UNCLASSIFIED

AD NUMBER

AD835073

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution: Further dissemination only as directed by Army Weapons Command, ATTN: AMCPM-RS, Rock Island, IL 61201, JUN 1968, or higher DoD authority.

AUTHORITY

USAARDC ltr dtd 13 Feb 1978

THIS PAGE IS UNCLASSIFIED

AD

1.1

AMCMS Code No. 4420.25.0132.2.39 USATECOM Project No. 8-7-0220-01 Report No. DPS-2754

FINAL REPORT ON

PRODUCT IMPROVEMENT TEST

OF

SUBMACHINE GUN, 5.56-MM, XM177E2

BY

GEORGE HENDRICKS ALLAN WILSON

JUNE 1968

ABERDEEN PROVING GROUND ABERDEEN PROVING GROUND, MARYLAND

AD835073

a to the second structure of the second states of the second second structure of the second structure of

DDC AVAILABILITY NOTICE

This document may be further distributed by any holder only with specific plior approval of <u>Project Manager, Rifles</u>. ATTN: AMCPM-RS.

REPRODUCTION LIMITATIONS

Reproduction of this document in whole or in part is prohibited except with the permission of <u>Project Manager, Rifles, ATTN: AMCPM-RS</u>.

DDC is authorized to reproduce this document for United States Government purposes.

DISPOSITION INSTRUCTIONS

Destroy this report in accordance with AR 380-5 when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents issued and approved by the Department of the Army.

DEPARTMENT OF THE ARMY HEADQUARTERS, U.S. ARMY TEST SME EVALUATION COMMA, D ABERDEEN PROVING GROUND, MARYLAND 21005

AHSTE-BC

8 JL_ 1968

Ç.

PROGRAM DE

SUBJECT: Approval of Final Report on Product Improvement Test of Submachine Gun 5.56mm, XM177E2, USATECOM Project No. 8-7-0220-01

Commanding General US Army Materiel Command ATTN: AMCPM-RS Rock Island, Illinois 61200

1. References:

a. Report, AMSTE-BC, dated January 66, Subject: Analysis of Results of SAWS Engineering and Service Tests, USATECOM Project Numbers 8-5-0400-03 thru 06.

b. Final Report DPS 2215, dated December 1966 on Engineer Design Test of Modified Flash Suppressor for 5.56mm, Car-15 Submachine Gun.

c. Message, USATECOM 10219, dated 8 December 67, Subject: PI Test of XH177E2, Submachine Gun, USATECOM Project No. 8-7-0220-01/02.

d. Final Report, dated June 68, Report No. DPS 2754, subject as above, inclosed.

2. The primary purpose of this test was to evaluate the product improvements imposed on the submachine gun since the SAWS activity of 1965-66, ref 1a, and was not intended to serve as an engineering test leading to type classification. Originally the suppressor was subjected to safety tests only as a separate activity in late 1966 with an objective of reducing flash signatures, ref 1b. In order to provide additional information concerning the capabilities of the system, especially with respect to the flash suppressor, it was considered necessary to utilize a broad spectrum of available ammunition. The product improvements were:

a. Chrome plated chambers.

b. Delrin charging handle latch.

c. Hand-guard slip ring.

AMSTE_BC

A PARAMANAN ANTAR

8 JUE 1958.

SUBJECT: Approval of Final Report on Product Improvement Test of Submachine Gun 5.56mm, XM177E2, USATECOM Project No. 8-7-0220-01

d. Cadmium plated slip ring spring.

- e. Shot-peened receiver, nylon-coated buttstock and release lever.
- f. One and one-half inch increase in barrel length.

3. With the exception of the delrin charging handle latch, the improvements are acceptable and are applicable to the M16A1 rifle as appropriate. Potential improvements in areas of corrosion resistance in paragraph 2c,d and e above require confirmation in long term field environment conditions.

4. A summary of test results and a discussion of each subtest are contained in paragraph 1.4. Findings which have a significant impact on system performance and reliability are:

a. Tracer cartridges regardless of the propellant loading are incompatible with subject weapon due to severe yaw and some projectile breakup. Also, and independent of tracer cartridges, yaw of 10 to 20 degrees was observed with ball projectiles, but at a reduced frequency as compared to the tracer cartridge.

b. All test ammunition exhibited large variations in round-to-round cyclic rates within an automatic burst. The first 2 rounds in a magazine of ball cartridges loaded with ball propellant accounted for a significant portion of this variation.

5. The conclusions and recommendations of subject report are approved by this command and are as follows:

a. Conclusions:

(1) The XM177E2 submachine gun as presently designed is incompatible with the spectrum of ammunition as investigated in this test, especially in those areas of performance affected by the buffer, and noise - flash suppressor.

(2) Both the X (177E1 and XM177E2 weapons gave unsatisfactorily high malfunction rates in the low temperature fouling test, and both weapons demonstrated more severe fouling in the operating mechanism with ball propellant than the IMR 8208M propellant.

(3) The XM177E2 weapons with chroms-plated chambers were superior to XM177E1 weapons with regard to failure-to-extract stoppages.

8 . 3L 1308

のというないないないないであるのです。

a service and the service of the ser

ANSTE-BC SUBJECT:

Approval of Final Report on Product Improvement Test of Submachine Gun 5.56mm, XE177E2, USATECOM Project No. 8 /-0220-01

(4) The delrin charging-handle latches on the E2 weapons were inferior to the latches on E1 weapons because of structural failure at -65°F.

(5) Within the scope of this test, no advantages in corrosion resistance were demonstrated for the shot-peened receivers, nylon-coated buttstock and release lever, and cadmium-plated slip ring spring of the E2 weapons.

(6) The XM143 launcher spacer and the increased barrel length of the E2 weapon permit assembly of the XM148 grenade launcher.

(7) The angled slip ring on the X1177E2 weapons (no structural failures) proved superior to the flat slip rings on the E1 weapons with respect to ease of assembly and disassembly on the hand guard.

b. Recommendations:

(1) Further development of the XM177E2 submachine gun buffer, and noise-flash suppressor be accomplished.

(2) The delrin charging-handle latch be considered unacceptable.

(3) The remaining product improvements under test be considered suitable for the XM177E2 submachine gun and, as appropriate, the M16A1 rifle.

FOR THE COMMINDER:

Colonel, GS Dir, Inf Mat Test Dir

1 Incl as (5 cys)

Copies furnished: CG AMC ATTN: AMCRD-WI (2 cys) AMCAD-S (1 cy) AMCPP (1 cy) AMCQA (1 cy) AMCMA-R (1 cy) AMCMI (1 cy) CG WECOM ATTN: AMSWE-RDS (3 cys) CG CONARC ATTN: ATIT-RL-MD (4 cys) CGRD ATTN: CRDPES (1 cy) CDC LO USATECOM (12 cys) USMC LO USATECOM (1 cy) CO APG ATTN: STEAP-DS-TI (w/o incl)

AMCMS CODE NO. 4420.25.0132.2.39

USATECOM PROJECT NO. 8-7-0220-01

PRODUCT IMPROVEMENT TEST OF SUBMACHINE GUN, 5.56-MM, XM177E2

FINAL REPORT

BY

GEORGE HENDRICKS ALLAN WILSON

JUNE 1968

ABERDEEN PROVING GROUND ABERDEEN PROVING GROUND, MARYLAND 21005

iii

and the second second

v

TABLE OF CONTENTS

IDING PAGE BEANE

-

 \langle

and the state of the

1

ABSTRACT		vii
FOREWORD		vii
FRONTISPI	ECE	viii

SECTION 1. INTRODUCTION

1.1	BACKGROUND	1
1.2	DESCRIPTION OF MATERIEL	1
1.3	TEST OBJECTIVES	2
1.4	SUMMARY OF RESULTS	3
1.5	CONCLUSIONS	7
1.6	RECOMMENDATIONS	8

SECTION 2. DETAILS OF TEST

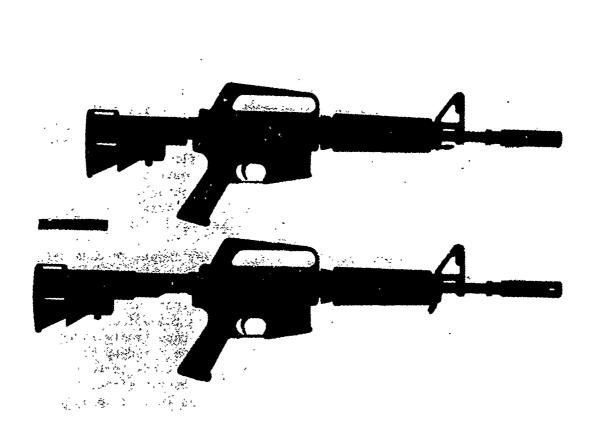
2.1	INTRODUCTION	9
2.2	INSPECTION	11
2.3	VELOCITY TEST	19
2.4	TIME OF FLIGHT	21
2.5	FLASH TEST	25
2,6	SMOKE TEST	25
2.7	ACCURACY AND DISPERSION	28
2.8	GRENADE LAUNCHER (XM148) TEST	33
2.9	SUSTAINED FIRE	34
2.10	HIGH TEMPERATURE, HIGH HUMIDITY TEST	49
2.11	LOW TEMPERATURE, FOULING TEST	51
2.12	ENVIRONMENTAL TESTS	57
2.13	MANN BARREL TEST	65
2,14	NONSTANDARD CLEANERS	68
2,15	SOUND PRESSURE LEVEL	69
2.16	KINEMATIC TEST (DISPLACEMENT-TIME STUDY)	72

SECTION 3. APPENDICES

TEST DATA	I-1
CORRESPONDENCE	JI-1
REFERENCES	III-1
DISTRIBUTION LIST	IV-1

ABSTRACT

5 . . .


DIE DER RL

At the request of US Army Weapons Command, a product improvement test of the 5.56-mm submachine gun, XM177E2, was conducted t Aberdeen Proving Ground, Maryland between 1 August 1967 and 15 April 1968. The product improved components of the test weapons were: chrome-plated chambers, buffer, 1-1/2 inch increased barrel length, delrin charginghandle latch, hand-guard slip ring, cadmium-plated slip ring spring, shot-peened upper and lower receivers, nylon coated buttstock and release lever, and grenade launcher spacer (for attaching an XM148 grenade launcher). With the exception of the delrin charging handle latch. which proved susceptible to breakage at -65°F, durability of all the product improvements was satisfactory throughout the test. The chrome-plated chambers demonstrated improvement over nonplated chambers in reducing failures to extract and the hand-guard slip ring offers advantages over the previous design in ease of assembly and disassembly of hand-guards. Kinematics studies showed that the energyabsorbing characteristics of the urethane end cap on the buffer are subject to change under repetitive impacts, causing undesirably large variations in cyclic rate within a burst, Progressive build-up of fouling in the flash - sound suppressor during firing tends to increase muzzle flash and sound level and apparently has an adverse effect on bullet stability and flight. It was recommended that further development of the XM177E2 submachine gun buffer and noise - flash suppressor be accomplished, that the delrin charging handle latch be considered unacceptable, and that the remaining product improvements under test be considered suitable for use on the XM177E2 submachine gum and, as appropriate, the M16A1 rifle.

FOREWORD

Aberdeen Proving Ground was responsible for preparing the test plan, conducting the test, and preparing the test report.

vii

SUBMACHINE GUN, 5.56-MM, XM177E2

Weight of weapon 6.2 lb
Weight of weapon with sling and loaded
20-round magazine 7,2 lb
Length (over-all) 29.7 in,
Length (over-all) with buttstock extended 33.0 in,
Length of barrel (from muzzle end of flash
suppressor to face of bolt) 15,4 in,
Length of barrel (from muzzle end of barrel
to face of bolt) 11.6 in.
Operation Gas-operated, front-locking rotary bolt
Rifling One turn in 12 in,
Muzzle velocity 2780 fps
Type of fire Semi- and full automatic
Stock Telescoping buttstock
Ammunition 5,56-mm, M193 ball and M196 tracer

Data Compiled: August 1967.

Characteristics Photograph

viii

wained and the state and

ABERDEEN PROVING GROUND ABERDEEN PROVING GROUND, MARYLAND 21005

USATECOM PROJECT NO, 8-7-0220-01

FINAL REPORT ON PRODUCT IMPROVEMENT TEST OF SUBMACHINE GUN, 5.56-MM, XM177E2

1 AUGUST 1967 TO 15 APRIL 1968

SECTION 1. INTRODUCTION

1.1 BACKGROUND

During 1965 and 1966 ten 5.56-mm submachine guns, along with a number of other small arms weapons systems, were subjected to an extensive engineering test (References 1 and 2). The submachine guns were identified variously as the CAR-15 or C-SMG at the time of the test. After the engineering test, a modified flash suppressor and a new buffer design were submitted for an engineer design test (Reference 7) and the weapon was designated XM177E1. A number of other product-improved components were then subsequently incorporated and the designation of the weapon was changed to XM177E2. In March 1967, USATECOM concurred in a recommendation from USAMC to type classify the CAR-15 for temperate zone use but withheld comment on the suitability of the XM177E2 until a test of the product improvements, the subject of this report, was conducted.

Of related interest in the development of the XM177E2 submachine gun is the recent introduction of a new extruded-grain cartridge propeliant identified as IMR-8208M to be used in the loading of M193 and M196 cartridges. The M193 and M196 cartridges are the standard ball and tracer cartridges, respectively, for the XM177E2 as well as the M16A1 rifle. In addition, substantial quantities of M196 cartridges are now being loaded with ball propellant, a projectile and propellant combination not previously evaluated in either CAR-15 or XM177E2 weapons. By USATECOM direction, the new projectile - propellant combinations of M193 and M196 cartridges were to be tested simultaneously with the testing of the preduct improved version of the submachine gun.

1.2 DESCRIPTION OF MATERIEL

A description of the XM177E2 submachine gun is contained in paragraph 2 of Appendix II.

The product improvements on XM177E2 weapons which constitutes the difference between the XM177E1 and XM177E2 weapons are as follows:

- a. Chrome-plated chambers to minimize corrosion and promote extraction.
- b. One and one-half-inch increased barrel length and XM148 grenade launcher spacer for mounting XM148 grenade launcher.
- c. Delrin charging handle latch to minimize wear on upper receiver.
- d. Hand-guard slip ring shaped to provide ease of assembly.
- e. Cadmium-plated slip ring spring to minimize corrosion.
- f. Shot-peened upper and lower receiver to minimize corrosion.
- g. Nylon coated buttstock and release lever to minimize corrosion.
- h. Although the buffers of the XM177E2 and those of the XM177E1 in this test are the same, they were of a different design from those used in the small arms weapons system test (Reference 2).

Ammunition used in test is as follows:

- a. Type A cartridge, 5.56-mm, M196, tracer, lot LC-12081 (ball propellant).
- b. Type B cartridge, 5.56-mm, M196, tracer, lot TW-18007 (8208M propellant).
- c. Type C cartridge, 5.56-mm, M193, ball, lot LC-12194 (ball propellant).
- d. Type D cartridge, 5.56-mm, M193, ball, lot TW-18191 (8208M propellant).
- e. Reference cartridge, 5.56-mm, M193, ball, lot LC-Y-5.56-501 (WC-846 propellant).

a subscription in the second se

Charles Contraction

1.3 TEST OBJECTIVES

To evaluate the physical and technical characteristics of the XM177E2 submachine gun.

To evaluate weapon performance when using both extruded-grain and ball-propellant-loaded cartridges with both ball and tracer projectiles.

To evaluate test results regarding suitability of the XM177E2 resoluct improvements for application to the M16Al rifle.

1.4 SUMMARY OF RESULTS

1.4.1 Introduction

F

In view of the small sample of weapons available for test (two of each model in most subtests) all combinations of the ball and tracer rounds with 8208M and ball propellants could not be used equally by both projectile and propellant type in a manner to provide uniform exposure of all types to the many conditions of test. That is, the "start" and "finish" phases of test could not be controlled, where initial rounds may be most critical with regard to weapon function or subsequent rounds may produce functioning characteristics reflecting effects of previous rounds. In consideration of this, distinction was made with regard to weapon function, where appropriate, only between the rounds loaded with ball propellant and those loaded with 8208M propellant.

1.4.2 Product Improvements

1.4.2.1 Chrome-Plated Chambers. In the dust test, two failures to extract occurred on El weapons (nonplated chambers) while E2 weapons (chrome-plated chambers) were free from extraction problems. In the salt water immersion test nine failures to extract occurred in firing 381 salt-water-corroded rounds from El weapons (one each 42 rounds), and six occurred in firing 490 rounds from E2 weapons (one each 82 rounds).

1.4.2.2 Delrin Charging-Handle Latch. In the $-65^{\circ}F$ test, one charging handle latch broke during normal use in retracting the bolt. No difference could be detected between the delrin charging-handle latch of the E2 weapons and the metal latch of the E1 weapons with respect to receiver wear.

1.4.2.3 Hand-Guard Slip Ring. Based on gunner reaction and observations made throughout the test, the angled slip ring for the hand-guard of the E2 weapons provides a better gripping surface for ease of assembly and disassembly over that of the flat slip ring on the E1 weapon. The angled slip ring exhibited no failures during test.

1.4.2.4 Cadmium-Plated Slip Ring Spring. The cadmium-plated slip ring spring on the E2 weapon and the nonplated one for the El weapon exhibited corrosion to approximately the same degree when exposed to conditions of th: salt-water immersion test. Corrosion on both springs was moderate. No failure of either spring occurred.

1.4.2.5 Shot-Peened Receiver and Nylon-Coated Buttstock and Release Lever. The shot-peened receiver and nylon-coated buttstock and release lever of the E2 weapons displayed no deleterious effects from the saltwater immersion test; similarly, the components of the E1 weapons were not visibly affected.

1.4.2.6 One and One-Half-Inch increase in Barrel Length, and XM148 Grenade Launcher Spacer. The increased barrel length and launcher spacer of the E2 weapon did not degrade the ease of handling of the weapon, and permits assembly of the XM148 grenade launcher. The effects of the longer barrel on ballistic performance were as follows:

- a. Based on comparison with velocity results of XM177E1 firings in Reference 2, the increase in muzzle velocity of M193 ammunition fired in the XM177E2 weapon is 229 fps, and 104 fps for M196 ammunition. This comparison is made between ball-propellant-loaded cartridges and ignores the effects of different lots.
- b. The accuracy of E2 weapons showed slight improvement over that of E1 weapons fired in Reference 7. The average mean radius was 2.7 inches for E1 weapons compared with 2.4 inches for E2 weapons in this test.
- c. The sound pressure level of the E2 weapon was 155.0 db as compared to 156.5 db for the E1 weapon recorded in Reference 7.
- d. There was no significant difference in muzzle flash produced by the El weapon in Reference 7 and that of the E2 weapon in this test.

1.4.2.7 Buffer. Kinematic studies showed that the energy absorbing characteristics of the urethane end cap on the buffer are subject to change under repetitive impacts, causing undesirably large variations in cyclic rate within a burst. Further analysis of buffer performance is given in paragraph 2.16.

1.4.3 Subtest Findings

F

1.4.3.1 Inspection. The XM177E2 model is 0.2 pound heavier and 1.6 inches longer than the XM177E1 model. Usability and ease of handling of the E2 was comparable to that of the E1 model.

1.4.3.2 Velocity and Accuracy. All four lots of test cartridges met the velocity and accuracy criteria when fired in the XM177E2 weapons.

1.4.3.3 Flash. The muzzle flash performance of El weapon fired in Reference 7 and the E2 weapons fired in this test was comparable; there was, however, a significant reduction in flash with the 8208M-propellantloaded lots of M193 and M196 cartridges over that of lots loaded with ball propellant.

1.4.3.4 Smoke. No difference in target obscuration or position detection effects was revealed between ammunition types or El and E2 weapon models.

1.4.3.5 High Temperature, High Humidity. The performance of E2 weapons was comparable to that of the E1 weapons.

1.4.3.6 Mann Barrel Firing. Cartridge, M193, ball, lot TW-18191 gave an average velocity of 3206 fps, which is 4 fps below the minimum specification limit. The M193 ammunition loaded with 8208M propellant, lot TW-18191, was 885 psi above the maximum chamber pressure permitted and 400 psi under minimum port pressure permitted when fired at $+70^{\circ}$ F. All other lots met the criteria specified in paragraph 2.13d and e.

1.4.3.7 Sound. At the gunner's ear position when firing the XM177E2 with a new barrel and flash suppressor (fired more than 30 but less than 1000 rounds), the criteria established in paragraph 2.15.2 was met with each of the four ammunition test lots. When firing with the used barrel and flash suppressor (fired approximately 9000 rounds) none of the four lots met the criteria. The lot of ammunition producing the highest sound - pressure measurement of 156 decibels with a new barrel and flash suppressor produced an increase to 160 decibels when firing with a used barrel and flash suppressor. This increase was attributed to the accumulation of fouling in the baffles of the suppressor.

1.4.3.8 Sustained Fire. Functioning performance of the four XM177E2 weapons with the four test types of ammunition (one weapon for each ammunition type) indicated no significant difference in weapon functioning associated with ammunition type. With the exception of the weapon fired with M193, lot LC-12194, ball-propellant-loaded ammunition, which produced a malfunction rate of 0.0034, none of the weapon - ammunition combinations exceeded the permissable malfunction rate of 0.003.

The M196 cartridges, both 8208M- and ball-propellant-loaded, gave excessive dispersion and yaw beginning early in the firings and continuing throughout the sustained fire exercise; dispersion and yaw were comparatively slight with the M193 cartridges. Both M196 and M193 projectiles exhibited more yawing with the ball-propellantloaded lots than with the 8208M-propellant-loaded lots.

The weapons were considered to have met the performance levels specified in paragraph 2.9.2 when firing M193 ball ammunition, but failed to meet the required levels when firing M196 tracer ammunition because of excessive yaw and dispersion. The reason for this incompatibility with tracer ammunition could not be established within the scope of the test. The X-ray photographs shown in paragraph 2.9.5 provide evidence that the stability of the tracer bullet is affected by the suppressor; however, the prevalence of this condition round-toround and the effect on ultimate bullet flight are not known. Additionally, it is not known the extent to which build-up of fouling in the baffles of the suppressor (ref Figures 2.2.4.2-1 through -7) affects launch attitude and flight of the projectile.

1.4.3.9 Time of Flight. Tables 2.4-I and 2.4-II contain summaries of exterior ballistics data for the XM177E2 weapon firing the four lots of ammunition used in test.

The projectiles of the ammunition lots loaded with ball propellant, both M196 tracer and M193 ball, exhibited lack of stability in flight as evidenced by erratic flight of the M196 and an increased rate of velocity loss in flight for the M193 compared to M193 with 8208M propellant. The cause of this apparent contribution of ball propellant to bullet instability was not identified; however, it is most probably associated with the effects of residual muzzle pressures on bullet stability in launching and passage through the suppressor, and indicates that a difference in muzzle pressures exists between ball and 8208M propellants.

1.4.3.10 Low Temperature Fouling Test $(+20^{\circ}, -65^{\circ}, \text{ and } -40^{\circ}\text{F})$. The results of the low temperature fouling test as a whole show the XM177E2 to be inferior to the XM177E1. The malfunction rate for the entire low temperature test was 2.8 per 100 rounds for the E2 weapons and 1.4 for E1 weapons. However, a direct comparison of performance is hardly valid since E2 weapons were subjected to over 4000 rounds of firing in the sustained-fire subtest prior to these tests and the E1 weapons were not fired in that subtest.

Carbon accumulation in the bolt was prevalent on weapons firing ammunition loaded with ball propellant at $+20^{\circ}$ F, resulting in firing pin seizures in two weapons. In firing ammunition loaded with 8208M propellant, no malfunctions attributable to carbon accumulation occurred.

The entire low temperature test malfunction rate for ballpropellant-loaded ammunition was 9.6 per 100 rounds compared to 3.7 for 8208M-propellant-loaded ammunition.

1.4.3.11 Nonstandard Cleaners. The urethane end cap on the new type buffer used in this test became soft and tacky on the outside surface after immersion in insect repellent; however, light application of the repellent, as from contact with the hands, had no apparent effect. None of the other product improvements of the E2 weapon were affected by any of the fluids or greases.

1.4.3.12 Kinematic (Displacement-Time) Studies. The displacement-time studies were conducted under carefully controlled conditions to evaluate mechanism characteristics only. The influence of propellant fouling in either the mechanism or the gas tube was intentionally held to a minimum by observing short-interval maintenance periods during the relatively limited firing exercises. The pertinent findings of the study are summarized below and an analytic discussion of each of the findings is contained in par. 2.16.

a. At low rates of fire, marginal cyclic performance of the XM177E2 submachine gun can be expected to occur at a level of approximately 635 rds per min for any single round. This is estimated to be 50 rds per min more than the minimum marginal rate in the M16A1 rifle.

The upper restraint in cyclic rate of fire for both the XM177E2 and the M16A1 has been previously established (Reference 10) at a rate of approximately 975 rds per min for the final round in a magazine and is associated with a failure of the bolt stop mechanism which is an identical subassembly in both weapons.

- b. M193 ball projectile cartridges loaded with WC846 propellant offered the least round-to-round cyclic variation at near optimum energy levels during burst fire among the four cartridge types tested.
- c. Reduced loading of the magazine (less than 20 rounds) does not aid in overcoming low cyclic rate levels for the initial rounds in a burst.
- d. The barrel and gas tube assembly of the XM177E2 have the capability of withstanding as much as 9000 rounds of firing w^L.1e continuing to serve as a suitable power source system for the mechanism.
- e. Bolt carrier rebound with the XM177E2 is negligible and does not interfere with hammer fall or otherwise degrade cycling performance.

A Statistics

1.5 CONCLUSIONS

It is concluded that:

- a. The delrin charging-handle latches on the E2 weapons were inferior to the latches on E1 weapons because of structural failure at -65°F (ref par. 2.11).
- b. Within the scope of this test, no advantages in corrosion resistance were demonstrated for the shot-peened receivers, nylon-coated buttstock and release lever, and cadmium-plated slip ring spring of the E2 weapons (ref par. 2.12.5).
- c. The XM148 launcher spacer and the increased barrel length of the E2 weapon permit assembly of the XM148 grenade launcher (ref STEAP-DS-TI letter, 2 October 1967, Appendix II).
- d. The XM177E2 weapons with chrome-plated chambers were superior to XM177E1 weapons with regard to failure-to-extract stoppages (ref par. 2.12).
- e. The angled slip ring on the XM177E2 weapons (no structural failures) proved superior to the flat slip rings on the El weapons with respect to ease of assembly and disassembly of the hand-guard (ref par. 1.4.2.3).
- f. Both the XM177E1 and XM177E2 weapons gave unsatisfactorily high malfunction rates in the low temperature fouling test, and both weapons demonstrated more severe fouling in the mechanism with ball propellant than with 8208M propellant.
- g. The XM177E2 submachine gun as presently designed is incompatible with the spectrum of ammunition as investigated in this test, especially in those areas of performance affected by the buffer and noise - flash suppressor.

1.6 RECOMMENDATIONS

CARLES CONTRACTOR

It is recommended that:

- a. Further development of the XM177E2 submachine gun buffer and noise - flash suppressor be accomplished.
- b. The delrin charging-handle latch be considered unacceptable.
- c. The remaining product improvements under test be considered suitable for use on the XM177E2 submachine gun and, as appropriate, the M16A1 rifle.

SECTION 2. DETAILS OF TEST

2.1 INTRODUCTION

2.1.1 Criteria

The majority of the test criteria are based on performance levels obtained during the engineering test of the CAR-15 (designated as C-SMG during the engineering test). The engineering test data are reported in References 1 and 2 and the source of the criteria are identified by paragraph designations from the pertinent report.

2.1.2 Ammunition

Four projectile - propellant combinations of 5.56-mm cartridges were fired in approximately equal numbers throughout the test (some exceptions are noted in certain subtests). The cartridge types are as follows:

- a. Cartridges, M196 tracer projectile and ball propellant, lot LC-12081.
- Cartridges, M196 tracer projectile and IMR-8208M propellant, lot TW-18007.
- c. Cartridges, M193 ball projectile and ball propellant, lot LC-12194.
- d. Cartridges, M193 ball projectile and IMR-8208M propellant, lot TW-18191.

The acceptance-test data sheets for each lot are contained in Appendix I.

2.1.3 Maintenance

The weapons were disassembled, cleaned, inspected, and lubricated with MIL-L-46000A (Reference 8), except for the low temperature tests where MIL-L-14107A was used. This maintenance was performed before the start of each subtest and after approximately each 600 rounds of firing, except for the continuous firings without maintenance in the high and low temperature tests.

2.1.4 Control Weapons

Where test methodology has substantially changed since the engineering test, XM177El control weapons were also fired and the performance of the control weapons established the minimum acceptable criteria for the test weapons.

2.1.5 Legends

Malfunction

```
FFR - Failure to fire.
FF - Failure to feed.
FX - Failure to extract.
FJ - Failure to eject.
FJLR - Failure to eject the case of the last round of the magazine.
 BOB - Bolt overrode base of round in feeding.
 FF1 - Failure to feed the first round from the magazine.
DF - Double feed.
F2R - Fired two rounds with one rearward movement of the trigger
         when firing semiautomatic fire.
 FBO - Failure of the bolt to open before firing, without bumping
         buttstock on wooden bench while applying rearward force
         on the charging handle.
 FBR - Failure of the bolt to remain to the rear after firing the
         last round from the magazine.
 FFA - Failed to fire automatic.
 BAF - Bolt assist failed to function.
 BDP - Broken or damaged part.
  S - Semiautomatic.
 I-B - Interrupted burst.
 SAT - Satisfactory.
 Ammunition
 Type A = Cartridge, 5.56-mm, M196, tracer lot LC-12081 (ball pro-
```

2.2 INSPECTION

2.2.1 Objective

To determine that the test items were received in proper condition for test and to measure the physical characteristics of the test items.

2.2.2 Criteria

Criteria are as follows:

- a. The weight of the test weapon, with sling and loaded 20round magazine but no other ancillary equipment, shall not exceed the weight of the engineering test model (7.3 pounds) (Reference 1, par. 2.1.3).
- b. The length of the test weapon with the telescoping buttstock closed, shall not exceed the length of the engineering test model (27.3 inches) by more than 2 inches (Reference 1, par. 2.1.3).
- c. The chamber dimensions of plated barrel chambers shall be within the specifications of nonplated chambers.

2.2.3 Method

Photographs were obtained of the assembled weapon, right and left side, and of the disassembled weapon in a field-stripped condition.

The flash suppressor was X-rayed at the beginning and periodically throughout testing.

Weights and measurements were recorded to include internal bore dimensions, rate of twist, chamber dimensions, and other pertinent information.

2.2.4 Results

The diameter of the gas ports in the barrels of the XM177E2 weapons are 0.067 inch and 0.072 inch in XM177E1 weapons. The inspection results are illustrated and summarized in Figures 2.2-1 through 2.2-4 and Tables 2.2-I and 2.2-II. Bore dimensions are contained in Appendix I.

Figure 2.2-1: Left-Side View of C-SMG, TOP; XM177E1, CENTER; and XM177E2, BOTTOM.

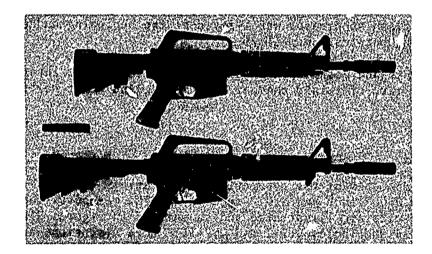


Figure 2.2-2: Right-Side View of XM177E2; Top View Is with Buttstock Closed, Bottom View is with Buttstock Extended.

12

and the second in the second second second

ing start start

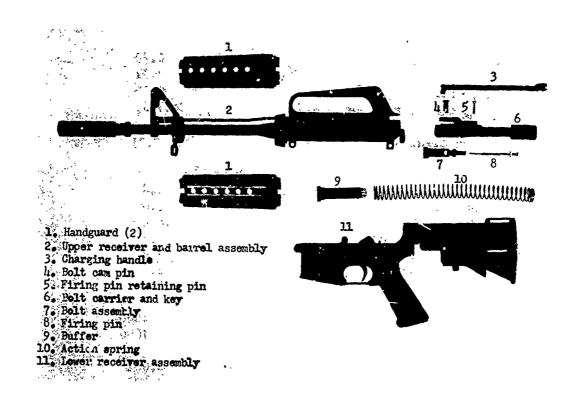


Figure 2.2-3: Field-Stripped XM177E2 Weapon.

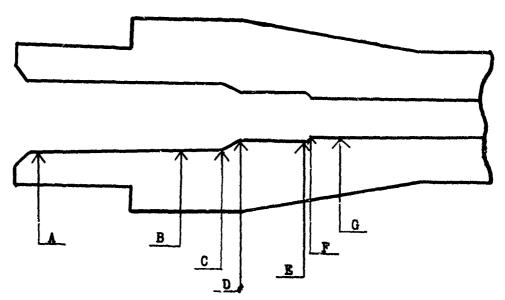


Figure 2.2-4: Sketch of Chamber for MI&Al Rifle and XM177E2 Submachine Gun. Letters Indicate Positions of Diameter Specifications as Shown on Standard Operation Instruction Sheet Used by the Manufacturer.

13

2000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100

Table 2.2-I. Physical Characteristics of Submachine Gun, XM177E2

Weight, 1b	
weapon (No. 904541) ^a	6.20
Sling	0.31
Magazine, 20rd capacity ^b	0.19
20 rounds, M193 cartridges	0.51
Weapon with sling and loaded magazine	7.21
Dimonsions, in.	
Barrel, bolt face to front of suppressor	15.4
Barrel, bolt face to barrel muzzle	11.6
Sight radius	14.4
Length, buttstock closed	29.7
Length, buttstock extended	33.0
Line of sight above bore	2.6
Buttstock comb above bore	0.7
Headspace	
Gun No. 904541, 904546	1.4646
Gun No. 904543, 904544, 904549	1.4656
Firing pin protrusion	
Gun No. 904546	0.032
Gun No. 904541, 904544	0.035
Gun No. 904549	0.036
^a An XM177E1 model weighed 6.0 pounds.	
^b T'e weight of a fully-loaded, 30-round, alu with the engineering test weapon, was 1.02	

Table 2.2-II. Chrome-Plated Chamber Dimensions of XM177E2 Submachine Guns

			Dim	ension,	in.		
	<u> </u>	<u>B</u>	<u> </u>	D	E	F	G
Diameter Specification	0.3769 0.3789	0.3594 0.3614	0.3553 0.3573	0.255 0.257	0.254 0.256	0.2245 0.2265	0.210 0.220
Gun No.							
904541 904543 904544 904546 904549	0.3810 .3840 .3838 .3866 .3863	0.3608 .3613 .3613 .3602 .3607	0.3565 .3572 .3564 .3563 .3564	0.2595 .2606 .2592 .2597 .2552	0.2550 .2558 .2550 .2549 .2552	0.2283 .2295 .2285 .2283 .2286	0.2240 .2238 .2214 .2214 .2214

2000 March Charles

2.2.4.1 Receiver Hardness. The upper and lower receivers of the XM177E2 weapon were presumably shot-peened during manufacture, instead of sand-blasted, to reduce the possibility of corrosion and exfoliation during use under adverse conditions.

A metallurgical inspection to determine the surface hardness of the five XM177E2 models, three XM177E1 models, and one C-SMG model was conducted employing a superficial Rockwell hardness tester with a 1/16-inch-diameter ball penetrator and 25-kg load (15-T scale).

No measurable difference in hardness could be detected between the test weapons by use of the hardness tester; Rockwell hardness (15-T scale) varied from 89.0 to 91.5. It was concluded that only by destructive testing (examination of a sectioned receiver) could a determination of shot-peening versus sand-blasting be established.

2.2.4.2 X-Ray Results of Flash Suppressor Investigation. The flash suppressors of the XM177E2 weapons were X-rayed at the beginning of test and periodically thereafter. The X-ray results illustrated in Figures 2.2-5 through 2.2-11 show the progressive increase of fouling deposited in the internal baffles of the suppressions for various numbers of rounds fired.

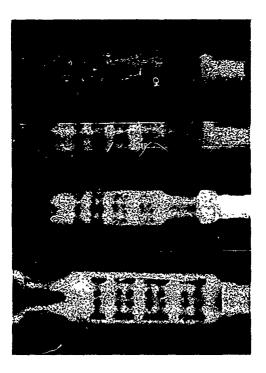
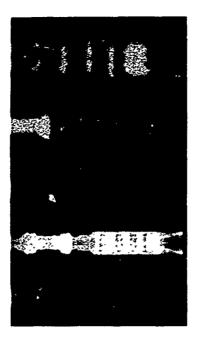



Figure 2.2-5: Flash Suppressor of XM177E1, No. 902159 after Firing 180, 1200, 2700, and 5700 Rounds (TOP to BOTTOM).

. . .

and the second

with the set a flow and in the

and a set and a subject of the set of the

Figure 2.2-6: Flash Suppressor of XM177E1, No. 902279 before Firing and after Firing 1000, 2500, 4000, and 5500 Rounds (TOP to BOTTOM).

Figure 2.2-7: Flash Suppressor of XM177E2, No. 904541 before Firing and after Firing 2269, 3579, 4209, 6088, and 9088 Rounds (TOP to BOTTOM).

l

4

ì

State States

Figure 2.2-8: Flash Suppressor of XM177E2, No. 90453 before Firing and after Firing 2269, 3579, 4209, 5887, and 8887 Rounds (TOP to BOTTOM).

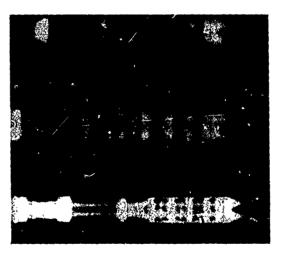
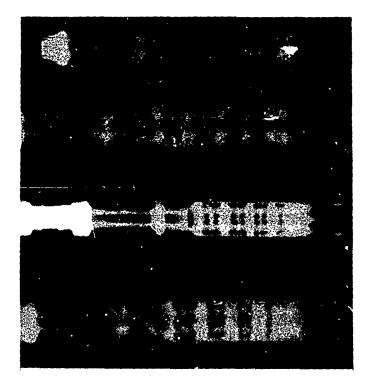



Figure 2.2-9: Flash Suppressor of XM177E2, No. 904544 before Firing and after Firing 1000 and 5167 Rounds (TOP to BOTTOM).

大きないというない

f

1

Figure 2.2-10: Flash Suppressor of XM177E2, No. 904546 before Firing and after Firing 1000, 5135, and 6515 Rounds (TOP to BOTTOM).

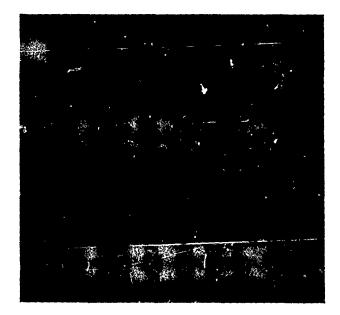


Figure 2.2-11: Flash Suppressor of XM177E2 No. 904549 before Firing and after Firing 1000 and 2064 Rounds (TOP to BOTTOM).

2.2.5 Analysis

The weight of the test weapon, 7.2 pounds, did not exceed the maximum permissible weight of 7.3 pounds and the maximum length criterion of 29.3 inches was judged not to be significantly exceeded by a measured length for the test weapons of 29.7 inches.

The criterion regarding chamber dimensions was originally prompted by concern that chrome-plating might result in undersize and out-of-tolerance chambers. However, the measurements in Table 2.2-II indicate that the chrome-plated chambers of the test weapons were oversize in some areas, although the reference data points on the standard operation instruction sheet were difficult to precisely locate on the chamber casts obtained. Considering that the major concern was to avoid undersize chambers and, due to the difficulty of obtaining precise comparison measurements, the apparent failure to fully meet the chamber dimension criterion is not considered a deficiency.

The effect of progressive fouling accumulation in the flash suppressor cavities is discussed in paragraph 1.4.2.

2.3 VELOCITY TEST

2.3.1 Objective

To determine the velocity of projectiles of variases lots of M193 and M196 cartridges when fired from the test weapon.

2.3.2 Criteria

When fired in the test weapons and at a distance of 15 feet from the muzzle with cartridges temperature conditioned at $+70^{\circ}F$:

- a. The average velocity of M193 projectiles shall be at least 2500 feet per second with a standard deviation no greater than 40 feet per second (Reference 2, par. 2.9.3).
- b. The average velocity of M196 projectiles shall be at least 2650 feet per second with a standard deviation no greater than 40 feet per second (Reference 2, par. 2.9.3).

2.3.3 Method

Sixty rounds of each of the four types of test ammunition were fired in each of three test weapons. The cartridges were conditioned before firing at -65, +70, and $+155^{\circ}F$, 20 rounds at each temperature.

19

STATE AND A STA

Dual sets of velocity screens were employed to measure time of flight at 78 feet from the weapon muzzle. A retardation factor of 1.4 fps per foot of travel is used to compute velocities at 15 feet from the muzzle.

2.3.4 Results

NOT STREET

The velocity results are summarized in Table 2.3-I and the round-by-round velocity data are contained in Appendix I.

During the test, 250 rounds were fired semiautomatically in each of three test weapons (guns No. 904544, 904546, and 904549). One failure of the bolt to remain to the rear occurred with gun No. 904549, firing lot TW-18007, with ammunition conditioned at $+70^{\circ}$ F.

Table 2.3-I. Projectile Velocity Data at 15 Feet from the Muzzle for M193 and M196 Cartridges Fired in XM177E2 Submachine Guns

			Velocity	, fps		
	+70°	F	+160	'F	-65	F
		Std		Std		Std
Gun No.	Avg	Dev	Avg	Dev	Avg	Dev
Cartridge:	M193, ball	projectile,	ball prop	bellant,	lot LC-12194.	
904544	2759	46	2833	19	2657	64
904546	2758	31	2832	21	2707	54
904549	2781	37	2860	33	2666	54
Avg	2766	38	2842	24	2677	57
Cartridge:	M193, ball	projectile,	8208M pro	opellant,	lot TW-18191	•
904544	2782	21	2860	25	2705	37
904546	2774	32	2854	13	2732	44
904549	2789	32	2864	22	2696	45
Avg	2782	28	2859	20	2711	42
Cartridge:	M196, trace	er projectil	e, ball p	ropellant	, lot LC-1208	1.
904544	2760	32	2803	21	2682	65
904546	2762	29	2797	35	2680	62
904549	2762	24	2804	20	2693	41
Avg	2761	28	2801	25	2685	56

20

South States

and the second second

Table 2.3-I (Cont'd)

			Veloc	ity, fps				
	+70		+1	60°F	-65°F			
	· ·	Std		Std		Std		
Gun No.	Avg	Dev	Avg	Dev	Avg	Dev		
Cartridge:	M196, tracer	projectile,	8208M	propellant,	lot TW-180	07.		
904544	2776	32	2842	28	2751	35		
904546	2780	25	2856	27	2753	58		
904549	2784	29	2876	28	2719	46		
Avg	2780	29	2858	28	2741	46		

Notes: Average velocities for each gun are derived from 20 rounds obtained at 78 feet from the weapon muzzle and applying a retardation factor of +88 fps (1.4 fps per foot of travel added).

Standard deviations are those obtained at the 78-foot distance.

2.3.5 Analysis

All four lots of test cartridges met the velocity criteria when fired in three XM177E2 weapons. The cartridge lots loaded with 8208M propellant produced somewhat higher velocities under similar temperature condition; than did the lots loaded with ball propellant.

2.4 TIME OF FLIGHT

2.4.1 Objective

To determine the time-of-flight characteristics of the test projectiles.

2.4.2 Criteria

When fired from a test weapon:

- a. The average velocity of M193 projectiles at 500 meters range shall be at least 950 fps with a maximum ordinate not to exceed 5.1 feet (Reference 2, par. 2.9.3).
- b. The average velocity of M196 projectiles at 500 meters range shall be at least 1100 fps with a maximum ordinate not to exceed 3.7 feet (Reference 2, par. 2.9.3).

STELLOWS

2.4.3 Method

A minimum of ten record rounds of each type of test ammunition were fired in a test weapon while employing the HAWK velocimeter to measure time of flight.

2.4.4 Results

Exterior ballistic results are summarized in Tables 2.4-I and 2.4-II.

2.4.5 Analysis

Both the M193 and M196 cartridges met the criteria delineated in paragraph 2.4.2.

の代であせつがお

Exterior Ballistic Data for M193 Cartridges Fired from C-SMG and XM177E2 Submachine Guns^a Table 2.4-1.

C-SMG, 2558 fps, lot WCC-6089 (ball propellant) XM177E2, 2787 fps, lot LC-12194 (ball propellant) XM177E2, 2803 fps, lot TW-18191 (8208M propellant) Muzzle Velocity:

	tion, mils Time of Flight, sec Max Ordinate, ft Terminal Velocity, fps 8208M 8208M 8208M 8208M	Prop. Ball Prop. Prop. Ball Prop. Prop. Ball	XM177E2 C-SMG XM177E2 XM177E2 C-SMG XM177E2 XM177E2 C-SMG XM177E2	0,00 0,00 0,00 0,0 0,0 0,0 2558 2787	0.06 0.0 0.0 0.0	0.14 0.13 0.13 0.1 0.1 0.1 2142 2361	0.31 0.28 0.28 0.4 0.3 0.3 1758 1960	0.52 0.47 0.46 1.1 0.9 0.9 1419 1603	0.78 0.70 0.68 2.5 2.0 1.9 1138 1253	1.00 0.96 5.1 4.1 3.8 967 980	1.40 1.28 8.7 8.2 6.8 881 789	1.73 1.60 13.1 10.6 834	784	26.3	36.4	50.0	3,91 68,3 567	94.3	132.4
		rop. Prop.	W177E2 XM177E2	0.0 0.0 (0.4 0.4 (0.8 0.8 (1.8 1.7 (3.1 3.0 (A.9 A.6 (7.3 6.9	11.2 9.7	12.6	15.0			,		7	
	Ele	1	C-SMG	0.0		100 1.0	200 2.1	300 3.7	400 5.9	500 8.9									

^aData on C-SMG extracted from Reference 2. ^bThe rate of velocity loss in flight for these rounds as compared to that for the 8208M-propellant-loaded lot similarly fired indicates a probable lack of stability of the projectiles of this cartridge.

2 Per 2 Per 2

;

ł

あるとうないないないできょうないないないないないです ちょうちょうちょうちょうちょうちょう

١

₽١,

Exterior Ballistic Data for M196 Cartridges Fired from C-SMG and XM177E2 Submachine Guns Table 2.4-II.

