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A13STRACT

A description of rolling contact failure modes is g!ven
and the variableg affecting the life of a rolling contact are
identified, A mathematical model of subsurface and surface
crack propagation is presented. The life to !allure of volume
elements in the vicinity of a defect is formulated, A term
"severity' of a :.lcrodefect has been defin.ed. The model is
characterized by the inclusion of bulk material parameters,
defect characteristics and parameters of geometry, stress,
lubrication and surface topography. A statistical expression
for the life of an entire rolling body is based on the defect
life formula. The new model includes cuzrent standard bearing
life prediction formulas 3s a special case. To assist in inter-
pretation of the model, the stressed volume In a Hertzian ellip-
tical stregs field has been determined from the computed contours i
of equal reversing shear stream. A stress analyais has been
conducted on the stresses near interacting asperities and around
a surfeae defect (furrow).
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NYALUATION M

1. The prcaent technique for predicting the life of a group of r-olling element
beairinga does not consider the meny factors known to affect bearing UiPt , and
for letre bearoingG the technique is clearly inedeaqute. This contract is the
firat part of a two port effort to dovelop a practical engineering tool for the
da-eraination of the expected life of any U-oup of bearingso This fixst contract
wae to consider all the variables that affect bearIng life and the possible
failure aehaniems involved, and then to develop equations which mould contain
parametern to account for thone varlahles known to affect bearing life. Thene
objectives have been accouipliehed and the results of this contract have pro-
vided a number of equations containing paranwters characterizing material,
-eometry, load, defect severity, and environmental variables.

P. Tae aboie mentioned ecquatluns contain constants and flunction signs which
-m-et be evaluated and determined from test and field data before the technique
can be used as an engineering tool. This is to be accomplished in the second
effort. The resulte of these efforts vill be included in a mechanicai reli-
ability handbook and should provide an imroved prediction technique.

WILLIAMJ BCCHI

__ I )echenaical Engineering Section
-Dvelopemnt Engineering Branch
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SECTIION -AI

INTRfODULCTION AND SMUIARY

This is the Final 2eport issued In fulfillment of Rome -

Air Development Center Contract No, F30602-67-C-0147 on
OeDevelopment of Methemtitcnl Hodels Predicting Life of Large fi
Roller B arings".

The objective of this work in to determine the variables
which cause the life of (large) rolling bearings to vary from
the life predicted by the exiating degiun methods; to determine =

the effects of those variables on the life of rolling bearings
and to formulate an improved mathematical model for the predic-
tion of rolling beafing life.

The present study covers the first year of this effort and 3
has led to a general model of bearing failure. A subsequent
effort is currently underway (RAVC Contract No. F30602-6e-C-0147) 3
to cover future development of the model and to make the formulas __

sufficiently specific for engineering use.

This report is divided In several sections summarized as

INI ~Sectiona 11 Is a description of the principal concepts devel- •

oped in this Contract. Using the currently accepted formula as aii~i:• tartinq poit., this section bringg together all the now concepts
generated in this study and explores the usefulness of the now

}• model. An outlook on future research is given.

sectlon III proenets a syopsio of the currently accepted

Lundberg-Valmgren bearing fatigue life theory which forms the
basis of the ASA standard for bearing rating and is the starting
point for the present study. This section is Included in recog-
nition of the fact that the fundamental work of Lundberg and
Palngren may not be easily accessible to all readers.

Section IV extracts from recent literatare, the principles
of fatigue failure theory required for thiv study, as follows:

I. A Survey oe rolling contact failure identities among
which is spalling failure. This i•rllure mode is the
subject of the present study.

2. A liisbing is given of variables affecting contact
fatigue !Ifp. These variables are grouped into four
main categories. viz. material variables, surface



a

•crogeoatry viar ies, design variahles and operating
var ableao

3. AP evaluation prented of the interdepeadence of
the variables And their effect an subnurface and surface
Initientd spelling occurrences.

4. A model In offered of £ati.que failures. Subsurface
and surface initiated fatigue failures. are distinguished
which compete to promote spelling failures in rolling
conaact. In both subsurface and surface failures, the

fatigue process is described as a sequence of phases of
fatigue crack generation, propagation and final fracture,
.(ie.. spalliag) at a "twost critical" crack in the
rolling element. Crack generation in rolling contact
is postulated to result from localized plastic strain
concentration around stress raisers.

Section V crvers the formulation of an expression for the
__crack growth rat as a function of strength sad stress parameters,

ductility, and p istic micro-strain.

This concept is applied to a situation where defects of
known "severity" exist in a uniform matrix, to yield a foroula
for the fatigue life of a defect.

Section Y. gives a statistical theory of failure for an
entire rolling body, based upon the relationship between life
and defect severity developed in Section V. in this model. , -

rolling body is conceived as being built up of a large nuwber
of swell cells each of which contains exactly one defect
(Including "defects" of no influence at all). The severity of
the defect present in any ell Is a randow variable. The
distribution of life over identically locatedcells in a
population of rolling bodies similarly iade and operated, is
found through a transformation of distributions between severity"•_• and life.

The distribution of rolling body life is expressed as a
compound of the individual cell life distributions. The asypp-•.• totic distribution of shorteat cell life is derived for" the case

where all cell lives are commonly distributed.

Section VII covers a required stress analysis in a Hertzia e
contact. The micro-strain range in the highly stressed volume
(or surface) is calculated.

y2
MIR

Va

I -



for determ1im~tlon of the Qaxl~um shear strees near sa Idepiized

suirface asperity,

Section IX pregent@ a strogs analysis for thetrinton

Analyt~ical detRils are @npplied In seyeral AppEgdices.
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SECTION II

PHINCIPAL CONCEPTS

A mathematical model of rolling contact fatigue is a complex
subject. Numerous aspects of ••tallurgical, mechanical, and
statistical nature have to be considered in Its development. At
the present stage of the development, many of these details are
still open. Others have been covered in quite same depth. The _-

piesent report is a Summary of the studies to date. It will take
up the several aspects of the problem in turn, at whatever depth
is currently accessible. There is the possibility with this pre-
sentation that the reader may be diverted from the principal
underlying concepts by the complexity of detail. In order to
prevent this and to facilitate evaluation of woek accomplished
from the point of view of the engineer, who will ultimately use
the theory for practical life predictions, a review of the principal
concepts is offered in the present Section. No proofs or references
will be cited: these are either given in the subsequent Sections or
referenced there.

1. THE PRINCIPLE OF ROLLING BEARING LIFE PREDICTION

Rolling bearing life is defined here as fatigue life. Causes
of fallure other the" fatigue are considered avoidable and are,
therefore, eliminated from life prediction. Fatigue 11. e is pre-
dicted on the basis of a cumulative damage concept, i.e. that with
repeated application of cyclic stresses, Irreversible material
changes take place which ultimately result in failure. This con-
cept, with its statistical Implications, was first applied to
rolling contact life prediction by Lundberg and Palogren. The
Lundberg-Palmgren concept, universally used today, revolves around
a phenomenological equation of the following form, between numberg
of cycles to failure, and macroacopic mechanical variables:

10 1 NeY(foT o ) gV (2.1)

5(N)

where S(N) = the probability of survival to N cycles
o = maxiluufi shear stress amplitude
S= depth co-ordinate of -to

V = stressed volum,
function sign

e = constant

jie



ThIu eqnuatiom oxPllcitlY C09taiRs the 04mber Of zYcles, 2
MaximFum $boor @tr@99 and Ito depth ce-ordinate, and the "tregSed
voluino" wkich latter, howevex, is never expresined In absolute
terRe, only as a factor of propoytionuItty,

The Lundberg-FaslnreE life prediction theory consists of the ij
application of Eqnstion (2.1) to the required wide variety oZ goo- V
Metyical Bad Ui untie condition@ which charactorize a compllex
assembly such @a a rolling bearing.

Physically, Equation (2.1) teaches that the eumulative prob-.
ability of furvival decreases with incressing diumber *-,f cycles N,
and with Increasing @sie of the rolling contact system (stressedU
volume). The specific choice of the function (p (70, so) was madeI
by Lundberg and Palagrop once and for all, and is given lu
Equation (2.2)

-P Yoc zo) To no (2.2)
C'h: constants 0

This equation states that the survival probability decreases
__with increasIng ahear stress range, but Increases for grouter

values oi the depth co.=ordiwate of the wximum shear stress range;.

By applying elastic eanlysig to the contact situanlen,
___ Lundberg Band Palogran derived detailed stat6aioato reg@Adiag the

effect of the pertinent macro-geometry parazaeters Influencing
oorffal surface pressures in the contact, the subsurface shear =

__ treases resulting from those pressures and the kinematic parn- A
motors determining numbers of cycles in terms of bearing ring

__revolutione. 9quetIen (2.1) Is readily modified to take account
of time-variable or apace-variarole loadiag by using the HPalmgren= _

__ PinOF hypothabin', of damugo accumulation, stating that fatigue
damaago accumulatev at a rate depending only on load conditions at

___ the current time, so that Equation (2.1) can be written in the form;

Ilog fL= f ~ (iP o - o) N dV (2.3)-
S()(V) (N)

The phanozaenological nature of Equations (2.1) through (2.3)U
result@ In an igg@ass If one gtteapts to Incorporate into life

prediction, newly acquired knowledge regarding the effect of K
perawmotrs other than contact geometry sad kinematics, since
these equations offeor no clue as to the proper role of such para-I
meters in defining life. For thig reuse., post attempts at

6
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refining the LundbergU-Paim~ren theory have relied on the fact
that Equationa (2.1) sad (2.3) are proportionanltleg, Le. they
contain a freely available constant multiplier relating the
absolute magnitude of life to the probability of survival, This
multipli1r is Intended by Lundberg and Palmqren as the naterial
constant, but hoe, from time to time, been used to in, orporate a
variety of correction factor3.

SThe limitfltion-of thin approach are obvious, end It has

therefore been decided in the present study of improved life pre-
diction methods to abandon attempts at modifying the basic
Lundberg-Palmgren equation. Rather, it was decided to generate
"novel equations from which the Lundberg-Palmgren equations can be
obtained as a special case.

The new equations were derived using a more detailed physical
model of fatigue failure rather than as purely phenomenological
equations. It is recognized that the use of such a model has
many pitfalls, the most obvious being that its details may not be
verifiable. However, the drawbacks are more then compensated by
the heuristic value of a detailed model and can be rendered harm-WP! less by insisting that noa-veril'table details of the model should ••

_ji not enter into the final engineering formula for life prediction.
Before leaving this brief review of Lundberg-Palmgren theory, ?1

it is noted that Equation (2.1) is equivalent to:

H(N) = 1 - S(N) = - exp N(()e] (2.4)

where N* constant "scale parameter" of the life
distribution

H(N) = cumulative probability of failure
within N cycles

i.e. failures are distributed according to a Weibull distribution
with zern lower bound, characteristic life NO and dispersion
exponent eo. This distribution appears in the Lundberg-Palmgren
formulation as a result of deliberate choice, as a useful distri-
bution for the description of fatigue phenomena, and its
appearance does not stem from extreme value considerations. This
point will be of Interest later.

7



2° PRINCIPAL VARIABLE•S OF FATIGUE FAILURE

Section IV gives a detailed review of the vsriableb govern-
ing a fatigue failure situation. There, It i deduced that the I•
varinbloo fall in four welo categorl@@: material variablem, our-

face microgeemetry variables, desigan viorbl@s aad vperasting
Variabesi.

Naterial variables are those influencing the "strength" of
the rolling system. Current fatigue invetlgetlonus (chiefly of

othe no-rolling type) concider yield strength and ductility of
tthe mtorial as dowiHant bulk (or mat'•i) trongth variable.

Nodifying those are residual stresses and work hardening effects,
acquired, in part, during the course of fttigue life. In rolling
contact, the eaterials used are of high hardness, ad such
materials do not react with their matrix strength. Rather, rolling
contact life appears to be determined by the strength of the
material in the vicinity of Inevitable material imperfections
such as inclusion@ in the matrix or microcrack,. Thus, the nature
of those imperfections i a dominant variable.

Surface microgeometry variables determine the detailed nature
of the contact through which laeds are transwitted to the material.
The generalized roughness of the surface determines the topography
of the cotaecting surface eletents, the plastic behavior of the
material immediately wdjnceat to the surface, and interacts with
lubrication, as will be seon presently.

There are localized imperfections oan surfaces, mostly tn the
form of sharp depressions ('"furrows'). which form streos raisers
near their edges and are influential in failure. Of course, thoTe
can be many othvr types of surface varlables, some of them arti-
ficdel as induced by coating, special treatment of the surface, etc.

The design 7aribles of the rolling contact are dealt with
extensively by the Lendberg-Palmnre5 theory, and they are, there-
fore, quite familiar. Track length, conformity between rolling
element@, dimensions and number of these elements, contact angles,
parameters defining the precise cross track geometny and many
others are Influential, primarily because they determine the
macroscopic (flerti•ls) stress field cad the umaber of cycles as a
function of bearitg ring rotation. They also determine the
magnitude of the highly stressed volume.=*1
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N.-=-
(g =8



Operating variables on mwpans the ogternal auiemftIV
which the rolling cortact system mitst endure, including load,
speed, lubrication, temperature, and atmospheric conditions. The
influence of lead In determining the stress field iz obvious, and
go Is that of speed in determining the number of cycles per unit
time. However, these two variables also interact with the lubri-
ennt to determine the hydrodynamics of the often-present pressure-
bearing elastohydrodynomic (EHD) lubricant film In the contact,
which redlotributes stroooe@ and has Important effects on the
microbehavior of the contact area (asperity interaction). Temper-

ature eaters by laflueacing both the materiel strength and the
lubrication, and atmospheric conditiors can be of consequence if
they iefluence lubricant behavior or cause corrosive effects.

This list of influential parameters deters the theorist by
Its multiplicity. The only practicable approach to the develop-
meat of a life prediction formula in the presence of such a U
multitude of variables Is to find a flexible, simple concept
describing failure mechanism, and then solve the problem of intro-
ducing eech variable by defining its impact on that mechanism.
Success of such an attempt depends an the proper choice of the
mechanism and will necessarily be limited. There will always be
variables that the model cannot eccommodate, and as time pcsses,
the influence of these will become more and more recognized, lead-
ing ultimately to the abandonment of the model. However, the
model will serve mell ID the interim if it permits account to be
taken of the most important parameters recognized to date. In what
follows, such a model will be outlined. It appears at the present
stage of the study to have the required flexibility and to mccow-
modate many of the most important parameters, including all these
which the Luadberg-Palmgrea theory utilizes. It will remain for
further stiidy to develop the specific formulations for the incur--
poration of now parameters into this model mad to show rbether it-
is sufficiently free from inherent contradictions to be practically
used. This further effort is currently underway.

3. THE FATIGUE FAILURE XODEL

Our failure model visuglizes fatigue damage as the growth of
o crack. There are plastic flow occurrences, carbon migration,
and, of course, first of nll, dislocation motions In the matrix as
a result of cyclic stressing, which precede or are concurrent with
crack formation. However, for modeling purposes, these subtler
occurrences are got helpful in fiuxig ideas of fatigue damage
because no way is known to measure the degree to which they are
shortening life expectancy. The effect of a crack on life Is
intuitively clear: when the crack has become large enough a piece
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of material will separate from the surface, formlg the fatigue

.pnll deflaed In rolling contact technology as fatigue failure.
Crack grovth is vlpualited as irreversible, so that a niutnlbo
measure of crack size snatisfiev the concept of "damege" as
Irreversible progress towards faillure. The fatigue phaomenqoa

stot,~coringy~wzkthe initiation of a crack, and proceeds
through stages of its growh until the crack has become large
enough to form a np2`l. Fatigue life, as determined by the crack
in question, begins %ith the onset of cycling and terminates when
the spall forms. Of course, it cat be argued that a rolling con-
t act system may be functional in the presence of a spall of
tolerable size. There is room Ro accommodate this argument in
the modellao v-ill be pointed out later, but the current descrip-
tion of the failure terminates with first spclling. _W"

It Is convenient to deacribe failure generation in three
phases :

Phase I beging immediately upon the onsetof cyclic stressing,
a d is consumed by the formation and growth of a aicrocrack. A
definition of a nscrocrack will be given below. From the point
of view of the model, it is characterized by the fact that it is
sm•ll enough not to Interacnt with other microcracks that may be
present in the rolling element.

In Phase IX, the crack grows macroscopically until, at the
end of this phase, it has reached a critical sige, defined by
the fact that it is now large enough to cause the Initiation of
precipitous crack growth (in Phase Iii).

Phase III is occupied by precipitous crack growth at a ryte
greatly in excess of Phase 11 growth. This precipitous craocing
formsa the spall itself. This Phase may be virtually nsetenowus
or consume substantial length of time, deponding on whuthor one
specifies a minimum opall size, which is accepted as a failure,and
depending on a variety of waterial and operating conditions.

The objective of a mathematical life formula Is to describe
crack growth through the above three phases. Il order to
describe crack growth, one selects a measure of crack size A
and formulates An equation of the form:

A=f1  (N, X1 ) (2.5)

where A Q crack sizo

undefinedparamoeters
N =number of stress cycles

10



At the present state of the study, it seems best to select a
Eorm of Equation (2.5) common in current fatigue theory, vi?, one

efling tnVe f rst dorivative of crack size (the crack gro.th
rate) in ternR of the relevant variables:

. d.A = .f a( N, A, Xj) (2 6
- dN

where f- = function sign

Life prediction Is then accomplished by determining from Equation
(2.6) that value of the number of cycles NL which corresponds to
a critical crack size Ac, causing immediate spalling, i.e.

N (2. 7)
NL =fs(Ae, X0)(27

where NL = life at failure

Ac = critical crack size at spallifig

Many current theories of fatigue failure use the crack
growth Equation (2.6) in the following simple form:

_ ~dA-
INdNi = (C, D) B A (c (N), D(N) ) (2.8)

where A function sign j
cc latic strain at the propagating crack front

Mal D ductility

____ According to Equation (2.8), the only variables entering the
crack propagation equation amea plastic strain (measured at the
propagating crack front) and a measure of material ductility.
Specific definitions of these two variables in terms of measurable
physicnl quantities are open at this point, both because appro-
priate definitions for the rolling contait situation have not
previously been determined, and also because the plastic strain

___ cc Is a microparameter which is not directly measurable. Note
that Equation (2.8), for all its simplicity, contains many
assumptions. Only the first derivative of crack size appears
explicitly. (The crack size itself enters by way of its influence
on ec.) Only variables measurable at the location of the propa-
gating crack front appear, and these only with their values
assumed gt the time of the N-th stress cycle. (Of course, the

aw equation in compatible with a dependence cc(N) and D(N), and the
specific form of this dependence determines whether this formula
satisfies the Palmgren-Miner hypothesis.) There is hardly room
for concern about reotrictiveness at this point, however, since
even Equation (2.8) is much too general to be practically
applicable.

I.
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1A order to add definition to Equation (2.0), the concept of

"•del.t" 10 introduced, A defect is R lecation in the Ragtrialar at the aurfacea sgt which therv 1s a teadeacy of crnck geners-tion. It will be aasuaed that this tendency Manifent? Itself inEquation (2.6) by some property of the defect cauuing cc to be
higher at the defect than elsewhere In the vicinity.

A a•iple form of this relationship can be w.ritten by -asumingthat one can select ("s in uniaxial tension) a critical scalar 40
of the L (elastic plus plastic) facroscopic ntrain field ns it _would exist at the defect location, ii the absence of the defect,such that cc dependo only on so, on dý'fect severity and on theyield strength uy of the matrix, i.e.

cc f to, oay) (2.9)

where cc = plastic str@an at defect
-o = critical "undisturbed" total (elasticplus plastic) strain

0 = defect severity measure
ay = (micro) yield strength of the matrixf = functicn sign

The defect severity factor 8 Is defined as a "strain raising"factor characteristic of the defect. Conveniently, 8 is definedfor all real defects with strain raising properties, but also for
an "ia1erective defect" with no severity at all, i.e. one whichdoes not raise the magnitude of the strain. For purposes of t

•statistical treatiaout. It 10 convenient to define such "Ineffectivew .Sdofects ad the limiting case of defects with real stress raisingi• • properties. 
i

Introducing Rquation (2.9) into Equation (2.3), one has

=A (9, co , ay, D)(2.10)

i• 
!N

It is convenient to separate the variables lafluentiml inoreofs growtih into the twe groups: variables related to defects,and eatrix variables. In Equatiob (2.10). 0 is the variablerelated to defects, whereoa eo ay. end D are related to theoatrix, For simplicity, the matrix effects are consolidated
Into a single function y, i.e.

