## UNCLASSIFIED




OCEAN BOTTOM BREAKOUT FORCES
Including Field Test Data and the Development of an Analytical Method

June 1968

NAVAL FACILITIES ENGINEERING COMMAND

NAVAL CIVIL ENGINEERING LABORATORY
Port Huenemra, California 4 ?


Each transmittal of thin doourizent outside the agencies of the $U$, S. Government must have prior approval of the Naval Civil Englnasplng Laboratory.


# OCEAN BOTTOM BREAKOUT FORCES 

Including Field Test Data and the Development of an Analytical Mathod

Technical Report R. 591
by

Bruce J. Muga

ABSTRACT

Theoretical and experimental studies were conducted in order to arrive at some appropriate engineering estimates of the force required to extract bodies of various sizes and shapes from the ocean bottorn sediments. A review of the literature concerned with breakout forces is presented.

From tests conducted in San Francisco Bay on varlously shaped objects having submerged weights of up to 22,200 pounds, it was found that the following empirical formula descrlbed well the breakout force requirement:

$$
F=0.20 A_{\max } q_{d} e^{-0.00840(t-280)}
$$

where F a breakout force, lb
$A_{\text {max }}=$ hurizortal projection of the maximum contact area, in. ${ }^{2}$
$a_{d}$ - avarnge supporting pressure providad by the soll to maintain the ernbedded object in static equillibrlum, $\mathrm{lb} / \mathrm{inn}^{2}{ }^{2}$
t - time allowod for brakiout, min


Each tranamital of thle documant untuld tha ngenalan of the $\mathrm{U}, \mathrm{S}, \mathrm{O}$ (wammant munt have prior approval of the Naval Clvil Eminnaring Laboratory.

Technical Roport TR-591
Title OGEAN BOTTOM BREAKOUT FORCES_Including Fiald IAst Data and the Devalopmant of an Anclutionl Mathod

Auttior $\qquad$
Takk No. $\qquad$

The following questions are dedgnos's to ellcit commaris thet will help NCEL improvs the quality of lis reporta. Specific and adetalled answers will be most appreciated.

1. Wis the trechnical material worth publishing?

2. Wes the technical matorial orgenized in a coherent mannar?
$\qquad$
3. Were the titie, abetrect, and Introduction Indicative of the reports' contents?

4. Did the raport contain any unnacumery or Irrelewant maturial, or did it leck eseontial material?
$\qquad$
 $\square$
5. Do you heve any comments about the typography umd, the layout of the report, or lis gonwral randebility?
CONTENTS
page
INTRGDLCTION ..... 1
BACKGRIMND ..... 1
FIELD TESTS ..... 5
Linitations ..... 5
Apparatus ..... 6
RESULTS OF FIELD TESTS ..... 8
Presentation of Data ..... 8
Formulation of Emipirical Equation ..... 10
THEORETICAL ANAL.YSIS ..... 20
COMPARISON BETWEEN THEORETICAL AND EMPIRICAL PROCEDURES ..... 23
FINDINGS ..... 29
CONCLUSIONS ..... 29
RECOMMENDATIONS ..... 30
NOMENCLATURE ..... 31
APPENDIXES
A -- Site Selection and Laborbrory 'Tests. by M. C. Hironaka ..... 33
B - Literature Survey of Body Shapes and Dimiensions, by B. J. Muga ..... 41
C - Theoratical Analysis, by B. J. Muga and W. D. Atkins ..... 46
D - Derivation of Selerted Equations, by W. D. Atkins ..... 86
E - Data Input Guide for Program PERFPLAS II, by N. Shoemaker ..... 91
F - Notation for Program PERFPLAS II, by N. Shoemaker ..... 98
G - Listing of Program PERFPLAS II, by N. Shoemaker ..... 107H - Photoelastic Study of the Distribution of MaximumShear Stress in an Elastic Medium, by C. L.. Liu . . . . 127
REFERENCES ..... 139

## INTRODUCTION

There is an increasing interest being shown in deop sea operations. This interest, having scientific origins, has been augmented by the need to enhance the riational security and to preyent catastruphes. As a result, the engingering aspects of certaln prastical problems of Immediate interest have tended to dwarf the longer term scientifin, aspects. The study reported herein, which was set into motion following the loss of the USS THRESHER, is concerned with one of these practical problems.

Briefly, the objectives of the study, appropriately described as the "breakout force" problem, are threefold. First, sorne approprlate engineering estimates must be made of the force required to extract bodies of various shapes, sizes, and skin surface compositions from the ocean bottom sediments. Second, it must be determined how far the estimates may be in error. Third, the effectiveness of various schemes for reducing the required force must be evaluated.

The stidy is a coritinuing 3 -year effort of which this report is intended to describe the progress made in the first $£$ years. Thus, although this report is not considered to be a complete treatment of the subject matter, it makes it possible to estimate the force requirements with some degree of confidence. In addition, the theorratical treatment has been substantlaily verifigd by field tests and is believed to be a significant contribution to analytical methods which heretofore have not been widely used. It appears that many practical problems exist for which such methods heve application.

## BACKGROUND

Documented experience ralative to the problem of freeing objucts from the ccean bottom is limites. The reports referenced in Table 1 mention the "mud suction" force; however, no measurements of such a force seem to have beeri made. A description of the nature of the problem may be provided by brief reviews of the salvage operations listed in Table 1.

Table 1. Selected Marine Salvage Operations

| Sunken Objocts | Date of <br> Salvage Operations | Roference |
| :---: | :---: | :---: |
| SÖDRA SVERIGE | 1896.97 | Anonyrnnus (1956) |
| L.IBERT'E | 1911.25 | J. Crapaud (1925) |
| S.51 | 1926.26 | U. S. Navy (1927) |
| S.4 | 1927.28 | U. S. Navy (1929) |
| USS SQUALUS | 1939 | (a) R. A. Tusler (1940) <br> (b) C. E. Momsen (1964) <br> USS LAFAYETTE <br> (ex SS NORMANDIE) <br> PHOENIXES |
|  | 1942.43 | U. S. Navy (1946) |

SÖDRA SVERIOE. The SÖDIZA SVERIGL, a cargo-passencer staamship with, an roc.ton displacement, saitik in the Balfic Sea in 1895 in a dapth ef $\mathbf{8 5}$ feet. The ship came to rest at a sharp angle from the vertical and during the course of a year sank abcut 10 feet into the cllay bottom. Calculations indicared that the ship had a submerged weight of 600 tons and that a force of 960 tons would be sufficient to break it loose from the botiorin, Sixtean wooden pentoons, each having a lifing force of 80 tons, were attrached to the ship and puisped out. This was sufficient in righten the ship and ralse it off the bottom.

LIBERT'E. The French battleship LIBERT'E, with an B,000-ton displacement, sank in the harbor at Toulon in 1911. The salvage effor: extendad over a parlod of 14 years. During the long period of submergence, the wreck settled into the mud and Crapaud (1925) reports that "a considerable pert of the task of the salvors consisted in breaking this contact and freeing the bulk so that It could bet lifted and towed away." No information was given to permit an ostimation of the breakout force.
S.51. The S.51 was a 1,230 .ton subniarine which sank in 1925 approximately 14 miles east of Block Island. The depth at the cite was 132 feet and the submerged welght wes estimated to be 1,000 tons. The boat came to rest on a clay bottom with on 11 -degree port IIst. Ellsberg (1927) est/mated that the breakout force was about 8,000 tonc. "if force sc large wes could never hope to overcome it by direct lift." His plan, whluth
was ovaritar surrasafully, was to "break the suction by letting water in butween hull and clay in two ways-first, by colling the boat to starboard, and second by lifting her one end (stern) first."
S.4. The S. 4 was an 830 -ton boat which; sank in 1927 in 102 feet of water off Provircetown. It was initially and intermittently buried in a very permeable mud tu a depth of 7 or 8 feat. The buat, whose submerged weight amounted to 722 tons, was raised by lifting the stern first. Saunders (1929) states that "the bottorn had an upper laver of very soft silt or mud not more than one foot deep. Underneath this, tha bottom was more soft than hard, of a decidedly sand character, mixed with minute shells. The texture of the bottom was sufficiently coarse to permit the paesage of water through it...yet sutficiently firm to hold its position when excervating tunnels underneath the vessel. Due to the permeable characteristic of the bottom it is astimated that tho so"called 'suction effect' on the 5.4 was practically nil." As a matter of fact, there are no indicatlons that breakout was a problem.

USS SQUALUS. The salvage of the USS SQUALUS is perhaps the most widuly reported and documerited of all marine salvage operations. The USS SOUAI.US, which sank in 1939 about 5 miles south of the islos of Shoals off Porternouth Harbor, was a 1,450 -ton-displacement boat having a submerged weight of 1,100 tuns. The boat came to rest with a 10 -degree.up angle in 240 feet of wator on a mud botiom in which tha stern was buried up to the superstructure ceck. The antire oparation consisted of flve separate attompted lifts, thres of which were from a mud bottom. Only tha first lift is pertinent to this report. No estimate of the break out force is reported; however, in a reviaw of the evants describing the unsuccessful Ilft of 13 July, Tusier ( 1040 ) Indicatos that the "unknown amount of mud suction tanding to hold the bow down" was one of the main factors contributing to the fallure, Previous to the attempted Ilft, Tuslor statos that "tho bow had sunk sown an unknown amount into the soft mud of the botioin, hut due to the shape of the bow, it was thought that the mud suotion would be relatively Insignificant." In any event during ouch attemptod lift, the USS SQUALUS was ralsed by liftirig one and first.

USS LAFAYETTE (ox SS NORMANDIE), Tho SS NORMANDIE was a 66,000 -ton passenger vossol which sank in 49 foot of water adjacmit to Plar 84, Naw York Clty Harbor. Tha submerged walaht was easlmatod to be 50,000 tons. The vessol ennia to rest lying on one ulde in un arganle river mud which wos about 26 fant thlek and which was undirlain by a gray organic silty clay having a compresslva strenoth of from 0.3 to 0.6 con $/ \mathrm{t}^{2}$. (Tils oparation is of interost since it appoars to have boon the firse ilme tho principlas of soll inechanies were considerest in a selvoge oporation of this
type. The fact that Professor K. Terzaghi served as consultant is a historical note of some importance. He was not concernod with breakout but rather with determining if the soil had sufficient strength to support the vessel without serlous movement during the year and a half of preparation for righting, with the effect dredging would have on the settlement of the ship, and with the probable effective soll bearing plarie.) It was anticlpated that breaking contact between the ship's hull and the mud would be a serious problem. Accordingly, in addition to pumping out some 15,000 tons of mud which had entored the hull through the cargo doors and portholes, numerous porthole patches were fitted with plpes through which wator and compressed alr could be jetted to disintegrate the mud. The flotation of the vessal was precadad by a rotatlon or turning operation. Mastery (1954) notes that during the rotation operation, the air and water jots were set to work, although the vessel did not stick as expected.

PHOENIXES. The PHOENIXES ware 200.foot-long floating blocks of iunforced conerete which were to be sunk in a line off the Normandy beaches to provide a brakwater during the Eurapoen iivasion. Each unit way 60 teat wide, 80 teat hlyh, und dlaplaced 8,000 tons. They were divided
 Approximatoly 100 of thes PHOENIXES were purposaly sunk In ataging aroas off the south coast of England prior to Invasion. The flrat attunpt to refloat a PHOENIX by pumping falled, It was determined that the mud bottom auotion was holding the PHOENIX, down. The itnditional method of braaking this conteot is to apply buoyancy ? m one ond and lo une tha ahlp as a lover, In this manner the contaot la broken along the bottom, eventually fraing the veaval from the mud. However, In the rave of the PHOENIXES there was not enough time to allow this system to work, beoouse the riaing ildea would submorge the pump platforma butore the levar action oould be made aftectiva. A woond altarnative is to jet alr or wator undurneath the sunken vaseo to partlally raduco the contact and lacean the holding forea, In the caw of the PHOENIXES, compressed alr was amployed (all purmps woro being used to empty the floodod compartmentil to raduce the holding force to allow the excon buoynnoy to floot the PHIOENIXES.

In addition to tha caso hlatories olted abova, thore ara many other rucorda of moritime salvaga opurations in which a whip has beun rasiand from a mud bottom undar very untavarable circuinatances. Tha buokground providad heroin is nut intanded whe an anl-inclualvo traatmant of alvago. Only thoue cama in whiah tha broakout foroa way alludad to in the pubilutiad It teruturs warn malentod. It in worthy of noto, hewover, that the publiahad record (Bowman, 1034) nf the malvage of the antire Curman High Seas fleat, which way acutlear at Scapa Flow, doua riot montion that braukou' what a
problem. Further, the U. S. Navy's experience with the ex. Garmar: submarine 1105 did not discloge the breakout problem, although the testh were carried out with the submarine eventually lying on a mud botiom (latter from Commander Task Unlt 49,4,3),

In summary, the problam of freeing vassels i..nm tha ucern botlom has been racognized for a long time. Howevar, a number of factors in combination with each other have tended to prevant the gynthesis of the basic principlos of naval architacture ain those of soll mechanics. The devalopment of modern soll mochanies dates from the work of K . Tioresghi during the 1920 and is a relatively recont event in terins of muris axporionice with sagegoing vanela. Moreovar, when the unknown buhavior of acuan bottom sedmanta is consiuered, one can appreciate why the marine salvor attachas more Importance to hydiostatle calculatons than to gross atimates of the mud suatlon nffect.

## FIELD TEST8

A fiold isst program was designod to corrolase the breakour fores with the breakout ims object alye, object shapo, and wil atrength. The brumkout tores calculated froin the rasulting amplital formula was oornparad with the anolytion valua. A dutalied dencription of the alfo whation and sell beringa la given In Appandix $A$, A ditulled doveription of the sulacilon of boviv ahapos and dimunalons iu givan in Appendix $B$.

## Llinitations

A number of fuotora disolosod by a prollminary survey and racunt axperience imposed nome ilmitiations on the onnduet of the field tevis. Then factoryivara:

1. The icuti could nat ba conduectad near any axiaing pier, wharf, or othar flxed utrueture due to the prawnee of ahal iragimants aned other dubris in the woll.
2. Each toan was ruquired to be conductadi it an amuntially undiaturbud deposit, evan though local ramolding of the soll wan kiewn to take place,
 apply rolativaly oonatant forso lovela over long parlicin and to mwanura tho movimant of the objant whith renpact to tha undinturbad deparit in wri 'uh il II ambaditad,

## Apparatus

The use of a moblle bottom-resting platiorin, aven if one had been available, was determined to be uneconomical. A proposal to drive groups of piles at various locations within Sari Francisco Bay also proved to be unerionomical. It was intended that the piles would support fixed decks from which the tests could be conducted.


Figuro 1. Sehematle of tase apparatur.
A. 36 fout $\times 88$-foot floating barge, called the NCEL warping tug, was selected, largely becausa of its availaility. The warping 1 ' ? was modified to accommedate a counterveight loadng system, a schear.atic of which is shown in Figure 1 The counterweight system permits the ap, lication of relatively conriant loads over long ipriuds of time. since 11 compensates for tide changes, varvinet frooboard, and the short term lwave, pitch, and roll of the barge. The system consists of a trame composed of pontems ( $5 \times 5 \times 7$ feet) which provide all alevated support for the counterweight. The counterweight proper cansisits of twin ( f -foot-dianoter by 12 - foot-long tanks. These tanks when filled with varyinet amounts of water are capable of providng from 9,000 to A0,000 pounds of force. The: force levels cam be carefully combrulled. A photograph of the systam is shown in Figure?.

Tho "curpentar stoperer, 'shown in Figure 3, allows an adjustrnent of the langth of the line from the counterweight to the tast object. It is a criticet piece of equipment slnce it can bo usod to cormoct one tine anywhoro along the length of another line without dameging eithor lino. It develops the full strength of the lines and deos not disengage when the lines are slackod.


Flgure 2. Photograph of teat apparatul.

I he warprog lug was secured in position with: a two-point moor, fore and aft. The stern ling was anchored with a 9,000.pound STATO* anchor and the bow tine was made fast to the end of a pier. Sufficient tension was developed in the mooring lines to resist significant transversu movements of the barge. Position was checknd by moas uring (with a transit) the angle of the reor riative to the pier ence by metering the bow line.

Force was moasured and racorded by an lifiline calibrated strain. cage dynamumeter. Displacement of the test spacimen relative to the barge was measured by a peitentiometarb.acked wheel driven oy the sheave over which the lifting line was reevod. Displacements of tha barge relative to the bottom ware also measured by a potientlometer-backed wheel over which a small counterweight and a mud float were suspended (see Figure 1). Some difficulty was oxperienced from floating debris, which tended to becono entangled in the wire line, A facsirnile of an oscillogram for one of the tests is shown in Figure 4.

## RESULTS DF FIELD TESTS

## Prowentation of Data

The date as reduced from the oscillngrams are portrayed graphically in Figures 5 through 10. It is to be

[^0]

Figure 3. Load dynamometer and oarpenter stopper.


Figure 4, Ficolmile of teve data.
emphasized that these are essentially raw date which have not been corrected for oovious arrors, although some test data were discarded primarily for reasons of incompleteness. The data are presented $\mid n$ the form of depth of embedment in inches versus time in minutes from the beginning of sach test. The beginning of each test was tak on to be the tirne at which the counterweight tanks began to be filled with water. For ench of the tests, unless so indicates, the rate of load application (that is, the flling of the tankis) was uniform, although it varled from test to test. For each test, the uppllad load over and above the submerged woinht of the tast apeciman (In alt water) is indicated, In adeltion, certain other Information is presented for each test. This includes (1) the time elapeed from the placement of the objuot to the atart of the tast; (2) the location of the test objact relative to the plar In bearing and diatance; and (3) thu local shear strangth at a depth equivalent to the depth of settlement of the objeot. Tha latter was obtalnad by divers using a vane dovica. To ald In interprating thu figures, the following example is clascribud In detail.

Example (Tora No. 38, Flgura 8). The test object was a cube whlch wes placed in position 240 feet from the plar at an angle of 00 degroes measurod clookwise from an imaginar, ilne perpendloular to the longitudinal exls of the oler and having lita origin at the southeast corner of the pler. The object settlad a distance of 36 Inohes Into the bottom sadments and was allowed to remain in place undisturbed for 68 hours, In-situ vane shear strength at a depth of 36 Inches was measured to ba 0.83 psl . The subnerged waight (in sali water) of the cube was 20,000 pounds. At the beginning of the test a load of 9,000 pounds was applied to the object, which corresponds to the dead weight of the counterwelght tanks, Water was added at about the rate of $216 \mathrm{lb} / \mathrm{min}$. Aftar eipproximataly 100 minutes, the total applaed force Was 30,500 and the object moved noticeably and broke tree of the bottom.

The data from all of the iests are convenlently dioplayed In Table 2. To bring some nrder out of the large number of parametera required to describe the breakout phenomenon, the original raw deta presented in

Figures 6 through 8 heve been replotted and appear in Figures it illungin i $A$. The ordinate has been normalized by dividing the instantaneous embedcled depth by the original embedded depth, It was expectod that the freeing of the object or alternatively the failure of the soll medium could be clearly identifled and correlated both for similar and dissimilar objocts. However, this hope did not materialize.

## Formulation of Empirical Equa:Ion

Unfortunately, the various classical theorias of failure vihich have been widely employed in the practice of soil mechanics and foundation engineering, such as the Mohr Coulomb thecry, assume that tha stress conditions alone determine the state of fallure of a material, irrespective of the load duration arid the stress instory. However, it han become increasingly claar that the loed duratiori is a major factur in the bieskout priscess. Schmid and Kltago (1966) stated:
"That clay solls have time-dependene shaer proparties has been recognized for a long time, but the profession still fraquently approarihes problems of imo-dependent stressestrain behavior of clay soils as if they could be analysad completely on the basis of the theory of elasilicity or plasticity without regard to the actual pheological properties. Time affects are often discussad, if at all, merelv on a qualitative basis. One reason for this may be the complexity resulting when time is considered an adrjitional variable in any problem. Anothar reason may be the elfflculty of abandoning old and familiar concepts that usually are autificient for most atrictural inaterials, and another the lack of familiarity of most soll enginaers with rheological theory, since its application to problams of soll mechanics is stlll developing.
"There appears to be general agremenent, however, that saturated clay solis do behava Ilke viscoelastic or viscoplastic materials, As a consequarice. the classical fallure theorles...cannot and do not completely describe the materlal behavior of clay solls. Elther they have to be modified to parmit . quantitative assessment of stress history, tempuraturo, and rate of loasing or they have to be replaced by theories that Irulude these affects,"

In the classlcal theories, one or two of such material parameters as viald stress, Young's modulus, or Poisson's ratio are sufficient to describe the behavior of an isotrople matarial. Such simplifications are inadequate to predict braskout behavior.

To keep the problem as simple as posslble and yet ratain all of the essential features, the breakout test data will be enalyzed stepwise in the following paragraphs.

## BLANK PAGE




Figure 5. Displacement history curves of cube.



Figure 8. Displacement history curves of cylinder.


Figure 6. Displacement history curves of priam.


Figure 9. Displacament hintory curvos of cone.


Eigure 7. Dleplecoment his


Figure 10. Reaults of field

mof cone.


Figure 7. Displecement hiutory curven of uphere.


Figura 10. Results of field teit data with ellipmoid.


Floure 11. Normatled deplecoment history of cubo.


