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ABSTRACT

A review of the current theory and methods for the computa-
tion of maximum flow in networks is presented along with a simpiified
method for determination of a feasible flow in networks with upper
and Tower bounded arcs. A computational procedure 1s presented which
is used to calculate the maximum flow for a general network. The
network 1s reduced to an equivalent basic network. An associated
network is used to compute a feasible, then the maximum flow for
the basic network. A computer program is included for use in

computation of maximal flows in large networks.
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CHAPTER 1

INTRODUCTION

The growing uses for mathematical programming models in trans-
portation and communication networks have prompted study in the devel-
opment of computational methods to determine maximal network flows.
The subject of this thesis is the mathematical problem of determining
maximal steady state flows in networks which are subjecf to capacity
limitations on the arcs and nodes of the network.

An efficient and widely used method to compute maximal flow
was developed by Ford and Fulkerson [7]. This method along with a
review of the current theory will be presented in Chapter II in
order to give the.reader the theoretical foundation upon which the
reminder of the thesis is based. Chapter III introduces a new
metiiod which utilizes the Ford and Fulkerson algorithm to compute the
maximal flow in networks with non-zero lower bound 1imitations on the
flow in the arcs. Since many networks of interest are more general
in nature, the ge ieralized network is introduced in Chapter IV along
with a computational procedure for the determination of maximal flow.
To illustrate the techniques proposed, an example is included. The
procedure can be used to solve smal! problems by hand, but the amount
of work increases rapidly with the size of the network. Therefore, a
computer program which may be used to solve larger problems 1is
included in the appendices. A brief description of the program is
found in Chapter iV.




Definitions and Symbols

In order to establish a common understanding as to the exact
meaning of various terms and symbols used to present the material of
this thesis, an initial set of definitions is presented. Other terms
will be defined throughout the material as needed to facilitate the
presentation.

Define a netwerx, G, as a graph which can be represented on
a plane in such a way that the set, N, of nodes are distinct points
and the set, A, of arcs are simple curves which connect two distinct
nodes. Furthermore, no two arcs can meet except at the nodes which
are their extremities. The graph contains no loops.

Define w (N) to be the set of arcs or flows incident to a set
of nocdes, N, and gii!l to be the set of arcs or flows incident from N.

A directed arc, a, 3 is defined as an arc incident from a node

i and incident to a node j.

An undirected arc coniacts node 1 and node j without having an

orientation.

Flow can be thought of as a value of the steady state rate of
movement of a homogeneous commodity along a path or channel. Positive
flow 1n a directed arc, 2 40 will move with the orientation of the
arc and will be denotad by the symbol, yi,J' Positive flow in an
undirected arc, denoted 91’3. may move in either direction but not
in opposite directions at the same time.

To each arc, 8 4 c A, there will be associated two real
numbers, bi.J' and ci.J’ which represent, respectfully, the minimum
and maximum allowable flow in that arc. The bounds associated with

undirected arcs, ‘1,3' are denoted b1,3- and c1'J.




An arc is saturated if y1.J = °1.J'

Define Y as the set of flows in a network G.

Inftially, the capacities of the ncdes will be assumed to be
infinite. The nodes will be classified according to the value of the
difference of the sum of the flows into the node minus the value of
the sum of the flows out of the node. A node is designated as a
source node 1f this difference 1s negative, and as a sink node 1f this
difference is posftive. For all intermediary nodes, the sum of the
flows into a node must equal the sum of the flows out. The set of
source, intermediary and sink nodes will be denoted as S, I, and T

respectfully.

Define F as the value of the flow in a natwork.

F = )} y
Yy,e (T) B

A flow 1s feasible 1f and only if:

() bygcngceny  Yoyeh

(2) F - £ y =0
O

L. Y4~ =0
¥y,¢80 (T) et

(3) el

L Yyq- L, ¥y 420 <
vy, g2 (17 yy ety

Define a chain as a sequence of arcs such that each arc, a, j

1,J ¢ I, 1s connected to an arc a, 4 at node { and to arc 3y at node j.

A cycle 1s a sequence of arcs where:

(1) The sequence is a chain.
(2) The sequence does not use the same arc twice.
(3) The 1nitial and terminal nodes of the chain coincide.

o s i A . ol st
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A cut 1s defined as any set of directed arcs containing at

least one arc from every chain of positive capacity joining the

source to the sink. The value of the cut is equal to the sum of the .

capacities of the arcs of the cuts. o

Bagic Natwork
Much of the initial development of the material in this thesis

deals with computation of flows in simple or basic networks. There-

fore, for the purpose of this paper, a basic network, G, is defined

i as a network which has the following properties.