A= (0, y); y = y (so, ay, ) (2.11)

12

..........r:



The new anuiptioma underly~ig Equatioas (2.9) through (2.11)
are thatL there is a scalur co of the aecrostraim field which,
elone, nmong strain field characteristics, determine occ, padrian

that all matrix parameters exert their influence on crack growth
"via a single quantity y. Neither of theme assumption@ is eoG@n-
tial in order to arrive at a workable model, but are made here
in the absence of a more refined understanding of the actual
physical situation, to arrive at a relatively simple formulation.

Further development of Equation (2.11) requires use of a

further restrictive concept eiih as the hypothesis of multipli-
cetive effects on fatigue life. This ioncept, also used by
Lundberg and Palgren, asserts that the rate of fatigue damage
(crack growth) can be expressed as a product of a number of
Independent factors, i.e.

dAad==N = £I(•e ) (2.12-)
dN

where cp = unspecified independent factors
11 = multiplication operator

at constants

Applying this concept to Equation (2.11), one may, by suit-
able definitioa of the functions 9 and y, absorb in them the
function A, and write SIM

dA= 9 y (2.13)
dN

We will proceed now to the examination of the matrix factor I
y and the defect factor 6.

4. TIHE MATRIX FACTOR y

From the definition of y given in Equation (2.11), it is a
function of a critical total wacrostrain scalar at the location
of the growing crack front, and of a yield strength and a ductility

mean ure.

The yield strength measure cy will be a mlcroyield stress,
since small scale plastic occurrence. are at issue in rolling
contact fatigue. It must be tnken with its value at the time
of the N-th stress cycle, to account for work hardening or mark
_oftening of the matrix. 5
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The ductility is definod in stgtie tognile tesot as the radue-
tion in cros3 sectional crea at factureo. It Is not obvious that
fhiS simple definitiou will apply under the Gonditions of contact
fatigue, but is is intuitively convincIng that one should includ@
In the fu•mula a material ductility property mo*auring the amount
of plaatic atrain the matrix can absoeb before it cracks. A
Variety of Metallurgical parameters, but also gome Operating
conditiong, will determine ductility. The most important @perat-
Inq condition is hydrostatic compressive stress. It is generally
believed thut the high hydroetatic compression coeponent existing
in most of the "ertzian contact stress field retardn crack forma-
tion. This fact will manifest itself in a point-eise varying
value of the ductlit-y parameter D when examining material
elements located at differeut points withia the Uertzinu stress
field. Inasmuch as it may depend on work hardening, ductility can
be a function of N. Thu@, the ductility parameter is already &now

_ to depend on naterial constants, on a parameter of the stress
field, and con depend on N. It may also be related to other oper-
otional parameters, e.g. to cycling rate. These relationships are
,ymbolized by the following equation:

D ) Ml(3, ah, N, w) (2.14)

where M material variables
ah = hydrostatic compressive stress

. operatinu factors

Toruing to the critical macrestrainl porameter to, it is
obviously dependent on the variables of load W, contact
geometry p, position under the contact V, and elastic modulus E,
defining between them the elastic Hertz atress field. With a

Sgquasi-elastic assumptiou, these parameters give a relationship
of týhe form

co so (V, E. p) (2.15)

where N load
E elastic modulus

= position vector
p = contact geometry parameters

The •quasi-elstc" assumption operate@ on the scale of the

whole Hertsian stress field and disregards the vicinity of defectg.
Xt postulates that the macroscopic total strain eo can be calca-
lated from the elastic (Geortian) stress field oZ the rolling
contact. This is the ese if the loads are sufficiently low that,
at most, very small amounts of macroscopic plastic flow take
place so that the plastic component of total Strain 10 negligible

14



and that plastic flow does not result in a significant redistribu-
tion of elastic stresses. Except for the generation of residual
stregses duc to cyclic stressing, this is a reasonable assumption
in all practical rolling contact fatigue situations. The question
of residual stresses will require separate examination. Generally, 9
they are handled by assuming that, after a small number of cycles,
the residual stresses have "shaken down" to a constant value.
Then, they act as a superimposed static stress field and 'omblnei
with the cyclic stresses. The resulting time-variable stress
field is, of course, different from that existing without residual
stresses, and aesumptions must be made regarding the effect of
this difference on crack propagation. !

A common assumption In fatigue theory is that superposition
of• sttIc stress field does not alter the plastic strain C
Influencing crack growth rate. However, the hydrostatic compres-
sion component of the residual stress field way wodify the

S~ductility D.

Everything snaid above about quasi-elastic behavior Is Testriced
to the matrix at locations remote from defects. Due to the

stress raising effect of defects, it is, of course, possible that
localized plastic occurrences take place in small volumes in
their vicinity. Such microplasticity is, in fact, the condition
of cracking in the proposed model.

-- For any given defect S, and given matrix strength (a )It is
possible to delineate that portion of the flertgian stress field
Within which the macrostrain co is high enough to cauue plastic
microstrain sc. For a given population of defects, there will be
a "realistic" maximum severity 0. One can delineate a highly
stressed area in the Hertz streos field within which all micro-
plastic occurrences occasioned by defects of "reilistic" severity
will be confined. This defimition of a "highly stressed zone" will
be adopted in what follows, and the cross sectiona! area of this
highly stressed zone, in a plane perpendicular to the rolling
direction, will be designated by :,

5. THE DEFECT SEVERITY FACTOR 0

The effect of a "defect" in generating plastic strain in Its
vicinity is manifestly very complex. A simple relationship for e

___ will be proposed as follows:

O(N) 8 (d, AN, 5) (2.16)
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tihero- d Initial defe"t goVerity
A = A(N), crack sime after N cycles
S = size of the highly stresged aone

Th1e variables of 0 @re: d, the Meverity of the dafOct at the
onset of eyclic streosing; A(N, tho crack Bize at the time of the
N-th atross cycle; and S, the cross aectional area of the highly
stressod zone In the Hertr contact.

Ag mentioned before, crack propagation can be envisioned as
occurring in throe phase@. The first phase, wicrocrack propaga-
tion, can be defined using Equation (2.16) by postulating that
the crtck is so swall thai, by comparison, the size of the highly
stressed zone can be considered infinite, go that for Phase I:

::• E) 01 Ed, A(N)M; A - A (2.17)

where AP nelf-propagatipg crack size at
the end of Phase I

Phase !I, on the other hand, can be defined a@ extending
from that point In time whore the crack has grown sufficiently
large to oUZweigh, In its effect on propagation rate, the original
defect. Such a crack does not require the defect to propagate, It
is "seff-propagatnfi". For a r-Ick of this size, or larger. the
srie of the highly stressed zo.., can no longer be considered
Infinite, so that one has:

S9 1 1 (A(N), S); A, • A • Ac (2.18)

where AC critical crack size

Hero, Ac is the crack 5ine at the termination point of Phase II.
This st2e crack I -sumad to lead to a spell "ingtantaneomoly' by
a precipitous fractL.e mec'anism. This doe@ not saugget that the
rolling contact system becomes inoperative immediately, although
tisB way be the caae. Howevor, there Is a "catastrophic" growth
step botwoea the crack of size Ac and the complettd spall, I.e.

-LA for A - Ac (2.19)
dN

One can asgsume that the critical crack sixe i related to the size
of tkh hlhly stressed goao, or, in Its simplest form:

Ac kS (2.20)

where k, constant

I-=
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6. PRIEDICTION OF Th'E LIFE AT A DEFECT

Substituting Equations (2.17) and (2.10) respectively, iRto

Equation (2.13), one obtgins the &following formulas for crack
propagation Fate during Phases I and I1:

(dA y(eo). aY. E) ® d, AMN]; A f A (2.21a)-

I I U('I) Y~ (5o, 0y~ D) 61 1 (A(N), S); Ap A g A0  (2.21b)

where subscripts I and 1I apply to Phases I and 11 respectively.

SU~ing the previously explained multiplicative hypothesis on

,the function C9, those equations may be rewritten sa follows:

W 0 Y1 Co , cry , ) f Ah) * (d); A A (2.22a)

(dA (go, ay, D) fg(A/S) f 3 (A); A -5 As (2.22b)
PC E

In Equation (2.22b), two functions f2 and fa are shown, one
representing the effect of relative crack size by comparison to •

the size of the highly stressed zone, and the other any remaining
dlýct effect of absolute crack size (as hypothdaized e.g. by
Lundberg and Palmgron when introducing the effect of the depth
co.-ordinate zo of the maximuw shear stress range.) Note that
in Equation (2.22b), the original defect severity d does not appear.
Therefore, this equation contuin. only mnacrostrain and matrix
variables, and is indepeudent of the original defect population.
In Equation (2.22a), on the other hand, f(d) is different for each

individual defect, and the equation is, therefore, dependent on

the defect population.

integration of the differential Equation: (2.22a) and (2.22b~)
leads to the followinig forW3:

i (A) N Y (d) (2.23a)

~I~A, A/S )=N(2.23b)

Substituting A ainto Equation (2.23s) yields a value N,, the lifeE
at the end of Phase I. Substitution of Ac into the Equation

(2.23b) yields a value N11, the duration of Phase 1! life.
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The life N1 from the beginning of cycling through the Ond of
PhA4e Ii life is then obtained a@ the mum of these two phase-liveg
NL = NJ + r4. Ph5a0 III like )My or may not be 0, depending oR

the deffiiticin of fall!u're a5 dicgeeeo above.

Is px'lneple, thhen, it Is possible to cbtnin a prediction of
life to failure at a particular defect ith severity d, froi
Eiuationa (2.23a) and 2.23b).

It it noted that the apparent @rbit r•rnea le the selectioa
of the olf-propagetlng crack ai~e A. Pwill not influouco the total

life NL = M! + Nj1r if the hypotheaes outlined previously are

correct, because the Equations (n.23a) and (2.23b) were both

obtained froe Equation (2.16) by aeglecting, for Equation (2.23n),
the Influenee Ap, und for Equation (2.23b) the mfluence of d.
Inasauch as these approximations are vOlid, the two equations
oerely describe two portions of the aane function A(N), and their
domains of validity overlap so that the selection of A , is withiin

limits, discretionary.

Solving Equationa (2.23a) and (2.23b) for N, and substituting

as described above, one obtains the following expression@ for life
to failure ML (at the end of Phase 11)

__ of ,Ad/ et which th crack becowos critical. Assuming theose
:• declalons can be reached generally, yL and r(d) ronnie, in

'• ~aeiton (2.24a),(s fuacioun of external para(o2era a)d S and ya i
• in guatons (2.24b), All parameters of those r(.aibiug functions

are observable.
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7 ThE .ATISTiCS OF LIFE FOR AN ENTIRE ROLLING BODY

in determining the lif a olr fini e-812:p rolling body, nci

Accrdln to Lqe fien i (2.24) for life in the vicinity of 11 qivgw
S~defectf and uses 5tatiotical theory to obta•in Iiio for a volume

° of material contatnlag a muiltutde of dofeots.

Failure of the rolling body will occur through "competition"
S~between a multitude of pctential defects acting an failure nuclei.

According to the definition of Phop•e I fatigue, microcracks grow

aat a multitude of defecta, at differing rateo, gad independently
of each other. One of these microcracks, or several, will reach
the beginning of Phasoe II, within the life of the part. These
will then proceed to accumulate Phase I1 life until such a time
as one of then has generated a crack of critical size Ah_ at which
a apall forms, whereupon the rolling body Is coneidered failed.
All other defects which have entered Phase II show, at the time
oi failure, cracks of lesa then critical size. In the proposed
model, variations n original ratrix strength within a roiling
body are considered smell enough to be neglected (this position
can be revised later if necessary). This leaves two main sources
of variability: the .;ystematic point-Viet va'?iability of the mmcro-
strain field in the contact zone (and the consequent variability of
work hardening and residual stresses) and a random variability of
defect severity and location with reference to the contact gone.
It is the effect of these variables on the life calculated from
Equations (2.24a) and (2.24b) that determine the outcome of the
competition among defects for the generation of the crack leading j
to failure.

A statistical treatment which can be used to describe thig
competition will be illustrated for Phase I.

Phase Il life will be considered a deterministic quantity,

calculable for each point in the rolling body, from the knowledge
of macroscopic strain and matrix parameters alone.

To express the statistics of Phase I lJfe, consider the
highly stressed gone to be composel of elementary "cells" of
uniform sine, selected small enough to contain only one defect,
but large enough for a crick of lzo Ap to be wholly confined

within the cell. Then, Phase I fatigue damage, originated within
a cell, will remain confined within it. Fatigue damage existing
in one cell will not influence the behavior of adjacent cells.

On this assumption, Phase I life of each cell I8 independent of
the life of all other cells.

,9
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.Asume nosw tht thorp Is a known probability distribution of
defects of varying soveritien d for each coul, I.e. thero is a
know cumulative distributlos £uction F(d) such that in any cell

preb (d, !ý d) = FMd (2.25)

where F cumulative distribution function of d j
Then, Equation (2.24a), establishing a funcatonml relatiooahip
between d and NT, permits dete-rination of a traeform•ed
probability distribution G(N) such that I

Prob ( N• G ( MI T (2.26)

where G eumulative distribution fnuction of N1
. = position vector

Equation (2.24a) vary from point to point ia ti o rolling body

because of the noa-=uaiforsty of the crostrain field, or for
any other reason, the distribution G(NI) will depend oan the
position vector i shown in Equation (2.26).

___ Equation (2.26) states the (cumulative) probability that
-- the cell with position co=ordlnate 9 will roach the end of 3
___ Phase 1 life in NJ cycles or less.

From Equation (2.26), statements can be made regarding the
____ probability of failure of the entire rolling body. The rolling

body will fail if exactly one of Its ceils foil. It is, there-
fore, roquired to erprese the probability distribution of the

__ life of that cell in the rolling body which fails first of all
cells.

if the fatigue phenomena In each cell are lndopeadent na
assumed, the probability that the rolling body mnrvivon Is the
product of the Survival probabililies of anl cells In it, I.e.
the Mlie distribution of an e@tire rolling body is:

I (N1) = 11 = - Gt (o) j (2.27) 01

where H cumulative distribution function of N1 for the
on.iXG rolling body

-&: multiplication operator

Equation (2.27) follows from Equation (2 26) by observiyg that the
probability of survival Ig obtained by subtracting the probability
of failure frog unity.

20
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iEquatioR (2.27) I general. A special Case is thnt for whichS~a~ll g• re identiealo This !.9 a aimpale aprxia io the case

of P thrust loaded bearIng ring (the Heytz btiaga fieXd IsI

indpendont of coatact position) in which there is a @ingle defect I
distribution throughout the ring and the defects are Infrequent ao
that 'Coli" can be roprogented by a short "Slice" of ring I!
betweeni two ciogely spaced croso-ooectiong. in this simple case,

S~Equation (2.27) reduce& to the following:

H (Ml) = i G (NI) ] (2.28)

Iwhere m = number of cells in the rolling body

As is shown In a later section of this report for certain
general classes of distributions G(N 1 ),and for increasing m,
Equation (2.28) approaches the form of a Weibull distribution:

R (NO) I - exp ar (.9

where N," m-I/k = a "characteristic life" or
scale parameter

k = constant dispersion exponent.
No = minimum life, (N O) 0

The constants are determined by the specifics of the distri-
bution function G(NO). No, the minimum Phase I life, can be con-
sidered zero, since a crack of si2e A may pre-exist in the matrix.
Equation (2.29) emerges from general rheorems on the asymptotic
properties oi extreme value distributions and Is not a separate
hypothesi s.

In the mooel presented, the (Phase I) life distribution of a U
rolling body is not merely observed as a phenomenological fact, it _
is related to the physically meaningful distribution of defects.
The relationship between tDe distributions F(d) in Equation (2.25)
sad G(NI) in Equation (2.26) permits inferences from one distri-
bution to the other, thereby identifying suitable measures of
defect severity. As shown in subsequent sections, it is possible
to conjecture appropriate defect severity distributions and test
these conjectures by the effect they have on the life distribution
of the part.

Equation (2.29) contains a volume effect on Phase I life.
For cells of fixed size, their number m is proportional to the
stresosed volume. Therefore

'Q, V-l/k (2.30)
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I.e. t~he sugle pgranete? of the weibmil life distribution is An
Inverse function of the srca.ged volume us In the Lundbe~rg-
Palwigrea theory.

The observable life NL Of An entire rolling body is, accord-
lag to Equation (2.24c), the sum of Phase I and Phago 11 lives at

tor deeithe whereion thwile shortest N. Thil cineibe with thted

gifp-.ol neihe~r old the aoe 1W w conditions -for P1 sstsid hae 1

the (determinitic vaiatio fN 1 wt ~aycuetesot

For Fothr tonitioan, the startieia retetst incwllucencie wih th

sotest NZ, lea tha diffclties takn aifrinm tEquasstion of2) (.0
oreenec o2.9) Nl s atlures required forv Equation (2.27b).frh

IM xatwhchthuaotiest (2N4) occurre d a(2.thectw ardte satistica

Ifeneitherio f otaied ibov conuitions (2.25) iso (2.29), ed thpene
aiýý the (dtraminis atice paroseati gue lfN1 ith Xpreyiction tohel shrts

NL. Fr tohapl tomes todel aigt is atceasytoen makt inlueii W11and
this far all funtionic.lthies inwor ill o urueni the asupin of

6 oEqutiyear (224) i(2i.2ruti), andv~ to.40 illustrae statseca

aheproameworhktocathe propoed ftigued alife reictiofnh model. Iy

orsderito apl fhis mopeil, Itnpis atcethis to mae. seii vup

tia. o ale fuunction.~Plge Th asewr ilb use nte

The follo0wing is gin oxample of one of several possible method@
by which the LundbeTV'-Palmgreu formulas can be obtained as a
special case of the proposed model.

If, in equations (2.24,0, (2.24b), and (2.240), osoe
avaumes that F(d) is a material constant, YJ depends only on
the maximum shear stress range To, ~i proportional to a
l111e8r dimension of the highly stressd cross section, say,



I
the depth co-ordloate zo of the mnXIMum shear 9tress range and

0, then one obteins

NL. fl (•) or NLV (/ To) fi (Zo) = coast(

If one uses power functions for y Qnd fi. then.

/- =o(2.32)

The designation of the Constant exponents is that used InS.....Equations (2.1) and (2.2), Equation (2.32) states that the life

distribution of each defect and consequently that of the entire
rolling body, is scaled by the maximum alternating shear stress To _•, and Its depth co-ordinate zo exactly as specified by the •

--Lundberg-Palgreo theory. Equation (2.30) states that ther• ,stressed volume is another scale factor for life. Equations

•-• (2.29) and (2.32) are equivalent to Equations (2.1), (2.2), aL.-d

-(2." Thugte ethe.LUndberg-Palgren formula appears as a special

b Deviations from the Lundberg.Palwgren Type
Weibull Distribution

It has been found experimentally that there is a uon-zero
minimum life prior to which there is no finite probability of
Sbearing failure. This fact is not explicable by the Lundberg-
SPaimgren theory. However, it is immediately obvious If Equation

not_ (2.2db) Is assumed to give a non-zero value for NTI. In this
,case, N, my still be distributed according to a Welbull distri-
bution with No = 0, Equation Q.29), but the total life to failure
-NL tI have a positive minimum value.