Finurm 1'3. Anrmalized depplecement history of ephere.


| Tunt Obpat | Tab: <br> Number | Pubition Buating (Ulou) | Position Dis'alc:a (II) | Onpth of Fimbecimant (in.) | Coheston of Sulat Porition ard Depthot Emberdanent (10 $:$ ! | $\begin{aligned} & \text { lime } \\ & \text { lnsitu } \\ & \text { (hr) } \end{aligned}$ | Woight of Tour Objeci In Alr (ib) | Waif:'t of $105 t$ Object in Wainr (Ib) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cube | 34 | 00 | 220 | 48 | 0,0105 | 19 | $3 \mathrm{~K}, 50$ | 20,000 |
| Cubu | W | 40 | 290 | du | 0.14 | OH |  |  |
| Culon | 12 | 117 | 200 | l.a | 2.26 | 03 |  |  |
| Cumo | 13 | H7 | 275 | till | 2.82 | 90 |  |  |
| Culse | 44 | H1 | 310 | 94 | 1.17 | 102 |  |  |
| Cube | 60 | 87 | 300 | 40 | 0.83 | 44 | $\dagger$ | 1 |
| Prlarr | 400 | 00 | 240 | 21 | 1.11 | 20 | 3H,800 | 22,200 |
| Prisun | 34 | 00 | 276 | 14 | 1.18 | 10 |  |  |
| Primin | S' | 00 | \$00 | 20 | 1.74 | $1{ }^{14}$ |  |  |
| Mriant | 44 | 87 | 288 | $36.1 \%$ | 0.00 | 240 |  |  |
| Prium | 40 | 8\% | 280 | 30 | 1.08 | 110 |  | , |
| Prinis | B1 | 4\% | 280 | 27 | 1.12 | 42 | , | 1 |
| Pristir | Bil | 93 | 230 | bod | 1.10 | $4{ }^{4}$ | 1 | $\dagger$ |
| Sphinph | 10 | 90 | 300 | ** | " | 01 | 23, 16010 | 14,600 |
| Bulingo | 11 | 04 | $3(0)$ | ${ }^{\prime \prime}$ | - | 10 | + | + |
| 8phurn | 13 | 00 | 424 | * | .* | 16 |  | , |
| 8phutn | 11 | 00 | 100 | N0 | "' | 14 |  | , |
| \$pliura | 2 l | 04 | 000 | $\cdots$ | $\cdots$ | 113 |  | $\cdot$ |
| aphara | n7 | OU | 150 | d 14 | $\pm$ | 30 |  | - |
| Sthura | 211 | ais | 400 | 21 | , | 12 |  |  |
| Sphinera | 20 | 4 | 3100 | 00 | 2020 | 19 | d | , |
| Giphara | 30 | 0 O | 310 | 30 | - | 13 | 1 |  |
| Evplimidar | 10 | U3 | ANO | A1) | . | X 2 | 10,260 | 91,7130 |
| Cullidar | 21 |  | 420 | 11 | $\ldots$ | 10 | 1,10 | , |
| Culhiuar | 24 |  | A(x) | $2{ }^{2}$ | 1,30 | 1612 |  |  |
| Civilinier | 41 |  | (1) | S ${ }^{2}$ | 1,10t | 1N0 |  |  |
| Culindar | 36 |  | 320 | (11) | 1.115 | 21 |  |  |
| Culinitar | 62 |  | $2(0)$ | 24 | 0,34 | 21 |  |  |
| civiniriar | 4A |  | 224 | (10) | 0.101 | 12 |  |  |
| Civplindar | 24 | , | 2171 | : 21 |  | 24 |  | , |
| Civilinctar | 2\% | 1 | H(x) |  |  |  | P | , |
| Cinnu | W | 117 | 281 | 100 |  | dil | 22, 2 (10) |  |
| Ciomin | 40 | U1) | 2 dbo | 131 | 2.01 | A ${ }^{1}$ | I |  |
| Cunt | Ab | III | 240 | lif | 1.102 | 119 |  |  |
| Coint | 11 | H1 | 210 | 112 | 2.02 | 111 |  |  |
| Comu | Bib | Uis | 276 | li\% | 2.100 | : 114 | $\dagger$ | , |
|  |  |  | ihn | 20 |  |  |  |  |
| L:1lfomild | W1 | Dis | 271 | iti) | 1,161 | 114 | \| | 1 |
| Lillimuld |  | 11 | ilth | [ 11 | 1.21 |  |  | $\checkmark$ |
| $\theta$ |  |  |  |  |  |  |  |  |
| - |  |  | $\cdots$ | - |  |  |  |  |

Thbia 2 Simmary nf Finlt Tast Ragite

| Thine In Situ (hr) | Womptit of Tosi Object in Air (Ib) | Wuight ot Tast Objoc: in Water (II) | Bonvant <br> Funco of Wister (ib) |  <br> of Suil <br> Displan.ord by Fimbardad <br> Ubioct $\left(1 t^{.1}\right)$ |  <br> Weight ot Soul Displacod by Embeddod Objuct <br> (lb) | Wembl! Suppor:as by Soil (ib) | Conss <br> Gutiomal <br> Arou <br> (in. ${ }^{2}$ ) | I (men/Anom $\left\lvert\, \begin{gathered} \text { Sumoitod } \\ \text { by Soil } \\ \text { (nיsi) } \end{gathered}\right.$ | Dupth of Embradment at Bruakout (in.) | Applied Fores Girmalar Tham Woight ef Object in Wates (ib) | Volurn Soil Disp ot T'ın Break $\left(1 t^{3}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | 36,610 | 20,010 | 16, 600 | 168 | 4,740 | 16,2\%0 | 0.476 | 2.19 | $\stackrel{-}{\square}$ | 9.000 | $\cdots$ |
| 643 |  |  |  | 116 | $\therefore 180$ | 16,5\% |  | 3.03 | 27.6 | 10,300 | 87.6 |
| $G_{i}$ |  |  |  | $1 \% 11$ | 6,260 | 14,760 |  | 2.69 | : 0.6 | 7,200 | 961.7 |
| 0, |  |  |  | 1811 | 1, 1390) | 14:300 |  | 3.6\% | aid | S,3en: | 1.17 .0 |
| 132 |  |  |  | 142 | 4,280 | 10,140 |  | 2, ${ }^{\text {, }} \mathbf{7}$ | 40.9 | : $1,6(6)$ | 129,6 |
| A4 | $\dagger$ | $\dagger$ | 1 | 120 | 3,870 | 10,130 | $\dagger$ | 2.96 | 3.6 | 2,000 | 0 |
| 26 | 38,8(\%) | 22,20 ${ }^{\prime \prime}$ | 16,000 | 103 | 3.210 | 10,900 | 8,380 | 2,11 | 0.6 | 3,400 4,600 | 1 |
| 10 | , |  | , | 07 | 2,210 | 19,290 |  | 2.17 | 0.6 | 8,600 | 78 |
| 10 |  |  |  | 110 | 3,240 | 18,000 |  | 2.14 | 4.6 | 6,600 | 40,8 |
| 290 |  |  |  | 130 | 31800 | 18,300 |  | 2.06 | 3.1 .196 | 10,000 | 16. |
| 115 |  |  |  | 102 | 4,800 | 1\%,340 |  | 1,96 | 24.6 | 3.400 | 120, |
| 42 | 1 | 1 | 1 | 140 | 4,383) | 17,820 | $\downarrow$ | 2.01 1.84 | 20.0 11.4 | 2,400 8,600 | 101,8 58,8 |
| 43 | $\dagger$ | 1 | 1 | 184 | 6, 620 | 10,080 |  | 1.88 | 11.4 | 8,600 | UB.0 |
| $(17$ | 23,600 | 14,000 | 9,000 | ** | .** | $\cdots$ | ..- | ..' | .. | 4,1000 | $\cdots$ |
| 10 |  |  |  | $\sim$ | ... | .. | -." | - | $\cdots$ | 2,1000 | - |
| 18 |  |  |  | : | "'• | ... | $\because$ | $\cdots$ | - | 4,000 | - |
| 17 |  |  |  | 31.0 | 1, $6 \mathrm{i} \%$ | 12.1343 | 4,6014 | 2.76 | 10.7 | 1, huo | 22. |
| 16 |  | 1 |  | ( | -a | -. | $\cdots$ | $\cdots$ | $\cdots$ | 1,600 | - |
| 30 |  |  |  | (30), 3 | 1,803 | 12,102 | 9,1518 | 2,181 | 21,0 | 6,100 | 34, |
| 12 |  |  |  | \$ 30.4 | 1,012 | 13,404 | 4,13' | 3.24 | $11_{1} 3$ | 3,400 | 10. |
| 70 | I | , | , | \|'2: 10 | 3,1000 | 10, 310 | 9,16im | \%.'th | - | 1,600 |  |
| 13 | 1 | $\dagger$ | , | (1), 0 | 1,847 | 12,0193 | 4,1014 | 2.76 | $\cdots$ | 1,000 |  |
| 21 | 10,140 | :1,76) | 14,600 | 227 | 0,30010 | 16,(x)0 | 11.101 | 1.31 | $\cdots$ | 2,100 | $\because$ |
| 10 | , |  |  | $24 \%$ | (1, (1i) | $13,0 \times 0$ |  | 1,it? | a | $2,0(X)$ |  |
| 102 |  |  |  | 140 | 4.200 | 17.160 |  | 1.194 | 13, 3 | 3 3, (0) | 72. |
| 184 |  |  |  | 172 | (6, 100 | 10, (17) 0 |  | 1.113 |  | 3, ${ }^{2}(1)$ | T |
| 21 |  |  |  | 100 | 1,0100 | 10,7\% |  | 1,11 | 17.0 | ti(x) | 76. |
| 24 |  |  |  | 140 | 9, 1 (t) | 17.170 |  | 1, b\% | 2.1 | $3,19(x)$ | id |
| 12 |  |  |  | 1 (ii) | A, OHM | 12\% $\%$ |  | 1.17 | 10.7 | 4,3(0) | 01. |
| 21 | 1 | 1 | , | 191 | A, ${ }^{\text {a }}$ ( ${ }^{\text {a }}$ | 17: |  | 1,13: | . | 1, '2(x) |  |
|  | 1 | $\dagger$ | - |  |  |  |  |  |  | b, 000 |  |
| 20 | 22,20x | 10, (20) | 1,710 | 1211 | :1, /H(1) | 12.1211 | 1, 1610 | 人, 21 | :31, | 1,000 | 101 |
| 13 | - | 1/, |  | 1:3 | 21.1111. | 12, 1810 |  | 0.211 | AJ.11 | $!1,(0 \times 1)$ | 1(x) |
| 164 |  |  |  | 13\% | ( 3,1110 | 12.110 |  | 2.2. | : 31.10 | :1, $3(m)$ | O'2 |
| 113 | , |  | , | 131 | :1,110 | 12,16170 |  | 2.23 | 23.1 | $\square^{1}(1)(1)$ | 0 O |
| - 314 | $\dagger$ | $\downarrow$ | $\dagger$ | 127 | 13,110 | 12.10170 | $\gamma$ | :1313 | :30, 13 | $2,(0 x)$ | du |
| (1) | SA, (30) | 10,200 | 16,100 | 02 | Vin | 10,A90) | U, $31(8)$ | 1.71 | 1:4 | $\because 8(0)$ | 17 |
| 174 | , | 100 | 13, | 1110 | (3.A'J) | : $17 / 0$ | U, A(x) | 1,641 | 12.4 | 3 B , 3 | 27 |
| 00 | , | , | , | 114 | n,iJ0 | 14, 138() | U, A(1) | 1,6) | 1.it | 1,200 | 6 |
| 120 | 1 | $\dagger$ | $\phi$ | 1(II) | 4,8(0) | $14, A(x)$ | (1, A(x) | 1.6. | 10.it | 3,1(0) | 20 |


| it | Appliad trares Groa; or Theal Weight of Oblact in Wuler (Ib) | Volume ar Sol Displaceas at Tieria of Braakoni $\left(f 1^{3}\right)$ | Subnurged <br> Vought of Suil Disulaced at Time of Breakout (Ib) | Masistance of Sail to Broukuwi ( 1 b ) | Cross. <br> Sectional <br> Area at <br> Time of <br> Breatomi $\left(\text { in. }{ }^{2}\right)$ | Resistance of Soll to Breakout in Force/Area (psi) | Total <br> Tirno <br> of <br> Tost <br> (ain) | Tinnu funct l:quals Subrnorged Weight of Objuct (min) | Total Time of Duration of Maximum Force (min) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0,000 | - | $\cdots$ | - | 5.476 | - | 125 | 67 | 20 |
| . | 10,300 | 87.5 | 2060 | 12,92. |  | 2.36 | 100 | 53 | 0 |
|  | 7,200 | 96.7 | 2.901 | 10,101 |  | 1.8 .4 | 160 | 30 | 110 |
|  | 6,300 | 147.0 | 4,910 | 9,711 |  | 1.77 | 136 | 95 | 0 |
| ! | 3,500 | 129.6 | 3,883 | 7,388 |  | 1.35 | 76 | 37.6 | 31 |
|  | 2,000 | ' | 0 | 2,000 | 1 | 0.37 | 410 | 44 | 360 |
| ! | 6,400 | - | - | - | - | - | - | - | 0 |
| ! | 3,600 | 2.6 | 715 | 8,576 | 8,880 | 0.97 | 203 | 45 | 10 |
| ! | 6,600 | BU.4 | 1,627 | 7.027 |  | 0.79 | 129 | 33 | 85 |
|  | 10,000 | 15.9 | 477 | 10,477 |  | 1.19 | 303 | 54 | 20 |
| + | 3.400 | 126.4 | 3,792. | 7.192 |  | 0.81 | 92 | 47.6 | S |
|  | 2,400 | 105,8 | 3,174 | 6,5074 |  | 0,613 | 62 | 45 | 6 |
|  | 8,600 | 680 | 1,168 | 10,268 |  | 1,16 | 327 | 47 | 0 |
|  | 4,600 | - | * | $\cdots$ | - | "• | 44 | 16.5 | 17 |
|  | 2, $\mathrm{B}^{(1)}$ | - | $\ldots$ | * | - | $\cdots$ | 69 | 22 | 37 |
|  | 4,000 | "** | - | $\cdots$ | -- | * | 367 | 12,6 | 0 |
|  | 1,600 | 22,4 | (1)2 | 2.172 | 31,620 | 0.62 | 305 | 11 | 290 |
|  | 1,500 | .. | -. | , | , | ... | 35 | 34 | 0 |
|  | 13,100 | 34.0 | 1,020 | 0,120 | 4,061 | 1.61 | 106 | 39 | 4.3 |
|  | 3,400 | 10.6 | 1,48 | 3,908 | 3,360 | 1.19 | 48 | 31 | 3 |
|  | 1,6(0) | ... | ... | - | - | - | 480) | 36 | 437 |
|  | 1,000 | -- | ${ }^{\prime}$ | - | - | - | 489 | 34 | 432 |
|  | 2,000 | " | $\ldots$ | "'* | $\cdots$ | . | $\cdots$ | $\cdots$ | -- |
|  | 2.000 | $\cdots$ | *" | *** | $\cdots$ | -"* | 100 | 12 | 120 |
|  | 3,100) | 72.19 | 2.1\% | 6,170 | 10,490 | 0.42 | 63 | 63) | ? |
|  | : 3,216 | ... | $\cdots$ | $\cdots$ |  | $\cdots$ | $\cdots$ | ..." | $\cdots$ |
|  | $\underline{H}(X)$ | 70.7 | 2,1011 | 2,80) | 10,61\% | 0.20 | 216 | 12 | 1/6 |
|  | 3, 310 X$)$ | 13. ${ }^{\text {a }}$ | (H) | 3,8000 | 4.316 | 0.90 | 181 | $A C$ | 131 |
|  | 4, (0) ${ }^{10}$ | 01.1 | 2,72: | 7,3id | 10,998 | 0.87 | 134 | 24 | 0 |
|  | 1.3(x) | . | -. | - | -- | -. | - | *' | $\cdots$ |
|  | $1,(0)$ |  |  | . | -." | $\cdots$ | 60 | 33, 6 | 7 |
|  | 7,000) | 018 | 2(13) | \% 1, 236 | 0,400 | 0.78 | b | 36 | 0 |
|  | 6. $10 \times 0$ | 10) | . 327 | 6, $312 \%$ |  | 0, 67 | 16S | 30 | 110 |
|  | 3,360 | 02 | 210 | 3,6\% 0 |  | $0.3!$ | 30 | 20 | 3 |
|  | b, $0(0)$ | (10) | 180 | 6,180 |  | 0,6i | 186 | 30 | 0 |
|  | 2.800 | 016 | 286 | 2,286 | $\dagger$ | 0.24 | 120 | 6 | 0 |
|  | 2,H(X) | i3) | G0) | 3,700 | 0,701! | 0.515 | blb | 43 | 0 |
|  | :1,300 | 27 | 1310 | 4,110 | 0,40) | 0.634 | 66 | 44 | () |
|  | $: 1,200$ | 6 | 180 | 3,340 | 2,80) | 1.21 | 40 | 33 | 0 |
|  | 3.100 | 20 | 000 | 3,100 | [1,40) | 1),60 | 286 | 30 | () |



Beginning with a very simple formulation of the mechanics of braakout, one may set*

$$
\begin{equation*}
F-k C A \tag{1}
\end{equation*}
$$

where $F=$ breakout force
$\mathbf{C}=$ cohesion, or alternatively 4 measure of the vane shear sitrength
$A=$ horizontal projaction of the contact area
$k=$ constant which is a function of objoct size, object shape, time duration of applied force, rate force is applied, soil sensitivity," * and the elapsed time which the object has been in place afier the initial disturbance

Thus, we may write
or

$$
\begin{align*}
\frac{F}{C A} & =k \\
\log \frac{F}{C A} & =\log k \tag{2}
\end{align*}
$$

Letting $C$ and $k$ take on silghtly difforent meanings, we may write

$$
\begin{equation*}
\frac{f}{C A}=Q e^{-R\left(t-t_{0}\right)} \tag{3}
\end{equation*}
$$

where $\mathbb{C}$ effectlve average cohesion along the fallure surface at the instant of breakout

0 - constant
$R=$ slope of the "fallure line" winen $\log (F / \mathcal{C} A)$ is plotted versus timot $t$
$t$ = time allowed for breakout, or alternatively the elapsed time during which the breakout force is applied
$t_{0}$ a reference time in minutes

[^1]The constants $Q$ and $R$ are functions of the load duration ur strain rate. In Equation 3, wien $1=w$, the fore 2 required for breakout is a minimum. Converseiv, as t is allowed to approach zero, that is, as the time allowed for breutout becomes increasingly short, the force requirement reaches a maximum ronstant value.

The quantity $\underline{\underline{C}}$ lequires some comment, since it is also a timedependen; function which is related to the soil sensitivity. It may be estimated by an equation of the type

$$
\begin{equation*}
\underline{C}=\frac{C}{s}+\left(C-\frac{C}{s}\right)\left[1-e^{-b t /(t-1,)}\right] \tag{4}
\end{equation*}
$$

where s = degree of soll sensitivity
$b=$ numerical constant used to force $\underline{C}=\mathbf{C}$ for very large d , in koepling with our knowledge of thixotropic meterial behavior
$t_{1}$. reference ifme related to the thixotropic behavior of a material in regaining a statod percentage of its strength after initial dis. turbance

To illustrate that Equation 4 is approximately correct, we note that (1) for $t=0$, then $\underset{\mathcal{E}}{\mathrm{E}}=\mathbf{C} / \mathbf{s},(2)$ for $\mathrm{t}=\mathrm{t}_{1}, \underline{\mathrm{C}}=\mathbf{C}$, and (3) for very large $\mathrm{t}, \mathrm{C}=\mathbf{C}$ even for relatively small values of $b$. Dimens!onless graphs of Equation 4 are shown in Figures 15 and 16 for values of $b:=1.0$ and -5.0 and 8.0 , respectively. Experimental Information on the validity of Equation 4 seems to be nonexistent. In addition, the reference time t, seems to be highly variable, being very short (that is, on the order of minutes) for such thixotropic materials as drilling muds and perhaps very long (that is, maasured by geologle time) for many dieep marine sediments.

On the basis of experimental test results we may estimate $\mathrm{i}, \mathrm{C}, \mathrm{t}_{1}, \mathrm{t}_{\mathrm{u}}$, and the constants $\mathbf{Q}$ and $\mathbf{R}$, and then compute the force $F$ requirud to extract the specimen as a function of time, $t$. For example

$$
\begin{equation*}
F=C A O \theta^{-R\left(1-t_{0}\right)} \tag{5}
\end{equation*}
$$

or for maximum $\mathbf{C}$

$$
\begin{equation*}
F=C A Q e^{-R\left(t-t_{0}\right)} \tag{8}
\end{equation*}
$$

It is to be emphasized that the reference times are those determined from large-scale field tests.


Figure 16. Dimansionless graph of Equation 4 for $b=1.0,8=5.0$.

The foregoing illustrates how the field data may be analyzed and used for predicting breakout, assuming that scale effect is negligible. In connection with the data reduction it was found that the conesion, C , as cobtained by vane shear tests, showed marked variability. Thus, as an alternative measure of the sediment strength, it was expediant to use the quantity $q_{d}$, which is defined as the average supporting pressure provided by the soil to maintaln the embedded oblect In static equilibrium, In all of the data reduction since it exhibited very consistent trends. In a sense this is fortunate since the problem then becomes completely determinate, being no longer dependent on external measurements. Some of the data sumimarized in Table 2 are presented in Figures 17 and 18. Figures 18a, 18b, and 18 care semilogarithmic graphs of the data appearing in Figures 17a, 17b, and 17c, respectively. The elapsed time over wilich the maximum force was applled appears as the ordinate in all flgures, Irı Flgures 17a and 17b the abscissa is the dimansionloss quantity, $F /\left(A_{\text {max }} q_{d}\right)$; In Figure 17c the absclssa is $F /\left(A q_{d}\right)$. In Figures 17b, 17c, 18b, and 18 c the force $F$ represents the net breakout force, which is the applied force minus the submerged weight of the objuct, not only that portion submerged in salt water, but also that portion of the object embedded in the bottorn sediment.

Figure 18a indicates sume of the trends in solected data from Table 2. The coefficients $\mathbf{Q}, \mathbf{R}$, and $\mathrm{t}_{\mathrm{o}}$ used in Equation 5 are also shown on the figure. Although the data are extremely limited, the lijure indicates that the forces required to extract the cube and the prisin are higher than those for the cylinder and sphere. This seems to be in agreement with previous fleld experience.

Figure 17. Selected data from Table 2.



(a)
Figare 18. Setected data frome Table 2 on semilogaritimic graphs

Figure 18b exhibits the clearnst consistent relationships for all of the included data. That is, the tremds shuwn in Figure 18a for the various shaped objects appear to be aimost untirely obscured when the numerator in the abscissa is reduced by an amount equal to the submerged waight of the volume of sediment displaced by the embedded object.

From these data, the equation for computing breakout has been determined to be:

$$
\begin{equation*}
F=0.20 q_{d} A_{\max } e^{-0.00542(t-280)} \tag{7}
\end{equation*}
$$

where $A_{\text {max }}$ horizontal projection of the maximum contact area
For $t=0$, Equation 7 reduces to

$$
\begin{equation*}
F=0.81 q_{d} A_{\text {max }} \tag{8}
\end{equation*}
$$

For $\mathrm{t}=260$ miriutes, the breakout force requirenient becomes

$$
\begin{equation*}
F=0.20 q_{d} A_{\max } \tag{9}
\end{equation*}
$$

It is iu be amphasizeus that relationsinps such as appour in Figures 18a, 19b, and 18c, of which Equation 7 is tyiloal, are based on only one type of sedimon: (that Is, that found In San Francisco Bay) and one size of tept oblocts, all of whici were similar both frorn characterlstic length and bearing loac.

## THEORETICAL ANALYSIS

To introduce the theoretical prociedure employed in this study it seemis useful to pause and ask why and in what way is it warthwhile to proceed with the development of complicated models and procedures. That question is best answered by the following quotation from Whitman (1904):
"Highly complex theories should seldom be used in soll enginaoring practice. The advent of modern computers doos not change this conclusion.
"Theie is always a basic limitatior upon any computational procedure that is to be used in design practice-m the user must be able to trace a clear rolation between asch assumption and the result oi making this assumption. In the case of soll engineering design there la an additional tact: It is almost impossible to ascartain the actuel pattern of nonhomogeneity inat exists in a particular soll deposit.
"Sophisticated models and procedures are useful only in applied research. The end objectives of any development of such models end procedures are the clarification of certain puzzling aspects of the behavior of soil masses to bring greater unity into empirical observations, and the determination of the reasonableness and accuracy of simplified metheds to aid the development of such simplified methods for use in practicel design situr "ions."

The essential nature of the breakout problem differs from the ordinary footing problem (that is, pradiction of the uitimate bearing ceipacity) in at least two important aspects,

First, the ordinary footing problam is generully analyzed siatically by means of equations or charts developed by Tarzaghi. Time-dependent affects are not considered, whereas for some preliminary breakout tests such effects ware ohserved to be important. Second, the loading pattern appliad to the soll muss by footings is relatively simple as compared to that whish migh it exlst beíory and after extraction of a full-scale submarine or deep-submergence vahicie. This ls fupther complicated by the remolding of the soil in the vicirilty of the object, wherees for footings tha soll is assumed to be essentially undis. turbed The deprac of remolding as a function of distance is unknown. Moreover, laboratury tochniques for determining the stress ritrain relationships for soils under compresslve loadlngs are wall eathblished. These rolatiomahips are useful in srill enghoering practice, since the tosts from which they are aterlved correspond roughly to the loading patterns Indured by foutinys. On thu other hand, litila comparable informotion has bean devalopad for soils under terisila loadings. Thus, the symmutry or asymmutry of the strussestraln relatorishlps for soils is not woll astabilsiad.

In viow of thase differencas the use of a sophisticated model for anulvsle of tha broakout procuss seams at loast partially justifiod. The word partially is uzed sinco one nilght woll argue that it is diffleult it not imposslbla to model mathematically the very compllonted two.phase matarial doncilbatd gerierally 30 sol, If this premise worn uccaptot, thon predictlons of broakout bahavior would be recfuliod to raly axcluslvely on onipuriment followad by the use of rolativaly simple moduls.