Muzzle Velocity: C-SMG, 2678 fps, lot RA-5031 (CR type propellant)
XM177E2, 2782 fps, lot LC-12081 (ball propellant)
XM177E2, 2801 fps, lot TW-18007 (8208M propellant)

s	ì	~																	
city, f	Prop.	XM177E2	2801	2623	2446	2103	1780	1481	1212	1048									
Terminal Velocity, fps	Ball Prop.	XM177E2	2782	2606	2431	2089	1767	1469	1201	1026	931	785	671	574					
Termin	Ball	C-SMG	2678	2491	2309	1961	1641	1359	1123										
, ft	BZUBM Prop.	XM177E2	0.0	0.0	0.1	0.3	0.8	1.7	3.2	5.6									
Max Ordinate, ft	Ball Prop.	XM177E2	0.0	0.0	0.1	0.3	0.8	1.7	3.2	5.7	10.1	18.0	29.4	45.6					
Мах	Ball	C-SMG	0.0	0.0	0.1	0.3	0.9	1.9	3.7										
it, sec	8208M Prop.	XM177E2	00.00	0.06	0.13	0.27	0.44	0.64	0.89	1.17									
Time of Flight, sec	Prop.	XM177E2	00.0	0.06	0.13	0.27	0.44	0.64	0.89	1.18	1.53	2.01	2.55	3.17					
Time	Ball	C-SMG	0.00	0.06	0.13	0.29	0.48	0.70	0.96										
mils	8208M Prop.	XM177E2	0.0	0.4	0.8	1.7	2.8	4.2	6.1	8.4	, 9								
Elevation, mils	Prop.	C-SMG XM177E2	0.0	0.4	3.0	1.7	2.8	2 V	5.0	8.6	12.0	17.8	25.1	34.2					
Ele	Ball	C-SMG	0.0	•••						•									
	Range	meters	c	, c	8 00 T	200	2002				200	800	006	1000	1100	1200	1300	1400	1500
									24										

^a Data on C-SMG from Reference 2; ballistic data were not obtained beyond 500 meters due to apparent erratic projectile flight.

3

٩

and the second

Sec. Stan ma

2.5 FLASH TEST

2.5.1 Objective

To evaluate the muzzle flash of the test weapon.

2.5.2 Criteria

Criteria are as follows:

a. Essential: When firing the test lots of ammunition, and by comparing photographic results, the muzzle flash shall not exceed the results reported in paragraph 2.4 of Reference 7.

1

1

b. Desirable: The muzzle flash characteristics shall be comparable to the muzzle flash of the XM16E1 rifle reported in Appendix IV of Reference 1.

2.5.3 Method

The method of test is described in Reference 1, paragraph 2.15.2, except that a different weapon with a barrel and muzzle device in "new" condition (fired more than 30 rounds and less than 300 rounds) was employed for each type of ammunition. Used 30-round magazine. from the engineering test model were employed.

The test was repeated with "used" barrels and flash suppressors (fired approximately 4000 rounds).

2.5.4 Results

The muzzle flash photographs for each trial are contained in Appendix I.

Weapons No. 904543, 904544, 904546, and 904549 were fired in this test. Each gun was fired a total of 360 rounds using a different lot of ammunition in each gun. No malfunctions occurred during the "new" condition phase (less than 300 rounds on each gun prior to the flash test). Two feeding failures occurred during the "used" condition phase (more than 4000 rounds on each gun prior to the flash test).

2.5.5 Analysis

.

2.5.5.1 New Condition Phase. When firing either of the ball projectile lots, LC-12194 (ball propellant) and TW-18191 (8208M propellant), the essential portion of the criteria was met and, when firing the latter lot, the results approached the desirable criterion established by the M16Al rifle. The criteria were not met firing either of the tracer lots although the 8208M propellant tracer lot was superior to the ball propellant tracer lot in reducing muzzle flash in the XK177E2 submachine gun.

2.5.5.2 Used Condition Phase. With weapons in "used" condition the criteria were met only when lot TW18191 was fired. The muzzle flash with all other lots was unacceptable and much more severe than when the test weapons were in "new" condition.

2.6 SMOKE TEST

2.6.1 Objective

To evaluate the signature and target obscuration effects of smoke caused by firing.

2.6.2 Criteria

When firing the test lots of ammunition, and by comparing photographic results, the signature and target obscuration results of smoke shall be judged to be at least comparable to the results obtained with the control weapon.

2.6.3 Method

The method of test is described in Reference 2, paragraph 2.6.2, except that only ten rounds were fired in each trial. The test is conducted with one control and one test weapon firing each of the four types of ammunition.

2.6.4 Results

The photographic results of the target obscuration phase are contained in Appendix I. The smoke obscuration results with the XM177E2 test weapon and the XM177E1 control weapon were comparable with each lot of ammunition fired and there appeared to be no significant differences among the lots of ammunition.

Firings were also conducted to evaluate photographically the position disclosing effects of smoke during firing. Again, no significant difference could be detected between weapons or among lots of ammunition. During the test a total of 360 rounds (90 rounds of each of the four test lots of ammunition) were fired; 180 rounds in XM177E2, No. 904549 and the same number of rounds in XM177E1, No. 902868. One failure to feed occurred while firing lot TW-18191 (ball projectile, 8208M propellant) in the XM177E1 weapon.

2.6.5 Analysis

The performance of the XM177E2 test weapon was comparable to that of the XM177E1 control weapon and the test criteria were judged to be satisfied.

2.7 ACCURACY AND DISPERSION

2.7.1 Objective

To determine the accuracy and dispersion characteristics of the test weapons when fired from a benchrest.

2.7.2 Criteria

The average standard deviation for 10-shot targets fired semiautomatically at 100 meters range for each of the test weapons shall not exceed, either horizontally or vertically, 3.4 inches for A193 cartridges and 10.7 inches for M196 cartridges (Reference 2, paragraphs 2.1.1.3 and 2.1.2.3). Note: A discussion of the suitability of the criteria is contained in paragraph 2.7.5.

2.7.3 Method

With each of three test weapons, three 10-round targets were obtained at each range (1000 inches, 50, 100, 200, and 400 meters) with each type of ammunition. Firing was done by master-class shooters from a benchrest under minimum wind conditions (0 to 5 mph).

2.7.4 Results

The dispersion results are summarized in Tables 2.7-I through 2.7-V and the individual target data are contained in Appendix I.

During the test, 619 rounds were fired semiautomatically in each of three test weapons (guns No. 904544, 904546, and 904549). One failure to fire occurred with lot LC-12081 which was an ammunition deficiency. The primer had been inserted on its side in the primer pocket of the cartridge. The primer functioned on impact from the firing pin but the propellant failed to ignite.

Table 2.7-I. Fired Dispersion Data at 1000-Inch Range for M193 and M196 Cartridges in XM177E2 Submachine Guns

Figures (given in inches) are averages of three 10-shot groups.

Gun No.	EV	VSD	EH	HSD	ES	MR
Cartridge:	M193,	ball proj	ectile,	ball prop	ellant,	lot LC-12194.
904544	2.0	0.6	2.3	0.7	2.6	0.8
904546	1.9	0.6	1.8	0.6	2.2	0.7
904549	1.0	0.3	1,1	0.3	1.3	0.4
Avg	1.7	0.5	1.7	0.5	2.0	0.6

28

and the second second as the second second

Table 2.7-I (Cont'd)

Gun No.	EV	VSD	EH	HSD	ES	MR
Cartridge:	M193, ball	projectile,	, 8208M pro	opellant,	lot TW-181	.91.
904544 904546	1.3	0.4	1.0	0.3	1.4	0.5
904549 Avg	1.3 1.4	0.5 0.5	0.9 1.1	0.3 0.4	1.4 1.6	0.5 0.5
Cartridge:		er projectil				
904544 904546 904549	3.6 3.9 4.7	1.2 1.2 1.4	3.4 1.9 3.0	0.9 0.6 0.9	4.3 3.9 5.2	1.4 1.1 1.2
Avg	4.1	1.3	2.8	0.8	4.5	1.2
Cart ridge:	M196, trace	er projectil	.e, 8208M p	propellant	t, lot TW-1	8007.
904544 904546 904549	3.9 3.6 3.3	1.1 1.1 1.0	4.2 3.4 2.3	1.3 1.1 0.8	4.7 4.2 3.7	1.3 1.3 1.1
Avg	3.6	1.0	3.3	1.0	4.2	1,2

Table 2.7-II. Fired Dispersion Data at 50-Meter Range for M193 and M196 Cartridges in XM177E2 Submachine Guns

Figure	es (given in	n inches) are	averages	of three	10-shot g	groups.
Gun No.	EV	VSD	EH	HSD	ES	MR
Cartridge:	M193, ball	projectile,	ball prop	ellant, J	ot LC-121	94.
904544 904546 904549	3.2 3.9 2.0	1 ^ ~.	3.1 3.4 2.3	1.0 1.0 0.7	3.6 4.4 3.0	1.3 1.3 0.9
Avg	3.0	1.0	2.9	0.9	3.7	1.2
Cartridge:	M193, ball	projectile,	8208M proj	pellant,	lot TW-1	8191.
904544 904546 904549	2.1 2.9 2.5	0.7 0.8 0.9	2.1 2.5 2.3	0.6 0.7 0.7	2.6 3.4 2.9	0.8 0.9 0.9
Avg	2,5	0.8	2.3	0.7	3.0	0.9

Ś

,

₽.

Table 2.7-II (Cont'd)

Gun No.	EV	VSD	EH	HSD	ES	MR
Cartridge:	M196, trace	r project	ile, ball j	propellant	, lot LC-1	2081.
904544 904546 904549	6.1 10.9 5.6	2.0 3.2 1.7	6.2 3.6 4.7	1.9 1.2 1.5	7.8 11.1 6.3	2.3 2.7 1.9
Avg_	7.5	2.3	4.8	1.5	8.4	2.3
Cartridge:	M196, trace	r project	ile, 8208M	propellan	t, lot TW-	18007.
904544 904546 904549	4.8 6.0 6.0	1.5 2.3 1.9	5.4 5.9 5.6	1.7 1.8 1.7	5.9 7.8 7.7	1.9 2.5 2.1
Avg	5.6	1.9	5.6	1.7	7.1	2.2

Table 2.7-III. Fired Dispersion Data at 100-Meter Range for M193 and M196 Cartridges in XM177E2 Submachine Guns

Figure	s (given i	n inches) a	re average	s of three	10-shot g	roups.
Gun No.	EV	VSD	EH	HSD	ES	MR
Cartridge:	M193, ball	projectile	, ball pro	pellant, lo	ot LC-1219	4.
904544	5.4	1.7	6.2	1.9	6.9	2,1
904546	9.5	2.9	8.2	2.5	11.1	3.3
904549	5.4	1.8	3.5	1.1	5.5	1.8
Avg	6.8	2.1	6.0	1.9	7.8	2.4
Cartridge:	M193, bal	l p roje ctil	e, 8208M p	ropellant,	lot TW-18	191.
904544	3.9	1.3	6.1	1.7	6.7	1.8
904546	7.7	2.3	3.6	1.1	8.1	2.1
904549	4.2	1.4	3.6	1.2	5.0	1.6
Avg '	5.3	1.7	4.4	1.4	6.6	1,8
Cartridge:	M196, tra	cer project	ile, ball	propellant,	, 1ot LC-1	2031.
904544	11,4	3.4	10.3	3.0	14.0	3.6
904546	15.3	4.9	15.3	4.6	17.8	5.6
904549	10,8	3.5	9.8	2.9	12.7	3.7
Avg	12.5	3.9	11.8	3.5	14.8	4.3

30

and the second secon

Table 2.7-III (Cont'd)

Gun No.	EV	VSD	EH	HSD	ES	MR
Cartridge:	M196, trace	r project	ile, 8208M	propellant,	lot TW_	18007.
904544 904546	12.7 14.6	4.8 4.6	12.4 15.6	4.2 4.8	16.4 19.4	5.6 5.6
904549	10.3	3.1	9.7	3.1	13.0	3.6
Avg	12.6	4.2	12.6	4.0	16.3	4.9

Table 2.7-IV. Fired Dispersion Data at 200-Meter Range for M193 and M196 Cartridges in XM177E2 Submachine Guns

Figures (given in inches) are averages of three 10-shot groups. Gun No. EV VSD EH HSD MR ES M193, ball projectile, ball propellant, lot LC-12194. Cartridge: 904544 11.4 3.8 9.9 2.9 11.9 4.1 904546 16.5 5.2 9.5 16.7 3.2 5.3 2.5 904549 9.0 7.9 3.0 10.5 3.4 11.9 3.8 9.4 Avg 3.0 13.0 4.3 Cartridge: M193, ball projectile, 8208M propellant, lot TW-18191. 904544 2.9 8.3 9.7 3.7 3.1 11.9 904546 11.3 3.4 9,7 3.2 13.5 4.0 904549 12.8 3.9 6.4 2,2 13.7 3.8 Avg 10.8 3.4 8,6 2.8 13.0 3.8 Cartridge: M196, tracer projectile, ball propellant, lot LC-12081. 904544 31.0 9.9 31.3 38.3 10.5 8.6 904546 37.3 10.8 41.4 12,3 11.9 54.4 904549 30.8 9.1 27.5 7.8 35.7 9,4 33.0 10.0 33.4 Avg 9.4 42.8 10.7 Cartridge: M196, tracer projectile, 8208M propellant, lot TW-18007. 904544 24.1 8,2 8.8 30.1 34.0 10.2 904546 30.7 23.1 7.2 9,6 34.1 10.6 904549 30.0 8.8 28.6 8.2 37.5 9.0 28.3 8.9 27.2 8.1 35.2 9.9 Avg

Table 2.7-V. Fired Dispersion Data at 400-Meter Range for M193 and M196 Cartridges in XM177E2 Submachine Guns

Figures (given in inches) are averages of three 10-shot groups.

Gun No.	EV	VSD	EH	HSD	ES	MR
Cartridge:	M193, ball	projectil	e, ball pi	ropellant,	lot LC-1	2194.
904544	38.0	11.0	27.4	8.6	41.0	11,6
904546	39.6	14.1	33.4	10.8	45.1	16.1
904549	32.2	10.3	22.0	6.4	34.2	10,2
Avg	36.6	11.8	27.6	8.6	40.1	12,6
Cartridge:	M193, ball	projectil	e, 8208M p	propellant	, lot TW-	18191.
904544	23.1	7,8	20.6	6.3	27.0	8.7
904546	32.5	10.6	28.5	8.1	35.9	11.1
904549	22.9	7,9	19.8	6.8	26.4	9.2
Avg	26.2	8.8	23.0	7.1	29.8	9.7
Cartridge:	M196, trad	er project	ile, ball	propellan	t, lot LC	-12081.
904544	61.7	18.3	48.2	15.5	65.2	19.7
904546	52.8	16.0	59.7	17.9	65.1	19.5
904549	38.2	11.5	37.2	11.4	44.2	14.7
Avg	50.9	15.3	48.4	14.9	58.2	18.0
Cartridge:	M196, trac	er project	ile, 8208	n propella	nt, lot T	W-18007.
90 4 544	46.2	14.4	39.5	11.8	56.5	15.7
904546	56.5	14.9	43.0	12.4	58.0	19.4
904549	46.8	10.0	36,5	11.1	50.2	14.5
Avg	49.8	12.1	39,7	11.7	54.9	16.5

2.7.5 Analysis

The test plan criteria for M193 and M196 cartridges at 100 meters range, as stated in paragraph 2.7.2, were incorrectly extracted from the engineering test report (References 1 and 2) from firings done prone and without the aid of a sling. The correct benchrest average standard deviation for M193 cartridges should be 3.1 inches instead of 3.4 inches. The correct reference is Reference 1, Volume 2, Appendix I, page 122.

32

The engineering test report does not contain comparable benchrest data for M196 cartridges as all tracer firings were done prone and without the aid of a sling. However, the ballistic data inspection sheets contained in Appendix I of this report suggest that the dispersion of M196 cartridges should be approximately 2.5 times that of M193 cartridges. This is based on a maximum permitted mean radius of 2.0 inches at 200 yards for M193 cartridges and a 5.0-inch mean radius at 200 yards for M196 cartridges fired from a Mann barrel. Applying this factor to the 3.1-inch standard deviation criterion for M193 cartridges provides a suitable benchrest firing standard deviation criterion of 7.8 inches for M196 cartridges.

Applying the standard deviation criteria of 3.1 and 7.8 inches at 100 meters to M193 and M196 cartridges respectively, the test weapons did not exceed the maximum permissible criteria with any of the test lots of ammunition. The cartridge lots loaded with 8208M propellant provided smaller dispersion than did the lots loaded with ball propellant.

2.8 GRENADE LAUNCHER (XM148) TEST

2.8.1 Objective

To determine the feasibility and safety of firing the XM148 grenade launcher attached to the XM177E2 submachine gun.

2.8.2 Criteria

Not applicable.

2.8.3 Method

The test was directed as a supplement to the XM177E2 firings specified in the test plan. The supplemental directive is contained in Appendix II.

The details of test, as well as the results of test, were forwarded to Hq, USATECOM in letter form, a copy is contained in Appendix II.

2.8.4 Results

Reference Appendix II.

2.8.5 Analysis

Not applicable.

2.9 SUSTAINED FIRE

2.9.1 Objective

To determine the durability, reliability, and other performance characteristics of the test weapons.

2.9.2 Criteria

Criteria are as follows:

- a. The malfunction rate of the test weapons shall not exceed 0.003 (Reference 1, par. 2.22.3). Note: Only malfunctions that cause a stoppage in firing, but regardless of how easily they may be cleared, are counted in the malfunction rate. Failures to feed, to fire, to extract, and eject are the most common. A broken or damaged part is also included in the malfunction rate if the part is a critical component in gun operation even if the breakage did not cause a firing stoppage.
- b. No significant degradation shall be permitted for dispersion, velocity, projectile yaw, or cyclic rate of fire throughout test (Reference 1, par. 2.22.3).

2.9.3 Method

The method is as follows:

- a. The weapons are fired at a rate of 15 rd/min for 30 minutes, completely cooled, and then fired 40 rd/min for 5 minutes. The foregoing schedules are fired semiautomatically and repeated automatically. Three 10-shot targets are recorded at a range of 100 meters, semiautomatically, from a benchrest, before and after each of these firing tests. Velocities and projectile yaw are measured during the function-firing of the rounds in the next-to-last magazine in each semiautomatic and automatic phases (650 rounds per phase), and at least ten projectile velocities are determined during each of the benchrest trials.
- b. The schedule outlined in a is repeated with the rates of fire doubled and the firing time halved.
- c. The schedule is repeated again but with the rates of fire specified in b doubled and the firing time halved.

and the second second second

- d. Cyclic rates of fire are recorded for weapons fired automatically.
- e. All weapons are cleaned before and after the firing in c and after the firing in d.

Four weapons are employed in this test; each weapon to be fired exclusively with a single type of ammunition.

2.9.4 Results

Functioning data are summarized in Table 2.9-I. Detailed target data are contained in Appendix I.

Table 2.3-I. Summary of Functioning Data for Sustained Fire Test

Test Phase	Mode of Fire	Rate of Fire, rd/min	No. Rds Fired	Malfunct	Remarks
Gun No.: Cartridg		•	12194 (t	all prope	llant).
1	Acc	-	33		
2	SA	15	450	6-BOB a1-FBR	
3	SA	40	200	1-BOB a4-FBR	
4	Acc	-	33		
5	A	15	450	1-FJ a2-FBR	
6	A	40	200	a1-FBR a2-FJLR	
7	Acc	-	30		
8	SA	30	450	a1-FBR	
9	SA	80	200		
10					The accuracy exercise was inadvertently omitted.
11	A	30	450	a1-FBR a1-FJLR	·
12	А	80	200		
13	Acc	-	30		
14	SA	60	450	a4-FBR	
15	SA	160	200	a2-FBR	
16	Acc	-	30		Some barrel erosion noted for several inches forward from the chamber; the chrome- plated chamber appeared to be undamaged.

^aMalfunctions excluded from criteria evaluation.

Table 2.9-I (Cont'd)

04-0010-000

and the second second

Ĭ

and the second second second second

Test Phase	Mode of <u>Fire</u>	Rate of Fire, rd/min	Nc. Rds Fired	Malfunct	Remarks
17	A	60	450	3-FJ ^a 10-FBR	
17A	SA	-	40	10-1 DA	Fired as functioning rounds.
18	A	160	200	1-BDP 2-FJ a 1-FBR	The ejector spring was damaged and was replaced.
19	Acc	-	30		The metal liners on the plastic hand-guards were loose.
Total			4126	43	
	tion rate 904546. e: M193,	Nu Nu	mber of	using a sto rounds fire 8M propella	ad = 4126 = 0.0034
1	Acc		33		
2	SA	15	450	1-BOB	
3	SA	40	200	3-BOB	
4	Acc	+0	33	3-808	
5	A	15	450		
4 5 6	A	40	200		
7	Acc		30		
8	SA	30	450		
9	SA	80	200		
10					The accuracy exercise was inadvertently omitted.
11	A	30	450	1-FF	induvercently omitted.
				3-FFR	The malfunctions occurred on the first four rounds of this phase.
12	A	80	200		ansa husaat
13	Acc	-	30		
14	SA	60	450		
15	SA	160	200	1-BOB	

^aMalfunctions excluded from criteria evaluation.

Table 2.9-I (Cont'd)

Test Phase	Mode of Fire	Rate of Fire, rd/min	No. Rds Fired	Malfunct	Remarks
16	Acc	-	30		While the chamber appeared undamaged, considerable erosion, more than noted with gun No. 904544, was evident in the area immediately forward of the chamber.
17	Α	60	450		
18	Α	160	200		
19	Acc	-	30		The metal liners on the hand-guards were loose.
Total			4086	9	
Malfun Gun No. Cartrid		e N	lumber o	causing a f rounds f 08M propel	ired 4086
1	Acc	_	33		
2	SA	15	450		
3	SA	40	200		
4	Acc	-	31		
5	A	15	450		
6	A	40	200		
7	Acc	-	30		
8	SA	30	450	^a 5-F2R ^a 1-F3R 1-B0B	
9	SA	80	200		The barrel and chamber werc inspected, no damage or erosion was noted.
10	Acc	-	30		
11	A	30	450	3-BOB ^a 1-FBR	All occurred on the 18th round in each of three magazines.
12	A	80	200	2-BOB	One occurred on 18th round; one on 16th.
13	Acc	-	30		· · · · · · · · · ·

^aMalfunctions excluded from criteria evaluation.

37

And the state of the

Name of the second seco

1

*シントマネ ちぼ

5

 $(\cdot,\cdot) \in \mathcal{G}$ is the second second second structure in the second seco

a the the second static side

and the second second

Test	Mode of	Rate of Fire,	No. Rds		
Phase	Fire	<u>rd/min</u>	Fired	Malfunct	Remarks
14	SA	60	450	2 - BOB	Both occurred on 18th round.
15	SA	160	200		
16	Acc	-	30		
17	A	60	450	^a 5-FBR	One liner on one hand-guard was loose.
18	A	160	200	1-BOB	Excessive carbon build-up, but not as severe as gun No. 904541, on flash suppressor slots.
19	Acc	-	30		Severe chipping and erosion of the barrel lands were found immediately forward of the chamber.
Total			4114	21	
Gun No.					$\frac{\text{stoppage}}{\text{ired}} = \frac{9}{4114} = 0.002$
1	Acc	-	33		
2	SA	15	450	1-B03	
2A			874		Fired to investigate prob- lem of projectile yaw and projectile break up. No firing malfunctions occurred. Borescope in- spection of the chamber, bore and flash suppressor failed to detect any defi- ciency or any fouling accumulation.
3	SA	40	200		
4	Acc	-	32		
5	A	15	450	1-BOB a2-FBR	

aMalfunctions excluded from criteric evaluation.

Table 2.9-I (Cont'd)

Test Phase	Mode of Fire	Rate of Fire, rd/min	No. Rds Fired	Malfunct	Remarks
6	A	40	200	1-BOB a _{2-FBR}	
7	Асс	-	30		
8 to 10					These phases were omitted due to extra firing in phase 2A.
11	A	30	450	a3-FBR	-
				1-BOB	Occurred on 18th round.
12	Α	80	200		
13	Acc	-	30		
14	SA	60	450	a 3-F2R	
				a4-FBR	
15	SA	160	200		
16	Acc	-	30		
17	A	60	450	a ₆₋ FBR	Excessive carbon build-up on flash suppressor slots noted.
18	Α	160	200	^a 1-FBR	
19	Acc	· •	30	2-BDP	The polyurethane end cap on the buffer was chipped and cracked; it was not replaced. The extractor spring was broken and was replaced. Severe chipping and ero- sion of the barrel lands were noted.
Total			4 3 0 0	27	

Total

4309 27

Malfunction rate = $\frac{\text{Malfunctions causing a stoppage}}{\text{Number of rounds fired}} = \frac{6}{4309} = 0.001$ ^aMalfunctions excluded from criteria evaluation.

Legend:

ACC = Accuracy targets, fired single shot or semiautomatic.

- S = Semiautomatic.
- A = Automatic.

2.9.4.1 Benchrest Accuracy. At the beginning of test, and then again following approximately each 650 rounds, three semiautomatically fired 10-shot targets were obtained on each occasion firing from a benchrest. Table 2.9-II summarizes these data. The guns were at normal ambient temperature prior to benchrest accuracy tests and the guns were cleaned following each benchrest exercise.

ちんちょうしん ちょうちょうちょうちょう

Table 2.9-II. Summary of Accuracy Test Phases during Sustained Fire Test

Data for each gun are the average in inches of three 10-shot targets at 100-meters range.

Too+

Test									
Phase				Target	Data				
No.	Gun No.	Ctg Lot	EV	VSD	EH	HSD	ES	MR	•
1	904544	LC-12194	7.6	2.2	5.1	1.7	7.9	2.3	
	904545	TW-18191	5.4	1.7	7.2	2.1	7.5	2.4	
	904543	TW-18007	9.6	3.1	9.2	2.8	11.9	3.5	
	904541	LC-12081	9.6	3.1	11.0	3.2	13.1	3.9	
4	904544	LC-12194	10.6	3.1	4.8	1.4	10.8	2.8	
	904546	TW-18191	7.0	1.9	6.7	2.0	8.0	2.3	
	904543	TW-18007	21.9	6.3	10,4	3.1	23.6	5.1	
	904541	LC-12081	14.7	4.5	11.9	4.0	19.0	5.1	
7	904544	LC-12194	7.5	2.6	4.9	1.7	8.2	2.8	
	904546	TW-18191	4,9	1.5	4.0	1.2	5,5	1.6	
	904543	TW-18007	11.7	3.9	14.6	4.6	15.7	5.4	
	904541	LC-12081	30.5	9.7	26.8	9.1	34.4	11.8	
10	904544	LC-12194	This	test pha	ase was	omitted	i.		
	90454ó	TW-18191	This	test pha		omitted	1.		
	904543	TW-18007	19,4	υ . 0	16.7	5,2	24.1	6.6	
	904541	LC-12081	This	test pha	ase was	omitted	1.		
13	904544	LC-12194	8.9	3.1	7.9	2.4	10.3	3.5	
	904546	TW-18191	6.1	1.8	5.2	1.6	7.3	2.1	
	a 904543	TW-18007	-	•	-	-	-	-	
	904541	LC-12081	32.9	12.4	30,1	9.2	39.9	13.6	
16	904544	LC-12194	13.3	4.4	7.7	2.3	14.2	4.2	
	ຸ904546	TW-18191	4.2	1.3	6.2	1.8	6.3	1.7	
	^b 904543	TW-18007	-	-	-	-	-	-	
	904541	LC-12081	25.3	7.8	25.0	7.6	33.3	8.7	
19	904544	LC-12194	9.3		5.4	1,8	9.7	2.9	
	904546	TW-18191	5.3	1.7	6.4	1.9	7.7	2.2	
	a904543	TW-18007	-	-	-	-	-	-	
	c 904541	LC-12081	-	-	-	-	-	-	

^aThree of the 30 shots missed the 8- by 10-feet target. ^bSeven of the 30 shots missed the 8- by 10-feet target. ^cFour of the 30 shots missed the 8- by 10-feet target.

40

and the second second

And a state of the second short the second second

2.9.4.2 Cyclic Rate of Fire Data. During the automatically fired phases of the sustained fire test, cyclic rates of fire were measured for several of the final 20-round magazines in each phase. The data are summarized in Table 2.9-III.

Table 2.9-III. Cyclic Rate of Fire Data during Sustained Fire Test

Each rate is in rd/min for a single 20-round burst.

Test								
Phase	Gun No.	904544	Gun No.	904546	Gun No.	904543	Gun No.	904541
No.	Lot No.	LC-12194	Lot No.	TW-18191	Lot No.	TW-18007	Lot No.	LC-12081
5	953	967	900	905	867	858	Data not	obtained
•	977	973	893	907	892	895	Data not	obtained
	990		897		900			
Avg		972		900		882		
6	920	907	893	900	860	883	896	908
v	917	913	910	899	907	917	925	917
					908	900	930	
Avg		914		900		896		915
11	897	890	892	882	913	908	850	860
	906 893	883	888	887	933 967	950	883	917
Avg		894		887		934		933
12	863	867	850	867	883	917	833	867
•••	892	883	867		941	950	917	942
	903		862		958		928	
Avg		882		861		930		897
17	Data 1	not	Data	not	917	925	941	933
		ained		ained	927	930	930	933
					925		917	
Avg						925		931
18	883	900	833	826	850	833	850	875
			842 882	850	833 883		897 908	900
Avg		892		847		855		886

41

いかい ついみ

2.9.4.3 Projectile Velocity Data. During the benchrest accuracy phases, with rifle barrels at normal ambient temperature, projectile velocities were measured at a distance of 78 feet from the muzzle. Again, during the final rounds in automatically fired phases, projectile velocities were measured at 22 feet from the muzzle with the weapon barrels heated by sustained fire. The velocity data are summarized in Table 2.9-IV.

Table 2.9-IV. Summary of Projectile Velocity Data during Sustained Fire Test

Average velocities are in fps at 22 feet from the weapon muzzle (hot barrel) and at 78 feet (cold barrel).

Test		No. 904544 . LC-12194						. 904541 LC-12081
Phase		Barrel		Barrel		Barrel		arrel
No.	Hot	Cold	llot	Cold	Hot	Cold	llot	Cold
1	-	2721	-	2724	-	2721	-	2716
4	-	2730	-	2676	**	a _	-	a _
6	2741	-	2752	-	2726	-	2611	-
7	-	2647	-	2689	-	а _	-	a -
10	-	Omitted	-	Omitted		a _	-	Omitted
12	2621	-	2643	-	2703	-	2664	-
13		2643	-	2526	-	a _	-	а_
16	•	2642	-	2640	-	R _	-	a _
18	2700	-	2628	-	2662	-	2626	-
19	-	2624	-	2622	-	a _	-	a _

^aDue to extreme dispersion, it was not possible to obtain velocity at the 78-foot distance without impacting and damaging the time-offlight instrumentation.

2.9.4.4 Cook-Off Data. Immediately following the majority of the 200and the 450-round sustained fire phases, a single round was chambered in the test weapon and a 5-minute cook-off period was observed. These data were obtained for additional information during the sustained fire exercise. The cook-off results are given in Table 2.9-V.

Table 2.9-V. Cook-Off Data during Sustained Fire Test

Gun No. 904543 Lot TW-18007 Cook-off test Cook-off test No cook-off No cook-off No cook-off No cook-off Test interomitted omitted 18 2 22 rupted 14 Cook-off test Cook-off test Cook-off test Cook-off test Time to Cook-Off, sec o. 904546 Gun No. 904541 Lot LC-12081 No cook-off No cook-off omitted omitted omitted omitted 15 15 25 22 Cook-off test Cook-off test Cook-off test Cook-off test Gun No. 904546 Lot TW-18191 No cook-off omitted omitted omitted omitted 12 13 19 6 13 Accuracy Phase Accuracy Phase Accuracy Phase Accuracy Phase Accuracy Phase Phase Accuracy Phase Cook-off test omitted Accuracy Cook-off test Cook-off test Cook-off test Gun No. 904544 Lot LC-12194 No cook-off No cook-off No cook-off omitted omitted omitted 20 28 23 20 Fire, rd/min Rate of 160 60 160 12 15 40 30 80 30 60 40 Fired Imme-No. Rds diately prior to Cook-Off 450 200 450 200 450 200 450 200 450 200 450 200 Fire ilode SA SA SA SA SA 0 F SA < < < 4 4 ۲ Phase Test No. 13 15 117 117 119 3 90 8 10 11 4 S 6 N -1

43

2.9.4.5 Projectile Yaw Data. A continuously moving target was used at a distance of 1000 inches (25 meters) to record projectile yaw or projectile breakup during the 200- and 450-round firing phases. The 100-meter benchrest targets were also inspected for impact irregularities. The observations are summarized in Table 2.9-VI.

Table 2.9-VI. Projectile Yaw Data during Sustained Fire Test

Test	No. Proj	Yaw Occurred	Amount of Yaw,
Phase	Evidencing	during Final	Proj Impact
No.	Yaw	No. Rds Fired	Length, in.
	: 904544.		
Cartrid	ge: M193, lot	LC-12194 (ball pr	opellant).
3	4	36	0.26 to 0.27
6	1	-	0,38
14	8	30	0.28 to 0.36
15	9	40	0.26 to 0.35
17	7	50	0.26 to 0.30
18	18	40	0.28 to 0.35
Gun No.	: 904546.		
Cartrid	ge: M193, lot	TW-18191 (8208M p	ropellant).
2	2	40	0.26
14	3	30	0.25
15	4	40	0.25
0			
	: 904541.	IC 10001 (hall an	
Cartrid	ge: M190, 100	: LC-12081 (ball pr	operrant).
1	See Table 2.9-	. T T	
		-	high tracing failure.
	Same as above.		ing cracing rarrary,
			the projectiles within the
-	velocity sca	eens: dispersion t	abulated in Table 2.9-II.
5			continued throughout test
5			jacket fragments noted.
			ively measure the data.
	re and rubre	eeren eo guurreu	
Gun No.	: 904543.		
		TW-18007 (8208M pr	opellant).
		•	•
	See Table 2,9-	·II.	
2	Extreme disper	rsion observed, but	less than with lot
	LC-12081.		
		44	

A STATE OF A

ころうちょうないできょうできょうできょうできょうできょうできょうできょうできょうできょう

ant Atorian is

Table 2.9-VI (Cont'd)

Test Phase No.	No. ProjYaw OccurredAmount of Yaw,Evidencingduring FinalProj ImpactYawNo. Rds FiredLength, in.
3	Same as Phase No. 2; one stripped jacket noted.
4	See Table 2.9-II.
5	12 30 0.28 to 0.34
6	12 40 0.28 to 0.40
7	See Table 2.9-II.
8	24 50 0.28 to 0.35
9	20 40 0.26 to 0.42
10	See Table 2.9-II.
11	26 40 0.28 to 0.62
12	28 40 0.28 to 0.42
13	See Table 2.9. II.
13	This phase was interrupted by a gun malfunction.
15	$\frac{1}{22} \qquad 40 \qquad 0.28 \text{ to } 0.50$
15	See Table 2.9-II.
	26 44 0.28 to 0.56
17	
10	Six shots missed the yaw target. 18 40 0.28 to 0.38
18	a u
	Seven shots missed the yaw target.
19	See Table 2.9-II.

2.9.5 Analysis

2.9.5.1 Weapons Firing M193 Cartridges. The malfunction rate was exceeded with one test weapon firing M193 ball, lot LC-12194 (ball propellant). Some reduction occurred in projectile velocities and in average cyclic rates of fire as the test progressed. In addition, the incidence of projectile yaw steadily increased, particularly with the ball-propellant-loaded lot, although no similar degradation in benchrest dispersion was noted. However, it was judged that the total performance degradation was slight, considering the severity of the test, and both weapons firing ball projectiles were considered to have met the basic performance levels stated in paragraph 2.9.2.

2.9.5.2 Weapons Firing M196 Cartridges. Although the malfunction rate was not exceeded with either of the test weapons, the projectile dispersion and incidence and degree of yaw were completely unacceptable. The degradation was more severe with the ball-propellant-loaded lot than with the 8208M-propellant-loaded lot.

During this test, and with the concurrence of the Project Manager, a limited amount of unscheduled firing was undertaken in an attempt to identify the incompatibility of the XM177E2 submachine gun and M196 tracer cartridges. A number of experimental firings were conducted and some high-speed radiograph X-rays were obtained of tracer bullets exiting from the weapon muzzle. Figure 2.9-1 illustrates some of the targets that were fired and Figure 2.9-2 illustrates projectiles from M196 tracer lot LC-12081 (ball-propellant-loaded) at the moment of launch from gun No. 90451.

The upper targets in Figure 2.9-1 were fired to determine if the suppressor original to gun No. 904541 was the cause of projectile yaw. The lower targets were fired to determine if gun No. 904541 was capable of firing other lots with more acceptable results. Lot TW-18007 is a tracer lot and lot TW-18191 is a bail projectile lot, both loaded with 8208M propellant.

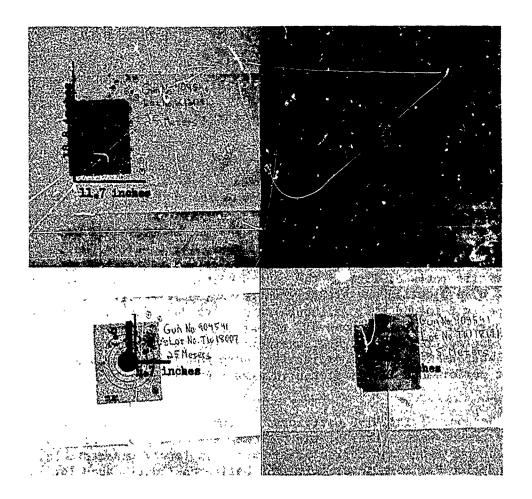


Figure 2.9-1: Typical 120-Round, 25-Meter Targets Fired with Gun No. 904541 and Various Lots of Ammunition. Circled Projectile Impacts Indicate Severe Yaw. Rate of Fire, 15 Rds/Min.

46



Figure 2.9-2: High-Speed Radiograph X-Rays Showing Tracer Projectiles from Cartridge, M196 Tracer, Lot LC-12081 Exiting from Flash Suppressor of Gun No. 904541.

The upper right X-ray shows a projectile yawing and apparently displaced from the bore line. Note that the jacket around the tracer cavity appears bulged or deformed. The upper left X-ray shows a projectile in what appears to be a position of extreme yaw while still in the suppressor. The lower X-ray shows a projectile just emerging from the suppressor with a very noticeably bulged or deformed jacket around the tracer cavity. While these exploratory firings failed to identify the cause of the tracer incompatibility problem, it became increasingly evident that the test lot of ball-propellant-loaded tracers fired in the XM177E2 submachine gun was nearly useless as a tactical lot of ammunition and possibly even dangerous to fire because of bullet jacket break-up. Almost simultaneously with the XM177E2 firings, the tracer problem was encountered in a somewhat similar manner with M16A1 rifles (Reference 9) and, on 7 November 1967, information was received that USAMUCOM had suspended the lot from firing by other agencies except for emergency combat use.

While the M16A1/M196 problem may be solved most logically by redesign of the cartridge or respecification within the ammunition data package, the tracer incompatibility with the XM177E2 submachine gun may require weapon modification as well as a change in ammunition. This concern is due to the design of the combination sound suppressor flash hider device on the XM177E2 weapon. The passageway through the suppressor intended for bullet travel is 0.25 inch in diameter for 2 inches of suppressor length. This permits propellant gases to bypass the projectile, possibly resulting in projectile yaw from side to side within the suppressor. Due to the thin jacket which must enclose the tracer cavity, the jacket may then become ruptured, bulged, or split if yawing and impacting the suppressor occurs. The presumably more durable solid core ball projectiles may be able to withstand the rupturing forces which cause the tracer projectile to fail. In addition, the ball projectiles are 0.15 inch shorter than the tracers.

While the preceding analysis is entirely conjectural, it is presented to emphasize that any solution to the current M196 ammunition/ M16A1 rifle problem will also require confirmation by firing in the XM177E2 submachine gun. Failure at that point may require a redesign of the XM177E2 muzzle device which in turn will require refiring many of the subtests in this report.

ころにないで、 ちょう ちょう ちん ちょうちょう

×~.

North Contraction of the State

2.10 HIGH TEMPERATURE, HIGH HUMIDITY TEST

2.10.1 Objective

To evaluate the performance of the weapon when subjected to a high temperature, high humidity environment.

2.10.2 Criteria

The malfunction rate of the test weapons shall not exceed that of the control weapons.

2.10.3 Method

In the humidity test, two test weapons and two control weapons were exposed as indicated in Table 2.10-I for 10 days, with firings on the third, fifth, eighth, and tenth days. Each weapon was fired 1000 rounds; 250 rounds each time, in 125-round groups, with cooling between groups, and alternating between semiautomatic and automatic fire. This test is conducted without the benefit of cleaning or addition of lubrication between firings. Daily firing is conducted only after a minimum of 4 hours of continuous high temperature conditioning. One test weapon and one control weapon are each fired only with cartridges loaded with ball propellant, the remaining control and test weapons fired only with cartridges loaded with IMR8208M propellant. Additionally, magazines loaded with ball projectile cartridges and magazines loaded with tracer projectile cartridges are fired alternately in each weapon throughout the test.

Table 2,10-I. Storage-Firing Schedule for Humidity Test

No. Hrs		Temp, °F	Relative Humidity, %
4	increase to	155 and	95
12	maintain at	155 ± 3 and	90 to 95
4	decrease	155 to 70 increase to	96 to 98 (saturation)
4	maintain at	70 ± 3 and	95 to 98

Total 24

2.10.4 Results

The results of the test are summarized in Table 2.10-II.

Table 2.10-II. Results of High Temperature, High Humidity Test Legend:

Type A Cartridge: M196, tracer, lot LC-12081 (ball propellant). Type B Cartridge: M196, tracer, lot TW-18007 (8208M propellant). Type C Cartridge: M193, ball, lot LC-12194 (ball propellant). Type D Cartridge: M193, ball, lot TW-18191 (8208M propellant).

Ammo	Nu	mber of Days So and Humidity	aking in Temper Before Firing	ature	Total	Avg Cyclic Rate,
Туре	3	5	8	10	Malfunct	rd/min
Weapon:	XM1 771	E1, No. 902159.				
A-C	2-FBR	2-FBR	1-FBR	SAT	5	
Cyclic	Rate:	rd/min.				
Α	1000	993	973	928		973
С	1040	1049	1033	1008		1032
Weapon:	XM1771	E1, No. 902279.				
B-D	SAT	SAT	1-FBR, 1-BOB	4-FBR	6	
Cyclic	Rate, ro	d/min.				
В	999	954	938	957		962
D	973	957	955	961		961
Weapon:	XM1 771	E2, No. 904546.				
B-D	1-FF1	1-FF1, 1-FBR	2-FBR	SAT	5	
Cyclic	Rate, ro	l/min.				
В	947	945	927	948		942
D	930	912	917	927		921

Table 2.10-II (Cont'd)

Ammo			ing in Temperatu Before Firing	ure	Total	Avg Cyclic Rate,
Туре	3	5	8	10	Malfunct	rd/min
Weapon	: XM177E2, No.	904549.				
A-C	1-BOB, 1-FJ	SAT	2-FBR	1-FBR	5	
Cyclic	Rate, rd/min.				÷	
Α	886	901	908	888		896
С	946	939	927	926		934

2.10.5 Analysis

The performance of E2 weapons was comparable to that of the E1 weapons. Two malfunctions which caused stoppages occurred on E2 weapons and one on the E1 weapons.

2.11 LOW TEMPERATURE, FOULING TEST

2.11.1 Objective

To evaluate the performance of the weapons when subjected to and fired in a low temperature environment expected to increase the severity of fouling.

2.11.2 Criteria

The malfunction rate of the test weapons shall not exceed that of the control weapon.

2,11,3 Method

Two test and two control weapons and sufficient rounds of ammunition were subjected to $+20^{\circ}F$ for a minimum of 12 hours prior to firing and between firing cycles. Each of the weapons was fired 1500 rounds, 300 rounds on each of five days, in 100-round groups at 4-hour intervals. Firing was conducted with respect to provellant-projectile combinations as in paragraph 2.10.3. Each weapon was disassembled, cleaned and lubricated with the prescribed oil prior to storage at $+20^{\circ}F$. The effect of combustion residue build-up on weapon performance was evaluated and cyclic rates of fire were recorded during each firing day. At the conclusion of firing at $+20^{\circ}F$, the weapons were cleaned and lubricated and the environmental chamber temperature lowered to -65°F and the test repeated. The test was again repeated at -40°F. A witness screen was positioned at 25 meters from the muzzle to check yaw on the last three 100-round cycles.

2.11.4 Results

The results of the test are summarized in Tables 2.11-I, -II, and -III.

Table 2.11-I. Results of +20°F Test.

~ !	yclic Rate, d/min	sly	1	5		ы	0		S	17						363	901		887	885	
177E 543	<u>о н</u>	evicu 4387.	841	893		853	910		825	907		t	•			š	6		õ	õõ	
n XM177 904543	Ammo Type	s Pre d: 4	٩	: U		A	ပ		۷	ပ		۵	; <i>د</i>	2		۷	U)	٨	U	I
Weapon XM177E2 No. 904543	Funct	No. Rds Previously No. Rds Previously Fired: 4588. Fired: 4387.	SAT 1_DF	1	SAT	1-FF		2-DF	SAT	5	1-DF	F.	INC		1-UF	b2-FFR	i	2-DF	2-1)F	, i l	
177E2 541	Cyclic Rate, rd/min	eviously 4588.	107	775	•	796	797		770	262		765		611		767		240	768	262	The holt was cleaned.
n XM177 904541	Ammo Type	s Pre d: '	٥)	B	Δ		ď	2	I	5	a (a		ď		2	ď	2	ט מי ני
Weapon XM177E2 No. 904541	Funct	No. Rds Fired:	SAT	INC	SAT	SAT		SAT	100	IVC	SAT		SAT		SAT		THC	C A T		THC	4 1 + 1 o 4
7	Cyclic Rate, rd/min	Ŷ		824 879	1	800	787		700	796			/94	794		101	10/	/00/	101	004	-
Weapon XM177E1 No. 902279	1 .	revious] 1000.	"	2 C	-	BN		1	c	a c	ב	i	2	ŋ		6	a 2	a	c	9 6	
Weapoi No	Funct	No. Rds Previously Fired: 1000.	SAT	SAT	1 1 1 1 1 1	L-FF, L-FDA CAT	IVC	Ē		SAL		SAT	SAT		SAT	-	SAT		SAT	SAT	890 n
7E1	Cyclic Rate, rd/min	Previously 1200.		811	8/8	040	040	700		826	894		830	ı		1	832	887		824	068
on XM17		Prev 12		4	5	•	د ر	ر		•	<u>ر</u>		Ą	U			A	ပ		4	()
	Funct	No. Rds Fired:	SAT	SAT		SAT	SAT			SAT		SAT			а Т	BUP	SAT			SAT	ر ې
	Mode of Fire		Semi	Auto		Semi	Auto		Semi	Auto		Semi	Auto		Semi		Auto		Semi	Auto	
	No. Rds Fired			160		100	100		100	100		100	100	1	100		100		100	100	

^a The firing pin was bent. A new one was installed. The bolt was cleaned. ^bThe firing pin was seized as a result of heavy accumulation of carbon in the bolt. It was necessary to use a screwdriver to force the firing pin from the bolt. The weapon was not operable until the bolt was cleaned.