1. The network has a return arc, 2 1 which {s added to the
network for computational purposes only. n i J

2. Node 1 has only cne arc, 8 1 incident to 1t., Node ! 1s

3 designated as the source. In the basic network there 13

only one source node.

3. Node n has only one arc, 8,1 incident from 1t. Noda n i
1s designated as tha sink. In the basic network there is "
only one sink node.

4. For each arc, a1.3. the associated °1.J' is positive and
bi.J = 0,

5. Two distinct nodes (1,J) may be connected by only one
directed arc. The network contains no undirected arcs.

10




CHAPTER 11

REVIEW OF THE LITERATURE
In order to acquaint the reader with the subject of maximal
flow in networks, a review of thc current theory and primary combina-
tional! techniques is presented in this chapter.

Basic Network Theory
A great deal of theoretical work in networks has already been

done, A few of the relevant theorems are presented here in order to
provide justification and a rationzie for the combinatorial techniques
and algo.ithms that are presented in later sections.

Theorem 1. Opposite directed flows cn the same arc cancel [4].
This theorem means that given an undirected arc, 51 4° with flows
31’3 > 0 and 93,1 > 0, these two flows can be replaced by the flows
LT Bt B

Y5 = ¥q,5-minlyy 4. ¥y )

Theorem 2. A set Y with F>0, satisfying the capacity con-
straints and node conservation equations can be decomposed into a set
of positive chain flows from the source to the sink and a set of
circular flows such that the direction of positive flows in any
common arc is the same for all chains [4].

Theorem 3. There exists a positive flow from the source to
the sink if there exists at least one chain of arcs with positive
capacity from the source to the sink [4].

Theorem 4. A flow F° is maximal if and oniy if the maximal
flow is zero in a second network formed by replacing
A.

R AT I
Vi3 Y%
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Theorem 5. Given any partition of nodes into two sets, where
the first set includes the source node and the second set tne sink,
then 3 feasible solution F is maximal, if every arc, 31,3' that joins
a node in the first set to a node of the second is saturated [4].

Theorem 6. The maximum flow in a network is equal to the

minimum cut.

Tree Method

Dantzig [4] has develeped a systematic procedure for com-
puting the maximal flow in a network by using chains connecting the
source and the sink of the network. A knowledge of the tree method
will give a better understanding of the Ford and Fulkerson algorithm
which is presented in the next section because the two methods are
identical 1in principle.

A tree [1] is defined as a connected graph with at least two
nodes and no cycles.

Consider a basic network such that:

b =0, €52 0 v 3 3 CA

1,J
The arcs may be directed or undirected. Initially all arcs

are unmarked and the feasible flow is zero. In order to determine
the maximum flow:

1. Create a tree such that the arcs are unsaturated.

2. Select two sub trees - one T]. branching out from the source,
node 1, and the other, Tn' branching out from the sink, n, such that

each node 1s reached by just vne arc of the tree.

3. Choose bne unsaturated arc which connects the twe trees. Thus,

there will be just one chain from node 1 to node n. If none can be

found, go to step 7.

12
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4. Determine the amount that the flow can be increased along the
chain from node 1 to node n, by the following procedure. Determine
the amount that the flow can be increased, AX, where AX = min (c“1 -
¥i,4° yk']). Flow along the chain directed toward the sink is
designated Yi.4 and flow directed toward the source along the chatin
is designated Yk,1° There are two cases:

(a) AX > 0, increase the flow by AX along the chain, go to

next step.

(b) AX = 0. This means one arc in the chain is saturated
by a flow directed toward the sink, go to next step.

5. Mark one of the saturated arcs.
6. Eliminate the saturated arc from the chain. Thus, there are two
sub-trees. Return to step 3. .'
7. Check all marked arcs joining T.I to Tn' If all these arcs have
flow from T] to Tn then the optimum has been reached. If any arc
has flow from Tn to T], use this arc to connect T] to Tn and proceed

with step 4. "

Ford and Fulkerson Algorithm

Given the basic network, the most direct method developed to
date of computing the maximum flow is the algorithm developed by Ford
and Fulkerson. This method is the one most cited in the literature
concerning maximal network flow. The procedure is outlined below.

1. Begin with a feasible flow in 0 in all arcs.

2. Label each node as follows: i

a. Label node 1, with the number 1.

13 | 1




b. If node i is labeled and node j 15 not labeled, label

node j with the number (i) if:
() 8 exists and Yi,5 < S,

(2) 34 4 exists and Y54 0
c. If the sink, node n, becomes labeled by this procedure,
then the flow from node 1 to node n can be increased.