The thoorutcal presendure usad in this study la basod on a systamatic mumerical procedura, develupud by Harper and Any (1963), for datermining tho displacomonts, atrains and strossess within a plano continumin wherein cortaln reglons hove buan strained beyund an alaetic yiold limit. The matarial of the continuuin is considarod in to liontropic, olastismparforily plantic, and the problems ara solvad for continuousily Incronsing oxtornal loads.
 to a discrote physleal model composad af sultably arranged atreas pointu and mass polnts. Once the oxturnalls; appliad liandi have been raima to a
 begin to yield and fiow plastically. The initiation of yielding is datermined by lle ivises. llenchy yold criterion. Thereattet, y!aldart raginns are assumed to obey the plastic stross-strain relations postulated by the Prandtl-Ruoss theory. The numerical method is presented in complete dotail in Appoindixes C through $G$. Only a brief resume is presonted in the following paragraph. The limped paramotor model, shown in Figure C. 1 , is usad in the procadure developed by Harper and Ang. Tha model consists of mass points, at which tho mass of the material is assumod to be concentreted, and stress points, which connect the nelghboring mass " binis. Displacumonts in the continumiri aro definad nily at the mess points, while stresses and strain's aro defined only at the stress points. The stressus at uach stress point aro rolated to the movements of tha four surpounding mass polnts by usirig a flriter. alfferonce version of the stress-strain laws for the continuumi. Boundary conditions ara given In terms of althar extarnal inads acting on the mass points or specified displacemento of those mass points.

Figures 10 through 21 are rasulta of an axample obtainod by application of the numerical mothod. In this axamplo, it is asurnad that a $4 \times 4 \times 96.900$ parallelepipod has panotrated a dutanco of $\theta$ Inchos into a wot inarinu malimunt having a ylaid strongth in simple tonsion of 0.0 pal, a Folsuon's ratlo of 0.4 , and an affactlva moduluy of alastleliy of 74 psl.

Figurn 19 daploto the propagaton of platita atralining witn inuruasinin force levela. Flgure 20 shows the diatributlon of ybete rutio parconstion for a given lavel of louding. The elayile digplactumente at firm ylaldiny are shewn in Figura 21. Rasulas olvan in Figurea 10 through 31 are bamed on an arbitrarv loading of the boundary mans polnta, whirh duas nes quite oosholde with tho Ianding nattern In the flald sath. The applisation of uniform louds to tho
 of thone mans polnti, which corranponde to what happans with a flapilho footing, But submarima haela and othar appandager aru vary ilpled ancl cor. respond is a rlald looilng, thus, the raula alven in Flaurat 10 though 21
 load ineremente within tha platlo range hava thur far provanted the presosadno
 ancomalian are prament in the theoratical approach, ovan thangh cinly the urown






lests. The te:ts sumport the results of the mumorical technique in ovory
 comdition of masiscity camot bo simulated by the photomiastic mothod. Thus, the numerical tochulequa, which is applicable to both tho olastic and plastic regimes, is much muru versarlle than tha photoelastic mothod and can bo appled to a wida range of problems not nocassartily limitorl by laboratory equlpmant or tha construction of apeactan models. The prosent varston of the numarital method, however, is limiled to n two dimmasional trontmome of the problom.

## COMPARISON BETWEEN THEORETICAL AND EMPIRICAL PROCEDURES


 mondel ara almo umed to antimata the hreakonf forde.






 wheda.






 prolinith.

 mendy thooroner, wa haver

Whare: $\mathrm{m}=$ modal
F - bruakout forco
L. - lungth of parallolepipad

B wicth of narulielopiped

In this caso

| $F_{m}$ | - 0.14 pounds | - 35 fout |
| :---: | :---: | :---: |
| $L_{m}$ | - 0.75 inch | B - 4 iont |
| $\mathrm{B}_{\mathrm{m}}$ | - 0.25 Inch | $\boldsymbol{T}_{\text {max }} \times 0.6 \mathrm{psi}$ |
|  | - 11.6 ps |  |

Substluting thess valuas in the equation wo obtalin'

$$
F=\frac{8.14(08)(4)(144)(0,6)}{0.75(0.26)(11,5)}=03,600 \text { pounds }
$$

The Poisson's matio for the model muterial is 0,40 . Thu photeolastic modiol study is discissad tio Ar :umedix $H$.

The broakout force la alse catculatiml from thes ampirical formula

$$
F=0.20 q_{d} A_{\max } a \cdot H\left(1-I_{a}\right)
$$

whern $q_{u}=2.88(1+(B / L)) q_{u}$
In thla problam

| $A_{\text {max }}$ |  |  |
| :---: | :---: | :---: |
| $t_{0}$ | - 200 minnutus | $L$ - Mb Peot (lonuth of parallelephpeit) |
| $t$ |  | $90+0.01141$ |
| H | -0.0060 |  |





Ploure 10. Propagation of platie atraining witio Inapataing lowd lewila



Substituting these values in the empiricai iomuláa, vie hiave

$$
\begin{gathered}
\varphi_{d}-2.85[1+(4 / 95)](0.6)=1.79 \mathrm{psi} \\
\text { Thus } F=0.20(1.79)(54,800) \mathrm{e}^{-0.0054(0-260)}=80,000 \text { pounds }
\end{gathered}
$$

Thus, comparable predictions of the breakout force for zero elapsed time according to the theoretical and empirical approaches are 91,000 and 80,000 pounds, respectively.

The theoretical procedure considers noithar the effects of remolding or the incroase in strongth due to consolidation. In the San Franciscu Bay tests (upon which the empirical constants ware determined), the maximum bearing loads were very high, much higher than the capacity of the soll near tho surface to support such loads. Thus, the soil in the Immediate vicinity of the test oblect was disturbed and remolded to a conslderable degree. Moreovel, the object penetrated a certairi distance until the bearing loads were reduced to a level within the capabllity of the soll to support the imposed loads. There is a natural increase in strength with depth due primarily to an incroase in bulk density and a decrease in water content. Howover, the strangth of the soll is also effected by the presence of the object in two nopusing ways. One, referred to proviously, is the reduction in strength due to reinolding, The other is the gain in strength due to consolidetion. Eoth affacts occur on vastly different time scalos. The loss in strongth due to remolding takes place Insiantanoously, whoroas the gain In atreng th due to consolldation as a longetarm process dapanding initially to a large uxtent on the permability of the soll.

It seoms likaly that for a givali object two worst situations are possible. Ona, termed the shallow.punotration cuse, occurs whan the soll has a high ahaser strenpth which is almost but not quite mutchod by the imposed bearing londs. This onsures a close bonding of the objoot sk lin surfoce to the madimontary layer without inclucing a strangth raduction in tho soil. The othar, tormad tho danp-penotralion caso, uccur!i whun ponotration has bean so deen that tha volumo of displacad boil boconices suffielantly large so an to complatoly dominato tha brenkout procosss. Tha later situaton is not to ba confumad with thes voluma of motarlat lylny butwom tho failure surtace and the objoct boundery, which ts a function of the yrose dimensions of the objent. Wo are concornod horo with a givern guomutry.

In the theoratical approach, the computational wehamo purmits londs of any magnituda to bo appliad to arive or all mass polnts. Agaln, in thion citad axtample, uqual inods ware appliod lo tho mass points lecutad on the boundary
 buondary are pormituod, whereas in liget, mich unuqual movementa ano realizad only for flaxiblo mombrnmes.


Figura 21, Dipplacumant veotor mapping of woll viemente i


Ieplacomant victor mapping of mill alomonti at first yield.

## FINDINGS

1. A numerical method of predicting strains, stresses, and displacements ir. an elastic-perfectly plastic medium subject to loads applied to an arbitrary boundary geometry was found to be useful in developing a theoretical prediction of breakout forces.
2. A complicated computer program, which uses a lumped parameter modial of the material and an iterative technique to obtain solutions, was found to be an integral part of the theoretical procedure. The program requires use of a high-speed large-memory-capacity computer.
3. The computational procodure traces the development of the stress and displacement fields in an olastic--porfectly plastic material under conditionsi of plane strain, with specifled boundary conditions and force-controlled loading,
A. Results ylelded by the computational procedure wero found to be verified by separate photoelastic studies, at least within the elastic range.
4. Data from breakout tests with large specimens in San Francisco Bay wert found to dcvelop the following emplical formula:

$$
F=0.20 A_{\text {max }} a_{d} 0^{0.00840(1-200)}
$$

The geomatry of the brakout object seemod to have rolatively Iltile effect on the breakout force.
6. In a particular oxampla, the broak out forco roquiroment was estimatad by the theoretical procedure to be 91,000 pounds and by the ampirical procedure to be about 80,000 pounds.

## CONCLUSIONS

1. The ocoan boltom broakout forco of an objuct of slmplo goometry can be ustimatod by means of an analytical mothod that usas numorical calcutation by high-spoed computurs, Thu muthod takes Into account the plastic buhavior of soll boyond tha alatic stralir range.
2. Tho fallowinu ampirical formula may bu usad to dascribe the break. ant forca for an ocam bottom soll:

$$
F=O A_{\operatorname{man}} g_{c} a^{-N\left(1-t_{0}\right)}
$$

## RECOMMENDATIONS

1. Whenever possible, engineers should use the analytical method cus:lined in this report and the appendixes to estimate the breakout force before any actual salvage operation.
2. When a computer is not avallable, the empirical formula should be used to determine the breakout force. Tha constants $O, R$, and $t_{0}$ can be derived from a limited number of in-situ field test deta.
3. More field data should be collactod to verify tho arialytical mothod for various object geometries and soll sediments.
4. More research should be conducted intn mathods for reducing the breakout force.

## NOMENCLATURE

A Horizontal projection of the contact area, in. ${ }^{2}$

Amax Horizontal projection of the maximum contect area, in. ${ }^{2}$

B Width of breakout objoct, feat
b Nummrical constam: uske to force $C=C$ for vary largiot

C Cohaslon, or altomativaly a maasure of the vane shaur strangth, psi
C. Effectivo averago coheston along the fallura aurfaco at the instant of broakout, psi

F Broakout forco, pounds
$k$ Conatant wilch is a funcilon of objoct sizu, objact shaph, fime durntian of applied foree, pata force la upplied, soll sonsltivity, and the olapsod timo which the oblest has boun in placa aftor tho initelal disturbunco

L Lungth isf brookenil objuet, foot

0 Constant

 rhilit, pal

A Slopu ul lion "Iallura llon" whan loo (F/SA) In phollorl varman litita, :

* Inyuse ul wall minitivify

1
I hit alluwid tor brink ant, minutuk







# Appendix A <br> site selection and laboratory tests 

by M. C. Hironaka

Tha flald tosts waro carriad out in San Francisco Gay nbout 300 yards southoast of Plar 3 al Huntors Point (Figura A.1; San Fioncisco Bay whe solected bocauso it is the only location on tho Wost Conat in relotively shallow
 whose phyalical charactoristics are ruasonably similar to those of tho doon ocum bayins.

Tho spacifice stou is no which is rolativaly fren of the shalla and deber is which are genorally found adjacmit to plary, wharvou, and wea walle, and whish mako auch locationa nimultable for field leata, Flgure A. 2 thows the dopth contours at tha wito and the oull.profile locallons along whith soll corus wore potrlaved, figures A. 3 inrough A.B ara sohamatlo alevallons of the soll layating based on a datailod examinatlon of the soll cerata, Tabla A. 1 gives atatiateal information on tha laboratory soll fanta for tortala milecitad corar.




 wongewhat lans than meaningfol.


Cure 5 mrnim 10


| Henometies | intarual lina） |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12.16 | 24．ay | 10．30 | An．bl | 12．18 | 13A．19 | H6，4） | 103．111 |
| linlk wal immitiv（ixd） | 4 | 00 | OH | $0{ }^{4}$ | H1 | VA | 40 | W1 |
|  | （0） | 117 | 104 | 112 | If：1 | 104 | In＋1 | （1） |
|  | 11 | 18 | 21 | 110 | 11 | 21 | 81 | 111 |
| Smmalivit： | B， 1 | H． 1 | A， 0 | 0.1 | 0.1 | 1.1 | 6.7 | 1．3 |
|  | 164：3 | H：I， 1 | （11．A | HH． 13 | 114，${ }^{2}$ | H1， 19 | M， 1 | 1.10 |
| Spmeillo ginvity ul zollda | 2，01 | 2，03 | 2.01 | 2.80 | ． 2.67 | 12，00 | 3 OH | 2.173 |
| Div amaliv（｜xal） | 4 | Ni | M 1 | 10 | 62 | 14 | 04 | 04 |
| Volil infle | 2，13 | （1，20 | dion | 2.32 | 2,74 | 1，4， | 8.000 | 2.15 |
| Puturily（m） | 4．1．4 | （10） 7 | 141．0 | 00， 0 | dy， | 41，${ }^{4}$ | 04， 3 | 00.1 |
| Haturaliod void tallin | 2，H： | 4，44 | 2.1 ： | 2,48 | $22^{2} 9$ | 2， 17 | 1，000 | 1， 10.1 |
| Llauid Imill（\％） | 74 | 0 | 01 | 71 | 04 | 02 | On | 01 |
| mestite limin（w） | 00 | 4 | ${ }^{14}$ | W | 3.1 | \％ | （ti） | ， 10 |
| Hastiunty liuden | 15 | 11 | 31 | 関 | 314 | A1 | d | IT4 |
| Lifuldily linder | ＇N\％ | 100 | 180 | 101 | 180 | 1，14 | 1：4 | 14日 |
| tiomprualoin lixdux | ．${ }^{4}$ | ， 10 | A 41 | ． 67 | ， $0^{1}$ | ． 16 | ， 18 | ， $\mathrm{HH}^{\text {d }}$ |

Oure Iample is


| Pruparilat | linmeval ilisi |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12．10 | datil | 160．4U | （ill 0 | 1414 | UAW ${ }^{\text {a }}$ | 1064 | 10\％．111 |
| Hult wol dandiy liwll | W4 | 01 | V\％ | U4 | UH | 48 | 100 | UH |
| Vars atume illunylin thall | his | H | 1014 | IPI | 101 | 111 | A119 | （1） |
| Itanuliami almayli limall | 11 | 11 | 10 | 14 | 14 | 10 | dil | 1 |
| meminililiv | $\mathrm{H}_{1} \mathrm{H}^{\text {a }}$ | A， $\mathrm{H}^{\text {H }}$ | 0.4 | H，${ }^{\text {H }}$ | 010 | A，W | 0,0 | 1， 1 |
|  | 1016．0 | 1（1）， 0 | 明， 1 | 4ily | Wh， 6 | 81， 1 | H13，${ }^{1 / 3}$ | 10， $\mathbf{1 0}^{\text {a }}$ |
|  | 404 | \％，46 | H， 1 | 2，4．4 | H， 04 | H，嫮 | M， 114 | 7， 11 |
| lity imaniliy limill | 14 | 16 | 4 | bil | W1 | 4 | 01 | O1 |
| Vall inlus | 1.67 | 2，（1） | dido | 0114 | 4，81 | 0.10 | 1.71 | V14 |
| Mincinily（4） | 12.1 | 74， 2 | 14．7 |  | 71.1 | （1012 | 0.1 .1 | 44．0 |
| Malieaterivilil mallo | $N_{1} W^{\prime} 1$ | V．13 | d， 10 | 0， $0^{\prime \prime}$ | H， $\mathrm{HA}^{\text {H }}$ | （1）${ }^{(1)}$ | 1，16． | 4.10 |
| Ifliwuli limil（m） | 00 | 12 | H | $1 / 1$ | 11 | HA | （1） | （1） |
| Manthi linill｜mi | ，1：1 | 1.1 | $\cdots$ | 11 | 3 | W |  | in |
| Minallilly limina | 311 | W | W | 14 | ： | Un | W 1 | ：1．） |
| I huililly limion | ／ NXI | $17 n$ | 111 | Ind | 140 | 201 | All | 1．17 |
| C＇uniomamin＇lindea | ． $\mathrm{H} / \mathrm{l}$ | ． HH | ． H | ，4， | ， 101 | （in） | $\mathrm{Hi}^{\prime}$ | （1） |

1ath A 1 Contimum

Cintolantin II


| Priputlion | Inipual（1） 1 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9． | 12.16 | d 427 | ． 36.36 | 4n．01 | （k）．n：： | 12．76 | 9）${ }^{\text {．}} 131$ |
| Huth well dintits：（fu：${ }^{\text {a }}$ ） | 11.4 | 41 | HA | （1） | no | 01 | （1） | H／ |
| Vathe wiant 11 －mbuth livel | 13.1 | 111 | M | W | 11.1 | HA | $1 \%$ | $\mathrm{H}: 1$ |
|  | III | 10 | 11 | 11 | 111 | 11 | 11 | 10 |
| Smanatray | 1．4， | 4.11 | 1.1 | 18， 1 | 1.1 | 11.1 | 91．1， | 1.1 |
|  | 011 | 1614， 0 | 41， 1 | 112．4 | 114，0 | 00， 0 | $\mathrm{H}_{1,0} \mathrm{H}$ | 日月，0 |
| Hamill li；ylavily al milla | 2.11 | 2.4 | 12，他 | 2，（1） | D， 3 H | 2.131 | 4，00 | 4.00 |
| Gry imotily liwil | 131 | dil | 40 | H2 | d ${ }^{\text {d }}$ | 10 | by | （ |
| Voldimila | 1，10A | P1／d | 2，14 | 2.40 | 1， 10.1 | 3100 | W11 | 2.34 |
| Pormelly（m） | $00_{0} 11$ | 14， 1 | 70， 1 | 14，0 | 70， | 4\％， 7 | M，目 | 10,0 |
| Buturalma volutialla | 1，76 | 4.74 | U，中l | 3， 111 | $\mathrm{in}_{1}(1)$ | \＄， 000 | 4.14 | H， $\mathrm{SH}_{1}$ |
| L．tipual liani（4） | NB | 41 | （i） | 明 | H\％ | ds | $0^{4}$ | 44 |
| Minulty limill｜mi | （1） | id | 3 | 41 | 11 | \％ | H | 細 |
| Minaltuly lmink | 111 | （10） | 相 | 1） | A1） | dy | W | 11 |
| Litultity lmiona | 211 | Ift | 104 | 104 | InH | 1.16 | 140 | 184 |
| Cumbitublan lluma | ，31 | ，117 | ， 61 | 11 | 170 | 108 | （1） | ． 14 |

Guin Mmanie II


| H1Hiswhilit | ｜inturail（lmil |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | －… | $\cdots$ |  | ．st $:$ ： |  | 1．36． | 5：3004 |
|  | Whlit | 吅析 | 113：N | NH．h1 |  | 10．7具 | \＃A． $\mathbf{H}^{\text {a }}$ | Un：04 |
| Hulh will idmalty liwil | 111 | 4.1 | 01 | 41 | 4．1． | H1 | HI | H1 |
| Varie thwar timiny in lisil | Ifd | 11 | Hh | 11.4 | lin | ｜A11 | 168 | 101 |
| Itwhmidimi stownily liadi | 0 | 13 | $1 / 1$ | lii | W | 11 | 1H | 11 |
| Rulailivily | H， 11 | 0,10 | H． 1 | H．N | H， 1.1 | 1.1 | 11,0 | 14，01 |
| I Hlylinal whime umituri imi | 1．11，${ }^{\text {a }}$ | 1（1）H：H | 101，4 | U1，11 | W， 11 | 4：1， 11 | UA， 17 | W0．1 |
|  | it 11.1 | 2i：0 | dinl | dith | bilit | V， 410 | diNH | 070 |
|  | ． 11 | $N$ | dil | 41 | H4 | 41 | 11 | AH |
| Vallilalli | ．1．11 | 人， 11 | $\lambda_{1} 12$ | dind | V，in | J， $10 n$ | din | W，Wh |
| Hillallif（\％） | 11，11 | 1d．ll | 1，1 | 101 | 11， 11 | M1．1 | 18.11 | 11，4 |
|  | 1， 11 | 1.11 | － H h | 0.111 | d．lll | 入川 | Dinl | d． 411 |
|  | 41 | 11 | 11. | 11 | 11 | 114 | HI | iv |
|  | A 1 | in | H | M | H | IH | H1） | ． 11 |
| Minalielit lictua | （14） | 111 | 11 | 111 | 11 | N | Ail | 111 |
| 1 lunililitr mima | 1411 | 117 | InN | 1141 | 1711 | 1010 | idin | 1.11 |
|  | ： 11 | ， 10 | ， Ha | ， HH | ． 11. | ． 11 | ，if1 | ，ili |

Fibla A.1. Compmos

Core Bminli it


| Propmetios | lintarual (lin. ${ }^{\text {a }}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12.10 | 24:7 |  | (1).3:1 |  | 13A.87 | 9000 | 100.111 |
| Hulk wod dromatiy lik:l | H2 | 106 | 111 | 112 | H | 1 H | 130 | WA |
| Vana migar atratyith (avil | U:1 | 146 | 16 | 100 | 121 | 120 | 124 | 130 |
| Homoldiol atranuth lial) | 13 | 10 | 18 | 20 | 20 | 3 | 40 | 10 |
| sennilivily | n. 3 | 0.1 | 1,1 | 317 | A, ${ }_{3}$ | 0.1 | 2,7 | 13.6 |
| Orialial waler cominal (\%) | 102,0 | 64, 1 | 107, 8 | 14,6 | 04.7 | 07.6 | 122.3 | A3. 1 |
| Eraullougravity al malidi | 2, 010 | 2.60 | 2.014 | 2,00 | 2,00 | 2.67 | 2.60 | 2,06 |
| tify dmanity (bxol) | 90 | 04 | 44 | 00 | 44 | 60 | 01 | 01 |
| Vold fallo | 2.02 | 1,04 | 1174 | 2,34 | 2,03 | 2,90 | 2,10 | 2,211 |
| Porualiv (\%) | 74,4 | 00, 3 | 75,0 | $\% 10$ | 11, | 103 | 08, ${ }^{2}$ | 64, 1 |
| Suturulat vold mila | 4,10 | 1,80 | 1,137 | 2,28 | d, ${ }^{\text {d2 }}$ | 2,34 | 2.10 | 2.81 |
| Liguld limit ' ${ }^{\text {a }}$ I | 71 | 42 | 04 | 00 | 42 | 77 | 72 | 76 |
| Plasto limit (x) | 4 | $2{ }^{2}$ | 41) | 34 | W 4 | 310 | 40 | 9 d |
| Hamiolity loniam | 4 | 20 | 4.3 | ta | 14 | 4 d | 40 | \% |
| Lhenulitiv limian | 170 | 100 | 187 | 19: | 128 | 120 | 124 | 124 |
| Copijuambun hatus | . 67 | , ${ }^{1}$ | . 08 | H3 | 188 | . ${ }^{1}$ | , 8 n | , $\mathrm{HH}_{4}$ |



Minere A.1. Limution of Iunt ultu.


