)-0 

GO TO 22 
93 LN«L 

DO 94 K-l.LN 
IF(NLIKn94,94,95 

95   I»K 
GO   TO   96 

BY   FORD  AND  FULKERSON 
BE   INCREASED 
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n 

c 
c 

c 
c 

94 

22 

25   ffrvn^ji.Cf^CfTiJI)   XL(J) = I 

CONTINUF 
GO  TO  210 
00 21   J=   KX,   M 
IFUL(J)I23123.21 
IFJCUtJn   24,24,25 
Iff   Y(I,J).LT.   C(I,J» I 
NJ.(J)=XL(J) 
GO  TO  21 
IF(C(J,I))21»21«26 
IF(Y(JyI).GT.   0.}XL(J)=I 
NL(JI=XL(J) 
CONTINUe 
GO  TO  93 
CONTINUE 
IF(XL(Mn27.27 28 

SINK     IS     DETPRMINEO   DIRFCTLY 

24 
76 

21 

210 
IF(XUM))2rierxc4 

A   PATH  FROM        SOURCE   TO 
FROM   THE   LABELLED  NODES 

28   1 = 1 
NL(I)=M 
K^NLd) 

30   1=1+1 
NL(n = XL(K) 
K=NL(I) 
IF(   K   .EO.   KX)GO  TO  40 
GO  TO  30 

4C   X«9999,9 
THE   MAXIMUM     AMOUNT   THAT   THE   FLOW   CAN   BE   INCREASED 
ALONG  THE  PATH   IS  COMPUTED 

45   DO  41   1 = 1,M 
K=NL(n 
L=NL(I+1) 
IF(L)50,50,   42 

42 IF(C(K,L))43,43,44 
43 IF((C(L,K»-   Y(L,K)).LT.   X) 

GO  TO 41 
44 IF(   YIK.LI.LT,    X)   X»   Y(K,LI 
41   CONTINUE 
50   CONTINUE 

THE   FLOW   IS   INCREASED 
00  51   I«1,M 
K»NL(II 
L=NL(I+1I 
IF(L)60,60,   52 

52 IF(C(K,L»I   53.53,54 
53 YIL.K»»   Y(L,K)+   X 

GO  TO 51 
VdC.D»   Y(K,L»   -X 
CONTINUE 

X=   C(L,K)-Y(L,KJ 

54 
51 
60 CONTINUE 

00 61   1=   KX,M 
NLdj-O 

61   XL(II=0 
60 TO 20 

iHE   SINK CANNOT   BE 
TO  OERMINE   IF   THE 

LABELLED AND  A  CHECK   IS   MADE 
FLOW   IS   FEASIBLE 

51 
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Yd.I)) .GT. .0001 
.0001» GO TO 90 

i 

27 IF(M.EO.(N*NC*l)» GO TO 80 
MJ«M-1 
DO 70 I- 2, 
IFMCCitll- 
lYd.MM.GT. 

70 CONTINUE 
KX>2 
N«N—1 
C(M,KX)«0 
GO TO 20 

THE ORIGINAL NETWORK IS 
TRANSFERED FROM G' TO G 
80 CONTINUE 

DO   81   I«KX,M 
DO   81   J=KX,M 

CI, 

.OR.   (C(I,M|- 

RECONSTRUCTED     AND   FLOW   IS 

81 

158 

101 

100 
157 

103 

104 

102 

IFtCCl.JI.LT.O.)   GG TO  81 
cUtJi' cn.j) 4-8(1.j) 
Yll.JI-YTltJHBdtJ) 
CONTINUE 
IF(NC)157,157,158 
L»N*1 
00   100   I=l.NC 
K«   XNC(I,1U1. 
XNC(I.4)   =   Y(K,L) 
C(K9L)«0. 
Y(KfL)'0 
DO   101   J=KX,M 
TF(C(L»J).LE.O)  GO TO  101 
C(KtJ)«C(L*JI 
Y(K,J)=Y(L,J) 
Ya,J)«0 
C(L»J)«0 
L-L^l 
CONTINUE 
CONTINUE 
00  102   I-  KXtH 
DO  102  J-  KX.M 
IF(C(J«ini03.102,102 

CIIIJ  »  C(lIj)*B(J,II 
BCI.JI« Bn.ji*c(j,n Dl  t t •* 
IF((B I.JI-Ö( Y(I,J»)   GO  TO  104 

105 

Yi..u 
GO  TO 
Y(j,n 
Y(I.J)«Bd,J) 
CONTINUE 
L»N*l 
K=N+NC*1 
00   105   I«KX,M 
CMvLI«Cd,K) 
B(IvL)«Bd,K) 
Y(I,L)«YdvK) 
cn,K)«o. 