3. If node n is labeled, construct a simple chain from node 1

to node n by back tracking from n to 1 using the labels

on the nodes.

a. The chain created will have the preserty that all arcs,
3 3 on the chain directed toward the sink have a flow
0 SYi,5 264, and all arcs 3 k directed toward the
source will have a flow y]'k > 0.

b. The flow can be increased by an amount AX where:
AX = m1n(c1’\j - Y45 y]’k) Y I in chain.

4. Increase the flow along the chain by an amount AX and

return to step 2.

5. This procedure is repeated until the sink cannot be

labeled. Flow is maximized when this is the case.

Now consider the more general problem in which the lower bounds
on the directed arcs are no longer assumed to be zero. Thus the flow
in each arc 1s bounded both above and below.

Such tﬁat: -®< bi,J Y4, 5%, <t L cA

Theorem 7~ In the case of networks with lower bounds on the
arcs, C is defined as the subset of N such that if node 1 * C the node
n§ Cor if node 1 ¢ C then node n c C.




A flow 7 ; exists and is feasible if and only 1f:

o by svgscy Yyl
2. L Cy 42 L b
oy yew(e) T eute)

This more general type 6f problem can be satisfactorily worked
by using the Ford and Fulkerson algorithm if a feasible flow can be
found.

The Ford and Fulkerson algorithm can be used to solve for a
maximum flow in an associated network G' which is derived from the
original network, G. This method is outlined below.

1. Create an associated network G' such that G' contains

the nodes and arcs of the original network G with arc

capacities c'i.J = ci,j - bi.j . The lower bound,

bli.j equals zero.

2. Add a new source, labeled 0, and a new sink, labeled m,

(m=n+1), to G'.

a. If the arc, 3y 4o exists, then construct two new
arcs according to the value of the lower bound, bi,j'
If b1'J > 0, then construct the arcs, a‘1'm of capacity
c'i,m = bi.J ana a.o,j with capacity c.o.j = bi.J .

If b1,J < 0, then construct the arcs, a'o'{”w1th

capacity c.o,i = - bi,j and a'j,m with capacity

g " Py
b. The Ford and Fulkerson algorithm can then be used to

determine the maximum flow in G' from node O to node m.
3. Two cases can result from step 2b.

a. Caseone: If the flow in each arc, a' j and a'J

15
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Jj c N', equals the capacity of each arc, then the flow
is feasible for the network G and the probiem has a
solution.

b. Case two: If for ;ny arc, a.o,j or a'j,m JchA',
the flow in that arc does not equal the capacity of
the arc, the problem has no solution.

If a feasible flow for G can be found by the above pro-

cedure, transfer the flow from G' to G by using the

following transformation:
b A g ] VL ek
Ford and Fulkerson's algorithm is then used to determine

the maximum flow using the feasible flow ac a starting

basis.

S S~
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CHAPTER 111

A SIMPLIFIED METHOD FOR COMPUTATION OF MAXIMAL FLOW
To compute a maximum flow in networks with non-zero lower
bounded arcs, an initial feasible flow must be determined. The method
presented in the last chapter produces a complex associated network,
G', 2ven with a relatively simple network, G. The principle advantage
of the method presented here [10] is that an initial feasible flow
can be determined by use of a more simple network, G', than in the

previous method.

Droposed Algorithm

The development of the algorithm is based upon a consegu.ence
of the flow balance equations. In order to provide a rationale for
the procedures presented, the development of the associated network
will be presented now.

Given a basic network G where the flow in each arc is bounded
as follows:

'°5bhjiyhjichj+” GLJEA
The problem of determining the maximum flow in G can be stated as
follows:

Maximize: Yo 1

Subject to: 2 Yig - L y =0 VicN
NG AR T U

bi,gS¥1,35%,; Yy ,ycA
Now transform the entire network G into an associated network

G' using the change of variables:

Yi,0 TV 4,5 by YAy eh

17




the problem then becomes:

Maximize: y'n 1
Subject to:
) y' - L y' + co_ b -
yl1'j E_“-’-“) j!1 yl'l’j £w+(1) 1QJ bJ’-' Ew (1) J'1
b1j§w+(1)b1“1=0 A

and: 0¥y, 2,07 Gy 7 P

Let ) b - I b =d icN
- 3, + i,d i =
bj’1gw(1) b1,j£“’(1)
Note two things. First the sum, 12 d1, is equal to zero.
c N

Second, if a flow rf -d1 was passed through each node, the problem
would be exactly the problem of flow maximization in a basic network.
Hence, a technique similar to Berge's [2] can be used in which new
nodes 0 and m = n+1 are added to the network G'. Therefore, only a

maximum of one arc per node is added to G' in this method.

Procedure

Using the results of the previous section the solution to the
maximal flow in the above network can be determined using the following
procedure.