\#loura $A \cdot d$. Bohomatio of soll layaring niong proflle $A_{\text {. }}$






## Appenc:Ix B

## LITERATURE SUTIVEY OF BODY SHAAPES AND IJIMENSIONS

bu is, J. Mugn

A thorough roviow of tho literature on existing body shapis and


 uxcluded from thila study. It was folt that the leregular monformall, ad alapas prawontad by anchory conatilutod a completa atudy lin limelf and that there would be litile 10 gain from tha at tamptorl axtrapolatoon of datia avallabla from teati on anchor ahapes to othor ahapati.
 would he af lintarast, thay alas ware axcluciad in order fo malatalan a wide dimamitimetion and dilatribution of tho romulta of the tean prouram, The study











 wam liol chailily availabla,


 milow 1



 hamaliting caparaliliz.
 III I ablu U. 3 .


| 8yminul | Clam | Namin | thumlx | Diajacmix． 1 （tomal |  |  | $\begin{aligned} & \text { I. } . \text { nuptin } \\ & \text { (f1) } \end{aligned}$ | iame： $(11)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Mintmum surface | Manlimum Sulface | Sublenargan |  |  |
| 38n（N） | Lulavolte | ．．． | 11 | 0．000） | 1．203 | 11，200 | 420 | 31 |
| BSHINI | filhan Allsa | $\cdots$ | 0 | 0.4 HV | 1， $\mathrm{H} \times \mathrm{C})$ | $1,0(0)$ | 110．17 | 31 |
| 月女｜alN］ | O．Wandinuton | $\cdots$ | $b$ | 0.100 | 8，800 | （1， $1 \times 1$ |  | 31 |
| KH（N） | － | Naulliut | 1 | 1，210 | 7．0：12 | H，（x） | 320 | 2 H |
| AB（N） | ：＝ | Sanmull | 1 | ：1，4\％ | 0.721 | H． $\mathrm{H}^{\text {（1）}}$ | 1，4！ | 20 |
|  | Sinala | Sknta A kialur | $d$ | 2.370 | 2.764 | 2.1150 | 2017 | 20 |
| $48(\mathrm{~N} \mid$ | Sikala |  | 2 | 2，170 | 203\％ | － 2.141 | 2714 | 3 |
| $88(N)$ | Hh（b）Nek | ．． | 0 | 2，864 | 2，010 |  | 210.1 | 38 |
| MEINI | $\cdots$ | tiltult | 1 | 6，000 | 0， 0 dt | 7／AI | day 1／2 | 31 |
| WSINI | themery | L． | 27 | 1，620 | 31760 | 1， 310 | 178．1／2 | 41．2／4 |
| HEINI | Hius youll | ＂ | 22 | ．． | 4，140 | $4,0 \% \mathrm{~K}$ | 等2．1／4 | ．． |
| HINI | Natwhil | － | 1 | ＂${ }^{\prime}$ | － | － | $\rightarrow$ | $\cdots$ |
| H｜l｜l｜ | ＝ | Hallawt | 1 | 7，00\％ | y， 0 db | d，BOM | 400） | W |
| Sylla | $\stackrel{+}{ }$ | Tultiowe | 1 | 1，144 | 2，517 | H，（0）${ }^{1}$ | W14．14／ | 4 H |
| 部 | Iany | － | 1 | 1，006） | 1，640 | ＞，，380 | 14\％ | 14 |
| 41 | ciudiamat | $\sim$ | 4 | 1，M（） | 1，840 | Y，200 | 306．1／6 | $27.1 / 6$ |
| 4 | crilion | ＊ | 1 | 1，4040 | 4，406 | 0.140 | 5whits | 311 |
| 11 | Marlar | － | 1 | 1，800 | 1，n70 | \＃，迷 | Whatide | Whato |
| H1 | Hurlual | $\stackrel{ }{ }$ | 4 | 1，701 | H，180 | 2，010 | 114 | ＋ |
| 明 | Chimbu III | $\cdot$ | $v$ | 1，060 | 1，060 | 2，041） | 318.40 | 4 |
| H14 | Murymy IIA | 1 | 18 | 1，600 | 1，040 | $\mathrm{V}_{1} \mathrm{~A}$ AB | H04 | 41 |
| H14 | tumay 11 | ． | 11 | 1，BXX | 1， B 10 | （1，A（1） | 蜀） $11 / 14$ | $23,1 / 4$ |
| H | Uliniti＇a | ＂ | 10 | 1，6ay | 1，870 | $\boldsymbol{M 1} \times 10$ | 314 | 71 |
| M | Plowl Nowhal | － | 10 | 1，W0） | 1，470 | $H_{1} A(x)$ | 314 | 1Filis |
| 4 | Tunuli | ．． | 1 | 1，460 | 1， HA 10 | （1，4ix） | 317 | Wh1／3 |
| 4 | Mulas | ¢ | 1 | 1，HEN | 1，H11 | 1，（1）（1） | ald | 31 |
| W | ditio | ${ }^{\circ}$ | 3 | 1，810 | 1， 1 \％ 10 | M， $\mathrm{H}_{\text {ath }}$ |  | R7，11： |
| Mry | ＇ | （Waylines | 1 | 1， 410 | 2，61 1 | 9，W0\％ | Sun． $1 / 18$ | 做 |
| Will |  | ILIMwich | 1 | Hidnt | W，4， 1.1 | ， 1317 | 32dilu | 2Hil／ |
| M ${ }^{1 / 1}$ | Clun，Haico | Walluma | 1 | 1，W2 ${ }^{1}$ | 1，H1： | W Ald | t1 1，1／4 | 11 |
| Hell | Clan，dula | T what | 1 | ＇Wha | 1， $11 / 4$ | $1, N 14$ | H1 1，i／d | 11 |
| A（1）44） | Altwerim |  | 1 | 1，408 | 1，H1 1 | 1．1010 | What $/ 1 / 4$ | －1．11／4 |
|  | Clan，dela |  | ， | 1，H／6 | 1，H｜ H | N，N10 | W11．1／4 | d |
| Adria | Cinlis lialin |  | 1 | 1，980 | 1， $\mathrm{H}(\mathrm{x})$ | V1001 | ： H d | \＃1 |
| Atilmal | limin，halant | Hay＂ | 1 | 1，hidn | 1，HON | d．Jun | 3．14． $1 / \mathrm{A}$ | 11 |
| Adimel | 1．81s，IWian | Murila | 1 | 1，nuk | 1，（ta） | d， 13 HB | 111，1／3 | 31 |
|  |  | Ihuliolim | 1 |  |  |  |  |  |
| then | 11414 | Hatersinim | 1 | Ind | Hul1 | 1.18 H | 1411 | J ${ }^{\text {a }}$ |
| H ${ }^{\text {H }} 1$ | 1 |  | $\geqslant$ | 711 | WH1 | $14 n$ | 1．111／4 | 14 |
| HM以 | Nulw | － | 1 | 11 |  | In | aH：1／d | 1 |
| A AME | CuIn，Halay |  | $y$ | 1，ham | 1．610 | d dyn | （11．1／3 | 11 |
| AOMM | （＇י\％Halon | － | 1 | 1，／mi | 1 MW | d，PM | ：111．11： | 11 |





1:1
$\because$



Apr midix C

## THEOHETICAL ANALTSES

## Table of Contonta

nill
INIHOOUCDION ..... 1)
HACKRIHOIINO ..... 11
LUMPIU PAIIAMI HIH MODEL ..... (1)
Drmariphlon of tho Muelal ..... 101
Aubation at lion Maxin to the limita Dilfanmice
 ..... 13
ISmondiaty tionililionay ..... 013
Syminulte ..... 40
Indinitin ..... 131
Spuallom liy Lomolman Allangumanil ..... 00
fimary ..... ind
CONSIIIUTIVI ICOATIONE HHOM IHI WH:OMY OF  ..... in)
 ..... (il)
 ..... 010
 ..... 111
 ..... fili
 ..... 14
Yiond l'ultentoin ..... U!
 ..... (III)
HIMIEHIC:NI MI IHON ..... 11
 ..... 11
 ..... 11
IAMIUI IMIOIIIIM ..... 71

## Ammadix C

## THEORETICAL ANALYSIS

by B. J. Muya and W. ©'. Aikins

## IN'TIDDUCTION







 vory wide tanye of clreummancian.







## UACKKHOUND

















Use of the discrete model permits a problem lis sontinuum mechanics with an Infinite number of deyrees of freedom to be replaced by a corresponding probiem in particle mechanics having a finite number of degreas of freedom. The basic advantage of such a tachnique is that it makes possible the solution of problems not easily colved by mathematical analysis, particularly probleins Involving partial loadings and complicated bouridary conditions. This is of considerable importance to the breakout force problem since many differentshaped objects are to be retrieved under a variety of embedment conditions. The basic disadvantage of the use of a discrete model, as pointed out by Harper and Ang, is its very finiteness; that is, stresses and displacements are determined only at a finlte number of points. He - , frequently the finite model can furnish only a rough quantitative measure of the true but unknown solution In the continuum.

To gain soma notion of the accuracy of the model, Harper and Ang solved a provlem in plane elasticity using an analytical solution and compared the results to those from the numerical solution using the model. The results from the two solutions agreed very well.

Whitman (1964) has considered the use of the numerical method developed by Harper and Ang for analyzing two-dimensional and threedimensional boundary value problems involving soil.* Whitman concluded that immediate progress with the problem of multidimensionei contained plastic flow would result from application of the numerical method, and that the use of the theory for a perfectly pisitic solld permits a first step in the develooment of procedures for analyzing contalned plastic flow in solls.

Chrlstian (1965) has used the numerical method developed by Harper and Ang to investlgate the stress and displacement fields for an elastic porous - material under conditions of plane strain with rectangular boundaries and force- or displacerrient-controlled loading,

Whitman and Hoeg (1965) have examined the performance and accuracy of tha Harper and Ang numerical method and used it to analyze the developmant of the plastic zone beneath a strip footing resting on an elastlc- perfectly plastic foundation material. The computed results for tife flexlble anis rigid strip footings analyzed in their study showed the gradual developini. it of the plastic zone, the corresponding displacement fialds, and the accurnulation of footing settlements as the fuli shearing; resistance of the foindation inaterial was moblilzed. The load settlement cir. as approached asymptutically the buaring capacity, which was in 3bs 'ment with the ultimate load predicted by plastic theory.

[^2]While the medium oroperties in the study performed by Herper and Ang corresponded to steel rather than soil, and therefore the conclusions are based on the behevior of such an idealized "foundation" materia, the results do provide valuable insights into the behavior attendant on the loadiig of solls. The lumped parameter model can tolerate any type of atress-strain relationstip, and future studies can introcuce stress-strain proporties and yield phenomena better representing soil materials,

Although the besic calculations used in the Harper and Ang numerical method are very simple, the large number of calculations required to solve even a simple practice problem preclude the če of hand calculations. Therefore the entire proctdice for handling plane strain problems of contained plastic flow in an elastic-perfectly plastic continuum has been coded in FORTRAN II for use on the IBM 7094 digital computer. The computer program used in this study is an extensive revision of a program written for Whitman (1964) at the Stanford Research Institute. By revising the program, compilation and execution time has been reduced, some logical errors have been corrected, and the output has been reorganizod to facilitate its use.

This appendix preserits the numerical method developed by Harper and Ang and documents the revised Whitman prugram, No attempt has been made to extend the theory.

## LUMPED PARAMETER MODEL

Harper and Ang (1963) note that there are very few solutions for problems of contalned plastic flow. That is, thare are very few solutions which trace the development of the stress and strain patterns in a body of material from the time that yielding first develops at some point in the material until the deformations finally increase beyond all bounds.

One criterion that has been used in the selection of a mathematical modal is that there be mathematical consistency batween the finite difference equations governing the behavior of the model and the differential equations governing the behavior of the continuuri. This means that the equations for stresses, strains, equilibrium, and compatibility, which are derived directly from the model, should be the seme as a set of finite difference equations of the corresponding differential relations governing the continuum. Herper and Ang point ojt that if this requirement is met, the requirement of equal deformations in the modol and correspending continuum will be automatically satisflad. The model proposed by Herper and Ang, and used herein, satisfies this criterion,

## Description of the Model

Figure C- 1 shows the lumped parameter model used in the procedure developed by Harper and Ang. This model consists 0 i , nass points and stress points,

The mass of the material is assumed to be concentrated at the mass points and the strains within the material are given In terms of the displacements of the mass points. Each of the mass points is connected through the stress points to the neighboring mass points. Three components of stress and strain are defined at e3ch stress point (two normal components and a shear cumponent). Displacements in the continuum are defined unly at the mass points while itresses and stralns are defined oni at the stress points, In the model representation, springs are shown at the stress polnts for conceptual purposes only. The stresses at esch stress point are relatud to the movements of the four surrounding mass points using a finite difference version of the stress-strain laws for the continuum, No nttempt is made to define a set of springs whose action woula be equlvalent to the action of the continuum. Actual computations are carried out in terms of the forces $F_{k}, F_{Y}$, Fy. at esch stress point (Figure C-2). Thase forces are equal to the corresponding components of the stress tensor multiplled by the appropriate fraction of the grid spacing.



Figure C.1. Lumped parumater model for continuum.


Figura C.2. Forces at atrem point of lumped paramator model.

Harper und Ang and Whitman note that there are two Important advantages of the model conflguration, First, all elements of the atrain and stress tensors are defined at the same point. Thls is especially importarit in extending the use of the model to problems of pilasicilty. Second, the horizontal and vertical boundarias of the model contain only mass points. Thus, boundary conditions glven In terms of elther external load: acting on the mass points or specified displacements of the mass points can bu applied with equal ease.

## Relation of the Model to the Finite Difference Equations of the Continuum

The notation and example presented by Harper and Ang are used to illustrate the relation of the numerical model to the finite difference equations of the continuum. The following notation is used:

1. Superscript letters refer to stress point locations.
2. Subscript letters $x$ and $y$ refer to the direction of the exes.
3. Subscript numbers refer to mass point locations.
4. Displacement components in the $x$ and $y$ directions are plveri by $u$ and $v$, respectively.
5. Sign convention is that ahown in Figure $\mathrm{C}-2$.

For Figure C. 1 the compnnents of the strains at a typical stress point, a, are definad as follows:

$$
\begin{align*}
& e_{x}^{!}=\frac{u_{B 4}-u_{43}}{\delta} \\
& c_{v}^{!}=\frac{v_{B 3}-v_{44}}{\delta}
\end{align*}
$$

$$
\gamma_{X_{V}}^{\prime}-\frac{u_{B O}-u_{M}}{6}+\frac{V_{B A}-v_{4 S}}{\delta}
$$

where - normal strain
$\boldsymbol{\gamma}=$ shear strailn
8 - diagonal distance between mass points
Thase strains, which are derived directly from the modal, are identical to the finlte diffarence expressions for the differential s (rain-displacement relations from tha classleal thisory for plane continua under small deformations:

$$
e_{x}=\frac{\partial u}{\partial x} \quad e_{y}=\frac{\partial v}{\partial y} \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
$$

Using the sign convention of Figure C-2, the equation of equilibrium In the $x$ direction for typical interior mass polnt, 43, is

$$
\begin{equation*}
\left(F_{x}^{1}-F_{x}^{0}\right)+\left(F_{x y}^{0}-F_{x y}^{d}\right)+\frac{X \delta^{2}}{2}=0 \tag{C.2}
\end{equation*}
$$

where $X=$ body force per unit volume
$F=$ component force at stress point.
The volume of a paralialepiped of unit thickness and area $\lambda^{2}=\delta^{2} / 2$ is con. sidered concentrated at each mass point. If the thickness of the model is taken as unlty in the $z$ direction, forces at the stress point a can be obtained from the stresses:

$$
\begin{align*}
& F_{x}^{\prime}=\sigma_{x}^{\prime} \cdot \frac{\delta}{2} \cdot 1 \\
& F_{y}^{\prime}=\sigma_{y}^{\prime} \cdot \frac{\delta}{2} \cdot 1  \tag{C-3}\\
& F_{x y}^{\prime}=\tau_{x y}^{\prime} \cdot \frac{\delta}{2} \cdot 1
\end{align*}
$$

Using Equations C-2 and C.3, the following equation of equilibrium, in terms of stresses, is obtained:

$$
\begin{equation*}
\frac{o_{x}^{0}-o_{x}^{a}}{\delta}+\frac{\tau_{x y}^{b}-\tau_{x y}^{d}}{\delta}+x=0 \tag{C.40}
\end{equation*}
$$

A similar equation is obtained for the $Y$ direction:

$$
\begin{equation*}
\frac{\sigma_{y}^{b}-o_{y}^{d}}{\delta}+\frac{r_{x y}^{a} \cdots \tau_{y y}^{c}}{\delta}+Y=0 \tag{C.4b}
\end{equation*}
$$

These equilibrlum equations, $C-4 \mathrm{a}$ and C -4t, are identical to the finite difference expressions for the differential equations of equillibrium governing the corresponding continuum:

$$
\begin{aligned}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial r_{x y}}{\partial y}+X=0 \\
& \frac{\partial \sigma_{y}}{\partial y}+\frac{\partial r_{K y}}{\partial x}+Y=0
\end{aligned}
$$

Harper and Ang state that "the strains in the model will necessarily satisfy the compatibility relation, since strain compatiolity is essantlaily a requirement placed on the three components of strain in order to insure that they correspond to a physically possible displacement contiguration. The model deals directly with displacements, and the strains are defined directly in terms of these displacements. Hence, It can be expected that the strains derived from the displacements of the model will exactly satisfy the compatibillty condition."

It is also possible to express the equations of equilibrium in terms of diaplacements. For an eiastic continuum, the strass-strain relations for plane strain, as glver by Prager and Hodge (1951), are

$$
\begin{align*}
& \sigma_{x}=\frac{E}{(1+\nu)(1-2 v)}\left((1-\nu) e_{x}+\nu \epsilon_{y}\right] \\
& \sigma_{y}=\frac{E}{\left(1+\frac{1}{1}\right)!1-2 j}\left[(1-\nu) \epsilon_{y}+\nu \epsilon_{x}\right] \tag{C.5}
\end{align*}
$$

$$
\tau_{x y}=\frac{E}{2(1+\nu)} \gamma_{x y}
$$

Where E = modulus of olasticity of the material

$$
\nu=\text { Polsson's ratlu of the matorial }
$$

Combining Equations C.9, C-B, and C-E, the three force components at stress point a In terms of dlsplacements are

The three expressions in Equation C. 6 are Hooke's stress-strain relationships for plane strain in terms of displacemients. Substitution of these and similar reiations for the forces originating at the other stress points (b, c, and d) into Equation C .2 results in the following equation of equilibrium in the $x$ direction, in terms of displacomen; as given by Harper and Ang:

$$
\begin{array}{r}
\frac{E}{2(1+\nu)(1-2 \nu)}\left[2(1-v) \frac{u_{B 4}-2 u_{43}+u_{32}}{s^{2}}+\right. \\
\left.(1-2 v) \frac{u_{B 2}-2 u_{43}+u_{34}}{\delta^{2}}+\frac{\left(v_{B 3}-v_{42}\right)-\left(v_{44}-v_{33}\right)}{\delta^{2}}\right]+x=0 \tag{c.7}
\end{array}
$$

$$
\begin{align*}
& F_{x}=\frac{E}{(1+\nu)(1-2 \nu)}\left[(1-\nu) \frac{u_{B 4}-u_{43}}{\delta}+\nu \frac{v_{83}-v_{44}}{\delta}\right] \frac{\delta}{2} \\
& F_{v}^{\prime}: \frac{E}{(1+p)(1-2 \nu)}\left[(1-\nu) \frac{v_{B 3}-v_{a 4}}{\delta}+\nu \frac{u_{B 4}-u_{43}}{8}\right] \frac{\delta}{2}  \tag{C.6}\\
& F_{x y}^{A}=\frac{E}{2(1+\nu)}\left[\frac{u_{83}-u_{44}}{\delta}+\frac{v_{84}-v_{A 3}}{\delta}\right] \frac{\delta}{2}
\end{align*}
$$

A similar equation exists for equilibrium in the y direction. Note that Equation C. 7 is the same as a finite difference equation for the differentia! equation of equilibriumi governing the continuum:

$$
\frac{E}{2(1+\nu)(1-2 \nu)}\left[2(1-\nu) \frac{\partial^{2} u}{\partial x^{2}}+(1-2 \nu) \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} v}{\partial x \partial y}\right]+x-0
$$

## Boundary Conditions

In genaral, boundary comditions (for alther continua or discrate models) can be of two types: elther the forces acting along some boundary cr the displacements on the boundary are prescilbed, It has been previloualy insied that the model is sulted to either type of presoribed coildition. Some of the more common boundery condltions which may be lmposed on the rnodel are dencribed in the following paragraphs.

Symmetrio. If the continuum is known to possess symmetry about a vertical axls through a column of mass polnts, as shown In Flgure C.i, then the boundary condition on the right edge of the model may be spucifled as follows:


Infinltw. The model may be used to simulate an Infinite half-spacs, In Figure C-1, considar the prublem of Imposing boundary conditions on the far-laft column of mass points. For vertical loadings which are symmetric about the centerline, it has beer assumed that the horizontal daplacements of this far.left column are zero, and that the vartical dioplacements of this far-laft column will be equal to the vertleal displacements of the colvinn of mass points immediately to the right of this bouridary column. Whien these vertical and horizontal motions are resolved into displacements in the $x$ and $y$ directions, the boundary conditions become

$$
\left.\begin{array}{l}
u_{11}=\frac{1}{2}\left(u_{12}+v_{12}\right) \\
v_{11}=\frac{1}{2}\left(u_{12}+v_{12}\right)
\end{array}\right\} 1=1,2, \ldots, 0
$$

Spacifled by Loadlng Arrangement. If an external loast is to bo applied to the top surface of the continuum, the mudel will have the appioprlate concentrated loads applied to the top row of mass points. These concentrated loadu may approxirnate a distributed load or represent actual concentrated ioads.

Flxad. If it is desired to hold the base of the cosntinuum fixed ayninst ellsplacemant, the displacement components of the bottom row of mass points are simply set equal to zero.

Thuse exumples Indicate the minner in which bourdary conditions are proscribed for the model. A varioty of practicol, significant sonditions can be concelvad, but an extenaivo treatmant of pessible boundary conditlons ls betyond the scupe of this study.

## CONSTITUTIVE RQUATIONS FROM THE THEORY OF PERFECTLY PLASTIC SOLIDS

Prager and Hodige (195") how provided a caraful definition for the parfectly plastic solld.

Any constitutlve ralationshlp of the theory of plesticity may be divided Into the following threa parta:

## 1. Stress-struin ralations fop the alastic region

2. Yield criterion $s 0$ deflna the initiation of yieleling
3. Stross-strain relations for the plastle reglon

These three major alvisions of tho theory will be diseussed aftor the assoolathed assumptions and limitations are listed, and after a net of notation that will be useful in the ellecussion of the theory is introduced,

Harper and Ang (1263) otate: "There are three maln assumptions underlylng the theory of parfectly plasti : material used in this linvestigation. These can be intated ns follows:
"1. It is ussumed that the Misas. Hencky yleld condition accurataly determines the beginnning of ylaid, Geireral conaldarallons of isctropy and symmetry can furnish only the general form of the yeld condition. Beyond this, any yield condition is a hypothasis which only tests can Justify.
"2. It is assumed that there is no permanent volume change, This assumption. Justifiad on the besls of experimantal avidance for metels, laads to the reault that the plastle strain is squal to the plastic deviator strain.


Piqure C.3. Etromentraln aunve for elautlo a purfeotly placte matorial In almple tendan or eomprowion,
'3. During the plestic flow, it is assumed that the Jevintor straln rate ten'u dr la proportion. al to tho Instantaneous devlator struss. This is the famlliar Prandil-Rauss pustulate.
"In addition to thase thiare main assumptions, it is possible to list several other restrictions on the theory:
"4. The miterial must be laotropla. This condition la uny In deval. oping the general form of the yluld condition.
" B . There is no work hardening, and the maturial follows the atroa-atraln diugram of (H゙igura C.3) when oub)eotod to almple ransion or comprasalon.
"O. No unloading oceirti. Once a atrosis point has vieldad, it romulins violdad undor succoselvi incrammenta of extornal load.
"7. Tima uffects of londing, wesh as oreep, are lgnored.
" 8 . Dimplecementi are amall so that the imall deformation thuory of - lavililty uppllen."

