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FOREWORD

This technical report "A Grating Lobe Suppression Technique for Linear
Frequency-Stepped Pulse Trains" has been prepared under Technical Objec-
tive and Plans project 6040 Space Object Surveillance by The MITRE Corpora-
tion under Air Force Contract No. AF 19(628)5165. The cognizant Electronic
Systems Division was the Strategic Forces Systems P!anning Division of the
Directorate of Planning and Technology.[I

REVIEW AND APPROVAL

"Publication of this technical report does not constitute Air Force approval of
the report's findings or conclusions. It is published only for the exchange
and stimulation of ideas.

SAMUEL S. HUMPHREY
Lt Colonel, USAF
Surveillance and Warning Systems Project Officer
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ABSTRACT

Linear frequency-stepped pulse trains, periodic in both time

and frequency, have ambiguity functions which are periodic in both

delay and doppler. One way of suppressing these ambiguities or

grating lobes is time and frequency staggering of sub-pulses in

the train, smearing out the grating lobes into a delay/doppler

residue level. However this works well only with a large number

of sub-pulses and a small pulse train duty factor. Another

approach, described here, is to chirp code each sub-pulse, filling

in the pulse train signal in the frequency domain. This suppresses

ambiguities in a strip parallel to the delay axis, giving an

unambiguous time response with some doppler tolerance. The

technique appears to produce acceptable time responses with either

a small or large number of sub-pulses and with various pulse train

duty factors. The doppler tolerance, however, depends strongly

upon the duty factor.
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SECTION I

INTRODUCTION

Synthesis of radar signals with large time-bandwidth

products is conveniently accomplished with linear frequency-

stepped pulse trains. Since both the pulse train time duration

and the total frequency band covered are proportional to the

number of pulses, N, the time-bandwidth product of the pulse

train is proportio.al to N 2. The discrete nature of the signal

makes it amenable to "digital" generation and processing techniques--

in particular, the transmitted frequencies can be locked to a set

of stable reference oscillators, which can also be used as heter-

odyning frequencies in a crosscorrelation receiqer. There are
7

some practical advantages in using frequency-stepped pulse train

signals with a wideband SOl radar.

These advantages are offset by the range and doppler

ambiguities of the signal which arise because the waveform is

periodic in both time and frequency, and greatly restrict the use

of this signal in multiple target environments. One way in

which these ambiguities can be partly suppressed is by staggering

of the pulse position and/or frequency, smearing out the ambiguities.

However, it is difficult to obtain low range and doppler residues
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by this method, which is analogous to non-uniform spacipg of

elements in an array antenna, unless a very large number of pulses

are available. Another way, which is proposed and discussed in

this paper, is to code each sub-pulse with a chirp signal, whose

time-bandwidth product is much smaller than the overall pulse

train time-bandwidth product, "fil.Ling in" the frequency spectrum

of the pulse train. In this way, range ambiguities can be

suppressed in a limited strip of the range/doppler plane, parallel

to the range axis. A target space which is extended in range,

but bounded in doppler, typical of many radar applications, can be

accommodated with such an ambiguity urface.
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SECTION II

SIGNAL DESIGN CONSIDERATIONS

The time response of a matched filter to a doppler shifted

signal is 6 ven by Woodward's ambiguity function. The ambiguity

function of a linear frequency-stepped pulse train ;a.3 been

calculated by Rihaczek [E] as

N-1

IX(TvI = . Z Xp(T-m T,v - mF)I (1)N 2
m=-(N-l)

sin2rr[N- Im ][TV-F(T-MrT)]

'n 2 ri[TV-F(T-MT)]

iwhere N is the number of pulses in the train; T is the pulse

repetition period; F is the frequency step between pulses; and
2

Ix (T,V)I is the ambiguity function of a single pulse.
p

The signal waveform is illustrated in figure l(a). A

burst or train of N coherent sub-pulses is transmitted

sequentially. After the entire burst is over, the receiver is

Restrictions on the use of the ambiguity function for very
large time-bandwidth products, as well as the physical inter-
pretation of the results in terms of the receiver parameters,
are discussed in Section IV.