1. Add a new source and sink node, denoted 0 and m (m = n + 1),
regpéctfully to G'.

2. The arcs a' and a'j n are added as follows. If d1 >0,
)

0,1
thenan arc, a‘o i is constructed with capacity d1. If d1 < 0, an

arc, a'J m® is constructed with capacity -d1. If d1 = 0, no arc is

added to G' for node 1.




Caate

3. The Ford and Fulkerson algorithm is then used to maximize
flow in G' from node 0 to node m. Again as in the previous method
this maximum flow is equivalent to a feasible flow in the network G

if and only if:

_y'o‘1 d,' Yiad>0

Y'ym= 9 Yisd<o

4. If the problem is solvable continue by eliminating all
arcs incident from node O and incident to node m. Node 1 and node n
are now the source and sink respectfully for G'.

5. Using the flow generated in step 3 as a starting basis,
maximize flow from node n to node 1 by again using the Ford and
Fulkerson Algorithm.

' 6. Upon completion of step 5, transfer flow from G' to G by
use of the transformation equation:
Yi,0 %Y 1,5 Y by Va, ;cA

The maximum flow in G is equal to Yo 1

19
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CHAPTER IV

PROCEDURE FOR THE SOLUTION TO THE GEN-RALIZED MAXIMUM FLOW PROBLEM

A proposed methology for the computation of a solution to the
generalized maximal flow type problem as defined below 1s presented.
The generalized network is first reduced to a basic network and then
the technique presented in Chapter III is used to solve for the equiv~-
®alent maximum flow in the basic network. An example is presented in
order to demonstrate the techniques discussed in this chapter. A
description of the computer program contained in Appendix A for use

in solving maximal flow problems for large networks is included.

The Generalized Network

Generally maximal flow solutions are required for networks
which do not fit the restrictive definition of a basic network. - For
the purpose of this thesis the generalized network is defined as a
nbdified~pas1c network with a set of arcs A, and a set of nodes N,
such that:

1. Each set w (1) and w' (1) can contain any number of

directed and undirected arcs.
2. Let D be a subset of A such that if and only if the arc
3y is directed it is a member of D.

3. Let U be a subset of A such that if and only 1f the arc
31,3 is undirected it 1s a member of U.

4. K is a subset of N such that if the node { 1s bounded

jt is a member of K. To the bounded node, 1, we ascociate

two real numoers, b1, the lower bound, and, Cyo the upper




bound such that the total flow through the node 1,
denoted Yy is bounded:
b1iy1§q icKk
5. Al11 nodes, j, not bounded belong to the subset 1, where
L cN.
6. The network may or may not contain multiple sources or

sinks, but shall contain at least one source and one sink.

Procedure for Reduction of the Generalized Flow Problem

In order to solve for the maximal flow in the generalized net-
work by the techniques presented in Chapter III, the network must be
transformed into an equivalent basic network.

The proposed methods for reduction are based upon results of
the general theorems presented in Chapter II. References cited give
further proof of some or the methods used.

First, consider the case in which the generalized network, G,
contains both directed and undirected arcs. This network can be
simplified by replacing each undirected arc by two directed arcs as
follows:

Given an undirected arc 51,3-9 u

Replace 51,3 by ay 4 and a4 €0

Where

02 ¥y, 2C,57 %,
Usvsiiisiegly= Sl
Upon reaching a solution for the maximal flow, the orientation

by the fiow in the undirected arcs can immediately be determined from

the values of yj i and ¥; j since one flow will be zero.

2}
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Now consider a network in which two distinct nodes, 1, j, are
connected by more than one arc. Successive arcs, flows, and bounds

are denoted by prime symbols. For example if there are m arcs from

th

node i to node j, the k= arc would be denoted 3, j(k). It will be

assumed that each arc has both upper and lower bounds.

o () (k) (k)
1.3 J

SV S k=1,2,...m

The set of arcs a, j(k) k = (1,...m) may be replaced by a single arc

: =1 oK) = Moy (k)
,3° where; i,y " E i3 bi,J = kgl bi,d

Next assume a pair of nodes (1,j) are connected by two oppositely

3y

directed ircs a, j and 3y c D.

The pair of arcs may be replaced by a single directed arc
in efther direction as follows: If 5,3 3_bj i

Replace ah\1 and aJ’1 by ai,j such that:-

4,5 % 1.3 " b1,

b'4,8 %P1, " Gy
Otherwise orient the arc from j to 1.

If a network has multiple sources and, or sinks, merely create
a single source and, or single sink. Then construct one directed arc
of Infinite capacity from the new source to each old source and one
directed arc of infinite capacity from each sink to the new sink [8].