0. Effoct of Haterial Cleanness (Inclusion Content) E

Assumo that there are two materials, one "cleaner', the
Sother of lesser cleanness, i.e. possessing different inclusion

severity distributions F(d) per Equation (2.25), but otherwise
identical. The probubility of encountering inclusions of groat

severity Is higher for the material of lesser cleanness. One can
then expect a larger number of effective stress raisers in any U
given rolling body made of the less clean material. AccordingS.....to Equation (2.249). the relationship between Phase I life N,

nad defect severity Is inverse. Consequently, the distribution

of lives G(N) In Equation (2.26) will show shorter lives with I
higher probability for the stoel of lower cleanness. 5
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The distribution of i~ell 1if e will be sculed to values~ The
tscule parameter W, In Equation '2.29) will be a smallerý Rfbor,
I.e. typical rolling body life will be reduced.

4. Two Cqmpeting Failure fdodoo

Assume thetr is not one family of defects (e.g. Incluiongs)
but t•o faeilies (e.g. Ancluoicas nad surface defects). Assume
that thaee two fAmilieg of defects operate iadepeadontly of each
other @ad each has a oeverity distribution. It is possible to
define cells such that they have either one or tho ether type of
defect, but not both, This state of affairs is realistic:
fnilurc in rolling contact has been ohown to occur either sub-

Surface (e.g. froR iAcluslo•s) or to start at the rolling surface
(duo to Surface defects). Cell@ with inclusions are volume
elements not extending to the surface, cello with surface defects
are surface areas underlaid by a thin 'skin" of waterial. The
distribution of the two types of defects in independent,

One obtains two cell life distributions of the type of
Equation (2.26): one for inclusions and the other for surface
defects:

Prob(Nis• lIv) = GN ( V ) (2.33a). - I
Prob (N H NI,S) GS (Nj x.y) (2.33b)

Equation (2.33a) applies to subsurfac•e volumea (three
__ @"-ordinates), @Md Eqaution (2.33b) applies to surf@Ce areag

(two co-ordinates).

The probability of rolling body failure can be obtained
SR by considering t6&t survival of the rolling body neceouitains

Purvival of all callz froem bot populations. Accordingly, in
_. analogy to Equation (2.27)

2 H .I) = ll - GC (j) ] " LI Gs (N1 ) ] (2.34)
L V 1

._ or Substitlting from Equatien (2°20)

1(NI£ GV (NJ) : l G (NJ) J (2.35)

where m. numbor of cells with Inclusions
ma number of cells with surface defects
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One can determine whether the regultinfg asymptotic distri-
!_• bution for a large number of cells Is a Weibull distribution by

comparing the haracteristicg of the coil life distributions GV
and Gs. H(NI) will be Welbull only if GV and G are sufficiently
similaro

e. The Effent of Residual Compressive Stresnev in
the Material -

If there are residual stresses in the highly stressed
zone, taeir hydrostatic pressure component can be expected to a
influence ductility. Accordingly, Yr and/or Yjjt will change.
This may have an effect on crack initiation (Phage I), or only
on ckack propagation (Phase II). Depending on experimental U
evidence, appropriate modifications can be introduced in the first
or the second of Equations (2.24).

It Is also possible to account for the effect of the non-
hydrostatic component of residual stresses if a reasonable
assumption can be made regarding the effect of a static stress s
component oa the mlcroplastic strain % . As said earlier, many
fatigue theories assume that this effect is nil.

f. Effect of Hardness

Three parameters: co, ay and D enter the matrix strength
function V ,Equation (2.11). Clearly, the assumption made by
Lundberg and Palmgren that the only stress-variables influencing
life are the maximum alternating elastic shear stress and its depth
co-ordinate, is tenable only if the material is kept a conitant
so that ay and D do not vary. For different materials, y
will deperd on the excess of elastic stress above the maicroyield
otress (7y , which is known to be related, although not equivalent,
to indentation hardness. Thus, a general expression for y will
contain a material strength parameter of the type of hardness.

g. NonfIlertNian Contacts

Practical contacts are non'Hertzian in two respects:

Roller to race contaets are macroscopically non-Hertzian
because roller profiles are aot correctly approximated by second
order surfaces (roller croiniag, edge effects.)

All contacts are sicroscopically non-Hertzian because of aI

the presence of surface asperities, which will be discussed later.

eU
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No ~cra~s s ption 12 inhare~i in any of tht- dorlvm-
tiogs given above. Provided that the total strain can be defined

point-wiso Inteuaat it is po" to calul te cellf

and hence Toling body lifa, uaing the propoeod model.

b° Lubrication Effects

The mogt thoroughly explored lubricatien effects to daee.
are those of elaatohydrodynemic lubrication, I.e. the troaamitta!
of cotact pressure via a pressurized visc-us fil, of lubricant.
The effects of Buch a filg on life can be treated on tWa levels:
the macroscopic redistribution of pyegure brought about by the
elastohydrodywamic film can be used to 3orreet the iacroscopic
ntrain field in the Mitrin which defines the function Y.
Ilicroscopically, it is possible to describe the Influence of e
2_q jij alastohydrodynauic film on asperity interactions. The
result is a modification of the microstress field in the vicinity
of the surface, and a new distribution of cell life in the popula-
ties of cells containing surface defects. In principle, it i9

thes possible to calculate those elastohydrodynamic effects on
rolling body life.

I. size Effect@

flocAus the present study is ultimately aimed at improve-
meats ip radar anteona bearings, and radar antenna bearings are
among the largest Eade, alOe effects are of great importanco.
The model preseNted offers several clues to size effects.

5 The self-propagating crack size A Is definod aus the
smgalAest crack ghich progresses at a rate hndepdeat if the
original defect. Clearly, the magnitude of this crack mmut depend
98 the "effective radius" of the moot severe original defect, i.e.
it must be related to the volume within which the atress raising
effect of the defect is felt. This volume almost certainly Is
proportional to defeat diafetero Accordingly, A• depends en the
slie distributioa of the original defects. Since A evters into
the determination of the Phase I life of a de@fect, T produces a
si2@ effect on this life. Absolute bWaring sise will oeter into
this effect inasmuch as At influences steel processing practices,
and thereby the size distribution of defects.

The other Phase I sine effect concerns the cell size
introduced tn conaection with Equation (2.25). Since cell should
coatain only oee defect, their Bize is related to the defoet
spacing. This spacing I@, agai@, influenced by absolute bearing
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-19E) thrOtigh the COrrelstina between rednotiow 16i crown sectieea1 _<1diatribution. Coll sise Indirectly eters Equetiog (2,2fl)
because the Auebnr of colls present In a ViveR rolling body Aeopeds
On their 9ice. Of Cousie, the distribution F (d) In Equation (2.25)
aloe dependo an cell nige sn thut the effect Is not a simple Oo. Eg

Gi e a efect size diatribnaioa aiif a 4ell size, the
stressed volume of the rolliag body, In termes of movltiple5 of

unit cell Vol~mee introd"Cos the voluee effect. of life, repre-~
seated by Equation (2,30).

Tmrainq now to s~is effect on Phese 11 life, Equation
(2.24b) shows two sizo effccts. One is represented by Ac
Tt is the (hypothetic~l) ojfect o~f absjolute crack s!Re owj
propeeation rate. The other, nero obvious oifect, is represented
by the ratio AC/S and represeats the fact that a crack most grow
to a cortain sigo with refereijco to the size of the highly
stressed zone before Q spall can formn (the crack must propagate
from the de~pth of maximum shear -treqs to the surface, or vice_Ii verse, since spalls art typical! of a depth coaparable to that
of the location of maximum shear str *ssoq). This effect is
related to absolute bemring sine through S.

There are, of course, numerous sice effects implied in
Eqation (2.15) relating total macoretraiu to external load and

contact. geometry. Most of these effects are accounted for iR
the Labr-lnr theory. Steel procossiaq effecto are also
implied In Equation (2,l5) thriouUh the foct that tho yield
strength oy moy well depend ow the absolute size of the part.
Th ugme applies to the ductility parameter U3 in Equatior. (2.14) .
Clearnly, the proposed Made] Offers ample rOO9 fOr the 0Xplorotioai
of nize effects, providing, of course, that the necessary expert-
0ental ovidence can be secured. m

the 12odel. in the pi'enuUt state of tho work, no choice has been
made among the possible approgcheg by which ec can be relatoad to
A calculateu stress floid. However, it seems obvious that high
plastic strains 11ill be Associated with highý shear stresstes, andI
considerable effort was spent io identifying sources of high
shenr stress undor more general conditions than previously avail-
abl@. Three stress analyses, described In subsequent section&,

are of impetawco.
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a. Ctcur of Eqsal Nhegr stres Rgn~c e inEliptical

Thle poposed model reqjuire@ a definition of 5, the highly
giegsed ?.One. A logical deflnition may be the zone bounded in
OA~h croes gootios by 9 suitably Colocted line of equal shear
orea Y'atge, nrid extending arou~nd the rolling bo;dy. Since C~lcu-

latiom@ for such line@ are aot 3vailable fr~om the literature,
t6ey hnvo been cogputed and are shown in this report. Numerical
oqlAgtions and graphical relationships have been devoloped from

Wihareat .9, bounded by @elected contours of equgl ahenr
5CrVcb yu~to, CRA be obtaingd. One wa- in which these contours
may be ased Ig by observing that the distorted tubular arnulus
between any ?-M, ~'rotours Is a zone of roughly equal sheer stress
range. and therefore presumably equal total vacrostraiin to.
It Is, thorefore, an area In 010c' the functions Yj and yjy
of Equationb (2.24a) and (2.24,1) can be considered ecnxtant (with,

perhaps. a secondary Influence of the variabl@ hydrostatic com-
*pregeion op ductllit.y.) A correct way of evaluating Equation

(2.27) to obtain rolling body life moight be to consider the dim-
tribt~tion fuhctions 6 j (N1) idntil for cails within each of
theae annuli of equal shear stress range; to apply Equation

(22)to one eanular set of cells at a time, and then to compute
HM from Equa-3on (2.27) by multiplying the survival probability

functions for each annulus.

b. Near-~Surface Streass@ Due to Asperities

-A oujor result 01 res'ea-rh into rolling contact fatigue,
rcfereace~d later in this report, hog been the recofgnition that
destructivo spalling fatigue faIlure of rolling bearings is
cftea preceded and precipitated by "surface fatigue", a sequence

MR 20c~ str-gwt lsi low In the immediate subsurface

layeks v.1 Wfsstorial, followed by Profuse Microcrooking at the
i~rfacee aad eooctually, leadiing to gpoll formatioz for surface
c r xgi J tetd c r auk. Thisi series oi phenomena was found to be

:)rc6:taon volatvd aind has beenasoitd ih thkd thIckness o1
_yizo ilr~~dynae~ic lubricant film, comapared to tee roughnes@

oi fhe cog", :lg urfaces. Until receatly, It was thought that
qlasýtoyM- ynaric Jilms prevent surface fat~que by reducing

Y - i~~ractiye (9RAgoetia!) foresa sit the surfaces Which, In the abOc
of it fufl _isagtokyd.eodynamic film, aer transmitted between con-

t A nh. 5 I t~ Boucauue the magnitude of these hypothetical

Jrcs iAPies c&ufi~r be :oeii~dqnr~y nd because
evevi foe~s ý' p_,traictry vidric cold otbe accommodated,

m a th eEm6t J mo4*elitg of surface arigianned fatigue was at a stansnutill.
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Inth 12tEonth;' it 48 be~a proposedtha AUTTACO fatlve R

film is, ta this view, that It preveate &hsrp pressure gradients
fromWoig it i~rhseparate @asprity, whoron@ these pre)ssure

gradlirags do occur wheaeyr t" a sperities coine into contact
through n boundary lubricant film. T'his hypothesis, if proven
corre~ct, c@§ serve as a bgasi of nathemsatical modeling for our-
faces. To explore its workability, stress analysis was conducted

on a model asperity, represented by a prismatic rIdge topped by a
small radius. It Is shown In subsequent sections of this report

mepority Whon It in prvessed Qu~nlaft a flat Ourfaca (or opposing
asperity), and that the magnitude of this @hear stress depends on FSI
two parameters: the degree of depression of the asperity (in j
Partin! Olgatehydrodynamic contqeet tbla is determined by the film

__ thickness to roughness ratio) and by the typical slope of the
asperity side. Experimentally, It was shown that asperities on J
relatively rough, e.g. as..ground, surfnees have stoep slopes ofI
the order of 30P , asperities on finely honed surfaces have only

slopes of the order of 40, whereas the finest achievable lopped
surfaces of bearing balls have asperity slopes of less than 11.
Calculation shows that the shear stresses under ground asperitiesU

___ rench the yield strength ol hard steel for relatively little-
asperity depression, those under asperities of hoaed surfaces

___ break Into the plastic range at substantial depression values
(low film thicknesses) only, Whereas those on lapped surfaces C0

should not becoime plastic under any conditions.

___ In principle, it should be possible, basud on this
Aff analysis, to calculate the life of call@ Immediately Adjacent to

a rough surf-ace, based on Equations (2.24s) to (2.24e.).

The sequence of events leading to surface originated
failure is this. Near-surfaee plasticity occurs under contacting
aSperities, 9nd eventually causes microcreeks at the surface to a
9hullow depth of several hundred maicrolnches. The Ilife prier to
the forrmation of these cracka can be calculated from Equatiogg
(2.240) to (2.24b). TLe ferinatgog of surface fatigue cracks (not
to be confused with deep cracks whichL may originate at the surface
and will be discussed subsequently) representr a tailure phase_
prier to Phase 1. Uxporimomtally, it In a distinct phase both
Mor'e widespread and more rapid of progression then the gubauquont-I spelling. The surface equipped with wierocrack. can be treated
an a source of Phase 1 crMOc genoration becaus@ the Microcracks
grawem soRMall MnA shallow that they do mot show an apparent tendency
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to intersot. The Or foce veluo of onterinl th:in aequiron
a largo ppulation of Q@W defeacts, wig. the guiae fnt.iguo (racksU.
On@ an tau eater Eq tlsoa (2.24@) t@ (2.24a) ogelm nod cgle-u
Iot@ NP011nR fatigue life for this populatiou of defects.

o. Stroases Under a Surfce@ lmperfectiam

Aside fro@ the generalized roughnoun of the surfn.e,
there Qr@ locgliseo dporioctio•n, goenrally of thr serntch or
frrow type, on every pr;otical boaring SurfQG6. It has been
recognized recently that such furrown are points of origin for
epalls. They weprevent a etcopd population of defects (alluded
to previously) which 68Mpetee with the subsurface defects of
the ilcluclon type to gePerate spelling failures. Waoreas the
Lhe~g•Pewgon •theory is capable of predicting life xcr
failures• rigisoting at lluflojeno by uing the M@Ceroecopib shear

_ .. treas ranqv in liam of the total strain parameter go * &ad b;
assuming that the stroen raising proportio@ of the Inclusions

__(their deverity) ore FA neterial cntagt, the same approach ig
40t feasible for surface originated failures because there is no

Shigh Seher str@ea 6t the surface of a eortziau coatact between..... ideally woeoth @urfocos In the abebnce of traction. This diffi-I culty disappears, however, If it can be shown that high shearS..tre@t•es ar•i• in the vicinity of locfized surface imperfections
whea they oeter the nevtzaee cont•ct area. The stres analysig

__given IM Q later 890totle of this report hen Chowna that this is
the oaea. The serfaoe stress field wan cIleulated neder a furrow
__ type VOI90e° f st4 rep teod by e 1ong pre tigLC depkoeSsou in
ao plano. The d$pVe sian ban two rounded edgeg and sufficlont
depth to provost cowtaot at the bottom below tho roaunded edge.

_Hg shear stroaeg. were found under the rouadwd edgei, and their
fa-etienshin to the goeaetwio par aoetere of the defect war@
d-to~ rWied. This o•e l tioone n p nermite the Q)sigpasti of a Javority
eol@e t4 aseurgece fturrow.

e ti tois Determigtioe

According to Mqugtiea (2.0), the pisatic atyain PhYsetnily
reolyadt to crgek PFrevegtiao rate in el tho atrcin at the al to
of the Grook front. It in 600OWesiot and seiaple to visualize this

__toi QM tbe rasuit of G Pr@-0glatiag total *train tit in tLe
"_ ndieturhed siatrix e6 wkich c ergtga the strAIR ruining effect of

the defect. This dacoripties k@@ been used it the preceding dis-
oeanles. Uaovevr, Ikeo ritic@] (Ma-IBREI) plastic strain actually
or-Asting At A crook fryoqt do@@ got, In U~ol de end naSml
etVUlo scalar of tho g _rneI tVAIT- field.
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Th cuni strain field In the vicinity of anls prfc
Lion t FIa uIte Coinplox and, even If tho ancrogtraia in the Vicinity'U
of t1 lincluaioa can b@ considered unifo~rm, depends on all throe
prI._~e uatralu. Thus, geaerally

so (6ý00 (Y ot.) 2 )

Tepreceding parauraphs contain two examples for theI

defect geometry (i~e. severity) and Rgguming n ninpic roancrostress
field. Given this maximum ahenr stress at tbo defact, it may be
possible to put forth a simple model of plastic flow at the i
defect, yielding cc.

___ hether It will be necesvury for the application of the
made! to proceed to the actual determination of the plastic strain
mognitude at d~ofocts, or whether calculationi of a maximum shear
stress, attached to known defects, Is a sufficient refinemcnt of-
the Luadberga=Palmgren macroahear stress criterion to accommodate
currently available experimental evidence is a subject foiý -
future investigation.

10, OUTLOOK

A msathemaetical model for the prediction of the life of
rollinfl contact3 ben been proposed, based on a concept of crack

chaaperizintathe dcmanteriel ectsgnomtpreosy oftecnaccuned tor,
wie~nll ceontditions adpredInctorpioreoreated intemoeinchuding
toadt reubxltiomtistegh.dfc ouain n

de1c seeiy

Furt3e 1oknwudra suio tcoe eiiino



ePolMAlis~ andi rormpetr.1y verM@4e Mie pved~iefeon
forgula 1B Rot 14 aiht It APPeerg likely that a Worthwhile
Inproeveoct ever p@Bt prgdietiog met~odg can be mnh1@ved foy
tNGee design, mau~cui~ed operating Ceoditions of rolling
Learlmg@ wher@ @mperimeef~sl data suffic@ for tko determimaeioa
of par@etotr valueo required in the foriguis.
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Mi
32I



W

SECTION H!I

SYNOPSIS VF LUNLME~fG-Ph1.RG2N THBOUV E

The fitrt succebuful sygt :wstic attempt to treat rolling
hearing fatigue life aynlyl~iejlly was made by G. Lundberg and I
A. Palwgren In 1947, under gpona30orhip of Al ý- -S' GotheflhLge
Sweden (1)*. This work was further pursue.,' with a speciAl view
towards r~jjple bearing fat igue life and reported in (2).

This wovk of Lupdterg nad Palwigeen is zho basis for the
life prediction method standardized by the Ant i-Frict ion Bearing

__ II Manufacturers Associ&ceion (AFBMA) (2), thle AS% (4) and 150J (5)
for comaputing rolling bearing life.

_________ I FAILURF PROBABILITY DISTRIBUTION*

The following Is Lundborg9.Pa~wrau's developmint of the
Probability S(L) thut ai bearing ring will onrvivii to 11fo L.

___ S. In today's parlance Is termed a reliability funztion. Its
_ Brithinelic cowplewealt F(L) 1 S(L) is the cumalative •ýorm

of a failure probability function.

Lot X(N) be a hypothetical function which describes the
fatigue '"condition" of a differettial vrolumne &V of a ringq Or
rolling element material at a depth Z below the rolling surface -

____ after N cyc'les of stroes are eadured by that volume. Lot AX(N)
represent the change in the matorial fatigue condition within a
small nuraber of additional cycles 4N.

The probability that the Volurne develops a '"falluroe' (i.e., a
___ crack) ~~in tr.e interval (N, N-$-N ) i ae ob

The i-robability of not developing a failure (crack) in this
Interval Is the arithmetic complenont, of Equation (3.1), i.e.