3
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turned on to receive the echo of the entire pulse burst, and

stays on until the next burst. No attempt is made to receive

in the time intervals between sub-pulses, so that the minimv:n

range is determined by the pulse burst time duration, NT.

The ambiguity function, with 2N-1 major ambiguities, is sketched

in figure l(b). In most applications, the frequency step, F,

is much larger than the doppler spread of the target space, so

that only the central ambiguity (m=0) is of importance. The

fine structure of this central ambiguity is sketched in figure

1(c). One sees that the delay/doppler ridge ambiguities

will allow interference between target returns, unless all

targets are confined to a spread of less than 1/F in delay

and less than 1/T in doppler. Since the former condition

is often not achieved in practical situations, some way must

be found to suppress at least the time delay ambiguities.

With monotone sub-pulses, the ambiguities, or grating

lobes, along the time delay axis can be suppressed by making

the sub-pulse time duration, T', less than the grating lobe spacing,

1/F, as shown in figure 2(a). This condition is derived

from the ambiguity function of a single monotone pulse, given

by Cook and Bexnfeld [2), as

5
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S0, ITI zT' (2)

The first grating lobe along the doppler axis cannot be

suppressEd, however, since the first doppler null in the mono-

tone pulse ambiguity function occurs at v = I/T', and one cannot

set lI/T' equal to l/T and still have a pulse train signal.

Thus, an unambiguous time response can only be achieved for a

limited span of doppler shifts, encompassing the "clear" region

shown in figure 2(b).

The attainable time-bandwidth product of the pulse train is

limited under these conditions. If we dpfine 6 = T'/T as the

duty factor of the pulse train, then the overall time-bandwidth

product, (OT)overall, is given by

SN 2 FT' N2

(OT)overall N2 FT = --- re N >> 1 (3)
5 6

The overall radar duty factor is much less than 6, since
time must be allowed to receive signals from each pulse train
or burst. Thus values of 6 approaching unity are possible
without requiring simultaneous transmission and reception.
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Thus, large (OT)or can only be achieved with a large number

of pulses or with a small duty factor, which limits the trans-

mitted pulse energy.

The waveform illustrated in figure 3(a) offers more

flexibility to the radar designer. Linear frequency modulation

is imposed on each sub-pulse in the train, giving a pulse train 3f

"chirp" sub-pulses, with starting frequencies stepped by F

cycles per second. The ambiguity function of a single chirp

pulse is also given in reference [3] as

T sin(bT-TTV)(T,. IT )ix (TV)I2 =(- J4)2 i('bT-.TN)(T'-hrb) 2ITI < T'

= 0, IT! (4)

where b/n is the slope of the linear FM in cycle/sec.2 We now

inquire into how this slope should be chosen to provide suppression

of the grating lobes along the delay axis.

The oscillatory term in equation (1) reduces to

sin TTNTT/sin2 VFT, for points along the delay axis, wh,!re m=O

and V-0, so that the grating lobes occur at equally spaced

intervals of 1/F along the delay axis. If the zeroes of the

chirp sub-pulse could be made to occur at the same points as

8
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shown in figure 3(b), maximum suppressior of the grating lobes

would occur. This would require that

Ix (T,o)l (- _) sin bT(T'-IT) a =0
bT(T'-ITI) n

F

(5)

which in turn requires that

sin bT (T'-ITI) I n= 0 (6)
T F

But this cannot be achieved, in general. However, if the

chirp pulse has a moderately large time-bandwidth product, the

first few nulls can meet this condition. That is, if

IT7 - InI/F <<T', which implies that Inl << FT', where FT'

is the time-bandwidth product of the chirp sub-pulse, then

Sin bT (T'-I'rI)-l sin bT T' I sin nbT' 0F (7)

a i!
SF F

10



which immediately gives the result that

b F
TT T' (8)

in order to make the first few nulls of the chirp sub-pulse

coincide with the grating lobes. Physically, this means that

the chirp sub-pulse should have a slope such that it covers

the entire interpulse frequency step in the sub-pulse time

duration, giving contiguous coverage of the frequency band,

as illustrated in figure 3(a). The constraint, Inl << FT',

means that the number of chirp sub-pulse nulls which coincide

with grating lobes increases as the sub-pulse time-bandwidt'i

product, FT', increases. Eventually, as Inl increases, some

grating lobes will coincide with sidelobes of the chirp sub-

pulse, but if Inl is large, the amplitude of the sidelobes will

be small enough to provide suppression of the grating lobes.