The following dafinitlona and notation ary introduead for the purpom of dusoribing the partinant conatifutlve cquationa used In this atudy:

$$
\begin{aligned}
& \text { Total atrasa tunaor = } 8^{\top}=\left[\begin{array}{lll}
a_{n} & r_{x y} & r_{x 1} \\
r_{x y} & u_{y} & r_{y 1} \\
r_{x 1} & r_{y 1} & o_{1}
\end{array}\right] \\
& \text { Spharical atrom tensor }=8^{4} \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\text { Diviator stress tensor }=S^{D}=\left[\begin{array}{lll}
s_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{x y} & s_{y} & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & s_{z}
\end{array}\right]
$$

Where - mean normal stress = $1 / 3\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)$
$i_{x}=$ normal $x$ component of $S^{D}=\sigma_{x}-8$
$\varepsilon_{y}=$ normal $y$ component of $S^{D}=a_{y}-s$
$\mathbf{s}_{z}=$ normal $z$ compoisent of $S^{D}=\sigma_{z}=s$
With this notation

$$
\begin{gathered}
S^{\top}=s^{B}+S^{D} \\
s_{x}+z_{y}+3_{z}=0_{x}+\sigma_{y}+\sigma_{z}=3 s=0
\end{gathered}
$$

Principal normal stresses are cjesignated by $\sigma_{1}, a_{2}$, and $\sigma_{3}$. Principal normal components of the stress deviatur ire

$$
\begin{aligned}
& i_{1}=\sigma_{4}=1 \\
& z_{2}=a_{2}=1 \\
& s_{3}=\sigma_{3}=1
\end{aligned}
$$

A completely similar notation exists for strains:

$$
\begin{aligned}
\text { Total strain tensor } & =E^{\top}
\end{aligned}=\left[\begin{array}{cccc}
e_{x} & \frac{1}{2} \gamma_{x y} & \frac{1}{2} \gamma_{x z} \\
\frac{1}{2} \gamma_{x y} & e_{y} & \frac{1}{2} \gamma_{y z} \\
\frac{1}{2} \gamma_{x z} & \frac{1}{2} \gamma_{y z} & e_{z}
\end{array}\right]
$$

$$
\text { Deviaior strain tensor }=E^{D}=\left[\begin{array}{ccc}
e_{x} & \frac{1}{2} \gamma_{x y} & \frac{1}{2} \gamma_{x z} \\
\frac{1}{2} \gamma_{x y} & \theta_{y} & \frac{1}{2} \gamma_{y z} \\
\frac{1}{2} \gamma_{x z} & \frac{1}{2} \gamma_{y z} & \theta_{z}
\end{array}\right]
$$

where $e=$ mean normal strain $=\cdot 1 / 3\left(\epsilon_{x}+\epsilon_{y}+\epsilon_{z}\right)$
$a_{x}=$ normal $x$ component of $E^{D}=\epsilon_{x}-e$
$e_{y}=$ normal $y$ component of $E^{D}=e_{y}-\boldsymbol{e}$
$e_{z}$ - normal $z$ component of $E^{D}=\epsilon_{z}-e$
With this notation

$$
\begin{gathered}
E^{\top}=E^{S}+E^{D} \\
e_{x}+e_{y}+e_{z}=e_{x}+e_{y}+e_{z}-30=0
\end{gathered}
$$

Principal normal strains are designated as $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$, and $\boldsymbol{e}_{3}$. Principal normal components of the strain deviator are

$$
\begin{aligned}
& e_{1}=e_{1}-\theta \\
& e_{2}=e_{2}=0 \\
& e_{3}=e_{3}-\theta
\end{aligned}
$$

## Elastic Strass-Strain Relations

In the elastic range the relationship between the elements of the stress and strain tensors is assumed to be that of Hooke's law. It is convenient to express this linear relationship in terms of the elements of the devlator stress and deviator strain tensors:

$$
\begin{align*}
& s_{x}=2 G \theta_{x} \quad y_{y}=2 G \theta_{y} \quad s_{z}=? G \theta_{z} \\
& \tau_{x y}=G \gamma_{x y} \quad \tau_{x z}=6 \gamma_{x y} \quad \tau_{y z}=G \gamma_{y z}  \tag{C.8}\\
& \sigma_{x}+\sigma_{y}+\sigma_{z}=3 k\left(\epsilon_{x}+e_{y} v c_{z}\right)
\end{align*}
$$

The relationishins in Equation C .8 can be expressed mine enneisely as

$$
S^{D}=2 G E^{D}
$$

Note that the expressions in Equation C .8 or Equation C .10 are not si; independent relations since addition of $s_{x}+s_{y}+s_{z}=0$ gives an identity. Therefore, Equation C. 9 is needed to give a complete statement of Hooke's law.

## Yield Criterion

The yield point is determined by the Mises-Hencky yield criterion:

$$
\begin{equation*}
J_{2}=k^{2} \tag{C-11}
\end{equation*}
$$

where
$J_{2}=$ second invariant of the stress deviator tensor
$k=$ yield stress in simple shear
$J_{2}$ is defined by

$$
\begin{aligned}
J_{2}= & \frac{1}{2}\left(a_{1}{ }^{2}+s_{z}^{2}+s_{3}{ }^{2}\right)=\frac{1}{2}\left(s_{x}^{2}+q_{y}{ }^{2}+s_{z}^{2}\right)+\tau_{y z}{ }^{2}+\tau_{x z}{ }^{2}+\tau_{x y}{ }^{2} \\
= & \frac{1}{8}\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}+\left(\sigma_{x}-\sigma_{x}\right)^{2} \\
& +\tau_{y y}^{2}+\tau_{x z}^{2}+\tau_{x y}{ }^{2}
\end{aligned}
$$

For plane strain problems, the yield condition reduces to

$$
\begin{equation*}
J_{2}=\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2} \therefore r_{x y}{ }^{2}=k^{2} \tag{C.12}
\end{equation*}
$$

Combining tquat.ons $\mathrm{C} \cdot 12$ and $\mathrm{C} \cdot-3$, we obtain tor any yielded stress point

$$
J_{2} \frac{\delta^{2}}{4}=\left(\frac{F_{x}-F_{y}}{2}\right)^{2}+F_{x y}^{2}=\frac{k^{2} \delta^{2}}{4}
$$

Sill another useful form for the yield criterion is obtained by substituting the expressions in Equation C.5 into Equation C-12:

$$
\left(\epsilon_{x} \cdot \epsilon_{y}\right)^{2}+\gamma_{x y}{ }^{2}=\left[\frac{2(1+\nu) k}{E}\right]^{?}=\left(\frac{k}{G}\right)^{2}
$$

Using Equations C-1 for the strains at a typical stress point, a, the yiald criterion becomes:


## Plastic Stress-Strain Relations

In order to relate stress and strain in a material which is undergoing plastic flow, it is convenient to express the strain tensor in terms of elastic and plastic components. Single primes will be used to denote an elastic component, and double primes will denote a p'estic component. Dots will dencte rate of change with respuct to increment of external load.

The essential piaturn of the relations between stress and strain duririg plastic flow is given by Equations C .14 and $\mathrm{C}-15$. The assumption of no permanent change of volume is stated mathematically as

$$
\begin{equation*}
e^{\prime \prime}=\frac{1}{3}\left(e_{x}^{\prime \prime}+e_{y}^{\prime \prime}+e_{z}^{\prime \prime}\right)=0 \tag{C.14}
\end{equation*}
$$

This implies that the plastic strain ceviation is identical to the plastic strain, or

$$
e_{x}^{\prime \prime}=\epsilon_{x}^{\prime \prime \prime} \quad \theta_{y}^{\prime \prime}=e_{y}^{\prime \prime} \quad \theta_{z}^{\prime \prime}=e_{z}^{\prime \prime}
$$

The assumption that during plastic flow the deviator strain rate tensor is proportional to the instantaneous deviator stross tensor is stated mathematcaliy as

$$
\begin{array}{lll}
2 \mathrm{G} \dot{e}_{x}^{\prime \prime}=\phi \mathrm{s}_{x} & 2 \mathrm{G} \dot{e}_{y}^{\prime \prime \prime}=\phi s_{y} & 2 G \dot{e}_{z}^{\prime \prime}=\phi \mathrm{s}_{z} \\
\mathrm{G} \dot{\gamma}_{x y}^{\prime \prime}=\phi \tau_{x y} & \mathrm{G} \dot{\gamma}_{x z}^{\prime \prime}=\phi T_{x z} & \mathrm{G} \dot{\gamma}_{y z}^{\prime \prime}=\phi T_{y z} \tag{C-15}
\end{array}
$$

where $\phi=$ a proportionality factor
The expressions in Equation C-15 are in the same form as the elastic stress-strain relations given in Equation C-8.

The basic relationships which are assumed during plastic flow have been presented. At this point it is necessary to apply these relations, along with the yield criterion (Equation C.11) and the elastic relations (Equations C .8 and $\mathrm{C}-9$ ), in order to develop the final relationships between the stress rates (incremental stresses), strain rates (incremental strains), and instantaneous stresses.

The plastic strain rates have been expressed in terms of stresses by Equation C-15. Similarly, the elastic strain rates are expressed in terms of stress rates by differentiating the expressions in Equation C-8 with respect to external load:

$$
\begin{array}{lll}
2 G \dot{\theta}_{x}^{\prime}=\dot{\delta}_{x} & 2 G \dot{i}_{y}^{\prime}=\dot{s}_{y} & 2 G \dot{\theta}_{z}^{\prime}=i_{z} \\
G \dot{\gamma}_{x y}^{\prime}=i_{x y} & G \dot{\gamma}_{x z}^{\prime}=\dot{i}_{x z} \quad G \dot{\gamma}_{y z}^{\prime}=i_{y z}
\end{array}
$$

Combining the elastic and plastic strain rates gives the total strain rate:

$$
\begin{align*}
& 2 G \dot{\theta}_{x}=2 G \dot{a}_{x}^{\prime}+2 G \dot{i}_{x}^{\prime \prime}=i_{x}+\phi B_{x} \\
& 2 G \dot{o}_{y}=2 G \dot{\theta}_{y}^{\prime}+2 G \dot{o}_{y}^{\prime \prime}=i_{y}+\phi g_{y} \\
& 2 G \dot{d}_{2}=2 G \dot{\theta}_{z}^{\prime}+2 G \dot{o}_{1}^{\prime \prime}=\dot{i}_{2}+\phi s_{2} \\
& G \dot{\gamma}_{x y}=G \dot{\gamma}_{x y}^{\prime}+G \dot{\gamma}_{x y}^{\prime \prime}=\dot{\tau}_{x y}+\phi T_{x y}  \tag{C.16}\\
& G \dot{\gamma}_{k z}=G \cdot \dot{\gamma}_{x z}^{\prime}+G \dot{\gamma}_{x z}^{\prime \prime}=\dot{\boldsymbol{f}}_{x z}+\dot{\psi} \tau_{x z} \\
& G \dot{\gamma}_{y z}=G \dot{\gamma}_{y z}^{\prime}+G \dot{\gamma}_{y z}^{\prime \prime}=\dot{r}_{y z}+\phi T_{y z}
\end{align*}
$$

Note that these relations apply only during plastic flow, that is, when

$$
J_{2}=k^{2} \text { and } j_{2}=0
$$

In order to eliminate the proportionality factor $\phi$ trom the expressions in Equation C-16, it is convenient to introduce the notation

$$
\dot{W}=s_{x} \dot{\theta}_{x}+s_{y} \dot{\theta}_{y}+s_{z} \dot{\theta}_{z}+r_{x y} \dot{\gamma}_{x y}+\tau_{x z} \dot{\gamma}_{x z}+\tau_{y z} \dot{\gamma}_{y z}
$$

where $\dot{W}$ may be interpreted as the rate at which stresses do work during a change of shape, and to note that

$$
\dot{j}_{2}=s_{x} \dot{s}_{x}+s_{y} \dot{s}_{y}+s_{z} \dot{s}_{z}+2 \tau_{x y} \dot{\tau}_{x y}+2 \tau_{x z} \dot{\tau}_{x y}+2 \tau_{y z} \dot{\tau}_{y z}
$$

By multiplying the first thres expressions of Equation C-16 by $\mathbf{s}_{x}, \mathbf{s}_{\mathbf{y}}, \mathbf{s}_{\mathbf{2}}$, and the last three by $2 \tau_{x y}, 2 \tau_{x z}, 2 \tau_{y z}$, respectively, and adding, we get

$$
\begin{aligned}
2 G \dot{W}= & s_{x} \dot{8}_{x}+\phi s_{x}^{2}+s_{y} \dot{s}_{y}+\phi s_{y}^{2}+s_{z} \dot{s}_{z}+\phi s_{z}^{2} \\
& +2 r_{x y} \dot{\tau}_{x y}+2 \phi r_{x y}^{2}+2 r_{x 1} \dot{r}_{x z}+2 \phi \tau_{x z}^{2} \\
& +2 r_{y z} \dot{r}_{y z}+2 \phi r_{y z}^{2} \\
= & j_{z}+\phi\left(s_{x}^{2}+z_{y}^{2}+z_{z}^{2}+2 r_{x y}^{2}+2 r_{x z}^{2}+2 r_{y z}^{2}\right. \\
= & j_{z}+2 \phi J_{z}
\end{aligned}
$$

But during plastic flow, $J_{2}=k^{2}$ and $j_{2}=0$. Hence, $2 G \dot{W}=2 \phi k^{2}$ and $\phi=G \dot{W} / K^{2}$.

Substituting this value of $\Phi$ into the expressions in Equation C.16, it is possible to solve for the deviator stress rates, which gives

$$
\begin{align*}
& \dot{s}_{k}=2 G\left(\dot{e}_{x}-\frac{\dot{W}}{2 k^{2}} s_{x}\right) \quad \dot{r}_{x y}=G\left(\dot{\gamma}_{x y}-\frac{\dot{W}}{k^{2}} r_{x y}\right) \\
& \dot{q}_{y}=2 G\left(\dot{e}_{y}-\frac{\dot{W}}{2 k^{2}} \delta_{y}\right) \quad \dot{r}_{x z}=G\left(\dot{r}_{x z}-\frac{\dot{W}}{k^{2}} r_{x y}\right)  \tag{C.17}\\
& \dot{i}_{z}=2 G\left(\dot{e}_{z}-\frac{\dot{W}}{2 k^{2}} s_{z}\right) \quad \dot{r}_{y z}=G\left(\dot{\gamma}_{y z}-\frac{\dot{W}}{k^{2}} \tau_{y z}\right)
\end{align*}
$$

To obtain the total stress rates it is necessary to add the deviator stress rates from the expressions in Equation C-17 in the spherical stress rate, which can be obtained by differentiating Equation C-9 with respect to external load

$$
\begin{equation*}
s=3 K_{\theta}^{\prime} \tag{C.18}
\end{equation*}
$$

Adding Equations C. 17 and C .18 results in the total stress rates:

$$
\begin{align*}
& \dot{\sigma}_{x}=\dot{s}_{x}+\dot{s}=2 G\left(\dot{e}_{x}-\frac{\dot{W}}{2 k^{2}} s_{x}\right)+3 k \dot{\theta} \\
& \dot{\sigma}_{y}=\dot{z}_{y}+=2 G\left(\dot{\theta}_{y}-\frac{\dot{W}}{2 k^{2}} s_{y}\right)+3 k \dot{\theta} \\
& \dot{\sigma}_{z}=\dot{g}_{z}+\dot{z}=2 G\left(\dot{\theta}_{z z}-\frac{\dot{W}}{2 k^{2}} s_{z}\right)+3 K_{\dot{\theta}} \\
& \dot{\tau}_{x y}=G\left(\dot{\gamma}_{x y}-\frac{\dot{W}}{k^{2}} \tau_{x y}\right)  \tag{C-19}\\
& \dot{\tau}_{x z}=G\left(\dot{\gamma}_{x z}-\frac{\dot{W}}{k^{2}} \tau_{x z}\right) \\
& \dot{\tau}_{y z}=G\left(\dot{\gamma}_{y z}-\frac{\dot{W}}{k^{2}} \tau_{y z}\right)
\end{align*}
$$

The expressions in Equation C. 19 give the desired relationships between the stress rates, strain rates, and instantaneous strosses.

To epply the expressions in Equation C. 19 to the numerical model, it Is necessary to reduce them to an incremental form, Note that for plane strairi problems the number of relations is reduced from six to three. Therefore

$$
\begin{gather*}
\Delta \sigma_{x}=\Delta s_{x}+\Delta s \\
\Delta \sigma_{y}=\Delta s_{y}+\Delta s  \tag{C.20}\\
\Delta r_{x y}=G\left(\Delta r_{x y}-\frac{\Delta W}{k^{2}} \tau_{x y}\right)
\end{gather*}
$$

For plane strain unditions, the expressions in Equation C-17 are reduced to

$$
\begin{aligned}
& \Delta s_{x}=2 G\left(\Delta \theta_{x}-\frac{\Delta W}{2 k^{2}} s_{x}\right) \\
& \Delta s_{y}=2 G\left(\Delta \theta_{y}-\frac{\Delta W}{2 k^{2}} s_{y}\right) \\
& \Delta \tau_{x y}=G\left(\Delta \gamma_{x y}-\frac{\Delta W}{k^{2}} \tau_{x y}\right)
\end{aligned}
$$

and Equation C. 18 becomes

$$
\Delta t=3 K \Delta g=K\left(\Delta e_{x}+\Delta e_{y}\right)
$$

The increment $\mathbf{W}$ becomes

$$
\begin{gather*}
\Delta W=s_{x} \Delta \theta_{x}+R_{y} \Delta f_{y}+s_{z} \Delta \theta_{z}+\tau_{x y} \Delta \gamma_{x y}  \tag{c.21}\\
s_{z}=a_{z}-\frac{1}{3}\left(a_{x}+o_{y}+o_{z}\right)
\end{gather*}
$$

But

Where, for plane strain

$$
\sigma_{z}=\nu\left(\sigma_{x}+\sigma_{y}\right)
$$

and during plastic flow

$$
\nu=\frac{1}{2}
$$

Hence $\quad s_{z}=\frac{1}{2}\left(o_{x}+\sigma_{y}\right)-\frac{1}{3}\left(\sigma_{x}+o_{y}+\frac{\sigma_{x}+o_{y}}{2}\right)=0$
Thus $\quad \Delta_{x}=\sigma_{x}-\frac{1}{3}\left(\sigma_{x}+\sigma_{y}+\frac{\sigma_{x}+\sigma_{y}}{2}\right)=\frac{\sigma_{x}-\sigma_{y}}{2}$

$$
\begin{equation*}
a_{y}=\sigma_{y}-\frac{1}{3}\left(\sigma_{y}+\sigma_{x}+\frac{\sigma_{x}+\sigma_{y}}{2}\right)=\frac{\sigma_{y}-\sigma_{x}}{2}--i_{x} \tag{C-22}
\end{equation*}
$$

$$
\begin{gathered}
\theta_{x} m e_{x}-\frac{1}{3}\left(e_{x}+e_{y}\right)=\frac{2 e_{x}-e_{y}}{3} \\
\Delta \theta_{x}=\frac{2 \Delta e_{x}-\Delta e_{y}}{3}
\end{gathered}
$$

$$
\begin{gather*}
0_{y}=e_{y}-\frac{1}{3}\left(\epsilon_{x}+c_{y}\right)=\frac{2 \epsilon_{y}-\epsilon_{x}}{3} \\
\Delta \epsilon_{y}=\frac{2 \Delta \epsilon_{y}-\Delta \epsilon_{x}}{3}
\end{gather*}
$$

con'td)

Subsiltuting the values of Equation C. 22 Into Equation C. 21 yialds

$$
\begin{equation*}
\Delta W=\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right)\left(\Delta z_{z}-\Delta e_{y}\right)+r_{x y} \Delta \gamma_{x y} \tag{c.23}
\end{equation*}
$$

Substituting the expressions for $\Delta W, \Delta u_{x}$, and $s_{x}$ from Equations C. 22 and C. 23 In Equation C.20, $\Delta \sigma_{n}$ becomes

$$
\begin{aligned}
\Delta \sigma_{x}= & 20\left[\left(\frac{2 \Delta e_{x}-\Delta e_{y}}{3}\right)-\frac{\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right)\left(\Delta e_{x}-\Delta e_{y}\right)+r_{x y} \Delta \gamma_{x y}}{2 k^{2}}\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)\right. \\
& \left.+K\left(\Delta e_{x}+\Delta e_{y}\right)\right]
\end{aligned}
$$

Collecting terms gives

$$
\begin{align*}
\Delta \sigma_{x}= & \Delta e_{x}\left[\frac{4(3+3 k}{3}-\frac{G}{k^{2}}\left(\frac{\sigma_{k}-\sigma_{y}}{2}\right)^{2}\right] \\
& +\Delta \epsilon_{y}\left[\frac{-2 G+3 k}{3}+\frac{0}{k^{2}}\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}\right] \\
& +\Delta \gamma_{A Y}\left[\frac{-G r_{K y}}{k^{2}}\left(\frac{\sigma_{n}-\sigma_{y}}{2}\right)\right]
\end{align*}
$$

Similar expressions are obtained for $\Delta a_{\mathrm{y}}$ and $\Delta \tau_{\mathrm{x}}$ :

$$
\begin{align*}
\Delta \sigma_{y}= & \Delta e_{x}\left[\frac{-2 G+3 k}{3}+\frac{G}{k^{2}}\left(\frac{a_{x}-\sigma_{y}}{2}\right)^{2}\right] \\
& +\Delta e_{y}\left[\frac{-4 G+3 k}{3}+\frac{G}{k^{2}}\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}\right] \\
& +\Delta \tau_{x y}\left[\frac{G}{k^{2}} \tau_{x y}\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)\right]  \tag{C.25}\\
\Delta \tau_{x y}= & \Delta e_{x}\left[\frac{-G}{k^{2}} \sigma_{x y}\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)\right] \\
& +\Delta e_{y}\left[\frac{G}{k^{2}} T_{x y}\left(\frac{\sigma_{x}-o_{y}}{2}\right)\right] \\
& +\Delta \gamma_{y y}\left[G\left(1-\frac{r^{2}}{k_{x y}^{2}}\right)\right]
\end{align*}
$$

(C.28)

Combining Equations C .1 and C .3 with Equations $\mathrm{C} .24, \mathrm{C} .2 \mathrm{~F}$, and C-26, and rearranging, the three force componente at the atress poilnt a in terma of alaplacementa are

$$
\begin{align*}
& \Delta F_{x}=A\left(\Delta u_{B A}-\Delta u_{A S}\right)+B\left(\Delta v_{B S}-\Delta v_{A A}\right) \\
& -C\left(\Delta u_{B 3}-\Delta u_{44}+\Delta v_{B 4}-\Delta v_{43}\right) \\
& \Delta F_{y}=B\left(\Delta u_{04}-\Delta u_{43}\right)+A\left(\Delta v_{13}=\Delta v_{44}\right) \\
& +C\left(\Delta u_{B J}-\Delta u_{A 4}+\Delta v_{B A}-\Delta v_{A B}\right)  \tag{C.28}\\
& \Delta F_{1 i Y}=-C\left(\Delta u_{B 4}-\Delta u_{A 3}\right)+C\left(\Delta v_{B 3}-\Delta v_{A A}\right) \\
& +D\left(\Delta u_{B 9}-\Delta u_{A 4}+\Delta v_{B 4}-\Delta v_{A 3}\right) \tag{c-20}
\end{align*}
$$

Where the $\Delta$ denotes change during an external luad increment and

$$
\begin{aligned}
& A=\frac{1}{2}\left[\frac{4 G+3 K}{3}-\frac{G}{k^{2} \delta^{2}}\left(F_{x}-F_{y}\right)^{2}\right] \\
& B=\frac{1}{2}\left[\frac{-2 G+3 K}{3}+\frac{G}{k^{2} \delta^{2}}\left(F_{x}-F_{y}\right)^{2}\right] \\
& C=\frac{G}{k^{2} \delta^{2}} F_{X Y}\left(F_{x}-F_{y}\right) \\
& D=\frac{1}{2}\left[G-\frac{4 Q}{k^{2} \delta^{2}}\left(F_{x y}\right)^{2}\right]
\end{aligned}
$$

Equations C.27, C.23. and C.20 are the relationships with which the incremental force components in a plast'c region are computad. These Incremental force components are added to the exisiling force components $\left(F_{n}, F_{y}\right.$ and $\left.F_{n y}\right)$ at a yleided atrass point to obtain the total forces.