Table 2.11-I (Cont'd)

194-194 1

ž

		Weap No	Weapon 3M177E1 No. 902159	77E1 59	Weapo No.	Weapon XM177E1 No. 902279	7E1 '9	Weap	Weapon XN177E2 No. 904541	77E2 41	Weap No	Weapon XM177E2 No. 904543	77E2 43
No. Mode Rds of Fired Fire Funct		•••	Ammo	Cyclic Rate, rd/min	Funct	Ammo Type	Cyclic Rate, rd/min	Funct	Ammo Type	Cyclic Rate, rd/min	Funct	Ammo Type	Rate, rd/min
Semi 1-DF	1-9F				SAT			1-FJ			1-DF		1
	SAT		A I	834	SAT	29 1	774	SAT	ca (760	2-DF	< (813
Semi 1-DF	1-DF		U U	905	SAT	a	/80	SAT	a	803	2-DF	ر	љ ማ
Avg	Avg		ν	828 890		B D	793 781		80	773 793		ν	847 903
Malfunction rate 0.26 per 100 rds	e 0.26				0.06			0.06			1.13		
Note: Ammunition Type A C Ammunition Type B C Ammunition Type C C Ammunition Type D C	on Type on Type on Type on Type		A Car B Car C Car D Car	Cartridge: Cartridge: Cartridge: Cartridge:	M196, M196, M193, 1 M193, 1	tracer, tracer, ball,] ball,]	tracer, lot LC-1208 tracer, lot TW-1800 ball, lot LC-12194 ball, lot TW-18191	-12081 -18007 2194 (b 8191 (8	(ball] (8208M all pr 208M p;	M196, tracer, lot LC-12081 (ball propellant). M196, tracer, lot TW-18007 (8208M propellant) M193, ball, lot LC-12194 (ball propellant). M193, ball, lot TW-18191 (8208M propellant).	nt). ant). .). .t).		

54

, •

のはなけるなどのようであ

÷

Table 2.11-II. Cesults of -65°F Test

No. Ris	Mode of Fire	Funct	Anno Type	Cyclic Annamo Rate, Funct Type rd/min	Cyclic Ameno Rate, Funct Type rd/min	Amo	Cyclic Rate, rd/min	Funct	Ammo Type	Cyclic Rate, rd/min	Cyclic Annno Rate, Funct Type rd/min	Anno	Cyclic Rate, rd/min
		Nc. Rds Previously Fired: 2700.			No. Rás Previously Fired: 2500.	viously 500.		No. Rds Previously Fired: 6088.			No. Rds Proviously Fired: 5887.		
100	Semi	SAT	•	ACT	TAS TAS	đ	733	SAT 2-BOB 1-FJ	æ	746	2-FJ 4-FJ	<	81
z	AULO	IAC	¢υ	836	IVC	a a	784		• •	770		Ċ	816
100	Seni	SAT	•	757	SAT	a	780	1-808 1-FJ 1-FJLK 1-808 1-FF	B	367	5-FJ 2-FJ 7-FJ 1-FJLK 1-BOB	×	•
R	AUCO	S.J.5-7	¢ ()	837	IVC	<u>م</u> م	805		a	770		υ	811
100	Seni	1-FFR	•		1-FF1			1-FF1 1-7J 1-ROR 1-FF			^c 21-FJ BDP		
100	Anto	2-FFR	×	ı	1-FFR	æ	778		B	721	1-DF	۲	740
2			U	812		a	802		۵	764		ပ	78
100	Semi	1-FF1			SAT						S.T.		
100	Auto	I-FFR 1-FF1 1-FJ	۷	781	I-FFR	2	780	I-FFI I-FF	<u>م</u> ،	762	1-DF	< د	818
		ſ	ပ	346	i	D	802		a	/83	L L	ر	2
100	Semi	I-FFR I-FFI [#] 12-FJ RDP			1-FFR			1-FF			-DF		
100	Anto	1_FFP b1_FJ	×	715	SAT	£	794	1-FFR 2-FJ	នា	762	1-FFI 1-FFR 1-DF	<	813
2			U	840		Q	307		a	761		U	00 00
8	Semi	SAT			SAT					4		•	
100	Auto	SAT	¥	733	I-FFI	æ	798	1-FFI 1-FJ	m 1	755	I-FFI 3-FFR	< (810
			U	834			806		a	780		J	20
100	Semi	1-FFR			1-FFR 1-FFI						I-FFK I-DF		
100	Auto	1-FF1 8-FJ	¥	758	1-FFR 1-FF1		798	l-FFR l-FJ	œ، :	746	1-DF 2-FFK	4 د	R/ /
		کر	υ	831		a	802	Ī	ລ	05/	l	ر	õ
100	Semi	1-FF1 ⁰ 18-FJ			SAT			I-FF1			SAT		
		Ava	A	744		8	780		B	756		۲	796
		•	:0	834		Q	801		۵	769		υ	8
ufle	uction	Malfunction rate per 3.23			0.26			1.46			3.73		

A new extractor spring was assembled after firing this 100-round cycle. Carbon accumulation on the ejector and in the ejector hole in the face of the bolt caused the ejectur to seize in a partially compressed position. It was necessary to disassemble and clean the affected areas to restore function. A new extractor and extractor spring were assembled.

Contraction and a state and a state and

; 1 ; 1 ; 2 ; 4 ; 7

40°F Test ^a
- Jo
Results
2.11-111.
Table

ł

		NC.	EX uoat	4177E1 1	Vo. 902	159	Weapon	YON XM	177E1 NG	0. 902279	179	Weap	IMX uo	Weapon XM177E2 No. 904541	90454		weap	JMX UO	Weapon XML77E2 No. 904545	90454	2
No.	-	1		No. Rds (Out Cyclic of 50)Bull	No. Ruis (Out Cyclic of S0)Bullet	et l			Cyclic	i ã	ullet			Cyclic	No. Rds (Out of 50)Bullet	Bullet		ļ	Cyclic	No. Rds (Out of SO)Bullet	Bulle1
Rds Fired	s of bd Fire			Ammo Rate, that Funct Type rd/min Yawed		Yaw, deg	Funct Type	And Type	Rate, rd/min	that Yawed	Yaw, deg	Funct		rd/min	Yawed .	der	Funct		rd/min		deg
		No. Rds Previously Fired: 4200.	Previou : 4200.	ously D.			No. Rds Fired:		Previously 4000.		-	No. Rds Previously Fired: 7588.	reviou: 7588.	sly			No. Rds Pi Fired:	Rds Previously ired: 7387.	ily		
							-					SAT					SAT				
32		SAT	•	776			SAT	æ	790			SAT	8	773			SAT	۲	846		
5			υ	854				9	171				Q	781				ပ	878		
100	Semi	SAT)				SAT					1-F2R					2-DF				
100			<	769			SAT	8	800			SAT	8	786			I-FBR I-D	к (853		
			υ	820				Q	761					788				υ	168		
100) Semi	SAT					SAT					1-FJ 1-F2R					1-DF	•			
100	Auto	1-FBR	<	772			SAT	æ	788			2-FJ	ക	•			1-05	< (832		
			υ	839				a	784				a	•				U	881		
100		Semi FBO 1-FF	f.				SAT					SAT					FBO		1		
001		FBO		782			1-FF	æ	799			1-FJ	8	779			2-DF	<	847		
			U	844				a	750				2	769				U	887		
100	Semi	SAT					SAT					1-F2R					1-DF				
100			<	773			EVS	8	778			SAT	2	784			1-DF	<	844		
			U	836				Q	765				۵	796				U	873		
100	Semi	FBO					1-FF1					SAT					1-DF				
100		SAT	<	770			SAT	8	786			2-FJ	æ	,			1-FBR	<	862		
			υ	847				۵	770				9	746				U	503		
100	Semi	SAT	4		42	68	SAT	8		7	10	2-FJ	8		80	13	4-DF	< 1		15	12
			U		27	25		_		1	14		2		0			J		20	22
100	Auto	SAT	<	768	42	31	SAT	æ	797	7	17	2-FJ	80	161	a	17	SAT	۲	855	11	19
			U	857	27	32		a	775	7	10		0	770	0	1		ပ	873	50	So
100	Semi	SAT	•	•	43	38	SAT	22		Ģ	•	6-FJ	8		10	34	1-DF	•		ŝ	14
			U		28	28		Q		0	•		a		0	ı		U		48	52
		Avg	∢ ∪	773 842				# Q	791 768				a 0	783 775				νÞ	848 884 884		
	lfunction rate per	Malfunction 0.33; rate per					0.13					1.06					1.06				
7	Spunnt oot	. 50																			

۰.

-

^aBullet yaw data are given on the last three 100-round cycles.

こう してい いちのにないないないのないのないない

2.11.5 Analysis

Combustion residue build-up was prevalent on both weapons firing ammunition loaded with ball propellant at +20°F. Functioning difficulties attributable to carbon build-up with the ball propellant lots occurred after approximately 800 rounds whereas, the weapons fired with lots loaded with 8208M propellant exhibited no malfunctions chargeable to fouling build-up during 1500 rounds similarly fired.

The critical area in the bolt where tolerances between the firing pin and bolt are affected by carbon build-up is principally the area from the cam pin extending forward to the foremost shoulder in the firing pin hole.

At -65°F, weapons firing ball-propellant-loaded ammunition gave 15 failures to fire compared with eight failures to fire in firing 8208M-propellant-loaded ammunition. The failures to fire are separated from other malfunctions since they are related to the effects of carbon build-up in the critical area of the bolt. One delrin charging-handle latch broke on the fifth day of firing at -65°F.

The effect of carbon accumulation in the mechanism was not different between the propellant types in the -40°F firing. Twentyfour malfunctions occurred on weapons firing ball-propellant-loaded ammunition and 22 occurred firing 8208M-propellant-loaded ammunition.

The malfunction rate of the test weapons exceeded that of the control weapons in each of the three temperatures tested and therefore failed to meet the criteria specified in paragraph 2.11.2.

2.12 ENVIRONMENTAL TESTS

2.12.1 Objective

To determine the performance of the test weapons when subjected to various adverse conditions.

2.12.2 Criteria

The malfunction rate of the test weapons shall not exceed that of the control weapons.

2.12.3 Method

Only M193 cartridges with ball propellant were fired. The weapons were tested as described in the following test procedures.

The second s

2.12.3.1 Dynamic Dust Test. The dynamic dust test was performed by subjecting each weapon to a dust blast in a specially constructed box with a blower. The box was 3 feet wide, 4 feet tall, and 4-1/2 feet long, with plexiglass sides. The plexiglass sides incorporated gauntlettype gloves which allowed the gunner to fire the weapon from outside the box. Each weapon was mounted in a rest which was centrally located in the dust box. An attempt was then made to fire 40 rounds semiautomatically, 60 rounds in 3- to 5-round bursts, and 40 rounds in 20-round bursts (140 rounds total). The rate of fire was approximately 3-1/2 minutes to fire the 140-round complement. During firing, each rifle was subjected to a continuous blast of dust which was poured directly into the blower opening at an approximate rate of 2 pounds per minute. The dust used in test is commercially known as "140-mesh silica flour" and will pass 98 \pm 2% through a 140-mesh screen (US standard sieve series).

2.12.3.2 Water Spray Test. The water spray test is an accelerated test to determine the effect of a heavy rainfall on the performance of the weapon. The test consists of a spray of water falling at a rate of approximately 0.4 inch per minute or 24 ± 3 inches per hour. The spray of water is directed over the entire weapon by means of a special shower head positioned about 3 feet above the weapon. The water and air temperatures are measured and recorded. The test weapon is lubricated with MIL-G-46003(MR) grease before the test but not between the test phases.

The basic sequence of operations for the water spray test was as shown in Table 2.12-I.

si minimuga	Test Condition	Exposure Time (minutes)	Cumulative Exp. Time (minutes)	Rain (inches)	Cumulstive Rain (inches)
Wea	pon Horizontal				
a.	Bolt open	5	5	2.0	2.0
b.	Loaded, bolt closed	5	10	2.0	4.0
c.	100 rounds semiauto.	4	14	1.6	5.6

Table 2.12-I. Water Spray Schedule

Table 2.12-I (Cont'd)

	Test Condition	Exposure Time (minutes)	Cumulative Exp, Time (minutes)	Rain (inches)	Cumulative Rain (inches)
d.	Bolt open	· 5	19	2.0	7.6
e,	Loaded, bolt closed	5	24	2.0	9.6
f.	100 rounds automatic	4	28	1.6	11.2
Wea	pon Muzzle Up*				
a.	Bolt open	5	33	2.0	13.2
b.	Loaded, bolt closed	5	38	2.0	15.2
c.	100 rounds <u>semiauto.</u>	4	42	1.6	16.8
d.	Bolt open	ĩ	47	2.0	18.8
6.	Loaded, bolt closed	5	52	2.0	20.8
f.	100 rounds automatic	4	56	1.6	22.4
Wea	pon Muzzle Down*				
a.	Bolt open	5	61	2.0	24.4
b.	Loaded, bolt closed	5	66	2.0	26.4
c.	100 rounds semiauto.	4	70	1.6	28.0
d.	Bolt open	5**	75	2.0**	30.0
e.	Loaded, bolt closed	5**	80	2.0**	32.0
f.	100 rounds automatic	4**	84	1.6**	-

*Before attempting to fire, hold weapon with muzzle down, unlock bolt slightly, and attempt to remove water accumulated in the bore.

**Or as required to finish program with at least 32.0 inches cumulative rain total.

2.12.3.3 Salt Water Immersion Test. Two of each type E2, and E1 weapons were disassembled, cleaned, lubricated with MIL-L-46000A oil, and reassembled. The weapons were fully loaded and the safety was applied. The fully loaded weapons, and a sufficient number of rounds and magazines for 60 rounds of firing on each of five days, were submerged in a salt-water solution for 60 seconds. The solution is 20% salt, 80% water, by weight.

After removal from the salt water, the muzzle of each weapon was depressed and the bolt was retracted slightly to permit the salt water to drain from the bore. Thirty rounds were fired in each mode; the automatic mode was fired in bursts of approximately three rounds.

Four additional firings were conducted over a 10-day period, for a total of 300 rounds. The storage and firing schedule was in accordance with Table 2.12-II.

Table 2.12-II. Storage Schedule

No. of Hrs		Temp, °F	Relative Humidity, %
4	increase to	105 and	95
12	maintain at	105 ± 3 and	90 to 95
4	decrease	105 to 70 increase to.	100 (saturation)
4	maintain at	70 ± 3 and	95 to 100

Total 24

2.12.4 Results

The results are summarized in Tables 2.12-III through 2.12-V.

ŝ

GALLS STORE

				;			
ĥa.	Mcde			No. Rds	Mode of		
Rd s Fired	of Fire	Funct	Remarks	Fired	Fire	Funct	Remarks
		No. 902159	XM177F1 No. 902159 (6300 rounds previously fired).	Weapon:	XM177	XM177E2, No.	904544 (6410 rounds previously fired).
				20	۷	SAT	Cyclic rate, 883 rd/min.
	₹ [SAL	CACTLE TALES OF I TEN	20	1-B	SAT	
	- -	SAT	Cyclic rate, 786/rpm.	20 20	< v	SAT	No rate recorded.
	s 	SAT		2 Q	1-B	SAT	
	s S	J.FFJ		5 S	s A	SAT SAT	No rate recorded. Total time of firing was
		BAF 1-FX	The case extracted after closing and opening the bolt several				3 minutes 20 seconds and 7 pounds of dust were used.
			times. Before storpages were cleared. 3.5 minutes elapsed	Weapor	: IMX :	77E2, No.	Weapon: XM177E2, No. 904549 (2664 rounds previously fired).
			and 7 pounds of dust were used. Firing was resumed without	20	A 1-B	SAT 1-FF	Cyclic rate, 756 rd/min.
	S	3-FF	usting. The bolt lacked energy to strip the rounds from the magazine.			BAF 1-DF	Before stoppages were cleared, 3.5 minutes alonced and 7 nounds of dust were used.
	۷	SAT	Cyclic rate, 851 rd/min.				Firing was resumed without dusting.
lođi	1: XM177E	1, No. 9022	Weapon: XM177E1, No. 902279 (6100 rounds previously fired).	18	1-B	1-FF 16-FJ	On each occasion, short recoil caused failures to
	∢	SAT	Cyclic rate, 813 rd/min.	20	A	4-FJ	eject. Same as previous.
50 20	1-8 - V	SAT SAT	Cyclic rate, 784 rd/min.	5 2	s 1-B	SAT SAT	
	1-B	SAT 1-FF	mt. with the same channed and it WAS	20 20	s A	SAT SAT	Cyclic rate, 715 rd/min.
		L-FX	Ine rim of the case sheared due to necessary to use a cleaning rod to remove the case. Before stoppages were cleared, 3.5 minutes clapsed and 7 pounds of dust were used. Firing was resumed without	;			
18 20	1-B S	1-FF, 1-FBR SAT SAT	uusting. Cyclic rate, 838 rd/min.				

61

「なる」はないないない

· VALEN () · V

Table 2.12-IV. Results of Water Spray Test

Ammunition Type C: Cartridge, M193, ball, lot LC-12194 (ball propellant). Water Temperature: 40°F. Air Temperature: 50°F.

Rds Fired	Mode of Fire	Funct Remarks
Weapon:	XM177E1,	No. 902159 (5700 rounds previously fired).
100	S	SAT
100	A	SAT
100	S	1-DF 18th round of magazine.
100	Α	SAT
100	S	SAT
100	A	SAT
Weapon:	XM177E1,	No. 902279 (5500 rounds previously fired).
100	S	SAT
100	Α	1-FFR Fired on second attempt.
100	S	SAT
100	Α	SAT
100	S	SAT
100	Α	SAT
Weapon:	XM177E2,	No. 904544 (5810 rounds previously fired).
100	S	SAT
100	Α	3-FBR
100	S	SAT
100	Α	SAT
100	S	SAT
100	Α	SAT
Weapon:	XM177E2,	No. 904549 (2064 rounds previously fired).
100	S	SAT
100	Α	SAT
100	S	SAT
100	A	SAT
100	S	SAT
100	Ā	SAT
	·	

62

No.

Table 2.12-V. Results of Salt Water Immersion Test

Ammunition Type C: Cartridge, M193, ball, lot LC-12194 (ball propellant).

ŀ

Initial Firing after	Initial ing after			Fifth I	Fifth Day Firing ^b		Eighth	Eighth Day Firing	.	Tenth	Tenth Day Firing	ta ta
Salt War	Salt water Dip No. SwD Rds Funct Fired ²	Third Day Firing No. SWD F Funct Fired	y Firing No. SwD Rds Fired ^a	Funct	No. SWD Rds Fired ^a	No. Clean Rds Fired	Funct	No. SWD Rds Fired ^a	No. Clean Rds Fired	Funct	No. SWD Rds Fired ⁸	No. Clean Rds Fired
Weapon:		, No. 902159	(6440 rounds	XM177El, No. 902159 (6440 rounds previously fired).	ired).							
SAT	60	2-FX, 1-FF1	60	FBO, 1-FF1 11-FF, 3-FX	60	•	FBO, 1-FFI 1-FF, 3-FX	ю	57	FB0, ^c 5-FF	S	55
Weapon:	XM177E1,	No. 902279	(6246 rounds	Wempon: XM177E1, No. 902279 (6246 rounds previously fired).	ired).							
SAT	60	FBO, 1-FX 1-FF1	60	2-FF1, c27-FF	60	•	FBO, 1-FF1 C8-FF	œ	52	FBO , ^CS-FF 1-FFR		55
Weapon:	XM177E2,	No. 904544	(6550 rounds	Weapon: XM177E2, No. 904544 (6550 rounds previously fired).	ired).							
SAT	60	1-FF	60	FBO, 23-FF 2-FX	40	20	FBO, 5-FF 2-FX 1-FFA	20	04	FB0, 14-FF 1-FFA	60	t
Weapon :		No. 904549	(2804 rounds	XML77E2, No. 904549 (2804 rounds previously fired).	. (par							
SAT	60	1-FJ	60	l-FF1, 17-FF	60	ı	7-FF	10	50	FBO, 7-FF 1-E1 2-EY	60	۱
^a Salt-Wa	ter dippe	d. Seted and con	bsalt-water dipped. bammition use rested and commind halls an	an fifth far an	-	•						

63

あるとうなるのにいろう

buildion was rested and corroded badly on fifth day and could not be stripped form clips in a normal manner. clipt was necessary to brush clean the chamber and bolt-locking lugs before the bolt could be closed with a round in the chamber.

2.14.4 Results

Insect repellent (FSN 6840-558-0918) caused the exposed area on the urethane end cap of the buffer to soften and become tacky; however, light application of the repellent, as by contact with the hands, failed to show any apparent effect following the 24-hour storage period. None of the other product improvements of the E2 weapon wern affected by any of the fluids or greases.

2.14.5 Analysis

The buffer failed to meet the criteria specified in paragraph 2.14.2a with insect repellent (FSN 6840-558-0918).

2.15 SOUND PRESSURE LEVEL

2.15.1 Objective

To evaluate the sound pressure level of the test weapon.

2.15.2 Criteria

The sound level measurements shall not exceed the criteria established in Interim Pamphlet 70-74, TECP 700-700, 19 August 1965.

2.15.3 Method

The method of test is described in Interim Pamphlet 70-74, TECP 700-700, 19 August 1965. The test was conducted with each type of ammunition, first with a "new" barrel (fired more than 30 rounds but less than 1000 rounds) and repeated with an "old" barrel (fired approximately 9000 rounds).

Data were derived "rom firing ten rounds of each of the four test lots from an XM177E2 weapon using a "new" barrel and flash suppressor and from ten rounds using an "old" barrel and flash suppressor. Ten rounds were fired from an M16A1 control rifle, B6K condenser microphones were used to measure muzzle blast overpressure. Data were recorded by a multichannel galvanometer in a data van. Blast overpressures in psi were derived from the film record and converted to sound pressure level from the following relationship:

- db = 20 \log_{10} (P x 3.4475.10⁸)
- db = sound pressure level in decibels (re: 0.0002 microbars)

P = measured pressure in psi.

2.13 MANN BARREL TEST

2.13.1 Objective

To determine the dispersion, chamber pressure, port pressure, and velocity levels of the test cartridges when fired in a Mann barrel.

2.13.2 Criteria

When fired in a 20-inch Mann barrel and with cartridges conditioned at +70°F:

- a. The average of the mean radii of 10-shot targets shall not exceed 1.00 inch for M193 cartridges and 2.50 inches for M196 cartridges at 100 yards (Reference 3, par. 3.7; Reference 4, par. 3.8).
- b. The corrected average velocities of M193 projectiles at a distance of 15 feet from the muzzle shall be 3250 ± 40 fps with a standard deviation no greater than 40 fps (Reference 3, par. 3.9).
- c. The corrected average velocities of M196 projectiles at a distance of 15 feet from the muzzle shall be 3200 ± 40 fps with a standard deviation no greater than 40 fps (Reference 4, par. 3.11).
- d. The average chamber pressure of M193 or M196 cartridges shall not exceed 52,000 psi and the average chamber pressure plus three standard deviations shall not exceed 58,000 psi (Reference 3, par. 3.10; Reference 4, par. 3.12).
- e. The average port pressure of M193 and M196 cartridges shall be 15,000 + 2000 psi (Reference 3, par. 3.11; Reference 4, par. 3.13).

2.13.3 Method

Fifty rounds of each of the four types of test ammunition were fired on a Mann barrel with the cartridges conditioned at $+70^{\circ}F$ for velocicy measurements. In addition, dispersion targets were obtained at 100 yards simultaneously with the velocity firings. Twenty rounds of each lot were fired for chamber pressure and 20 rounds for port pressure measurements. Chamber pressure tests were then repeated with 20 rounds conditioned at $-65^{\circ}F$ and with 20 rounds conditioned at $+160^{\circ}F$. Twenty rounds each of a reference lot of M193 cartridges were also fired for velocity, dispersion, chamber, and port pressure measurements during firing at each temperature. 2.13.4 Results

Table 2.13-I contains velocity and accuracy results of +70°F firings from an accuracy Mann barrel and Table 2.13-II gives results of universal receiver pressure barrel firings at three temperatures. Individual velocity, pressure, and target measurements are contained in Appendix I.

Table 2.13-I. Velocity and Accuracy Firing at +70°F

Velocity figures are averages of 50 rounds.

Vel, fps		Avg MR of Five 10-Shot
15 Ft from	Std	Groups,
Muzzle	Dev	in.

Cartridge: 5.56-mm, ball, M193, lot LC-Y-5.56-501 (reference).

 3201
 22
 0.7

 (47 * correction)
 3248 (assessed value)

Cartridge: 5.56-mm, tracer, M196, lot LC-12081 (type A).

3119 26 3166 (corrected)

Cartridge: 5.56-mm, tracer, M196, lot TW-18007 (type B).

 3147
 24
 1.4

 3194 (corrected)
 1.4

1.7

0.6

Cartridge: 5.56-mm, ball, M193, lot LC-12194 (type C).

Cartridge: 5.56-mm, ball, M193, lot TW-18191 (type D).

3159 27 3206 (corrected)

Ø

Table 2.13-II. Universal Receiver Pressure Barrel Firing Figures are averages of 20 rounds.

	Chamber		Port			
	Press.,	Std	Press.,	Std	Corrected Pres	ss., psi
°F	<u>psi</u>	Dev	psi	Dev	Chamber	Port
Cartridge:	5.56-mm,	ball, M	193, 1ot LC-Y	-5.56-5	01 (reference).	
+ 70	42730	2887	13720	255	46100	14700
+160	47555	2705	15055	402		
- 65	43305	2284	14415	315		
Cartridge:	5.56-mm,	tracer,	M196, lot LC	-12081	(type A).	
+ 70	43950	958	12400	304	47320	13380
+160	48060	1476	13600	355		
- 65	42980	2599	13155	328		
Cartridge:	5.56-mm,	tracer,	M196, lot Th	-18007	(type B).	
+ 70	47125	1928	12535	432	50495	13515
+160	49565	1894	13890	273		
- 65	47125	2265	12230	525		
Cartridge:	5.56-mm,	ball, M	193, lot LC-1	2194 (t	ype C).	
+ 70	43890	1646	13415	230	47260	14395
+160	44995	981	14835	366		
- 65	40880	1769	13530	208		
Cartridge:	5.56-mm,	ball, M	193, lot TW-1	8191 (t	ype D).	
+ 70	49515	1447	11620	379	52885	12600
+160	52675	1457	14050	300		
- 65	46390	2503	11660	443		
Note: Cop	per cylinde	ers (lot	4C-56) used	in meas	uring chamber pre	ssures

Note: Copper cylinders (lot 4C-56) used in measuring chamber pressures had a mean length of 0.4000 inch (uncompressed) and a mean diameter of 0.2257 inch. The pistol copper cylinders, lot FA-4C-64, used in measuring port pressures had a mean length of 0.4000 inch (uncompressed) and a mean diameter of 0.1457 inch.

2.13.5 Analysis

All the cartridge lots in test met the accuracy mean radii criteria specified in paragraph 2.13.2a. The average corrected velocity of M193 ball cartridge lot TW-18191 was 3206 fps which was 4 fps below the minimum velocity level (3210 fps) specified in paragraph 2.13.2b.

The data for the reference lot of ammunition at $+70^{\circ}$ F, show a difference of +980 psi between test record values and assessed values for port pressure and +3370 psi for chamber pressure. With these corrected values applied to the $+70^{\circ}$ F results, three of the ammunition lots met the criteria (ref pars. 2,13d and e). The M193 with 8208M propellant, lot TW-18191, was 885 psi above the maximum chamber pressure permitted and 400 psi under minimum port pressure permitted.

2.14 NONSTANDARD CLEANERS

2.14.1 Objective

To determine if the delrin charging-handle latch, the buffer, and the nylon-coated buttstock are impervious to various fluids.

2.14.2 Criteria

Criteria are as follows:

- a. Essential. The latch, buffer, and buttstock coating shall be impervious to lubricants MIL-L-644B, MIL-L-14107A, lubriplate 130-A and to dry cleaning solvent (SD), bore cleaner (CR), and insect repellent (FSN 6840-558-0918).
- b. Desirable. The above items shall be impervious to carbon removing compound (P-CllA), gasoline, kerosene, and diesel fuel.

2.14.3 Method

At the conclusion of all other tests, portions of the weapon components specified above were individually immersed in or coated with each of the materials listed in paragraph 2.14.2 for 1 minute. Following a 24-hour normal storage, the items were then inspected.

States and South

2.14.4 Results

Insect repellent (FSN 6840-558-0918) caused the exposed area on the urethane end cap of the buffer to soften and become tacky; however, light application of the repellent, as by contact with the hands, failed to show any apparent effect following the 24-hour storage period. None of the other product improvements of the E2 weapon wer. affected by any of the fluids or greases.

2.14.5 Analysis

The buffer failed to meet the criteria specified in paragraph 2.14.2a with insect repellent (FSN 6840-558-0918).

2.15 SOUND PRESSURE LEVEL

2.15.1 Objective

To evaluate the sound pressure level of the test weapon.

2.15.2 Criteria

The sound level measurements shall not exceed the criteria established in Interim Pamphlet 70-74, TECP 700-700, 19 August 1965.

2.15.3 Method

The method of test is described in Interim Pamphlet 70-74, TECP 700-700, 19 August 1965. The test was conducted with each type of ammunition, first with a "new" barrel (fired more than 30 rounds but less than 1000 rounds) and repeated with an "old" barrel (fired approximately 9000 rounds).

Data were derived "rom firing ten rounds of each of the four test lots from an XM177E2 weapon using a "new" barrel and flash suppressor and from ten rounds using an "old" barrel and flash suppressor. Ten rounds were fired from an M16A1 control rifle, B&K condenser microphones were used to measure muzzle blast overpressure. Data were recorded by a multichannel galvanometer in a data van. Blast overpressures in psi were derived from the film record and converted to sound pressure level from the following relationship:

- db = 20 \log_{10} (P x 3.4475.10⁸)
- db = sound pressure level in decibels (re: 0.0002 microbars)

P = measured pressure in psi.

2.15.4 Results

Results are contained in Table 2.15-I.

Table 2.15-I. Summary of Average Data

Figures are average of ten rounds.

Barrel		Pa	sition No	. 1	Pos	ition No	. 2
and Flash Suppressor	Ammo Type	Max Press., db	Duration	Time ^a , ms B	Max Press., db	Duratic	on Time ^a , ms B
Old (fired	A	160,1	0.32	4.69	161.9	0.34	0.94
more than	В	159.8	.36	4.56	162.8	.34	.90
9000	С	159.8	.36	4.53	163.1	.35	.89
rounds)	D	158.5	.49	4.66	163.1	.34	.82
New (fired	A	156.5	0.52	5.35	159.8	9.34	0.90
more than	В	156.0	.53	5.40	159.2	.36	.86
30 rounds	С	155.0	•28	5.52	159.8	.39	.95
but less than 1000)	D	151.9	.52	5.39	160.1	.33	.91

	Barrel		Pos	ition No.	3	Pos	ition No.	2
* *	and Flash Suppressor	Алито Туре	Max Press., <u>db</u>	Duration	Time ^a , ms B	Max Press., db	Duration	Time ^a , ms B
	Control rifle, M16A1	RA. 5089	158.8	0.28	2.87	161.7	0.32	0.79

^aDuration time A indicates the time between initial rise in pressure and the return of overpressure to ambient pressure. Duration time B indicates the time between initial rise in pressure and the return of overpressure to a value of, and remain less than, 20 db below maximum overpressure.

Notes: A = Cartridge, M196, tracer, lot LC-12081 (ball propellant). B = Cartridge, M196, tracer, lot TW-18007 (8208M propellant). C = Cartridge, M193, ball, lot LC-12194 (ball propellant). D = Cartridge, M193, ball, lot TW-18191 (8208M propellant). RA = Cartridge, M193, ball, lot RA-5089 (ball propellant).

Notes continued on page 71.

70

and a state of a second state of the state of the second

1

Table 2.15-I (Cont'd)

5

Notes: Position No. 1: Gunner's ear. 27 inches from muzzle. 4 inches from center of bore. 63 inches above ground. Position No. 2: 90° from line of fire. 78.7 inches from muzzle. 60 inches above ground. Position No. 3: Gunner's ear. 31 inches from muzzle. 4 inches from center of bore. 63 inches above ground.

2.15.5 Analysis

At the gunner's ear position when firing with the new barrel and flash suppressor, all ammunition lots met the criteria specified in paragraph 2.15.2. When firing with the old barrel and flash suppressor, none of the four lots of ammunition met the criteria.

2.16 KINEMATIC TEST (DISPLACEMENT-TIME STUDY)

2.16.1 Objective

To obtain basic kinematic data for the test weapon as an aid in evaluating the significance of the product-improved buffer assembly and to measure cyclic performance characteristics of the weapon mechanism incorporating the product-improved barrel assembly.

To compare the performance of the weapon when firing various ammunition lots.

2.16.2 Criteria

Not applicable.

2.16.3 Method

The test weapon No. 902868, was originally received as an XM177E1 model and was converted to the configuration of the XM177E2 by installing a complete XM177E2 barrel and gas-tube assembly.

The gun was then modified so that traces of the motion of the bolt carrier and buffer could be recorded as a function of time.

Reflector viewing ports were cut at the right side of the upper receiver and along a portion of the buttstock extension tube. Small chrome-plated reflector rods were attached to the receiver and buttstock extension as reference points and concave reflecting surfaces were polished on the bolt carrier and on the buffer.

Various displacement-time records were then obtained during burst fire, employing a displacement-time drum camera with the test weapon installed in a variable-deflection mount. The mount permitted a recoil-counterrecoil displacement of approximately 0.175 inch for each shot.

In addition to physical inspection and measurements of the weapon, firing phases were conducted to evaluate four types of amnunition, to determine the effect of firing 21-, 20-, 19-, and 18-round bursts, and to compare cyclic performance wi h the gun in new condition versus firing with a barrel and gas-tube assembly previously fired 9000 rounds.

2.16.4 Results and Analysis

Due to the nature of the displacement-time studies, the results and analysis for each phase are combined and reported in single paragraphs for each test phase.

and the second

2.16.4.1 Applicable Phases of Recent Displacement-Time Studies for the M16A1 Rifle. As the XM177E2 submachine gun and the M16A1 rifle employ the same basic mechanism, differing only in the action spring and buffer, a number of displacement-time study phases with the XM177E2 were conducted concurrently during a displacement-time study of the M16A1 rifle and have been reported in Reference 10. (The shortened barrel and gas tube assembly of the XM177E2 are not considered here as part of the mechanism.)

While the referenced report should be consulted for detailed information, the results applicable to the XM177E2 submachine gun are summarized as follows:

- a. The design of the XM177E2 mechanism successfully accommodates a wide range in cyclic rate of fire from approximately 600 to 975 rds per min.
- b. The upper restraint in cyclic rate of fire is imposed by the design of the bolt-stop mechanism which cannot consistently respond at rates for final rounds in the magazine which exceed 975 rds per min.
- c. The lower limit of approximately 600 rds per min is primarily a restraint characterized by short or incomplete recoil at low bolt-carrier energies. At these levels, successful firing becomes extremely marginal even under nonadverse conditions. However, as the lower limit was only estimated and not fully explored in the referenced test, this area of performance is more definitively discussed in par. 2.16.4.2 of this report.

The remaining paragraphs dicusss the results of the displacement-time studies which were conducted within the context of the product improvement test of the XM177E2 submachine gun.

2.16.4.2 Physical Characteristics. The physical characteristics of the buffer and action spring for the XM177E2 were measured and are compared to the same components for the M16A1 rifle in Table 2.16-I and illustrated in Figure 2.16-1. The XM177E2 buffer assembly is a product improved item which replaced the buffer assembly as tested in the engineering test (Reference 2) of the original model submachine gun, C-SMG. The product-improved buffer first appeared in XM177E1 models and appears to be identical in the limited production o.^c both El and E2 weapons examined at APG.

Table 2.16-I. Physical Characteristics

Weights are in ounces, dimensions in inches.

	XM177E2	M16A1
Action spring:		
Weight	1.90	2.17
Free height	10.1	12.0
Assembled height	6.7	8.1
Compression height ^a	3.0	4.3
Wire diameter	0.072	0.072
Mean coil diameter	0.871	0.871
No. of coils	37-3/4	43-3/4
No. of working coils	36	41
Buffer assembly:		
Weight	2.98	5.20
Over-all length	3.3	5.9
No. of internal inertia weights ^b	3	5
No. of rubber inertia weight pads	3	5
Length of internal spacer	None	1.3
Working height of urethane end cap ^C	0.4	0.4
Cycling group weight ^d	15.09	17.49

^aMeasured at full rearward travel of the buffer without buffer cap comb^{pression.}

Inertia weights are identical in each buffer, weighing 278 grains each. ^CThe urethane end caps appear to be identical components in the buffer d of each gun. Includes complete bolt carrier assembly (approximately 11.5 oz for

each gun) plus buffer and 1/3 weight of action spring.

The similarity in design between the M16A1 and the XM177E2 offered the possibility that cyclic performance data for the M16A1 rifle, which has recently been obtained in great depth from large weapon and ammunition samples, could be used as criteria to evaluate cyclic performance of the XM177E2. However, as can be seen in Table 2.16-I and Figure 2.16-1, significant differences exist in the physical characteristics of the two recoil systems which could result in different bolt-velocity levels and cyclic rates of fire even though initial energy-input levels might be the same. As the cyclic performance data for the M16A1 rifle has largely been determined from bolt-velocity measurements (average cyclic rates of fire, displacement-time curves, etc.), the following study was made of action spring rates, action spring forces, and energy levels. The formulas used in the study are taken from Reference 11, where they are developed and discussed in detail.

a. Spring Load and Deflection Rates. The load-deflection rate of each spring was calculated as follows:

$$K = \frac{G d^4}{8 D^3 N}$$

where:

K = Load-deflection, lb/in. G = Torsional modulus for steel (115x10⁵ 1b/in²) d = Spring wire diameter, in. D = Mean coil diameter, in. N = Number of working coils.

For the M16A1:

$$K = \frac{115 (10^5) (.072^4)}{8 (.871^3) (.11)}$$

$$K = \frac{125 (2.687)}{328 (.661)}$$

$$K = 1.43 \text{ lb/in.}$$

For the XM177E2:

$$K = \frac{115}{8} (10^{5}) (.072^{4})$$

$$\frac{8}{8} (.871^{3}) (36)$$

$$K = \frac{115}{2.687}$$

K = 1.62 lb/in.

States and the second

The load-deflection rates for the action springs in one M16A1 rifle and five XM177E2 submachine guns were then measured with a universal test machine to obtain a comparison of actual rates with the above calculations. In all weapons, the initial measured rate was the same as the calculated average rate although some nonlinearity was observed as each spring approached full compression. This was attributed to instability during deflection which probably causes the spring to buckle slightly, resulting in increased friction against the action tube wall. It was also noted that the ends of the action springs for both weapons are not ground and square which is likely to induce instability as the spring is deflected.

> b. Action Spring Forces. From the calculated values of K, the forces required to compress the spring were computed as follows:

 $F_1 = K (H_f - H_a)$ $F_2 = K (H_f - H_c)$ $F_a = \frac{F_1 + F_2}{2}$

where:

- F_1 = Initial spring force as assembled in the action tube, lb.
- K = Load-deflection rate, 1b/in.
- llf = Free height spring, in.
- H_a = Assembled height of spring, in.
- F_2 = Spring force with buffer just contacting end of action tube, 1b.
- H_c = Compression height of spring with buffer just contacting end of action tube, in.
- F_a = Average spring force through full distance of carrier travel, 1b.

ALANCES AND ALE

For the M16A1:

 $F_1 = 1.43 (12.0 - 8.1) = 5.6 \text{ lb.}$ $F_2 = 1.43 (12.0 - 4.3) = 11.0 \text{ lb.}$ $F_a = \frac{5.6 + 11.0}{2} = 8.3$

For the XM177E2:

$$F_1 = 1.62 (10.1 - 6.7) = 5.5 \text{ lb.}$$

$$F_2 = 1.62 (10.1 - 3.0) = 11.5 \text{ lb.}$$

$$F_a = \frac{5.5 + 11.5}{2} = 8.5 \text{ lb.}$$

c. Energy Levels. With the average spring forces established for each weapon, a further calculation was made to estimate the initial cycling group energy which would result in a short recoil in each weapon. Short recoil is defined here as sufficient compression of the action spring to permit contact but not compression of the urethane buffer end cap with the rear of the action tube. Under nonadverse firing conditions, either weapon would be expected to cycle successfully at this initial energy-input level but lower energies would provide only marginal weapon functioning at best.

Remaining energy in the cycling group is expressed as:

1/2 Mcg V²r which is equal to 1/2 Mcg $V_1^2 - \frac{1}{E} (F_1 x + \frac{1}{2} K x^2)$

where:

Mcg = Mass of the cycling group. V_r = Velocity of the cycling group at any time, in./sec V_1 = Initial velocity of the cycling group, in./sec E = Efficiency of the action spring. F_1 = As defined previously, lb. x = Recoil distance, in. K = As defined previously, lb/in. Under the definition of short recoil as stated above:

1/2 Mcg V \vec{r} = 0 and 1/2 Mcg $V_1^2 = \frac{1}{E} (\vec{x}_1 \mathbf{x} + \frac{1}{2} \mathbf{K} \mathbf{x}^2) =$ initial energy, E₁.

Substituting values for both the M16A1 and XM177E2;

For the M16A1:

$$E_{1} = \frac{1}{E} \left[(5.6)(3.8) + \frac{1}{2} (1.43)(3.8^{2}) \right]$$

$$E_{1} = \frac{1}{E} (21.28+10.32).$$

$$E_{1} = \frac{31.60}{E} \text{ in.-1b.}$$

78

For the XM177E2:

$$E_{1} = \frac{1}{\varepsilon} \left[(5.5)(3.7) + \frac{1}{2} (1.62)(3.7^{2}) \right]$$

$$E_{1} = \frac{1}{\varepsilon} (20.35 + 11.09).$$

$$E_{1} = \frac{31.44}{\varepsilon} \text{ in.-1b.}$$

As the spring efficience, **E**, can be considered to be the same for both weapons, and is very nearly 1 in value during short recoil cycles, it can be seen that the design intent in modif/ing the M16Al rifle to the XM177E2 configuration was to vide, through judicious selection of gas port size, the same level of cycling performance, whenever input energies are the same; e.g., a nearly identical short recoil will occur in both weapons given the same input energies from the gas tube. This presumes that losses due to friction would be approximately the same in both weapons which appears reasonable, considering the similarity of the two mechanisms.

However, it should be noted that if some energy level for the XM177E2, either explicit or implied, is to be measured on a time or bolt-carrier velocity basis, then performance "equal to" that of the M16A1 will be obtained at somewhat higher firing rates with the submachine gun version than with the rifle due to the lesser mass of the cycling group in the submachine gun. For example, the previously defined condition of short recoil would occur at approximately 645 rds per min with the XM177E2 and at 588 rds per min with the M16A1. These rates ignore friction losses and the energy required to feed a cartridge during counterrecoil. The initial velocities, cycle times, and firing rates are developed below for the specially defined case of short recoil:

As $E_1 = 1/2 \text{ Mcg V}_1^2$, initial velocity is obtained by solving for V₁.

For the M16A1:

$$31.60 = \frac{1}{2} \begin{bmatrix} 17 \cdot \frac{19}{16} \\ 32 \cdot 2 & (12) \end{bmatrix} V_1^2$$

$$V_1^2 = \frac{31 \cdot 60}{1 \cdot 09} (772 \cdot 8)$$

$$V_1^2 = \frac{24420}{1 \cdot 09} = 22404$$

$$V_1 = 150 \text{ in. per sec or } 12.5 \text{ ft per sec}$$

For the XM177E2:

$$31.44 = \frac{1}{2} \left[\frac{15.09/16}{322(12)} \right] v_1^2$$
$$v_1^2 = \frac{31.44}{.94} \left(\frac{772.8}{.94} \right)$$
$$v_1^2 = \frac{24297}{.94} = 25848$$

 $V_1 = 161$ in. per sec or 13.4 ft per sec

Cycle time is computed as follows:

$$t_{c} = \left[\sqrt{\frac{E M cg}{K}} + \sqrt{\frac{M cg}{E K}} \right] \cos^{-1} \left(\frac{F_{1}}{F_{2}} \right)$$

re:

where

たいといういろの

$$t_{c} = 2 \sqrt{\frac{1.09/386.4}{1.43}} cos^{-1} \left(\frac{5.6}{11.0}\right)$$

$$t_{c} = 2 \sqrt{.00197} cos^{-1} \left(\frac{5.6}{11.0}\right)$$

$$t_{c} = 2 \left(.044\right) \left(\frac{59.40}{57.30}\right)$$

$$t_{a} = .092 sec$$

For the XM177E2:

$$-t_c = 2 \left[\underbrace{\frac{.94/386.4}{1.62}}_{t_c} \right] \cos^{-1} \left(\underbrace{\frac{5.5}{11.5}}_{11.5} \right)$$

 $t_c = 2 \left(\underbrace{.00150}_{cos^{-1}} \right) \cos^{-1} \frac{.478}{.478}$

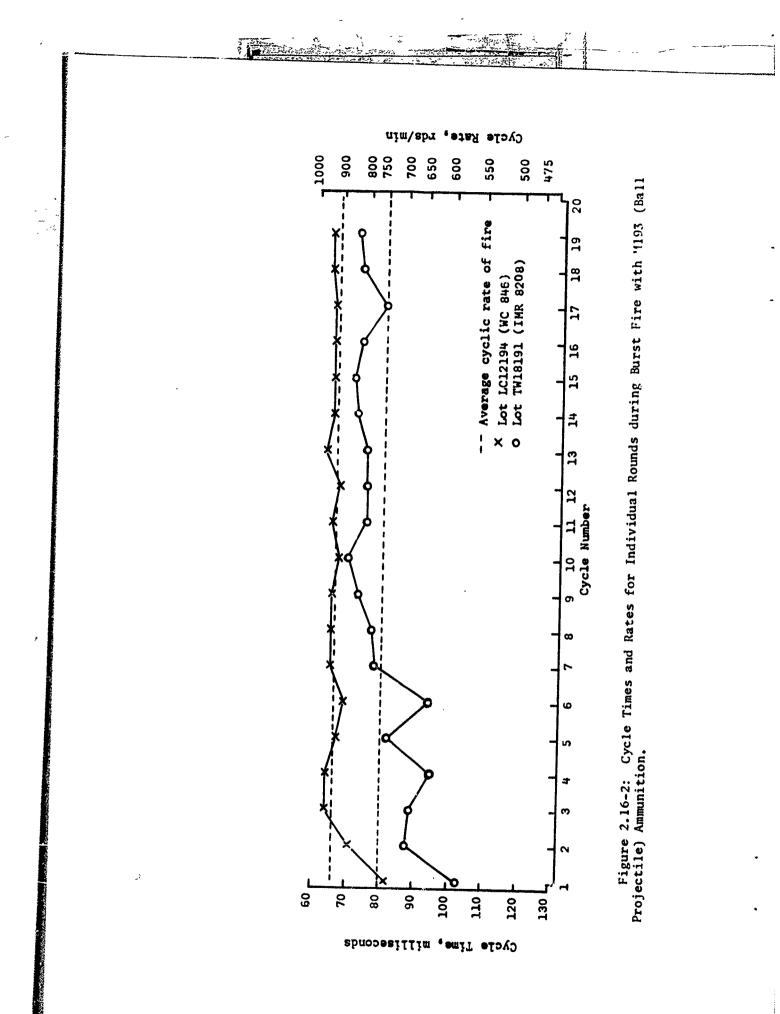
$$t_{c} = 2 (.039) (\frac{61.45}{57.30})$$

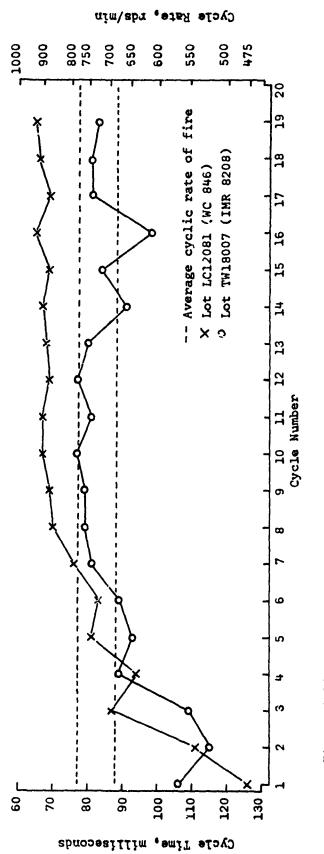
 $t_{c} = .083 \text{ sec.}$ and $f_{r} = \frac{60}{t_{c} + t_{d}}$

where:

For the M16A1:

 $f_{r} = \frac{60}{.092+.010} = \frac{60}{.102}$ f_{r} = 588 rd per min.