If the flow through the nodes is restricted to 1ie between
two values, the character of the maximum flow problem itself remains
unaltered. Assume we are given a network in which the flow 1s subject
to both arc and node capacities, where all arcs are directed or have
been converted to directed arcs by the previous techniques. This
network can be reduced to the basic network maximum flow problem by

the following procedure. Expand the network such that for each bounded

22




node (1) ¢ K, two nev. unbounded nodes (', i''; r2 created, so that
the single directed arc, ai’,j"’ joins the two rew nodes with the
upper and lower boun.s associated with the bounded node in the reduced
network. To each arc, LT create ar arc a'k’1. in G' and toc each
arc 2, 4 in G create an arc ai",J in G'. The bounds on the other

arcs remain the same.

Example Using the Simplified Technique

Given the ge..cralized network showy in Figure 1, we are
required to compute the maximal flow from node 2 and 3 to node 10. Or;

Maximize F = ZRL =y +y +y
.V-i n Ew (n) 'i,n 5,]0 7,]0 6,]0

The flow in each arc is bounded as follows:

3<¥p458 0<yygcd  3<y3 <7

5<y35<10 3<y,g<8 0<y45<5
(1) (2)
0<ypq<3 1<Yp652 0<yyec
3<¥5 48 0<ygg<8 3<y;42<7
2 Vgl p< 2 LS Vg 7 < S SR p<i?
(1) (2)

1<y; 54 1<y, 623 2<y76<5
4 <y7 90510

The fiow in all nodes except 5 and 6 is unrestricted. The flow in
node 5,6 fs restricted as follows,

4 <y <15 4 <yg <0

This flow problem can be simplified by using the techniques
presented in the last section. The procedure is outlined by ordered

steps. Although many steps could be combined for this simple

23
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FIGURE 1

r GENERALIZED NETWORK G WITH UPPER
1 AND LOWER BOUNDS ON ARCS AND NODES

10
4

PIGURE 2

GENERALIZED NETWORK WITH SINGLE
ARCS REPLACING MULTIPLE ARCS
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example, it 1s felt that for hand and computer computation this is the

most efficient procedure.

]O

Add the single sourr~e node, denoted as 1, to the network.
In addition, add the arcs ay 5 and 2y 4 to the network
such that:

T AR

Ocyzete
Replace each undirected arc 51 j with upper bound 61 j >0
by two directed arcs 31,3 and aj.i'

Therefore:

o~
|A
(8,

(3)

2 6 becomes %6 and 3 4 0<y

54’5 becomes agf% and aéa 0 §Y£
(
i 2

22,0y 42

55,6 becomes a; o and a; ; 0 <yg 5 <8, 0<y; ;<8

Combine all arcs joining each pair of arcs (1,j) according

to the following procedure.

a. Combine all arcs which are similarly directed, into a
single arc. Thus the arcs at(‘]’é, aﬁ%, aﬁg become 3 6 3

C, 2, ). )
Ca6=C,6*tCap*tCap=3*t2+2=7

. ni1) (2) (3) _
by,6 = Pa6tPas*tbgg=1+0+0=

]
—

Similarly form the arcs 3 50 3 4 and a7 6 3

C4,5 = 13 b4,5 = 3
Cg g4 = 13 by 4 =3
¢; 6= 8 b; 6 =8
25
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PIEURE 3
EQUIVALENT BASIC NETWORK
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TRANSFORMED NETWORK G'
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b. Transform each pair of arcs which are directed in
opposite directions between each pair of nodes

into a single arc.

Thus: ad'5 and a5’4 become a4’5 2
C4’5 = C4’5 - b5,4 = ]3 - 3 = .'0
3-13=-10

ba5 = Pa,5 = C5,4 =
Similarly the pair of arcs 2 6 and 3 45 2 ¢ and

3 53 35 7 and 8; 53 3 ¢ and ag 7 are combined. The
simplified network 1s shown in Figure 2.

Complete the transformation to the basic network by the

following rnrocedure.

a. Expand the network so that all nodes have infinite
capacity for flow as outlined earlier. Thus for
hodes 5, and 6 the new arcs 2 g and 3g g are
created and the equivalent network shown in Figure 3
is established.

b. Add the return arc °10,1 for computational purposes.