Away from the delay (zero-doppler) axis, some of the

grating lobes begin to reappear, as shown in figure 4. This is

due to the difference in slopes ttween the delay/doppler grating

lobe ridges and the delay/doppler ridge of the chirp sub-pulse.

Because of this difference in slopes, the nulls of the chirp

signal response can coincide with the grating lobes of the pulse

I train response only at or near some particular value of doppler
i iII

• r
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shift. Thus, an unambiguous range response (the "clear"

region of figure 4) is obtained only in a strip of the delay/

doppler plane parallel to the delay axLs, as was the case for

the monotone sub-pulse. The width of the strip depends upon

the pulse train luty factor, 6 = T/T. If 6 is near unity,

the two slopes in question are nearly the same and the clear

region is fairly wide in dopp]er. If 6 is small, on the

other hand, the two sets of delay/doppler ridges rapidly

diverge arid the clear region is very narrow in doppler.

The advantage of using the chirp sub-pulse as opposed

to a monotone sub-pulse lies in the larger time-bandwidth

products it makes available. We can write an equation analogous

to equation (3) for the chirp case as

()overall N2FT = N2 FT' (OT

overall 6 sub-pulse (9)

Thus, we have an extra degree of freedom in designing

the radar signal. A very large time-bandwidth product might

be synthesized with a small number of sub-pulses, each havir-

a large time-bandwidth product; with a large number of sub-

r pulses, each having a moderate time-bandwidth product; or

various cases in between. In addition, it is practical to operate

13
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with large pulse train duty factors, obtaining a large signal

energy with limited peak power.

14
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SECTION III

COMPUTED AMBIGUITY FUNCTIONS

To make the preceding discussion more concrete, a number

of representative ambiguity functions have been calculated

on the IBM 7030 digital computer and plotted with the

Benson-Lehnet plotter. These plots have been normalized to

make clear the fundamental parameters involved. By appropriate

manipulations of equations (1), (4), arid (8), the four para-

meters F, T, T', and N may be reduced to the three more

fundamental parameters, (T) overall' N, and 6, used in the

following equations:

1 1 2 sin? rrN [V'-T']

P0 M sin2 1T [V'-T']

sin TT (T'-6,V') (I T -L2

( 2 _ _ _ _ ,IT'I <K

0, ( 1'I V _

15
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r
K = (B•)overall I• (sub)plse

S(12)

The new variables, T' = FT and v'= Tv, are normalized so

that the ridge ambiguities intereect both the delay and doppler

axes at unit intervals.

All the cases presented assumed a pulse train time-band-

width product, (OT) overall of 100,000. The first group of

cases considered a train of N- 10 pulses, with duty factors,6,

of 0.1, 0.5, and 0.9, to obtain an idea of how the duty factor

affects the doppler tolerance of the waveform. A second

group of cases comp&res trains of 3, 10, and 30 pulses, all

t Jwith a duty factor of 0.5, to see how the structure of the

ambiguity function depends upon the number of pulses.

As a basis of comparison for the other cases, the

ambiguity function for a 10 pulse, 50% duty factor train of

I monotone sub-pulses was computed from equation (i) and (2),

after normalizing them in the same way as we did the equations

Sfor chirp coded sub-pulses. This is shown in figure 5. Only

one cut at zero doppler is given, as all the doppler cuts are

very nearly alike in shape, being merely translated in delay.

One sees the characteristic periodic grating lobe structure,

Ii 16
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resulting from the line spectrum of the pulse train.