1 f ~(N)).X(N).0iV

*Numbers Ia parantheses refer to the References at the end of

this report- _ _ _ _ _ _ _ _ _ _ _ _ _ _
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If AG(M) donotes the probability that the vOluge 0laueat
endureb N cyclas w. ithou Ngki 2h• •hn by the product !an of
probability theory,

15MA S( f(%(w))AX(N)'AV 0 (.2)

Dividing by. AN Qfid re e~r9R91dQ gives

AS(N+AN) - 6S(N) AX(N)- = -. ;( (N)).aS(N), a• a (3.3)

AN

Taking litlito as AN-O gives, by definition of the derivative,

A IS
S= -/(xw)-'A/ 0 '(.4)

49(N dW• • d N9

Or aince lA=-og ORe has:
dNAS(N) dN

Integvatiag both sides frow 0 to N and remgebering that
S&ASO)-= I ulves:

I og* A V UL AV-G(X,(N)) (3.6) . '

N ) (N)IA0

.=The pg~obubi~liy that tho entire volubie V will a~dure N cycles
:•__is (asstwiqg iudepeadonce of the volumeo lementa), the py'oduct of

i'U
the probability that the i ,ndividualelements will endure N

In equation form,
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"S(N) (3.0)

Using Equation (3 6) gives:

log I

As AV- O the summation becomes an L;tetgral and one ha,

log 0.4)

Cimanges in the material condition at a depth z are taken to
dopsnd on:,

a) macroatress '(N) which Is most dangerous from the point
of view of material fatigue. This stress is, bagod on
observations, tuken to be the alternating shear •tress
in the direction parallel to rolling,

b) th! material cor.dition T'(N),

c) the depth zI Thus the change in material condition dX(N) for a small
number of load cyclos dN way be writtew:

Sd___ - J ( (N), "T(N), z )(3. 1)
dNN

The reliability funotion 5(L) is un-qi4ely determined from
Equatlons (3.10) and (3.11) if the functions G and J are known.

It iR postulated that theme functions are power functions

a@ follows:
0 j

(0.12)

J(X(N) F(Nez) (,No iK(T(N),z) ( 3

Where g hai j are constants.
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From Eqmntlons (3.11) and (3. 13)

SZ
(X(N)) d)%(N) K(Tr(N),,z)dN('14

From Equations (3.10) and (3.12), the condition S(N 0) 1

Intu~egrht~ )aation of Equation (0.14) between the 11inits of 0 and N ;
therefore gives:

= f(T(N),z)dN (.5

-x ~intr~oducing j~ gives-

__ (N) ( (N , "N

UNing Equations (3.12) and (3.16) in Equation (3.10) gives:

0

If the amplittude T?(N) 1B independent of N, equation (3. 17)

Xm a H~ertz i ~t rus field a' Oivan 'neomtry, the valuo of rz)
at dopth 2 auJ coordinate pasition-v measured perpedieular
to tho rolling direction from tho midpoint of the captact

ellise iUgSyeu by: u

~~K~('~- ~,(3,19)1
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wher and 20 represent the mnaximumi ghesr Btress nmpli- IA
trde nad a ig the half axis of the contact ellipse it the zm

direction acros2 the raceway.m

Uig Equation (3.19) in Equitlon (3.10) gives:

wherp lo in the length of the raceway

Introduc;ing the change of variables F A V

gives: g Ueiz dq n Z0318) 0 ,(O (3.20)

where

.P -TO, (uv), z0V du dv

Using Equation (3.20) In (3.18) giveR.

Tho relationship log 1 or:

U•--IFN) i .,.5(N) 1 ioxp=(~ I

defines the probability diotribution of bearing lives when many
_ Identical bearings are poprated under Identical conditions. This

ditrributlon is today knoan as a (two parawetor) Weibull digtri-j b-ti-. Jt Is postulated that-

S+(TO, 2 ) 0.22)1

where c and h are uknknow poultive constants which satisfy
the Ictuitively reasonable relationship that:

S(N) To 1 if vo C)0 or Z° * "

U
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Using Equation (3.22) in gquntion (3M21) 91VOy I
-I---) - (3.23)

At this point in the dovelopmant, the q~nutitles 7o and Zo
are rated• through Hertz's equations for the contact of elastic
bodies, to the bearing geometry (rolling body diameter D@, raeowny
diameter Dn and raceway cu~vature in a planc porpendicular to the

- zrolling direction) the elastic conetants of the material (Younag'
modulus and Poingon's ratio) and tho contact forcc V. The conanct
forco in here assumed conant and Indepeadont of position on the

*= ring. The notion of an equivalent load Is later Introducod to
account for those coves (e.g. the stationary outog rin9 of a
radially loaded beating) where load varies with King pOStion0

Also introduced ig the number of contact cycles per revolu-
Setion u dofiled through tho relationship.

N = uL. (3.24)

where L is bearing life In millions of revolutions.

Fcr point contact, the hnlf-width of the contact ellipse is
Sreplaced by its expiýagson In teria of load from the Hertzian

eqnationfl,

la the 1947 treatmont, the half-width a for line contact

is tae•e equal to hroe quartoers of the roller length, •he
1952 extension of the work deals gpecifloally with roiler beariaUg
and Introduces o owne eprosaion relating stress and effective
volley length. •

For Polint eOnoptau thogo gubstitutiong lead (for the conuitet_
at either beaxinu ring) to-._

so+k-5 eh+-A

S(0.25)

Where 0 contaias bearino 9eowetricul par•otevs o poworw
vwhioh are linear aombnatloas of the expowents o, h and e. Th-

rolling body dinmeter appeargJm the funotio" 0, only in the I
for• 1a/d% where dm Is the pitch diameter of the rolling olewoat. I 3,
Thn survival pRobability given by XquatioR (3,25) is that of the
rlýg4roilllg cloiaat eootact. Both the ring and the rolling element
are oolosAdered equally lkhely to fail.

S.... .••. . ..
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QC Is defiae~a to be the Kiag 104 Q for WkIich the life
for the fixod value S 0 M is one vdiliion revolutions.

The life L10 for the same 2r-vivl probability under a

lond Q to foand from:

LIOI
The rolling element load Qis prcportionul to the beariag

load F, and honce, Ci or Co the dynamic capacity of the (inner or
outer ring) contuet,defined as the bearing load for which the
ring will endure one million revolutions witli a ourvival probabi-
lity of 0.90a is proportional to Qc. Accordingly, from Equai~ion

(3(..2):

2. EQUIVALENT LOAD

From Equation (3.25) the logaxrithm of the reciprocal of the
survival probability Is propoK&ional to Qtl, whore WME
and Q way vary with angular position on the beariaU ring, I.e.

In view of EquAtion (3.251k tho summring over the complete ring,U
of probabilities that in-tividuel rifig uegnienta of angular length

-- will survive3 given rise to..

W() 00d w q .1
log (4 , Q()L =e DL (3. 20)

wherein Q e UZ Q()* (3.29)5
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Qe iS thLIS 'the equivalent cons tant ring load for which the
rigq Contact sarvlval probability is the same as It Is under the =
spatinlly variable Ioiding.

A continuous load distribution, the components of which
integrate to equal the applied rrdial and axial load0 is Intro-
duced as an approximation of the discontinuous rollir.g elaefent
loads and the Integral of Equation (3.29) Is e'!aluated as a 0
function of the ratio of radial and axial load.

3. CAPACITY OF A COMPLETE BRiARING ii
The probabilitie. Si and 50 that the bearing inner and outer

ring contacts, respectively, will endure beyond .i life L under a
bearing load F are given by3

l10 = kP FwLe
SS0  (3.30)

0log - kFwLc• o (3.31)

where kic and k.are conatants of proportionality.1

The probability S that the complete bearing survives to
life L is the product of So and Sj hence

log = ( k 0 ko). .. (3.32)

By definition when in Equations (3.30) to (3.32) the
survival probability is taken Pal-ol to 0.9 and the llfe L I -
the loads will be equul to the respective dynamic capacities.

logo k, = kCo ( k1 +k 0 )-CW

from which it is found that

'-=--.L•C Co
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4. ,DET;RMBINATlON OF CO"STANTS IN T[E LIFE FOHMULA

a. Point Contact

Taking logarithms of Eqtuation (3.25) gives log log W- clog L
plus terms not containing L e Is the parameter characterizing
the dispersion of lives L of a sample of identical bearings opoer-
ated under identical ccnditions, e is today generally designated
as the "Weiholl slope" of the life distribution. Bearing life
test result& yield an estimate of e ar the slope of the straight
line which Is obteined when the percentage of unfailed hcarings is
plotted against life on paper so ruled that the ordinate is propor-
tional to tog log A and the abscissa to log L (such a diagram Is
called a Weibull plot).

From Equation (3.27) it is seen that the expenent p = a y
be determined from tests conducted under various loads P as the

slope of the line obtained when L and F are plotted on log-log
paper.

Finally, from Equation '3.28) the exponent r-cr-' may be found
an the slope of the line on logarithmic coordinates of the value of

Qc (or C) plotted against roller diameter Da. The tests nust, in
view of the fact that Da/dmi appears In the function 4, be run for
constant values of Da/dm.

The results of these three test series are then solved 5
simultaneously to give c, h and e.

b. Line Contact

-The treatment of the line contact problem given in the 1947

Tenwork (1) is amplified and obevlsed In the 1952 pub4l7ation, (2)

which is devoted exclusively to roller bearings. In this treat-
ment.- @he nontact load is €-kn to be proporti-I-' to the 1.1
poW r .' :tj aetormation; in t,,e earlier work . lUdear relation-
ship was assumed for line contacts. U

It was found that6 for line contact, the exponent p in the load-
life relationship is 4 rather than 3 as in the point contact case.

It is posgible for some roller bearings to have point contact
,: within one range of loads and line contact within another, It Is

even possible, under some conditions in a roller bearing, for the
roller to make line contact with one raceway and point contact

_ lwith the other.
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As a comproriise made for sirnplicity's sake a conaerr l ve
corip:Pm!ne exponent. of p -- I0/l Is assumed. The czpactty 1I
thereby nodified by a factor which is calculated so that
when line cont act prevails at both contacts the error in
using the exponent 10/3 rather than 4 is made as small as
possible over the most frequent.iy used life rarge. ,

in computing the capacity of roller bearings, a reduction
factor(X<l)is Introduced as an atternpt to account fcr the
stress concentration which may occur at reller ends as well
as the effect of Inexactly aligned roll.rs.

Another reducti.ýi factor 1<1 is introduced for thrust
loaded bearings to account for the effect of the greater
sliding andergone by the rolling bodies. In thrust Icaded
bearings, roller loading is not cyclic. but iemains virtually
constant, exacerbating the problem of rolling element sliding
and *-action forces.

5. FACTORS OMITTED FROM LUNDBERG-PALNGREN THEORY

Lundberg and Palmgren, in their preface, acknowledge the
?- -:- absence, from their development, of several factors known to affect

endurance life. Specifically cited as areas for future investiga-
tion are:

a) Effect of stress history
b) Work hardening
e) Lubricant effect on stress distribution
d) Effect of res idual stresses (set up In the rings by

interference fits)
e) Effect of edge loading in line contact.(2)
f) Effect of radial load on contact angle in ball bearings.
9) Effect 2f indexing of the ball rotational axis which,

since any given point on the ball IB cyclically btressed
for only part of the bearing life, results In a lesner
number of failures initiating In the ball material than
in the ring material

-h) Effect of surface traction (in thrust loaded bearings)
-) Effect of geometrical Imperfections on load distribution.

-- 'Many other life factors are, of courses absent frem the

Lundberg and Palmgren trentment without having been specifically
Senumerated by these authois.
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SECTION TV

VARIARLES AND NECGANISM OF ROLLING CC".T'Q.: F'ATIGU-

I FAILURE MECHANISMS (GENERAL)

The definition of functional failure in rolling bearings
depends on the application. Except in instrument begrings in
which torque is often the -nain criterion in definiug Ofaiiur.l,
the rqst common definitions of functi nnai failure involve visible
damage to the rolling tract. As an example of specific ijiterest,
the failure of many large radar auiienna pedestal bearings has
been fouan to fall under this definition !nvolving smearing, I
spalling and surface dlstress in the rollinq track. Fron these

broad concepts of failure, several groups of reasonably well
defined changes i-i the rolling bearings can bep identified which
represent failure modes (6).

The fS1llVre of a particular bearing is a consequence of
several competing modes of failures classified in Table 1. Acong
the modes of bearing failure, the present study pertains to the
prediction of contact fatigne life (mode 3 of Table 1). ',his is __

justified since wear and plastic flow (failure modes 1 and 2 of
Table 1)can he eliminated in most rolling bearings by sBitable
design and operation controls whereas cracking (failure mcde
No. 4) is not, specifically, a rolling contact failure. On the
other hand, all loaded xolling contacts are eventually subject
to fatigue failure.

The functional feilure due to contact fatigue is character-
ized by the emergence of a fatigue crack causing removal of a
sizable piece f iatal from #he rolli,, surface (spalling),
The spalling itself is preceded by the initiation and propaga-

• Lti•n of one czack out of possibly several, which arise in the
rolling element through stress cycling.

The present study considers that the fatigue process in
rolling contact is associated with the generation and propaga-
tion of fatigue cracks in the bearing material and the fatigue
life is taken as the number of cycles at which fracture (spalling)

oucur's. This is a concept taken from numerous fatigue studies 5
most of which are not for rolling contacts. Fatigue theories
related to fatigue crack behavior in materials can be divided
into two distinct approaches: one is the so-called "qnglneering"

R (or "phenomeanologlcal") approach (e.g., Manson (7), Coffin (8)
end Morrow (9) on low cycle fatigue and Dugdale (10), Peric (Ii)

on s'eet specimens) which is interested in quantitotive treatment
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Tabic I

FAILURE MODES OF ROLLING CONTAST3

U
W, Wear type faflures 1.1 Surface removal

1.1.1 Pa.,eoval of loose
partiCL.S (V'Wear')

1.1.2 Cj.elacal or electric.,I
surface refio-iul

1.2 Cumulative materiat transfer

between su'faces ("Smearing",

2. Plastic flow 2.1 Loss of contact geometry I
:'--:•_.due to cold flow

"2.2 Destruction by material soft-
ening due to unstablA over-IS~~heating -

3. Contact fatigue 3.1 Spalliing

3.2 Surface distress

4. Bulk failurcs 1.1 Overload Lzacking

4.2 Overheat crackir-g

4.3 Bulk fatigue

4.4 Fretting of fitted surfaces

4.5 Permanent dimensional

changes

'I
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Of macr) sco .i -arx ar blesi and the other Ji the fetall -rgic at
(r ý14croscopi c) approach (e.g. Laird (12), ioi:! (03) and

Sosakreutz OM)) which d(,als with the hasic microscopic
p.heiomenn such aa ditsocations, Blipbaiids and mrscrocraAk
ittkati)n in leaterldl. under cyclic rtrain. U

Both approaches teach that plastic occurrences, either
nmacroscopic (at(%h as in low cycle fatigue) or microzcopic(in
Shigh cycle fatique (19)) tre a source. ;C c.ack genPrati'nn sad

•pcopaqntion under fatigue loati•i V

Many attempts ltdvc b)een xade to relate quan1titatively the
fat igue life to tke ma 'itude of cyclic plaiic strain. In
published literaturc, quantit_ve 1ruatment has been made by
Hanson et. at. regarding crack generation and propaghtion in
notched spacimens (15) without takii1q into accoo t the micrr¢-
scopiý plastic behavijr. The prediction of the life for a

complete machine component has been found very difficult be-

cause of the complexities In geometry and loading. Peterson
i• (16) has ctudied quantitatively the fatigue probler In
turbine conlponentr lssoclated with cracking due t.o thermal
cycling by determining cyclic plastic strain caoiLspoiading tq

the condition of operation, taking account of stress concen-
trations. Rice and Brown (41) have attempted to interpret the

-fatigue fracture of loaded structural elements in terms of
fatigue crack propagation and to formulate the fundamentals
of a statistical theory in these terms.

9Q.-intitative treatment as described above has to rely

on many assumptions and phenordonological conclusions from
specimen tesating The bacic physical mechanisms of crack
generation and propagation in materials under fatigue loading
is of course a subject of much fundamental research in _

metallurgy. Nore specifically, cracking at non-metallic
Anclusiops has been a subject of considerable !nterest inbasic metallurgical studies but quantitative treatment carrels-

ting various macroscopiz quantities has not been available
for engineering deal 2 :, application.

From the reviewed literature, the following can be

gleaned:

In spite of the great physical complexity involved In
the process of crack Initiation from inclusions, it is well
recognized that non-nietallc inclusions are fo reat (or strain)
rai'sers and potential sites of plastic deforation. The o bover
described literature pointsto a close association between 3
fatigue life and the magnitude of the cyclic plastic 8train.
It Ray be possible to build a fatigue life model by predicting
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the number of streo2 cyci'gs needed to generate a Relf-
propagating crack as a fi.lction of the magnitude of (cyclic)
plastic atrai• at the Rt.rea raisers. The plastic strain is,
in turn, dependent on the macro-strain field and the inherent
characteris•tics of the stress raiser. Such an engineering
approach has been used by N-nnson & if-irochberg (15) and by
Peterson (16) to relate crack initiation life to the stress
concentration factor at a notch.

The quantitative deperh dence of fatigue life on fatigue
ductiiity and plastic strain czn be described as follows:

Coffin (8) and Manson (20) has investigated the fatigue
behavior In a tlde range of materials by strain cycling at

constant strain amplitude aljut zero megn strain. In the low

cycle rpgIon where failure occurs in 10 cycles or less, the
fatigue life Is found to be rolated to the plastic strain

amplitude by an equation of the fol-owing form for a!1 materials:

N 2N f (4.1)

where A total plastic strain amplitude

N number of cycles to failure
f

9 and z constants

Hanson (15) has extended the t-reatment of strain cycling __

data to cover the entire range of fatigue lives, fromi the low
cycle region where strains are predonianntly plastic to the
high cycle reqlona whte$ S,.4LAj1 -e predo•inantiy elastic.
-_ anson•s equation relau.Aa total strain amplitude and cycles
to failure is given by:

A-T As + A-cy N (2N ) + L (4.2)

where AsT total strain amplitude 5
As =p plastic strain amplitude

her= Ase= olautic strain amplitude

[ ind z = the same constants given In 9quation (4.0)

L a constant, (see Figure 33)
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where E young9B modulus

Vnd a constanit, ( see Figqtire 3:1

This gener'al equation covering the entire ran~ge of cycling

lives Is~ shown In Figure .33 nnd represent s a curve whi ch can be

expressed as the sum of the two straight line components. Th e-

steeper component to the left represents the plastic strain component

while the elastic strain component is represented by the line with _

shallow slOpe.

The fatique behavior of a material can therefore be charac-
teri;,ed by the foi~r constants of Equation (4.2) i.p. M, z, L,
and w

The plastic portion of the curve reflects the matrix-
properties of the material while the fact that the elastic-
portion of the curve slopes at all iE due to the presence of
defects. This latter conclusion follows when one considers
that, in purely elastic reversals of strain, nothing changes,
in thO metal to cause failurez. Since failure does occur in the
nominally elastic stress range, it moust be due to localized
yielding, probably in the vicinity of defects.3

hufailures in the elastic region are defect dominated.
The plastic region of the curve, however, is derived fromi tests
where large plastic strains develop throughout the bulk material,
While i~t is true that defects will exert some influence on this
portion ox the curve, properties of the matrix, e.g. s-train
hardening and ductility, will tend to dominate the results. The
predominance of matrix properties in the plastic region has been
confirmed by matrix properties in the plastic region and has
been confirmed by Morrow (49). lie states that little, if any,
difference can be found betweren clean and dirty steels of__
sfimilar processing and composition when tested In the plastic
strain region.__

Taus the plastic portion of the curve is suited to describe

the ductility properties of candidate materials. The intercept
of the p) nsti c st rai n li ne at 2Nf I (N o f Equati on (4. 2) ) and .
the slope of the line (z) are considered fundamental fatigue
properties by Wanson and Morrow. They have been given the names
"~fatigue duc-tility coefficient" and "fatigue ductility exponent"
by Mforrow (16).