For the XM177E2:


$$f_{r} = \frac{60}{.083 + .010} = \frac{60}{.093}$$

 $f_r = 645 rd per min$

2.16.4.3 Ammunition Lot Sensitivity Phase. Displacement-time records were obtained with each of the four lots of test ammunition. The round-by-round data sheets for each 20-round burst are contained in Appendix I, record Nos. 3, 6, 7, and 8. The individual cycle times for each round are also plotted in Figures 2.16-2 and 2.16-3.

The performance characteristics shown in the figures demonstrate nearly identical characteristics to data illustrated in Reference 10 where four similar lots were also fired in a displacement-time study of the MI6A1 rifle. The referenced data were analyzed in detail covering three significant areas: initial round variation, cyclic variation as a function of buffer design, and cyclic variation as a function of ammunition type. A summary of the detailed analysis is presented in the following paragraphs and applies equally to either weapon:

the first stated

- Initial Round Variation. As each burst was fired under a. nearly identical test conditions, the occurrence of the first round being a substantially lower than average cyclic round, although not always the lowest, seems well established. Inspection of the individual data sheets further confirms that the initial-round recoil time itself (as opposed to the complete cycle time) generally exceeds that of any of the remaining rounds in the burst. This phenomenon may be directly related to the temperature of the barrel and gas tube, which may substantially lower the working pressure available to the bolt carrier as a result of initial heat loss to the ambient temperature gas tube and barrel when the first round is fired. The predictable impact of this performance characteristic would be a disproportionately high malfunction rate associated with the first-round cycle of a burst, providing that an adverse tactical or test environment additionally imposed an energy-robbing burden on the mechanism. To date, insufficient data exist to confirm to what degree weapon stoppages are attributable to first round failures.
- b. Cyclic Variation as a Function of Buffer Design. With few exceptions, the displacement-time records obtained with the XM177E2 indicated a progressively increasing rate of fire that only tended to level off by about the sixth to eighth round fired. Initially, this was attributed to an assumed progressive decrease in stripping force as the magazine empties during burst fire. This assumption was proved incorrect when records were obtained and the same phenomenon observed with magazines loaded in various amounts (from 20 to 5 rounds in Reference 10 and from 20 to 17 in this test, par. 2.16.4.5).

The theory was then examined that heating of the gas system to some unknown level by firing approximately six rounds was required before a maximum gas pressure was available at the carrier. This was a logical extension of the reasoning which explained the low initial rate of first-fired rounds. However, subsequent displacementtime seconds obtained with an M16A1 rifle and an original model buffer demonstrated that, under identical test conditions, no progressive rate climb was evident and that a "steady-state" rate was often reached after firing the first round. As this suggested that the rate increase, except for the first round, was largely associated with the so-called redesigned buffer for the M16A1 rifle, and the XM177E2 buffer is merely a shortened and lightened version of the rifle buffer, the physical characteristics of both the rifle and submachine gun buffers were then examined. The following is extracted from Reference 10;

· Laidente

「「ちょうちょう」というないないというというない

1.18 . Cake

"As buffing is accomplished through compression and decompression of the urethane end cap on the redesigned buffer, inquiries were made concerning the characteristics of this materiel from the subcontractor supplying the end caps.¹ The subcontractor advised that he did not have immediately available the data regarding the compression/decompression characteristics for small increments of time between impacts but that his opinion would be that if the cap were compressed as much as .08 inch it would be doubtful if it would decompress more than 25% in a 60-70 millisecond period and full decompression would require much longer. (Note: the amount of compression of the redesigned buffer was measured for selected rounds on nearly all XM177E2 displacement-time records and the maximum compression measured was approximately .10 inch.

In order to gain some further insight concerning the characteristics of the urethane cap a new M16A1 buffer was compressed .08 inch and an attempt was made to measure the decompression rate. While it was not possible to measure very short term initial decompression rates without a sophisticated and somewhat costly test technique it was observed that 2 to 3 seconds after release from compression, decompression was only 85% completed and that 100% decompression was not achieved even after five minutes.

From this information it became apparent that a fully decompressed urethane cap would have excellent buffing characteristics as a result of the first impact but would become progressively more "live" and less inert with each repeated impact."

c. Cyclic Variation as a Function of Ammunition Type. Although initial-round variation, and the progressive climb to "steady-state" rates attributed to the characteristics of the buffer cap, account for much of the cyclic variation shown in Figures 2.16-2 and 2.16-3, the most pronounced variation is encountered when types of ammunition other than ball projectile/WC846 propellant cartridges are fired. Gross variation in cyclic performance in conjunction with lower, and less desirable, energy levels was characteristic of the other three ammunition types in this test as well as in the data reported in Reference 10 for similar ammunition types.

¹As nearly as can be determined, the urethane end caps on both the XM177E2 and M16A1 buffers are identical.

However, it should be emphasized that the displacementtime studies can only indicate the most reliable and least variable power source and that other characteristics of the various cartridge types must also be considered. For example, the firing subtests in this report are not conclusive in either endorsement or rejection of the ball projectile/WC846 propellant combination and the occurrence of mechanism fouling from firing WC846 propellant-loaded cartridges encountered in several subtests may be an unacceptable trade-off if the only gain is reduced cyclic variation.

2.16.4.4 Short Recoil Cycles. Short recoil cycles were experienced with three of the four lots tested in the ammunition-sensitivity phase with satisfactory cycling occurring only with lot LC12194, the ball projectile/WC846 propellant lot. As the displacement-time records indicated the exact rearmost positions of the belt carrier during these short recoil cycles, a number of traces were selected which coincided with the definition of short recoil in par. 2.16.4.2; i.e., sufficient compression of the action spring to permit contact but not compression of the urethane end cap with the rear of the action tube. The displacement-time traces of these rounds are shown in Figures 2.16-4 through 2.16-6. One additional round, No. 4 on Record No. 7, is not illustrated but also coincided with the above definition of short recoil.

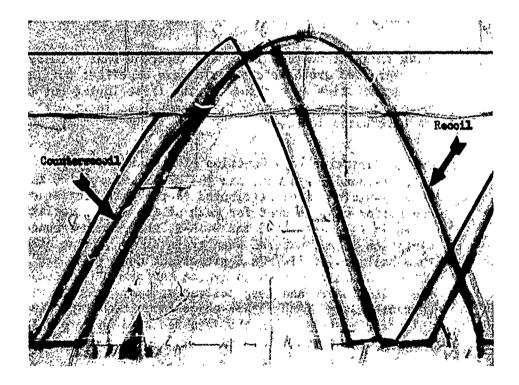


Figure 2.16-4: Displacement-Time Record During Burst Fire, Lot TW18007, Record No. 6. Traces of Rounds No. 8, 1 and 16, from Left to Right, Are Shown. Arrows Indicate Trace of Round No. 1, a Short Recoil Round.

86

ないないとうないたいとうない、このないというない

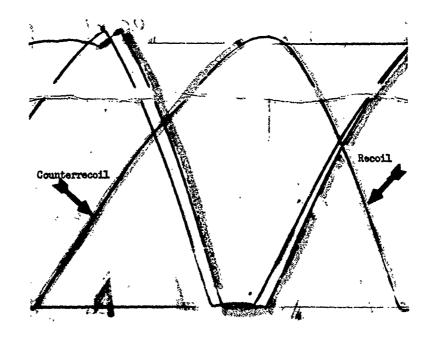


Figure 2.16-5: Displacement-Time Record During Burst Fire, Lot TW18007, Record No. 5. Traces of Rounds No. 12, 20 and 4, from Left to Right Are Shown. Arrows Indicate Trace of Round No. 4, a Short Recoil Round.

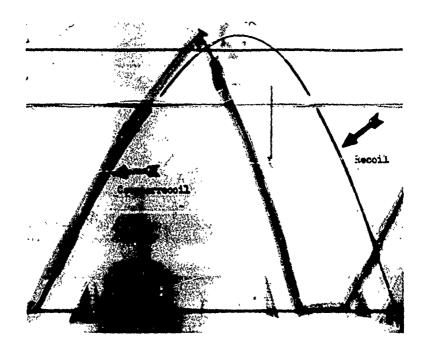


Figure 2.16-6: Displacement-Time Record During Burst Fire, Lot TW18007, Record No. 6. Traces of Rounds No. 14 and 6, from Left to Right Are Shown. Arrows Indicate Trace of Round No. 6, a Short Recoil Round.

Look and she have a second and a feature of a

The cyclic rates of fire of the four selected short-recoil rounds were as follows: 582, 632, 638, and 638 rds per min. The latter three rates agree well with the previously computed short recoil rate of 645 and indicate that losses due to friction in the XM177E2 are negligible. Examination of Figure 2.16-4, showing the 582 rds per min short recoil, indicates that an unusually "long" recoil time occurred, even though full rearward displacement of the buffer (but without buffer compression) was accomplished. This, combined with a somewhat difficult feeding operation during counterrecoil. apparently accounts for the lower than expected rate coinciding with the "short" recoil definition.

A further examination of the individual data sheets confirms that short recoil can generally be ascribed to any individual cycle which is less than 635 rds per min although this rate could also be associated with a normal and adequately powered full recoil if combined with a difficult counterrecoil feeding operation. In any event, rates below 635 rds per min provide only marginal cyclic operation with the XM177E2, whether due to insufficient initial energy, difficult feeding or higher than normal friction forces. If displacement-time records are obtained, the same criteria would apply when the recoil time exceeds 30 milliseconds or when the counterrecoil time exceeds 55 milliseconds.

Figures 2.16-7 and 2.16-8 illustrate an extremely severe instance of difficult feeding and two instances of extreme short recoil respectively. In one of the instances of short recoil, the bolt failed to move rearward sufficiently to feed the next round and the bolt carrier closed on an empty chamber stopping the gun.

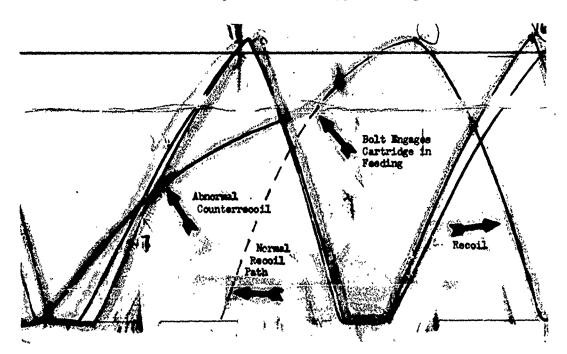


Figure 2.16-7: Displacement-Time Record During Burst Fire, Lot LC12081, Record No. 8. Traces of Rounds No. 8, 17, 1 and 16, from Left to Right Are Shown. Arrows Indicate Round No. 1, where A Cartridge Feeding Problem Was Overcome without a Gun Stoppage.

88

and the second second second second and the second se

Maria Carlinan

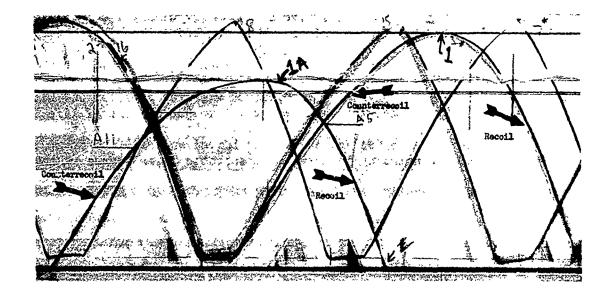
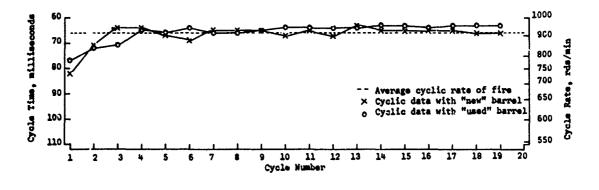



Figure 2,16-8: Displacement-Time Record During Burst Fire, Lot LC12081, Record No. 8. Traces of Rounds No. 2, 16, 8, 1A, 15, 1 and 7, from Left to Right, Are Shown. Arrows Indicate Round No. 1A, a Short Recoil Round Resulting in the Bolt Closing on an Empty Chamber and a Gun Stoppage, and Round No. 1 a Short Recoil Round which Did Not Result in a Gun Stoppage.

2.16.4.5 Magazine Complement Phase. Displatement-time records were obtained by firing lot LC12194 in the following burst lengths: 21, 20, 19, and 18 rounds. In each trial, one round was loaded in the weapon chamber and the magazine loaded with the remainder of the respective complement. The intent of the test was to determine if cyclic characteristics of the weapon, both in recoil and counterrecoil, would be measurably affected by firing from a less than fully loaded magazine.

The round-by-round data sheets are contained in Appendix I, record No. 1, 2, 3, 4, and 5. From an examination of the records, it can be seen that it requires approximately six to eight rounds of firing before a reasonable "steady-state" rate of fire is reached and that a less than fully-loaded magazine does not materially aid in overcoming initial low rates. 2.16.4.6 Characteristics of New Versus Used Barrels. The complete barrel and gas tube assembly from gun No. 904543 was assembled to the mechanism of the displacement-time gun, No. 902868. The barrel and gas tube assembly from No. 904543 had previously been fired approximately 9000 rds in other subtests of this report; 2450 rds with lot LC12081, 4200 rds with lot TW18007, and 2310 rds with lot LC12194.

Displacement-time record No. 9 was then obtained by firing one 20-round burst of lot LC12194. The cycle times are plotted in Figure 2.16-9 along with cycle times obtained with the same lot and with the original barrel on the test gun at a point in gun and barrel life of approximately 500 rds. The identical cyclic characteristics of both records indicate no degradation in the barrel and gas tube from the standpoint of continuing to serve as a suitable power source system over an extended life period.

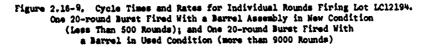


Figure 2.16-9: Cycle Times and Rates for Individual Rounds Firing Lot LC12194. One 20-Round Burst Fired with a Barrel Assembly in New Condition (Less Than 500 Rounds); and One 20-Round Burst Fired with a Barrel In Used Condition (More Than 9000 Rounds). 2.16.4.7 Bolt-Carrier Rebound (Bolt "Bounce"). At high cyclic rates of fire, early production models of the M16A1 rifle had often malfunctioned as a result of rebound of the bolt carrier on closure, which interfered with the fall of the hammer and resulted in failures to fire during the automatic mode. A redesigned buffer was tested and reported in Reference 10 and demonstrated that bolt-carrier rebound had successfully been overcome by the redesign of the new buffer. As the XM177E2 submachine gun incorporates the same design of buffer, although shorter in length and lighter in weight, as does the current, or redesigned M16A1 model, individual high race cycles with the XM177E2 were examined to observe the degree of bolt-carrier rebound with the submachine gun.

As shown in Figure 2.16-10, bolt-carrier rebound is almost completely overcome, even at relatively high rates of fire in the XM177E2 submachine gun.

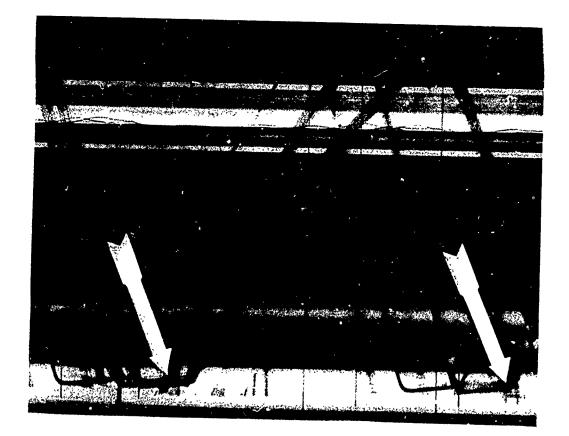


Figure 2.16-10: The Arrows Indicate Only a Very Negligible Amount of Bolt-Carrier Rebound on Closure. The Two Observations Are Made on Cycles of 952 Rds per Min for Each Round.

2.16.5 Summary of Results and Analysis

Results and analysis are summarized as follow:

- a. Minimum cyclic rates of fire for any single round fired in the XM177E2 submachine gun should not be below 635 rds per min to insure proper gun functioning. This is estimated to be approximately 50 rds per min more than the minimum required for the M16A1 rifie. It must be emphasized that the above rate should be the minimum encountered under adverse conditions and that the minimum acceptance test rate must be higher than 635 rds per min to insure dependability in world-wide service use.
- b. The M193 ball projectile cartridges loaded with WC846 propellant offered the least variation in cyclic performance at near optimum energy levels among the four cartridge types tested.
- c. The urethane end cap on the buffer is not a suitable energyabsorbing material where repeated impacts occur within 60 to 70 milliseconds as in burst fire.
- d. Reduced loading of the magazine does not aid in overcoming initial low cyclic rates.
- e. Extended firing of the XM177E2 submachine gun, as much as 9000 rounds, does not degrade the effectiveness of the barrel and gas tube assembly as a power source system.
- f. Bolt-carrier rebound with the XM177E2 is negligible and does not interfere with hammer fall or otherwise degrade cycling performance.