F.-ure 6 is the ambiguity function of a 10 pulse train

of chirp sub-pulses, with a 10% duty factor. Parts (a) through

(e) are cuts at increments of 0.05 (5% of the distance to the

first doppler ambiguity at l/T) in v', the normalized doppler

shift, starting at zero. Since Ix(r',v')l has symmetry about

the origin, only cuts for positive doppler are shown. Figure 7

shows the ambiguity function for a 10 pulse train of chirp

sub-pulses with a 50% duty factor, for the same cuts as in

figure 6. We see that the larger duty factor gives better suppression

of the grating lobes, for both zero and non-zero incremental

doppler. The better suppression at zero-doppler is probably

due to the larger time-bandwidth pioduct of each sub-pulse,

which makes its zeroes more nearly equally spaced. The better

doppler tolerance -s due to the more "filled in" character

of the signal in the time domain. W.en the duty factor is

increased to 90%, as shown in figure 8, the zero-doppler response

improves only slightly, but the doppler tolerance becomes

much better, again due to more filling in of the signal in the

time domain.

One might inquire about how well grating lobes are

suppressed for larger values of incremental delay than are

plotted. Figure 6(a) appears to be a su3picious case in this

17
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regard. since the third grating lobe (-29.5db) is larger than the

second (-30.4 db). However, the next six grating lobes, starting

with the fourth, are -28.0 db, -26.9 db, -26.4 db, -26.8 db,

-28.9 db, and -34.0 db respectively, so that the farther out

grating lobes never get very high, being suppressed by the fall

off of the chirp sub-pulse delay 6idelobes.

The ambiguity function for a train of three chirp sub-pulses

with a 50% duty factor is shown in figure 9. In this case, the

doppler cuts are spaced at normalized doppler intervals, AV'=1/6,

which is 10/3 as far apart as in the 10 pulse case. However, if

equal time duration signals were used in the two cases, T would

also be 10/3 great in the three pulse case, so that in both cases

the cuts represent the same amount of actual doppler shift, for

equal time duration signals. Comparing the zero-doppler response,

figure 9(a), with the corresponding 10 pulse case, figure 7(a),

we see that the 3 pulse case is slightly better. This is probably

due to the fact that the sub-pulse time-bandwidth product is 10/3

larger, making its zeroes more nearly equally spaced. However,

the 3 pulse response deteriorates more rapidly with increasing

doppler shift than does the 10 pulse response. In particular,

the first grating lobe to the left of the main lobe is incompletely

suppressed. This seems to be due to the closer spacing of the

grating lobes relative to their width.
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Finally, a train of 30 chirp sub-pulses witb a 50% duty

factor was considered. Because of plotter limitations, the

a!."iigujty functions are in two parts. Figure 10 contains the

positive values of delay and figure 11 the negative values

of delay. The doppler cuts have a spacing LV' = 1/60, which,

by the argument used previously, is the same spacing in absolute

doppler as used for the 3 and 10 pulse cases, for equal signal

durations. We see that the grating lobe ambiguities along

the delay axis are suppressed, although not as well as for the

3 and 10 pulse cases. However, the doppler tolerance is better

than for 3 or 10 pulses. Again, as in figure 6(a) the

grating lobes shown increase in amplitude. The first, second,

and third grating lobes along the delay axis (figure 1.0a), are

-32.4 db, -28.7 db, and -25.7 db respectively. The next six

grating lobes, not plotted, are -24.1 db, -24.0 db, -26.5 db,

-35.7 db, -34.8 db, and -29.1 db, so that they do not rise

too high before being suppressed by the fall off of the chirp

sub-pulse delay sidelobes.