It le apparent from inspection of Figure,33 that an increase P

In the Intercept vAlue (W). for a fixed slope W,) will trans-

late the line upwards, giving increased fatigue lives. SimilarlyI
a decrease in the slope at a fixed Intercept will rotate the line
upwards with the Oamfe effect on life.
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""2. V ABLES AFFCEU'•IG FATJL.E IN I ING CONTACT

Many vrariables have been found to affect fatigue lle of
raling bearings. Based •n the ,'urrcnt knowledge of the opera-
tine, lubrication, metullurgy and theory of fatigue fracture
of rolling bearings, Table 2 presents on extensive list of

"a"exte na " variable conted, tho fatigue life of a im

a roiling contact. These variables can be grouped into cteg.ories
as 3hown below:

a. Material Variable2

1) Factors that effect the material yield strength
and ductility: material analysis, hardness, soft con-
stituents (retained austenite, ferrite, halnite), groin
size, alloy segregation.

2) Factors that modify the applied stress field: _

residual stresses originating from heat treatment,
grinding and plastic flow during operations. I

3) Nateiial imperfections acting as stress raisers
such as non-metallic inclusions or imbedded micro-cracks.I
(Lenticular carbides which develop during bearing opera-

tion may also serve as localized stress raisers.)
4) Modulus of elasticity and Poisson ratio, as they i

affect raateriI rigidity and control the maximum stress

level.

b. Surface Micro-Geometry Variables

1) Surface imperfections such as grinding furrows, I
scratches and dents which serve as surface stress raisers.

2) Generaý surface roughness as induced by methods
such as grinding, honing and lapping, and as characterized
by a) amplitudc, e.g., the composite r.mos. surface rough-
ness defined as the square root of the sum of the squares
of the r.m.s. roughnesses of two surfaces rolling together
and b) a plasticity parameter of the asperities, such as
their typicel slope.

3) Compositional and hardness properties of the
surface.

4) Surface coatings.
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C. .D.Ign Varipbiles Related to Design Dintoonions

I) Rolling boay' design a14ch as rolling track lrrigth
(pitch di-nmeter), groove conformity, bali (roller) diaraeter
and number of rolling elements, contact angle, roller
length atd crowi.ng and _enadlng radii, accuracy parameters
influenc:ing load dlstrib.,•.ion, dimensicns controlling sliding,
etc. The.n variables af fece stress di•trlbution, gtrenged
Volume and nvi0ber of s8ress cycles.

P,- 2) Cage and a:ixIliary pqi s design as it affects
rolling element forces.

d. Operating variabi is 5 uzh as

1) Load magnitude and direction as it affects stress
level Anrd stressed vnlame,

2) Speed, as it affects lubricatJon (e.g., END film
thickness).

3) Temperature, as it affects lubrication and waterial
strength.

4) Lubricant properties, a) rheological properties, I
e.g. (I) vise.sity and (2) boundary lubricating ability
(chemistry, additives, etc.)

5) Atmospheric conditiJns, contaminants, etc.

The above listed variables are believed to be applicable
for rolling bearings of all types and sizes, including large
radar antenna pedestal bearings. I

3. MECHANISMS OF FAILURE IN ROLLING CONTACT

The ,iv-een• study is based on the concept that there are
t;lo compotian fatigue mochadlsms operating to promote spolling
failure in rolling contact, namely, sub-surface initiated

gilure and surface Initiated failure, In the former
the cracks are generated from highly stroysed sub-surface regions,
whereas in the latter, fatigue cracks are generated from the
ro'llng surface. Recent findings of wetallurgiual investigations
(6, 17, 16) support this classification of failure mechanisms,

Structural changes have been observed in bearing material under
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rap atcd ios~iiig i1L U•)o Th~ea structural chanaie5 encompas• L
(1) plastic deformation around sub-surface weak points (eog.,
"ThutterfltcY), which ind-catea that the micro-defccts act as
streso rniser2, (2) the formation of plastic deformation bandS
( Rhite etching aressI) in the sub-surface high shear 6tress U
zone signifying the existence of a regicn within which the yield
limit is exceeded for some volumen and (3) near-surface micro-
plastic occurrences at Asperities and at surface defects. I

Among the structural channge described, the formation of
fbutterflies" around inclsions ha8 long been closely associated
with sub-surface crack generation (1, 16). A similar associa-
tion betr'c;-, sZructuial chanjos and crocking has recently been
demonstrated for the near surface changes (3 above) and witu
some indirection, for the generalized changes (2 above).

The following summarizes current knowledge of the two i
fstltue failure mechanisms described:

a. Sub-surface Failure

The concept of sub-surface failure is well covered in•: the Lundberg-Palmgren theory (1) In which the fatiguecrack i. assumed to start from weak points, e.g., slag
tnclusions ina current terminology, these weak pointsg

give rise to the local stress concentrations and plastic M
flow in the surrounding matrix material. According to
Liundberg=Palmgran the vita of crack generation is the __

zone of high shear atreas in the sub-surface region of
a rolling element. Fatigue cracks are found to start at -

weak volumes and to grow under repeated loads until an
advanced stage of fatigue cracking is reached. This stage
is characterized by the distortion of the macroscopic
stress field due to the cracks. Eventually the destruc= M-
tive procoss of spalling sets in at one (or more) loca-
tions cauving removal of a sizeable piece of metal from

Lhae surface.

It is recognized that the formation of localized
plastic deformation around inclusions (i.e., the
"Butterfly" structure) is stress dependert. In (1),
Lundberg and Palmgron hypothesized that the attual
atressee at Bub'-surfac'cweak" points '4 the t'atorial
are proportional to the magnitudo of the macroscopic
stress and are modified by factors Oependent on the size
ind ricroscopic shoe of each of the "weak point;:
'..aclusions). Recent metallurgics! investigation has
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U
supported this hypothesis, e~g., Littman and Widner (10)
pointed out that each nor:metallic Inclusion has Its own
stceaa conceatration factor which depends on the size,
ghnpe, physical and mechnnica! properties of the Inclusinn;
Martin and Eborhardt (17) have shown that "Butterfly'
structure can occur at locations where the calculated
"macro' strosss are below the threshold level of plastic
flow indicating chat inclusions are stress raisers.

b. Surface Distress and Surface Initlated Fatigue

The above duscribed sub-surface failure will occur for U
any lubrication and for smooth surfaces (thick clasto-
hydrodynamic films). Under such conditions, life to failure
anpears to be indepeadent of both lubricant and surface
texture. There is, however, an altogether different mode
of rolling contact fatigue referred to as surface distress
(6, 20). Although surface distress does not imply raceway
destruction, it is a precursor and often a precipitator of
spalling failure, apparently by generating severe s|irface-
adjacent defects (about 100 jLin. depthi which then serve
as crack initiation points (6). Metallurgical evidence
has shown that this ".urface distress" involves a type of
plastic working end subsequent fatigue microcracking of
the immediate surface-adjacent layers of the metal. The

occurrences of near-surface plastic deformation are of the
following two kinds: o--l

a) Wide-spread microplastic flow at surface asperities _

caused by asperity interaction;

b) localized plastic flow at surface iwparfections,
such as grinding furrows, scratches and debris dents.

Regarding the occurrence of near-surface plastic defor-
mation, Tallian (6) has suggested that it is controlled by
the elastohydrodynamic lubricant film and by surface rough-_
ne•s parameters, e.g., the composite surface roughness r.m.s.

and a typical asperity slope angle. in (6) it is hypothe- _-

sized that the near surface plastic occurrences are a conse-.
quenee of severe interaction of asperities. The approach of
the contacting agperities depends on the melnt E111) film thick-
ness defined as the distance between the mean line of the two
asperity profiles. The degree of approach determines the
severity of the plasticity in the asperity.

It has also been reported, based on recent investiga-
tions of failed bearings (17), that for rolling beurings
made of improved clean steel (obtainable by the vacuum
melting process), a larger fraction of failures is found to
be associated with the surface defects. This is because of
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fewer and amaller subsurface non-igetallic Inciusions beino
available to initiate fatigue crecks in clean steel; thus
the role of surface defects becomes more important.

4. FAILURE PROCESS DIAGRAW (ROLLING CONTACT) UU

"Taking into account the previously described failure i
variables and failure mechanisms, It is pissible to draw a
dingrnm of the rolling contact failure process, Figure 1
shows this diagram which depicts the interdependence of the
variables and their effects on subsurface and surface initiated
spelling occurrences. This chart is a brief, self-explanatory,
illustration of the previously described failure process,

The interacting effects of the variables are shown In captions
enclosed in the rectangular blocks of Figure 1. The arrows mounted
on the lines signify an effect. I

The "terminations" of this flow chart, shown on the right

hand side of Figure 1, represent 1) subsurface spolling occur-
rences controlled by jjkLsurfce crack initiation within a
stressed volume and 2) subsurface spelling occurrences con-
troiled by the srfac crack initiation within a stressed area.

The stressed area and volume are determinod from the
quasi-elastic subsurface and surface stress field. Subsurface
(or surface) crack Initiation is affected by subsurface (or
surface) weak points and the magnitude of subsurface (or
surface) plastic strain~hIs, in turn, dependents on the
quasi-elastic stress field and the material yield strength
which have the effect of controlling the amount of plaotic

deformation for a given stress field.

DActility is believed to have tho ability to suppress
crack itiat1tion and propagation An a material matrix under
a given cyclic macrostrain field. It is, of course, a matrix
parameter.

In Figure l, the variables listed on the left side consist
of two kinds. i.e., 1) material impurities and surface imper-
fections acting as weak points and 2) the variables affecting
Lhe macrostress field in the material.

] The following describes the external variables which affect
the macrostress field in bearing material:
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a. The effect of design variables (dimensions), elastic

modulus, and load on the elastic tncrogtregs field has been

well covered in the Lundberg-Palmgren theory (1) based on the

application of Hertzian theory (32).

b. Residual stress serves as P stress wodifler,

c. The lubricant properties. speed and temperature At
the rolling contacts are parameters which have been found
in recently developed eloatohydrodynamic theory to affect
EBH film thickness. Rolling contact experiments have
shown (40) that the EHD film thickness and surface finish
(characterized by surface roughnezs 5S and asperity slope
angle) have significant inltuence on the occurrence of

surface distress or near-suriace micro-plasticity (6,44).

d. The effect of speed i.e. strain rate (or the time
a material element is under stress) and temperature in the
highly stressed volume (or surface) on material strength
is hypothesized on the bas.is of non-rolling contact experience.
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SECTION V
U

FORMPLAS POR FATIGUE GCACK GROWTH i

Both sa'-sorface nnd gurftcc failure mechanena ro-utro c g
crnck AnItilnton phaee foeloaed Ly a crack propagation phase to
reach the point of a functional failure (apelllng) of e rolling
element (6).

The crack Iaitiation in material under cycling streasing 1g.
In general (e-xcept in gharply notched @pecitiaus. s process re-
quiring many cycles of stressing. The necessary conditions for
crack Initiation are generated by pleatic deformation arouad
water!ig iuhomogeneitles or stress raisers as a result of cyclie

stressing. The crack Initiation phase can be defined as that _

involving the formation of cracks on the microscopic tcale. It
i usual to consider that this phase Is ended when a aelf-propa-
gative crack emerges at the site of crack initiation, I.e., one
which propagates without further influence of the original defect.

An analysis by Hanson and Hirschberg (15) postulates that
the time to the Initiation of a fatigue crack depends on the
magnitude of the cyclic plastic strain at the strain raiser.
The strain taisr considered in (15) is a macroscopic one, i.eo,
a notch in a specimen. As usual, the fatigue process is divided __

into two stages, I.e., crack initiation and crack propagation.
A certain crack size, called "engineering size', is used to
demarcate the two stages, It was found that when an "engineering
qizo' crack emerges, at the notch the controlling strain for
further crack growth no longer depends on the strain concentra-
tion factor at the notch bul on the noeinal afraid in t~e speci-

wela Because the strain range is relatively high at the notch,
the role of micro-doefcts can be neglected. The concept In
this analysi Is u~oful In understanding crack Initiation In•
rolling contact, althougfh It Is realized that in rolling contact

material the strain raisers are actually all microscopic.

In roiling contact the micro-defects can be treated, for
convenience, as strain raisers. Little Is known about the
cyclic strain concentration near a microstress raiser, that is,
for a given real inclusion, there Is no adequate means to know
either by observation or by analysis the strain raising factor.
Metallurgical experience (3) hae shown that the size of an in-
elasion has a large effect on crack intiltIaon life; other
variables such as shape end content Iay also have an effect on

crack initiation. The size and shape of the defects present in
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Ira goy volume Of ne~al are &fohantic quantitipeS.This CA IIs
for a g~tltstictal troaetme in ighich the cyclic strain ra~ising

factor oF 3everity (designated an d) of a defeect as a function
of its size, ghape and content, is Introduced as a random variad]e.

lit forniulatiag mathematical models of rolling contact fatigue
for the surface Qnd smb-surface failure inechanisms, it is hypo-
thesized that the fatigue cracks in both mechanisms initiate frora
micro-defects or 'weak points". In the sab-surface failure mechn-

nisms, the micro-defects nre embedded ii the matrix waterial

ahereag ia surface failures pre-existing surface micro-defects
and surface fatigue cracks are considered as the weak points of
a surface element. This Npre=exigting micro-defect hypothesis"
is postulatedý of course, only for hard steels as used in bearings.

Current concepts of metal fatigue assert (22) that the
coftrolling parameters of fatigue life are the applied cyclic
strain and material ductility as they influence crack growth.

0he rate of growth of a crack is denoted by dA/dN where A is
the instantaneous crack area and N is the number of stress cycles.
It in hypothesized tbatthe growth rate dA/dN of a crack is depen-
dent on the plastic microstrain go and ductility, D, prevailing
In the viciaity of a 'defect' cotiesting of a~pre-existiag
original" defect and of the crack initiated therofrom.

i• d•~ ~ A ( •c .0 ) 5)

dN (51

The ductility D has been defined in static teut a@ (21):

.ig(AO/AF) log 1-9-A. (5.2)

where A.@ and Af are the initial and final area of the fracture
cross section in the tenaile test, and S.A. is the conventional
reduction An are•a,

However, there exist other ductility related quantities
t hich can bo defined from fatlgue test@. It wao shown by Coffin

(8) that a straight line results when plotting the logarithi of
cycles to failure against the logariLhm of cyclic reversing
plastic @train In speciwen fatigue tests, i.e.,

ZI
SP ( N) (5.3)

Air



w.er 0 Aep, the reveroed cyclic plastic, gtraI4
Nf numberof cce oflný

M a magterial const~ant colled the fatigue ductility

ThnsR and zare ductility related constants which can be
Aetermined from specimen tests of material, The Pbove intro-
duced quantity 0 can be considered as a fanction of W and z.

It iL; kinown (23) that increasing hydrostatic comprebeion
Increases material ductility. in the above fnrmuln, (Equa-~
tion 5.) the berieficial effect of compressive hydrostati!z
stregs can be taken into account by the use of the ductility
Dl existing under the given stress conditions,

The hypothegia excpressed In Equation (5.1) takes account
of the facts that (1) rnlcroplostic deformation Is a criterion
for fatigue crack generation; and for a given ductility. the
crack generation rate increases with the inagnitude olf ~yclle

-- plastic strain aroplitude at tke stress raiser and (2) the
generation or the growth of a crack is controlled by the
waterial ductility, i.e., highly ductile material cracks
less rapidly.

It is assumed that there exists a macroscopic strain cor atj the location of the defect if the defect were absent so
that a quantity called "defect severity' can be defined as
the strain raising factor operating on e@ to give the strain at
the (sub'=surface or surface) defect. (3, the severity of a
combined defect and crack is hypothesized aso a !unction of the
original defect severity, d, the instantaneous crack area
A and the size of tho streoged volume (for sub-3urface fatigue)
or area (for surface fatigue) S.i, .

T40 severity of 9oenlized plastic stroin concentration
around the defect (as demonstrated e.g. by 'Butterfly'
istructure) is dependent on: 1) the strain raising properties
of the defect, 0 2) the macrostrain e asssuming the strain
raiser is absent and 3) the yield strength (Y Y 6' the matrix

t 8 i defined an total (elastic plus plastic) macrootrgin,
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1 'It'oduCing Equations (5.4) and (525) into Equatinn (5AI) nnehos;

d A - A (e, e 0 D) (5y6)
dN (5 6)

it is Convenient to Bepnrnte the variables influential in crack
growth into two groupg: variables retated to defects and
matrix variables, In Equation (5.6), .is the variable related
to defects wherensaay and D are related to the matrix. For
simplicity, the matrix effects are conaolidated into A single
function V ioe.

-dA A (e, y),
dN

Y oyD (5.7)

Aoaume that the crack growth Tate dA/dW can be expressed as a
product of he severity Aunotion and the matrix function, i.e.:

dA = Y(5.8
dN

-Uting this designation, the defect function plays the role of
a •proportionality constant' between the crack rate and the
matrix function of the macrostrain co the ductility D and the
micro-yield strength cy ° This proportionality constant is,
of course, an iLvherent quaiity of a given defect.

in the crack initlatlon phase, the effect of stressed
area S on 0 can be neglected. The function @1 can be
written as a product of a function of d designated byF(d)
a function of A, designated byfI(A)o Thus one has:

S=fT(A)"r(d) (5.9)

and d.A = f ( )F d '¥ o , , o

dN

In the crack initiation period, the matrix materia4 para-
meters oy, D @nd macro-straln ao can be considered to be

constants with cycliug. Letting vl be independent of N,
Eqaatioa (5.9) can be further written as follows after inte-
gration with resprýct to N: 9

f (A) = NI, Y1r (d) (5.10)
Y I '
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A quantity r I repro•senting thc numbei of StrcSs Cycles
rcqui red to reach a crack aize Ap may be defined from:

f A P N I YlI'(d)

whoie fT represents a function.

Since Ap, the self propagating cra'ck sAze, is a

cionstant, Equation (5.10) implies that for a j;tven defect with
severity Id" exioting in the highly streosed volume, there is

a corresponding life NT to crack generation In numbers of

cyz-leri, associated with this defect. Thus, Equation (5.6) can

be -olved for Nyr,

_ fj(Ap)
N1 SNf =)(5.12)<-•Y rl (d)

The function r(d) can be assumed to be an increasing

function of d, thus increasing d corresponds te decreasing
NI. Equat.ion (5.12) implies that every defect has a life

associated w4th its defect severity for a given matrix

factor Y1. Figure 2 shows a schematic representation of

growth of micro-cracks from defects of various severities

and the dependence of cycles to self-propagating crack genera-

•ion, on original defect severity d as defined in Equation

(5.12), provided that the matrix parameter is the same for

each case. The graph shows that increasing d corresponds

to increasing slopes of the curves plotting A against N

(i.e., the crack rate) and shorter life to crack generation.

The degree of conoentration of the plastic straia around

an original defect diminishes the distance from the original

defect. One can define a macroscopic size of the crack beyond

which the crack propagation rote is dependent only on the

plastic strain at the crack tip and no longer on the plastic

strain around the original defect. (An analogy of this case

is given in Manson's fatigue life analysis of notched speci-

mens in (15)I. Thus, for large A, it can be assumed that the

.everity of a 'defect after N cycles" is deleadent on the

instantaneous crack area A and the applied @train c but is

indepeadent of the original defect severity d. The propaga-

tion of a crack of this size constitutes Phase 11 of tha

fatigue process. For a large crack area, an increasing ratio
A/5 corresponds to an inczense of stress concentration at the

creek tip, For such cracks dA/dF% increases with A/S. Taking

into account this size effect, we assume that the severity
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gi
fmnetion 01 In Phasp 11 A~o aproduct of fn iuction Of A
ga f~inciorn of as foilnwfl:

MA•. =•I(A, S) yj1(@, 0, a

where the use of the fUnction Y17 denoteOR the fact that this
.,nction may be different for the propagation and initiation Iphacco.

attegrating Equn-ýion (5.13) gives: j

wher2 N now represents the number of cycles measured frord
the osnrting time when A = Ap, Equation (5.15) becomes upon
Int egrati on

f (A, A/S) y ( 6(5.16)

Tin', crack area reaches critical six* A. after All cycle&
in Phase 11 where, from Equation (5.16):

rill = fl, (A,Ac/S)/yI (l1)

The total number of cycles NL required to produce a
crapk of size Ac is:

NL NI + N 1  (5.19)

Neglecting any additional cycling requirea in Phase III for a
crack to grow from size A0 to produce failure, rL represents
the life in cycles associated with a defect of severity d. It
is not yet known whether the amount of life thus neglected may
be appreciable.
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hi|jl Euni~orv C2)e (5 0'i7) 1qu tion (5M18) becomeo

N (h) f1((A.An/(19)NL Y,-rid) Y

Equation (5.19) It purely deterministic in nature, that Is,
if the functions are all known and the ductility and stressed
area are prescribed, then Ecquntion (5.19) will liold the "
number of cycles thot elApse until a crack emanating from a
defect of designated severity d situated in the stroee Yield
Bo as to be subjected to a strain e., achieves the areo Ac *

It has been shown in non-rolling fatigue toeting (22)
that the crack initiation phase has higher dependence on applied
stress (or strain) than the crack propagation phase, which implies
that the increase of stress level will shorten the crack initia-
tion phase more rapidly than the crack propagation phase ( (24),
(25))ý Thus the Phase I/Phase 11 ratio docfeases with increasing
stress level.