Transform the network G to G' by using the change of

variables equation ¥y 4= y'1 j + b1 j a , ¢ A

¥10,1 = ¥'10,1 ,2 =Y,2 N,3°Y,3
Yo,4 *Y¥'2,04 *8 Yo 6 “Y'op Y3, =¥'3,4 %3
Y3, Y35 *5 Va5 “Y'a5 -0 Yy =Yy
Y58 Y58 *4 Vo0 V60 *t 4 Vy6°Y'76
Y7,00 ¥ 7,004 Vg6 =V'ge - 8 ¥g,7=¥'g 7]

Y¥g,10 “¥'8,50 * 2 Yg,10 = ¥'9,10 * 3

27
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The equivaient problem is obtained:

Maximize y'10 1 with the node flow satisfying the balance

equations as follows:

Node

T Y0,1 Y3 Y2 =0
2 Y2 “Yo4 "¥o6 8 %0
3 ¥'y3 Y34 Y35 -8 =0
4 Y34 *Yo4 "V " Y v A
> Y'as *¥4p5 ~VY'sg -9 =
6 Y6 *Yae *Vi6 *Vae “Veoe-13 =0
7 ¥'g,7 Y6 “¥7,00°° =0
8 Y¥'sg -¥ge ~Yg7 "Vt St
9 Y'%,9 “Yon0t! =10
10 ¥'g10*Y'7,00*Y'9,0 " Y1009 =0

Therefore the values of the remainder d1 are immediately

seen to be as follows:
d].o dz'-a d3’-8 d4 ’+22

ds'-gd'-]3 d7-'5 d8.+].| d9-+] d10-+9

6
Using the values of d1. i=1,,,,10, as the capacities, the
new source, sink and arcs are added to obtain the equivalent
network G' shown in Figure 4.

Then using the Ford Fulkerson algorithm to obtain a feasible

flow in G the following values are obtained for the flow in

G'.
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y'L2 = 12
Y'34 = 0
Y'sg = 3
Y'ge = 6
Y 0,1 540

Yy 3?8
¥'3,5=0
Y'6.9

Y'g,7

=5
=7

Y'2.4
Y'a,s
Y'7.6
Y'g,10

Y'2,6 =4
Y'ae "8
Y'7,00 2
Y'9,70 = 6

Note that the flow in all sink arcs and source arcs is at

arc capacity, therefore, a feasible flow exists.

Dropping

nodes 0 and 11 plus the associated arcs, maximize flow

from node 1 to node 10 using the Ford Fulkerson algorithm.

In this case the feasible flow computed s the maximum

flow.

resulting maximal flow on G is determined.

Then, using the change of variables equations the

Finally G

is simplified by eliminating arcs a o and a o The

maximal flow is 20.

Ya5 =7 Y46 "
Y510 ° Y6,4°

Yo 4 =8 Y64 Y3473 Y355
7 ¥Y54=3 Y57

0 ¥65=2 Yg,7

=1 ¥36=3 ¥7.10

Y6, 10" 9 Y75
The flow ir node 5 is 9 and

Computer Program Description
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presented in this thesis has been written.

FORTRAN IV for use on an IBM 360 computer.

=5
=7
- 3
=6

in node 6 is 9.

The flow in each arc 1s as follows:

Since it is often the case that it is necessary to solve the
maximal flow in a much larger and more complicated network, a computer
program for the solution of the generalized maximal flow problem as

The program 1s written in




Com D

b

READ IN
NETWORK
G

! ALL ARCS INCIDENT
TO AND INCIDENT
FROM THE SAME SET
| OF NODES ARE
COMBINED

NUMERICAL VALUE
OF THE TERMINAL
NODE IS INCREASED
TO PERMIT EXPAN-
SION OF THE NETWORK

COMBINE MULTIPLE
ARCS JOINING TWO
NODES IN OPPOSITE
DIRECTIONS

[ gt Ay

TRANSLATE BOUNDED
NODES' INTO
BOUNDED ARCS g

A

|coMPuTE CAPACITIE
FOR NE:¥ SOURCE AN
SINK NODES IN G’

i

CREATE &'

! GENERAL FLOWCHART
30




CREATE CHAIN
FROM SCUKCE TO

SINK

LOAD PATH
ARRAY

!

COMPUTE MAXIMUM
FLOW INCREASE

Y

FLOW IS INCREASED
ALONG PATH

R

ELIMINATE ALL

|ARCS FROM SOURCE

AND SINK NODES
OF G'

4

YES

>
E S?BLE /

Y

CLEAR
FLOW
ARRAY

YES

(’ STOP )

GENERAL FLOWCHART CONTINUED

3

TRANSFORM FLOW
FROM G' TO G

TRANSFORM BOUNDED;
ARCS TO BOUNDED
NODES

SEPARATE APPRO-
PRIATE ARCS AND
FLOWS TO TWO
OPPOSITE ARCS
AND FLOWS

CHANGE VALUE OF

TERMINAL NODE AND

COMPUTE MAXIMUM
FLOW FOR G'

X

PRINT ARC FLOWS
AND MAXIMUM
FLOW FOR G
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The maximal flow in generalized networks is computed using
the methodology outlined in this chapter. In addition, a set of
routines 1is added to the program which will permit the user to
transfer several networks to input data d’rectly without first
reducing the networks to basic networks by hand or auxiliary methods.
However, as the program is written each network must have a single
source and sink and all undirected arcs are to be represented by
two oppositely directed arcs. The program has been checked out and
functions properly.