ちょうちょう ちょうちょう ちょうちょう ちょうちょうちょうちょうちょうちょう

SECTION 3. APPENDICES

T METER

÷.,

APPENDIX I - TEST DATA

Ammunition Acceptance Data Inspection Report

I-1

•		y		•		• }	,	J:		,		
<u>ير ي متحمينات ، ،</u>			,	`					•			
SENTED 13		7		1 415	CITY ADMV	AMMUNITION PLANT				I AAMS (
1 PACAED 50	N. 200					EPORT - 5.50MM	and the second se	and the second se		-44-610		
		~~~				acer, M196		IVIR NU			11X FA	
•	-		±†	· · · · · · · · · · · · · · · · · · ·		<u>acci,, .</u>	- :	INER LO	NUS.	10-1	30.43	7,1:9
FUNCTIONAL LOT NOS		1	11	- Lot	NO.LC 1	2081						
								CTR MI	K R	28.6		
-MCNS CODE 4810.16	.0217.	2.A2.F	y68	ACCEPTE	<u>ک</u> ہ	1ST TEST 🔀	16	NITER M	IX R	200		
			_	•	······		_			WC P	46	
				REJECTE	° Land	RETEST	<u>نم</u> ן ا	L. NO.	4466	3		
SPEC. NO. MIL-C-6	Ollary	A/6				WAIVER		G (GAS)		26.6	26.7	· · · · · · · · · · · · · · · · · · ·
1:00	DATE 5	75766					•)	55-	STEEL			5. CY
JUG. NO. C10534193							i and	_	_	LC 67		
REV B	DATE	872776	5	ACCEPTA	NCE DATE	19 June 67		LLET JA				1.a.l
	FIRI	NG TEST	5			TRACE		NO.	ACS.	RECORD	LL	INIT
			<u></u>		······	NU. TRACING & S			00	81	فسيعه بليد	9
	A 43	125	۲ °	1600	~05 ⁰	NO. BULLET BURS				0	<u> </u>	
(PSI)						NO. ERRATIC FLI					4	
•		- -		10	20	MO, MUZZEE / LAS		ERPROCE	_	0	1_0	
HOS FIRED	20 47000	10		10 - 1890	- 3835	NO. TESTED		D. FAIL			SPEC.	
LIMIT - HAX	52,000	and the second se		5,000	+5,000	50		1			3	<u> </u>
4VG - 3 50	52000		-				DESCRIP	TION OF	DEFL	CTS		
LINIT - HAX	58,000	the second s									7 2 25	SI BU SEC
PORT PRESSURE												
(251)	ļ	_			L							
ROS FIRED	20	- 10		10	20	and the second	LLET EXT					
RECOPO	13700	.+5		-215	-180	· · · · · · · · · · · · · · · · · · ·	PEC. MIN			D MAX.		. HEAN
LIMIT	15,000	-2.0	200	2,000	±2,000		35.	the second s	<u>)</u>	<u> </u>	1.65	4
VELOCITY # 15 FT						10. TESTID	ERCUROU	NO. FAI			SPEC	· · · · · ·
(FS)	ſ					50		0				<u></u>
IDS FIRED	20	10	5	10	20		BASE C	LOSURE	SEAL	TEST		
TECORO	3175	+	49	-15	-88	NO, TESTED	_	NO. FAI	والمراجع والمستقري		SPEC.	LINIT
		40 -2	0	-250	-250	25		0				}
V3C CTL	18.0	-			Į	VIS	UAL. GAG	E & WEI	GH IN	SPECTIC	8	
	40		ر ا ـ ـ ـ ـ		L	IST SAMPLE			D	ATE		
10024CY		RDS				2ND SAMPLE						
		FIRED	-	CORD	5.0	AOL S				ICALI . H		MINCR 1.50
11 = 200 Y		50	-	.26	1 4.0	LAUL &			┽╍╍╸	04	.25	<u> </u>
· · · · · · · · · · · · · · · · · · ·		ROS	;			DEFECT NO. & DI	ESCRIPTI	CN	UTA	111.11	//////	1.111
LY & CASUALT	and the second s	FIRED	RE	CORD	LIMIT							
5.56MH, XM1	621 - 7	20	L_OK									
			<u> </u>		<u> </u>					<u></u>		Ļ
CASUALTIES					+				- 	<u> </u>		}
NONE		_	+		+				+			l
			+		<u> </u>	70744						<u> </u>
•			+		1		NG INSH	CTION -	CINT	AINSR C	NIENI	<u> </u>
			1		1	PA."	وبستاعة بالندة بالبرجيجا			and the second se	NOR	
(L	S DEFICTIVE	AQL		DEFE	CTIVE	Ţ.	10L <
							1.0					-13
			1			TOTAL AUTHORIZ	ED HOS	PENDE	N IN T	ESTS;	1,20	3'
											•	

-

Ammunition contained herein was originally withdrawn from Lot 12073 and Lot 12074 for additional ballistic evaluation. for trace performance.

(N

QUALITY ASSURANCE REPRESENTATIVE

, f

-+ GE _____ GF __ 1

- JLC-1 FOR 73 (TEST) 6 JUNE 1966

-

FSN 1305-914-4	SLO RD	3.	TWIN CIT				Contract	NU2 / P	1012	105	
	19-4068	·			PORT - 5.56			0. 0024	020m.m		185
		12-1	ITEM_	C.765. 5	Stam Tra	a hit	r Primer Li	ot Nos. 24		2404,2/	14
Functional Lot Nos.		+ +		ot No. TW-	• •						
		4					Tracer M	lix			
AMCMS Code 4870.14.	0247.2.A	٤	Accepted	XXX	Ist Test Kx	×	Igniter M	_			
			Rejectsi		Retest]		nt Type //			
				لمستعمل			A.L. No		1547	-	
Spec. No M.L.C-Gon	101 Paul				Waiver		Chg. (G	(s) Steel	201	Bras	517
ECO	Bate							amp (YI)	196		- M
Dwg. No. C. 10 (3419)	3		• •		dans 's	•	Bullet	_		6 H'T'L	
Rev. R	Cate 4-7	.7-65	Acceptan	ce Date£3	Jone 6	2					
	FIRING TES	TS			TRACE PE	REORMAN		NO. RDS.	RECO		IMIT
		~	·····		Z Z TRACIN		os.	100			802.
CHAMBER PRESSURE	AMB	125*	160*	-65*	NO. TOTA	L BLINDS		1.62.2			
(PSI)	ţ		1	1	NO. SHOR			ч. : X	- 1		
RDS FIPED	20	10	10 .	20	NO. LATE	TRACE	WATER	A CALL	T		
RECORD	45,000	+1600	+1600	-100	NO. TES			ROOF TES	<u>'</u>	SPEC. LI	
LIMIT - MAX	52,000	+ 5,000	+ 5,000	+ 5,000	NO. 1ES 50	<u> </u>		1	<u> </u>	3PEC. LI	<u></u>
AVG + 3 SD	51,100		<u> </u>	<u> </u>	·		DESCRIPTI	ON OF DE	FECTS		
LIMIT - MAX	58,000				1	\$LOW	LENK	m.(N	a ek)	
PORT PRESSURE		l	Į	L	∦			·····			
RECORD	13,980	+ 30	+120	- 960	<u> </u>	011	LET EXTR	ACTION T	FST /I h	e 1	
LIMIT	15,000 t 2,000	+-2,000	+-2,000	+-2,000	No. Tested		_	O. FAILE	DM	AX. MIN.	NEA
VELOCITY . 15 FT.	- 2,000			-2,000	25	33	s	6	11	4 60	123
(FS)		L	L	L			MERCUROL	_	E TEST	SPEC LI	417
PDS FIRED	20	10	10	20	NO TEST	<u>eu</u>		FAILED O		SPEC LI	*** 1
PECORD	3195	+27	- 3	-124			BASE CLO		L TEST		
LINIT - BALL	3250 ± 40 3200 ± 40	-250	-250	-250	NO. TES			FAILED		SPEC. L	MIT
STO DEV	(1.7	-250	+	+++++++++++++++++++++++++++++++++++++++	25			0		3	
11417	40	1	+	1	1		L GAGE &	WEIGH INS	PECTIC)N	
PACY		DS	1		a Ist SAMPLE				DA	ita 6-	8-6
- 5)		RED	RECORD	LIMIT \$.0	2nd SAMPLE			100	ITICAL	MAJOR	MINO
ON TIME (MS)	a de la companya de l		()	4.0	AQL %				.04	.25	1.50
		DS		in the local district of the local district	% DEFECTI	/E					• /
TION & CASUAL	FI	RED	RECORD	LIMIT	DEFECT NO	. & DESC	RIPTION	<u>F</u>	- Andrews	The second	- in the second
LE, 5.56MM, XM16E1		<u> </u>									15
CI SUALTIES			ONE								
					1			·····			
					-					<u> </u>	
					TOTAL					<u>+</u>	Σ
	•					ACKING I	NSPECTION	V - 2011	AINER	CONTENT	
							MAJOR			MINOR	2
		l_	And the second								
					SUB-LOT	% DEF	ECTIVE	AQL %	7.	DEFECTIVE	
								AQL 5	*		AQL 2.5
			· ·		IST	N DEF			7		
			· · · · · · · · · · · · · · · · · · ·			0	ECTIVE	1.0		?	2.5

and the second second and a second a second a second a second second second second second second second second

.

į

· * · ····

N PACKED 2	,021,040				AMUNITION PLANT		R: REN ARMS	
-926-39	30(1071)		1		PORT - 5.56HH	PHIMER NO	. 41	HIX FA956
•)	ITEN C	tg., 3.11	. M193	PRIMEP LO	T NOS, 10-1	33. 10-134
		/	-	-		10-135.	10-136	
" L LOT NOS	·	\	101	NOL	C 12194	•		
		1	1			TRACER HI	x	
- 1910.1	6.0217.2.	FA.FY	ACCEPTE	کٽا ہ	1ST TEST YX	IGNITER M		
、 —				· ·····		the second s	T TYPE WC	the second s
·			REJECTE	•	RETEST	A.L. NO.	44661, 44	662
			{					
vo. MIL-C-9		<u> </u>	4		HAIVER	CHG (GRS)	27.9. 28.	the second s
ve. D105236		5-00	1		,	HEADSTANP	STEEL	
LV D	DATE 2-1	7-65	400000		31 May 1967	the second s	CKET GILL	
<u> </u>		7-02		HUE DATE	J. 109 1707	BULLET JA	WAGE TOLLIGE	
•	FIRING	TECTE			TRACE		RDS. R"COR	
	r iking	16313			NO. TRACING & SC	And the second se	RUS. R COR	LIMIT
	Ava	1250	1600	-05 ^C	NO. BULLET BURST		CHA .	
R PRESSURE				.00	NO. ERRATIC FLIC			
(PS))	1	1			NO. HUZZLE FLAS			
15 FIRLD	20	10	10	20	1	WATERPROCE		
- TOPE	49000		-2610	the second s	NO. TESTED	NO, FAIL		SPEC. LIVIT
- X.S.X	52,000		+5,000	+5,000	50		~	3
3:0	52300	1				DESCRIPTION OF	DEFECTS	
- LAX	58,000	1	h		1 cty. w/2 or			7 1/2 75
CRT PRESSURE	1	1			for 30 sec.			
(P91)	1	1	1	}				
S FIRED	20	10	10	20	891	LET EXTRACTION	TEST (LAS)	
11.13	15400	-35	-35	-590	NO. TESTED SP	and the second		MIN. M
		1	1		25		0 0	
	15,000	-2,000	-2,000	-2,000	The second second second second	ROUPOUS NITRA		
N a 15 FT	<u> </u>	Ĩ	Í		N), TESTED	NO. FAL		SPEC. LINI
(75)	1		}		50		2	1
-20	20	10	10	20	 	BASE CLOSURE		
	3244	+37	±0	-156	NO. TESTED	NO. FAI		PEC. LIMI
·····	3250±40	-250	-250	-250			1	3
-v	130.0	1		1	VISI	AL. GAGE & WE	CH INSPECTI	CAV
	40	1	1	1				
CY		DS			XSTXSAUPLK ZDRXSAUPLK		DATE 3-	22 & 23-6
(S)		RED	RECORD	LINIT	1 CONCOMPLICATION IN		CRITICAL	MAJOR MI
EAN RADIE C 200 Y	05	90	1.34	2.0	1264		.04	.25 1
() H(4, THE (3 5)		50	1.47	4.0	S-DEFECTIVE			
COTION & CASUALT		05			DEFECTIONOWNOPE	SORIFAION	<u>Misillilli</u> ll	
		RED	RECORD	LIMIT	SYSTEM PT	VILLATION		·····
IFLE, 5 5644, XM1	<u>6E1</u>	720	<u>OK</u>		Contractor			
				<u></u>	·//		M Minor	
CASUALTIES				<u> </u>	Government	Sample 63.		
lone					-{}		-+	
				+	TOTAL		- -	
				``		0 144 00 00 100	0.1.7.1.75	
		<u>_</u>		<u> </u>	and the second se	G INSPECTION .	والمصابقة المصطالي وبجرد سنت	L NOR
				+	MAJO		ماروساناكات الوجججيلياني باروجه	
				<u> </u>	2 DEFECTIVE	AOL \$ 1.0	S DEFECTIVE	<u>A?L ≰</u> 2.5
				1	TOTAL AUTHORIZE			1105
					ILIUIAL AUTHORIZE	AND LAPENDE	- IN (1313)	
LHARKS:								•
		•						
						1		
			•			//	1 1 2	- 11
	1					Comment	n:1.1.	11 1
	•							
+52 <u>1</u> OF <u>.</u>					· //	QUALITY ASSU	RANCE REPRES	ENTATIVE
+02 <u>1</u> 0F						QUALITY ASSU	RANCE REPRES	SENTATIVE
-32 <u>1</u> OF 	3 (TEST)			<u></u>		QUALITY ASSU	RANCE REPRES	SENTATIVE

÷

. . "..." . . .

and the second s

i i

•

" here			/			J					
tity Packed 2.	423,924 4-3520-1	e dela			AMMUNITION		1 Contrac	t No.AA	. 5.0	tridge Com. SEAMC ~	
		Ð	1		EMM BALL		Primer	Lot Nos.	3/24	-2 2	4 4 - 13
" tional Lot Nos.		$\overline{\Lambda}$] · L	ot No. <u>TW- /</u>	\$191		Tracer	Mix			·
AMCMS Code 4F10.11	.0217.2.0	4 #	Accepted		-		Igniter Propell		t / # 4	1202	
			Rejected	ل ـــــا	Retest]	A.L. N Chg. (0. 4	25.7		
Spec. No. M.L - C - 996 ECO	Date	mono 2]		Waiver <u>}</u>			tamp (Yi		967	Brass 😰
Dwg. No. 0/0 52631 Rev. 0		7-65	Acceptan	ce Date_/4_	JUNE 'ST		Bullet	Jacket	6011	0'8 11	<u>'</u>
	FIRING TE	STS	<u> </u>		TRACE PE			NO. RD	IS. R	ECORD	LIMIT
CHAMBER PRESSURE	AMB	125*	160*	-65*	NO. TOTAL	BLIND	s [100			£07
(PSI) RDS FIRED	20	10	10	20	NO. LATE			<u>محتشفة الم</u>			
RECORD	49,600	-200	-1600	-6400	NO. TEST	ED J	WATERP	FAILE		1 1957	. LIMIT
LIMIT - MAX	52,000	+ 5,000	+ 5,000	+ 5,000	50	20		Ø		T	3
AVC + 3 SD	58,000						DESCRIPT	ION OF	DEFEC	TS	
PORT PRESSURE	36,000	1	·								
RECORD	13,190	0	+130	- 1160		DU	LLET EXTR	ACTIO	TEST	(1 be)	
LIMIT	15,000 t 2,000	+-2,000	+-2,000	+-2,000	No. Tested	SPEC		NO. FAI		the second s	IN MEAN
VELOCITY • 15 FT. (FS)		1	1				ERCURO		ATE T	EST	
RDS FIRED	20	10	10	20	NO TEST	ED	NO.	FAILED	<u> </u>	SPEC	LIMIT
RECORD	3215	+ 79		-155			BASE CLO	O SURE S	EAL TE	T	
LIMIT - BALL	3250 ± 40 3200 ± 40	-250	-250	-250	NO. TEST	ED		FAILED		_	LIMIT
STD DEV	18.6		+	-230							3
. IMIT	40]		AL GAGE &	WEIGH	INSPEC		le li e
ACCURACY (INCHES)		DS RED	RECORD	LIMIT	Ist SAMPLE	2400	>			DATE 6/	4/67
MEAN RADIL . 200 YDS		80	1.11	2.0	2nd SAMPLE			I	CRITIC	AL MAJO	R MINOR
ACTION TIME (MS)		50	.98	4.0	AQL %				.04	.25	1.50
FUNCTION & CASUALT	Y FI	DS RED	RECORD	LIMIT	S DEFECTIV		RIPTION		0	1.08	N. H. S.
5 56MM, XM16E1	72									2/94	2/16
SUALTIES			NONE								
	·····¥										
					TOTAL						3
						CKING	INSPECTIO	N · CC	TAIN	ER CONTEN	T
							NAJO			MI	NOR
·					SUB-LOT	% DEI	FECTIVE	AQL 1.0		% DEFECT	IVE AQL %
······ /					IST		9	<u> </u>		0	
· · · · · · · · · · · · · · · · · · ·					2ND	(2			0	
					TOTAL AUTH	ORIZED	RDS EXPE	NDED I	NTEST	s: /0.	30
HEMARKS:				کی بند ورستین به							
This cont	on parke	TD LOT	ONARGED	AGAINST	PRON; FG	-7- AC	0120-01	- FO-	FN. (INRO. C	410).
AUTNORITY	per sm	בן אמטו	oum ior	8.							
-											
					1						_

CHIEF BALLISTICIAN TCAAP

CHIEF, GOVERNMENT OA DIVISION

04% C Q FORM 5 25 APR. 67

REPLACES SMUTC FORM 116 WHICH IS OBSOLETE , I=4

Ĩ,

Chamber and Part Pressure Data

annen wer and a consideration of a second statement and a second statement

.....

- -1

Round No.	Instrum Veloci 15 Ft		Chamber Pressure, psi	
Date: 21 November 196 Previous Rounds: 111. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	, 5.56-mm, : +160°F.		lot LC-Y-5.56-501	(reference).
1	3191	3092	46300	
2	3189	3095	47300	
3	3255	3148	53500	
4	3194	3086	46000	
5	3128	3030	47800	
6	3209	3116	46700	
7	3160	3068	45900	
8	3189	3097	48200	
9	3203	3112	47200	
10	3168	3069	44800	
11	3176	3085	45700	
12	3183	3086	46900	
13	3259	3163	54600	
14	3206	3107	45900	
15	3155	3071	44200	
16	3174	3077	47500	
17	3212	3113	51200	
18	3189	3101	46800	
19	3164	3070	45500	
20	3 220	3123	49100	
Average	3191	3095	47555	
Standard Deviation	31	30	2705	

I-5

.....

	Instrum Veloci		Chamber Pressure,
Round No.	15 Ft	78 Ft	psi
Ammunition Temperature	, 5.56-mm,	tracer, M196,	lot LC-12081.
Barrel No.: 26 Universal Receiver No.	: 1.		
1	3153	3060	48000
. 2	3108	3024	46700
2 3			
3 4	3160	3065	49300
	3160	3067	49200
5	3171	3068	50400
6	3137	3040	48100
7	3118	3012	46600
8	3108	3021	47900
9	3111	3016	49000
10	3094	3002	47900
11	3136	3037	48000
12	3092	2992	45900
13	3161	3062	50000
14	3 03 9	2961	46800
15	3102	3002	46900
16	3104	3027	47400
17	3142	3040	48500
18	3096	3000	46000
19	3116	3014	47200
20	3156	3061	51400
Average	3123	3029	48060
Standard Deviation	33	30	1476

ALCONOMIC AND A

	Instrum Veloci	Chamber Pressure,	
Round No.	15 Ft	78 Ft	psi
Date: 21 November 196 Previous Rounds: 152. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	, 5.56-mm, : +160°F.	tracer, 1196,	lot TW-18007.
1	3184	3088	52500
. 2	3197	3110	49600
3	3144	3049	47700
4	3194	3107	50200
5	3208	3116	49300
6	3158	3098	50300
7	3163	3068	48700
8	3138	3071	45600
9	3206	3101	51900
10	3168	3075	51900
11	3197	3095	50300
12	3197	3109	49800
13	3192	3094	50400
14	3150	3086	48700
15	3146	3 045	46500
16	3180	3069	50900
17	3169	3070	47100
18	3153	3047	48400
19	3195	3085	52200
20	3131	3039	49300
Average	3174	3081	49565
Standard Deviation	24	23	1894

Round No.	Instrum Veloci <u>15 Ft</u>		Chamber Pressure, psi
Date: 21 November 196	7.		
Previous Rounds: 172.			
Ammunition: Cartridge	, 5.56-mm,	, ball, M193,	lot LC-12194.
Ammunition Temperature	: +160°F.	•	
Barrel No.: 26.	. 1		
Universal Receiver No.	: 1.		
1	3214	3218	44900
2	3224	3127	46600
3	3183	3089	44900
4	3185	3101	44500
5	3208	3114	44000
6	3199	3109	44400
7	3203	3106	46100
8	3184	3099	43200
9	3212	3117	43800
10	3208	3118	45900
11	3213	3119	45600
12	3175	3090	43300
13	3196	3106	45600
14	3215	3129	45000
15	3195	3110	44000
16	3198	3107	44900
17	3234	3145	45400
18	3224	3134	45900
19	3215	3127	46000
20	3249	3155	45900
Average	3207	3116	44995
Standard Deviation	18	17	981

West and the product of the second

Round No.	Instrum Veloci 15 Ft		Chamber Pressure, psi
Date: 21 November 196	7		
Previous Rounds: 192.	. •		
	5.56-mm	hall, 1193.	lot TW-18191.
Ammunition Temperature			
Barrel No.: 26.	• • • • • • • •		
Universal Receiver No.	: 1.		
	• ••		
1	3177	3092	54200
2	3181	3093	51900
3	3204	3116	51300
4	3209	3109	53100
5	3210	3124	54900
6	3244	3154	55500
7	3214	3120	53100
8	3147	3059	51600
9	3224	3118	54300
10	3190	3097	51400
11	3177	3082	50700
12	3188	3093	51200
13	3208	3115	53200
14	3195	3095	53600
15	3190	3099	52300
16	3197	3108	53700
17	3176	3084	52400
18	3190	3099	51600
19	3231	3137	53400
20	3178	3084	50100
Average	3196	3104	52675
Standard Deviation	22	21	1457

I-9

Å,

Round No.	Instrum Veloci 15 Ft		Port Pressure, psi	
Date: 22 November 196 Previous Rounds: 217. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	e, 5.56-mm, e: +160°F.	ball, M193,	lot LC-Y-5.56-501	(reference).
. 1	3202	3113	14900	
2	3187	3099	15300	
3	3184	3092	15400	
4	3180	3096	15400	
5	3251	3143	15300	
6	3209	3120	15200	
7	3121	2924	16400	
8	3165	3073	15000	
9	3208	3120	15000	
10	3199	3116	14800	
11	3179	3077	15000	
12	3137	3046	14600	
13	3188	3100	15000	
14	3215	3119	14800	
15	3181	3090	14700	
16	3184	3093	14800	
17	3198	3100	15000	
18	3163	3077	14500	
19	3213	3113	15000	
20	3210	3109	15000	
Average	3189	3091	15055	
Standard Deviation	29	45	402	

Harden and the state of the second

	Instrum		Port
Round No.	Veloci 15 Ft	78 Ft	Pressure, psi
Date: 22 November 196 Previous Rounds: 237. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	, 5.56-mm, : +160°F.	tracer, M196,	lot LC-12081.
1	3209	3114	14000
2	3163	3065	13900
3	3155	3059	14300
4	3139	3062	14200
5	3155	3049	13400
6	3104	3013	13800
7	3190	3087	13300
8	3147	3050	13500
9	3124	3025	14200
10	3146	3055	13500
11	3095	2997	13000
12	3126	3067	13400
13	3123	3015	13600
14	3066	3021	13200
15	3166	3109	13400
16	3158	3076	13500
17	3120	3064	13400
18	3174	3080	13600
19	3157	3063	13500
20	3157	3058	13300
Average	3144	3056	13600
Standard Deviation	33	31	355

•

. . . .

	Instrum Veloci	ty at	Port Pressure,
Round No.	15 Ft	78 Ft	psi
Date: 22 November 196 Previous Rounds: 257. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	, 5.56-mm, : +160°F.	tracer, M196,	lot TW-18007.
1	3216	3154	13900
. 2	3255	3152	14000
3	3239	3141	13900
4	3214	3112	13500
5	3227	3143	13300
6	3263	3167	13400
7	3219	3132	13800
8	3258	3153	13800
9	3248	3162	13800
10	3224	3132	13900
11	3204	3118	13900
12	3232	3140	14000
13	3240	3143	14300
14	3233	3137	13900
15	3258	3158	14200
16	3179	3111	14000
17	3169	3086	13800
18	3203	3121	14300
19	3201	3133	13800
20	3206	3148	14300
Average	3224	3137	13890
Standard Deviation	26	20	273

and the second second

I-12

STATES &

ALC: NO

Round No.	Instrum Veloci 15 Ft		Port Pressure, psi
Date: 22 November 196 Previous Rounds: 277. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	, 5.56-mm, : +160°F.	ball, M193,	lot LC-12194
1	3218	3129	14300
. 2	3188	3098	14100
3	3196	3107	14900
4	3191	3095	14600
5	3197	3109	14800
6	3222	3127	15100
7	3235	3145	14800
8	3194	3105	14700
9	3206	3107	15100
10	3211	3124	15000
11	3214	3127	14700
12	3203	3111	14900
13	3171	-	14000
14	3259	3171	15400
15	3204	3114	15000
16	3235	3148	15000
17	3202	3112	15000
18	3247	3160	15200
19	3226	3140	15300
20	3232	3141	14800
Average	3213	3125	14835
Standard Deviation	22	21	366

-

one have the second back the second states and a second second

and the second se

Serie-

I-13

Round No.	Instrum Veloci 15 Ft		Port Pressure, psi
Date: 22 November 196 Previous Rounds: 297. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	, 5.56-mm, : +160°F.	ball, M193,	lot TW-18191.
. 1	3163	3074	13600
2	3233	3148	13900
3	3252	3158	14100
. 4	3259	3168	13600
5	3285	3190	13800
6	3250	3149	13800
7	3274	3179	14100
8	3255	3164	13600
9	3274	3180	14000
10	3267	3180	14300
11	3261	3176	14200
12	3233	3139	13900
13	3245	3150	14200
14	3259	3176	14200
15	3244	3150	14100
16	3219	3131	14200
17	3227	3139	14100
18	3250	3162	14200
19	3249	3164	14200
20	3266	3180	14900
Average	3248	3158	14050
Standard Deviation	26	26	300

I-14

MAN AL

icizia:

distance in the second second

Round No.	Instrum Veloci <u>15 Ft</u>		Chamber Pressurc, psi	
Date: 28 November 1967	7.			
Previous Rounds: 442.				
		ball, M193,	lot LC-Y-5.56-501	(reference).
Ammunition Temperature	-63°F.			
Barrel No.: 26.				
Universal Receiver No.:	1.			
1	3103	3012	46300	
2	3064	2975	42100	
3	3077	2994	44300	
4	3057	2972	46000	
5	3018	2932	38800	
6	3050	2965	42600	
7	3057	2967	43400	
8	3102	3016	47700	
9	3092	3004	45200	
10	2983	2889	41000	
11	3034	2952	43300	
12	3048	2960	42100	
13	3009	2926	39000	
14	3051	2947	41200	
15	3073	2979	44500	
16	3028	2937	42400	
17	3090	3000	44200	
18	3046	2963	43000	
19	3021	2927	43800	
20	3092	3007	45200	
Average	3005	2966	43305	
Standard Deviation	33	34	2284	

いたのでいいで

No.

1. State

	Instrum Veloci	Chamber Pressure,	
Round No.	15 Ft	78 Ft	psi
Date: 28 November 196 Previous Rounds: 462. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	e, 5.56-mm, e: -65°F.	tracer, M196,	lot LC-12081.
. 1	3022	2925	40800
2	2983	2888	40400
3	2981	2877	41000
4	3037	2942	46100
5	2992	2936	44100
6	3013	2910	43400
7	2954	2860	39600
8	2957	2864	39500
9	3018	2919	44500
10	3009	2925	47400
11	2999	2900	40200
12	3023	2930	42100
13	3074	2975	48900
14	3031	2947	44900
15	3051	2956	41400
16	3065	2980	44500
17	3030	2936	41800
18	3015	2919	42100
19	3044	2949	44400
20	3032	2940	42500
Average	3016	2924	42980
Standard Deviation	32	33	2599

. ~ .

.

1.....

. ...

War hai

I-16

Round No.	Instrum Velocit 15 Ft		Chamber Pressure, psi
Date: 28 November 1963	7.		
Previous Rounds: 482.			
Ammunition: Cartridge		tracer, 1196,	lot TW-18007.
Ammunition Temperature:	-65°F .		
Barrel No.: 26.			
Universal Receiver No.	: 1.		
1	3031	2943	48000
2	3009	2894	47900
3	3035	2925	47200
4	3106	3006	50200
5	3032	2959	48100
6	3009	2923	43700
7	3006	2921	45000
8	3008	2942	48100
9	3025	2921	48300
10	3048	2945	48900
11	2975	2868	43000
12	2944	2840	43100
13	3061	2965	49900
14	3030	2940	47900
15	3039	2983	49600
16	2968	2868	45600
17	3102	3008	49600
18	3020	2922	47800
19	3033	2943	45900
20	2988	2926	44700
Average	3023	2932	47125
Standard Deviation	39	43	2265

N. - 14.

Round No.	Instrum Velocia 15 Ft		Chamb er Pressure, psi
Round No.	13 10	70 10	031
Date: 28 November 1967 Previous Rounds: 502. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	5.56-mm, -65°F.	ball, 4193,	lot LC-12194.
1	3118	3030	40900
2	3139	3043	43400
- 3	3093	2994	41900
4	3159	3064	44300
5	3044	2956	39100
6	3091	3002	40900
7	3088	2999	40300
8	3106	3015	41700
9	3116	3031	43000
10	3107	3017	40600
11	3022	2931	38100
12	3026	2936	37600
13	3126	3041	41600
14	3075	2985	40800
15	3023	2933	38400
16	3106	3022	39500
17	3106	3021	41700
18	3108	3018	41400
19	3100	2993	42500
20	3067	2982	39900
20	5007	سک ک جہ بر	<i></i>
Average	3091	3001	40880
Standard Deviation	38	38	1769

こころうちょう あいまたいな

Round No.	Instrum Veloci 15 Ft	nental ity at <u>78 Ft</u>	Chamber Pressure, psi
Date: 28 November 196 Previous Rounds: 523. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	, 5.56-mm : -65°F.	, ball, '1193,	lot TW-18191.
1	3102	3011	38600
2	3010	2924	47900
23	3016	2927	46600
4	3029	2942	50000
5	3038	2944	47400
6	2966	2875	45000
7	2963	2866	45900
8	2993	2925	48300
8 9	3001	2917	45900
10	2961	2879	45400
10	3030	2944	44200
11	2994	2944	45500
12	2994	2875	45800
		2919	46300
14	3006	2919	50100
15	3026	2943	47800
16	3024		47800
17	2994	2908	
18	3002	2913	48300
19	3009	2921	48200
20	3000	2914	46700
Average	3006	2919	46390
Standard Deviation	33	32	2503

....

and the second and the second se

I-19

Round No. Date: 30 November 196	Instrum Veloci 15 Ft		Port Pressure, psi	
Previous Rounds: 633.	· •			
		ball, \193,	lot LC-Y-5.56-501	(reference).
Ammunition Temperature	: -65°F.			
Barrel No.: 26.				
Universal Receiver No.	: 1.			
. 1	3116	3021	14900	
2	3057	2975	14800	
3	3065	2964	14400	
4	3094	2999	13600	
5	3014	2924	14100	
6	3086	3004	14100	
7	3029	2941	14000	
8	3031	2948	14400	
9	3099	3009	14400	
10	3052	2958	14500	
11	3174	3081	14200	
12	3097	3012	14400	
13	3087	3002	14400	
14	3082	2992	14700	
15	3163	3075	14600	
16	3047	2954	14700	
17	3098	3009	14500	
18	3111	3024	14700	
19	3053	2969	14200	
20	3130	3037	14700	
Average	3084	2995	14415	
Standard Deviation	42	42	315	

and the state of the second second and the second second

Round No.	Instrum Veloci 15 Ft		Port Pressure, psi
Date: 30 November 196 Previous Rounds: 653. Ammunition: Cartridge Ammunition Temperature Barrel No. 26. Universal Receiver No.	, 5.56-mm, : -65°F.	tracer, 4196,	lot LC-12081.
1	3187	3084	14000
2	3032	2934	12800
3	3088	2989	13300
4	3078	2992	13000
5	3092	2995	13300
6	3092	2992	12800
7	3082	2998	13300
8	3064	2983	13400
9	3008	2914	13400
10	3072	2975	13300
11	3046	2951	12900
12	3093	2990	13200
13	3063	2968	13400
14	3020	2932	12600
15	3091	3003	13300
16	3023	2913	13200
17	3077	2991	13300
18	3022	2931	13100
19	3070	2979	12900
20	3040	2954	12600
Average	3067	2973	13155
Standard Deviation	40	39	328

1-21

and and the

ALC: NO

ちょうちょうないないない いちしゃい ないない いってき しちんち しん

Round No.	Instrum Veloci 15 Ft		Port Pressure, psi
Date: 30 November 196 Previous Rounds: 673. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	, 5.56-mm, : -65°F.	tracer, \1196,	lot TW-18007.
. 1	3107	3000	12800
2	3142	3044	13100
3	3150		13100
4	3092	2987	12800
5	3121	3027	12800
6	3107	3010	12800
7	3172	3085	12500
8	3149	3053	12500
9	3121	3019	12500
10	3057	2956	11600
11	3081	2990	12100
12	3069	3011	12100
13	3124	3038	11500
13	3052	2947	11300
15	3073	2979	11900
16	3116	3018	11800
10	3139	3045	11800
18	3139	3031	12000
19	3100	3001	11900
20	3071	2968	11700
Average	3108	3011	12230
Standard Deviation	34	35	552

Round No.		imental city at 78 Ft	Port Pressure, psi
Date: 30 November 196 Previous Rounds: 693.	-		<u>-</u>
		, ball, '1193,	lot LC-12194.
Ammunition Temperature	-65°F.	· · · · · · · · · · · · · · · · · · ·	
Barrel No.: 26.			
Universal Receiver No.	: 1.		
. 1	3059	2958	13800
2	3068	2976	13700
3	2969	2874	13400
4	3062	2973	
5	3099	3010	13800 13600
6	3099	2983	
8 7	3082	3006	13400
8	3095		13700
8 9	3084	2994	13100
9 10		2934	13600
10	3024	2925	13400
	3061 7085	2969	13400
12	3085	2992	13600
13	3116	3020	13700
14	3096	3001	13900
15	3089	3000	13500
16	3108	3 022	13600
17	3093	3006	13300
18	3121	3031	13500
19	3033	2941	13400
20	3064	2980	13200
Average	3071	2980	1 35 30
Standard Deviation	37	38	208

Sec. No

Amminis	ber 1967. : 713. rtridge, 5.56 Prature:	nstrumental Velocity at t 78 F 6-mm, ball, v 5°F.	Port Pressure, psi 1193, lot TW-18191.
	er No.: 1.		
. 1	- •		
	3049		
2 3	3095	2965	• -
3	3073	3011	12600
4	3062	2984	12200
5	3134	2974	12300
6	3081	3049	12100
7	3060	2992	11500
8	3062	2968	11000
9	3002	2968	11700
10	3013	3114	11400
11	3086	2996	11300
12	3089	2990	11400
13	3110	3027	11700
14	3081	2993	11000
15	3087	3001	11900
16	3059	2972	12100
17	3C34		11600
18	3070	2964	11000
19	3073	2980	11400
20	3105	2987	11400
	3092	3014	11600
Average		3003	11600
	3077		11800
Standard Deviation	· •	2998	114.
Deviation	26		11660
	-0	35	
			AA7

I-24

Round No Date: 1 Decemb			Port Pressure, psi	
Previous Rounds	: 738. rtridge, 5.56-mm, erature: -65°F.	, ball, `1193,	, lot LC-Y-5.56-501	(reference).
1	3061	2955	13300	
2	3061	2986	13200	
3	3115	3028	12600	
4	3124	3035	12700	
5	3113	3023	13200	
6	3104	3005	12600	
7	3127	3023	12600	
8	3039	2947	12900	
9	3058	2974	12600	
10	3189	3097	12400	
11	3085	2998	12400	
12	3085	2998	12700	
13	3055	2962	12800	
14	3116	30 26	12500	
15	3123	3026	13100	
16	3065	2967	12700	
17	3659	2971	13000	
18	3027	2936	13000	
19	3074	2986	12700	
20	3000	2934	12500	
Average	3084	2994	12775	
Standard Dev	iation 43	40	275	

Round	<u>1 No.</u>	Instrumen Velocity 15 Ft		Chamber Pressure, psi	
Date 2 Decem Previous Rou Ammunition: Ammunition 7 Barrel No.: Universal Re	nds: 863. Cartridge Temperature 26.	+70°F.	all, M193, 1	ot LC-Y-5,56-501	(reference).
	1	3216	3125	45200	
		3157	3071	43500	
	3	3126	3038	43000	
	2 3 4	3110	3018	41000	
	5	3213	3128	48900	
	6	3153	3062	42400	
	7	3109	3018	39900	
	8	3108	3022	41000	
	9	3077	2979	39700	
	10	3126	3035	42700	
	11	3131	3030	42600	
	12	3097	3013	38800	
	13	3192	3096	46900	
	14	3090	2998	40000	
	15	3093	3002	40000	
	16	3189	3102	45900	
	17	3089	3002	39600	
	18	3156	3070	43600	
	19	3193	3100	47400	
	20	3164	3079	42500	
Average		3139	3049	42730	
Standard	Deviation	44	45	2887	

÷,

١

É,

Round	No.	Instrume Velocit <u>15 Ft</u>		Chamber Pressure, psi
Date: 2 Dec Previous Rou Ammunition: Ammunition T Barrel No.: Universal Re	nds: 883. Cartridge emperature: 26.	5.56-mm, +70°F.	tracer, 1196,	lot LC-12081.
	1	30 90	3029	43300
·	2	3133	3045	44200
	3	3138	3033	45300
	4	3120	3027	43900
	5	3119	3014	44000
	6	3111	3009	43500
	7	3088	2985	43400
	8	3112	3007	45500
	9	3135	3034	45000
	10	3073	2979	42900
	11	3125	3048	44500
	12	3091	2992	44000
	13	3076	2977	42300
	14	3074	3004	43300
	15	3124	3036	45500
	16	3059	2972	42300
	17	3085	2995	43300
	18	3120	3013	44900
	19	3114	3014	43700
	20	3092	2988	44200
Average		3104	3010	43950
Standard	Deviation	24	23	958

140-

I-27

Round	No.	Instrume Velocit 15 Ft		Chamber Pressure, psi
Date: 2 Dec Previous Rou: Ammunition: Ammunition T Barrel No.: Universal Re	Cartridge, emperature: 26.	5.56-mm, +70°F.	tracer, 4196,	lot TW-18007
	1	3130	3033	50700
•	2	3146	3053	48900
	3	3100	2001	47400
	4	3135	3062	48300
	5	3084	3012	43800
	6	3095	2990	46900
	7	3097	2996	46800
	8	3128	3025	47700
	9	3096	3005	45900
	10	3105	3040	46700
	11	3066	2956	43600
	12	3146	3054	50300
	13	3091	3004	45800
	14	3076	2975	45400
	15	3138	3044	49800
	16	3121	3022	46900
	17	3098	2995	46100
	18	3093	3022	48400
	19	3055	2953	45500
	20	3132	3033	47600
Average		3107	3013	47125
Standard	Deviation	27	31	1928

I-28

A DESTRICTION OF A DESTRICTION OF

- A. 1970

COPALITY AND A

Round No.	Instrum Veloci		Chamber Pressure, psi
Date: 2 December 1967 Previous Rounds: 923. Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	, 5.56-mm, : +70°F.	ball, M193,	lot LC-12194.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	3.192 3.207 3132 3206 3211 3188 3145 3135 3164 3144 3241 3188 3108 3118 3153 3131 3165	3103 3111 3041 3110 3119 3098 3054 3054 3054 3073 3052 3142 3099 3022 3029 3029 3058 3041 3072	44200 45000 42400 46500 45400 43400 43500 43500 43600 43600 43600 45300 41600 42000 41900 43400
18 19 20 Average Standard Deviation	3178 3157 3135 3165 35	3084 3065 3038 3073 34	45400 43300 43200 43890 1646

2253-257-257

and a second second to the address to the address and the second second second second second second second second

STATES AND A STATES

I-29

-14 H.C.S.

Round N	lo .	Instrume Velocit 15 Ft		Chamber Pressure, psi
Previous Round Ammunition: C Ammunition Tem	artridge, perature: 26.	5.56-mm, +70°F. 1.	ball, M193,	lot TW-18191.
]		3067	2972	47900
		3135	3037	52000
2 3 4		3078	2984	47900
-	, L	3108	3014	49000
5		3098	3007	47300
		3120	3023	49800
		3102	3009	49500
3		3107	3021	48600
		3123	3032	48400
10		3117	3027	49200
11		3133	3037	50700
11		3093	2994	49200
13		3093 3097	2994	49200
				49100
14		3119	3022	50900
1:		3132	3037	
10		3150	3056	52400
1		3131	3037	51700
18		3076	2979	47500
19		3120	3018	49700
20	0	3148	3053	496 00
Average		3113	3018	49515
Standard D	eviation	23	23	1447

Ω.

ω,

1.

.

I-30

/

6.00

Round	<u>1 No.</u>	Instrumen Velocity 15 Ft		Port Pressure, psi	
Date: 4 Dec Previous Rou Ammunition: Ammunition T Barrel No.: Universal Re	Cartridge Semperature 26.	, 5.56-mm, b +70°F.	all, '193, lo	t LC-Y-5.56-501	(reference).
	1	3215	3125	13700	
	2	3208	3115	14000	
	3	3225	3136	13700	
	4	3176	3092	13700	
	5	3165	3082	13500	
	6	3154	3066	13900	
	7	3169	3079	13400	
	8	3178	3083	13700	
	9	3201	3107	13500	
	10	3208	3124	13600	
	11	3219	3134	13800	
	12	3195	3111	13400	
	13	3212	3131	13800	
	14	3151	3061	13500	
	15	3208	3117	13500	
	16	3227	3142	13500	
	17	3175	3080	14000	
	18	3189	3096	14200	
	19	3194	3101	14300	
	20	3220	3128	13700	
Average		3194	3105	13720	
Standard	Deviation	24	25	255	

1- 5-

interior a reference interestion of the second s

and the second second

I-31

	Instru Veloc	mental ity at	Port Pressure,
Round No.		78 Ft	psi
Date: 4 Decembe Previous Rounds: Ammunition: Can Ammunition Tempo Barrel No.: 26 Universal Receiv	: 1048. ctridge, 5.56-mm erature: +70°F.	, tracer, 1196,	, lot LC-12081
1	3201	3095	12700
2	3137	3031	12700
3	3172	3075	12400
4	3187	3085	12100
5	3185	3087	12500
6	3172	3108	12400
7	3157	3059	12300
8	3120	3018	12600
9	3165	3077	12700
10	3142	3045	12600
11	3125	3023	12900
12	3121	3023	12700
12	3151		
14		3061	11900
14	3166	3105	12000
	3201	3104	12000
16	3202	3104	11900
17	3193	3085	12300
18	3131	3014	12400
19	3140	3042	12200
20	3130	3047	12700
Average	3160	3065	12400
Standard Devi	ation 28	32	304

a wanting the analysis of

Round No.	Instrum Velocia 15 Ft		Port Pressure, psi
Date: 4 December 1967 Previous Rounds: 1068 Ammunition: Cartridge Ammunition Temperature Barrel No.: 26. Universal Receiver No.	, 5.56-mm, : +70°F.	tracer, M196,	, lot TW-18007.
· 1	3172	3087	12600
2	3181	3085	13000
3	3192	3128	13100
4	3233	3132	12800
S	3181	3095	12900
6	3181	3082	13400
7	3180	3082	12100
8	3174	3081	12700
9	3175	3071	12100 -
10	3184	3089	12700
11	3165	3067	12600
12	3164	3069	12600
13	3163	3070	12300
14	3164	3066	12700
· 15	3163	3054	11600
16	3196	3101	12500
17	3169	3086	12200
18	3159	3066	11900
19	3131	3029	12700
20	3146	3075	12200
Average	3174	3081	12535
Standard Deviation	20	23	432

ς.

100

,

- T

I-33

Round	l No.	Instrum Veloci <u>15 Ft</u>		Port Pressure, psi
Date: 4 Dec	ember 1967	•		
Previous Rou		-		
Ammunition:	Cartridge	, 5.56-mm,	ball, '1193,	lot LC-12194.
Ammunition 7		: +/0°F.		
Barrel No.: Universal Re	- • •	: 1.		
Universal Re	ecerver No.	· .		
	1	3244	3151	13900
	2	3156	3071	13300
	3	3213	3125	12900
	4	3162	3085	13400
	5	3211	3121	13600
	6	3168	3081	13200
	7	3156	3064	13500
	8	3262	3173	13500
	9	3177	3086	13500
	10	3234	3137	13500
	11	3253	3163	13300
	12	3177	3086	13700
	13	3205	3108	13900
	14	3173	3077	13400
	15	3186	3092	13300
	16	3178	3083	13500
	17	3219	3133	13500
	18	3204	3106	13200
Ø	19	3211	3121	13500
~	20	3236	3143	13600
Average		3201	3110	13415
Standard	Deviation	33	32	230

Ş

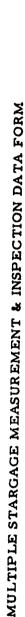
I-34

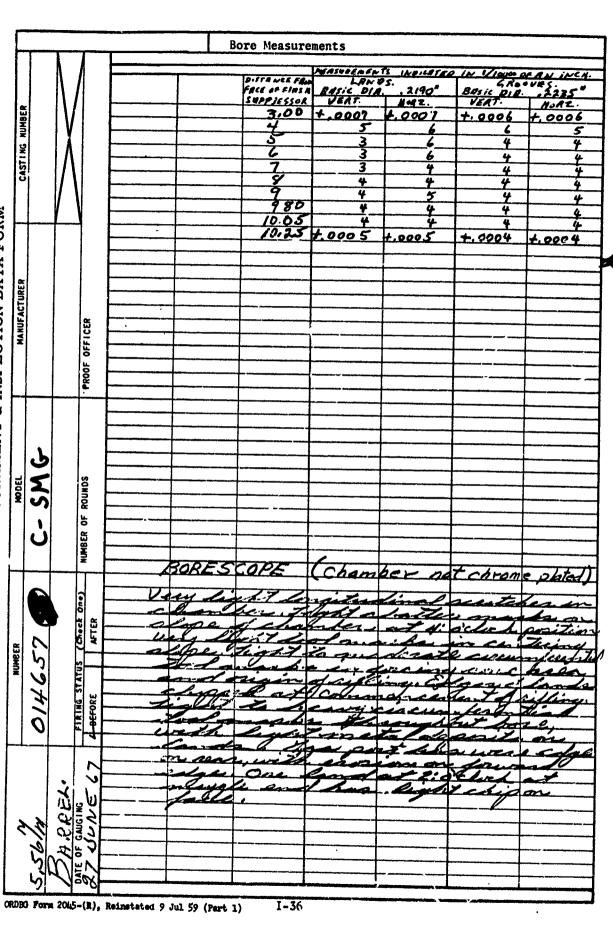
A CARLES

5.1

Round	No.	Instrum Velocit 15 Ft		Port Pressure, psi
Date: 4 Dec Previous Rou Ammunition: Ammunition T Barrel No.: Universal Re	Cartridge emperature 26.	, 5.56-mm, : +70°F.	ball, M193,	lot TW-18191,
	1	3172	3083	11900
·	2	3185	3090	11800
	3	3153	3056	11600
	4	3161	3065	12400
	5	3125	3041	11900
	6	3124	3023	12100
	7	3166	3076	12100
	8	3177	3087	11300
	9	3198	3103	11700
	10	3161	3072	11200
	11	3161	3067	11800
	12	3130	3037	11400
	13	3198	3108	11100
	14	3220	3133	11600
	15	3195	3107	11800
	16	3132	3042	10900
	17	3172	3081	11600
	18	3149	3061	11300
	19	3195	3109	11200
	20	3158	3070	11700
Average		3167	3076	11620
Standard	Deviation	27	28	379

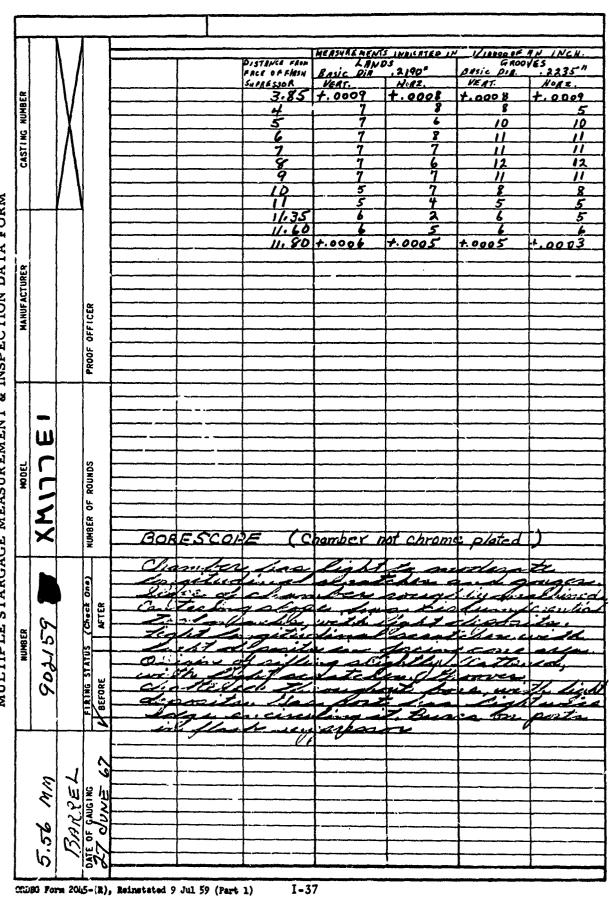
.


77.1 144 - CARLANDER CONTRACTOR


* *

I-35

ALTER AND A DESCRIPTION OF A DESCRIPTION OF



۔ <u>۲</u>

The second s

MULTIPLE STARGAGE MEASUREMENT & INSPECTION DATA FORM

and the second second

MEASUREMENTS INDICATED IN VIOLAN OF AN INCH LANDS 2190" BASIC DIA. 2235" DISTRICE FAM FALE OF FIRM SUPARSSOR. BASIC VERT. HOGZ VEAT. NORZ . 3,86 +.0005 t.0405 +.0002 +,0001 CASTING NUMBER 7 3 3 4 4 1 3 5 6 4 L 3 5 ÿ 4 7 8 5 3 3 6 9 .0000 ł .0005 -.0001 10 GAUSE WOULD 5 NOT ENTER THIS AREA. & INSPECTION DATA FORM 5 4 11.36 RPT. 5 333 5 2.60 11.80 +.0001 + .0004 -,0003 . 0002 MAHUFACTURER PROOF OFFICER MULTIPLE STARGAGE MEASUREMENT 5 NUMBER OF ROUNDS MODEL ٢ YY BORESCOPE chamber not chr ne FIAJNG STATUS (Check Ons) BEFORE AFTER ر بهمه آ audes 279 NUMBER 902 7 an 63 BARREY. TTE OF GAUGING 56/3 27E 5 ORDBO Form 2045-(R), Reinstated 9 Jul 59 (Part 1) I-38

- -

.

MULTIPLE STARGAGE MEASUREMENT & INSPECTION DATA FORM

	N			1			DITTANS & FROM	MEAMAGMEN LAN	TS INDICATED	IN VILLEM OF GROUD BASIC DIA. VERT.	AN INCH
	ľ	\ /					DITANCE FROM FACE 14 FLASH SUPALSSOR 3085	BASIC DIR.	. 2 190*	BASIC DIA.	2235
		M		\mathbf{F}			SUPALSSOR. 3.85	+. 0005	Nog2. t.0006	VEAT. 4. 0003	NQR2 . t.0003
		M		H				2	6	3	3
		Y		+	··		4	0002	2	3	4
2				F			6	.0000	2	3	4