In ordar to compute the quantitilas $\Delta u$ and $\Delta v$ which appoar in Equations C.27, C.28, and C.20, two sets of displacuments corresponding to two consecutiva load levels are required. Ine set of displacements is the set which is being generatod for the current load; the other mot ly that computed for the prevlous losed. The quantites $\Delta u$ and $\Delta v$ are computed as the difference in displacomants detarmined for these two Innds.

Fquations C.27, C.28, and C.29 are linar: that is, If A, B, C, and D are conatante, then tho changes in forco are linear whith ragured to changes in displacemont. Actually, the equations are not linear ainco in peneral $F_{x}, F_{y}$ $F_{\text {ny }}$ will change dupirig platio flow. Thus, it in nacusary to procead in a step.wise linant foshion.

## Genoral Porm of the Plastiulty Equations

In gannial, the application of the plasteity equations to tha Harpor and Ang modal is clomely anoclated with the thran atagas of material behavior prowented in the provious wections. The plastlolty rolationa whileh descrite thawe thiran atages of maturial buhuvior in serms of atrenn polnt forces and mass point displacements aro usad to describe thw behwvior of the numarlal model.

Thuse rilations, which have been deveinped in the previous sections, can be ganaralizad by adopting the folle wing subscript notation:

> I.R - lower right
> UL - uppar left
> LL - lowor laft
> UR - uppar right

Force-Diaplacement Ralations: Elastio Case. The expressions (Equations $C$. $B$ ! which relate olastic stress point forces to mass foint dis. placements can be paneralized as

$$
\begin{align*}
& F_{n}=\frac{E}{2\left(1+\frac{E}{\nu}(1-2 v)\right.}\left[(1-v)\left(u_{L H}-u_{U_{L}}\right)+v\left(v_{L G}-v_{U H}\right)\right] \\
& F_{V}=\frac{E}{2(1+v)(1-2 v)}\left[(1-v)\left(v_{L G}-v_{U H}\right)+v\left(u_{L H}-u_{U L}\right)\right] \tag{C.30}
\end{align*}
$$

$$
F_{n V}=\frac{E_{1}}{4(1+v \mid}\left|u_{L 6}=u_{U A}+v_{L A}-v_{U_{L}}\right|
$$

Yiold Criterton. "The yleld oplturion (Equation C.13) In tarms of maes point diaplacamente can bu genaralized an

$$
\begin{align*}
& \left(u_{L n}=u_{U L}+v_{L L}+v_{W_{A}}\right)^{\prime} \\
+ & \left(u_{L K}=u_{U M}+v_{L A}=v_{U L}\right)^{\prime}-\left(\frac{k_{1}^{\prime}}{v_{6}}\right)^{\prime} \tag{0.81}
\end{align*}
$$

Forcs-Olepluoemant Molationai Plartle Cam, The oxpressions (Equations C.27, C.28, and C.29) whioh relat Inoramantal plasile itruat point lorcos to mase polint displacements oan be genaruliand as

$$
\begin{align*}
& \Delta P_{M}=A\left(\Delta U_{L M} \cdot \Delta u_{U_{L}}\right)+\Delta\left(\Delta v_{L_{1}}-\Delta U_{U_{H}}\right) \\
& =C\left(\Delta u_{L L}=\Delta u_{U A}=\Delta V_{L A}=\Delta V_{U_{L}}\right) \\
& \Delta \|_{V}=\left(\Delta u_{L M}-\Delta u_{U_{L}}\right)+A\left(\Delta v_{L G}=\Delta u_{U_{H}}\right) \\
& +C\left(\Delta u_{L L}=\Delta u_{U H}=\Delta v_{L n}=\Delta v_{U_{L}}\right)  \tag{0.32}\\
& \Delta H_{n y}=\cdot C\left(\Delta u_{L n}-\Delta u_{U_{L}}\right)+C\left(\Delta v_{L L}-\Delta v_{U n}\right) \\
& +D\left(\Delta U_{L I}=\Delta u_{U n} \cdot \Delta v_{L n}=\Delta V_{U W}\right)
\end{align*}
$$

where $A=\frac{i}{2}\left[\frac{4 G+3 k}{3}-\frac{G}{k^{2} \delta^{2}}\left(F_{x}-F_{y}\right)^{2}\right]$
$B=\frac{1}{2}\left[\frac{-2 \mathrm{v}+3 K}{3}+\frac{G}{k^{2} \delta^{2}}\left(F_{x}-F_{v}\right)^{2}\right]$
$C=\frac{G}{k^{2} \delta^{2}} F_{X Y}\left(F_{K}-F_{Y}\right)$
c. $\frac{1}{2}\left[G-\frac{4 G}{k^{2} \delta^{2}}\left(F_{k y}\right)^{2}\right]$

Equations C.30, C.31, and C. 32 are the form of the plasticity relations actually used in the numerical method.

NLMERICAL METHOD
When a problemi in continuum machanics is reslaced by a corrusponding problam in particle mechanics involving a discrote mo del, the displacements to setigfy uquilibrium must be determined. One method is to write and solve the set of simultaneous IInear algetrale equations (equations similar to Equation C.7) for the unknown displacement compunente u and at ach mass point. Harper and Ang (1963) note that such an approach har significant disadvantages, The preparation of the equations, whether it is done by hand ar by an intricate program for the computer, Involves a conslderable amount of labor. In addition, oven with machines os large as the IEM 7094, the number of equations which can be solved by the standard library subroutinos is limited. Perhaps riost important, the changes in t.e coufficients for the displacements resulting from the vieiding of one or mora stress points are not easy to dater. mine.

A more flexible and practical approach to the problam as suggosied by Harpor and Ang (1983) an I Whitman (1964) is to employ a relaxation technique. Such an approach ellininates complately the preparation of simultaneous equations, and can handia several thousand displacement convponents. An additional adventage of the relaxation method is the physical meaning that can be attached to each strp of the procedure. This is very holpful in determining plastic forces and displacements.

## Relaxation Procedura

The relaxation procedure used for deterillining the equilibrium displacements is summarized by the flow diagrarn in Figure C. 4. Following the discussion given by Harper and Ang, all mass points of the model are initially in equilibrium with zero displacements and no external load. The first increment of external load is then applied to any or all mass points, thus destroying the equilibrium of the loaded mass points. The following operations are then performed for each mass puint of the model.

The forces acting on a mass point are determined as follows: Exiernal forces acting on the mass point are given as a part of the loading pattern applied to the model. Internal forces, origlnating at the stress points, are determined uniqualy by Equation C-30 in the eisstic range from the displacements surrounding the stress points. After a stress point has vialded, the force components at that stress point are determined both by the surrounding displacements and the past history of thet particular stress point. Incremental plastle forces (Equation C.32) are then added to the last set of equilibrium forces at the stress point to obtain the current total plastic forces acting at the ylelded stress point.

After the forces acting on a glven mass point aro determined, a summation of all the forces acting in the x directlon is minde. In general, this will result In a residual force which is an indication of the arnount by which the mass point is out of equilibriluen in the $x$ direction. The mass point Is then displaced through a small distanco in the $x$ direction equal to the product of the residual force and a flexibilly coefficient.

Similar operations are performed for the y direction. These operations place the current mass point in equilibrlurn, though in general the equilibrlum of surrounding mass point. will bo upset by a smeill amount. The procedure is repeated for each muss point untll evorv mass polnt has benn moved once in the $x$ direction and once in the $y$ diruction, thus completing one cyele of relaxation.

After every pelaxation cycle, each mass point is inspectad to dotermine if it is in equilibrium. If not, the rolaxation process is repeated until all mass points are in equilibrium within thu accuracy prescribed by a convergerice criterion. After all riass points are in equilibrlum, all the stress polnts ais inspocted for ylatding by Mises-Hencky yield criterion (Equation C. 31 ) and the yielded regions are recorded. All the displacements and forces for the equilibrium conflyuration just obtained aro also recorded.

If elesirea, the external load is glven a new increment, and the complete procedere is repitatad for each load increment in order tis trace the development of plastic ylelding from one stress point to another.


Figure C.4. Flow diagram for relaxation procedure.

This relaxation procedure has been coded for use on the digital computer. Alihough the basic calculations are simpie, a cumplex pröyiami is needed to hendle all of the lonical decisions that the computer must make as it distinguishes between yielded and unyielded stress points and computes the magnitude of the load increment needed to just cause yielding at one additional stress point.

## Program PEHFPLAS II

Tho computer program used in this study is a revision of the program (PERFPLAS I) developed for Whitman (1954) et the Stanford Research Inst|tute. The revised program has Ueerı named PERFPL.AS II IPERF actly PLAStic) and is written in FORT'RAN II tor the IBN 7094 digital computer.

At present, program PERFPLAS II will permit the use of up to a $36 \times 36$ grid of mass points ( $35 \times 35$ stress points). The allowable grid size can be increased by lricreasing the storage allocated by the program's dimension statements,

The boundary conditions can be of four types:' free, fixed, reflected, or infinite. A free boundary is one in whleh the mess points cari move in any direction and a fixed boundary is orie in which the mass points cannot move. A retlected boundary is a line of symmetry between two haives of a symmetrical problem for which it is necessary to solve only one half. An infinite boundary is an approximation of the condition far from the loaded area, in that masis points can move only parallel to the boundary in such a manner that normal lines remain normal to the boundary.

In PERFPLAS II, the left boundary is Ilmited to a flxed or an infinite boundary. The right boundary is limited to a fixed, a symmetrical, or an Infinite boundary. The top boundery is liralied to a free boundary.

The basic step in the program is the application of a trial load increment and the successive relaxation of mass points until the systern comes to equillbrium. The program keeps track of stress points which have yielded and uses the plastic equations accordingly (Equation C.32).

Two load eptlons have been programmed into PERFPLAS II. These load options are the same when the matarial deformations are elastic, arid differ only after the material has yielded at some point. Initially, a small load (known to be lass than the load required to cause first yielding) is applied. When the specified standerd load increment is used, the inltial load is Incremented untll the first stress point yields. Thereafter, the two load options differ:

1. When the first load optian is used, the lued will continue to be Incremented by the specifled standard load increment until the load attalns the specified maximum value.
2. When the second load option is used, the load will ha incremented by the specified standard load increment, but each time a new stress point yields the load will be reduced to a levnl which will just cause this stress point 10 yield. This process continues until the load attains or slightly exceeds the specified max imum load.

The relations required to downgracie the load when the second load option is: is used are presented in Appondix D

Whenever an adjustment is to be made in the results of a trial load increment, the program determines the amount by which the load increment riust be changed and then adjusts all computed displacements and forces accordingly. By using the second load option, the propagation of yielding within the material may be studied in detall (one stress point at a time). However, tie execution time of the prugram will be increased. It was found conienient to use the first load option for the first run of all new problems.

In the range where plastic deformations oceur, the load incroments should be sufficiently small so that the develapment of the plastic zone is gradual. This keeps the errors due to linear extrepolation to a minimum.

As mentloned previously, approximate linearized equations (Equation C.32) are used to compute the forces at already yielded stress points. For this reason, the yleid condition may be exceeded at these stress points at the and of an increment of plastic straining, and a correction must be introduced to bring the forces beck to the yield surface. The relations required to make this correction are presentad in Appendix D. In PERFPLAS II, subroutine CORRECT makes this correction. Subroutine CORRECT is applied after equllibrium has been established under the glven load increment. This subroutine elters the forces at each previously yielded strass point without altering any displacements. As a result, the surrounding mass points are silghtly nut of equilibrium.

A convergance criterion is needed to specify what accuracy is desired In the iteration process foliowlige ach applied load incremient. The criverion adopted is that the ratio of the next incremental adjustment in displacement to the total displacement at the mass point should ba luss than or equal to a prascribed value. The next incremental adjustment in displacement is determined by multiplying the unbalanced force acting on a mass point by an elastic flexbillity coafficlent. Displacements are adjusted in both the $x$ and $y$ directions to bring the masy points into equllibrlum, and the convergence criterion is applied to all mass polnts.

The elastic flexibility coafficient for a mass point is developad subsequently. This coefficient is used for buth elastic and plastic deformations. As a result, the numberr of iterations required to establish equilibrium increases sharply after a large number of stress points have ylelded.

In program PERFPLAS II, the mass points are identified by a double subsuript (I, J). I indicates the vertical position of the mass point (the row) and increases vertically downward. $J$ indicates the horizontal nosition of the mass point (the columil) and increases from leit to right. Stress points are identified by a double sub. script ( $1, \mathrm{~J}$ ) corresponding to the mass point above and to the left of the stress point. This subscript notation is illustratad in Figure C.E.

Using Program PERFPLAS I, Whitman and Hoeg (1965) have studled the performance and accuracy


Figure C.5. Mase point and triess point subveript notation uned in program PERFPLAS II. of the Harper and Ang mathematical model. From this study, it is suggested that a convergence criterion of $10^{-8}$ or $10^{-8}$ should be used. Christian (1965) has shown that the number of iterations required for equilibrium Increases sharply If Polsson's ratio exceeds 0.46 . This is because the expression ( $1-2 \nu$ ) appears in the denominator of the elastic force displacement equations (Equation C.30). As Poisson's ratio approaches 0.5 , the expression (1-2 $V$ ) approaches zero.

The FORTRAN deck of program PERFPLAS II cen be compled in less than 3 minutes on the IBM 7094. Compling time c:an be eliminated by using a binary dack on production runs. Execution time increases (for a given value of Poisson's ratio) as the number of mass polnts increases and as the number of ylelded stress points increases. A detailed study of execution time has not been nade.

The usar of program PERFPLAS II must provide certaln data describing the problem. The data can be In any consistent set of unlts, and the output will be in the same unlte. A data indut gulde is given in Appendix E,

A glossary of notation used In PERFPL.AS II is givern in Appendix F and a listing of the FORTRAN deck is given In Appendlx $G$. Alsulisted in Appendix $G$ is the input date for the sample problem which wIII be discussed subsequently. Program output will be discussed in connection with the sample problern.


Floure C.8. Sohematic of anmple problens,

## SAMPLE PROBLEM

A sampla problam has baen selected to familiariat the reader with the numerical mothod and program PERFPL.AS II.

The problam selected is the same as that presenied by Harpor and Ang (1963). This elementary problem (Figure C 6) was selerted because it can be readily solved by hand. Theretore, the numerical procudure can be Illustrated in datail.

In Figure C-6, only mass points 12 and 22 are free to move, and due to symmotry about a vartical line through these mass points, the $u$ and $v$ displacements at a mass point are equal

$$
u_{12}=v_{12} \quad u_{22}-v_{22}
$$

Hence there are only two unknown displacements, $u_{12}$ and $u_{22}$. By means of the material constants, dimensions, and loading shown in Figure C-6, it is porsible to write two simultaneous linoar algetraic equations (similar to Equaticn C.7) for the elastic behavior of the systern in terms of the two uri. niwns, $u_{12}$ and $u_{\mathbf{2 2}}$. Solution of these twe equations yields

$$
\begin{align*}
& u_{12}=v_{22}=1.429 \times 10^{-2} \text { inches } \\
& u_{22}=v_{22}=3.671 \times 10^{-3} \text { inches } \tag{c.33}
\end{align*}
$$

These values will now be used to measure the progress of the relaxation procedure. Converting these displacements to elastic force components at stress point 12 by using Equation C. 30 gives

$$
\begin{align*}
& \left(F_{x}\right)_{12}=-7.867 \mathrm{klps} \\
& \left(F_{y}\right)_{12}=-0.714 \mathrm{klp}  \tag{C.34}\\
& \left(F_{X Y}\right)_{12}=-2.143 \mathrm{kips}
\end{align*}
$$

Before the systematic relaxation procedure is begun, it is first necessary to convert external loads to concentrated loacts for application at the loaded mass points and to determine the flexibility cnefficlents for aach mass point. For exampie, If an external vartical pressure of 14.14 ksi is acting on the top surfaca of the model shuwn in Figure C.6, the concentrated vertical force acting on mass point 12, whiten arises from thils pressure acting over a distance of $\lambda / 2=1 / 2$ Inch on either side of mass point 12, is

$$
P_{v}=(14.14 \mathrm{ksi})\left(\frac{1}{2}+\frac{1}{2} \text { Inch }\right)(1 \text { inch })=14.14 \mathrm{kips}
$$

where the thickness of the model is; 1 inch. This vertical force is then resolved into components in the $x$ and $y$ directions for application to mass point 12 :

$$
P_{x}=\frac{P_{y}}{\sqrt{2}}=10 \mathrm{kips} \quad P_{y}=\frac{P_{y}}{\sqrt{2}}=10 \mathrm{klps}
$$

The flexibility coefficient for a mass point is obtainad by determining the deflection caused ai the mass point by 9 unit component force. All adjecent mass poirits are assumed fixed, and the floxibility coefficient determined will be for the direction of the applied unit force. For examble, a unit force of 1 kip applied in the x direction at mass point 22 is resisted by internal force components at stress points 11, 12, 21, and 22. By using the sign convention shown in Figure $\mathrm{C} \cdot 2$ and by summing the forces in the x direction at mass point 22 , we get

$$
\left(\Sigma F_{x}\right)_{22}=\left(F_{x}\right)_{22}-\left(F_{x}\right)_{11}+\left(F_{x y}\right)_{21}-\left(F_{x y}\right)_{12}+1=0
$$

Expressing $\left(F_{x}\right)_{22}\left(F_{x}\right)_{1,}\left(F_{x y}\right)_{2,}$, and $\left(F_{x y}\right)_{12}$ in terms of displacernonts by means of Equation C.30, and noting that all displeciement components except $H_{22}$ are zero, we get

$$
\begin{align*}
1 & =\left[\frac{E(1-\nu)}{(1+v)(1-2 \nu)}+\frac{2 E^{-}}{4(1+\nu)}\right] u_{22}  \tag{c.38}\\
\text { or } \quad u_{22} & =\frac{2(1+v)(1-2 v)}{(3-4 \nu) E}=\left\langle\left. f_{x}\right|_{22}-\left(f_{v}\right\rangle_{22}\right.
\end{align*}
$$

Equaticn C. 35 gives the flexibility coefficiait for a typical intarior mass point in the $x$ direction and has units of inches/kip. Due to symmetry, this is ulso the flexibility cosfficient for a typical interior mass point in the y diraction.

From Figure C. 1 It can be seen that the flax ibility confficient for mass point 12, which is a typleal top boundary mass point, is twice that of the flexibility coefficient for mass point 22, or

$$
\left(f_{x}\right)_{12}=2\left(f_{v}\right)_{22}=\frac{4(1+v)(1-2 v)}{(3-4 \nu) E}
$$

If $E$ and $\nu$ take on the values $1,000 \mathrm{ksl}$ and $0,2 \mathrm{Z}$, respectively, as shown in Figure C - b , these flexibility coefficients become

$$
\begin{aligned}
& \left(f_{x}\right)_{12}=\left(t_{y}\right)_{12}=1.25 \times 10^{-3} \mathrm{ln} . / \mathrm{k} / \mathrm{p} \\
& \left(f_{x}\right)_{22}=\left(t_{y}\right)_{22}=6.25 \times 10^{.4} \mathrm{ln} . / \mathrm{k} / \mathrm{p}
\end{aligned}
$$

With the values for the coricentrated external loads und the flexibility coofficients known, it is possible to begin the relaxation procedure. The 'Jlowing step numbers refer to the flow diagram of Flgure C.4.

Sut $u_{12}=v_{12}=u_{22}=v_{22}=0$. Also set forcu components $=0$.
2 Apply incremont of axtornal inad to mass point 12

$$
\begin{aligned}
& \left\langle\left. P_{X}\right|_{12}=10 \mathrm{kips}\right. \\
& \left\langle\left. P_{Y}\right|_{12}=10 \mathrm{klps}\right.
\end{aligned}
$$

3 Begin with muss point 12.
4 No atress point has ylelded, since all strass componanta ara initially zara. Go to bb.

Eb On the first cycin, all force components ario zarosince the mase nolnts have not inovod.

0 On tho first aycilo, only oxtenal forcos are nonizuro. Hericu

$$
\begin{aligned}
& \left|F_{K}\right|_{12}=\left|P_{N}\right|_{12}=+10 \mathrm{k} \mid \mathrm{pr} \\
& \left(\left.F_{V}\right|_{12}=\left|P_{Y}\right|_{12}=+10 \mathrm{klpr}\right.
\end{aligned}
$$

7
Now $u_{12} \times$ old $u_{12}+\left(f_{n}\right)_{12} \because\left(F_{n}\right)_{12}$

$$
u_{12}=0+(0.00128)(10)=0.0125 \text { Inah }
$$

Similarly

$$
v_{12}=0+(0.00128)(10) \times 0.0128 \text { Inoh }
$$

Noto that thom dishlmamonts at mas polit 12 dustroy the mallibrium of mass point 22.

8 Tho current mass point, 12 , is not tho tast mass point, O o to $\mathrm{\theta}$.
Q Takumus pohnt 22. Gow 4

4
 altor andilibilum is ratachod, Go to bb.

Force componemits at atruss pointy 19 ared 12 are computad from Equation C. 30 , raking into account that all displacemonits are pero except $u_{12}=v_{12}$ ind $u_{22}=v_{22}$. Noto that only those compononts acting on minss point 22 ara computed.

$$
=\frac{1.000}{2(1+0.26)(1-0.01}(11-0.20)(0) \times 0.28(0.0126) 1
$$

$$
=-2.8 \mathrm{k} \mid \mathrm{p} 1
$$

$$
\left(F_{n v}\right)_{11}=\frac{a}{d!1+v \mid}\left(u_{21}-u_{12}+v_{2 y}+v_{11}\right)
$$

$$
=\frac{1,000}{\pi(1+0,287}(0 \times 0,0128+0-0)
$$

$$
\text { - -2. } 8 \text { klpa }
$$

Nota that for the firat cyecla, masa point 22 has not buen moved.



$$
\begin{aligned}
& \left.\left(F_{v}\right)_{12}=\frac{E}{2(1+\nu)(1-2 v i}\left(11 \cdot \| v_{22}+v_{13}\right)+\nu\left(u_{23}=u_{12}\right)\right) \\
& -\frac{1.000}{2(1+0.26)(1-0.0)}(11-0.28)(0) \cdot 0.28(0.0128) 1 \\
& \text { - } 2.8 \mathrm{klpa}
\end{aligned}
$$

$$
\left(F_{y}\right)_{12}=\left(F_{n}\right)_{11} \quad\left|F_{n \gamma}\right|_{12}=\left(F_{n y}\right)_{11}
$$

The squality of the sharing forcas and the normat forcos at a stress point un this firat cyela is a co ncidencit.
$6 \quad$ Fullowing tha sign convintion of Figure C. 2

$$
\begin{aligned}
& \Sigma\left(F_{n}\right)_{22}=-\left(F_{n y}\right)_{12}-\left(F_{n}\right)_{11}+\left(F_{n y}\right)_{21}+\left(F_{n}\right)_{22} \\
& \text { (- }-(-2.8)-(-2.8)=+8.0 \mathrm{k} / \mathrm{pi}
\end{aligned}
$$

$$
\begin{aligned}
& n-(-2,0)=(-2,0)=+8,0 \mathrm{k} / \mathrm{p} 1
\end{aligned}
$$

y Now un $=$ old $u_{12}+\left(P_{n}\right)_{22} E\left(F_{n}\right)_{12}$

$$
u_{22}=0+(0,000028)(8)=3,128 \times 10^{-3} \text { Inches }
$$

Similiarly

$$
v_{12}=0+(0,0008.28)(8)=3.128 \times 10^{\circ} 1 \text { nohe }
$$

Nute that thame diaplacementis of mame polin 22 divi of tha aquilibrium of masa point 12.

- Thin in the late mase poline and the and of the firat cyale of rolaxation, oute 10.