The present program is written for a 50 node network. In
order to solve larger networks the size of the arrays in the dimension
statement must be increased. The general flow chart of the entire
program is given on pages 30 and 31. For the interested reader a
detziled flowchart is presented in Appendix A. A Fortran 1isting
of the program is cohtained in Appendix B along with the solution

to the nrevious example.

Conclusions and Recommendations

The general maximal flow problem can be solved more efficiently
by use of the method developed by H. Greenberg. ' The advantages of the
technique are evident when solving small problems by hand. The tech-
niques presented provide a systematic approach to obtaining a solution.
The problem of computing the maximal flow in a mixed network in which
the flow in the undirected arcs are bounded below by a positive
number cannot be scived by this method. In fact, to the best of my

knowledge this problem is unsoived in the general case except by

complete enumeration techniques.
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APPENDIX A

DETAILED FLOW CHARTS

This appendix contains the detailed flow chart of the computer

program in addition to a description of variables usted. The statements

are written in FORTRAN IV with arrows indicating the logtcal flow

through the system. The input and output statements are not enclosed.

Description of Variables

Variable Name

c(1,9)
B(I,J)
Y(1,J)
Y(1,1)

Y(1,2)
Y(1,3)
Y(1,4)
Y(1,9)

XL(T)

NL(I)

XNC(1,1)
XNC(I,2)
XNC(I,3)
XNC(1,4)

NN

Description
Capacity of the directed arc from node I ©o node J.

Lower bound of the directed arc from I to node J.
Initially used to read in data.

The number of che node the arc 2, j is incident
from. ’

The number of the node the arc a, j is incident to.
Upper bound of arc a, j°

Lower bound of arc a, i

The value of the flow in a directed arc from I
to J after input data is transmitted to arrays
c(1,J) and B(I1,J).

Dummy array used to compute values of the
capacities of the source and sink arcs for G'
and then the label of the nodes in the label
routine.

Dummy arvay used in the label routine as a check
to determine 1f all nodes have been checked and
then to store the path used to increase flow.
Number of the node that is bounded.

Upper bound on a flow through a node.

Lower bound on flow through a node.

Value of flow through a node.

Number of networks.

—




N Number of nodes in the original problem.

M Value of tiie designated number of the sink node.
KX Value of the designated number of the source node.
NA Number of arcs in the original problem.

NC Number of bounded nodes.

Irput Card Format

A1l entries on the card format in this section are right,
justified and are fixed point entries if the variable rame begins
with I, J, K, L, M, or N and are floating point entries for all other

variable names.

Card #1
Colum  Name
1-4 NN
Card #2
1-4 N
4 -8 NA
8 - 12 NC

Card #3 through Card NA + ]

1-10 Y(1,1)
11 - 20 Y(1,2)
21 - 30 ¥(1,3)
31 - 40 Y(1,4)

35




Card #NA + 3 through Card NC + 3

Colum  Name

1-10 XMC(I,1)
11 - 20 XNC(I,2)
21 - 30 XNC(1,3)

Detailed Flowchart

The detailed flowchart of the program is given in the next

4 11 pages.

- = -




KX =1
M =N +NC+2
RET = 0

Y

DOI =1,50
NL(I) = O
XL(I) =0

DOJ =1,50
B(I,0) = 0
c(r,3) =0

POr = 1,NA

X

L= Y(I,1) +1
K=Y(1,2) +1 r

!

c(L,K) = v(1,3)
+ €(L,K)

4

B(L,K) = Y(T,4)
+ B(L,K)

DETAILED FLOWCHART
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c(1,K) = C(I,L)
B(I,K) = B{I,L)

1

c(I,L) =0
JB(I.L) =0

¢(J,I) = - C(J,I)

NO

DETAILED FLOWCHART

c(1,d) = -C(1,9)

Kot acii - - Lo
i
i
- I |
I
1
}
L = N + ] 1:
— g
K-N+NC+ 1 ‘_‘
DO I = 1,M |
1 |




NO

p0I=1,N

—

NO

K = XNC(I,1) +

< <’/E(K J) >0
- \ s > /

/{ \ -

N

C(K,J) = - C(K,J)

C(K,L) = XNC(1,2)

(K,L) = XNC(1,3)
L=L+1 !

g

*—l

c(L,Jd) = C(k,J)
B(L,J) = B(K,J)