		$ \Lambda $		Γ			7	+.0005		4	4
5		$I \Lambda$		L			8	6	1	5	4
I		(\			·		9	5	<u> </u>	5	4
				F			10	3	4	5	4
╋	{			\mathbf{F}			1/	0003	0001	2	<u> </u>
				+			11.60	+.0002	+.0002	2	4
				F			11.80	1.0002	+.0002		+.0002
				F					11.000		
×				F					1		
Š	1			F					1		
Ş	Ì			Γ							
HANUP ACTUREN			CER						1		
É	ļ		F H	F			l	ļ	l	ļ	
			PROOF OFFICER	┢		ļ		l		 	
			00F	\mathbf{F}			 	}	+	<u>}</u>	
	- {	i	PR	\mathbf{F}			<u> </u>	<u> </u>	÷	<u> </u>	<u> </u>
+	{			╉				<u> </u>		<u> </u>	<u> </u>
				F			<u> </u>	<u> </u>	1	1	
				T				1	1	1	
	1.1			ľ					1	1	
	M										
니			s								L
MODEL	2		NUMBER OF ROUNDS	L		ļ		l			
¥∣	XMIJ		ROL	┢			_	·		ļ	
		i	5	┢					+	<u> </u>	
	S		ŝ	ŀ				}	+		
	×		MB	ł					+		
			ž	h				1			·
			П	T	Bo	RESCO	PE (C	hamber	not chr	ome pla	ad)
	\mathbf{v}		5							1	
l			(Check One)	L	$-\mathcal{V}$	en in	alit ce	acum	Lana	En/2	ter/
			Check	۶Ļ	a	and and	the second	atra	1 dere	Jahan	ular.
	2		S I	5		2 c	1 Tap	higher	F-lingle	ace:	tel.
NUMBER	00		Μ-	╉		n al	an fit	1 Ch	tom for	Par	6:0°Clar
S	86		5H	╉	Ze	gaza	the second	Yearbo	+ mc	prodates	geler
-	- 11		FIRING STATUS	ł	a		acarg.	france.	and	in the	y and
ļ	n l		6	٤t			hand the st	-	175	20. 31	tear_
	90		1 R I NG	31		bore	en st	1	X	A Min -	Jan's
	5			<u></u>	G	212 12	rez /	land .	add w	Lie en	the c.
			μĽ	4	6	Life.	edice.	an an	the as	- diand	-
	1		l	F		upan	to fine			×	ļ
	ļ			┢		100	·			·	
			(∖⊦				·}			·}
	Į	Ż	1.	sŀ			+	+		·}	<u> </u>
	24	Ĵ		υŀ		<u> </u>	+		·		<u> </u>
3	12	e, Pic	ΙŘ.	≥ŀ		t	+	1		1	+
<			4	री		 	1	1		+	·
	3	BA	ю ш,	1		[1	1		1	†
	5.56	5	DATE	汑			1		1	1	1
	- K)		12,	9							

the second s •

,

							MEASUALDEM	SINCKATED	IN VIEW O	AN INC		
						DISTANCE FASH	Lawp	5. 2190 1	GA00 ANSIC DIA	v # 5 , 2 2 3 5		
		ΛI				FACE OF FIASA SUPPRESSOR 3.85	VEAT.	NoAZ.	VEAT.	HOAZ.		
ũ		\mathbf{V}					7.000 T	<u>r. 000</u> A	. 2000	+. 0002		
퓤		V		ļ		4	<u></u>	44	-, 0001	.0000		
CASTING NUMBER				·			5	5	+. 0002	+.0002		
Ě		$ \Lambda $		}	+	2	5	4	4	4		
YS.		M				8	5	4	;	3		
4		/ V				9	5	5	2	3		
		/ N				10	5	5	2	3		
						11	4	5	2	3		
						12	5	5	3	3		
						12.80	5	5	3	3		
Ì				 		13,05	5	5	2	3		
~						1.2105	r,0003	7,0005	+.0002	4.0003		
씱				Borese	onel 1	, (Cha	nber 1	Chr	nic Dla	ted)		
MANUFACTURER				Circ	umfero	utinal	tool m	arts 1	egning	m		
빍			З.	Cent	Tima	eylind	ral e	to, china	three	chart		
ŝ			PROOF OFFICER	hore.	Elgho a	hands	chipped	at con	mend	ment		
			5	19 pi	flerig.	sight_	deposi	a g n	netal			
			00	the	profile por	the bar	e m	no peror	ameed	¥		
			ž	-9nat	1 Curdese	- Forw	and ta	pe of y	ras non	r		
-					DA GARA	to to t	. hatte	hel at	<u> </u>	<u> </u>		
				Cor	Inone	enjout	an	fling.				
	2361						0		l			
			S			Į		<u> </u>				
MODEL			ROUNDS				 					
X			8				{					
			οF			<u> </u>	+	+	<u> </u>	<u> </u>		
		1	1	1	NUMBER OF				1	1	<u> </u>	}
	X		Ĩ,							<u> </u>		
_												
						ļ	ļ		J			
			3						_			
	0		Ő N A			<u> </u>	+	<u> </u>	<u> </u>			
	5		Check AFT CD	}	+	<u>}</u>	1	+	<u>}</u>	<u> </u>		
œ			(Check On			<u> </u>	1	1		<u> </u>		
NUMBER	1							1				
3	12											
	1		5			<u> </u>						
	804541		FIRING STATUS	}		 	Į	ļ		ļ		
	2			 	-+	+	·	<u> </u>	<u> </u>	<u> </u>		
						+	+	+	<u> </u>	<u> </u>		
	••••••			1		+	1	+	<u> </u>	t		
						t	1	1	1	<u> </u>		
			r									
	~	5))								
	2	1				ļ	ļ		ļ	L		
`	<>	ر تر	3	·	+	+	+	+		 		
	5,56	אאאבא	OF GAUGIN	; 		+	·}		·	┦		
	5	2		, — —		·}	1	+	 	+		
	أكما	\mathcal{I}_{i}	DATE 2 Y			t	1	+	<u> </u>	†		
	~		01			<u></u>	*			A		
		- 201	5/1) Befratated	9 Jul 59 (Part	») I.	40			فالرميصية الجديسية الفرطيب		

I

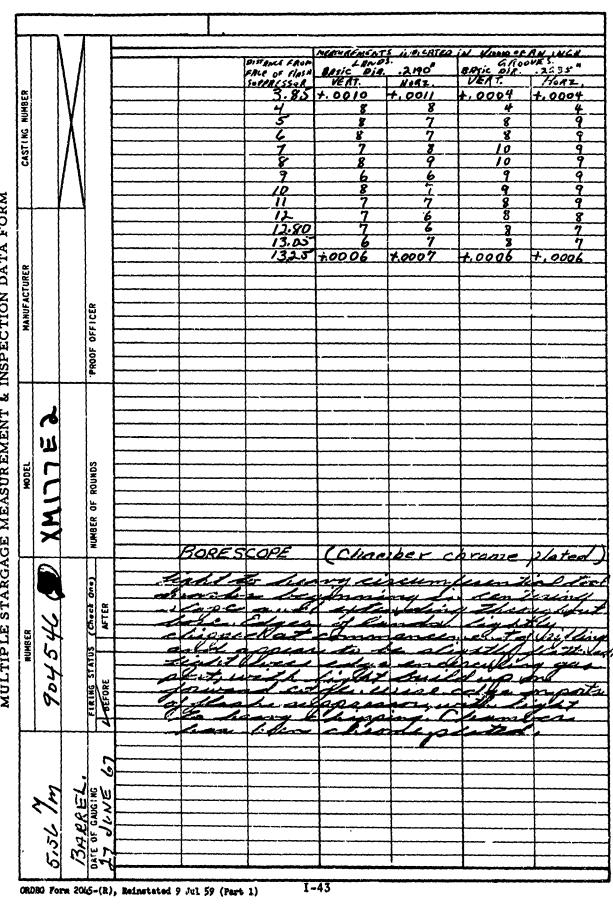
MULTIPLE STARGAGE MEASUREMENT & INSPECTION DATA FORM

-.

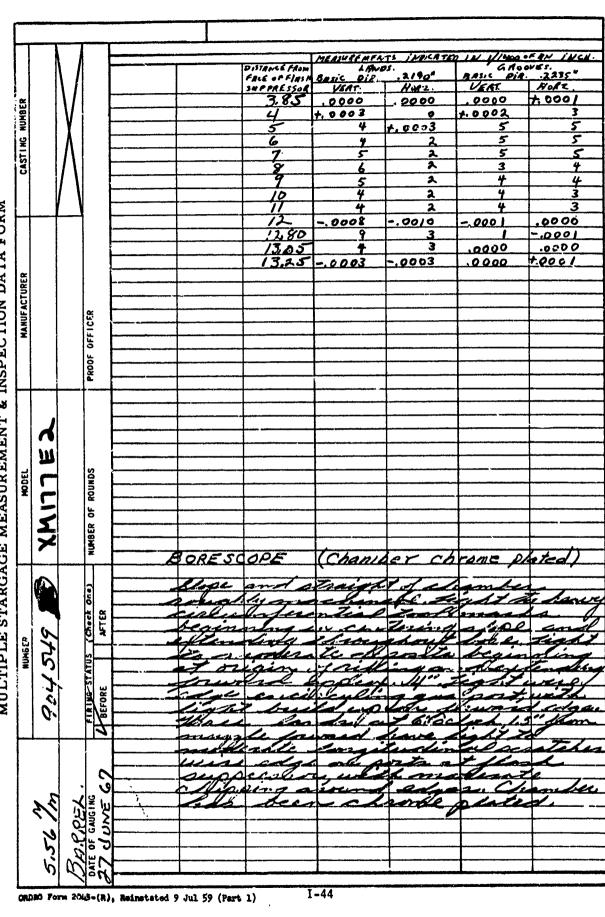
							MEASHALMENT	S INDICRIC	IN VIDON	PAN IN
	ĺ	\ /	1			DISTANCE FROM	LAN	25.	BASic DIA	DVES.
		11				SUPPLE OF FIRST	BASIC DIA. VEAT.	.2140- H-42.	VEAT.	Horz.
۲		\mathbf{M}				3.85	4.0012	+.0011	+,0008	+. 0006
Ē		V					9	10	3	3
CASTING RUMBER		Y				4	8	9	4	3
ŝ		Λ				6	5	10	4	3
2	1	Λ			···	2	8	8	4	3
5		11					7	8	3	
		/ \					9	8	4	<u>4</u> 3
	i.							10	3 4	3
┥		1				12	0007	0004		<u>-</u>
1	ł					12.80	000 /	+.0004	0000	. 0003
						13,05	,0000	2	2	2
						13,25	.0000	+.0001	0003	0003
۶l								1		
5										[
2										
HANULALI UKEK			ж К							
			PROOF OFFICER							
ļ	- 1		QF					l	l	
			0F							
			P.RC			ļ	ļ			
+							l	<u> </u>	{	
							<u> </u>	l	<u> </u>	ļ
	ابر									<u> </u>
	1						<u>}</u>	 	<u> </u>	
	W			······			<u> </u>	<u> </u>	ł	h
							<u> </u>			
빍			SO				<u>†</u>			
	LLIMX		ROUNDS				t			
			δα L				1	1		
1	~		ō							
	-		BER							
	\mathbf{x}		NUMBER OF							
4			-							
				<i>B</i>	DRESCO	PE (Chambe	r chro	ne ,2/at	ed)
	A	ļ	(aug			•	1	1	ļ	
				C	rum	larand	par de	in form	and and	en:
			(Check AFTER		and f	migo	lep,a.	ette 1	gulles.	a Tesi
	m		5 4	g	y la	and the second	st fpac	hand the	kine an	farman 1
20108	21				caut.	3	and and	Eleca	cump	sent
5	2		<u>s</u>		M	and the second	and a	and the	Phone -	fre
	5		BEFORE		and and	La La	Final D	China and and and and and and and and and a	marca -	and -
	1		ω 8		1 200	and an	and a	Marie -	and the second	Paris_
	15		BEFORE	e	A second	2-2-1-4	an F	111-		a m
	6		<u> </u>		anti-	d 10		24.20.3	cart	
	<u> </u>		1		Chan	aber	1	10	en C	ham
-					olat.	·				
	- 1		N	4						
			19							
	1	ا في				ļ	ł	l	L	
	721	6						 	ļ	
•	\sim	2	불 칏				 	 	 	ļ
	5	2	د م م				}	<u> </u>	ł	ļ
	5	3	៉ ្ត្រ				{	{	 	
	1,51	$ \mathcal{O} $	۳Ŋ	i				<u> </u>	<u> </u>	
	"	*	200				L		L	
				Roducted to -	1.3 KA /= ·	T T	41			
лt	N 701	- 200	フー・スノル	Beinstated 9	JUL SY (Part	11 1-	77 4			

a la sera de la sera de

100-


and the public of the second second and the second

. بر ک محمد محمد



MERSUARMENTS LANDS. BASIS DIA. INPICATED IN 1/10 MO OF AN Bistance Faom Face of Flark Sulfarssun 3,80 GROOVES DiA. 2190" BASIC VERT. 2235" VEAT. HoAZ, Hogz +.0007 4.0006 +,0003 4.0004 CASTING NUMBER 4 2 8 5 9 6 7 6 5 1 8 6 89 9 9 6 <u>6</u> 9 9 6 5 10 7 10 8 <u>6</u> 12. 10 12. 10 12. 80 13.05 13.25 +.0009 & INSPECTION DATA FORM 6 ą 7 6 99 7 <u>6</u> 6 6 +.0005 7.0009 +.0004 MANUFACTURER PROOF OFFICER MULTIPLE STARGAGE MEASUREMENT 4 四 NUMBER OF ROUNDS MODEL 5 XX BORESCOPE Champer later chrome رف FIRING STATUS (Check One) 2 a AFTER SHK NUMBER Port BEFORE 7 -1.60 60 e. YH d CAUGING *5/*{ 0 5 い r 20 S I-42 ORDEG Form 2045-(R), Reinstated 9 Jul 79 (Part 1)

MULTIPLE STARGAGE MEASUREMENT & INSPECTION DATA FORM

MULTIPLE STARGAGE MEASUREMENT & INSPECTION DATA FORM

Velocity Data

4

Instrumental Velocity at 78 Feet, fps			
(Gun No. 904544	Gun No. 904546	Gun No. 904549
Data Finada 11 August	1067		
Date Fired: 11 August Ammunition Temperature			
Test Ammunition: 5.5		10+ 1C-12081	
ICSC ANNIUMILION, 5.5	J-mmg MIDOg CI	acer, for LC=12001.	
	2687	2749	2658
	2713	2681	2698
	2690	2717	2682
	2630	2667	2662
	2660	2672	2706
	2695	2706	2707
	2709	2668	2622
	2657	2700	2667
	2662	2664	2681
	2660	2690	2687
	2691	2658	2640
	2626	2650	2661
	2661	2680	2711
	2657	2658	2678
	2596	2644	2682
	2701	2634	2685
	2678	2629	2647
	2729	2657	2639
	2660	2674	2681
	2682	2675	2678
Average	2672	2674	2674
Maximum	2729	2749	2711
Minimum	2596	2629	2622
Extreme Variation	133	120	89
Standard Deviation	32	29	24

100.00

	Instrumental Velocity at 78 Feet, fps			
G	un No. 904544	Gun No. 904546	Gun No. 904549	
Date Fired: 10 August				
Ammunition Temperature		1-+ (0101		
Test Ammunition: 5.56	-mm, 1193 Dall	, 10t IW-18191.		
	2632	2615	2533	
	2626	2661	2603	
	2610	2559	2524	
	2603	2606	2607	
	2575	2606	2588	
	2636	2616	2591	
	2559	2695	2532	
	2643	2650	2577	
	2710	2644	2650	
	2564	2589	2579	
	2633	2595	2584	
	2597	2641	2618	
	2558	2693	2650	
	2584	2722	2633	
	2636	2670	2670	
	2619	2684	2633	
	2616	2600	2665	
	2626	2671	2606	
	2661	2668	2661	
	2644	2693	2647	
Average	2617	2644	2608	
Maximum	2710	2722	2670	
Minimum	2558	2559	2524	
Extreme Variation	152	163	146	
Standard Deviation	37	44	45	

	Instrumental	Velocity at 78	Feet, fps
	Gun No. 904544 G	un No. 904546	Gun No. 904549
Date Fired: 11 Aug	ust 1967.		
Ammunition Temperat			
	5.56-mm, M196 tracer,	1ot TW-18007	
	100-many 11200 020002)	x90 10-2000/1	
	2704	2688	2701
	2709	2674	2713
	2665	2734	2716
	2704	2688	2701
	2677	2729	2716
	2634	2717	2709
	2677	2695	2665
	2743	2657	2714
	2716	2670	2732
	2735	2675	2711
	2706	2672	2646
	2697	2697	2717
	2661	2714	2710
	2660	2735	2674
	2655	2709	2707
	2743	2661	2720
	2685	2704	2675
	2646	2661	2625
	2687	2670	2657
	2657	2693	2707
Avenaça	2688	2692	26.36
Average	2000	2092	2696
Maximum	2743	2735	2732
Minimum	2634	2657	2625
Extreme Variation	109	78	107
Standard Deviation	32	25	29

100

	Instrumenta	1 Velocity at 78	Feet, fps
	Gun No. 904544	Gun No. 904546	Gun No. 904549
Ammunition Temperat			
Test Ammunition: 5	.56-mm, M193 ball,	lot LC-12194.	
	2567	2662	2627
	2677	2725	2719
	2662	2665	2713
	2667	2626	2762
•	2648	2704	2665
	2569	2682	2725
	2664	2657	2678
	2665	2657	2695
	2687	2721	2657
	2698	2632	2728
	2685	2707	2703
	2680	2633	2717
	2650	2674	2662
	2746	2661	2625
	2681	2621	2675
	2653	2664	2670
	2698	2661	2684
	2740	2664	2737
	2734	2714	2717
	2655	2670	
Average	2671	2670	2697
Maximum	2746	2725	2762
Minimum	2567	2621	2625
Extreme Variation	179	104	137
Standard Deviation	46	31	37

inite and the second states of the second second

		1 Velocity at 78	
<u>(</u>	Gun No. 904544	Gun No. 904546	Gun No. 904549
Date Fired: 11 August	1967.		
Ammunition Temperature			
Test Ammunition: 5.50		lot TW-18191.	
	· · · · · · · · · · · · · · · · · · ·		
	2700	2700	2750
	2660	2680	2749
	2703	2654	2682
	2704	2706	2709
	2711	2698	2700
	2667	2668	2688
	2737	2660	2706
	2688	2697	2657
	2693	2661	2643
	2728	2664	2671
	2710	2773	2713
	2672	2703	2741
	2665	2670	2720
	2713	2706	2710
	2680	2641	2688
	2678	2713	2707
	2694	2644	2728
	2688	2703	2725
	2671	2667	2698
	2711	2722	2636
Average	2694	2686	2701
Maximum	2737	2773	2750
Minimum	2660	2641	2636
Extreme Variation	77	132	114
Standard Deviation	21	32	32

I-49

	Instrumenta	al Velocity at 78	Feet, fps
	Gun No. 904544	Gun No. 904546	Gun No. 904549
Date Fired: 9 Aug Ammunition Tempera	gust 1967. iture: +160°F.	,	
	5.56-mm, M196 trace	er, lot LC-12081.	
	2725	2737	2719
	2707	2653	2707
	2722	2743	2674
	2719	2732	2740
	2720	2731	2728
	2710	2726	2716
	2722	2738	2716
	2741	2746	2700
	2726	2695	2735
	2693	2693	2732
	2685	2732	2674
	2709	2647	2714
	2729	2688	2747
	2722	2667	2717
	2700	2693	2719
	2688	2758	2746
	2769	2725	2707
	2726	2700	2716
	2717	2646	2710
	2680	2740	2704
Average	2715	2709	2716
Maximum	2769	2758	2747
Minimum	2680	2646	2674
Extreme Variation	89	112	73
Standard Deviation	21	35	20

	Instrumental Velocity at 78 Feet, fps		
	Gun No. 904544	Gun No. 904546	Gun No. 904549
Date Fired: 9 Aug	mst 1967		
Armunition Tempera			
	5.56-mm, M196 trace	er. lot TW-18007.	
	•	•	
	2697	2750	2779
	2737	2743	2775
	2823	2759	2778
	2743	2756	2787
	2750	2752	2806
	2747	2759	2809
	2746	2759	2786
	2729	2776	2811
	2772	2770	2831
	2756	2716	2795
	2807	2741	2770
	2761	2809	2769
	2744	2772	2784
	2734	2806	2752
	2792	2812	2728
	2756	2776	2772
	2725	2809	2756
	2747	2793	2844
	2755	2734	2800
	2756	2775	2828
Average	2754	2768	2788
Maximum	2823	2812	2844
Minimum	2697	2716	2728
Extreme Variation	126	96	116
Standard Deviation	n 28	27	28

Instrumental Velocity at 78 Feet, fps 49

I-51

A MARLING

.....

	Instrumenta	1 Velocity at 78	Feet, fps
	Gun No. 904544	Gun No. 904546	Gun No. 904549
Date Fired: 10 Augu	c+ 1047		
Ammunition Temperatu			
Test Ammunition: 5.		lot 10-12104	
	50 mm, 11255 bull;	100 00-12134.	
	2767	2731	2726
	2710	2762	2812
	2741	2740	2755
	2749	2752	2800
	2738	2716	2775
	2759	2719	2814
	2749	2775	2740
	2737	2775	2752
	2759	2738	2796
	2728	2744	2761
	2716	2694	2687
	2765	2746	2795
	2744	2725	2792
	2741	2740	2752
	2740	2758	2798
	2747	2753	2798
	2720	2765	2773
	2792	2729	2796
	2746	2770	2732
	2744	2752	2789
Average	2745	2744	2772
Maximum	2792	2775	2814
Minimum	2710	2694	2687
Extreme Variation	82	81	127
Standard Deviation	19	21	33

I-52

	Instrumenta	Instrumental Velocity at 78 Feet, fps		
	Gun No. 904544	Gun No. 904546	Gun No. 904549	
Date Fired: 10 Au				
Ammunition Tempera	ture: +160°F.			
Test Ammunition:	5.56-mm, M193 ball,	lot TW-18191.		
	0704	07.47	07/0	
	2706	2747	2762	
	2761	2775	2764	
	2759	2746	2800	
	2743	2775	2770	
·	2746	2764	2752	
	2770	2761	2764	
	2719	2775	2765	
	2732	2764	2801	
	2687	2759	2747 2779	
	2755	2753		
	2787	2761	2822	
	2769	2767	2784 2792	
	2770	2795		
	2781	2784	2792	
	2781	2752	2815	
	2752	2773	2772	
	2759	2779	2752	
	2750	2758	2758	
	2744	2776	2781	
	2756	2752	2749	
Average	2751	2766	2776	
Maximum	2787	2795	2822	
Minimum	2687	2746	2747	
Extreme Variation	100	49	75	
Standard Deviation	25	13	22	

interesting to the second s

	Instrumenta	l Velocity at 78	Feet, fps
	Gun No. 904544	Gun No. 904546	Gun No. 904549
· · · · · · · · ·			
Date Fired: 10 Augus			
Ammunition Temperatur		- 1at 1C 10003	
Test Ammunition: 5.5	o-mm, M190 trace	r, lot LC-12081.	
	2518	2527	2580
	2572	2597	2612
	2641	2640	2630
	2589	2648	2572
•	2606	2622	2611
	2626	2537	2655
	2623	2632	2641
	2665	2648	2600
	2678	2607	2606
	2701	2629	2637
	2428	2572	2504
	2584	2415	2632
	2490	2516	2524
	2622	2583	2550
	2619	2565	2606
	2592	2575	2619
	2532	2555	2647
	2637	2653	2595
	2563	2680	2644
	2601	2644	2637
Average	2594	2592	2605
Maximum	2701	2680	2655
Minimum	2428	2415	2504
Extreme Variation	273	265	151
Standard Deviation	65	62	41

	Instrumenta	Instrumental Velocity at 78 Feet, fps			
	Gun No. 904544	Gun No. 904546	Gun No. 904549		
	ويواري المراجع والمراجع المراجع والمراجع والمراجع والمراجع	متلقة بالتنابي بيدر بالزين بيد.			
Date Fired: 10 Au					
Ammunition Tempera					
Test Ammunition:	5.56-mm, M196 trace	r, lot TW-18007.			
	A (F A	A (70	0 < 0.0		
	2650	2639	2600		
	2665	2697	2552		
	2587	2616	2561		
	2650	2697	2662		
	2681	2725	2677		
	2629	2688	2627		
	2651	2770	2665		
•	2694	2658	2647		
	2710	2639	2647		
	2729	2770	2670		
	2685	2661	2603		
	2597	2651	2554		
	2641	2584	2647		
	2654	2615	2684		
	2651	2577	2634		
	2694	2572	2675		
	2684	2740	2687		
	2677	2662	2640		
	2674	2701	2550		
	2648	2647	2639		
Average	2663	2665	2631		
Maximum	2729	2770	2687		
Minimum	2587	2572	2550		
Extreme Variation	142	198	137		
Standard Deviation	35	58	46		

-

I-55

-

	Instrumenta	1 Velocity at 78	Feet, fps
	Gun No. 904544	Gun No. 904546	Gun No. 904549
Date Fired: 10 Au	gust 1967.		
Ammunition Tempera	ture: -65°F.	1.4.10.10104	
Test Ammunition:	5.56-mm, M193 ball,	10t LL-12194.	
	2504	2648	2637
	2519	2625	2546
	2386	2555	2577
	2580	2606	2603
	2603	2647	2579
	2610	2619	2547
	2597	2568	2599
	2632	36	2629
	2661	2672	2539
	2665	2480	2503
	2583	2693	2553
	2591	2627	2458
	2513	2579	2528
	2622	2537	2591
	2585	2654	2585
	2547	2596	2554
	2514	2660	2665
	2575	2630	2675
	2564	2701	2618
	2533	2654	
Average	2569	2619	2578
Maximum	2665	2701	2675
Minimum	2386	2480	2458
Extreme Variation	279	221	217
Standard Deviation	64	54	54

o state a series a series de la s

Mann Barrel Target and Velocity Data

Mann-barrel target measurements and velocity data for ammunition types A, B, C, D, and reference lots. Velocities are listed for the round number as fired; however, the round numbers do not necessarily agree with the target coordinate measurements since these were obtained from the group of shots.

	Instrumental Velocity at			Instrumental Velocity at	
Rd No.	15 Ft 78 Ft	flor Vert	Rd No.	Velocity at 15 Ft 78 Ft	Hor Vert

Ammunition: Cartridge, 5.56-mm, ball, M193, lot TW-18191 (type D). Ammunition Temperature: +70°F. Weapon: Remington model 700 with accuracy Mann barrel No. 34169. Previous Round Count: 13. Date Fired: 17 November 1967.

1	3193	3108	+5.3	+1.3	26	3130	3040	+4.6	+2.1
2	3108	3020	+6.0	+1.6	27	3152	3061	+4.4	+2.1
3	3187	3103	+5.5	+1.9	28	3172	3085	+5.3	+2.5
4	3155	3071	+5.4	+1.9	29	3102	3018	+6.0	+3.0
5	3175	3089	+5.0	+2.1	30	3151	3065	+4.3	+3.0
6	3176	3089	+5.1	+2.4	31	3104	3019	+5.6	+2.0
7	3206	3120	+5.2	+2.6	32	3138	3054	+4.3	+2.2
8	3172	3082	+4.5	+2.6	33	3184	3094	+4.0	+2.4
9	3147	3062	+4.6	+2.9	34	3158	3073	+4.5	+2.5
10	3144	3062	+5.5	+3.3	35	3117	3028	+5.1	+2.7
11	3120	3030	+5.1	+1.2	36	3166	3077	+5.2	
12	3154	3068	+5.0	+1.6	37	3179	3090	+4.4	+2.9
13	3189	3101	+4.2	+1.6	38	3154	3069	+4.0	+3.1
14	3127	3036	+3.7	+2.0	39	3160	3073	+4.9	+3,2
15	3224	3138	+5.2	+2.1	40	3202	3107	+5.2	+3.4
16	3164	3078	+4.9	+2.1	41	3183	3095	+4.3	+1.7
17	3176	3085	+5.1	+2.4	42	3169	3082	+4.0	+1.8
18	3230	3143	+5.3	+2.6	43	3125	3037	+4.6	+2.0
19	3180	3095	+3.9	+2.7	44	3135	3053	4.7	+2.1
20	3157	3070	+5.0	+3.6	45	3173	3085	+4.8	+2.1
21	3164	3076	+4.6	+1.4	46		3046	+3.2	+2.3
22	3137	3053	+5.0	+2.0	40	3154	3060	+4.1	+2.6
							3073	+4.2	+2.6
23	3142	3055	+5.3	+2.1	48				
24	3178	3095	+5.1	+2.1	49		3070	+4.1	+2.7
25	3114	3031	+4.9	+2.2	50	3154	3069	+5.1	+3.1

I-57

	Instrumental TM from Velocity at <u>AIP</u> , in. 15 Ft 78 Ft Hor Vert				Instrumental Velocity at			AIP,	TM from AIP, in.	
Rd No.	<u>15 Ft</u>	<u>78 Ft</u>	Hor	Vert	Rd No.	<u>15 Ft</u>	78 Ft	Hor	Vert	
Ammunit		Cartridg operatur			, M193,lot	LC-12]	.94 (typ	e C).		
Weapon:					curacy Man	n harre	No 3	1160		
		Count:		o with at	curacy han	n Darre		42058		
1	3213	3123	+4.2	+1.5	26	3199	3113	+5.1	+2.3	
2	3237	3150	+4.4	+1.6	27	3179	3097	+4.7	+2.3	
3	3162	3078	+4.9	+1.9	28	3195	3112	+4.5	+2.4	
4	3146	3061	+4.3	+2.0	29	3160	3073	+4.7	+2.5	
5	3234	3143	+4.5	+2.1	30	3208	3110	+5.0	+2.6	
6	3187	3103	+4.5	+2.1	31	3216	3128	+3.5	+1.7	
7	3135	3045	+4.4	+2.4	32	3205	3117	+4.9	+2.1	
8	3230	3142	+4.1	+2.6	33	3148	3061	+5.7	+2.2	
9	3207	3123	+4.8	+2.7	34	3203	3117	+4.0	+2.3	
10	3225	3137	+4.4	+3.2	35	3223	3133	+4.1	+2.4	
11	3219	3135	+4.2	+1.5	3 6	3251	3164	+4.1	+2.6	
12	3173	3079	+3.1	+1.7	37	3211	3124	+4.7	+2.5	
13	3216	3128	+4.5	+1.9	38	3182	3093	+5.1	+2.5	
14	3231	3142	+5.2	+1.9	39	3207	3120	+5.6	+2.5	
15	3217	3124	+5.0	+2.1	40	3224	3136	+5.3	+2.8	
16	3242	3149	+4.6	+2.1	41	3233	3148	+5.6	+1.5	
17	3188	3101	+3.7	~2.2	42	3264	3179	+3.5	+1.5	
18	3213	3124	+4.8	+2.4	43	3203	3105	+5.2	+1.7	
19	3175	3087	+4.1	+2.5	44	3189	3095	+4.6	+1.7	
20	3187	3096	+4.9	+3.4	45	3234	3141	+4.5	+2.0	
21	3302	3213	+4.5	+1.4	46	3183	3100	+4.9	+2.4	
22	3135	3053	+6.2	+1.6	47	3181	3095	+4.9	+2.6	
23	3150	3066	+5.0	+1.9	48	3218	3125	+4.6	+2.6	
24	3221	3131	+4.8	+1.9	49	3238	3150	+5.2	+3.4	
25	3202		+4.9	+2.0	50	3175	3091	+4.3	+4.0	

No. of Concession, Name

Rd No.	Veloci	mental ty_at 78_Ft	TM f AIP, Hor		Rd No.	Instru Veloci 15 Ft	mental ty at 78 Ft	TM f AIP Hor	rom in. Vert			
Ammunit Weapon:	Ammunition: Cartridge,5.56-mm, tracer, M196, lot TW-18007 (type B). Ammunition Temperature: +70°F. Weapon: Remington model 700 with accuracy Mann barrel No. 34169. Previous Round Count: 114.											
1	3133	3046	+6.2		26	3157	3062	+5.5	+2.3			
2	3205	3118	+5.5	+1.9	27	3136	3040	+4.9	+2.6			
3	3176	3087		+2.0	28	3116	3057	+5.2	+2.7			
4	3138	3071	+6.1	+2.3	29	3169	3070	+3.0	+4.2			
5	3168	3071	+5.6	+2.6	30	3161	3077	+3.4	+5.2			
6	3192	3109	+6.3	+3.1	31	3137	3053	+3.5	-2.1			
7	3167	3076	+7.0	+3.5	32	3123	3023	+6.5	-0.7			
8	3108	3014	+6.2	+3.3	33	3113	3016	+5.9	-0.4			
9	3179	3083	+3,9	+3.4	34	3117	3060	+4.5	+0.8			
10	3137	3055	+5.8	+3.7	35	3148	3079	+5.9	+0.9			
11	3130	3056	+4.9	+1.0	36	3161	3055	+5.5	+1.5			
12	3121	3039	+5.4	+1.2	37	3141	3078	+4.4	+2.9			
13	3129	3040	+5.6	+1.3	38	3133	3041	+3.9	+3.1			
14	3123	3023	+5.6	+1.5	39	3168	3069	+4.6	+3.6			
15	3163	3081	+7.2	+1.7	40	3135	3039	+9.7	+3.8			
16	3187	3100	+4.9	+1.8	41	3154	3054	+5.3	+1.0			
17	3108	3045	+6.0	+2.1	42	3161	3098	+6.5	+1.1			
18	3133	3031	+5.0	+2.2	43	3170	3085	+4.7	+1.7			
19	3155	3073	+5.0	+3.1	4.1	3131	3049	+4.2	+1.6			
20	3132	3040	+5.9	+3.8	45	3196	3100	+4.3	+1.8			
21	3173	3075	+4.8	+0.6	46	3144	3077	+5.9	+2.2			
22	3140	3054	+3.6	+1.0	47	3171	3084	+7.3	+2.6			
23	3150	3069	+6.7	+1.3	48	3126	3041	+5.0	+2.6			
24	3121	3028	+4.7	+1.8	49	3148	3064	+5.1	+2.9			
25	3076	3016	+3.6	+1.8	50	3158	3069	+3.2	+4.3			

Rd No.	Instru Veloci 15 Ft		TM from AIP, in. Hor Vert		Rd No.	Valoci	Instrumental Velocity at 15 Ft 78 Ft		rom in. Vert
Ammunit: Ammunit: Weapon:	ion Tem	peratur	e: +70	°F.	l, M193,lot ccuracy Man				rence).
Previou					•				
1	3228	3135	+5.1	+1.8	26	3190	3108	+6.2	+2.0
2	3206	3124	+5.2	+2.0	27	3176	3085	+5.0	+2.1
3.	3184	3096	+5.3	+2.4	28	3191	3096	+5.2	+2.1
4	3193	3103	+5.9	+2.4	29	3188	3107	+4.5	+2.4
5	3209	3113	+5.7	+2.5	30	3179	3097	+6.1	+2.5
6	3129	3036	+6.5	+2.6	31	3230	3147	+4.6	+1.2
7	3192	3108	+5.8	+2.7	32	3252	3162	+5.1	+1.4
8	3159	3075	+5.0	+3.1	33	3175	3088	+4.8	+1.5
9	3223	3133	+4.6	+3.2	34	3208	3123	+4.9	+1.7
10	3146	3062	+5.5	+3.6	35	3220	3129	+5.4	+1.9
11	3219	3133	+4.5	+1.0	36	3222	3135	+5.3	+2.3
12	3164	3082	+3.7	+1.3	37	3231	3145	+5.4	+2.4
13	3167	3087	+4.9	+1.3	38	3192	3100	+5.3	+2.6
14	3221	3136	+4.9	+1.4	39	3196	3115	+3.8	+2.2
15	3183	3101	+4.6	+2.0	40	3231	3133	+3.5	+2.4
16	3196	3115	+4.7	+2.2	41	3191	3103	+4.6	+1.5
17	3194	3105	+5.0	+2.3	42	3197	3113	+4.1	+1.6
18	3203	3119	+5.5	+2.3	43	3229	3144	+3.6	+1.9
19	3213	3124	+4.9	+2.4	44	3209	3123	+3.3	+2.0
20	3212	3126	+4.9	+2.8	45	3212	3124	+4.1	+2.1
21	3209	3124	+4.6	+0.6	46	3244	3161	+4.8	+2.0
22	3189	3092	+4.0	+1.1	47	3257	3169	+3.8	+2.2
23	3199	3113	+5.6	+1.1	48	3204	3116	+3.8	+2.6
24	3192	3109	+4.7	+1.9	49	3194	3110	+4.8	+2.6
25	3165	3074	+4.0	+2.0	50	3238	3152	+4.6	+2.8

I~60

and the second second

	Veloci		TM from AIP, in.			Instrumental Velocity at			in.
Rd No.	15 Ft	78 Ft	Hor	Vert	Rd No.	<u>15 Ft</u>	78 Ft	llor	Vert
Ammunit					tracer, M196,	lot LO	2-12081	(type	A).
Ammunit									
Weapon:					n accuracy Man	n barre	e1 No. 3	4169.	
Previou	s Round	Count:	214.						
1	3177	3082	+4.4	-0.7	26	3108	3023	+3.6	+2.0
2	3093	3007	+5.4	+0.5	27	3084	3031	+5.2	+2,1
3 .	3138	3056	+3.4	+1.6	28	3135	3039	+5.2	+2.2
4	3135	30.38	+5.2	+2.5	29	3114	3019	+6.0	+2.8
5	3103	3001	+6.6	+2.8	30	3124	3027	+6.6	+3.9
6	3140	3040	+4.9	+2.7	31	3162	3064	+5.6	-1.2
7	3155	3068	+3.0	+3.0	32	3039	2945	+5.1	+0.9
8	3138	3038	+5.4	+3.6	33	3136	3046	+4.5	+2.1
9	3099	2998	+7.7	+3.9	34	3112	3015	+4.2	+2.2
10	3130	3050	+6.6	+4.1	35	3113	3065	+5.9	+2.3
11	3139	3043	+5.1	-0.2	36	3154	3070	+4.7	+2.8
12	3111	3021	+6.0	+0.1	37	3158	3074	+4.2	+2.9
13	3127	3045	+8.5	+0.1	38	3140	3047	+5.9	+3.4
14	3091	3014	+2.2	+0.8	39	3149	3073	+4.0	+4.3
15	3082	2989	+4.5	+1.1	40	3092	3002	+5.3	+4.4
16	3107	3043	+6.5	+2.0	41	3147	3061	+6.9	-0.6
17	3115	3022	+4.8	+2.5	42	3129	3030	+5.3	+0.7
18	3127	3023	+5.8	+2.7	43	3076	3012	+3.3	+1.1
19	3110	3009	+4.2	+2.9	44	3103	3015	+4.0	+1.6
20	3092	3032	+5.1	+5.4	45	3100	3007	+3.9	+2.1
21	3098	3049	+5.9	-0.9	46	3132	3048	+5.7	+3.1
22	3114	3033	+5.6	+0.4	47	3067	2970	+4.1	+3.5
23	3101	3014	+4.9	+0.6	48	3128	3034	+2.5	+3.7
24	3130	3083	+6.1	+0.9	49	3109	3016	+5.5	+4.2
25	3173	3080	+5.7	+1,1	50	3101	3005	+6.8	+4.3

TM = Target measurements. AIP = Arbitrary index point.

Target Data Identification

÷.

Target No.	Lot No.	Range
1.00 thru 9.00	LC-12081	1000 inches
10.00 thru 18.00	TW-18007	1000 inches
19.00 thru 27.00	LC-12194	1000 inches
28.00 thru 36.00	TW-18191	1000 inches
37.00 thru 45.00	LC-12081	50 meters
46.00 thru 54.00	TW-18007	50 meters
55.00 thru 63.00	LC-12194	50 meters
64.00 thru 72.00	TW-18191	50 meters
73.00 thru 81.00	LC-12081	100 meters
82.00 thru 90.00	TW-18007	100 meters
91,00 thru 99.00	LC-12194	100 meters
100.00 thru 108.00	TW-18191	100 meters
109.00 thru 117.00	LC-12081	200 meters
118.00 thru 126.00	TW-18007	200 meters
127.00 thru 135.00	LC-12194	200 meters
136.00 thru 144.00	TW-18191	200 meters
145.00 thru 153.00	LC-12081	400 meters
154.00 thru 162.00	TW-18007	400 meters
163.00 thru 171.00	LC-12194	400 meters
172.00 thru 180.00	TW-18191	400 meters

.

and the second second

Note: For each set of nine targets, the first three were fired with gun No. 904544, the second three with gun No. 904546, and the third with gun No. 904549.

tgt										ci
no.	ev	mvd	vød	eh	mhd	hsđ	CB	mr	h	v
1.00	2.2	•5	•6	3.3	•7	•9	3.6	0		
2.00	2.7	.8	1.0	3.2	.7			•9	•5	
3.00	5.8	1.8	2.1			•9	3.3	1.2		-1.9
	200	1.0	C • i	3.6	•6	•9	5.9	2.1	1.3	-2.0
mean	3.6	1.0	1.2	3.4	•7	•9	4.3	1.4	•8	-1.7
tgt										
no.	ev	myd	vsd	eh	- J					cí
•	-,		VBU	en	mhd	hød	CB	mr	h	v
4.00	4.5	1.1	1.4	1.6	.۲	•6	4.5	• •		
5.00	4.0	1.0	1.3	1.6	.4		4.7	1.2	-1 .1	-1.5
6.00	3.2	•7	1.0			•5	4.0	1.2	-1.9	-1.7
	<i></i>	• (1.0	2.4	•6	•7	3.3	1.0	-1.3	-1.4
mean	3.9	•9	1.2	1.9	•5	•6	3.9	1.1	-1.4	-1.5
tgt										
no.	ev	mvd	vsd	.1 .	• •					cí
	•••		V BU	eh	mhd	had	Ċ8	mr	h	v
7.00	8.6	1.4	2.5	~ 7						
8.00	2.6			5.7	1.1	1.6	9•8	1.9	•1	-1.6
9.00		•7	•9	1.9	•6	•7	2.8	1.0	2	4
7.00	3.0	•7	•9	1.5	•4	•5	3.0	•8	.0	-•4 -•0
mean	4.7	•9	1.4	3.0		•				
		•/	1	0•و	•7	•9	5.2	1.2	0	7
aver.	4.1	1.0	1.3	0 0	,	•	۰.			
			1 • 5	2.8	•6	•8	4.5	1.2	-,2	-1.3
tgt										
no.	ev	mv.d		•						ei
		TUN (C	VSd	eh	mhd	had	es	níc	h	v
10.00	3.9	•6	1.1	4.1	•		.			
11.00		•7			•9	1.2	5.3	1.2	•4	-1 .4
12.00	3.5 4.2	+ (1.0	3.7 4.7	1.0	1.2	4.0	1.4	1 •3	-1.6
12.000	4•2	•7	1.2	4.7	1.1	1.4	4.8	1.4	1.4	-1.7
mean	3.9	7		1 -					••••	
	207	•7	1.1	4.2	1.0	1.3	4.7	1.3	1.0	-1.6
tgt								-		
no.			_						~	1
1100	ev	mvd	vsd	eh	mnd	hsd	es	m	h	v
13.00	3.4	•8	1.0	2.8	•7	•	h	•	_	
14.00	3.6	1.0	1.2	4.8		•9	4.0	1.1	7	-1.6
15.00	3.8	•6			1.2	1.5	4.8	1.7	•1	-2.1
-		•0	1.0	2•5	•8	•9	3.8	1.2	2	-2.5
mean	3.6	•8	1.1	3.4	•9	1.1	4.2	1.3	3	-2.1

tgt									c	:1
no.	ev	mvd	vsd	eh	mhd	hød	es	mr.	h	v
16.00	4.6	1.0	1.3	2.5	•6	•7	4.7	1.2	3	-1.3
17.00	3.7	•9	1.1	2.1	•7	•8	3.8	1.1	3	-1.9
18.00	1.6	•4	•5	2.3	•6	•7	2.5	•8	•1	-1.5
mean	3•3	•8	1.0	2.3	•6	•8	3.7	1.1	-•2	-1 . 5
aver.	3.6	•7	1.0	3.3	•8	1.0	4.2	1.2	•2	-1.7
tgt										ei.
no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	v
19.00	2.1	•6	•7	1.4	•4	•5	2.3	•8	•5	~1 .0
20.00	2.4	•6	•7	3.1	•6	•9	3.3	1.0	•5	-1.0
21.00	1.6	•3	•4	2.3	•6	•7	2•3	•7	•1	-1 .1
mean	2.0	•5	•6	2.3	•5	•7	2.6	•8	•4	-1.0
tgt										ci
no.	ev	mvd.	vsd	eh	mhd.	hød	es	mr	h	v
22.00	1.8	.4	•5 •4	1.8	•5	.6	2.0	•7	1	-•8
23.00	1.7	•3 •7		2.1	•5 •4	•6	2.2	•6	3	-1.2
24.00	2.2	.7	•8	1.4	•4	•5	2.3	•9	-•2	-1.4
mean	1.9	•5	•6	1.8	•5	•6	2.2	•7	2	-1.1
tgt										ci
no.	ev	mvd	vsd	eh	mhd	hsd	Ċ5	mr	h	v
25.00	•8	•2	•3	•8	•2	•3	1.0	•3 •4		-1.3
26.00	1.0	•2	•3	•9	•2	•3 •4	1.2		.1	-1.6
27.00	1.3	•4	•4	1.5	•3	•4	1.7	•5	•3	-1.2
mean	1.0	•3	•3	1.1	•3	•3	1.3	•4	•1	-1.4
aver.	1.7	.4	•5	1.7	•4	•5	2.0	•6	•1	-1.2

100 m

CARDO PROVIDE

I-64

tgt no.	ev	mvd	vsd	eh	mhd	hød	es	mr	c h	ei v
28.00	1.4	.4	. r	1.0	0	•	1.4	بر	1.	1.
29.00	•9		5	1.0	•2	•3		•5 •4	.4	4
30.00	1.7	•3 •4	844 24		•2	•3	1.2		.6	-•5
00100	1.01	•4	•5	•9	•3	•3	1.7	•5	. 4	7
mean	1.3	•4	•4	1.0	•2	•3	1.4	•5	•5	- •5
tgt									~	1
no.	ev	mvd	vsd	eh	mhd.	hsd	es	m	h	v
31.00	2.1	•6	•7	1.3	•3	•4	2.1	•7	6	6
32.00	1.2	•3	-4	1.7	.4	•5	1.7	•6	3	2
33.00	1.7	•5	•6	1.5	.4	•5	2.1	•7	3	2
mean	1.7	•4	•6	1.5	•]1	•5	2.0	•7	4	4
tgt									-	i
no.	ev	mvd	vsd	eh	mhd	had	es	mr	h	v
34.00	1.4	•4	•5 -4	•9	•2	•3	1.5	•5	-,0	-1.5
35.00	1.2	•3	4	1.1	•3	•3 •4	1.2	•5	-,0	-1.2
36.00	1.4	•5	•6	•8	•2	•2	1.4	•6		-1.2
mesn	1.3	.4	•5	•9	•2	•3	1.4	•5	•0	-1 .3
aver.	1.4	•4	•5	1.1	•3	.4	1.6	•5	•0	7
tgt									с	
no.	ev	mvd	vsd	eh	mhd	hød	es	mr	h	A
37.00	4.4	1.2	1.4	7.3	1.9	2.4	7.5	2.5	2.6	2
38.00	6.9	1.6	2.1	5.4	•9	1.4	7.0	2.0	.Ļ	. 2
39.00	7.0	2.0	2.6	6.0	1.4	1.9	8.8	2.5	•9	•5 -•4
mean	6.1	1.6	2.0	6.2	1.4	1.9	7.8	2.3	1.3	- .0
tgt									c	4
no.	ev	mvd.	vsd	eh	mhd	hød.	es	HQ.	h	v
40.00	10.5	2.2	2.9	2.4	•6	•8	10.5	2.4	-1.8	•5
41.00	10.8	2.8	3.7	2.6	.7	•9	10.9	3.0	-3.9	1
42.00	11.5	2.1	3.1	5.7	1.4	1.8	11.8	2.8	-2.2	1
mean	10.9	2.3	3•2	3.6	•9	1.2	11.1	2.7	-2.6	.1

tgt				J,					c	:i
no.	ev	mvd	vsd	eh	mhd	hsd	es	m.	h	v
43.00	3.4	•9	1.2	3.2	•8	1.0	4.3	1.3	•3	•0
1,1:.00	9.1	1.7	2.6	5.6	1.4	1.8	9.1	2.5	7	4.3
45.00	4.3	•9	1.3	5.4	1.3	1.7	5•5	1.8	9	2•3
mean	5.6	1.2	1.7	4.7	1.1	1.5	6.3	1.9	-• []] ;	2•2
aver.	7.5	1.7	2•3	4.8	1.2	1.5	8.4	2•3	6	•8
tgt									c	:1
no.	ev	mvd	vsd	eh	mhd.	had	es	m	h	۷
46.00	5.2	1.2	1.6	5.2	1.3	1.7	5.2	2.0	2.8	9
47.00	5.6	1.2	1.6	5.3	1.1	1.5	5.9	1.8	2.3	1.0
48.00	3.7	1.1	1.4	5.6	1.4	1.7	6.4	1.9	3.2	-2.6
mean	4.8	1.1	1.5	5.4	1.3	1.7	5.9	1.9	2.8	8
tgt										ei -
no.	ev	mvd	vsd.	eh	blic	hsd.	es	mr.	h	v
49.00	6.2	1.7	2.1	4.5	1.4	1,6	7.5	°•3	-1.9	-1 .8
50.00	6.3	2.3	2.6	6.1	1.4	1.8	8.6	2.8	9	-2.4
51.00	5.5	1.8	2.1	7.2	1.2	2.0	7.2	2.4	•7	-1.6
mean	6.0	2.0	2•3	5.9	1.3	1.8	7.8	2.5	7	-1.9
tgt										ei -
no.	ev	mvd	vad	eh	mhd	hød	es	mr	h	v
52.00	8.6	1.8	2.5	6.3	1.5	1.9	10.7	2.3	2	8
53.00	5.9	1.6	2.0	5.5	1.3	1.6	6.4	2.2	-2.0	-1.3
54.00	3.6	1 .1	1.4	5.0	1.2	1.6	5.1	1.7	•6	-2.0
mean	6.0	1.5	1.9	5.6	1.3	1.7	7.7	2.1	-•5	-1 .4
aver.	5.6	1.5	1.9	5.6	1.3	1.7	7.1	2.2	•5	-1 •4

6630 S

tgt									С	i
no.	ev	mvd	vad	eh	mhd	hsd	es	m	h	v
55.00	3.0	•9	1.1	3.7	•9	1.2	3.7	1.4	•4	•9
56.00	3.3	•8	ή. 0	2.4	.7	•8	3.3	1.2	•8	•2
57.00	3.3	.7	.9	3.1	•9	1.1	3.8	1.2	•1	-4
J 00	ر• ر	• 4	.,•	••ر	• 7		J•0	1 • 2	••	
mean	3.2	•8	1.0	3.1	•8	1.0	3.6	1.3	•4	۰2
tgt									с	i
no.	ev	mvd	vsd	eh	mhd	hsd	es	IT	h	v
58.00	2.5	•5	•7	3.6	•8	1.1	3.6	1.1	9	2
59.00	4.7	1.3	1.6	3.2	.7	•9	4.7	1.6	5	-1.3
60.00	4.4	•9	1.3	3.5	•8	1.1	4.8	1.3	•5	-1.2
00.00	-+ -+	• 7	••)	2.0	•0	. •.	400	1.02	•2	-1 •6
meen	3.9	•9	1.2	3.4	•8	1.0	4.4	1.3	3	9
tgt									с	1
no.	ev	mvd.	vsd	eh	mhd	hsd	es	m	h	v
61.00	1.8	•4	•6	3.0	•8	•9	3.1	1.0	0	6
62.00	3.2	•8	1.0	1.3		.4	3.3	•9	3	7
63.00	1.1	•3	.4	2.7	•3 •7	-8	2.8	•8	•5	4
mean	2.0	•5	•7	2.3	•6	•7	3.0	•9	.1	6
aver.	3.0	.7	1.0	2.9	•7	•9	3.7	1.2	.1	4
	-						•			
tgt									C	1
no.	ev	mvd.	vad	eh	mhd	hsd	CS	m	h	v
64.00	1.8	•6	•7	2.2	.4	•6	2.2	•8	•7	1.3
65.00	2.3	•5	•7	2.3	•?	•8	3.0	•9	•6	1.2
66.00	2.3	•6	•8	1.7	.4	•5	2.4	•8	1.1	1.3
			•••	• - •				••		
mean	2.1	•6	•7	2.1	•5	•6	2.6	•8	•8	1.3
tgt									c	:1
no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	v
67.00	2.3	<u>_</u> ۲	۰7	1.7	.4	.5	2.3	•7	4	•6
68.00	2.3 2.4	•5 •5	.7	3.3	.7	•9	3.9	•9	-1.2	1.0
69.00	3.9	•8	1.2	2.5	•6	•8	4.0	1.1		.7
07.00	7•5	÷ U	145	6 •7	•0	•0	+ • V		~•0	• 1
mean	2.9	•6	•8	2.5	•6	•7	3.4	•9	-•5	•8

.

tgt									c	i
no.	ev	mvd	vsd	eh	mhd	hød	es	mr	h	v
		_				•		•		~
70.00	2.5	•7	•8	2.8	•4	•8	3.0	•9	.1	3
71.00	24	•8	•9	1.0	•3	.4	2.5	•9	5	6
72.00	2.6	•6	•8	3.2	•5	•8	3•2	•9	•1	-1 •0
mean	2.5	.7	•9	2•3	•4	•7	2.9	9	1	6
aver.	2.5	•6	•8	2•3	•5	•7	3.0	•9	•0	•5
tgt									c	
no.	ev	mvd	vsd	eh	mhd	hsd	es	111.	h	v
73.00	8.2	1.9	2.5	15.6	2.7	4.5	15.8	3.8	2.2	2.3
74.00	13.1	2.5	3.7	9.5	1.8	2.6	13.2	3.5	2.8	4.3
75.00	12.9	2.9	4.0	5.8	1.4	1.8	12.9	3.5	1.0	4.0
mean	11.4	2.5	3.4	10.3	2.0	3.0	14.0	3.6	2.0	3.5
tgt									c	1
tgt no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	c h	i v
no.									h	۷
no. 76.00	14.3	4.1	4.8	11.6	2.4	3.3	14.7	5.2	h -5.0	•Ц
no. 76.00 77.00	14.3 14.3	4.1 3.3	4.8 4.5	11.6 21.0	2.4 3.9	3•3 6•0	14.7 21.0	5.2 5.9	h -5.0 -2.9	•4 2•1
no. 76.00	14.3	4.1	4.8	11.6	2.4	3.3	14.7	5.2	h -5.0	•Ц
no. 76.00 77.00	14.3 14.3	4.1 3.3	4.8 4.5	11.6 21.0	2.4 3.9	3•3 6•0	14.7 21.0	5.2 5.9	h -5.0 -2.9	•4 2•1
no. 76.00 77.00 78.00 mean	14.3 14.3 17.4	4.1 3.3 3.5	4.8 4.5 5.2	11.6 21.0 13.3	2.4 3.9 3.8	3•3 6•0 4•4	14.7 21.0 17.9	5.2 5.9 5.8	h -5.0 -2.9 -4.0 -4.0	•4 2.1 4.5
no. 76.00 77.00 78.00	14.3 14.3 17.4	4.1 3.3 3.5	4.8 4.5 5.2	11.6 21.0 13.3	2.4 3.9 3.8	3•3 6•0 4•4	14.7 21.0 17.9	5.2 5.9 5.8	h -5.0 -2.9 -4.0 -4.0	v 2.1 4.5 2.3
no. 76.00 77.00 78.00 mean tgt no.	14.3 14.3 17.4 15.3	4.1 3.3 3.5 3.7	4.8 4.5 5.2 4.9 vad	11.6 21.0 13.3 15.3 eh	2.4 3.9 3.8 3.3 mhd	3.3 6.0 4.4 4.6 had	14.7 21.0 17.9 17.8	5.2 5.9 5.8 5.6	h -5.0 -2.9 -4.0 -4.0	• .4 2.1 4.5 2.3
no. 76.00 77.00 78.00 mean tgt no. 79.00	14.3 14.3 17.4 15.3 ev 10.8	4.1 3.3 3.5 3.7 mvd 2.7	4.8 4.5 5.2 4.9 vad 3.6	11.6 21.0 13.3 15.3 eh 5.4	2.4 3.9 3.8 3.3 mhd 1.7	3.3 6.0 4.4 4.6 had	14.7 21.0 17.9 17.8 es 10.8	5.2 5.9 5.8 5.6 mr 3.5	h -5.0 -2.9 -4.0 -4.0 h	v 2.1 4.5 2.3
no. 76.00 77.00 78.00 mean tgt no. 79.00 80.00	14.3 14.3 17.4 15.3 ev 10.8 10.2	4.1 3.3 3.5 3.7 mvd 2.7 3.0	4.8 4.5 5.2 4.9 vsd 3.6 3.4	11.6 21.0 13.3 15.3 eh 5.4 7.8	2.4 3.9 3.8 3.3 mhd 1.7 1.7	3.3 6.0 4.4 4.6 had 2.0 2.3	14.7 21.0 17.9 17.8 ев 10.8 10.6	5.2 5.9 5.8 5.6 mr 3.5	h -5.0 -2.9 -4.0 -4.0 h	v 2.1 4.5 2.3 :1 v 1.4 5.6
no. 76.00 77.00 78.00 mean tgt no. 79.00	14.3 14.3 17.4 15.3 ev 10.8	4.1 3.3 3.5 3.7 mvd 2.7	4.8 4.5 5.2 4.9 vad 3.6	11.6 21.0 13.3 15.3 eh 5.4	2.4 3.9 3.8 3.3 mhd 1.7	3.3 6.0 4.4 4.6 had	14.7 21.0 17.9 17.8 es 10.8	5.2 5.9 5.8 5.6	h -5.0 -2.9 -4.0 -4.0 h -1.1 4	v 2.1 4.5 2.3
no. 76.00 77.00 78.00 mean tgt no. 79.00 80.00	14.3 14.3 17.4 15.3 ev 10.8 10.2	4.1 3.3 3.5 3.7 mvd 2.7 3.0	4.8 4.5 5.2 4.9 vsd 3.6 3.4	11.6 21.0 13.3 15.3 eh 5.4 7.8	2.4 3.9 3.8 3.3 mhd 1.7 1.7	3.3 6.0 4.4 4.6 had 2.0 2.3	14.7 21.0 17.9 17.8 ев 10.8 10.6	5.2 5.9 5.8 5.6 mr 3.5	h -5.0 -2.9 -4.0 -4.0 h -1.1 4	v 2.1 4.5 2.3 :1 v 1.4 5.6
no. 76.00 77.00 78.00 mean tgt no. 79.00 80.00 81.00	14.3 14.3 17.4 15.3 ev 10.8 10.2 11.5	4.1 3.3 3.5 3.7 mvd 2.7 3.0 2.2	4.8 4.5 5.2 4.9 vad 3.6 3.4 3.3	11.6 21.0 13.3 15.3 eh 5.4 7.8 16.2	2.4 3.9 3.8 3.3 mhd 1.7 1.7 2.8	3.3 6.0 4.4 4.6 hed 2.0 2.3 4.2	14.7 21.0 17.9 17.8 es 10.8 10.6 16.6	5.2 5.9 5.8 5.6 mr 3.5 3.7 4.0	h -5.0 -2.9 -4.0 -4.0 h -1.1 4 1.7	v 2.1 4.5 2.3 4.5 2.3 1.4 5.6 3.4

¥#

ALC: NO.

tgt										:i
no.	ev	mvd	vad	eh	mhd	hsd	es	H.C.	h	v
82.00	9.7	2.6	3.2	12.4	2.7	3.8	15.0	4.2	5.5	-3.4
83.00	14.4	4.1	5.3	9.0	3.3	3.8	16.8	5.9	5.5 4.4	8
84.00	14.0	5.1	5.9	15.8	3.9	5.0	17.5	6.8	3.5	-1.6
mean	12.7	4.0	4.8	12.4	3•3	4.2	16.4	5.6	4.5	-1.9
tgt									c	:i
no.	ev	mvd	vsd	eh	mhd.	hsd	es	m	h	v
85.00	15.2	3.6	4.7	17.0	3.9	4.9	18.2	5.8	3	-1.8
86.00	15.6	4.1	5.0	9.6	2.6	3.2	16.7	5.2	-1.0	-2.1
87.00	13.1	3-2	4.2	20.3	4.3	6.2	23•3	5•8	•9	-4.2
mean	14.6	3.7	4.6	15.6	3.6	4.8	19.4	5.6	-•2	-2.7
tgt									c	:1
no.	ev	nvd	vsd	eh	mhd	hsd	es	nr	h	v
88.00	10.2	2.4	3.1	6.2	1.6	2.0	10.3	3.2	-2.4	4.0
89.00	10.6	2.1	3.1	14.6	2.8	4.1	15.7	3.8	-3.2	1.6
90.00	10.2	2.7	3.2	8•3	2.5	3.1	13.1	3.9	-1.9	-2.6
mean	10.3	2.4	3.1	9.7	2•3	3.1	13.0	3.6	-2.5	1.0
aver.	12.6	3.4	4.2	12.6	3.1	4.0	16.3	4.9	•6	-1.2
ter										:i
n0.	ev	mvd.	vsd	eh	mhd	h s d.	es	m	h	v
91.00	4.0	•8	1.2	4.2	1.1	1.4	4.7	1.5	1.0	3.0
92.00	5.2	1.5 1.7	1.8	7.8	1.5	2.2	8.1	2.4	1.0	2.3
93.00	7.0	1.7	2.1	6.7	1.6	2.0	8.0	2.4	•2	3.0
mean	5.4	1.3	1.7	6.2	1.4	1.9	6.9	2.1	•7	2.8