10 All mam pointh are not in aguillibitum vince the dimplaceme it



 bote of thair thal vilunn



 britarion in applead (Stap 11 of figint: $C$ A) and how the force componante


In illustrate the application of the yield criterioit, assume that the yield stress in simple tension for the material is 35 ksi . Then the yield stress in simple shear is

$$
k=\frac{o_{y \text { lald }}}{2}=\frac{35}{2}=17.6 \mathrm{ksl}
$$

Using the aquillbrium disple:ements from Equation C. 22 and applying the viold criterion (Equation C.31) to stross point 12, wo get

$$
\begin{gathered}
\left(u_{23}-u_{12}-v_{22}+v_{13}\right)^{2}+\left(u_{22}-u_{13}+v_{23}-v_{12}\right)^{2}<\left(\frac{k \delta}{G}\right)^{2} \\
10-0.01420-0.003671+0)^{2} \\
+(0.003871-0+0-0.01420)^{2}<\left[\frac{(17.6)(1.414)}{\frac{1,000}{2(1+0.26)}}\right]^{2} \\
0.000434<0.00383
\end{gathered}
$$

and for itress polnt 22 wo get

$$
\begin{gathered}
\left(u_{33}-u_{22}-v_{32}+v_{23}\right)^{2}+\left(u_{32}-u_{23}+v_{33}-v_{22}\right)^{2}<\left(\frac{k 6}{3}\right)^{2} \\
(0-0.003671-0+0)^{2} \\
+(0-0+0-0.0003871)^{2}<\left[\frac{(17.8)(1,414)}{\frac{1,600}{2(1+0.25)}}\right]^{2} \\
0.0000265<0.00383
\end{gathered}
$$

Therofora, both bitress points have not yielded at an ax iemal prassura of 14.14 kgl . Filat yiulding will take placa et strons puint 11 and 12 at an external pressure of

$$
\left(\sqrt{\frac{0.00383}{0.000434}}\right) 19.144 \mathrm{kN1} \times 42 \mathrm{kkl}
$$

Note that this value of external stress is considerably greater than the yield stress in simple tension or compression of 35 ksi assumed for the material. This is a characteristic of failure or vielding in two dimensional stress systems.

Until the external load level has reached 42 ksi , all forces and displacements increase linearly. When this elastic Umit has been reachea, the correspanding forces and displacements are 42/14.14 times those of Equations C. 33 and C. 34 :

$$
\begin{align*}
& u_{12}= v_{12}=4.244 \times 10^{-2} \text { inches } \\
& u_{22}= v_{22}=1.061 \times 10^{-2} \text { inches } \\
&\left(F_{x}\right)_{12}=-23.34 \mathrm{k} \mid \mathrm{ps}  \tag{C.36}\\
&\left(F_{y}\right)_{12}=-2.12 \mathrm{k} \mid \mathrm{ps} \\
&\left(F_{x y}\right)_{12}=-6.37 \mathrm{k} \mid \mathrm{ps}
\end{align*}
$$

These values are racorded and are used to determina the total forces and displacements for the first load increment bbove the $42 \cdot \mathrm{ksi}$ load leval.

Suppose now that the evternal load level is increasod to 49.08 ksl . As a first approximation to the final displacements at this new load level, the displacements of Equation C. 36 aro incraased in the sanie ratio as the loads:

$$
\begin{align*}
& u_{12}=v_{12}=\left(\frac{49.08}{42.0}\right)(0.24244)=0.04069 \text { inoh } \\
& u_{22}=v_{22}=\left(\frac{49.08}{42.0}\right)(0.01081)=0.01240 \text { inch } \tag{C.37}
\end{align*}
$$

Note that two sets of displacements are avallable: the last sat of equilibrlum displacements, Equation C-36, snd the cuprent sat of dilspleceninnts, Equation C. 37 (which in general not compatible with the condition of equillbriuril. These two sets of dieplacements are necessary In order to compule the incramental plastle force components as discussed previcuslv.

These incremiantal plastis force components can ve computed from Equat an C .32 for stress point 12 as follows:

$$
\begin{aligned}
\left(F_{n}\right)_{12}- & A\left(\Delta u_{23}-\Delta u_{12}\right)+B\left(\Delta v_{22}-\Delta v_{13}\right) \\
& -C\left(\Delta u_{22}-\Delta u_{13}-\Delta v_{23}-\Delta v_{12}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(F_{v}\right)_{12}=B\left(\Delta u_{23}-\Delta u_{12}\right)+A\left(\Delta v_{22}-\Delta v_{13}\right) \\
& +C\left(\Delta u_{22}-\Delta u_{13}-\Delta v_{23}-\Delta v_{12}\right) \\
& \left(F_{x y}\right)_{12}=-C\left(\Delta u_{23}-\Delta u_{12}\right)+C\left(\Delta v_{22}-\Delta v_{13}\right) \\
& +D\left(\Delta u_{22}-\Delta u_{13}-\Delta v_{23}-\Delta v_{12}!\right. \\
& \mu=\frac{1}{2}\left\{\frac{4 G}{3}+3 K-\frac{G}{k^{2} \delta^{2}}\left[\left(F_{x}\right)_{12}-\left(F_{y}\right)_{12}\right]^{2}\right\} \\
& B=\frac{1}{2}\left\{\frac{-2 G+3 K}{3}+\frac{G}{k^{2} \delta^{2}}\left[\left(F_{x}\right)_{12}-\left(F_{y}!_{12}\right]^{2}\right\}\right. \\
& \text { C }=\frac{\mathrm{G}}{\mathrm{k}^{2} \delta^{2}}\left(F_{x y}\right)_{12}\left[\left(F_{x}\right)_{12}-\left(F_{y}\right)_{12}\right] \\
& D=\frac{1}{2}\left[G-\frac{4 G}{k^{2} \delta^{2}}\left(F_{X Y}\right)_{1,2}^{2}\right] \\
& G=\frac{E}{2(1+\nu)} \\
& K=\frac{E}{3(1-2 v)}
\end{aligned}
$$

where

Note that these equations require instantaneous values of the force components If the incremental force components are to be computed. For small increments In the external loading, the instantaneous forces are very nearly equal to the forces at the last equllibrium conflgu:ation, Equation C.36.

Thus, the incremental relationships by which the increinental force components in the plestic region can be computed may be determined. The next step requires an upproximation of the forces at the stress points by adding the incremental forces to the last set of forces. Finally, the torces acting at a vielded stress point are computed, and the relaxation techniaue piocaeds as before.

Appendix D
derivation of selected equations
by W. D. Atkins

In this appendix, the equations necessary to apply the downgrade option in PERFP!..AS II are derived and then the equations used in subroutine CORRECT are presented.

## Downgrade Option

The yield criterion equation is the equation of a circle with its center at the origin and a radius of $\delta k$

$$
\frac{\left(F_{x}-F_{y}\right)^{2}}{4}+F_{x y}^{2}=\frac{\delta^{2} k^{2}}{4}
$$

or $\quad\left(F_{x}-F_{y}\right)^{2}+4 F_{x y}{ }^{2}=\delta^{2} k^{2}$
where $F_{x}=$ force $\ln x$ direction at a stress point

$F_{Y}=$ force in $y$ direction at a stress point
$F_{x y}=$ shear force on the $x \cdot y$ plane at $t$ stress point
反 - diagonal distance between mass points
k $=$ yleid stress in simple shear of material
Only the linear elastic case will be considered. That is, it is assumed that the forces at any stress point will vary linearly with variations in applied loads. Further it will i be assumed that the forces at a stress point which has yielded at the current loading are computed using the elastic equations. Referring to Figure D.1, the subscripts 1, 2, and 3 denote conditions before, at, and after yield.

Mathematically

$$
\begin{gathered}
{\left[\left(F_{x_{1}}-F_{y_{1}}\right)^{2}+4 F_{x y_{1}}\right]^{1 / 2}<\delta k} \\
{\left[\left(F_{x_{2}} . F_{y_{2}}\right)^{2}+4 F_{x y_{2}}^{2}\right]^{1 / 2}=\delta k \text { y yeld criterion }} \\
{\left[\left(F_{x_{3}}-F_{y_{3}}\right)^{2}+4 F_{x y_{3}}^{2}\right]^{1 / 2}>\delta k}
\end{gathered}
$$



Figure D.1. Soil yield criterion.
What is required to be found is the load increment, $\Delta l$, necessary to change the state of stress from condition 3 to condition 2. Setting the load
 load increment. $K$ there is a change in $\left[\left(F_{x}-\left.F_{y}\right|^{2}+4 F_{X Y}{ }^{2}\right]^{1 / 2}\right.$, then a unit change in load is

$$
\frac{\left.\int\left(F_{x_{3}}-F_{y_{3}}\right)^{2}+4 F_{x y_{3}}^{2}\right]^{1 / 2}-\left[\left(F_{x_{1}}-F_{y_{1}}\right)^{2}+4 F_{x y_{1}}^{2}\right]^{1 / 2}}{\Delta L}
$$

and that the value of

$$
\left[\left(F_{x_{2}}-F_{y_{2}}\right)+4 F_{x y_{2}}^{2}\right]^{1 / 2}=\delta k
$$

Then

Finally
$\Delta l=\frac{\left\{\delta k-\left[\left(F_{x_{3}}-F_{y_{3}}\right)^{2}+4 F_{x y_{3}}{ }^{2}\right]^{1 / 2}\right\} \Delta L}{\left[\left(F_{x_{3}}-F_{y_{3}}\right)^{2}+4 F_{x y_{3}}{ }^{2}\right]^{1 / 2}-\left[\left(F_{x_{1}}-F_{y_{1}}\right)^{2}+4 F_{x y_{1}}{ }^{2}\right]^{1 / 2}}$

## Subroutine CORRECT

At the end of an incremen* of plastic straining, the stresses at an already yielded point may exceed the yield condition, since approximate linearized equations are used. For any assumed increment of plastic strain along a chosen direction, the force-displacement relations given in Appendix $C$ will indicate changes in stress lying along the tangent to the Mohr circile.

Thus, after several successive plastic strain increments, the stress condition might well be in excess of the yield condition. To prevent this, a correction must be made at the end of each increment to bring the stresses back to the vield surface along the redius through the stress state existing at the end of the increment. The correction to ra applied is derived in the following pages.

Referring io Figure D.2, the following quantities are known:

$$
\begin{gathered}
F_{x_{2}}=\frac{\sigma_{x_{2}} \delta}{2} ; F_{y_{2}}=\frac{\sigma_{v_{2}} \delta}{2} ; F_{x_{y_{2}}}=\frac{r_{x y_{2}} \delta}{2} \\
H=\frac{\sigma_{x_{1}}+\sigma_{y_{1}}}{2}=\frac{\sigma_{x_{2}}+v_{y_{2}}}{2}
\end{gathered}
$$

It is required to find


Figure D.2. Mohr aircle.

It is recesesty to define

$$
\begin{aligned}
& \tau_{\text {mex }}=R^{2}=\sqrt{\left(\frac{\sigma_{\lambda_{2}}-\delta_{Y_{2}}}{2}\right)^{2}+\tau_{x Y_{2}}^{2}} \\
&=\sqrt{\left(\frac{2 F_{x_{2}}}{\delta}-\frac{2 F_{Y_{2}}}{\delta}\right)^{2}+\left(\frac{2 F_{x Y_{2}}}{\delta}\right)^{2}} \\
&=\frac{2}{\delta} \sqrt{\left(\frac{F_{x_{2}}-F_{Y_{2}}}{2}\right)^{2}+F_{x_{2}}^{2}} \\
&= \sqrt{J_{2}} \\
& R_{2}=\sqrt{J_{2}}
\end{aligned}
$$

Thus
and since after adjustment
then

$$
\begin{aligned}
& J_{2}=k \\
& R_{1}=k
\end{aligned}
$$

The derivation then proceeds as follows: From the low of similar trlangles

$$
\begin{gathered}
\frac{\sigma_{x_{1}}-H}{R_{1}}=\frac{\sigma_{x_{2}}-H}{R_{2}} \\
\sigma_{x_{1}}=\frac{R_{1}}{R_{2}}\left(\sigma_{x_{2}}-H\right)+H \\
\sigma_{x_{1}}=\frac{R_{1}}{R_{2}}\left(\sigma_{x_{2}}-\frac{\sigma_{x_{2}}}{2}-\frac{\sigma_{v_{2}}}{2}\right)+\frac{\sigma_{x_{2}}+\sigma_{v_{2}}}{2} \\
=\frac{R_{1}}{R_{2}}\left(\frac{\sigma_{x_{2}}-\sigma_{v_{2}}}{2}\right)+\frac{\sigma_{x_{2}}+\sigma_{v_{2}}}{2}
\end{gathered}
$$

$$
\begin{aligned}
\frac{2 F_{x_{1}}}{\delta} & =\frac{R_{1}}{R_{2}}\left(\frac{2 F_{x_{2}}}{\delta}-\frac{2 F_{y_{2}}}{\delta}\right)+\frac{2 F_{x_{2}}+2 F_{y_{2}}}{2 \delta} \\
2 F_{x_{1}} & =\frac{R_{1}}{R_{2}}\left(F_{x_{2}}-F_{y_{2}}\right)+\left(F_{x_{2}}+F_{y_{2}}\right) \\
F_{x_{1}} & =\frac{R_{1}}{R_{2}}\left(\frac{F_{x_{2}}-F_{y_{2}}}{2}\right)+\frac{F_{x_{2}}+F_{y_{2}}}{2} \\
F_{x_{1}} & =\frac{k}{\sqrt{J_{2}}}\left(\frac{F_{x_{2}}-F_{y_{2}}}{2}\right)+\frac{F_{x_{2}}+F_{y_{2}}}{2} \\
F_{x}^{\prime} & =\frac{k}{\sqrt{J_{2}}}\left(\frac{F_{x}-F_{y}}{2}\right)+\frac{F_{x}+F_{y}}{2} \\
& =\frac{k}{\sqrt{J_{2}}}\left(\frac{F_{x}}{2}\right)-\frac{k F_{y}}{\sqrt{J_{2}}}+\frac{F_{x}}{2}+\frac{F_{y}}{2} \\
F_{x}^{\prime} & =\frac{F_{x}}{2}\left(1+\frac{k}{\sqrt{J_{2}}}\right)+\frac{F_{y}}{2}\left(1-\frac{k}{\sqrt{J_{2}}}\right)
\end{aligned}
$$

similarly

$$
\begin{gathered}
\frac{\sigma_{v_{1}}-H}{R_{1}}=\frac{\sigma_{v_{2}}-H}{R_{2}} \\
\sigma_{v_{1}}=\frac{R_{1}}{R_{2}}\left(\sigma_{v_{2}}-H\right)+H \\
\sigma_{v_{1}}=\frac{R_{1}}{R_{2}}\left(\sigma_{v_{1}}-\frac{\sigma_{x_{2}}}{2}-\frac{\sigma_{v_{2}}}{2}\right)+\frac{\sigma_{x_{2}}+\sigma_{v_{2}}}{2} \\
=\frac{R_{1}}{H_{2}}\left(\frac{\sigma_{v_{2}}-\sigma_{v_{2}}}{2}\right)+\frac{\sigma_{x_{2}}+\sigma_{v_{2}}}{2}
\end{gathered}
$$

$$
\begin{gathered}
\frac{2 F_{y_{1}}}{\delta}=\frac{R_{1}}{R_{2}}\left(\frac{2 F_{y_{2}}}{\frac{\delta}{2}-\frac{F_{x_{2}}}{\delta}}\right)+\frac{2 F_{x_{2}}}{2}+\frac{2 F_{y_{2}}}{\delta} \\
F_{y_{2}}=\frac{R_{1}}{R_{2}}\left(\frac{F_{y_{2}}-F_{x_{2}}}{2}\right)+\frac{F_{x_{2}}+F_{y_{2}}}{2} \\
F_{y}{ }^{\prime}=\frac{k}{\sqrt{J_{2}}}\left(\frac{F_{y}-F_{x}}{2}\right)+\frac{F_{x}+F_{y}}{2} \\
F_{y}=\frac{F_{x}}{2}\left(1-\frac{k}{\sqrt{J_{2}}}\right)+\frac{F_{y}}{2}\left(1+\frac{k}{\sqrt{J_{2}}}\right)
\end{gathered}
$$

and agsin

$$
\begin{aligned}
& \frac{r_{x y_{1}}}{R_{1}}=\frac{r_{x y_{2}}}{R_{2}} \\
& r_{x y_{1}}=\frac{R_{1}}{R_{2}}\left(r_{x y_{2}}\right) \\
& 2 F_{x y_{1}}=\frac{R_{1}}{R_{2}}\left(\frac{2 F_{x y_{2}}}{\delta}\right) \\
& F_{x y_{1}}=\frac{R_{1}}{R_{2}} F_{x y_{2}} \\
& F_{x y}==\frac{k}{\sqrt{J_{2}}} F_{x y}
\end{aligned}
$$

## Appendix E

DATA INPUT GUIDE FOR PRCGRAN PERFPLAS II
by
N. Shoomakar
GEMERAL PROGRAM MOTES

1. THE DATA CARDS MUST BE STACKED IN FROPER ORDER FOR THE PROGRAM TO RUN.
2. ANY mLmBER OF PROBLEMS CAR BE SOLVED WITH ONE RUN SY STACKING THE DATA.
3. CONSISTENT UNITS MUST BE USED WITHIN A PROBLEM, EUT UNITS JAY VARY BETMEEM PPCRLEES.
4. AER S-SPACE MORDS ARE FIXED DOTMT MIGBERS AMN SHOULD BF
5. MLL 10-SPACE MORDS ARE FLOATIMG POIMT MURERS AND SHOUID
AET DESIRED IMFORAATISM MEY FE READ IS OM THE HEADER CADD.
6. THE DIMENSION STATEMENT RESERVES STORAGE FOR $36 \times 36$ MASS POIMTS AND
B. THE MATHEMATICAR MODEL HES mASS POIMTS ALGMG ALL FCOP BOUNDARIES.
7. LOADS met be ApplEE TO ANY OO ELI MASS POIMTS.
input capo foens

| 1．hender chan．．．18eni <br> R．raimion oneris |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 36 | I⿴囗十介y | 11 1／4 | SEPTEMETY 11．：066 | 214 |
| －Destiry ine preasw． |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| C．sonmart cemoritoms．．．ISEE MOTE 1 BELON． 1 |  |  |  |  |
|  |  |  |  |  |

(I) CCLUMH 20. BOUKDARY CONDITION OPTION FOR THE RIGHT BOUNDARY, NRIGHT. ISEE MOTE 3 BELOK.I MOTE \& SEEOM.)
(3) COLGAR 25. ${ }^{-}$BOUNDARY CONDETION CPTION FOR THE TOP BOUMDARY, CSEE
 BOUMDAPY. NEOF. ISEF NGTE S BEECW.:
COZBMA 35. ZOAD OPEION, MAPYA. ISEE NOTE
COLUMES 36-40. NHMBER OF LOAD CARDS. MEDPT.
SECORD PARAMETER CARO... (SEIO.51
HOUSGS OF ELASTICITY OF THE MATERIAL. E.
PCISSONS RATIO FER THE MATERIGE. GNU.
YIELE STPESS ES SIMPLE SHEAR FOR THE NATERIAL, FK
SHORTEST DISTAMEE RETYETM MASS PEINTS. FLADDA.

IRITIAL VALUE GF THE MAXIMAM-COEPOHEAT LOAD
In EELOK-1
VALUE CF THE STARDARD IHCREMENT, DELP. ISEE MOTE 10 BE=CH.
D.
E.
3.



3. SOUNDARY COADITIOM CPTION = 2 SPECIFIES A FIXED BOUNDARY.
2. THE LEFT BOUMDRRY IS CURRENTLY LIMITED TO A FIXED OR AN APPROYIMATION
3. THE RIGHT BOUMDARY IS CURREKTEY LIMITED TO A FIXED EOLNDARY, A BOUNDAPY OF SYMHETRY OR AM APPROXIMATIOM OF AM INFIMITE BOUNDARY. NRIGHT $=2$ s 3 DR 4 RESPECTIVELY.
C. BOUNDARY CCNDITIOX EPTIOM $=3$ SPECIFIES A BOUNDARY OF SYMMETRY.
J. BOSMDARY CONDITION OPIION $=4$ SPECIFIES AR ADPROXIMATION OF AN IMFIMITE BOUMDARY. OF AS IMFIRITE SOUMDARY. MLEFT $=2$ OR \& RESPECTIVELY.
THE TOP BOUNDARY IS CURRERTLY ETHITED TO A FREE BOUMDARY. NTOP = I THE BOTTOM BCUHDARY IS CURREMTLY LIMITED TO A FIXED BOUNDADY OK AN APPROZIMATION OF AN INFINITE BOUMDARY. NBOT $=2$ OR 4 RESPECTIVELY.
TO USE THE STAMDARD LOAD IRCREMENT WITH NO ADJUSTMENTS, NALPMA = 1 . TO USE THE STAMDARD LOAD IMCREMERT WITH THE DOWHGRADE ROUTINE SO THAT ThE STRESS POIMTS HILL YIELD ONE AT A TIME, MALPAA $=2$.
A CONVERGENCE CRITERION. EPSI OF $10-5$ OR 10-6 IS SUGGESTED.
The value of th shouls be the same as the maximum value of px and py IHPUT FOR A PRORIEM.
THE MUYBER OF LOAD CARDS IS EOUAL TO THE MUMBER OF LOADED MASS POINTS, - MLDPT.
10. ALL LOADS aRE COMPOMENT LOADS IK THE $X$ AND Y DIRECTIORS AND ARE APPLTED
11.