ThT- formation of a spall from a critical sized crack is
considered a rapid process associated with cleavage and dimple
rupture (27). it is recognized (26) that final fracture is a
complex subject in itself, especially, when large plastic strain
Is involved. It is assumed that the critical crack size A. is
related to the size of the stressed area S in a rolling element
cross section:

A kIs, k. const. (5.20)

It is assumed that afteT roeching a critical crack size
the fracture enters a new phase, i.e., Phase YII, which involves
a relatively rapid crecking (6pulling) process, resulting in a
visible spall on rolling surface.

64
• 54

I!



*1i _

SECTION V1

STATISTICAL~ THERY O~7F ROLLING
ELkEMENT FAILURE~

1. G•Ng~AL

Figure 2( 11autrate, oore fully the Meaning that attaches to
some of the te~r Introduced previously and required in the Bubseo-
quent development.

View A in Figuro 29 is an arbitrary cross section through n

rolling body showing the area S of the highly stressed volume
defined to be the volume within which the stress critical for

fatigue exceeds a designated mangnitude.

The highly stressed zone is divided into a large number of
cubiral cells of small volume, The volume Is so selected that I
within it can be contained an "engineering sife" crack as it exitst

t the end rl faclure Phase I. aech rf these cells is considered to
contain a defect fror which a crack ady initiate.

Defuct ieverity, as defined In Section V, is a function of
a defect's size, shape and composition.

In effect, uzder this model, the ring Is assuced to be b ilt
solely of cells containing defects, each hgvlng different severity.

Naturally fre clean steels e large proportio of the cells will be
occupied by defects having a severity close to unity, (i.e. with no

effect on the ftrain at t ie cell). d

View 0 of Figure 20 is a side view of the rolling body

stretched out into a rectangle. The length denoted by Is is the

circumference at the ne 1trf! axis of the tolling body cross
section. View B also shows how thý3 stressed area 5 varies with

U
the coordinate y for a general loading conditioN.

Equation (5.12) of Section V states that each cell In the

highly stressed zone of the rolling body has asaociated with it a
number of stress cycles required for a crack originating in that
cell to become of critical size. Equation (5.17) defines an addi-
tional life Increment NIX for a cell's crack to grow to critical
size.
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The lives N1 in @ny set of cells are stntiotically independent.

The Phase 11 cell lives N11 nro not necesserily independent

of each other. it Is highly likely that the Nly life of one cell

will be altered if a crack in a neayby cell complotes its Phase I

life and the crack nxtend3 beyond the initial cell boundories.

Without the independence assumption the problem of finding the

probability distribution of the rolling body life is quite complex.

The treatment which folliws will focus on Phase I life under
the assumption that Phase I1 life is either i) negligible compared

to Phase I life or ii) constant for every cell.

The Phase I life predictcd by equation (5.12) is a deterwin-

istic function of the defect severity and the operating variables.

Stochastic considerations enter when one considers that the

defects in a steel matrix vory in their severity.

Every defect in a rolling body has a potential Phase I life. _

The rolling body life is the smallest of these. The defects in any
one rolling body constitute a sample frow a population of defects
with varying severities. The defect producing the smallest Phase I

life will thus vary randomly between roiling bodies so that the

life of a randomly selected rolling body is a random variable.

We seek the probability distribution of rolling body Phase I_
life over the population of rolling bodies which are subject to
identical material, geometrical and environmental copditions. At

this stage in theory, we ignore the (relatively small) variability

betweer and within components, of the rantrix properties such as _.

yield strengths and ascribe the variation in life between rolling

bodies to the variability in defect severity.

2. DEFECT SEVERITY DISTRIBUTION m

SThe severity of the defect, situated at coordinates x, y and

z,is assumed tu be a continuous randow variable independent

of the defect location coordinates. That is, a defect having given

set of x, y and z coordinates (group of vol:tme elements in the

rolling body).
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Let F(d) denote the cumulative distribution function for

defect severity. T~er the probability that tho severity d, of t.P
defect located at coordinates x. y and z is less than a value d, 1
givcn by the continuous function F(d).

=0 ;d< I
Where d, represents a realized value of severity and where the

loft hand side in the above statement is rood: "the probability
of d 1 <d given a sot of values x, y, and z is..

The fact thmt the given coordinates x, y and z do not appear
as parameters in the expression for F(d) etates what was said above
about the independence of the severity distribution from the defect
coordinates.

___ Surface. as opposed to subsurface, defects pose no special
=__. problem at this point. They simply represent the special case z=O,
___ where the cells on the surface degenerate into square platelets
_-_ of negligible depth. No inforwation presently exists

concerning the functional form for F(d). Two forms will be advanced
_-_ in Appendix VI which satisfy some plausible general conditions that

any defect severity diotribution must possess. Other distributions
just as plausible may be found howevere and experimental information
is ultimately required to choose between candidate severity distribu-
t ions. Nonethelesg, valuable insight can be gained regarding the sta-
tistics of possible failure, without precise kriowledge of this distri-
bution,. The discussion will therefore proceed in terms of a general,
unspecified, severity distribution F(d).

3, DISTRIBUTION OF "DEFECT LIFE"

From Equation (5.12) one may find the relationship between
a defect's severity d and its phase I life NI as follows:

d r ( )(6.2)
N

whore

r - denotes the Inverse of the function r (d) defined in Section V,

B . . is a non-random quantity depending on APP €oy and 9.

YI•
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Equation (6,2) may he usod to transfcrm the digtribetiOn Of
defect geverity Into a d tribvtion of life aa9ociated with th"
defect population.

A5sumI!• that the function i is a single valued and tenotont•

cally increasing function of d. one may write2

G(N 1 5,yz) = Prob N <MI ] Prob f 1 r ( N (6.3)B

Froe equatioil (6.1)

G(N11 X,y, Z) = I-F[F (6.4)

Equation (6.4) is the distributior of life at coordinate

pooition x, y and z associated with the population of defects

having the severity dictribution of Equation (6.1).

Of course in any given rolling'body, the volume Clement at

x, y, z will have a specific defect severity and hence a determined

life calculable frow Equation (5.12). It is when one considers the

varying values of the severity of the defect that can occupy
the cell located at coordinates x, y and z in different rolling
bodies from the population of such bodies, that a distribution of

cell life resultg. '

Every cell has, associated with it, a distribution functiOR of 0

the form of Equation (6.4), wherein the parameters (since they deo

pend on D, go, and S) will depend upon the location of the cell.

The life of u complete rolling element Is identical to the

life of that cell which, of all the cells, has the shortest Phase

I life according to Equation (5.12).

From probability theory, the probability that at least one

cell produces failure before NI cycles is the complement of the

probability that all cells survive beyond N1 cycles,

Assuming Independence of the cell lives, (as one way,

for Phase I life considered here, based on the choico of cell
size to include completely a crack of "enqineering size"), theE

probability that all cells survive is the product of the
probability that each survives. Thus N (NI) is given by:

H( = I I[_G, (N1 ) (6.5) -
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where G dpnoteg the. distriuul~olj of Equation (6.4) at the J.-th
cell in the straicture. The symbW Nr denotes that the termg
evaluated at each cell In the structure including the surfac,
calls are to be multiplied together.

Equation (6.5) Is of great generality and could be evpluated3
numerically for any general shape and loading condition if the
functions in Equation, (6.5) and the severity distribution @f Equation

(6.1) tiere knowýn,

These functions are not presently known however, and may
not be practically determinable In the near future. One has as a
recourse, the option of making plausible assumptions of the 6akaonwf
function forms.

In view of the uncertainty with whieh any function can be
asgumed, It Is preferable In this regard to limit the number and
restrictiveness of such assumptions. In partieulur it i~t preferred
to assurse, if possible. only the asymptotic behavior of aI
given function rather than its specific form since this merely

limits the poessile functions to an admissible class.

At the present state of theory, we will restrict the discussion
to applicntions wherein the distributions GI(NT) may be considered
identical foir @ll valueb of 1.

This correspondg to the Lundberg-'Palaigren assumption on failure
locations for the ease of thrtst loaded bearings. The Lundbherg-
Palogren assumption is, broadly, that all points insidge a highly
stressed zone are equally likely to fail and no point
outside this zone will fail. For a tbrust loaded bearing, the
highly stressed area Is the some In all cross sections, and thus

the above stated ctue applies.

4. ASYMPTOTIC DISTRIBU2TION~ 0" SMALLEST 02FECT LIFE IN A ROLLING

If a random sampie of esie Au is drawn from a dlistribution
having a distr'ibution fmnction F(x) the ordered values x., met

go,, (Where , X1 X5., <. x X) are themselves randow
vnr1@61eg having -, distribution, over repeated samples, of a form
which depends upon order nuober I, sample size w and parent dis-.

tribution F(X), M
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.4P~rticular for A 1, that -a for th@ 818lesý memer of
tho seapie, the dgtaribbtion FI(XI) is gives by, (45) I

1 (6.6)

Ai~ thb ffaple size im Increasoes the distribution P'1(X1 )
mnider ,ather geneal conditions converge@ to a specific form. In
the catt vhern it doea converge, it will convorge to one of three
distributional firaq, depending upc the behavior of the parent

distribution F(x) in the vicinity of the smallest ad1issible
vglae for ; (See Gufbel, (47) p. 162).

The Weibull disri;'utlon is one such limiting form roa the

diatribution of sallesat -aIues and it is applicable to pxrent
distributions which have fUlito admissible values. in order for

the distribution of X1, to cbqverge to the Weibull distribution,
the parent distribution F(x) mest behave like a power functiou in x

in the vicinity of the minleum almissible value , that Is:

F(x) - •(x--x 0 )k (6.71

Where B and k are positive constants oan- xe is the seallest
admissible value. If Equation (6.7) is satisfied. it has been showI

(Epsteil (2)) that for x<x0, FI (x") has the following form:
F!(• ~I) -exp f -00(x-•)](,)

Thus the dlstribution of rolling body lives (shortest defect

lives) will be eilbull distributed if the parenL .aistribmtien 01

cell Phase I life G(NI) satisfies the condition @f Eqnation (6.7)
wherein the minimum Phase I life correspondin.9 to infinite

defect severity is '0.

lim e R = jifim -~r I (6.9)

If Equation (6,9) is gatisfied for the actually applicable functiona

F and r, the distribution ul (rix) becomes, by Equation (6.a): I

UN I) exp [. (Ni)k = 1- (6.10)

where N l/(0/0)-

Sample size w is the total number of defects (cells it a Tolling

body.
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ken~ting the Humrbov of defectg eýr §flit vo1uwo by 1,one 198s:

Sia = 11V (6J.1)

SmbatitmtIng (6.!1) in (6.10) gives

H(N} :7 l-exp- (~ )•( o5

Equation (6.12) show, the stressed valume appearing as a

scale pnrameter of the 1elbul1 distribution. This is the voluae

effect of the Lundberg-Paimgren formula, which Is believed to be

in good agreement with existing ball bearing fatigue data.

We have now sown that the Lundberg-Paligren formula Is

compatible with the fatlyue failure model developed above under

the resirictiona -n the two functions r and F embodied in Equation

(6.9) above.
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SECTION 1/TI U
MACAS5RUOPIC STRESS CALCULATION 1011 T1IE HIGHLY STRE5SEP V/OLUMES

IN A HEMaTZAN CON~TACT

amplitude 01 @hear stress corrolgtars with life (1,29, 4,3). Tkis
assmmption was used by Lundberg and Pslmgrern (1) who stated that PA
most subsurface fatigue cr'ackg are generated at a depth equal to
that of the re-vernanlg asienT (at the central circumferential plane).-
Lgtezp Greenert (20), in testing toroids of various curvaturese
foand that the reversing shear range gives good correlation withU
fatigne life. In available literature@ the shear stress has
been determnied oaly for the central circumferential plane of a _

rolling element on which the maximum shear range to equal to that
of orthogonal shear stress (TZ). Since the fatigme life is
Closely related to the highly stressed Xolumea it i& necessary to
know the volume of material subject to a certain level of shear
rapge for P given applied Hertzian land. The determination of
this volume requires a knowledge of the stress distribution3
under a Hlerizian load.

A computatioR of (reversing) shear stress range in a

Hertzias elliptical streas field has been performed. Previous

x = @ te searstrss s mximu ina paneat kewfidistance
belo th sufac andparllý.l o te XYPlao. s-sownboloku

th ategaig her tes fr terplneo(xý0 I oximou-_

on pasesInclned o th XY-plaa, an theefo rc15not oreno-

mine the stressed volume at various stress levels, coasidoring I
the shear range as the critical utresR.

The basic mathematical formulation for the subsurface
stresses at all locatioun 12 a flertzian stresB field Is presented
in Appendix 1. These formulas were- developed by Lundberg and

5joyall in 1951 (34).u
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The curreat co putatlon involves the determinntiona for qfly
point IV 0 cross Raetion (perpendicular to roltIng direct onL of
tbhe-fnge of maximu shear strees ( "r) acting in the direction
of rolling at a certain value of y (where y 15 the distance fromr
the central plane of symmetry in the direction of rolling) but
on any plane inclined to the surface (with an ongle (1). The
determination of the values of y and Ole at which Tois ImnaEmuM,
requires an iterativemnximization process.

The following stre6s analysis was conducted: I
a) Based on the equilibrium of stresses acting on a sub-

surface element shown in Figure 3, the shear stress
acting on an arbitrarily inclined plane can be expressed
as the combination of two orthogonal shear stressee

.•y and erxy i..

=zy cosO + ixy Sir -

where Tzy and Txy cam be computed from formulae available in
(34) for given values of x. y, z and a/b (the ratio of Major axis

and minor axis of a contact ellipse).
Since both .y and vzy are odd functions of y, T•' is also

an odd function of y. Both Tx" and T'y vanish when y 0.
Furthermor, silnce TXy = 0 for all y w hena =09 the amp. Atude
of F013 equal to that of T at the central plane in the direction
of rolling (where x = 0). hi justifies Lundberg's analysis_
(1) of setting the amplitude of Tzy equal to the maximum shear _

amplitude for x = 0.

b) For given values of x and z the m@ximum value of 0
can be found by setting:

7 ce 0 Cois y.sin 6 0 (7.2)

and

_dy r(• y)Sin 0 0 (7.3)

These two differential equations can be reduced to:.

Sd (2 + 2 I2
dy xy ZY
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t~h1I c implies that whon -,2  -f 2Xy EIsl mxmumi, 711 is also a
RQUiMuM. Thereforeq a value of Y1, corresponding to Isfaximum

Y2  ÷•y caa be found from the stress calculation Bad vsing
thO ltUOS of ¾y and Tzy st y = Y19 the value 0 = Qi for which
%1 im naxinun can be derived from Equation (7.2)

ose. to.n a 7 (7.4)

The mAgiMUM @hear range is equal to: A

2(• ) T2( 'r)

-oUsing the values of 01 and Yl thus obtained, the maximum
Talmo of To can be obtained from Equation (7.1) after substi-

-ifing a digital computer, numerical computation has been
made for values of Ty, oZy and •' (in terms of the maximum
contact pressure Po ) as functions of y/a and §.

Figuro 4 plotBo from these computations, the variation of
Sas a function of X and Z• or a contact with a/b = 10.

The variation of 01 as a function of x and z is shown by dotted
curves in Figure 44

At x at all of theya and 91 curves very nearly inter-.
gectý. This indlo• ta that at x/a = 10 the maximnf stress
range Is Oquu! to Oo04PO independent of depth z for the z values
BhoUR In Figure 4 Further, the plane on which the maximum occurs
Is defiuod by 01 350 inldependeat oi Z.

Figure 5 show@ the variation of T and T with y at a
fixed location In the ring cross section, i.e. afx r- b and

0. 6b. Figure 4 shows that for a given depth zo the shear
Stroea range 1 ledOches a maxilmu at x = 0 and decreases mono-
tonically with X.

Ua@ig the nethod deocribed above, the co0tours of eq•al shear
r•.age oa a rlng crons nection for a given Major axis'/ minor axis
ratio (characterizing the contact ellipse) can be drawn, based on the
values of @hear rango coeputed for a largo number of grid points
equally spaced in the highly stressed zone of a ring cross section,

Figure 6 shows contours of equal 5hear range for the ecoeon
triclty ratio R/b1O representinv R typicel ball-race contact of
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t deep groov.e ball benring. These coi Lours are drawn based
aa 00 qri4 point syitec in a quadrant of thc . plane
cGoutiaioq the major axis of the contact ellipse. IL is noticed
that the ohear riage along x = 0 is very close to that ina can
tact of two iafinitoly lone cylinders.

A lieitifq case for u/b has been do uced from formulas in
(34) which corresponds to nn infinitely narrow contaat ellipse
•(ee Appendix 11.) In this case, t•he stress distribution in the
central circuqfeoretial plane ( = o) it identical to the plane
strgai solution for a Heraian two-di~ensi-aal contact. Using the
results of the limiting case. it is pqssible to plot the valnes
of she@r range on a plane elth coordliate@ x/a and z/b.

Figure T shows the contours of equal shear r@ange for a/b =
i.e. an Infinitely narrow contact ellipse with its major axis
lying on the X-axis, perpendicular to the direction of rolling.
By comparison with Figure 6, it Is seen that the contours of
equal shear range for the two cases are nearly identical except
that IAn the case a/b =M, the level of TR lies slightly deeper
und•r the Ourface than for a/b z 10.

Contours of equal shear range 7 for the case a/b 7.5
have alst been obtaieod and these are shown in Figure 0.