tgt										: 1
no.	ev	mvd	vsd	eh	mhć	hsd	ев	m	h	V
94.00	9.4	2.0	2.8	8.8	2.2		11.3	3.3	4	4.0
· 95 •00	13.3	3.2	4.0	8.3	1.9	2.5	13.5	4.0	0	2.8
96.00	5.8	1.6	2.0	7.6	1.9	2.5	8.5	2.6	1.8	1.1
mean	9.5	2.3	2.9	8.2	2.0	2.5	11.1	3•3	•5	2.6

Ter.

I--69

igt									c	i
no.	ev	mvd	vsd	eh	mhd	hød	es	mr	h	v
97.00	5.5	1.4	1.8	3.8	1.0	1.3	5.7	1.8	6	1
98.00	4.3	1.5	1.7	2.7	•7	•9	4.4	1.7	•2	•8
99.00	6.5	1.4	1.8	4.1	1.0	1.2	6.5	1.8	•8	1.7
wean	5.4	1 •4	1.8	3.5	•9	1.1	5.5	1.8	•1	•8
aver.	6.8	1.7	2.1	6.0	1.4	1.9	7•8	2.4	•4	2.1
tgt			_						C	
no.	ev	mvd	vsd	eh	mhd	hød	eß	n r .	h	v
100.00	3.6	1.0	1.2	6.4	1.3 1.4	1.8	6.5	1.8	•2	2.6
101.00	4.6	1.0	1.4	6.0	1.4	1.8	6.7	1.9	•5	3.7
102.00	3.5	1.1	1.3	5•9	1.1	1.6	6.8	1.7	1.3	2•3
mean	3.9	1.0	1.3	6.1	1.3	1.7	6.7	1.8	•7	2.9
++									c	1
tgt no.	ev	mvd	vad	eh	mhd	hsd	e s	m.	h	v
103.00	11.7	2.4	3.3	3.9	•7	1.1	11.7	2.7	9	2.4
104.00	5.3	1.5	1.9	3.4	1.1	1.3	5.6	2.0	-2.4	5.6 4.1
105.00	6.1	1.3	1.7	3.4	•9	1.1	7.0	1.7	-1 .6	4.1
mean	7.7	1.7	2•3	3.6	•9	1.1	8.1	2.1	-1 .6	4.0
++									c	:1
tgt no.	ev	mvd.	vsd	eh	mhd	had.	es	mr	h	v
106.00	4.6	1.2	1.5	3.4	1.0	1.2	4.7	1.7	2	•1
107.00	3.4	.7	1.0	2.2	•6	.7	3.5	1.1	-•5	4
108.00	4.6	1.5	1.7	5.2	1.3	1.6	6.9	2.0	•5	-1 .2
mean	4.2	1.1	1.4	3.6	1.0	1.2	5.0	1.6	1	-•5
aver.	5.3	1.3	1.7	4.4	1.0	1.4	6.6	1.8	-•3	2.1
tgt										ei -
no.	ev	mvd.	vså	eh	mhd	had	es	m	h	v
109.00	28.0	7.5	9.0	39.7	6.5	10.4	39.7	11.3	9.7	-3.4
110.00	22.6	5.3	7.3	18.7		5.7	28.6	7.0	6.7	-3.7
111.00	42.5	10.7	13.5	35•5	6.6	9•8	46.6	13.1	8.0	1.5
mean	31 .0	7.8	9.9	31 •3	5.7	8•6	38•3	10.5	8.1	-1.8

~

ないたんで

tgt										ci
no.	ev	mvd	vsd	eh	mhd	hød	C B	nur.	h	v
112.00	24.3	5.3	7.2	52.4	9.2	15.2	55.0	11.7	-12.5	-3.2
113.00	34.9	6.5	10.3	46.1	7.8	12.8	53.4	11.6	-12.8	5
114.00	52.8	10.9	14.8	25.6	6.0	7.8	54.7	13.6	-8.1	-1.8
	2.0			2,740			<i></i>			
mean	37.3	7.6	10.8	41.4	7.7	11.9	54.4	12.3	-11.1	-1.8
tgt										ci
no.	ev	mvd	vsd	eh	mhd	hsd	es	m	h	v
115.00	22.3	5 .3	6.9	22.3	4.7	6.3	23.2	7.9	-3.0	2.3
116.00	21.4	5.9	7.0	25.0	5.0	7.4	26.8	8.7	1.3	2.7
117.00	48.6	8.3	13.5	35.3	6.9	9.5	57.1	11.5	3.8	3.4
mean	30.8	6.5	9.1	27.5	5.5	7.8	35.7	9.4	•7	2.8
		-		•						
aver.	33.0	7.3	10.0	33.4	6.3	9.4	42.8	10.7	-•8	3
tgt										ci
no.	ev	nvd	vsd	eh	mhd	hsd	es	mr	h	v
	<u>U</u>		154	CII	116104	1194	CD	114	11	v
118.00	20.3	6.6	8.0	38.1	7.2	10.6	43.2	10.6	6.9	-1 .1
119.00	21 .3	5.8	7.1	23.9	6.5	7.9	28.0	8.9	9.0	.4
120.00	30.8	7.7	9.6	28.2	6.1	8.0	30.9	11.0	4.2	-9.4
		1 7	0.0			• •				• 1
mean	24.1	6.7	8.2	30.1	6.6	8.8	34.0	10.2	6.7	-3.4
tgt										ci
no.	ev	mvd	vsd	eh	mhd	hsđ	es	mr	h	v
121.00	36.8	9.0	11.1	17.2	5.0	5.9	37.0	11.0	-7.6	-10.0
122.00	36.4	9•8	11.4	28.1	5.2	7.6	37.8	12.1	2.3	-11.4
123.00	19.0	5.2	6.4	23.9	6.5	8.1	27.6	8.3	1	-9.2
mean	30.7	8.0	9.6	23 •1	5.5	7.2	34.1	10.6	-1.8	-10.2
tgt										a .t
no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	ci V
	U 1	2137 CZ	V DU	C11	and by	1194	60	****		V
124.00	46.8	7.9	12.3	46.1	7.2	12.4	57.8	12.0	1.9	7
125.00	23.5	6.6	8.4	16.9	4.1	5.4	28.9	8.0	-2.2	-1 .1
126.00	19.7	4.2	5.8	22.7	5.2	6.8	25.8	7.1	-4.1	-4.4
mean	30.0	6.3	8.8	28.6	5.5	8.2	37.5	9.0	-1 .5	-2.1
aver.	28.3	7.0	8.9	27.2	5.9	8.1	35 •2	9 • 9	1.1	-5.2
					T - 71					

A STATE

d:8-7

tgt									c	1
no.	ev	mvd	vsd	eh	mhd	hød	es	mr	h	v
127.00	10.3	2.6	3.3	9.1	2.1	2.7	10.3	3.8	5.4	8
128.00	11.7	3.8	4.3	10.7	2.1	3.0	11.7	4.7	4	8
129.00	12.1	2.6	3.7	9.8	2.5	3.1	13.7	3.9	-1.1	6
			200	,	2-7	<u> </u>				
mean	11.4	3.0	3.8	9•9	2.2	2•9	11.9	4.1	1.3	7
tgt									c	i
no.	ev	mvd	vsd	eh	mind	hsd	es	m	h	v
130.00	16.0	3.8	5.1	5.8	1.5	1.8	16.0	4.4	-6.6	5
131.00	17.5	3∘8	5.1	13.9	3.6	4.5	17.8	6.0	-6.1	-6.7
132.00	16.0	4.3	5.4	8.7	2.8		16.3		•6	-7.6
152.00	10.0	4•2	2 +4	0.1	2.00	3.2	10.5	5•5	•0	-1+0
meen	16.5	4.0	5.2	9•5	2.6	3.2	16.7	5.3	-4.0	-4.9
tgt										:i
no.	e r,	mvd	vsd	eh	mhd	hød	es	101.	h	
	U		104				60		**	•
133.00	7.0	2.0	2.4	8.4	2.6	3.1	10.3	3.5	2.2	-2.7
134.00	7.7	1.4	2.1	10.5	2.3	3.1	10.5	3.0	4	-4.1
135.00	9.0	2.0	2.8	8.1	2.4	2.8	10.6	3.5	2.4	8
	•	-							-	
mean	7.9	1.8	2.5	9.0	2.4	3.0	10.5	3.4	1.7	-2.5
aver.	11.9	2.9	3.8	9.4	2.4	3.0	13.0	4.3	4	-2.7
		2	5.0	/	£ •	500				2
tgt									C	:i
no.	ev	nvd	V8 Č	eh	mhđ	hød	es	mr	h	v
			-							
136.00	10.7	2.9	3.7	8.2	1.9	2.5	11.9	3.9	3.0	1.9
137.00	7.8	2.2	2.9	9•8	2.4	3.2	12.4	3.5	2.1	3.9
138.00	6 .3	: •7	2.0	11.0	3.0	3.7	11.5	3.6	3.4	5.1
mean	8.3	2.3	2.9	9.7	2.5	3.1	11.9	3.7	2.8	3.6
										-
tgt										ei.
no.	ev	mvd.	vsd	eh	mhd	hød	e8	m	h	v
139.00	16.3	3.8	4.8	7.5	2 *2	2.7	17.0	4.8	-6.0	4.7
140.00	10.6	2.3	3.0		2.3	3.7	12.1	4.1	-6.3	
141.00	7.1	1.7	2.3		2.1	3.1	11.4	3.1	-5.9	6.8
			- 1	~ ~	• •	• -	.	1 -) -
mean	11.0	2.6	3.4	9•7	2.4	3.2	13.5	4.0	-6.0	4.9

1-72

KA

tgt										ci
no.	ev	mvd	vsd	eh	mhd	hød	es	mr	h	v
142.00	11.8	2.9	3.8	4.3	1.0	1.3	11.9	3.3	•7	-4.9
143.00	13.0	3.1	4.0	8.8	2.3	3.0	14.5	4.3	3.2	-4.5
144.00	13.6	2.9	4.0	6.1	2.1	2.4	14.7	3.7	1.1	-6.4
			••-							
mean	12.8	3.0	3.9	6.4	1.8	2•2	13.7	3.8	1.7	-5.2
aver.	10.8	2.6	3.4	8.6	2.2	2•8	13.0	3.8	- •5	1.1
tgt										ci
no.	ev	nvd	vsd	eh	mhd	hsd	es	m	h	v
145.00	70.1	12.3	18.5	52.0	13.4	16.3	70.7	20.0	10.8	-23.6
146.00	71.0	15.6	21.1	Щ.9	11.5	14.6	71.3	20.3	5.1	-12.3
147.00	43.9	12.8	15.4	47.6	11.8	15.6		18.8	-1.8	-7.3
141.00	43 • 7	12.00	12 +4	47+0	11+0	12+0	53 •5	10.0	-1+0	-1•2
mean	61 •7	13.5	18.3	48-2	12.2	15.5	65•2	19.7	4.7	-14.4
tgt										ci
no.	ev	mvd	vsd	eh	mhd	hsd	es	m	h	 V
								~		•
148.00	45.8	11.3	14.6	62.9	11.9	17.7	67.0	18.5	-20.8	-9.4
149.00	53.3	9.7	14.2	53.2	12.5	16.8	57.6	17.3	-25.8	-9.2
150.00	53 •3 59 • 4	14.7	19.1	63.1	14.1	19.1	70.7	22.7	-20.8	-18.5
wean	52•8	11.9	16.0	59.7	12.8	17.9	65.1	19.5	-22.5	-12.4
the cash										~ *
tgt				. •						ci
no.	ev	mvd	vad	eh	mhđ	hsd	CS	ng.	h	v
151.00	26.9	5.3	7.5	36.6	8.5	10.8	36.6	11.7	8.9	1
152.00	42.4	7.7	11.1	45.8	12.5	15.7	50.4	16.5	19.3	1
153.00	45.4	14.1	15.9	29.1	5.3	7.7	45.7	15.9	9.9	4.6
		1401	1242	6/01	2.0	1 • 1	42+1	1242	/•/	400
mean	38-2	9.0	11.5	37-2	8+8	11.4	44.2	14.7	12.7	1.4
ever.	50.9	11.5	15.3	48.4	11.3	14.9	58.2	18.0	-1.7	-8.5
tğt										ci
no,	ev	nvd	vad	eh	mhd	hød	es	112.	h	v
154.00	31.1	8.4	10.3	40.1	8.1	12.0	47.7	12.9	4.6	-23.3
155.00	64.2	15.0	19.1	35.6	8.4	10.9		18.9	1.9	
156.00	43.3	10.4	13.9	42.9	8.7	12.3		15.1	4.9	-16.3
		1 1 944	1,107	₩6. ♥ 7	0+1	1613	2441	1241	407	~1013
mean	46.2	11.3	14.4	39.5	8.4	11.8	56.5	15.7	3.8	-1 8.8

للكاة المسدد والطراط الم

うちょう 要があ

tgt ci no. ev myd vsd eh mhd hed 68 m h V 157.00 61.0 17.1 21.5 Щ.з 9.8 13.3 10,7 61.6 -21.6 -21.6 21.6 158.00 51.4 16.6 19.3 31.0 8.5 54.8 20.1 -17.3 -24.1 159.00 57.2 11.1 15.7 53.7 7.3 13.1 57.6 -10.4 16.3 -18.9 14.9 mean 56.5 18.8 43.0 8.5 12.4 58.0 19.4 -16.4 -21.5 tgt ci no. . ev nvd vød eh mhd hød es m h V 160.00 15.5 14.7 53.1 54.0 12.5 9.4 11.6 16.3 62.9 18.5 -9.3 8.8 161.00 51.9 10.8 35.1 11.5 51.9 15.2 7.5 -9.9 162.00 35.3 7.6 5.5 10.7 20.5 4.0 35.8 9.9 -2.5 -23.0 mean 46.8 10.0 13.6 36.5 8.6 11.1 50.2 14.5 4.6 -14.1 aver. 49.8 12.1 15.6 39.7 8.5 54.9 11.7 16.5 -2.7 -18.1 tge ci no. ev mvd vsd eh mhd hsd es m h v 163.00 33.8 43.7 8.1 10.5 33•3 28•4 7.7 10.2 40.7 12.4 -.2 -25.8 164.00 9.0 12.3 6.8 9.1 44.0 12.2 -6.7 -25.2 165.00 36.6 7.8 10.3 20.5 5.4 6.5 38.5 10.3 -11.2 -26.3 meen 38.0 8.3 11.0 27.4 6.6 41.0 8.6 \$1.6 -6.1 -25.7 tgt ci no. ev mvd vød eh mhd had **CB** m h ۷ 166.00 34.3 10.2 11.9 28.6 7.7 9.9 36.3 14.4 -6.1 -20.2 167.00 45.7 13.2 15.6 24.1 4.6 6.7 45.9 14.6 -34.0 168.00 38.8 12.4 14.8 47.5 12.1 -41.6 16.0 53.1 19.4 -3.0 mean 39.6 14.1 11.9 33.4 8.1 10.8 45.1 16.1 -4.5 -32.0 tgt ci no. ev mvd vsd eh mhd hød 68 m h v 169.00 37.9 10.6 12.9 26.1 5.0 7.2 38.1 12.9 3.7 -35.5 170.00 5.6 7.8 20.2 4.7 6.6 18.9 6.1 23.4 7.9 9.8 -28.2 171.00 38.4 11.4 20.9 4.3 41.1 6.0 9.7 5.4 -20.6 mesin 32.2 8.0 10.3 22.0 4.7 6.4 34.2 10.2 6.3 -28.1 aver. 36.6 9.4 11.8 27.6 6.5 40.1 8.6 12.6 -1 ... -28.6

I-74

and the state of the

tgt										ci
no.	ev	mvd	vsd	eh	mhd	hsd	es	m	h	v
172.00	24.8	7.7	9.1	18.3	3.7	5.4	29.2	9.0	-6.4	-16.2
173.00	19.7	5.1	6.4	25.0	5.0	7.2	26.4	8.1	-1.8	-16.4
174.00	213	6.1	7.9	18.6	5.5	6.4	25.4	9.1	-3.8	-14.5
mean	23.1	6.3	7•8	20.6	4.7	6.3	27.0	8.7	-4.0	-15.7
tgt										ci
no.	ev	mvd	vsd	eh	mhd	hsđ	es	mr	h	v
175.00	36.4	9.6	12.7	25.6	4.8	6.9	39•3	11.1	-9.1	-17.5
176.00	32.5	7.7	10.2	24.5	4.8	7.0	32.7	10.6	-5.5	-19.5
177.00	28.6	7.3	9.0	35.4	7.8	10.4	35.6	11.6	-8.7	-12.3
mean	32.5	8.2	10.6	28•5	5.8	8.1	35.9	11 .1	-7.8	-16.4
tgt										ci
no.	ev	mvd	vad	eh	mhd	hsd	es	m	h	v
178.00	15.9	6.4	7.0	15.4	5.1	6.1	21.3	8.3	2.3	-34.0
179.00	28.3	6.5	8.2	18.8	4.3	5.5	28.8	8.4	1.9	-31.8
180.00	24.5	6.8	8.4	25•2	7.7	8.9	29•2	11.0	1.2	-38.4
mean	22.9	6.6	7.9	19.8	5.7	6.8	26.4	9.2	1.8	-34.7
aver.	26.2	7.0	8.8	23.0	5.4	7.1	29.8	9 •7	-3.3	-22.3

Bench Rest Target Data, Sustained Fire Test

Cun No. 904541, Lot No. LC 12081

.					7000041			CONT			
test		1		L	ı		V				
phas no.								U	~		ci
100	no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	v
	1 81.00	12.5	3.7	4.3	7.5	1.7	2.2	12.7	4.3	1.3	6.6
1	1 82.00	7.9	1.7	2.3	16.1	3.3	4.6	16.5	4.0	3.6	12.5
	183.00	8.4	1.9	2.5	9.4	2.0	2.9	10.1	3.3	9.1	12.9
	mean .	9•6	2.4	3.1	11.0	2.3	3•2	13.1	3.9	4.7	10.7
	tgt										ci
	no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	v
	1 84.00	25.7	5.3	7.1	9.2	2.5	3.0	26.9	6.0	10.6	7.4
4		9.3	2.2	2.9	12.9	3.5	4.4	13.9	4.5	7.8	12.9
	186.00	9.0	2.7	3.3	13.5	3•5 3•7	4.5	16.1	4.8	9.3	16.1
	mean	14.7	3.4	4.5	11.9				-		
		1401	++• ر	4•5	11.9	3.2	4.0	19.0	5.1	9 •2	12.1
	tgt									(ci
	no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	v
	1 87.00	51.4	1):.3	17.7	50.5	14.9	17.8	59 .2	22.5	6.2	-6.9
7	188.00	13.7	3.2	4.1	13.0	4.2	4.8	16.2	5.7	24.1	27.7
	1 39.00	26.5	5.3	7.3	17.0	3.5	4.8	27.8	7.1	19.8	33.1
						-				1710	۱• رز
	mean	30.5	7.6	9.7	26•8	7.5	9•1	34.4	11.8	16.7	18.0
	tzt				•						ci
	no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	v
	193.00	50.8	19.3	21.5	59.6	12.9	18.3	65.5	24.5	-9.5	3.7
13	194.00	15.9	4.6	5.4	18.7	4.4.	5.9	21.3	7.2	4.2	27.3
-	195.00	31.9	8.6	10.4	12.1	2.6	3.4	32.9	9.2	11.0	32.8
											22.00
	mean	32.9	10.8	12.4	30.1	6.6	9 •2	39.9	13.6	1.9	21 •3
	ugt										:i
	щ о •	ev	1.avd.	vsd	eh	mhd	hsd	es	mr	h	v
	196.00	28.0	3.1	9.7	40.0	8•5	11.8	47.5	12.3	-10.0	-9.0
16		22. 8	4.7	6.4	10.6	2.6	3.6	22.9	6.0	1.4	-5.2
	198.00	25.0	4.4	7.1	24.5	5.5	7.4	29.5	7.7	8.4	4
	mean	25•3	5.8	7.8	25.0	5•5	7.6	33•3	8.7	0	-4.8

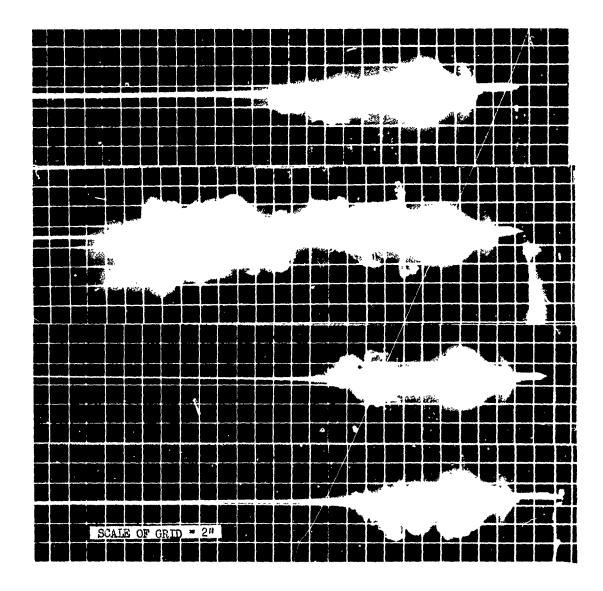
I-76

ans at a stand a set of a set of the

Mana Katha San And

tea pha	it 199 tgt	~		~	x		~	•			ci
200	no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	v
19	199.00 200.00 201.00	25•1 19•7 44•7	7.1 4.9 9.4	9 .1 6.2 13.1	82.1 14.3 34.1	22•2 3•4 7•3	29•5 4•5 9•8	85•0 20•8 47•3	23.7 6.6 13.4	-16.5 -9.7 -4.1	-2.5 -2.2 -11.5
	mean	29•8	7.1	. 9.5	43.5	11.0	14.6	51 . 0	14.6	-10.1	-5.4
	tgt .	Gun 1	lie. 904	543, Ia	t Xo. 1	w 18007	,				ci
	no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	v
1	202.00 203.00 204.00	10 . 1 8 . 3 10 . 3	2•3 1•8 3•2	3•1 2•4 3•7	7.7 11.0 8.8	2.2 1.8 2.1	2.7 2.8 2.8	12.3 11.0 12.4	3.4 3.1 4.0	2.7 3.7 4.2	6.0 1.9 -1.2
	mean	9.6	2.4	3.1	9•2	2.1	2.8	11.9	3.5	3.6	2.2
	tgt no.	ev	nvd	vsd	eh	mhd	hsd	es	n r	h	ci v
ų	205.00 206.00 207.00	31 .4 18.0 16.2	5.0 3.9 3.7	8•8 5•2 4•9	14.7 11.4 5.2	3.4 2.4 1.1	4.5 3.2 1.6	34.1 20 .1 16.8	6.4 5.0 4.1	5.0 3.8 3.4	0 1.0 1.1
	mean	21.9	4.2	6.3	10.4	2•3	3.1	23.6	5.1	4.1	•7
	tgt no.	at	mvd	vsd	eħ	mhd	had			h	ci
		ev			en	mhd	hsd	es	mr		v
7	208.00 209.00 210.00	15.0 7.9 12.1	4.0 2.2 3.9	4.8 2.7 4.4	13.8 13.9 16.1	3.2 3.7 4.1	4.0 4.6 5.2	16.1 14.5 16.4	5.4 4.6 6.2	9.4 12.1 8.1	4.3 .6 .2
	meen	11.7	3•3	3.9	14.6	3.7	4.6	15.7.	5.4	9•9	1.7
	∵gt no•	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	ci v
10	211.00 212.00 213.00	25.1 21.2 11.9	5.4 4.6 3.4	7.5 6.3 4.2	9.0 22.3 18.7	2.2 5.0 4.6	2.9 . 6.6 6.0	25 .1 28.1 1 8.9	6•3 7•1 6•5	6.8 9.1 6.3	.4 5 .8
	mean	19.4	4.5	6.0	16.7	3.9	5.2	24.1	6.6	7.4	•2

and the second of the second se


ter phr	tgt		3								ci
	• no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	v
13	214.00 215.00 216.00	27.3 16.7 50.4	6.7 4.7 10.6	9.1 5.8 15.7	14.7 10.4 10.5	4.2 3.5 2.3	5.2 4.2 3.3	28.1 17.5 50.8	8.3 6.2 11.4	8.0 9.0 9.8	-5.3 -3.1 -5.5
	mean	31.5	7.4	10.2	11.9	3.3	4.2	32.1	8.6	8.9	-4.6
	tgt no.	ev	mvd	vsd	eh	mhd	hsd	es	me	h	ci v
16	21 7.00 21 8.00 21 9.00	19.1 21.2 20.0	5•9 5•0 4•8	7 .1 6.9 6.6	11.7 16.1 41.5	3•9 4•1 9•6	4.8 5.2 14.9	19.5 21.6 44.7	7.4 7.3 11.4	4.0 6.1 11.4	-2.2 -4.3 -2.4
	mean	20.1	5.2	6•9	23.1	5.8	8.3	28.6	8•7	7.2	-3.0
	tgt no.	ev	mvd	vsd	eh	mhd	hsd	es	n o.	h d	ri v
19	220.00 221.00 222.00	52•2 31•7 25•0	9•3 6•5 7•4	14.0 9.8 8.7	20.3 13.6 29.5	3.0 4.0 5.5	5.0 4.8 8.8	53•8 31•8 33•3	10 . 4 8 . 3 10 .1	8•3 9•6 9•5	1.1 3.5 -4.3
	mean	36.3	7.7	10.8	21.1	4.1	6.2	39.6	9.6	9.1	.1
	tgt	Ghan 1	Ke. 90k	5kk, Lo	t No. L	c 12194				_	:i
	no.	ev	mvd	vsd	eh	mhd	hød	es	mr .	h	т Т
1	223.00 224.00 225.00	10.4 6.1 6.3	2.1 1.6 1.3	3.0 1.9 1.8	5.4 4.5 5.5	1.2 1.2 1.4	1.7 1.5 1.8	11.0 6.2 6.3	2•6 2•2 2•2	7 .1 9	3.0 2.3 1.6
	mean	7.6	1.7	2.2	5.1	1.3	1.7	7.9	2.3	5	2.3
	tgt no.	ev	mvd	vsd	eh	mhd	hsd	es	nn.	c h	
ļ	226.00 227.00 228.00	9.6 12.2 9.9	2•0 2•5 2•4	2•7 3•4 3•1	5.0 4.9 4.6	1.3 1.0 .9	1.6 1.4 1.3	5.9 12.2 10.1	2.6 2.9 2.7	-3.7 -2.2 -4.7	6•8 3•5 5• 3
	mean	10.6	2•3	3.1	4.8	1 •1	1.4	10.8	2.8	-3.5	5.2

test											
phas										c	:1
200.	no.	ev	mvd	vsd	eh	mhd	hsd	es	mr	h	v
_	229.00	8.7	2.1	2.8	5.7	1.4	1.8	9.2	2.9	-6.9	3.8
7	230.00	6.7	1.9	2.4	5 1 4 0	1.5	1.8	8.1	2.6	-5.3 -4.5	4.7
	231.00	7.2	2.4	2•8	4. 0	1.2	1.3	7.4	2.8	-4.5	2•7
	mean	7.5	2•1	2.6	4.9	1.4	1.7	8•2	2.8	-5 .6	3.7
	tgt '									. 0	:1
	no.	ev	mvd	ved	eh	mhd	hsd	es	mr	h	v
	235.00	10.0	2.8	3.5	9.6	2.5	3.1	12.3	4.1	9	-4.0
13	236.00	6.9	1.8	2.2	8.6	1.9	2.6	8.9	2.9	-2.3	-4.5
	237.00	9•7	3.0	3.5	5.5	1.2	1.6	9•7	3.5	-4.4	~. 4
	mean	8.9	2.5	3.1	7.9	1.9	2.4	10.3	3.5	-2.5	-3. 0
	tgt										21
	no.	ev	nvd	vsd	eh	ahd	hsd	es	mr	h	v
	238.00	11.9	3.8	4.4	6.5	1.5	2.0	12.6	4.3	-3.5	-8.9
16	239.00	16.8	4.6	5.9	11 .4	2.6	3.5	18.8	5.8	-3.9	-8.3
	240.00	11.3	2.1	3.0	5.1	1.0	3•5 1•4	11.3	2.5	-5.2	-9.1
	mean	13.3	3.5	4.4	7.7	1.7	2•3	14.2	4.2	-4.2	-8.8
	tgt										:i
	no.	ev	nvd	vsd	eh	mhd	hsd	es	mr	h	v
•••	241.00	13.5	3.0	3.9	8.0	1.9	2.5	14.1	3.8	.1	-1.8
19	242.00	6.8	1.9	2.4	4.3	1.4	1.6	7.3	2.6	-4.9	-1.4
	243.00	7.5	1.9	2.3	4.0	1.0	1.3	7.6	2.2	7	1.2
	mean	9 .3	2.3	2.9	5.4	1.5	1.8	9.7	2.9	-1.8	7
	tgt	Ch	n No. 9	oksks,	Lot IV	18191				c	:i
	no.	ev	nvd	vsd	eh	mhd	hsd	es	mr	h	v
	244.00	4.9	1.3	1.7	5.7	1.2	1.6	6.2	2.0	-1.7	5.6
1	245.00	6.6	1.8	2.1	7.5	1.5	2.1	7.7	2.6	-2.5	4.5
	246.00	4.8	•9	1.4	8.5	2.0	2.5	8.5	2.5	-2.0	2.5
	mean	5.4	1.3	1.7	7•2	1.6	21	7.5	2.4	-2.1	4.2

20000

test phase	tgt			vad	eh	mhd	hsd	сs	n r	ci h	v
20.	no.	ev	myd	APC	011			~)		- n 0	4.0
h	247.00 248.00 249.00	6.0 11.2 3.8	1•3 2•0 •9	1.8 2.9 1.1	6.8 8.5 4.7	1.6 1.5 1.3	2.1 2.3 1.6	7.4 11.2 5.4	2.2 3.0 1.7	-3.8 -2.5 -3.7	3.4 4.8
	mean	7.0	1.4	1.9	6.7	1.5	2.0	8.0	2•3	-3.3	4.1
										ci	
	tgt no.	ev	mvd	vsd	eh	mhd	hsd	es	m	h	v
7	250.00	5•9 3•0	1.4	1.7 1.0	4.9 2.9	1.1 •9	1.5 1.1	5.9 3.8	1.9 1.3 1.7	-2.3	4.1 4.9
	251.00 252.00	5.7	1.4	1.7	4.3	•9	1.2	6•7	1 •7	-3.5	3.6
	mean	4.9	1.2	1.5	4.0	1.0	1.2	5 •5	1.6	-3.1	4.2
	ياهم بل									с	
	tgt no.	ev	mvd	vad	eh	mhd	hød	es	mr	h	v
	256.00	4.6	1.2	1.6	6.1	1.2	1.8	6.1	2.1	-4.0	6.1
13	257.00	9.3	1.8	2.14	3.6	•7	1.0	9.3 6.3	2.0 2.1	-4.7	3.8 4.7
13	258.00	4.3	1.2	1.4	5.9	1.5	1.9	-			
	mean	6.1	1.4	1.8	5.2	1.2	1.6	7•3	2.1	-4. 4	4.8
16	tgt		_		- •-	mhä	hsd	es	mr	h	ci V
	no.	ev	mvd	vsd	eh	Intio					0.6
	259.00	4.5	1.0	1.3	5.9	1.3	1.7	6.0 6.1	1.8 1.5	-6.2 -6.5	2.6 2.3
16	260.00	2.8	•7 1•2	•9 1•6	6.1 6.5	1.2 1.3	1.6	6.6	1.9	-5.2	.3
	261.00	5.2		1.0	-	-		()	1.7	-6.0	1.8
	mean	4.2	•9	1.3	6.2	1.3	1.8	6.3	} • 1		
	tgt			•						h	ci v
	no.	ev	mvd.	vsd	eh	mhd	hsd	es	mr		
	262.00	4.4	1.0	1.3	8.3	1.5 1.0	2.2		2.0	-5.0 -5.1	3.4 1.0
19	263.00	7.4	1.8	2.3	4.7	1.0 1.9	1.3		2.1 2.5	-6.1	1.1
	264.00	4.1	1.3	1.5	6.2						1.8
	mean	5.3	1.3	1.7	6.4	1.5	1.9	7.7	2.2	- 5 .4	1.0
19						1-80					
	Mar and a state of the state of	with which there are a provide and	anne is entry the or of			an an ann ann ann ann ann an ann an ann an a		والمراجع والمحاوية و	ويستجنبوني والمرابع والمرابع والمرابع والمرابع		undered seators high

A BAR AND A CONTRACTION OF A CONTRACT OF A C

「「「「「「「「」」」」

Figure I-1: Cumulative Muzzle Flash Photographs Obtained while Firing 30 Rounds of Lot LC-12081 (Tracer Projectile, Ball Propellant) in a New Condition (Less than 300 Rounds) XM177E2 Submachine Gun. TOP TO BOTTON: Fired Semiautomatically from Cold Barrel; Semiautomatically from Preheated Barrel (Heated First by Firing 60 Rounds); Automatically from Cold Barrel; Automatically from Preheated Barrel.

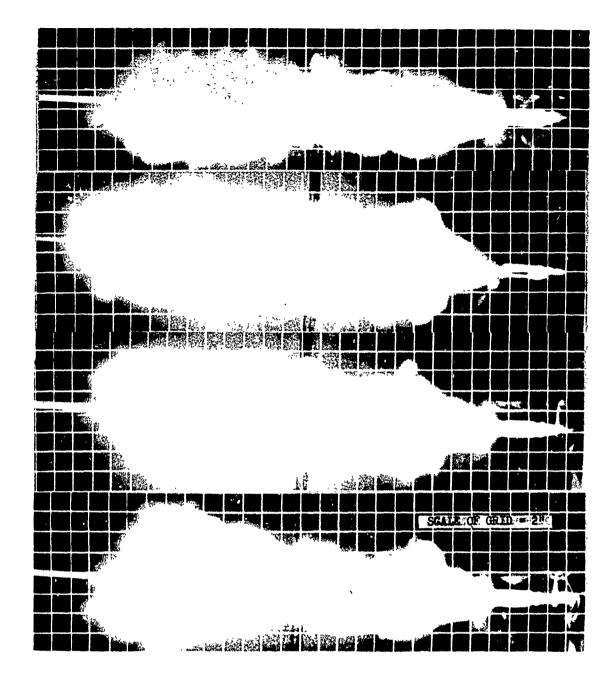


Figure I-2: Cumulative Muzzle Flash Photographs Obtained while Firing 30 Rounds of Lot LC-12081 (Tracer Projectile, Ball Propellant) in a Used Condition (Fired More than 4300 Rounds) XM177E2 Submachine Gun. TOP TO BOTTOM: Fired Semiautomatically from Cold Barrel; Semiautomatically from Preheated Barrel (Heated First by Firing 60 Rounds); Automatically from Cold Barrel; Automatically from Preheated Barrel.

I-82

and the address of the share of the state

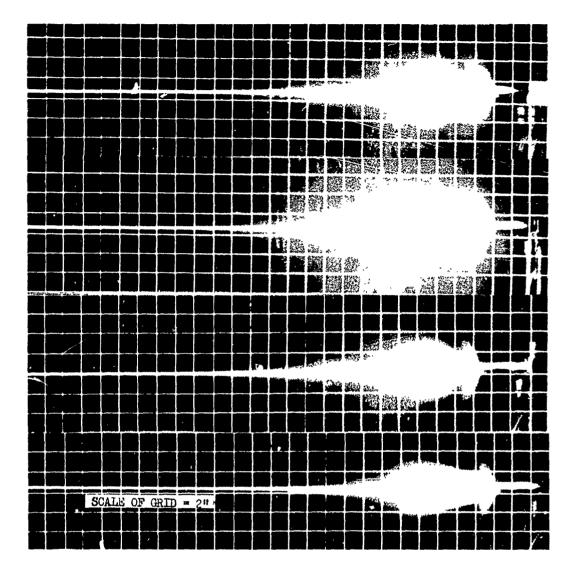
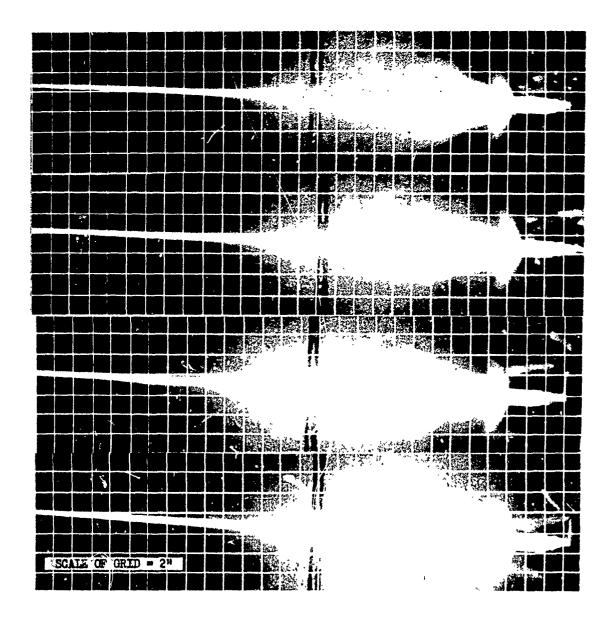



Figure I-3: Cumulative Muzzle Flash Photographs Obtained while Firing 30 Rounds of Lot TW-18007 (Tracer Projectile, 8208M Propellant) in a New Condition (Less than 300 Rounds) XM177E2 Submachine Gun. TOP TO BOTTOM: Fired Semiautomatically from Cold Barrel; Semiautomatically from Preheated Barrel (Heated First by Firing 60 Rounds); Automatically from Cold Barrel; Automatically from Preheated Barrel.

I-83

. P.

NAMES AND ADDRESS OF THE PARTY OF THE PARTY

Figure I-4: Cumulative Muzzle Flash Photographs Obtained while Firing 30 Rounds of Lot TW-18007 (Tracer Projectile, 8208M Propellant) in a Used Condition (Fired More than 4200 Rounds) XM177E2 Submachine Gun. TOP TO BOTTOM: Fired Semiautomatically from Cold Barrel; Semiautomatically from Preheated Barrel (Heated First by Firing 60 Rounds); Automatically from Cold Barrel; Automatically from Preheated Barrel.

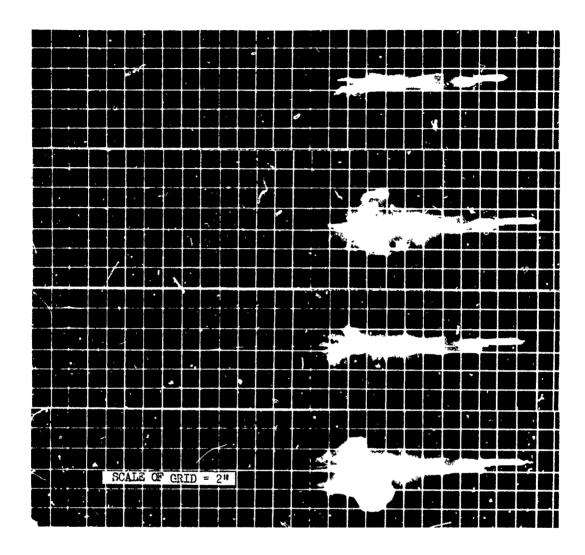


Figure I-5: Cumulative Muzzle Flash Photographs Obtained while Firing 30 Rounds of Lot LC-12194 (Ball Projectile, Ball Propellant) in a New Condition (Less than 300 Rounds) XM177E2 Submachine Gun. TOP TO BOTTOM: Fired Semiautomatically from Cold Barrel; Semiautomatically from Preheated Barrel (Heated First by Firing 60 Rounds); Automatically from Cold Barrel; Automatically from Preheated Barrel.

I-85

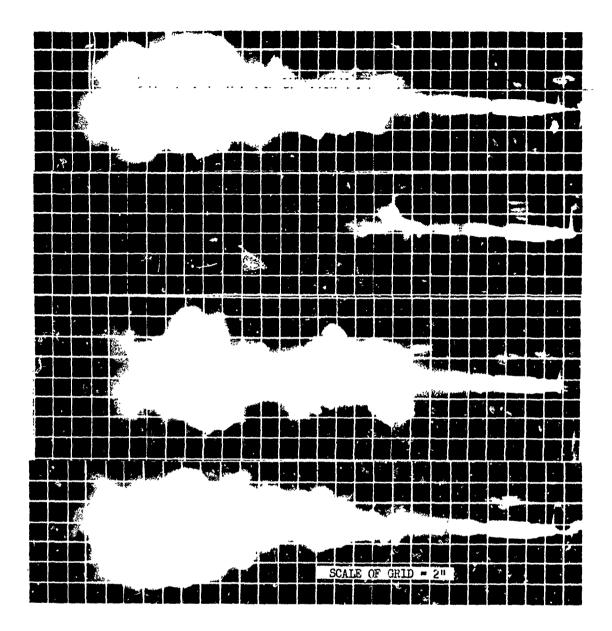


Figure I-6: Cumulative Muzzle Flash Photographs Obtained while Firing 30 Rounds of Lot LC-12194 (Ball Projectile, Ball Propellant) in a Used Condition (Fired More than 5100 Rounds) XM177E2 Submachine Gun. TOP TO BOTTOM: Fired Semiautomatically from Cold Barrel; Semiautomatically from Pieheated Barrel (Heated First by Firing 60 Rounds); Automatically from Cold Barrel; Automatically from Preheated Barrel.

I-86

the the second of the second

. بری دیونونه د کرد.

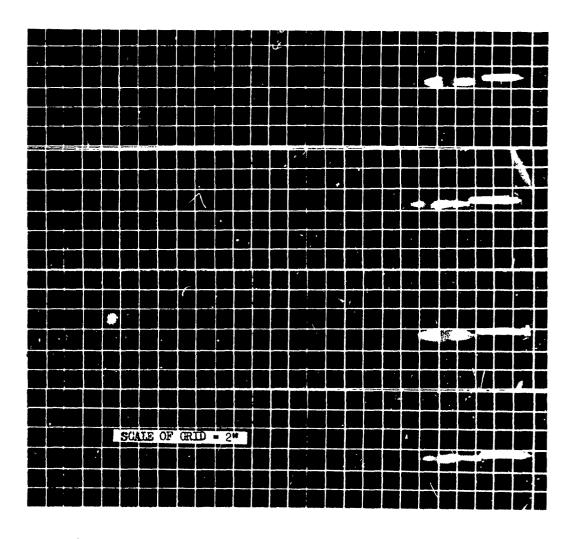


Figure I-7: Cumulative Muzzle Flasn Photographs Obtained while Firing 30 Rounds of Lot TW-18191 (Ball Projectile, 8208M Propellant) in a New Condition (Less than 300 Rounds) XM177E2 Submachine Gun. TOP TO BOTTOM: Fired Semiautomatically from Cold Barrel; Semiautomatically from Preheated Barrel (Heated First by Firing 60 Rounds); Automatically from Cold Barrel; Automatically from Preheated Barrel.

I-87

had an and a second the second second

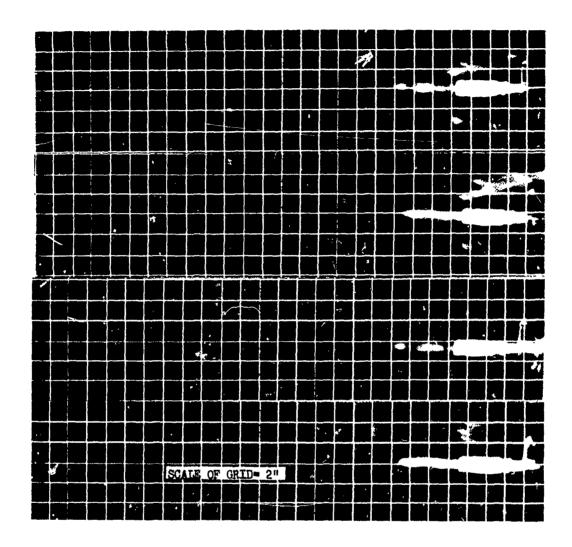


Figure I-8: Cumulative Muzzle Flash Photographs Obtained while Firing 30 Rounds of Lot TW-18191 (Ball Projectile, 8208M Propellant) in a Used Condition (Fired More than 5100 Rounds) XM177E2 Submachine Gun. TOP TO BOTTOM: Fired Semiautomatically from Cold Barrel; Semiautomatically from Preheated Barrel (Heated First by Firing 60 Rounds); Automatically from Cold Barrel; Automatically from Preheated Barrel.

I-88

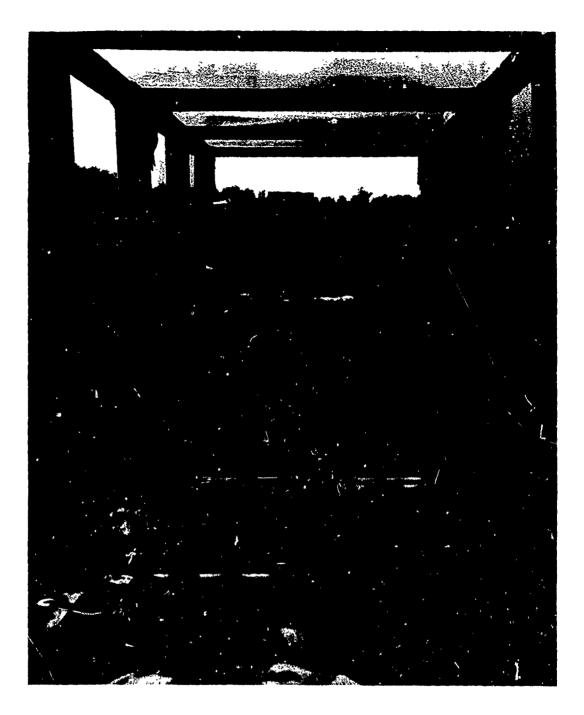
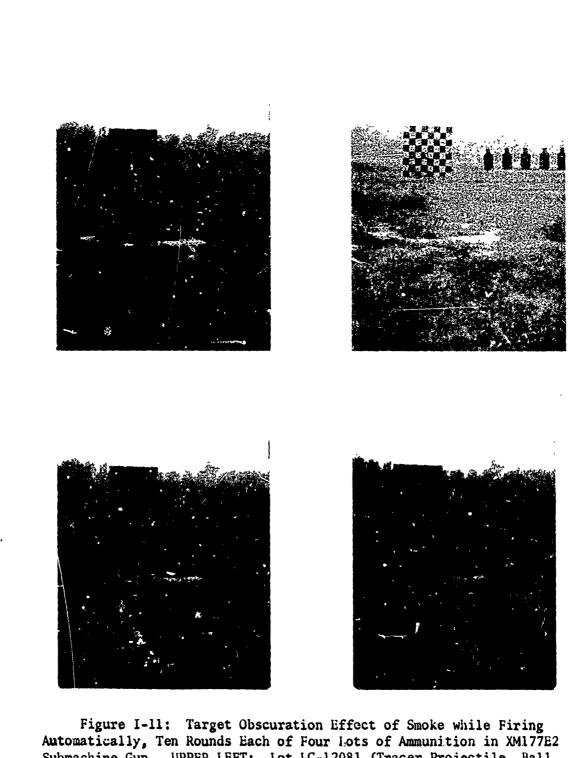



Figure I-9: Reference Photographs, Nonfiring, for Target Obscuration Test of XM177E2 and XM177E1 Submachine Guns. Checkerboard Target and E-Type Silhouettes Are at 50-Meter Range.

Figure I-10: Target Obscuration Effect of Smoke while Firing Semiautomatically, Ten Rounds Each of Four Lots of Ammunition in XM177E2 Submachine Gun. UPPER LEFT: Lot LC-12081 (Tracer Projectile, Ball Propellant). UPPER RIGHT: Lot TW-18007 (Tracer Projectile, 8208M Propellant). LOWER LEFT: Lot LC-12194 (Ball Projectile, Ball Propellant). LOWER RIGHT: Lot TW-18191 (Ball Projectile, 8208M Propellant).

Automatically, Ten Rounds Each of Four Lots of Ammunition in XM177E2 Submachine Gun. UPPER LEFT: Lot LC-12081 (Tracer Projectile, Ball Propellant). UPPER RIGHT: Lot TW-18007 (Tracer Projectile, 8208M Propellant). LOWER LEFT: Lot LC-12194 (Ball Projectile, Ball Propellant). LOWER RIGHT: Lot TW-18191 (Ball Projectile, 8208M Propellant).

4 - + + + + ×

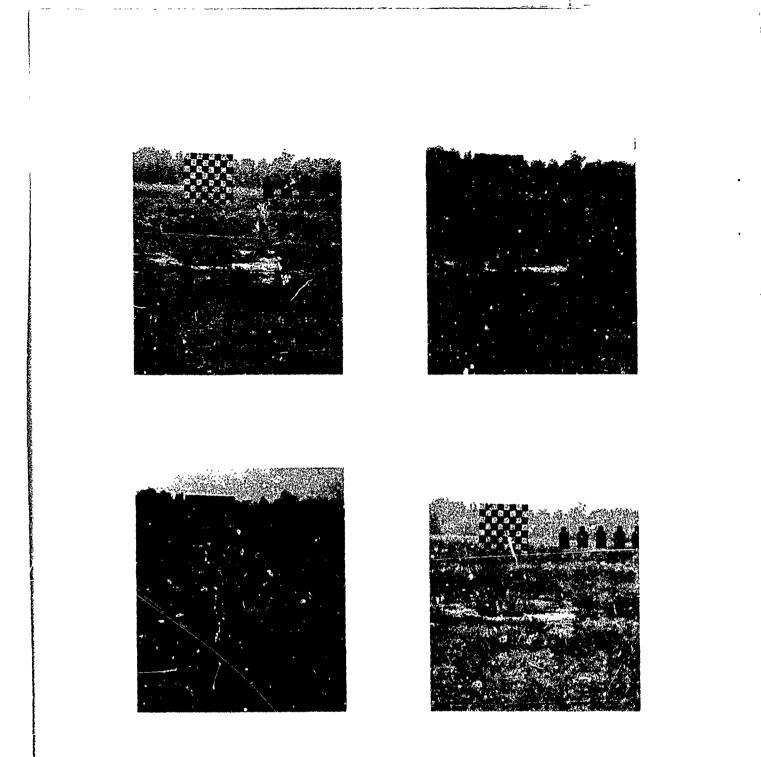
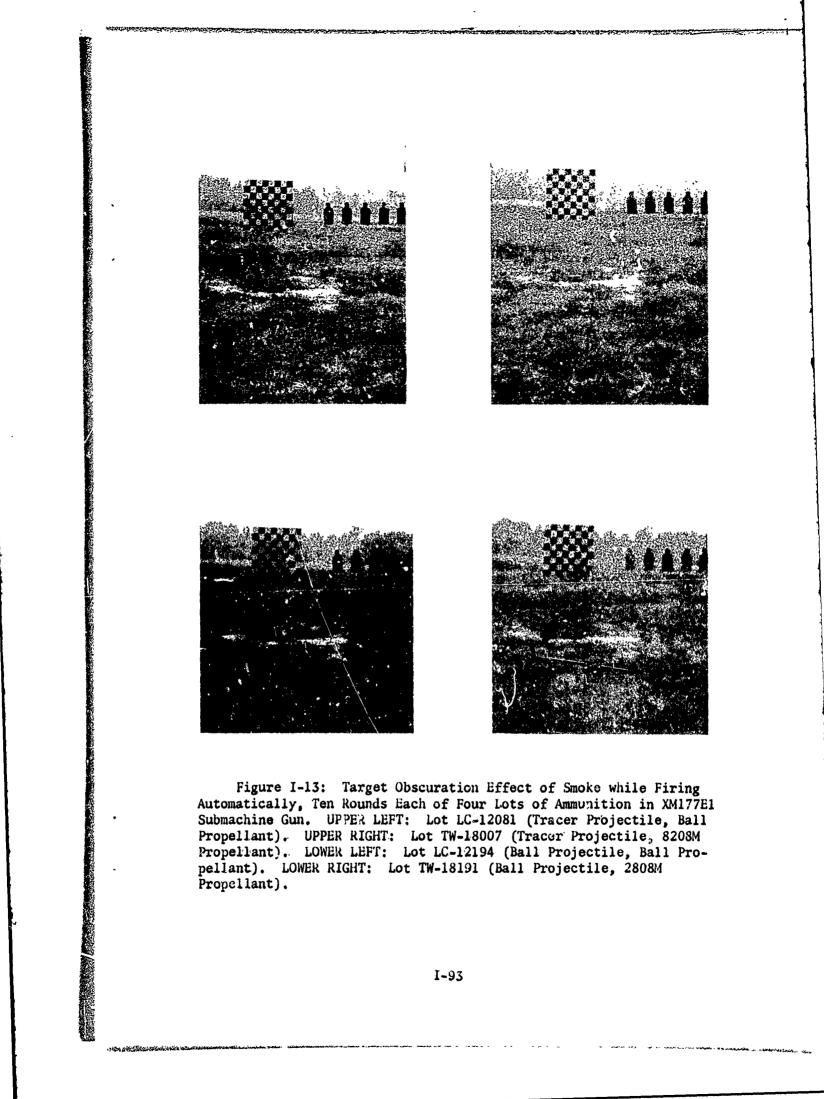



Figure I-12: Target Obscuration Effect of Smoke while Firing Semiautomatically, Ten Rounds Each of Four Lots of Ammunition in XM17721 Submachine Gun. UPPER LEFT: Lot LC-12081 (Tracer Projectile, Ball Propellant). UPPER RIGHT: Lot TW-18007 (Tracer Projectile, 8208M Propellant). LOWER LEFT: Lot LC-12194 (Ball Projectile, Ball Propellant). LOWER RIGHT: Lot TW-18191 (Ball Projectile, 8208M Propellant).

Displacement-Time Data

Date: 5 February 1968

Record No.: 1

was a water and a second

Weapon
Model: XM177E2.AmmunitionCaliber: 5.56-mm.Projectile Type: M193 (ball).Serial No.: 902868.Lot No.: LC12194.Test Condition: A 21-round burst was fired by loading one round in the
chamber and 20 rounds in the magazine.

Cvelic

					Cyclic	
		Time.	ms		Rate of	Buffer
Cycle		Counter	•	Total	Fire ^C ,	Compression ^d ,
Cycle No. ^a	Recoil	Recoil	Dwell ^b	Cycle	rds/min	in.
•						
1	23	47	9.5	80	750	NR
2 3	21	41	•	72	833	-
	21	39	-	70	857	-
4	21	37	-	69	870	-
5	20	37	-	67	896	-
6	20	36	10.0	66	909	0.09
7	20	37	-	67	896	•
8	20	36	-	66	909	-
9	20	36	c.,	66	909	-
10	20	36	-	66	909	•
11	20	36	10.0	66	909	NR
12	20	36	-	65	923	-
13	20	35	-	65	923	•
14	20	35	-	65	923	-
15	20	35	-	65	923	-
16	20	36	9.6	65	923	.09
17	20	36	-	65	923	-
18	20	3 5	-	65	923	-
19	20	35	10.0	65	923	.11
20	20	33	10.3	64	938	.11
21	20	-	-	-	-	.11

Total Cycle Time, ms: 1339. Average Cyclic Rate of Fire, rds/min: 896.

^aEach cycle begins at the point of initial rearward movement of the bolt $_{b}$ carrier and ends at the final moment of bolt carrier dwell.

Measured from point of initial bolt carrier contact with the barrel extension, at conclusion of counter recoil, to initial rearward movement of the carrier as next round fires; only selected rounds are cmeasured.

dIndividual total cycle time converted to a rate of fire in rds/min. Minus values, if listed, indicate buffer failed to impact rear of extension tube; only selected rounds are measured.

		Time,	ms		Cyclic Rate_of	Buffer _d
Cycle No.	Recoil	Counter Recoil	Dwell ^b	Total Cycle	Fire ^c , rds/min	Compression", in
1	25	48	9.0	82	732	0.04
2	24	47	-	71	845	-
3	22	42	-	64	938	-
4	23	41	-	64	938	-
5	21	37	-	67	896	~
6	22	38	9.7	69	870	.06
7	20	35	-	65	923	-
8	20	35	-	65	923	-
9	20	35	-	65	923	-
10	20	37	-	67	896	-
11	20	35	9.9	65	923	.09
12	20	37	-	67	896	-
13	20	34	-	63	952	-
14	20	35	-	65	923	-
15	20	35	-	65	923	-
16	20	35	10.2	65	923	.10
17	20	35	-	65	923	-
18	20	35	-	64	938	-
19	20	34	10.1	64	938	NR
20	20	-	-	-	-	•09

Test Condition: A 20-round burst was fired.

Total Cycle Time, ms: 1262. Average Cyclic Rate of Fire, rds/min: 903.

^aEach cycle begins at the point of initial rearward movement of the bolt carrier and ends at the final moment of bolt carrier dwell. ^bMeasured from point of initial bolt carrier contact with the barrel extension, at conclusion of counter recoil, to initial rearward move-

ment of the carrier as next round fires; only selected rounds are measured.

^CIndividual total cycle time converted to a rate of fire in rds/min. ^dMinus values, if listed, indicate buffer failed to impact rear of extension tube; only selected rounds are measured.

ないない こうちょう うちょうな

and another interesting the states of

		Time,	ms		Cyclic Rate of	Buffer
Cycle No. ^a	Recoil	Counter Recoil	Dwell ^b	Total Cycle	Fire ^C , rds/min	Compression ^d , in.
1	23	47	8.9	7 9	,59	0.06
2	22	45	**	77	779	-
.2 3	22	40	-	72	833	-
4	22	39	-	70	857	-
5	22	38	-	69	870	•
6	21	37	9.6	68	882	.09
6 7	20	35	-	65	923	-
8	20	36	-	65	923	-
9	19	35	-	64	938	-
10	19	36	-	65	923	-
11	19	36	9.4	65	923	.10
12	20	35	-	65	923	-
13	20	35	-	65	923	-
14	20	34	-	64	938	
15	20	35	-	65	923	-
16	20	34	9.8	64	938	.09
17	20	35	-	64	938	-
18	20	33	9.8	63	952	.09
19	20	-	-	-	-	.09
20	-	-	-	-	-	-

Test Condition: A 19-round burst was fired.

Total Cycle Time, ms: 1209. Average Cyclic Rate of Fire, rds/min: 893.

^aEach cycle begins at the point of initial rearward movement of the bolt carrier and ends at the final moment of bolt carrier dwell. ^bMeasured from point of initial bolt carrier contact with the barrel

Measured from point of initial bolt carrier contact with the barrel extension, at conclusion of counter recoil, to initial rearward movement of the carrier as next round fires; only selected rounds are measured.

^CIndividual total cycle time converted to a rate of fire in rds/min. ^dMinus values, if listed, indicate buffer failed to impact rear of extension tube; only selected rounds are measured.

		Time,	ms		Cyclic Rate of	Buffer
Cycle No.	Recoil	Counter Recoil	Dwell ^b	Total Cycle	Fire ^C , rds/min	Compression ^d , in.
1	24	48	9.2	81	741	0.06
2	23	46	-	79	759	-
.3	22	39	-	71	845	-
4	21	39	-	69	870	-
5	22	40	-	72	833	-
6	20	36	10.0	66	909	.08
6 7	20	36	-	66	909	-
8	20	37	-	66	909	-
9	19	35	-	65	923	-
10	20	35	-	65	923	-
11	20	35	9.8	65	923	.09
12	20	35	-	65	923	-
13	20	34	-	63	952	-
14	20	35	-	64	938	•
15	20	35	-	64	938	-
16	20	35	9.9	65	923	,10
17	19	34	10.4	63	952	.10
18	19		-	-	-	.09
19	-	-	-	-	-	-
20	-	-	-	-	-	-

Test Condition: An 18-round burst was fired.

Total Cycle Time, ms: 1149. Average Cyclic Rate of Fire, rds/min: 888.

^aEach cycle begins at the point of initial rearward movement of the bolt carrier and ends at the final moment of bolt carrier dwell.

^DMeasured from point of initial bolt carrier contact with the barrel extension, at conclusion of counter recoil, to initial rearward movement of the carrier as next round fires; only selected rounds are measured.

^CIndividual total cycle time converted to a rate of fire in rds/min. ^dMinus values, if listed, indicate buffer failed to impact rear of extension tube; only selected rounds are measured.

Record No.: 6

and the second of the second second second

Date: 13 February 1968.

Propellant Type: IMR8208. Lot No.: TW18191.

Test Condition: A 20-round burst was fired.

		Time,	ms		Cyclic Rate of	Buffer .
Cycle No.	Recoil	Counter Recoil	Dwell ^b	Total Cycle	Fire ^C , rds/min	Compression ^d , in.
1	38	56	8.8	103	582	0.00
2	26	53	8.8	88	682	.95
1 2 3	28	52	9.0	89	674	.06
4	31	56	-	95	632	.00
4 5	26	46	-	82	732	-
6	36	49	9.1	94	638	.00
7	25	44	-	78	769	-
8	25	42	-	77	779	-
9	26	39	-	73	822	-
10	23	39	-	70	857	-
11	24	41	9.6	75	800	.07
12	25	41	-	75	800	-
13	25	41	••	75	800	-
14	25	38	-	72	833	-
15	24	38	-	71	845	-
16	24	40	9.2	73	822	.07
17	26	45		80	750	-
18	25	39`	-	73	822	-
19	24	39	9.4	72	833	.07
20	24		•	-	-	-

Total Cycle Time, ms: 1515. Average Cyclic Rate of Fire, rds/min: 752.

^aEach cycle begins at the point of initial rearward movement of the bolt carrier and ends at the final moment of bolt carrier dwell. ^bMeasured from point of initial bolt carrier contact with the barrel

Measured from point of initial bolt carrier contact with the barrel extension, at conclusion of counter recoil, to initial rearward movement of the carrier as next round fires; only selected rounds are measured.

Individual total cycle time converted to a rate of fire in rds/min. ^dMinus values, if listed, indicate buffer failed to impact rear of extension tube; cally selected rounds are measured.

I-98

Record No.: 7

Projectile Type: M196 (tracer). Propellant Type: WC846. Lot No.: LC12081.

		Time,	ms		Cyclic Rate of	Buffer
Cycle No. ^a	Recoil	Counter Recoil	Dwell ^b	Total Cycle	Fire ^c , rds/min	Compression ^a , in.
1	30	88	7.8	126	476	0.05
2	37	65		111	540	.16
2 3	27	52	-	87	690	.05
	31	55	-	94	638	.00
4 5	28	44	-	81	741	.06
5	20	48	8.4	83	723	.06
6 7	25	40	-	76	789	~
8	22	40	~	70	857	-
9	21	38	-	69	870	•
10	21	36	-	67	896	-
11	21	37	9.3	67	896	.08
12	22	38		69	870	-
12	22	37	-	68	882	-
13	21	37	-	57	896	-
14	21	38	-	69	870	•
15	20	35	9.7	65	923	.06
17	23	37		69	870	•
18	20	37	-	66	909	-
18	20	34	9.6	65	923	.09
20	20	-	~	-	•	.09

Total Cycle Time, ms: 1469. Average Cyclic Rate of Fire, rds/min: 776.

⁸Each cycle begins at the point of initial rearward movement of the bolt

carrier and ends at the final moment of bolt carrier dwell. Measured from point of initial bolt carrier contact with the barrel extension, at conclusion of counter recoil, to initial rearward movement of the carrier as next round fires; only selected rounds are measured.

Individual total cycle time converted to a rate of fire in rds/min. ^dMinus values, if listed, indicate buffer failed to impact rear of extension tube; only selected rounds are measured.

Record No.: 8

COLUMN STORE

Propellant Type: IMR3208. Lot No.: TW18007.

. .

		Tin	ie, ms		Cyclic Rate_of	Buffer
Cycle No. ^a	Recoil	Counter Recoil	Dwell ^b	Total Cycle	Fire, rds/min	Compression ^d , in.
1	39	58	8.8	106	566	-0.21
. 1 2	40	66	-	115	522	•
3	39	62	-	109	550	-
4	28	51	-	89	674	-
5	30	53	-	93	645	-
6	31	49	9.4	89	674	.06
7	28	43	-	81	741	.08
8	26	43	-	79	759	.06
9	26	42	-	79	759	-
10	25	42	-	77	779	-
11	27	45	8.9	81	741	.07
12	26	42	-	77	779	.06
13	26	44	-	80	750	-
14	30	51	-	91	659	•
15	28	46	-	84	714	•
16	36	53	8.9	98	612	-
17	26	45	-	81	741	-
18	28	44	-	81	741	-
19	29	45	9.1	83	723	.06
20	28	-	-	-	-	.07

Total Cycle Time, ms: 1673. Average Cyclic Rate of Fire, rds/min: 681.

^aEach cycle begins at the point of initial rearward movement of the bolt carrier and ends at the final moment of bolt carrier dwell. ^bMeasured from point of initial bolt carrier contact with the barrel

Measured from point of initial bolt carrier contact with the barrel extension, at conclusion of counter recoil, to initial rearward movement of the carrier as next round fires; only selected rounds are measured.

^CIndividual total cycle time converted to a rate of fire in rds/min. ^dMinus values, if listed, indicate buffer failed to impact rear of extension tube; only selected rounds are measured.

Date: 15 February 1968.

Record No.: 9

and the second sec

Projectile Type: M193 (ball). Propellant Type: WC846. Lot No.: LC12194.

Test Condition: The complete barrel and gas tube assembly from gun No. 904543; previously fired 2450 rounds, lot LC12081; 4200 rounds, TW18007; 2310 rounds, LC12194; was installed on the mechanism of gun No. 902868 and a 20round burst fired.

					Cyclic	D 60
		Time,	ms		Rate _c of	Buffer
Cycle		Counter	h	Total	Fire,	Compression
No.a	Recoil	Recoil	Dwell ^b	Cycle	rds/min	in
1	22	46	8.9	77	779	0.04
2	21	42	-	72	833	•
3	20	41	-	71	845	•
4	19	36	-	65	923	-
5	20	36	-	66	909	•
6	19	35	9.9	64	938	.08
7	19	37	-	66	909	•
8	19	37	-	66	909	-
9	20	35	-	65	923	-
10	19	36	-	64	938	-
11	20	35	9.9	64	938	.09
12	20	35	•	64	938	•
13	19	35	-	64	938	-
14	19	34	-	63	952	-
15	19	34	-	63	952	-
16	19	35	9.8	64	938	.08
17	19	34	-	63	952	•
18	19	34	-	63	952	
19	19	34	9.7	63	952	.09
20	19	-	114	-	•	.09

Total Cycle Time, ms: 1247. Average Cyclic Rate of Fire, rds/min: 914.

^aEach cycle begins at the point of initial rearward movement of the bolt carrier and ends at the final moment of bolt carrier dwell. ^bMeasured from point of initial bolt carrier contact with the barrel

extension, at conclusion of counter recoil, to initial rearward movecment of the carrier is next round fires; only selected rounds are measured. Individual total cycle time converted to a rate of fire in rds/min. Minus values, if listed, indicate buffer failed to impact rear of extension tube; only selected rounds are measured.

DEPARTMENT OF THE ARMY HEADQUARTERS, U.S. ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GROUND, MARYLAND 21005

S = 15 May 67 S = 5 Jun 67

AMSTE-EC

2 1 APR 1967

SUBJECT: Test Directive for Product Improvement (PI) Test of the Submachine Gun, Cal. 5.56mm, XM177El, USATECOM Project No. 8-7-0220-01, 02

TO:

Commanding Officer, Aberdeen Proving Ground, ATTN: STEAP-CO-P President, USA Infantry Board, ATTN: STEBC-SA

1. <u>References</u>:

a. Report, AMSTE-BC, 28 Jan 66, subject: Analysis of Results of SAWS Engineering and Service Tests, USATECOM Project No. 8-5-0400-03 through 06.

b. Partial Report, DES-1851, Dec 65, subject: Engineering Test of Scall Arms Weapons Systems (SAWS), USATECOM Project No. 8-5-0400-03, Volume I and Final Report DPS-1970, Mar 66, Volume II.

c. Final Report, USAIB-3110, Dec 65, subject: Service Test of SAWS, USATECOM Project No. 8-5-0400-04.

d. Final Report (DPS-2215) on Engineer Design Test of Modified Flash Suppressor for 5.56mm CAR-15 Submachine Gun, USATECOM Project No. 8-6-0200-06.

e. Message, AMCPM-RS, 141920Z Mar 67, subject: Type Classification XM177El Submachine Gun (CAR-15 3MG).

f. Message, AMSTE-BC 6056, 22 Mar 67, subject: Type Classification of Submachine Gun (CAR-15).

g. Letter, AMCPM-RS, 5 Apr 67, subject: Effectiveness Evaluation of XM177/XM177E1 SNG, inclosure 1.

h. Letter, AMCPM-RS, 31 Mar 67, subject: Minutes of M16/M16A1 Rifle Technical Coordinating Committee Meeting on 2 Mar 67, inclosure 2. ANTE-BC