# Appendlx F <br> NSTATION <br> FOR PROGRAM PERFPLAS II 

by
N. Shoomaker

$$
\begin{aligned}
& \text { COEFFICIEMT IN PLASTIC FORCE-DISPLACEMETAT EOUATIONS } \\
& \text { COEFFICIEMT IM OUADRATIC EOURTION SOLVED IR DOWHGRADE OPTION } \\
& \text { COEFFICIENT IM PLASTIC FORCE-DISPLACEMENY EOUATIOHS } \\
& \text { COEFFICIEMT IM OUADRATIC EOUATION SOLVED IM DOWNGRADE OPTION } \\
& \text { BOUMDARY CONDITION }
\end{aligned}
$$


FIRST wond IT COMMON - USED AS AA ARGUMENT IM LIBRARY SUBPOUTIME XLOCF

## BARK moonlus - Probrem CONSTANT

COEFFICIEMT IM PLASTIC FORCE-DISPLACEMEMT EOUATIONS

CURREMT MAXIMUM-COMPONENT LOAD INCRFAENT
YOUNGS MODULUS OF ELASTICITY - INPUT PARAMETER
LAST MORD IN COMMON - USED AS AN ARGUMENT IM EIBRARY SUBROUTINE XLOIF
PROBLEM CONSTAMT USED IM ELASTIC FUNAVICNS FOR FX ANO FY
PROBLEM CORSTANT USED IH ELASTIC EOUATIOM FOR FXY
CONYERGEHCE CPITERIOK FOR MASS POINT DISPLACEMFNTS WHITH IS TOMDADFI) MITH DUSU AND DY/Y AT EACH MASS POINT - INPUT PARAMETER
SECOND IMYARIAET OF STRESS DEVIATION TENSOR
YIELD STRESS IN SIMPEE SHEAR - IMPUT PARAMETER
SHORTEST DISTARCE BETMEEN MASS POINTS - IMPUT PARAMETER
ELASTIC FLEXIBILITY COEFFICIENT FOR $x$ DIRECTION USED IN BOTH
ELASTIC AND PLASTIC DISPLACEMEMT CALCULAIIONS - IT IS THE DEFLECTION OF a MASS POIMT IM THE DIRECTION OF AN APPLIED UNIT LOAD WITH THE
DISPLACEMERT AT ALL ADJACENT MASS POIMTS HELD FIXED. THF MGRE
ELASTIC FLEXIBILITY COEFFICIENT FOR Y DIGECTION USED IM BOTH SEE flex
IMDEX TO STRESS COMDITION AT A STPESS POINT - A STRESS POINT IS
PLASTIC, HAS NST YIELDED, OR IS ELASTIC IF FMAX IS GREATER THAN, EOUAL TO. OR LESS THAN SKORD RESPECTIVE:.
DELTL
E
EMDT
EON2Y
EOY4Y
EPSI
$F 32$
FX
flamda
Flex
FLEY
FMAX

CURREMT VALUE OF X-COMPMENT FOPCE AT ELASTIC SIRESS POINTS - FORCE IM I DIRECTION FOF MOST RECENT LOADIMG AT PLASTIC STRESS POINTS

X-COMPGNENT FORCE AT STRESS POINT ISTORE, JSTORE FOR MOST RECENT LONDIMG

X-COMPONEMT FORCE A: STRESS POIMT MHICH IS TO LOWER RIGHT OF MASS PDIMT I.J

X-COMPCUENT FORCE AT STRESS POTMT MHICH IS TO UPPER LEFT OF MASS PDIET I:J

CURREMT HALUE OF SHEAR FORCE AT ELASTIC STRESS POINTS - SHEAR FORCE CURRENT WALUE OF SHEAR FORCE AT ELASTIC STRESS POTNTS - SHEAR FORCE
FCR MOST RECEMT LOADIMG AT PLASTIC STRESS POIMT

SHEAR FORCE AT STRESS PCIMT ISTORE. JSTORE FTF MOST RECENT LOADING CHREENT VKIUE CF Y-COMPONENT FORCE AT ELASTIC STRESS POINTS - FORCE IM Y DIRECTISN FOP MOST RECEMT LOADING AT PLASTIC STRESS POIMTS Y-COMPONENT CORCE AY STRESS POIMT ISTORE: JSTORE FOR MOST RECEM: LOADIMG

Y-COMPDNEME FORCE AI STGESS POIMY HHICH IS YO LOWER LEFT OF MASS YOINH IS: Y-COMPCNEMIT
POINT IOJ FXXLD
FXGAE
FXTED
FXY
FXYOLE
FY
FYOLE
FYCNE
FYTEO
shear modirus - problem comstakt used in plastic equations for fxy

## poissoas ratio - imput parameter

Problem constert used in plastic equations for fx, fy and fxy DRORLEF COASTAKT USED IM PLASTIC EMIATIONS FOR EX AND FY FORIZOMTAL DISPLACEMENT CF MASS POIMT
HOOPZONTR STMESS AT STRESS POIMT
ROU IMDEX
IRDEX OF DO LOAP WHECH SETS ALL COMMON STORAGE LOCATIONS TO ZERD
ROW IMDEX GF THE HIGHESE SEOESSED STRESS DOIMI WHICH HAS JUST YIFLDED Colund 1masx
COLUNE IMDEX DF THE HIGHEST STRESSED STRESS POIMT WHICH HAS JUST YELEFD
TEMPDRARY STOCAGE FOO MUEA
ROW IMDEX OF STRESS PGIMT WHOSE FOOTES ARE TO RE DETERMINEC

(4)
GMIK
GNJ
GOKK SPRK 0 45 I STCRE $m$

[^3]memer of COLUm: OF mass poinis - IMPUT PARAMETER
NHBER DF COLEMS OF STPESS POIMTS. M-1
WhBER DF COLEANS IF
ImOICATOR OF SHAPE OF

madaer of renw of mass poInts - Imput paraneter
cean cupicn - Imput papaneIEs
BCUMOARY COMDITION OPIION FOR BOTTOM BOUNDARY - IMPUT PARAMETER
STAMDARD IPPET TAPE
IMDEX OF DO LODP VHICH READS LOAD CARDS
maser of load caros in input data and eoual to mumber cf loaded mass poimts - Imput paraneter
SCUMDARY COWDIEIGE OPEION EGR EEFT BOUNDARY - INPUT PARAMETER
THEER RE RGW OF STRESS POIRTS, $R-1$
STRESS POIGT YIELD COOE - MIT $=0$. 1. OR 2 IF STRESS POIMT HAS
nOT YEELDED. TIELDED AT A PREVIOUS LOADING OR HAS WUT YIELDED RESPECTIVELY.

$F$
TEMPORARY STGRAGE - USED EG GNEEP YAREABEES COMMON TO SEVERAL EDJATIORS

UEXIMAN VALSE WIICH THE MAXIMAR-COMONENT LOAD WTLL ATTAIN WHEN EF
 PARAMETER
CUFREMT DISPLACEMEMT OF WASS POIMT IG $x$ DIRECTIOY
OISTLACEMENT OF MASS POIMT IM $x$ DIRECTION FGP MCST FECENT LOADING
CERPERT TISPLACEMEMT OF MASS POINT IN Y DIRECTICN
VEFTICAL DISELACEMENT OF MASS POIMT
GISPLAEEMEMT OF MASS POIMT IN Y DIRECTIOM FOR MOST RECEMT LOADING
VERTICAL SIRESS AT STRESS POIMT
LIRPARY SUBROUTIME USED TO DETERMIME MUMBER OF STORAGE LCCATIONS USED FOR COMMON TARIABLES, MES
YIELD RATID - SQUARE RDOT OF SECOMO INYARIANT OF STRESS EEVIATION TERSOR. FJZ. DIVIDED BY YIELD STRESS IM SIMPLE SFIEAR
YIELD STRESS IF SIMPLE SFSAR. FK. EIVIDED EY SOUARE ROOT OF SECOMO IKYARIARI OF STRESS DEYIAEIOW YERSCR. FJZ
TEYPI
TEMO2
TEMP3
TEAP4
TH
TTOTAL
$$
\Rightarrow \underset{i}{2}>\underset{j}{9}
$$
$$
\underset{F}{0}
$$

# Appondix 0 <br> LISTING OF PROGRAM PERPPLAS II 

by
N. Shormakar







Sicas= =ミE
Ex


$055: 2=2$－ 50
K－：





水 $\because=7$
CRLL＝00EE：Z．I．E：
Sy－T＝F




CxL
5 ＝

372
ミワ：










こEER.

2포
 IEAEST STRESSEE STAESS RAIMY WFFOH YEELDED AI THE CUOREKT LOADIAG.



$$
\begin{aligned}
& 31
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1.2. } \\
& \begin{array}{l}
\text { Pri35-361- } 4136-36:-V 136-361
\end{array}
\end{aligned}
$$

5. GEUEATE FORCES AF TIE STEESS DEIMT TO THE LONEQ RIGHT OF
2512


RETURN
41 SY = B\#TEMP1 + AETEMP2 + CETEMP3 + FYiKgi)
If (NSW2 - 21 4Ẽ, 42, 43
FYONE $=$ SY
SXYONE $=$ CF
FYYRC = SF
SXYTWO
$\begin{array}{lll}N & m & m \\ 0 & \text { on }\end{array}$

4 U(1.11 = (U(1.2) + Vin.21) *0.5
V(I,1)=UII.1)
5 RETURN
DEFINE MASS POINT EEFLECTIONS FOR THE RIGHT BOUNDARY (I = 1 , NMI). CURRENTLY LIMITED TO A FIXED BOUNDAPY, A BOUNDARY OF SYMMETRY OR AN APPROXIMATION OF AH INFINITE BOUNDERY.
DIMENSION EEGIN(I), PX(36,36), PY( 36,36$), U(36,36\}, V(36,35)$,
UOLD ( 36,36 ), YOLD 36,36$)$,FX(35,35), FY(35,35), FXY( 35,35$)$, NNYT( 35,35 )
COMMON BEGIN,FXONE, FXTWO,SXYCNE,SXYTWO,FYONE, FYTWO, SYXONE, SYXTWO,
1ONEPV, ECVZV, EOV4V,G,GOKK, GPLK,GMIK, EKORD,FK, DELTA, DELTL. TL, GNL, 2EPSI, E, FLAMDA,TTGTAL, OELP, FLEX,FLEY,DELOLD, U,V,PX,PY,FX,CY,FXY,
4NIN,NCUT, MUGA,MHM, ENDT
GO TO 150, SO, 40,10 , NRIGHT
C-DEFIME MRSS POINT DEFLECTIONS F

RETUPN MASS POIKT DEFLECTIONS FGR AN APPROXIMATION OF A BOUNDARY OF
SYMAEIRY.
$40 \mathrm{~J}=\mathrm{M}$


SUMFX $=F X O N E+S X Y O N E+P X\{I=3 ;$


-U(N.J) CONTINUE
RETURM
EMD
SUBROUTIN
の

SUBROUTINE ADD (NSW3)
INCREMENT MASS FOJMT LOADS, APPROXIMATE NEW MASS POINT DEFLECTIONS AND STORE OLD EQUILIBRIUM MASS POIRT DEFLECTION VALUES.

DIMENSION BEGIN(1), PX (36,36), PY(36,36), U\{36, 36), V(36, 36), COMD 36,36 , VOLD 36,36$)$, FX 35,251 , FY( 35,35$)$, FXY $(35,35)$, NNYT 35,35 ) CONEN BEGIN FXONE, FXTHO, SXYONE,SXYTHO, FYONE, FYTWO, SYXONE, SYXTWO, 2EPSI, E, FLAMDA, TTOTAL, DELP,FLEX,FLEY,DELOLD, DELYA, $V$, PX,PY,FX, IL, GNU, $3 S O R T 2, U O L D, V O L D, N, M, N L E F T$, NR IGHT, NTOP, REOT, NMI, MMI, NAYT, NALPHA, CRIN, MOUT, MUGA, MUH, ENDT DO $101=1, \mathrm{~N}$ DO 10 J = 1 , MH


- ADSUST ALL MASS POIMI DEFLECTIONS IN A EIMEAR FASHION AS A FIRST
- APPROXIMATION TO THEIR EOUILIBRIUM VALUES UNDER THE NFW LOADING. APPROXIMATION TO THEIR EOUILIBRIUM VALUES UNDER THE MFW LOADING.

IF THE DOWNGRADE OPIION IS NOT BEING EXERCISED, STORE CURREMT EOUIIIBRIUM VALUES OF MASS POINT DEFLECTIONS.
IF (NSW3) 5, l:5
VOLDII.J! = ViIpJ!
U(IgJ) $=$ TEMP1
V(IgJ) $=$ TEMP2
INCREMENT AL! MASS POIMT FORCES BY THE CURRENT LOAD IMCREMEMT.
PX\{I:J) $=$ (DELTL + TL)/TL
FY(I;J) $\#$ (DELTL + TL)/TL CONTINUE
TL $=T L$ + DELTL
RETURS:
EMD
10
SUBROUTIME OUT (MSHK)
SRITE OUT IMPUT DATA AMD RESULTS.




Appendix H

# PHOTOFLASTIC STUUY OF THE DISTHIBUTION of maxinum shean staess in an elastic mecium 

bve C. L. Llu

Photoelartic methcds of datarmining the maxirum shenr stross distribution offer a conveniamt and innxpensive nisann of supporting the numierical results obtainod from the computer propram had the meacurements of the field tant program. The silcuilar polariscone permits a vioualization of the ahear atrous patterne which dovalup do loads are appiled to a notched two dimensiunal model.

Tert Speolmen and Apparatiua
The photoolatite madlum used in thaw tuata la urethane rubbar having a mondu'us of aluatiolty of 800 pal and a Polson's ratlo of 0,40 . This is equivalant to a valus of 74 pal for the modului of nlaticity an manared by parforming triaxial touts on some salected olay madiment coress obtained from Sun Franolico Bay.

Loada ware applied to the urathane rubber vle relatively riged plexiglass (Lueite) forme whlah ware machined to araolmaly tit the notchat ares af the urathane rubber. The materiala were bondad by an apisy coment. Diffleutias in machining the urethana pibber and in bonding the two matorlala resulted in the devalopinent of residual atresmes enpocially noticaable at the intornal cornurs. Aluminum tomplates wore found to be woll sulted for making the modaly, Soe Figure H. 1 for the gunaral apedinen diminulona.

The iut apparatus used in the expurimant in shown cehamatically in Figure H.2. Briefly, the looshromatio pottorn of a mpeniman atrained in tho ateal angle frame la vowad through the polarimope analyzar, and the linege la recordod by the Sinar camera, a aimple mochminieal jack la uned to position the apociman. Figure H .3 Illuatrites how the tanalen force on the apacimen is controlled by a wing nut. The tonalle lorce on the model was estimated by raproducing the atioss pattern with a known focee appliad by a almple iever ralance iystem, as ahown in Figure H.A.

## Procedure

The callbracion conutant $C$ in the ratio of the maximum ahnar ytrem,
 circular urathane rubbar dice wis unad for gallibration. A photsoraph of the
disc loaded in pure compression by 4.5 pounds is shown in Figure H.5. The center of the disc is the reference point. The birefringence order at this point is 6.0. The value of $\boldsymbol{\tau}_{\mathrm{mm}}$ at the center was calculated analytically: $\boldsymbol{\tau}_{\mathrm{mm}}$ m $4 F / \pi t \mathrm{D}$. The compression force is 4.5 pounds, the model thickness, $t$, is 0,26 Inch, and the model diameter, $\mathbf{D}$, is 2 inches. The velue of $\boldsymbol{\tau}_{m m}$ at the reference point is found to be 11.5 psi. Thus, the value of C is equal to 1.91 psi. To aid in data reduction, the linear shear-birefringence relation is shown in Figure H-6.

Photographs of unloaded specimens reveeled internal stresses which were found to exist near the notched internal corners. These specimens were then tested with loads sufficient to produce clear, distinctive birefringences of a reasonable quantity. A half-embedded circular cylindrical specimen was subjected to approximately equal load increments until fallure, and sequential photographs were taken. The force levels in each case ware estimsted by reloading the specimen with the lever belance system so that the Isochromatic pattern in the photographs was reproduced.


Figure $\mathrm{H} \cdot \mathrm{I}$. Typioal dimanaiona of soll modula,



Figure M.4. Force mameurement detoll.


Flgure H.B. Calitration diec under compreasion.


Figure H.8. Callibration curve for modale

All of the photographs were taken with black and white Polaroid Land typel 57 films and a VVrattan 77a yellow filter. It was found that the best dark-field polariscope picture was made by using 3000 ASA film with an $f 32$ opening and an exposure of 7 seconds. A blue monochrumatic light source was used since it gave more distinctive black and white photographs. In all of the photographs, a transparent scale was used as a length reterence.

## Results

A sumniary of model dimensions is shown in Figure H.7. Figures H. 8 to $\mathrm{H} \cdot 15$ stiows a group of models under tensile loadings. Sequential photographs of model $F$ under stepwise load increments are shown in Figures $\mathrm{H} \cdot 16^{\text {ten }}$ to $\mathrm{H} \cdot 18$. Each loading is given in Table $\mathrm{H} \cdot 1$.

## Interpratation and Application

Based on the photuelastic principle, the maximum shear stress, $\tau_{m m}$ is proportional to the birefringence order $\overline{\mathrm{N}}$. The $\boldsymbol{T}_{\mathrm{mm}}$ distribution is clearly shown In each of the isochromatic photographs. Each black curve may be assigned a birefringence order along which the value of $\tau_{\mathrm{mm}}$ is constani. Qualitative conclusions can be infarred directly from the photographs; however, quantitative conclusions require a determination of the proportional or callbration constant.

By observing the growth of the blrafringence pattern during the test, one may determine the direction of the birefringence variation. Referring to Figure H.9, the curved arrows indicate the directions of increasing birefringence. For example, the value of $\boldsymbol{\tau}_{\mathrm{mm}}$ is zero at the free corner, l: low at the center of the interface, and is highest at the lower corners of the joint. Consequently, failure is initlated at the internal corners and woild extend downward and inward following the "rldge" of the $\mathrm{r}_{\mathrm{mm}}$ contour to form ia fallure arc, which is indicated with a dashed line.

Fallure curves for the other boundary geometrics are also indicated in the pertinent photographs. As shown in the sequential phistographs, Figures $\mathrm{H} \cdot 16$ to $\mathrm{H} \cdot 18$, the fallure curve is independent of tie external loading for a given boundary genmetry. Behavior In the plastiv range cannot be simulated with the urethane rubber models.

In order to make some quantitative estimates of maximurn shear stress under a given loading, the following formula is useful'

$$
\begin{equation*}
\tau_{\mathrm{mm}}=\mathrm{C} \bar{N} \tag{H-1}
\end{equation*}
$$

where $\tau_{m m}$ is the maximum shear stress in the model at a point coiresponding to the birefringence order $\bar{N}$ and C is the calibration constant. Thus, for any point in the inedium, the maximum shear st oss may be calculatec. To extrapolate the results to fiald conditions, thia folluwing formula is given:

$$
r=\frac{F L_{m} t_{m}}{F_{m} L_{t}} \tau_{m m}
$$

```
where \(m=\) mode
    \(F=\) applied force
    \(L=\) lerigth
    \(t\) - thickness
    r. maximum shear stress in prototype
```

In order to compute the breakout force, rearrange Equation $\mathrm{H}-2$ into the following form:

$$
F=\frac{F_{m} L t}{L_{m} t_{m}}\left(\frac{r}{T_{m m}}\right)
$$

The procedure requires ( 1 ) selection of a critical point in the medium and (2) determination of the level of loading $F_{m}$ at which the max imum shear stress reaches the yleld stress at the critical point. The critical point is located at the canter of the fallure ridge. The breakout force is easily calculated from Equation H-3.

As an example, suppose it is desired to ilnd the meximum shear stress at a point 36 inches left cit the centerline and 24 Inches below the sediment rurface of a $4 \times 4 \times 15$-foot parallelsplped which is embedded 6 inches in the soll under an ariplled luad of 10,050 pounds. This ambedment condition corresponds to the boundar! geometry of Figure H.G, where the equivalent point is ciesignated as point $A$. The birefringence ordar $\bar{N}$ at $A$ is 45 . From Figure H. $6 . \mathrm{r}_{\mathrm{mm}}=8.6 \mathrm{psi}$, and from Table H.1,F $=6.14$ pounds, so that from Equation H . 2

$$
r=\frac{10,000(0.75)(0.25)(8.6)}{(6.14)(48)(16)(12)}=0.303 \mathrm{psl}
$$

which is the predicted maximum shear stress. As another example, suppose we are interested in determining the breakolit force of a $4 \times 4 \times 15$-foot parallelapiped embedded 6 inches in a soll having a shear yielding stress of
0.6 psl . First, the critical point, which is point $\mathbf{B}$ in Figure $\mathrm{H} \cdot 9$, must be found. With a birefringence order of 6 , the value of $\tau_{m m}$ is found from Figure $\mathrm{H} \cdot 6$ to be equal to 11.5 psi . Using Equation $\mathrm{H} \cdot 3$, we have

$$
F=\frac{0.6 i 6.14)(48)(160)(12)}{(0.76)(0.26)(11.5)}=14,760 \text { pounds }
$$

This value will be higher than the actual force since fallure does not occur simulteneously at all points along the failure arc. During the Failure process, the transfer of load along the failure ridge causes the stress at the critical point to attain the yield point much earlier than predicted. However, the omission of the plastic consideration does not detract from the value of the study reported on herein. It is useful to (1) support the numerical technique given in Appendi> ©s C through G , (2) visualize the mode of fallure, and (3) present approximate engineering estimates of the breakout force.

Table H.1, Calculation of Forces on Models



Flgure H.7. Geomutrles of modala.


Figure H.8. Modal A, vertically loadod.


Flgure H.I 1. Mociel D, vertically loaded.


Figure H.g. Modal B, vertically londed.


Figure H.12. Model E, vartically lunded.

pure H.9. Mordal B, vertically lowided,

ure H.12. Modal E, vartically loaded.


Figure H.10. Modal C, vartically londed.


Flgure H.13. Model G, varilically loaded.




Flpure H.14. Modal $H_{1}$ varlically londed.

Figury H.17. Model F, 3. OCi.pound tansion,



Figure H. 18. Model I, vertlually


Fluure Hill, Model F, 14, 80 por


Migura H.10. Motiel F, as apount iandon.

## hErEMENCES

Anonymous. "The impossible has boen dono bofore. Will it be done now?" Marine Engineering/Log, voi. 61, no. 13, Dec. 1956, pp. 85, 147

Bowman, G. The man who bought a navy, Londori, G. Hurrap, 1904.
Christian, J. T. Two-dimensional analysis of strass and strain in solls, Report 1. Iteration procodure for saturated elastic porous material. U. S. Army Engincer Waterways Expariment Station, Contract Rennert nn. 3.129. Vicksburg, Miss., June 9965. (Contruct DA-22.079-eng-427) (AD 632:354) iMassachusetts Instituta of Technology, Department of Civil Enginaering, Rusearch Report no. R65.64; Solis Publication no, 184)

Crapaud, J. "Compressed air aids in refloating Liberte," Compressers Air Magazine, Sept. 1925, p. 1373.

Elisberg, E, The far shore. New York, Dodd, Mead, 1960.
Harper, G, N. and Ang, A. A numerical procedure for the analysis of contained plastic flow problams. Univarsity of Illinols, Department of Civil Engineering, Clvil Engineering Studies, Structural Ressarch Sorias no. 266. Urbana, III., June 1963, (Contract DA.49.146.XZ.104)

Letter of 23 Septernber 1949, with enclosures, from Cuinniander Task unit 49.4.3 to Chiaf of Neval Operations.

Masters, D. Eples of salvage, Boston, Littla, Brown, 1954, pp, 12, 10, and 19.
Momsan, C. E. "Rescue and salvage of U.S.S. Squalus," In IJ. S. Navy. Bureau of Ships, NAVSHIPS 250.831.2: Submarine salvafe; pontoons and related equipment, by E. C. Wobb, Bostori Nuval Shipyaris, Mass., Nov. 1964, Appendlx, pp. 1.11.
Prager, W. and Hodge, P. Q. 'Thanry of perfectly plastic snlids. New York, Wiley, 18! 1.
Schmid, W. E., and Kitapo, S. "Shear strentith of clays and safaty' factors as a function of tina." in Proceedings of the Sixth International Conference on Soil Neachanics and Foundation Enginaer'ng, vol, 1. Toronto, Canada, Univarsity of Toronto Prass, 190'6, pp. 345-349.
Tusler, F. A. "The salvage of the U.S.S. Squalus," American Society of N.ival Enginears, Jourmal, vol. 62, 1m. 2, May 1940, pp. 167.187.
U. S. Navy. Bureai, of Constructior: and Repalr, Tachnieal Bulletin no. 2-27: Report on salvage operations, submarine S.E1, by E. Ellaberg. Weatington, D. C., 1927.
U. S. Navy. Bureau of Construction end Repair. Technical Bulietin, 1928: Salvage report of the U.S.S. S.1, byH. E. Saunders. Wash'rigton, O. C., 1929.
U. S. Navy, Bureau of Ships. NAVSHIPS 250-880.21: , Report of the salvage of the U.S.S. L.afayette. Washington, D. C., 1946.

Whitman, R. V. Multidimensional analysis of stress and strain in soils, Stanford Research Institute, Final Raport on Contract DA-49.146-XZ-219. Menlo Perk, Calif., June 1964. (DASA 1558) (AD 60B874)

Whitman, R. V., and Hoeg, K. Two-dimensianal analys:s of siress and strain in soiss, Roport 2. Development of plastic zone beneath a footing. U. S. Army Engineor Waterways Experiment Station, Contract Report no. 3.129. Vicksburg, Miss., Dec. 1965. (Contract DA.22.079-eng.427) (AD 633740) (Massachusetts Institute of Technologv, Department of Civil Enginuering, Research Report no. R65-61; Solls Publication no. 187)




[^0]:    - A mooring anchor named aftor the two NCEL amployees (Stalcup and Towno) who designed and developed it.

[^1]:    The reader is refurea to the numenclature on page 31.
    ** Ratio of cohesion of undisturbed sail to cohesion of disturbed soll at constant water content.

[^2]:    * In a boundary value problam, one seaks to determine the response (that la, atresses, atrains, displacements) of a system (that ls, a deformable mass of soil) to a spocified set of boundary conditions (that is, ppplied loaria or displacemerit),

[^3]:    JSTORE