———

U

DETAILED FLOWCHART
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RTREIT

o A
i { - — - -
|
DOT=1M
,H SI = 0 .
-
S0 = 0
DJ =1,M
*ﬂv(l,a) =0
0(1.9) = CfL.d)
B NO
st = 51+ B3, 1) [TES SO = S0 + B(I,J) fgmrd
N

— e P ——

JXL(I) = ST - so

DETAILED FLOWCHART
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C(M-1,2) = .9999
MX = M-1

1

C(I,M) = -xL(I)

—ad DO T = 2,Mx

M o

DO I =1,50
XL(I)= 0

DETAILED FLOWCHART

4]

YES dcoun = xq)




XL(KX) = KX

t
DO L = KX,M
I=L
AL(1) > 0 N LN = L
DO K = 1,LN
NL{K) > 0
(133
1\"3 I= K
|
c(1,3) > 0 YES
(1,9) < c(1,0 "“4&
YES
XL(J) = I o NL(3) = x(9) XL(J) = T

DETAILED FLOWCHART




B
, Il]
NL(I) = M
K=NL(I)
I=1+
NL(T) = XL(K)
K = NL(I)
] = TES X = 9999.9
DOTI=1,M
K = NL(I)
L = NL(I+1)

[c(L,x) -
Y(L,x)] < x

X = C{L,K)-Y(L,k)

X =¥(k,L)

i

DETAILED FLOWCHART
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' ol

DETAILED FLOWCHART

5 "‘\\ DOI =1,M
} Q e K = NL(I)
! L = NL(I)
:i , [ZERO OUT ARRAYS
% L . R
¢
| Y:f!.:)() 'x c(k,L) > 0 Y(K,L) =
H . +
| Y(X,L) - X
i
|
{
]
:
Ml=M-1
S {oc}?
NETWORK
C STOP VE A FEASIB
FLON
| YES
KX = 2
M=M-1
C(M,KX) = 0




DO I = KX,M
( e ——
DO J = KX,M

el T — -

c(1,d) <0 YES
NO
c(1,9) = cgr,a)
+ B{I,J)
Y(1,9) = YéI,J; 3
+ B(I,9
NO NC > 0 YES DO I = 1,NC
K = XNC(I,4)+]
}!
c(k,L) = 0
* XNC(I,4) = v(K,L)
Y(K,L) = 0

c(L,Jd) <0

L=L+)]

C(K,J) = c(L,d)
Y(K,J) = Y(L,J)
Y(LoJ) =0
c(L,J) =0

v

DETAILED FLOWCHART
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DO I = KX,M

C(J,1) = - ¢(3,1)

C(1,9) = Cél.d *]
B(J,1

y

B(1,J) =
B(I,d) + C(3,1)

w | YD) = 8(3,1)
' Y(I,9) = ¥(1,9) [~
+ B(J,I)
YES
Y(J,I) = B(I,9) Y(1,3) = B(1,J) ""*J
- Y(1,9)
LaN+]
K=N+N +] .
DOI = KX,M |
—a C(I,L)= C(1,K)
B(I,L)= B(I,K) |

D J = KX,M 1

YES NO

+

Y(1,L) = ¥(I1,K)

C(1,K) = 0

J

DETAILED FLOWCHART
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FLOW

i o e e e oo -

ZERD OUT
Y-ARRAY

RETURN TO |
START READ
IN NEXT 3
NETWORK

DETAILED FLOWCHART
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APPENDIX B

FORTRAN - IV LISTING
This appendix contains the complete 1isving of the computer
program. The problem 1lustrated in Chapter IV was used to display ’
the output format. Comment cards are included for clarification and

1dentification of the main sections of the program.
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A, LOwWER ROUMD FLOW HEPFR RNIIND
1 2 0.0 12.000 999,000
1 3 0.0 8.000 999,000
| AN 8.000 8,000 13.000
! a0 0.0 4.000 4.000
! 5004 3.000 2,000 7.000
j 5 5 5.000 5,000 10.000
* & 5 3.000 7.000 13.000
' 5 A 1.000 7.0C0 7.000
LA 3.000 3,000 13,000
i 5 6 9.0 0.0 R.000
f 5 7 3,000 7.000 7.000
) A 2 .000 5.000 5 0000
”? o 6 0.0 0.0 2.000
: s 5 0.0 2.000 8.000
o 1.000 3,000 3,000
5 R 3,000 9,000 9.000
7 = 1.000 1.000 4.000
7 6 3.000 3,000 8.000
7 5 4.000 6,000 10.000
NUIE LOWER ROUND FLOW UPPER RG!IND
5 4,000 9,000 15.000
& 4,000 9.000 10.000
VAX FLUW =  20.0000
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