Figure 9 Plots the area $ expressed av multiples of ab and ea-
closed by contours of equal v- as a function of •R/VmQT for values
of a/b = 7.% 10, aRd The pol•e&. where there curros intorsect

the abscissa correspond to the maxiwua values of 7 throughouy.
the stressed regioan!.@ 2 To. It is noted that the curves lie
very close to each other. The three curves coincide oven more
closely if one plots !/azo vs f/2v, by multiplying the vertical
coordinate of Figure 9 by b/zo and the horizontal coordinate by
pwag./7190 hoko ao Is the depth of the point below the surface
which Is subject to the maximum shear stress rang• 2vo. rho
values of b/zo and p ]7 an functions of a/b are obtaineod
from (34) and are taaufated in Table 3. Figure 10 is a plot of
S/RMovs IR/2/'0 @nd shows that the curves having parameters
G/b : 7.5, 10 and w nearly coincide. This means that the stressed
aree S at any given 7 value is proportional to the product of
a and zo where a is tho sewimajor axis and zg is the depth
location coordinate of T. This approxinate relationship appearS
to be valid for 7o5ý a/b< ; a range enccepassing the us"a!
dimensions of a ball-raceway contact ellipse, Including line
contact. ThIB fiadiag supports LundborgUPalmgr@0s analysis
(1) In which the stressed area in the rine Cross-section is as-
Suwod to be proportional to ago.
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A salootion of the vaue to hjo used In def ialng the
8tresged Ere@a cn be usda by meting Tga equal to a thrhold
teas lmvel for plastic deformation for the h iveot material

Coeposition and hnrd•ess. If qeleetad. In this Manner, T'

im n conatant for a givns material. For future mse, It is
more c anint to plot S/az Hs R aetion of 2,6/'i shown

as dotted line in figure 10,°

This curve shows that plasticolly ressed (mecrosoopie)
area exists only for 21o/19 > I. The size of tke plastically
strassed area can be approziiaated by :

8 0 cro 'rR 0.75(.5

This formula shows that the ores enclosed by the coptour
of equal cR ba be expressed approximately as a funotiom of

It is also of iaterebt to know the @verage shear rouge,
in the stresoea area, , enclobad by the contour of

equal 1', Appondix IV given the details of the '.opoutation
using Equation (7.5). The result yields the following approxi-

t I~ Oave

_ -6.45 + 12.9•, -. 4 (T.6)
830 '(R v)

•ehoe ('.)gv@ average magnitude of a maniiuw revorslng shear

ra geIn a closed contour of equal •

_S aroe enclosed by the closed contour of equal Ta

a 0o: Aejor axis of the contact ellipse

.= ximum reversing shear strcs@

= depth where ro exists

a6
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SECTION V11. ii
DETERMINATION OF SHEAR STRESS NEAR ASPERITIES

To demonstrate a possible mechanism for the 90nerstiOa Of
plastic deforwnedon in peritieB, an elastia analysis is present-
ed below for tL~e stea~s digtribution in a con tactin asperity
using am ideallzed asperity profile. The result of this analysis
may enable one to predict the location and severity of a plastic
occurrence and take into account the relevant variables such as
lubrioant film zhicknoss and auyfave roughnegs. l shhOuld also he
noted that in the following analysis the friction at the
contact surface is neglected.

Figuro 11 shows the distribution of slopes for threo .
typical, abrasively finished gurfaceso From those distribu-
tions, it is seei that the typical slope of abrasively finished
hard steel surfaces varies widely. For a ground surface, the
95th percentile slope -s 995 = 290; for a much smoother honed
surface, the 95th percentile is 095 = 3.0°, while for the still
smoother, lapped surface, it is only Q 9 5 : 0.79. The RBS
surface roughness values of these three surface finishes were I
found to be 1 = !3 .!01 and 0.4 pia, respectively.

Quantitative insight into the plastic occurrences at A

aspeTitiai, as a function of parameters listed above, can be
ac'ievvd by introducing a simple mathematical model in which I
the contact of a singlo asperity having an idealized profile

o with an elastic half plane is considezed. This model contains
no assumption regarding the height distribution of a population
of asperities.

Figure 12 shows an idealized two dimensional asperity shape,

similar to what one would expect to find on ground, honed, or
lapped stuirfaceg, formed by a multitude of cuts by sharp and
straight@edged abrasive graina. The asperity is a plane-Bided
ridg@ with a curved tip of radius R. The slope angle of the
sides is 0 which varies with the process of surface finishing
and is aecsslble to experimental determination (6).

The plane contact problem with the above descrlhed profile
and a straight-edged half plane can be solved based on
Nuakhelishvill's method of singular integral equations (36),
provided that there exist no sha@rp curves or corners along the
entire profile. The derivation of the solution for this con-
"tact problem is given in detail in Appendix III.
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TRANSVERSE ROUiGMESS OF

HONED RING SLMFACE GROUND FIMSN OF

1 /4 0 1IA. SALL

RLATVE

FRGCYRELATIVE _

AR8IT, •ARY f FREOUENCY
ST-ARBITRARY UNITS

5 F -E 5 % OFAREA

LOCAL SURFACE S-LOPd (d-gvees) LOCAL S'IJRMCG SLOPE (d@oger)

RELATIVE FREQUENCY w

AR131TRARY UNITS

0.703
5 %OF AREA

1.5 1.0 0.0 0 00 1.0 I.

LOCAL SURFACE SLOFE (d-oo-)

LAPPED DAL• SURFACE

SFigure 11 Asperlty Slope ODitribution on Ground, Honed

and Lapped Surf•8aes

13



q I

izit
I i Asplty

Fig. A Slope tan 0

1 2a k 2 = 2b

0.0 4 
C~ont ~teiu~

0.02

L0.02

0.01

SFiure 12. The Contact of an Idealized Surfaco•" A nparity

89



A gnworlcgl Coowputatlon of~ srfnac pgoesure was. performed
and is whown in Figure 32., btsed an the come a =2h wheorein the
width of the Congact region Ig @qua! to twic@ th. width of the
turvo bage. Corsptutsio" for other ynlues of @/b Is equally
fossibl@.

The ourfgce pressure distribution plotted in Figure 12
was computed basod on a closed form solution derived froii (36).
Ho-lever, for the sub-surface gtrgss distribution there is noI
co~oed form solution available for computation @ad @anumerical
tuchaiqu@ 15 roquired to obtain %k@ smb-surfaca stresses.

HALF WIM1H OF COWTACT
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Figure 13 showo the contear: of equal octehndra? Aoar
gtr@§,' n tx~aoftktý podct f Ymmllsifladla ma aperity

o Iope, 1Q ~ the cross got-lon ntthe plaaa of tc ootete-tde
plgted In Figure 12. It can be seen tbat tic depth whore the
Manienu vplueOi gotahedral sheeffr sYeen occurs is about 0.55

of the half-width of the asperity contact reogion on the surface.

(I IA in. HMS) (6),, th~is depth Is of the order of tons to
hundreds of microinches. Thus, high shear streisse are indeed
generated closo %o t~he surface.

Th fl/wag relationship boo been derived for the inagni-

Vue igtre 14shear gta plotno the maxisw au of asm~r:Apni

computed ~ ~ ta fromA EqationU (6.1)agisba. Teaiau lu

whreti s/b /anba~~ie.we h otntae s

45 U +92)

sad V Cos-' (0.3)

pratipolab sthsens,-0 w iee.s whe Vn thines iel streass wide

reguomarison with thewitsperiytipe width, thes fo, Y andZ

(8.3



_-= ~o -1.0

LUZ- z /a
0.83 -0.8

•" •0. G

0.4- • - 3=0.

0.001 0.01 0.1 1.0
b/a

Figure 14. Variation of (7 4 5 o) max. nid Its Depth zo
with b/a for the Simple Asperity Model
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rand the contact force leg

Tkese relatJonzshis Lply the following interestiag
facts whea b/a-4 O i;,e the cloatic deformatioa of an asperify
Is larg@ In comparison mýith Iza tip width (for example, In th'n
caee of a sharply tipped asperity or heavy elastic depression
of uia asperity). This is the case Sor low b/l (the minimum
END flIP thickuess/toipogla surface rough•oso US ratio)

1. The maxirnue sheer stress,mg . a pproacheg Goastantovalue proportional to th@ asperity zlop •angle,, but iciependoa

of the load.

2. The depth, % , of the point at which rm7x occurs
increases wth the 1/2-th power of the semiwidth 'a of the
asperity cootacte

3. The load carried by the individual asperity contact is

proportional to the contact width Oa and the angle 0. This
single asperity model yields, asymptotically , a proportloaality
between P and a. In agreement with the Archardog postulate (35).
which state: that in dry contact the real azpority contact urea
increases linearly with the load.

Of course. there must be cas•s In which the degroo of
indentation vr a/b is not large. This occur, gencerally, w@en
a) there Is u thick lubricant film separating the two rough
surfaces, ieo. bh/ large or, specifically, when
b) the tip radius of the asperity on real surfaevs is large
In compariseo with tbe asperity spacing S.

The following presents a simple oodel for asperity iater-
action for the purpose of relating near-surface plastlc occur-
rences to the minimum SUD filw thickness and surface roughaess

Piaure 15 (A) showz the two diweasional contact of a siagle
asperity assuted to be rigid, with an elastic straight edged half
plane; the degree of approach of the two bodies Is controlled
by the 9UD minlmuo film thickness h. For convenience. the
vertical distance betweer the outer line of the asperity profile
and the asperity tip is set 2qual to 3a where a is the aNS value
of the asperity profile and is of an acceptable ordtr of wagai-
tude approxifltion for reel profiles. For the hypothetical
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Profile, the c~up Io s arbitrnry tomno the valersy or
the aporlý1 j ner Rot deflued.

Tke vortleQ1 distaac@ b@ýee& the aeperity tip anid the
Pleetnct edge 8 in obtplnod £f'cn the ge~ar of Figgre 15,

~h~eh do + 0-ab) touw G 04

where 6= R (1-C!:s@), the depth of the axp•r!ty tip mnd

Oue may consider a multlado of rough surface@ with
asperities of the ehape -•own In Figure 15 with different
values of c A reasonable @avauption for the dogree of
their rounding at the tip is that Go= ha where & is a coustaut.
proportional to R, Aoe. that the roeudlnq occupies a coaztaQ&
fraction of the agpgrity height between tip and profile zeat@Y-
line.

From Squation (8.5) OR@ obtains , using 80

R X 0 = s.(-Icos I)D (6)

b•--..I = •.-•.sIa G.(1=cos Q)+" (•oT)

Týio deformed profile of the elastic half planeo in co@stt
WIVtN tho rigid asperity is gi~ew by the following foTIRMI (4)

•.,5

£'(x) d

w ta VW -4dxdt
Where V'() =/ It <

-b/1, b <Iti < a

=W/ §/R j f(X/a, b/A)(S)

The caw~ori nos be integrated gfter expanding tho
Siigroid •-xc/(f--.•) into en ascending powoer series in i/X. The
ouoepmted dieensionless deforeation outside the contact regios
Is plotted &guinst xis in Figure 16 using the ratio b/a as
the par•meoter.
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Figure 16. Variation of Surface Oaforwotioa
Outside the Contact Zona of the
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In coo@ of a real asperity comtnct beteeeai tý7o steel
arfacfs' the M•rity is Rot rigld. It has the 2ame elastic

T ~prorierties as the half pleat@ In addition,, hoth surfaces have
snperitie20 PO-r (39), z conveaient approximation of the con-

tact pheomemnea is arrived at by considering one surface heving
aroughness profile equal to the composite of the two gecta! _sarface rcugqb~esses, "hile the other surface is flat. (37) shews

S~ka•ow %b omposite roughness can he Caleglated for nndeformedi-

asperities (among other formulas. one findsa = a u" + o a,
as quoted before). Assuming that the some composite foruinq
procedure is acceptable frc deformation calculutioas, Figure
15 (A) repre1ent an ase ity the composite eadh red. In_
order to calculate deflection, this composite a@perity mnat S7
be coasidered elastic and the smooth half plane rigid.
AssAming low slepes aed large radii for the asperity, the
deflections Showa in Figure 15 for tke elastic kall-plane
will still apply bt maust now be measured separately from
the nadofoimed asperity profile. In order to be able to do
so, hor-isental reference lines must be established on the deo
formed half plane (the entire surface of the infinite half
plane in contact is. strictly apeakiag, deforted and the mgtgi-

tude of the deflectioa doee not converge). A reasonable refer- -_

ence line is tha horizoatal lino drawn through two symetrical
poiats ep the profile at a distance Of A/Q from the line of
sy-aetry of the asperity, where S is the asBpeity spacing.
Dafeoratioa of the sarece beyond these points is thea to be
nagleeted. For a symmetrical asperity profile, the profile
poiqts ot a distance of S/a from the asperity tip lie on the
profile oeaterliae. Tkhe ue of these points as a dofermtoati
refereanc implies that all asperity deflection occurs in the
portiop iroQ tke Pesterlln-ý o the tip.

Uith these reference points establishod, one obtaius the
deformed Shape of the asperity by subtracting the shaded area
from its Uadeforued shape. (See Figure 15 (M) )

The avertge EUD film thickaness h, between two rough
surf•e•s has beea defi•od (37) ag the distaace between their
profile eCeterliaes. If the composite roughness profile is U
used, thea h is the distuace between Its caNterline and the
smooth reference surface. By this definition one obtailas
from FigurO 10:

h+8 4Yv(S/2) =3y (0.10)

whore 3e Is the undeformed asperity height from the profile
Oeeterlime to the ttpe
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In imnnsionleag fogm this GquatAop Ggin b& nrittcn b~y
mci 2 of quautIoa (0.4) and W8.7) mm

h 3 b) 0,j S'

3~C9 (n-*))/ La. Ij~ (/)/

The known function v(x I n Equation (8.9) can be rearraig-

ý-*X Ib 14h)iR b. a' a)(.2
By moans of EqualAorn (0.5) end ( 0.6) one has

v(S/2)/a X(1+cos9) '~f b, (8-V ~ 13)

Fi~r given values of X. 0 and one o~tI deterrmia' b/c
as function of a/b (or vice-verse) by using Equat #as

(14.11) and (8.13).

Coruputati on of h/a has a' so bown performed for the case
-that O/D <, i.e. the region of contact of the asperity falls
r?.itkii thie curved tip wtithout touchi1ng the straight sides of
iVhe Haperlty profile. This cane occurs only when h/0 is

latie~ylarge but Xeas than 3. (It is noted Lhat In the
pv-exeit rnodel, there Is no asperity couacnt for h/a >3).

Figuire~ 17', i1l and 19 plot, for the gromud. honed sad
1.,plocd snurjtc,ý f vil rgihd digc assed above, a/b as a f uzcti on of

Tiv faotr for eaich cuwve is the relutive tip
i'h which ~ lfuqc~coa (if the tip radius U.

7he curvog show the general trend &but b/a decreojee
V d zr 'n h/O *Siuce 11) is a conatant, decreasifig
b/ a meai,., the contact width 'a'. Since the ffagi-

*TP a fm shpe.. strese In~c;-aiaýs with Increaisisg 10 (or dcreeling
b'A), OMý Visu; !'-J A -.LV flr 04 given asperitY Profile the

n~a1jrxmIq of erooa in the asperity iacroagos "ith decreasing

P9,h-a

_00
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It ii slac qko•e7 In Figures 17 - 19 that for a gisem h/a
volne, decreasing vgluee of X eo 1 (oharpor Utpped aeperitleg)
corr@eipomd tc lncrosBing 8/b or the contact width a, 2Md

oboar streag i' Mowever, it is rocaliad tkat for large
9812e0 Of 'C' ( or b/i40).),'max will reach a. Quyupto&icI

valu@ Imdopeedont of h. The relitionship between b/a
"and •Max for the three surface ficisbes discussed here Is

plotted il Figure 20. whick pezrmit the scaling of te ordiI
nags of figure@ 17-19 In terms of Tmux. in addition to b/a.
!hbis h@@ been done by shoeing a noulinaor ordinate scale on A
&Logo plots.

From the above rvoulto based an a simplo plane anperity 1

interActiom eodel, it Is possiblo to relate the ma u near
surfaoe ibear @trems to three parameters oxplicitly given for
a given lubrIcatiou condition qud surface finish, namely U/0. e
and R/9 where h = minimum film thickneas, a cowbinod surface

=77 roughness (rms). G asperity slope ingol and A ospozity tip
radi us.

It can be sean from Figure 17 thut for ground surfaces
lwith a typical aspority slope angle 0 = 290, the maximum shear
,troaa level Is quito high, I.e. at h/a =2 and X=0.5, thO
maimum shear stroess is I06 pai which Is considerably higher
than the magnitude of Maximum Hertzioa shear tresaa nsual in
rolling contact3. It is axpected that plastic flow will occur
C)cannina a "blunting" of the enpority tip. For a soothor Sur-

0foe finish, e.q., a honed surfuco with 0 z3.0o and a 1.0 Pin.,
It can be soon frow Figure 10 that the maximuc shear stroes iA
cousiderably lower than that of a ground surface. For oxample,
at h/a = 2 and k = 0.5, the magiwum shear stress 1. x 105
pal, which As of the saei order of magnitudo of manimum RogziQaa
shear streso. Thus severe plastic deformnt~on is not expectedj• in the aspoelty.

it in geen (by using Figure 19) that still lower maximum
sheer strQ52 will ocour in lapped surface, O.g. at h/a = 2.0,
the Ma"nAu shear stress in this oas Is only 3 x 104 psi
(which is lower than tho yield strength of hard gteol) and no
plastic deformation (or surface diotreag) should occur.
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Figure 21, Schematic Representation of an
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SECTION IX

DETERMINATION OF SHEAR STRESS BENEATH A FURROW

A1 tq@dioensional,:ixplratory:Palyois of the contact

stress of bodies ccntaining an Idealized surface micro -ofect

The dbfect in~ Fiqure 21 to e two dimensional "depresok",
I.e, Infinitely long and Figure 21 shows Its cross-section. the
rims of wihich nor formed by two radil, tangential to the s.r'raand-
Ing (orilginal) surface at points 2c apart. The He~rtzi aea Is %a
wide where a > c, and the contact does not extend cloaer to the
bottow of the defect but rath~er, there is a free surfoac of
width 2b In the defect, whereby c > b > o, i.v. the free sur-
f v:o at the bottomi of the defect Is free, Its shape iv irrolqvint
provided that it is suificiently depressed not to contact the
opposite body.

_ R~n Qaddition, the profile is assumied 4'mooth, having ixadli
of curvature at all points considerably greater than the char-
acterist.ic dimensions of the defect. The contact region consists
of two portions due to the p-resence of the open cavity, covering
the cross-sectional co-ordinates b < x < a and -a < x < --b
where the values of a and b (<c) are determined by the defect
guouietry parameters, i.e. r and c, and by the load.

This contact problem con be solved by applying the
Mu~kholishviii theory of complex variables to the mixed boundary

* ~valuo problem of an olautic half plane with mnulti-contact zones

In rolling elements. the surface defects ore small such that
the characteristic dlifensions, c and r, 3f the defects Ooe of a
smaller Qý'zer thein the linear diiaenisiona of the roiling elowontu.
Therefore, It i.s justified to conbider a limiting case wherein
c/H -0 and r/U-0O. Osing this agsumption, the problem~ reduces to_
tho compr'ession of two straight-edged bodien, one of which con-
talus a shallow aurface defect, as shown in Figtire 22. Frictional
traction on the surface is neoglected, The contact prossure
At the interface when the defect Is absent Is assumed to be po.

In the preesanca of A defect, the contact pressure at pointsI
removed from the defect Is expected to approach asymptotically

the undI.5torted value pa as x approaches Infinity,
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A oleoo4 fort soluition has blen@ deie In tPO ý V for
t~i 11t~ii%1g cae The expression for the Contmat PrSMMUM A8

follw

p~x) (~/2T7 r) 1u ~) 91

Had l (-vj)/Y1?j+ 0-N.--g)/iEw theo reduued Younule modulus

71 tn (O.5-cos

_The value of b I~s determined frow the iollowiAg foridulal

log (-Wj i+ /w) Co

__ AgUro 23 Plots the relatinahip betweR aM oo4
Since o 00  he b o pppted from the knw G' Qh1@S PQ and ý
It Id P0cible to Ohon b C/o whorw w is obtwiood ior agivau
valmo of C@ 9gow Fig"K 23.

A mmerickl oxoople has beens compiuted ior the distribmtIon
of contmat preaukar ow the sur~fooo, nasuming c/b = 1 .20 , uors
poodiog to C~ 0.069. The values can be ob ainad by otg

()r/o -1.0 @@do P0= 10-1 pni or (2) r/C 0.9 saed P6 4 F. lO5 pai .
Figmro 24 plots tke dime ioulogle pressure P/Pe as Q faoctiaia og z.
Tho results SLOW that there Is a Pressure risaw In thQ Vioinity of
tho doef~t edge, ranching 0 value Of 3.06. I~e. there Is o IiUl-*
floast cancentratiom of pressure at the diefeot edge,
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Figure 25 sohows the dirtance x(o of lie prossu,e peak arislnq

as f reault of ,he def(-ct au neasurod from the defect center :an(j

the nasiqntude of the •aaxim mvo, contact pre nure in t .-- . P*t Po
platted as a fun-.tlioa of c/b. The result shows af, e high press8L# 1'0

peaks orcur wilthin the arcs of radius ke, ased on Figures 24 oend

25, Figure 26 plots the variation of Pm a a fanotion r-f r/c
for steel, using four vsiues of P0 . ioe., 1 x !a5, 2 x 105, 3 x 10 o

and 4 x 109 psi as parameters. -it can be readily seen that the

maxiadrn contact pressure increases with decreasing values of r/c.