To summarize, it appears from the limited number of cases

considered that grating lobes along the delay axis can be

suppressed by this technique for either a small or large number

of pulses i n" Lrain. The suppression along the delay axis

works somewhat better for small numbers of sub-pulses, but the
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number is not critical. The suppression along the delay axis

also improves with duty factor, but this is not critical

either. The doppler tolerance - -the range of doppler shifts

over which the time response remains substantially undistorted--

is strongly dependent upon the duty factor, on the other hand,

becoming much larger as the duty factor of the pulse train

increases. The doppler tolerance also increases as the nrL'ber

of pulses increases, but the dependence is not as strong as

upon the duty factor.
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SECTION IV

VALIDITY OF THE RESOLUTION CRITERION

In using Woodward's ambiguity function as a resolution

criterion, one is limited by two assumptions implicit in It.

These are:

I) Range acceleration and higher derivatives are

assumed to have negligible effect upon the signal.

2) The doppler effect is approximated as a carrier

frequency translation, with no distortion of the signal

modulation function.

!he first assumption introduces no problems. If we

assume as a worst case a one millisecond signal time duration

and 100 g's acceleration, then from

AR = R Lt2  (13)

one obtains a range change during the signal duration due to

radial acceleration of only .0016 feet which is negligible at

microwave wavelengths. The second assumption, however, limits

the range of doppler shifts for which the calculation is

valid as a resolution criterion. Rihaczek [3] has derived

an equation which gives the maximum range rate for which

-37



assumption (2) holds as

O.1C
R • - (14)

(OT) overall

which may be expressed in terms of doppler shift as

V 2i .2 f 0
C (T)overall

Using the fact that the overall time d,ration of the signal

is NT, defining y to be the fractional bandwidth of the

signal, and substituting v' - Tv, equation (15) may be

transformed to

, 5 0._/2 (16)
yN

This restriction was observed, with an assumed 10 per cent

bandwidth, in computing the ambiguity functions shown in

St.ation III. One should interpret the doppler shift in these

ambiguity functions not as the total target doppler shift,

but as the difference between the target doppler shift and the

38
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doppler shift to which the receiver is matched. Furthermore,

for these ambiguity functions to represent a valid resolution

criterion, it is necessary that the receiver be matched not to

the transmitted signal, but to the expected received signal.

That is, the rec-iver (matched filter) must be compensated not

only for the expected doppler shift of the carrier frequency,

but for the time dilation or spectrum spreading distortion of the

signal modulation function corresponding to the expected doppler

shift. Thus, the modulatioa function distortion which is

considered negligible in these calculations is that due to

the incremental doppler shift of the target, not that due to

the total doppler shift.
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SECTION V

CONCLUSIONS

By chirp coding each sub-pulse in the train, the utility

of a 'inear frequency-stepped pulse train is greatly enhanced.

The overall time-bandwidth product which can be used, subject

to the condition of an unambiguous time respons-, is inc-eased

by a factor equal to the sub-pulse time-bandwidth product.

Furthermore, acceptable time responses can be obtained with

either a small or large number of sub-pulses, and with small

or large pulse t in duty factors. The doppler tolerance of the

signal waveform, however,depends strongly upon the intra-train

duty factor, increasing as duty factor increases. These

design characteristics :re quite different from those encountered

with time and frequency staggered pulse trains, which require

large numbers of sub-pulses and small duty factors to obtain

low time sidelobes, and have little doppler tolerance.

The ambiguity functions illustrated have moderately high

sidelobe levels, which are undesirable in some applications.

Lower sidelobes might be obtained by applying well-known

amplitude weighting techniques to these waveforms. The close-

in time sidelobes, -hich now fall off as sin Nx/sin x, could be

greatly reduced by weighting each pulse in the train according

to a Taylor weighting func.tion, for example. The magnitude of

40



the partially suppressed grating lobes might be reduced by

lowering the time sidelobe level of the chirp sub-pulse response.

This can be done by amplitude weighting the chirp signal in

time or frequency, as is well known. However, one should be

careful to select a weighting function which gives equally

or nearly equally spaced zeroes along the delay axis, in

order to properly suppress the grating lobes.

aJ
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APPENDIX - DERIVATION OF AMBIGUITY FUNCTION

All the results obtained in this paper depend upon the

ambiguity function of the linear frequency-stepped pulse

train given in equation (1). Although this has already been

ev:•-2d in Reference [l], we will derive it here also, in

order to make clear what assumptions and/or approximations

are used in extending this equation to a situation where

chirp coding is used on each pulse.