Yd,JI*B(Jf n 
102 
BdvJ}-Yd,J) 

52 
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I   1 

( 

iiiMi—i mi ■ 11 

NRITE(6.86) 
86 FORMAKIHI,   25Xt    • ARC • ,9X, • LOWFR   BOUND" , 12X, • FLOW» , 

114X,»UPPER   BOUNO'i//) 
00  82   1=2,H 
RET=RET*Yn,M) 
00   82   J»2.M 
IF{C(I,jn82t82f85 

85  L»I-l 
K«J-1 
WRITE(6.83) LtKtBll,J)fytl1J),C{ltJ) 

8? F0RMAT«24X,I2,1X,T2, 5X,F10.3,1IX,F10.3,10X,F10.3,/) 
82 CONTINUE 

WRITE<6,87> 
87 FORMATClHO^X.'NODF'.gX, »LOWER BOUND» ,12X, • FLOW» . 
114X,»UPPER 90UND»,//) 
IF(NC)I61»161f160 

160 00 89 1=1.NC 
K = XNCnvl) 
WRITE(6,88)    K    , XNC (I »3) ,XNCd »4) .XNC( 1,2 ) 

88 FORMAT(25X,I2,6XfF10.3,llX,F10.3f10X,F10.3,//) 
fi« CONTINUE 

161 CONTINUE 
HRITE(6(84)  RET 

8A FORMATI 25Xt
,MAX FLOW =»,F10c4J 

GO TO 91 
90 WRITE (6.92) 
92 F0RMAT(25X,»NETWORK HAS NU FEASIBLE FLOW») 
91 CONTINUE 

DO 117 1=1,50 
DO 117 J=l,50 
Y(I,J)»0 

117 CONTINUE 
800 CONTINUE 

END 
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A ■< f. LGUER   ROUND PLOW 

1     2 0.0 12.000 

I      3 0.0 fl.000 

i     <* 8.000 B.000 

2      h 0.0 4.000 

3      4 3.000 3.000 

3      5 5.000 5.000 

4      ■? 3.000 7.000 

v      ^ 1.000 7.0C0 

S      4 3 .000 3.000 

5      <S 0.0 0.0 

5      7 3.000 7.000 
s     ,\ 2.000 5.000 
O        4 0.0 0.0 

^        5 0.0 2.000 

o      7 1.000 3,000 

^      8 3.000 9.000 

7      * 1.000 1.000 

7      6 3.000 3.000 

7      8 4.000 6.000 

MLM;F LOWFR   ROUMO PLOW 

5 4.000 9.000 

^ 4.000 9.000 

«AX   FIÜW   = 20.0000 

IIPPFO   BnilND 

999.000 

99*5.000 

13.000 

4.000 

7.000 

10.000 

13.000 

7.000 

13.000 

R.000 

7.000 

5.000 

2.000 

fl.000 

3.000 

P.000 

^.000 

8.000 

10.000 

MPPFP   PC'iNO 

15.000 

10.000 

54. 



■■■ 

( 

UNCLASSIFIED 
Security ClwiflotioB 

DOCUI4EHT CONTROL DATA • RAD 
(Steurttr el-ultlfllcn ol If (>•, IXMtr ol mbttmnl mtä It»!»*** mumtMUcn muml >» m*—94 mhm tm ifmlt mpul H «JWliteO 

I. OmOINATINO ACTIVITY fCoipoml» muthot) 

Naval Postgraduate School 
Monterey, Callfomta   93940 

tm.   RB^ONT SBCUNITY   CLASSIFICATION 

imAssiaa 
2»  «Neu» 

>   «IPOWT TITLI 

Comoutation of Maximum Flows 1n Networks 

4   OKSCRIPTIVI MOTU fTrp. ol npott mni htek,,»* ami—) 

Mastpr's Thesis. 
I   AUTHORftXlMlMa*. Amt MM. HUUml) 

Bums, William C, Captain, USA 

• m€Pomr OATI 

June 1968 
7»    TOT*L MO. OF   FASKS 

55_ 12 
• a.   CONTHACT OH «NANT 

fc   FROJBCT NO. 

• a. oRiaiNATon-a RCFORT NUfciatnfJJ 

li. OTHBII NfFOMT  NOC*)  (Anye«»*t »SI mar *• a»«l#iarf 

10. AVAILABILITY/LIMITATION NOTICU 

This document Is subject to special export controls and each transmlttal to 
foreign natlr .als may be made only with prior approval of the Naval 
Postgraduate School.  

M   SUP It. SPONSORINO MIUTARV ACTIVITY 

Naval Postgraduate School 
Monterey, Caltfomta 93940 

11   ABSTRACT 

A review of the current theory and methods for the computation of 

maximum flow in networks Is presented along with a simplified method for 

determination of a feasible flow In networks with upper and lower bounded arcs. 

A computational procedure Is presented which Is used to calculate the maximum 

flow for a general network.    The network Is reduced to an equivalent basic 

network.   An associated network Is used to compute a feasible, then the maximum 

flow for the basic network.   A computer program Is Included for use In computation 

of maximal flows In large networks. 

DD ,W*.< 1473 
57 

UNCLASSIFIED 
S«curity ClBBBiflcatfon 

''"' ****iAitiu&mMiA**'- 



■ ".■' ■ ' ""■ mmammm 

I 

UNCLASSIFitu 
Securiiy Cl««»ifitation 

KEY    WOROl 

Transportation Networks 

Network Flows 

Maximal Network Flow 

DD .pr..l473  BACK. 
>/N   Ot 01 - ■iO 7- 61? 1 

58 UNCLASSIFIED 
Security Classification 

't^t^faf 