It can be qeeri frorm Figure 2o that 1•l1 the curves approach

co'tstant valnu- Of Pmax./Po(> 2 . 5)when r/c is greater than 2. It

can be concluded that for all values of r relativeil small CoM-

pared with the rollin'g element size and Po <4 x 1A Psi, we I
"have p ax. /p '-5.

Io- I

a/o x I00 lb/in2  
___

10 U

•.5- Po I x: •015 lb In

22 -20 lb/In2

0Pop 4 x 10 lb/In

0-0

0 01 2.0
Defect Corrmr Radius / Semi Defect Width ri"

Figure 26. Variation of Maximuts Contact Presgure as a function I

of Defect Geometric Parameter r/c and Nominal
Pressure Po
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2. SUBSURFACE STRESS DISTRIBUTION IN THE VICINITY OF A SURFACE

DEFECT

It i! of Interest to know the stresseg existing near the
high pressure peak at x 4 0, The sub-surface stress distribu-
tiOn can be computed uMang a numerical Integratlon technique
based on the solution for the stress field on a half plane under
a concentrated normal load. The nu.ical method ryeuires that
the region of surfaoe )ending be finite in width along the X
axis. This can he arranged by resolving the surface pressure
Into one component 6.ich occupies a finite width and a uniform
pressure acting on the surface of the entire half plane as
shown in Flure 2?M

Figure 20 plots the contours of equal von •Ries yield
t_ woa a oD for a typical surface defect with parameters c/b 1,2

corresponding to r/c = 0.9 for p0 n 4 x 105 psi or r/c = 18

for p. = 2 x 105 psi in steel. It can be seen that the maximum
value of vector octahedral shoar stress occurs under the location
of waximum surface pressure. Thus ( a[ )meax. Is about 1.36 p0
which is considerably higher than 0,7 p0 Occurring at the axis
of symmetry (x = o) shown In Figure 28. Furthermoro, as shown
in Figure 20, tho depth of (I ba 1 0.13 c which is con-siderably smaller than 0.9 c which occurs along x 0.

In the above drfect originated stress analysis, the deter-
faining parameters are found to be the ratio of defect width 2c
and corner radius r and the undisturbed surface pressure po.
The degree of stress concentration at the shoulder Increases
with increasing defect width and decreasing defect shoulder
radius, Although subsurface maximur shear stress haa not been
computed for w ,ide range of X values, an example has been com-
puted, corresponding to a typýcal realistic defect size. The
result shows that tb- contact pressure reaches a peak value of
3.1 timos p whereas the maximum value of the quantity giving the
Voa='•,u¢s yfeld criterion is 1.3 p0 (compared with 0.32 po In
the Blertzlan contact) It is expected that significant plastic
deformation will occur at the defect shoulder.

Surface plastic deformation has been observed at asperities

(on ground and at times on honed surfaces) at low b/o vatlue, and
at many surface defect shoaldera, It is believed that this ti
due to the high shear stress predictod above for both of these
ourface failure origination points, In the case of severe
asperity intsra-,tion the plastic deformation occurs at the tip
causing a decresse of aspoerty slope, In the case of surface
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defects, sharp crrner radii (coarpared with defect wl46th) have been -

observed in new si-'faces. After many cycleo of rolling, 4, has
49,11 observed by c!'-face Lracing th at the corner r aL. • ex iiC-ea s

2 • oneiderably as a result of ýrounding off".

It is 'plausibla to assume that the surface profile of as-
perities and defect shoulders stabilizes, i.e. the plantic defor-
mation ceases to grovi after a certnin number of str-gs cycles.
This Is a kind of 'shakedown" process on the microscopic scale. U
gldredue and Tabor (30) and Johnson (32) in studying macroscopic
shakedown of ball tracks hovo enncluded that after a certain
shakedown is reached the material will behave elastically. n In
spite of the large difference in scale, the basic mechanism
involving shakedown In bearing rolling tracks , d/or asperity
tips (or defect shoulders) can be similar. Using this argument
I; may be assumed that the asperity tip and defect shoulder will
behave elastically after a stabilized surface is achieved. Based
on Figures IT - 19 and 25 it is seen that a run-in asperity (or
defect surface) having acquired a smaller asperity slope (or a
larger dfe¢-t corner radius) buffers a lower degree of stress
concentration than when it is new. From this fact it can be said
that surface plastic deformation flows in the direction required
to reduce the degree of stress concentration, In hard steel, work
hardening is high and the amount of deformation at snadkedown"
will be limited. It is possible that the run-in shape of asperity
tips and defect shoulders will continue to have some stress con-
centration,
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APPENDIX I

FORIMULAS FOR TSB•T SES IN A lIIERTZIAN STRESS I ELTD

The otreneas at an arbitrary point below the surface of a b,,aring ring induced Dy I
contact of q ball orrollerare coraputed under thv riusmiptaot that arcan of the ring anti
rolling body are large enough comparod to the aize of the contacting area that the con-
tacting bodies may be considered infinlto in extent.

In the vicinity of the contact the mrfaces are assumned to be deacribable by second
degree polynomials.

All of tho PtreLmcs conccitnd arc rcleived Wo a eectangular (artesian coordinate
system vith the xy-plane fixed on the i oundary surface of the semi-Infinite body with U
the z - aWis directed into the body. The xz and yz planes coincide with the symmetry
planes of the contact ellipse, the equation of which io, _

2 I
J -1 (Al-1)hee a is b2  I

where a is the major semir-axJ.n lying on the x-axig and b the minor seml-axis lying
on the y axis.

The stresses are given by (34).

GLX -2') zM ZM/ 2 + ( 1 (A--2) U+
go A 4-L

2y L ZM ZM
SN (1+-2v)N2v z

So-Q +L (2YT_ L (Al-3)

(2 (A1-4)

T 0 _Q L.X ( Y 12)N(t

XY -
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×z _ zx
2 -

vyz ZY 1-~v
2j (Al-7)

in which,

A=- X~ Y~ Z.
b b, b (Al-Sa)

a3P
o 2 r•ab (Al -8b)

and P Is the total load

L is the largest positive root of the following equation
X2 y2 Z2

X2 y z2
+2 1 L~2 ~T(Al.-Sc)3A2 + L 2 1 + L 22 A-c

Qz A 1 3

(A LL () /(IY\ 2 (AS)

2 L) A2 L2) k+L7-- 2 ) T) (Al-8d)

AAL

N-- l (A2 -- Yq2) (Al-8g) _~Y A2 -1 --i
a-ICIA 

_-- -

118+ L (A + L (
LU

VT 2 arctanh [ 2±L2+.K 2 _ 2) j _U
7A-i L TOTL)(I+ L)I (Al-8fi

A=
N =- (X-YWT) (AI-8g)

2 A I
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A Z7
N --____ -(A1-811)

SY A2 -1. " , I

A -1 (A] -8j)

L (A.2 -F) L2 A
N A /A L (Al-8k)

!+L2 - LE__

FA (Al -81)

where F and E are the ordina.:y l-elliptic integrals of the first and secondA kdnd, re-

spectively, %,Ath modulus k and arguinent, 8 = arctan-ýý ; V is

y 2 2 2 L~

A

Poisson's ratio, assumed to be 0. 3 in all of the numerical calclations.
For points in the contact, i. e. Z 0, the largest positive root L is zero. It

iollows from equation (Al-8c) that

iim Z Yv
Z. L A2 (A1-9)

Using this relation, the stress formulas can easily be obtained from equations (A1-2)

through (AI-7) as follows:

Ox Y2

(70 A 2 (A 1- 10)

GoA [Al -11)
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z 2

_ (1 -~2! N

T 0 (A1-14)

T =0
yz 
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WhereINA /1 2 y0x*
A-iAt (AI-16a)

AA

A

A'-

arc (Aliie
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APPE DIDIX HI

POILMULAS FOR STj1tP,,871S C0_1R'rSPC*ND1NG TO AN INMINITELY
NAIRROW CONTACT ELI:PSE IN A U1ERTZIAN STRESS FIELD I

in the limiting caoe, A-' - or A 0', the tormu tlaB in App~endix 1 muot be mcd-
ficed befoi.- thiey can be ueod in nu-moeri cpalcacu-atons. The following approximtfatloris

maust be u-ade In deriving the stress formuilas.
It is proper that, bafore w:rkhiig on the atroass formulas, attention be directe

to the oodtflcatlons of equatlons (A1=8). -eeilot Mng ~

X A a

EquPtiou (Al -Be) becomes

1+L L

'Thus L :'t the largest ponitive root soatifying oquation (.42-1). Since

A

It is evidont that
z I

z2 1 _ _ _ _ _

Ellxxinanting Y by moaab uf oqW~ton (A-9-1), this can fairther be r-aduced to

Z1 1+L 2

L 222 (z'
L (I +j-4 (A2-.2a)

As A -. both 0 and approach zero. Thus

N-2O='= (A2-2b)

A



P-M

y L A L (A2 -2d)3

For th8 ulliPtic ftPtef'aIe 4-10 rrolflus k- will eappu-oach UDIty while the arguLmentI

Swill beo close to r"/2. T herefore, it can be neen that (40)

lira F (OA) i ti '2  urn 2I
A2 k-0(/ k) '

Au

urn 2 4
k' In-

11Mr 2 21
kt-40 k' In k' =0

and urn- E 1, whera k' I/
16b then follovo

M 0 (A2-2c)3

my (A2='2g)

Thun thE etrase forsmulaB can be obtained directly from GquatoHB (Ai-2) through
(I7.Then- are

M (A2-3)
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"0ZM ZM
YvLY N 2(- -Y2Vf

y L (A2-)

. +

SL (A2-5)

T ý p T 0(A2-98 )

a For whch~ 1o ="cband p n the lonact zone thei l1argaof thoal~tiv.

: from ~c-uoiu •on (A242)1 one has, in t~he lhnit, -

lin ZY
Z=~~ L =(A2-8)1 LO

Fot•poit foctmedin tollow di ciy from ithIargoo (Ap-3s through (A-83 by zroand
fom euodon (A2-12)i They ar

2 L

ZV 1~ (A2-9O)

L0

22

(il ____9 A210



, (A) -121
2T 0

-o (A2-13)

x z (A2-14)

T = (A2-15)
yz

195 ,

-- I

_-•_-_

j.I
=2I

.LgI
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APPENIX~ TV

PLANE CONTACT OF ASPEWlTIE8

The govm•tng etaalvon r•le-i4tg the cOR.aMt prl--tYre p(x) in the regon -a<X< a. V
t ta sy-,_motrtcall surfeco profile dEslg- ted by f•n), in givon by (36).

2•a P(N-) at -f• (A3-1)

%vaere E, [(1-v V ryE1 + (lI.,2 Y"E 1

f (x) =df- (x)Id

Equation (A3-1) showa that the plane contaci- problem of two bodies having rDnalliI E!
snd E2, rospecIvely, ig oquivalent to that in which one of the solids is rigid
(E - -) and tme other hao a reduced Young's moduks, E' (Lu 2 ) /, provded that f(x) j
remains the same.

The above singular int-greL equanon can be integrated for p(x). For the special
zase thatp (a) =0, 1.e. the contact proosuro Is zero at the oontact edges (this is valid
If the profile does not have a sharp corner or ridge at the odgea), the contact pressure
Is givou by (36) a!

-aVa- (t) (A.3-2)

For the particular profile depicted in Figure 12, one has

f' (k) AW•R for I t I < b ;(A3-3) •

= b/f for a >I'ýi b

ubatituting equation (A3-3) into equadon (A3-2) and carrying out the integration,
dwl pressure distribution is obtained as follows-

[2,fta Po - 4x~b) log 
- x-b) log __ __, I

(A3-4) U
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where

The force acting between the minglo uopoiity and the Maf plane ii; gIven by__

,ra -'.

t aa -t 2(A3-5)

For Mnall vulues of the ap~proach beotween two bodlies, i~e. very vibaal,

P~ E' 80 a /2flR (A3-6)

For 9- rynnetrical profilo f~k) with r~espct to the z-&v18 (or the contact Center),J
the subraurfoce straoa distributien a-t x 0, or the couterlIne of contact, is given by I

=4 -I ( (A3-7)

wfhere a nownaai @tresses acftinog In x anid z d-irectWon, re~ipectvely

TXaortiogonal shoar stresB

n+ W!. a complex numbor _

Ink, R~e 1mftlnary end real partB of a oomplex number

(r~ (AJ92

@Pd a- pr~L-eq &denooe d.ffbrouUWeton with reegpoct to C

Cubetltnlin equationi (A3-. 3) mWd (M3-9) Into equation (A3-7i) and po-Arm-ing The _

in t-rA-4on, One ObtejIn

- O'a tfq4 I

(Y3i0 IMV -Y

US



Eii
- = 1/1, the nsperity elope angle
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A-PP END-1X -7V

COMPREfl&ON OF A HALF PLANE CONTAINING AN 1-EAUZED SUJRFACE, DEFFCT7-

As dopicted in Fipure 22, tho h~af plano iB Mirsghet cedged ~oxeo at the dopt,*saiou.
The line of symmectry of the proftie is coseon ae !;he y-axis uerotom t-he ed"e of the
hbqlt pinno l 0, hosen as the 2E-ais. Tho coorner rsadf of the deprcowon, azsewnd to be
idenfticEa, Pr-o doncoted by r. Tho a~progoh ojx tha two bodiesO 13 aassnriM so) be normal
to the r~urxe of the hs~4f pkns. Thuo at ladinity there Is an uniforrm compression p0  2

througbout the bodiJen. The contact region occuples tho bound&ary of the half plane
except ad theo center of the depression or Ixf zb.

Using the seine notaifonsa as In Appeadix M 3, theo govorn-ing- LYt-sgrpe equation,
oimila~i to Gquatlon (AS-1) in form except for the linit of thn inntegmni, is given below

2[ b +f]4 dt=~'x (M4-1)

The darivatlve of the proftle expression i (xc) with L'espect to x for the present problem
I& given by:

f (X) = 0 ep xI> C

(K) = (C-=x)/r b<

- (-c-x)/r -c < x <-b (A4.-2)

AcwiA-1Lug to (30) the om. p1ex potential In thio problzm, for the case p (b) 0,
can be given. ae follow@:

-b f1c

47Tb (A4-3)

The oou-At1e pressura in the coataci mgion io given by (~36).

El TP-b

2 (A4-~4)
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8-"bUt'thPn1 equ-,Ation (A4-2R) Into &quiatlon (A4-4) anid krearranging !t-w tee--F, yj(oica:

2 2x fctL dt
22r32 2 2

E2 2
2(-r) 

(A4-5)

Whr-a 1 Or) cn=c) logb

In the above ao."-'d-ln the naaniybi w-atwnadhB ob- al-iudfoteMag~wxiudo of the undlisturbed pros-ur-a p or the preSeA1r at x- ~ For x- w,equatilon (A4-5) can be reducd to te xflothwg foi-n

__b / 22

S4ncr p0 c, Le aud El ame Iown oon~tants, It Aa mosliile to e9olve for~ b Wrtch io1elred in equ"Uoa (A4-.5). The doetennua-Mio of c/b can be made by using Figure 23picatag M/b agatna the ciimenolonel quariuity 2Or / '
p0 rc
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WI
AVEflAGF SHEAR I"! THE BT.-IN "D ARiEA , SN, O~~ By PA CCNTOUP,
OF EQUAL SIMERn TRANGE, 1) IN A HERtTMAN ELI.,PTI CATL CONTACIT

The elalr~ hibeteenTheare, oJ nalonod by a contour of OWua nhear rangoe

Tand T!in givon In equat'ion (7-=5) of &n-eiAon VRI an folown:

0 0

(A5-2)

maveagea rehorwn stress becoies T nincasa

T)oi ( - 1) T=2 (ca ) -(a)
'R y 0  0 Jo + (C- z 0),

2T caz~ 0 ~3/a~~ ~(A5-23)__

Fh por aiil spdfi sthied Itgaarea bounded-ebyinadfontorf equalo (Ah-) byng thean
of Fagur 10,a stesi bheeoresteitga a eeaute sn .nmeia _

intega2To t8hiqe (T) 0)

(T (Ta)d
R 4 av. 0  fo s(AS-A)4/

Bori ion (A5 /e + (A5-35)__

Meuppr11atof h 1tgr anb demio fo cu-"n -1 yUen
131 ___- 0 n hawootoi~rd a eoauto uigaaloi
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APPENDI1X V!

2LAUMLE DrPCT FEVEBWTY DT8-BUTIONS

In whvt follows we will explora the b•havlor of the finct-on r neece¢o ry for the

aiefadion of Eqa,.on (6-9) for two plausible choc, e3 of F(d).ii It may ba reasnoed that thle d-1 atrib-ution of defoen,• aaverLy in such that wost of the

defeo - have'vaiy Gmall severity and a diul"nishing proa~oruoa have greater overities. U
That Is, the proportion of defects with Boverity in the lnterva-1 d + A d is larger than

a -

tho proportion in the intervol + ±d as long an d < I
The doncity of the two paraneotor e _l onena diotributton with ,uit location para-

meter to be given below has wode at unity and decreases with increasing variate
Sv~ueo and thu osaisofies the condition poati-dated a-bove.

"VA-th this law the probabillty that a random.ly selected defect has oeverity less

thana vaue d is give by = --

Prob [i < = F(d) =L -exp - d >1

=0 ;d < (A6=-) -_

The quantity d •s a constant parameter of the distribution related to the average

everity R by do -1. a may vary with different materials.
k Another distributlon that satisfies the above postudated condition Is

F(d) 1 d d• I, c> 0

=0 ; d< (A6-2)

whor• c Is a constant parameter.
Equation (A6-2) is a form of Paroto's distribution (47), and has been found useful

in econo-mic studies. The paramotor c is expressible in terms of the average defect
severity d as

dC _

d i- (A6-~3)j

The distributions of Equatons (AG-l) and (A6'2) are ohovm on Figure 30, plotted

for d = 2. 0. The corresponding density functions are shown on Figure 31.

1.33
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tiain 'iho sx-aoim-it din~uon of Bqmafoin (AG-1) aa the Mfooet life Udtibto
Lai Evao (6-1) gives3

Involdin th raqwrý&mt of EqutAion (0-~9) gives

JR 1ý (A ra-)

(A6 -7)

r m t eb ehav e as log ._#Log-7jN ~N,,N 0  0.-

Eqaw~I(A6-8)8

fwqciion Th0-8 yeutm is dk anuf d buae are a)bhvs oayy~nna
fimefoa 91h of &dt Iio "l ryyweym caok reoo h

whl ag ddcneacri oEutinIOs oldm@Aqrw r
1 riý,-j~rad by Ew~ta- (6-12) (d1 cof-qud oa meip



TUMnn "EI the Pftr-trl ritbuti~oe Of MGI~o (A6-~2) =E3~ flr~g, uaing Btrustion

(SL) k

rAhIch Is Detisfied if8givfn by

~heie& ~ 3 L~1/0

-me fanctuon r (d) lin Wie ca-.* behavee3 forp d- Ae

A CA
(AG- 10)

W4be io, as a power &RUnoon in d.
H~ere again, r~ (a) d-oe not swroach zero an d 1 oo that Ecjua~on (A6-10) canzot be
valid o--er the enu1re range of d.

2. FATIGUE LIFE DISTMBUTIONM WITH EIWONENT1AL AND PARETO DEFECT
SEVEM~Y D-101R113UTI 40

With the exRnentlal Severity dietdibution, tho WWII bull aroc-riefic~ life kv of

Eqi-atiou (G-8) bacomiea, using the @eiQ.ression for givea in Equation (AG-7),

nV)

f IA
1/k

(Y 6TV

(A6-11) i
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--- w-70-Mg (AG-11) "u (AEJV42) idsacvl r-aldionshipa In fow or elho of

with tho sioosed volunio aod mtreix parameter YV
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