The general expression fo- the ambiguity function is

i * j2•rVt

X(T,v) = E j 4(t)" (t-T)e dt (A-I)

where

E total signal energy

(t) = complex modulation function of the signal

T incremental time delay

V = incremental doppler shift

Assume a train of N equally spaced pulses, with identical

amplitude modulation, but pulse-to-pulse variation of the

phase modulation
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N-ir• jOn(t - nT)

P(t) = 7 a(t-nT)e (A-2)

n=0

where a(t) = amplitude modulation of all pulses

0n(t) = phase modulation of the nth pulse

T = repetition interval

Substituting (A-2) in (k-1) gives

N-i N-I

X(r,V) = z I F ,n( 7,V) (A-3)

t.=O n=O

j ýý t -4T

F T' a(t-Tr) e a(t-TrnT)
FL,n(TV 2E•

-jon(t-'-nT) j2rrvt
e 6! dt (A-4)

The summation in equatio:; (A-3) can be broken up into

three summations, the purpose ;f which will become clear

as we proceed.

=(-,V) Si + S2 + S3 (A-5)
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N-I
S1  F (TV) (A-6)

_ n,n

n=0

N-i N-l-m

.. F n, n + i (TV)(
."I n=O(A7

N-I N-i-m

S, F (+r,n ) (A-8)
m=l nO

If one regards the double sum in equation .A-3) as a matrix,

then S, contains the terms on the main diagonal, S. contains

the terms above the main diagonal, and S3  the terms below

the main diagonal. The indices n and m run along and

across diagonals, respectively, tither than along rows and

co lumn s.

By making the substituto.ons, t - nT - t' in S1 and S.,

and t - (n + m)T t' in S3 , one can obtain

N-I

S.= xn,n(,r) (A-9)

44



F 
-

II

mn(x'V) io jn + i(t)

1 2E, a(t')e a(t' .T + mT)

-J~n(tl--. + nZ) i2r,-vt-'
Se- dt (A- 14)

The total signal energy, E, has been replaced by NEI, where

El is the energy of each pulse. If we let qn(t) = Q(t)-a n2.Ft,where an is an integer between 0 and N-I and (an] is the

frequency shifting code, we can rewrite equations (A-9)

through (A-14) as

N-1
$ _I X j2rTnTv -j2TTanFT

= e e x (tV) (A-15)
n=0

N-i N-i-inI j 2TnTV

m=i n=O

"e j 2 T7an~mF (1-+mr)axp(Tjt e rv + r a IF) (A-16)

P La nIm-a
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j0nkt') -j~n(t'-T) j 2rrvt d'

Xn,n(TV a(t')e ae dt'~

(A-10)

N-1 N-1-m j 2rrnTV

S2  e Z m~n(T ,V) (A-11)

mn=l n=O

U j~n(t')

xnn+ m(T ,V) =a(t')e a(t'-T-nir)

Jonm(t'-T-nff) eji2TTVt ' f (-2

N- e- - j2Tt 1 +A-12)

=3 1 e j2( )Vx ('r,V) (A-13)
N Ln + m,n

m1l n-0
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N-I N-l-w. e 2 TT(nlm)TV
S3 1 eZ(~mT

m=l n=O

e Xp (T-roT, V- [ an4, n -a n) (A- 17)

X (T,V)= I a(t)e j(t)a(t-T)e e J2dVtXp 2E, -.

(A-18)

where the function x (T,V) is the ambiguity function of a

single component pulse.