SUBJENT: Test Directive for Product Improvement (PI) Test of the Submachine Gun, Cal. 5.56mm, XM177E1, USATECOM Project No. 8-7-0220-01, 02

2 1 APR 1967

2. Description of Materiel: The CAR-15 Submachine Gun is a lightweight, gas-operated, front locking rotary holt weapon capable of firing either the semi or full automatic mode. A thumb-actuated safety is providea with three positions: safe, semiautomatic, and full automatic. The weapon is capable of being fed from a 20 or 30-round detachable box magazine and fires from a closed bolt position; bolt remains open after last round is fired. The weapon is equipped with an adjustable peep and post sight system. The weapon features a telescoping buttstock. The sling is the only accessory. Since the "SAWS" test, several product improvements have been made. These are buffer, *chrome plated chamber to minimize corrosion and promote extraction, l_2^{\pm} increased barrel length (for mounting XM148 Grenade Launcher), *delrin on charging handle latch to minimize wear on upper receiver, *new handguard slip ring to assure physical integrity, *cadium-plated slip ring spring to minimize corrosion, *shot peened upper and lower receivers to minimize corrosion, nylon-coated buttstock and release lever, and XM148 Grenade Launcher spacer. (The asterisk denotes those improvements pertinent to the MIGAl Rifle). When available, the material used and reasons for the improvements will be forwarded under separate cover. This information should be available during week of 24 April.

3. Background:

a. During the "SAWS" tests (reference la, b, c), approximately 140,000 rounds of ammunition were fired with the CAR-15 Submachine Gun. As reported, excessive flash was observed when firing ammunition loaded with ball propellant. Subsequent firings with ammunition loaded with extruded grain propellant significantly reduced the flash.

b. At the request of the Project Manager, Rifles, engineer design tests of a modified flash suppressor was conducted by this command which also included limited firings of a new buffer design. The suppressor was found to be durable and a reduction of flash was observed as compared to the model tested during "SAWS".

c. Reference le requested comment and/or concurrence on type classification of the XM177El Submachine Gun (CAR-15 SMG). Based on results of the "SAWS" tests this command concurred in type classification of the CAR-15 Submachine Gun.

4. Test Objectives:

a. To evaluate the physical and technical characteristics.

b. To evaluate weapon performance when using both IMR (extruded grain) and ball propellants.

AMSTE-BC

2 1 00- 4400 SUBJECT: Test Directive for Product Improvement (PI) Test of the Submachine Gun, Cal. 5.56mm, XM177E1, USATECOM Project No. 8-7-0220-01.02

c. To evaluate suitability of the product improvements.

d. To evaluate test results regarding suitability of the product improvements for application to the MIGAl Rifle as shown in paragraph 2.

5. Responsibilities:

a. Commanding Officer, Aberdeen Proving Ground is responsible for preparation of test plan, execution and final reporting by which the test objectives of paragraphs 4a, b and d may be evaluated. Also, support of tests required by the Ballistics Research Laboratories.

b. President, USA Infantry Board is responsible for preparation of test plan, execution and final reporting by which the test objectives of paragraph 4 may be evaluated.

6. Coordination: Draft test plans will be coordinated with the following:

Coordination Agency	Test Plan (APG)	Test Plan (USAIB)
CG USAMC (AMCPM-RS)	x	X
CG USAWECOM (AMSWE-RDS)	x	x
Comdt USA Infantry School	x	X
CO USA Infantry Agency	x	x
CO APG (STEAP-DS)		x
Pres USAIB	X	

7. Special Instructions:

a. DA Project No. - Unknown.

b. AMCMS Code No. - Unknown.

c. For a comprehensive and objective test of subject weapon it is deemed necessary to evaluate weapon performance by utilizing both types of propellants on both ball and tracer projectiles. Additionally, 30-round magazines will be evaluated.

d. Five weapons will be available for test at APG in April. Three control weapons without improvements will also be available. Five additional weapons have been requested for tests at USA Infantry Board but availability is unknown at this time.

	ctive for Product Improvement (PI) Test of Sub- un, Cal. 5.56mm, XM177El, USATECOM Project No. 8-7- 02
e. Tests v following:	will include but not necessarily be limited to the
(l) F0	or Aberdeen Proving Ground:
(s parts.	a) Examination to include photographs of major component
() (ball and tracer am	b) Accuracy - 1000 inches; 50, 100, 200 and 400 meters munition).
(0	c) Extreme Temperature - measure cyclic rates.
(d	d) Environmental to include dynamic dust test.
(e with ball and traces	e) Smoke and flash (ball and extruded grain propellant r ammunition),
t)	f) Sustained fire.
(a use 20 and 30-round	g) Reliability and durability - measure cyclic rates; magazines.
(1	n) Time of flight and velocity using velocimeter.
(2) FC	or USA Infantry Board:
(8	a) Physical examination.
(ball and tracer amm	b) Accuracy - 50 meters, 100, 200 and 400 meters with unition.
(4	c) Quick fire.
(d	1) Day and night defense.
(4	e) Day and night assault.
	f) Flash and smoke - ball and extruded grain propellant r cartridges under various light conditions.
(£	g) Maintenance.
(1	n) Human factors.
	II-4

us se server and the second second second and the second of the second second second second second second secon

494.44

ノ花ないた

, See

÷,

CANADA

AMSTE-BC

あるというと

2 1 APR 1967

SUBJECT: Test Directive for Product Improvement (PI) Test of Submachine Gun, Cal. 5.56mm, XM177El, USATECOM Project No. 8-7-0220-01, 02

Since basic weapon was tested in the SAWS Program, only limited testing in paragraphs (2)(c), (d) and (e), above, should be planned unless results are such that extensive tests are necessary for complete evaluation.

(3) For Aberdeen Proving Ground (Ballistics Research Laboratories) Tests:

(a) As indicated by reference lg, BRL has overall responsibility for an effectiveness evaluation to include dispersion and projectile yaw. Special target paper will be supplied by BRL. Maximum coordination is directed so that single tests may be designed to satisfy requirements of both BRL and APG.

(b) General test outline for BRL is as follows:

1. Dispersion and yaw firings at approximately 3, 7, 10 and 15 meters at ambient temperature with five weapons. Fire 20-round samples from each weapon. If multiple firings at close range makes target measurements inaccurate, select alternate aim points on same target. Mark each aim point.

2. Within the climatic chamber, using a weapon to be supplied by BRL, fire at temperatures of minus 65°F, 25°F, 0°F, plus 125°F and 155°F to provide yaw, velocity and dispersion data as required by BRL.

<u>3.</u> Fire for accuracy and yaw from a bench rest at ambient temperature at ranges of 1000 inches; 50, 100, 200 and 400 meters from each of the five weapons delivered to APG.

(c) All measurements of targets fired in support of BRL are the responsibility of BRL.

(d) The above outline of tests is subject to change as dictated by test results.

f. Materiel and cost requirements should be provided this headquarters as soon as possible but not later than 15 May 67. Sufficient funds to support the BRL tests will be included in the APG cost estimate but listed separately.

g. USATECOM Project Numbers are as follows:

APG - 8-7-0220-01 (includes support for BRL) USAIB - 8-7-0220-02

h. USATECOM Priority 2 is assigned.

AMSTE-BC 2 1 AFF 1967 SUBJECT: Test Directive for Prouduct Improvement (PI) Test of Submachine Gun, Cal. 5.56mm, XML77El, USATECOM Project No. 8-7-0220-01, 02

8. Test Plans and Reports:

a. Test plans from APG are required by 5 Jun 67. The USAIB will be notified of a firm date for submission of test plans subject to availability of test weapons.

b. A brief outline of the BRL tests will be included in the APG test plan. Also, within each subtest indicate the data pertinent to the BRL area of interest.

c. Test plans will be specifically designed to address the significance of the indicated improvements.

d. A firing record will be published for the BRL data and included in the appendix of final APG report.

e. Formal test plans and reports are required.

9. Security: Test plans and reports will be unclassified.

10. Safety: Since the product improvements do not affect the basic weapon design, the XM177EL is considered safe to shoulder fire.

FOR THE COMMANDER:

4 Incl
1-2 as
3. STE Form 1027 (APG only)
4. Distribution List

Copies furnished:(w/o incls) CG USAMC ATTN: AMCPM-RS CO ERL ATTN: AMXBR-WD

Bir, Inf Mat Tost -

and the second second

AMCPM-RS (15 Aug 67) SUBJECT: Approval of Test Plans for Product Improvement Test of Sub-machine Gun, caliber 5.56mm, XM177E2, USATECOM Project No. 8-7-0220-01, 02

OFFICE OF THE PROJECT MANAGER, RIFLES, U. S. Army Materiel Command, Rock Island, Illinois 61201 25 AUG 1967

TO: Commanding General, U. S. Army Test & Evaluation Command, ATTN: AMSTE-BC, Aberdeen Proving Ground, Maryland 21005

1. This office concurs in plan of tests with the following exceptions:

a. USATECOM Project No. 8-7-0220-01.

(1) Paragraph 2.3.2b - delete 2650 and add 2500.

(2) Paragraph 2.12.2a - add MIL-L-46000A.

(3) Appendix V, Distribution List - add CG, USAWECOM, ATTN: AMCPM-RS, 5 copies each of interim and final reports and CG, USAMC, ATTN: AMCPMSO-RS, 2 copies each of interim and final reports.

b. USATECOM Project No. 8-7-0220-01.

(1) Delete references to 30rd magazine, which will not be available for the test.

(2) Appendix V, Distribution List - add CG, USAWECOM, ATTN: AMCPM-RS, 5 copies each of interim and final reports and CG, USAMC, ATTN: AMCPMSO-RS, 2 copies each of interim and final reports.

2. Request that test firing of the XML48 Grenade Launcher mounted on the XML77E2 SMG be included in both USAIB and D&PS test plans. The test should determine if it is technically feasible and safe to fire the grenade Leuncher attached to the SMG.

3. Arrangements have been made to furnish four XMI48 Grenade Launchers and 200 rounds of practice 40mm ammunition to the USAIB. Request that D&PS advise, by telephone, of their requirements for test equipment and ammunition.

FOR THE PROJECT MANAGER:

2

II-7

WM C. DAVIS, JR. Ch, Tech Mgt Division

wd all incl

S - 29 Sep 1967

are so that the state of the stat

AMSTE-BC (15 Aug 67) 2nd Ind

SUBJECT: Approval of Test Plans for Product Improvement Test of Submachine Gun, Caliber 5.56mm, XM177E2, USATECOM Project No. 8-7-0220-01, 02

DA, Headquarters, US Army Test and Evaluation Command, Aberdeen Proving Ground, Maryland 21005 11 SEP 1957

- TO: Commanding Officer, Aberdeen Proving Ground, ATTN: STEAP-DS-TI, Aberdeen Proving Ground, Maryland 21005
 - President, US Army Infantry Board, ATTN: STEBC-SA, Fort Benning, Georgia 31905

1. This headquarters concurs in the comments of 1st Indorsement. For clarification, assume that the USATECOM project number in paragraph 1b of 1st Indorsement should read 8-7-0220-02.

2. It is requested that Commanding Officer, Aberdeen Proving Ground determine that firing of the XML48 Grenade Launcher attached to the XML77E2 Submachine Gun (SMG) is technically feasible and safe to shoulder fire. Recommendation for safety release is required by 29 September 1967. If additional funds are required, direct communication with the Project Manager, Rifles is suggested.

3. The US Army Infantry Board will confirm the safety of firing the XM148 Grenade Launcher attached to the SMG in accordance with USATECOM Regulation 385-7.

4. It is requested that this headquarters be provided with 40 copies of the final reports instead of 30 by which to accommodate the additional distribution.

5. Change notices should be prepared and distributed to all recipients of test plans without further approval of this command.

FOR THE COMMANDER:

Robert Fully

ROBERT B. TULLY LTC GS Dir, Inf Mat Test Dir

Copy furnished: CG USAMC ATTN: AMCPM-RS

3

AMCPM-RS (15 Aug 67)

lst Ind

SUBJECT: Approval of Test Plans for Product Improvement Test of Sub-machine Gun, caliber 5.56mm, XM177E2, USATECOM Project No. 8-7-0220-01, 02

OFFICE OF THE PROJECT MANAGER, RIFLES, U. S. Army Materiel Command, Rock Island, Illinois 61201 25 AUG 1967

TO: Commanding General, U. S. Army Test & Evaluation Command, ATTN: AMSTE-BC, Aberdeen Proving Ground, Maryland 21005

1. This office concurs in plan of tests with the following exceptions:

a. USATECOM Project No. 8-7-0220-01.

(1) Paragraph 2.3.2b - delete 2650 and add 2500.

(2) Paragraph 2.12.2a - add MIL-L-46000A.

(3) Appendix V, Distribution List - add CG, USAWECOM, ATTN: AMCPM-RS, 5 copies each of int)rim and final reports and CG, USAMC, ATTN: AMCPMSO-RS, 2 copies each of interim and final reports.

b. USATECOM Project No. 8-7-0220-01.

(1) Delete references to 30rd magazine, which will not be available for the test.

(2) Appendix V, Distribution List - add CG, USAWECOM, ATTN: AMCPM-RS, 5 copies each of interim and final reports and CG, USAMC, ATTN: AMCPMSO-RS, 2 copies each of interim and final reports.

2. Request that test firing of the XML48 Grenade Launcher mounted on the XML77E2 SMG be included in both USAIB and D&PS test plans. The test should determine if it is technically feasible and safe to fire the grenade launcher attached to the SMG.

3. Arrangements have been made to furnish four XML/8 Grenade Launchers and 200 rounds of practice 40mm ammunition to the USAIB. Request that D&PS advise, by telephone, of their requirements for test equipment and ammunition.

FOR THE PROJECT MANAGER:

A Jours &

WM C. DAVIS, JR. Ch, Tech Mgt Division

wd all incl

2

S - 29 Sep 1967

AMSTE-BC (15 Aug 67)

SUBJECT: Approval of Test Plans for Product Improvement Test of Submachine Gun, Caliber 5.56mm, XM177E2, USATECOM Project No. 8-7-0220-01, 02

2nd Ind

DA, Headquarters, US Army Test and Evaluation Command, Aberdeen Proving Ground, Maryland 21005 11 SEP 1957

- TO: Commanding Officer, Aberdeen Proving Ground, ATTN: STEAP-DS-TI, Aberdeen Proving Ground, Maryland 21005
 - President, US Army Infantry Board, ATTN: STEBC-SA, Fort Benning, Georgia 31905

1. This headquarters concurs in the comments of 1st Indorsement. For clarification, assume that the USATECOM project number in paragraph 1b of 1st Indorsement should read 8-7-0220-02.

2. It is requested that Commanding Officer, Aberdeen Proving Ground determine that firing of the XM148 Grenade Launcher attached to the XM177E2 Submachine Gun (SMG) is technically feasible and safe to shoulder fire. Recommendation for safety release is required by 29 September 1967. If additional funds are required, direct communication with the Project Manager, Rifles is suggested.

3. The US Army Infantry Board will confirm the safety of firing the XM148 Grenade Launcher attached to the SMG in accordance with USATECOM Regulation 385-7.

4. It is requested that this headquarters be provided with 40 copies of the final reports instead of 30 by which to accommodate the additional distribution.

5. Change notices should be prepared and distributed to all recipients of test plans without further approval of this command.

FOR THE COMMANDER:

Robert Turky

ROBERT B. TULLYLTCCSDir, Inf Mat Test Dir

Copy furnished: CG USAMC ATTN: AMCPM-RS

3

£...

Ğ

2 OCT 1967

COPY/am

MrWilson/ps/578-1500/3242

STEAP-DS-TI

TO:

SUBJECT: Safety Evaluation and Feasibility Study of Attachment and Firing of Grenade Launcher, XM148 on Submachine Gun, XM177E2, USATECOM Proj No. 8-7-0220-01

Commanding General U. S. Army Test and Evaluation Command ATTN: AMSTE-BC

1. References:

a. Test Plan for Product Improvement Test of Submachine Gun, XM177E2.

b. AMSTE-BC letter, 15 Aug 67, w/1st & 2nd Ind, Subject: Approval of Test Plans for Product Improvement Test of Submachine Gun, Caliber 5.56mm, XM177E2, USATECOM Project No. 8-7-0220-01, 02.

2. AMSTE-BC requested that tests be conducted to determine if firing of the XM148 grenade launcher attached to the XM177E2 submachine gun is technically feasible and safe for shoulder firing.

3. Launcher No. 11848 was attached to submachine gun No. 904549 and 55 rounds of 40-mm practice ammunition (M407A1) were fired. Firing was conducted first with the weapon buttstock extended and the weapon rigidly mounted in a test stand (5 rounds) and then fired from hand-held and shoulder positions with the shooter standing, kneeling and prone (15 rounds each). A final five rounds were fired from the hip position with the buttstock in an extended position.

4. Due to the configuration of the weapon, and the the high angle sighting requirements, the buttstock of the weapon was held under the right arm, rather than at the shoulder, for long range firings. Three angles of fire were employed in each firing position, attempting to impact rounds at 100, 200 and 400 meters. Several of the rounds were fired with the buttstock extended but intentionally unlocked.

COPY/am

STEAP-DS-TI SUBJECT: Safety Evaluation and Feasibility Study of Attachment and Firing of Grenade Launcher, XM148 on Submachine Gun, XM177E2, USATECOM Project No. 8-7-0220-01

5. The tests confirmed the techn' al feasibility of firing the XM148 grenade launcher while attached to the XM177E2 submachine gun and such firings can be considered safe from hand-held and shoulder positions providing the following precautions are observed.

a. Due to the configuration of the launcher sight, and its proximity to the shooter's face, only experienced firers, fully capable of controlling the weapon in recoil, should be permitted to fire the subject weapon combination. The possibility of injury from the launcher sight during recoil is greatest when the weapon is supported under the arm. However, the recoil hazard from any firing position appears no more acute than when firing the XM148 launcher attached to the M16A1 rifle.

b. No firings should be attempted from the shoulder or underarm position with the buttstock in a forward position.

c. The security of the buttstock latch must be established before firing each round. Inadvertent or unexpected release of the latch during firing will almost certainly permit some portion of the launcher or submachine gun to strike the shooter's face. The physical integrity of the buttstock latch, either in design or material, is not known and cannot be estimated from the limited firings. Eye protection must be considered essential.

d. Until a more comprehensive firing evaluation has been conducted it is recommended that the launcher not be fired with the submachine gun loaded nor vice versa.

FOR THE COMMANDER:

/s/ W. A. Gross, Jr.
for /t/ J. A. TOLEN
 Deputy Director for
 Engineering Testing
 Development and Proof Services

のないとなるとないでないであるというとないとないという

Start Land

COPY/am				r		RESERVED FOR COMMUNICATION CE	NTER	
JOINT MESSAGEFORM								
			COMMUNICATIONS CENTER					
UNCLASSIFIED						1967 DEC 8 14 4	3	
TYPE MSG	BOOK	MULTI	SINGLE					
593		M		•		ABERDEEN PROVING GROUN)	
ACTION ROUTIN	IE.					MARYLAND		
INFO ROUTIN		OM:	COAPG	DTG MD			SPECIAL I	NSTRU TION
	TC		CGUSAI CGUSAI CGUSAI	VECOM ROCK I TECOM APG NUCOM DOVER BRL APG		AND ILL		
UNCL 1	4193	F	or Amci	PM-RS, MR. L	OAV	IS: AMSTE-BC,		
MR. CRIDER; A	MSMU-1	RE, M	R. SPAU	JLDING; AMXE	BR-	ED, MR. PIDDINGTON FROM		
STEAP-DS-TI S	GD WI	LSON	AND BRO	DWN				
SUBJ: F	RING	OF M	196 CAI	RTRIDGES IN	ХМ	177E2 SUBMACHINE GUN,		
USATECOM PROJ	1 NO. 8	8-7-0	020-01					
1. SUST	TAINED	FIRE	TEST (OF FOUR WEAF	PON	S EACH FIRING A		
DIFFERENT LOT	OF AN	MMUN I'	rion H	as been comp	LE	TED. REVIEW OF THE		
DATA INDICATE	es that	T ALL	CRITE	RIA WERE MET	C W	ITH THE TWO GUNS FIRING		
M193 CARTRIDO	Ses Bui	r Cri	reria I	VERE NOT MET	C W	ITH THE TWO GUNS FIRING		
M196 CARTRIDG	ses jui	e to i	EXCESS	IVE YAW AND	DI	SPERSION. ONE LOT OF		
M196 CARTRIDO	SES WAS	s loa	DED WIT	TH 8208M AND	0 (NE LOT WITH WC846		
PROPELLANT.								
2. THEF	UE IS S	SERIO	us coni	CERN THAT TH	ie	INCOMPATIBILITY OF M196	DATE 8	TIME 14002
						Y CHANGES IN AMMUNITION	O MONTH DEC	14002 YEAR 1967
ONLY. TOTAL COMPATIBILITY MAY REQUIRE RE			DE	SIGN OF THE XM177E2	PAGE NO.	NO. OF		
D TYPED NAME AN	DTITLE		Ī	PHONE	R	SIGNATURE	1 1	1 2
			L	4489				
t/ S. A. Arms &			hief, S Branci		A S E R	TYPED (or examped) NAME AND TITLE /t/ CLAUDE E BROWN, Ch,	Inf & Act	Et Wpns i
SECURITY CLASSIFIC	UNCL				R	EGRADING INSTRUCTIONS		
DD FORM 17					1			يورنو بنايك أندو بنايندا كا

COPY/am

ABBREVIATED JOINT MESSAGEFORM and/or CONTINUATION SHEET					SECURITY CLASSIFICATION UNCL			
	PRECEDENCE	REL ZASED BY		DRAFTED BY	(PHONE		
ACTION	ROUTINE	C.E.	BROWN	Δ	WILSON	4489		
INFO	ROUTINE		DIWHII					

A. S. S.

7

MUZZLE DEVICE. WHILE THE NEED FOR MUZZLE DEVICE REDESIGN IS ONLY CONJECTURAL AT THIS TIME, SUCH REDESIGN WOULD PROBABLY REQUIRE CONFIRMATION BY RETEST OF MOST OF THE SUBTESTS IN CURRENT PRODUCT IMPROVEMENT TEST OF XM177E2.

`۲

~

3. NO SIMILAR INCOMPATIBILITY OF 8208M-LOADED M196 CARTRIDGES HAS BEEN OBSERVED IN M16A1 RIFLE FIRINGS.

4. THE PRECEDING INFORMATION WAS DISCUSSED WITH REPRESENTATIVES FROM FRANKFORD ARSENAL DURING A VISIT TO APG ON 29 NOVEMBER 1967.

				H	
CONTROL NO.	TOR/TOD	PACE NO. 2	NO. OF PAGES 2	MESSAGE IDENTIFICATION	INITIALS
REGRADING INSTRUCTIONS	· I	- <u>-</u> L		SECURITY CLASSIFICATION UNCL	
DD . MORM. 173-1	Ri	EPLACES EDITI	ON OF 1 M	AY SE WHICH WILL BE USED.	

11-12

T

APPENDIX III - REFERENCES

1

1.	Wilson, A., "Partial Report of Engineering Test of Small Arms Weapons Systems (SAWS)." Aberdeen Proving Ground. Report No. DPS-1851, December 1965. (Distribution Controlled by AMCPM-PM50-RS.)
2.	Wilson, A., "Final Report of Engineering Test of Small Arms Weapons Systems (SAWS)." Aberdeen Proving Ground. Report No. DPS-1970, April 1966. (Distribution Controlled by AMCPM-PM50-RS.)
3.	MIL-C-99630, Military Specification for Cartridge, 5.56-MM, Ball, M193.
4.	MIL-C-60111, Military Specification for Cartridge, 5.56-MM, Tracer, M196.
5.	USABRL 610, Displacement Time Recorder.
6.	Test Plan on Military Potential Test of Weapon Lubricants, January 1967.
7.	Staley, L., "Final Report on Engineer Design Test of Modified Flash Suppressor for CAR-15 Submachine Gun." Aberdeen Proving Ground. Report No. DPS-2215, January 1967. (Distribution Controlled by AMCPM-RS. AD 804 406L.)
8.	AMSWE-SM4-SA letter, 2 June 1967, Subject: Lubrication and Preservatives for M16Al Rifle.
9.	Hankins, A., "Final Report on Special Study of High Temperature Bore Fouling of 5.56-MM, M196 Tracer Cartridge in M16A1 Rifle." Aberdeen Proving Ground. Report No. DPS-2264, March 1968. (Distribution Controlled by AMCPM-RS.)
10.	Addendum to Final Roport on Product Improvement Test of Redesigned Buffer for M16A1 Rifle. USATECOM Project No. 8-7-0230-04. Report No. DPS-2662.
11.	Handbood on Design of Automatic Weapons, draft copy, Duke University, 1968.

III-1

Accession No. Development and Proof Services, Aberdeen Proving Ground, Maryland Final Report on USATECOM Project No. 8-7-0220-01, Product Improvement Test of Submachine Gun, 5.56-MM, XM177E2, June 1968 AMCMS Code No. 4420.25.0132.2.39, Report No. DPS-2754 Authors George Hendricks and Allan Wilson Secondary distribution controlled by Project Manager, Rifles, ATTN: AMCPM-RS 218 pages, 49 illustrations

Unclassified Report

NAME OF TAXABLE OF TAX

The product improved components of the test weapons were: chrome-plated chambers, buffer, 1-1/2 inch increased barrel length, delrin charging-handle latch, handguard slip ring, cadmium-plated slip ring spring, shot-peened upper and lower receivers, nlyon coated buttstock and release lever, and grenade launcher spacer (for attaching an XM148 grenade launcher). With the exception of the delrin charging handle latch, which proved susceptible to breakage at -65°F, durability of all the product improvements was satisfactory throughout the test. It was recommended that further development of the XM177E2 submaching gun buffer and noise - flash suppressor be accomplished, that the delrin charging handle latch be considered unacceptable, and that the remaining product improvements under test be considered suitable for use on the XM177E2 submachine gun and, as appropriate, the M16A1 rifle.

AD Accession No. Development and Proof Services, Aberdeen Proving Ground, Maryland Final Report on USATECOM Project No. 8-7-0220-01, Product Improvement Test of Submachine Gun, 5.56-MM, XM177E2, June 1968 AMCMS Code No. 4420.25.0132.2.39, Report No. DPS-2754 Authors George Hendricks and Allan Wilson Secondary distribution commolled by Project Manager, Rifles, ATTN: AMCPM-RS 218 pages, 49 illustrations

Unclassified Report

The product improved components of the test weapons were: chrome-plated chambers, buffer, 1-1/2 inch increased barrel length, delrin charging-handle latch, handguard slip ring, cadmium-plated slip ring spring, shot-peened upper and lower receivers, nylon coated buttstock and release lever, and grenade launcher spacer (for attaching an XM148 grenade launcher). With the exception of the delrin charging handle latch, which proved susceptible to breakage at -65°F, durability of all the product improvements was satisfactory throughout the test. It was recommended that further development of the XM177E2 submachine gun buffer and noise - flash suppressor be accomplished, that the delrin charging handle latch be considered unacceptable, and that the remaining product improvements under test be considered suitable for use on the XM177E2 submachine gun and, as appropriate, the M16A1 rifle.

	T CONTROL DATA - R&P	
(Security classification of title, body of abstract and	Indexing annotation must be entered wh	ليستجدينه الالالا فيستعد المحطة التجبيب ومتاحاتهم والمتكال التنزر مستعطك
ORIGINATING ACTIVITY (Corporate author) Development and Proof Services		PORT SECURITY CLASSIFICATION
Aberdeen Proving Ground, Maryland 2		
REPORT TITLE PRODUCT IMPROVEMENT TEST OF SUBMACH	IINE GUN, 5.56-MM, XM177E	:2
DESCRIPTIVE NOTES (Type of report and inclusive dat	(ea)	
Final Report 1 August 196	7 to 15 April 1968	
AUTHOR(S) (Last name, first name, initial)		
Hendricks, George		
Wilson, Allan		
REPORT DATE	74. TOTAL NO. OF PAGES	75 NO OF REFS
June 1968	218	9
A CONTRACT OR GRANT NO.	SA ORIGINATOR'S REPORT	NUMBER(S)
Not applicable 6. FROJECT NO.	DPS-2754	
USATECOM Project No. 8-7-0220-01	1. OTHER REPORT NO(S) (A	Any other numbers that may be assigned
	this report)	
d.		
10. AVAILABILITY/LIMITATION NOTICES		
This document may be further distri prior approval of Project Manager,		
11. SUPPLEMENTARY NOTES	12. SPONSCRING MILITARY A	CTIVITY
None	12. SPONSCHING MILITARY A Project Manager,	
None	Project Manager,	Rifles
None As ABSTRACT At the request of US Army Weapons C 5.56-mm submachine gun, XM177E2, wa Maryland between 1 August 1967 and of the test weapons were: crome-pl barrel length, delrin charging-hand slip ring spring, shot-peened upper and release lever, and grenade laun launcher). With the exception of t susceptible to breakage at -65°F, d was satisfactory throughout the tess improvement over nonplated chambers guard slip ring offers advantages o disassembly of hand-guards. Kinema characteristics of the urethane end repetitive impacts, causing undesir burst. Progressive build-up of fou firing tends to increase muzzle fla adverse effect on hullet stability development of the XM177E2 submachi be accomplished, that the delrin ch and that the remaining product impr	Project Manager, Command, a product improv is conducted at Aberdeen 15 April 1968. The prod ated chembers, buffer, I le latch, hand-guard sli and lower receivers, ny other spacer (for attachi- he delrin charging handl burability of all the pro- t. The chrome-plated che in reducing failures to over the previous design tics studies showed that cap on the buffer are stably large variations in sh and sound level and a and flight. It was reco- ne gun buffer and noise larging handle latch be covements under test be cover	Rifles vement test of the Proving Ground, luct improved components -1/2 inch increased ip ring, cadmium-plated vion coated buttstock ing an XM148 grenade le latch, which proved oduct improvements nambers demonstrated o extract and the hand- in ease of assembly and the energy-absorbing subject to change under a cyclic rate within a ind suppressor during upparently has an ommended that further - flash suppressor considered suitable for
None ABSTRACT At the request of US Army Weapons C 5.56-mm submachine gun, XM177E2, wa Maryland between 1 August 1967 and of the test weapons were: crome-pl barrel length, delrin charging-hand slip ring spring, shot-peened upper and release lever, and grenade laun launcher). With the exception of t susceptible to breakage at -65°F, d was satisfactory throughout the tes improvement over nonplated chambers guard slip ring offers advantages o disassembly of hand-guards. Kinema characteristics of the urethane end repetitive impacts, causing undesir burst. Progressive build-up of fou firing tends to increase muzzle fla adverse effect on bullet stability development of the XM177E2 submachi be accomplished, that the delrin ch	Project Manager, Command, a product improves conducted at Aberdeen 15 April 1968. The prod ated chembers, buffer, I the latch, hand-guard slip and lower receivers, ny other spacer (for attaching the delrin charging hand) durability of all the pro- t. The chrome-plated che in reducing failures to over the previous design tics studies showed that cap on the buffer are stably large variations in the gun the flash - sour sch and sound level and a and flight. It was reco ne gun buffer and noise arging handle latch be cover end, as appropriate, the	Rifles vement test of the Proving Ground, luct improved components -1/2 inch increased ip ring, cadmium-plated vion coated buttstock ing an XM148 grenade le latch, which proved oduct improvements nambers demonstrated o extract and the hand- in ease of assembly and the energy-absorbing subject to change under a cyclic rate within a ind suppressor during upparently has an ommended that further - flash suppressor considered suitable for

- ...

Unclassified

ļ.

4.			KA	LINK B		LINK C			
KEY WORDS		ROLE	ROLE WT		ROLE WT				
PI of XM177E2, 5.56-mm, SMG.									
INSTR	UCTIONS								
. ORIGINATING ACTIVITY: Enter the name and address			17 /7 1247-		•	Fator -			
of the contractor, subcontractor, grantee, Department of De- ense activity or other organization (corporate author) issuing	itations of	on further	dissemit	nation of t	the report	Enter and t, other the ndard stat	an thos		
A. REPORT SECURITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether 'Restricted Data' is included. Marking is to be in accord- ince with appropriate security regulations.	 (1) "Qualified requesters may obtain copies of this report from DDC." (2) "Foreign announcement and dissemination of this 								
2b. GROUP: Automatic downgrading is specified in DoD Di- ective 5200.10 and Armed Forces Industrial Manual. Enter he group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author- zed.	(3)	report by "U.S.Go this repor	"U. S. Government agencies may obtain copies of his report directly from DDC. Other qualified DDC sers shall request through						
B. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. f a meaningful title cannot be selected without classifica- ion, show title classification in all capitals in parenthesis mediately following the title.	(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ""."								
b. DESCRIPTIVE NOTES: If appropriate, enter the type of eport, e.g., interim, progress, summary, annual, or final. live the inclusive dates when a specific reporting period is sovered.				of this rep hall reque		ntrolled. zh	Qual''		
 AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication. 		If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, ind cate this fact and enter the price, if known. 11. SUPPLEMENTARY NOTES: Use for additional explana-							
		tory notes. 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (pay-							
TOTAL NUMBER OF DAGES. The total same count	ing for) t 13. ABST	ing for) the research and dovelopment. Include address. 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical re-							
75. NUMBER OF REFERENCES: Enter the total number of eferences cited in the report.	port. If shall be	attached.	space is	s required	, a conti	nuation SI	neet		
a. CONTRACT OR GRANT NUMEER: If appropriate, enter he applicable number of the contract or grant under which he report was written.	ports be end with	It is highly desirable that the abstract of classified re- borts be unclassified. Each paragraph of the abstract shall and with an indicator \mathcal{A} the military security classification of the indicator (T_{S}) . (5).							
b, &c, & & A. PROJECT NUMBER: Enter the appropriate hilitary d-partment identification, such as project number, subproject number, system numbers, task number, etc.	of the information in the paragraph, represented as (TS), (S), (C), or (U). There is no limitation on the length of the abstract. How- ever, the suggested length is from 150 to 225 words.								
 DRIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. DOTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). 	14. KEY or short index en selected fiers, su tary proj	WORDS: phrases the tries for construction so that m ch as equivation ect code to so but will	Key wor nat chara satalogin o securit ipment m name, ge l be follo	ds are teo cterize a g the repo y classifi odel desi ographic	chnically report ar ort. Key ication is gnation, location, n indicati	meaning id may be words mu s required trade nam may be u ion of tec	used a st be . Iden- ie, mili- sed as hnical		

Unclassified

Security Classification

and the second secon