Now specialize the frequency code to a linear frequency

step, letting a n= n, and perform the summations over n by

using an identity given by Guillemin [4]

k-i1

ejkX k-
1-e e jnX

l~ej~'e~k in=0 jnX(A- 19)"

n=O

to obtain the following expressions.
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j 2TTN[TV-F ]

S N j2TT•[TV-F T] (A-20)

I e

N-i j2TT[N-m][TV-F( Ta)

_i - Xp(T +n,v +mF) 1-eNa = N i2[T-,LT-F(T+rf)

m=l l-e

- j 2mF (T+n)(A-21)

*e

N-I j2TT[N-m][TV-F(T-rt)]

S3 - Xp(T-mT,V-mF) 1-e
N j2iTr TV-F(T-MT)]-" m1ll-

J 2Tni•v

e (A-22)

By making suitable manipulations of the exponential terms,

*1 replacing m by -m in S2 , and substituting in equation (A-5),

one obtains
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N-1
, = sin 7i[N-Iml ]LTV-Fi(-mT)]

x(.'V) x •(-mTv-MF)m- (N-i) sin -[TV-F(T-mT)]

jTT[N+m-Ii)TV -jrTLN-m-I]F[T-MT]
*e e (A-23)

N-1 N-I
= I *

X(T,V)I N. Ni x (T-nfr,v-1F)X*(T-nT,V-nF)p p
m=-(N-I)n=-(N-l)

s in •rWN- mI ][TV-Fr-nfmT) s in TT[N-In ][TV-F(T-nT)]

sin, TT[TV-F(T-MT)] sin rj[TV-F(T-nT)]

jTT(m-n)TV JTT[N- I ][m-n ]FT jni(m-n)F[T-(m-n )T]
e e e (A.-24)

Up to this poiut, the derivation has been completely

general, with no restrictions on the arbiguity function of a

component pulse, Xp(TV), or on the time and frequency steps,

T and F. However, in order to reduce equation (A-24) to the

desired form, equation (1), it 1i necessary to impose the condition
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Xp(T-MT,V-MF)Xp (T-nl,V-nF) = 6mix p(T-nff ,V-mF) 12 (A-25)

where 6 is the Kronecker delta.mn

6 = 1, m--n6mn' ~

=0, m n (A-26)

This means that there must be no overlap between the

functions, x p(-nf,V-nF), for different m's. If one refers

again to figure l(b), which shows these periodically shifted

functions (major ambiguities) it can be seen that complete

absence of overlap is achieved if x (T,V) is either delay

limited to an interval (-T/2,T/2) or doppler limited to an interval

(-F/2,F/2).

For the case of monotone sub-pulses, the former condition

will be obtained if the sub-pulse length, T', is less than

T/2, which can be seen from equation (2). This requires the

pulse train duty factor, 6, to be less than or equal to 0.5. When

6 is greater than 0.5, time overlap between shifted X funccionsp

can occur. However, if F>>I/T, which is true for the monotone

sub-pulse cases we have computed, a doppler overlap will take place
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only in the far out sidelobes, and equation (I) will still be

a got. approximation.

WiLh chirp coding on each sub-pulse, the sub-pulse

ambiguity function, X ('r,V) is also delay limited to anP

interval (-T',T'), as seen from equation (4), so if T'• T/2(5!0.5)

no overlap of the shifted x functions occuis. ForP

T' > T/2(6 > 0.5) the shifted X functions overlap in delay
p

and also in doppler. Because x p(T,V) is extended in doppler

(along the delay/doppler ridge) for a chirp signal, overlap

between x functions of different orders can take place inP

the near doppler sidelobes. In particular, sidelobes of

x (' + T,v + F) may occur along the zero doppler axis and partly
P

inhibit the suppression of grating lobes by '. (T,V). For the

6 = 0.9 case we have computed, note however that the results

are exact for the region in which they are computedIj<0.1 T.

To summarize, the method of computation used in this

paper obtains the ambiguity function exactly 2or 6 • 0.5. When

larger duty fautors are considered, 0.5 < 6 < 1.0, the method

is approximate. For monotone sub-pulses, the degiee of

approximation is very good, provided FT >>l. For chirp sub-

pulses, the approximation is rougher and, if large duty factors

are to be seriously considered in an actual application, a

more exact calculation, using equation (A-24) instead of

equation (1), should be made.
51
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