UNCLASSIFIED

AD NUMBER

AD831711

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JAN 1968. Other requests shall be referred to Air Force Flight Dynamics Lab., Wright-Patterson AFB, OH 45433.

AUTHORITY

AFFDL ltr, 25 Jun 1971

THIS PAGE IS UNCLASSIFIED

AFFDL-TR-67-184

AD83171

۱;

ANALYTICAL DESIGN METHODS FOR AIRCRAFT STRUCTURAL JOINTS

W. F. McCOMBS, J. C. McQUEEN J. L. PERRY

VOUGHT AERONAUTICS DIVISION LTV AEROSPACE CORPORATION DALLAS, TEXAS

TECHNICAL REPORT AFFDL-TR-67-184

JANUARY 1968

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Flight Dynamics Laboratory (AFFDL), Wright-Patterson Air Force Base, Ohio 45433.

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

400 - April 1963 - CO455 - 31-652

~

ANALYTICAL DESIGN METHODS FOR AIRCRAFT STRUCTURAL JOINTS

W. F. McCOMBS J. C. McQUEEN J. L. PERRY

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Flight Dynamics Laboratory (AFFDL), Wright-Patterson Air Force Base, Ohio 45433.

FOREWORD

This report was prepared by the Vought Aeronautics Division of the LTV Aerospace Corporation, Dallas, Texas, under USAF Contract F33615-67-C-1339. The work was initiated under Project No. 1467 "Structural Analysis Methods", and Task No. 146704 "Structural Fatigue Analysis". The work was administered under the direction of the Air Force Flight Dynamics Laboratory, Directorate of Laboratories, Wright-Patterson Air Force Base, Ohio. Mr. Howard A. Wood was technical monitor. C.

This report covers work conducted from 31 January 1967 through 31 January 1968. Mr. W. F. McCombs was Principal Investigator. Technical assistance was provided by Mr. J. C. McQueen who developed the computer routines. Mr. J. L. Perry was test engineer in charge of the fabrication and testing of all specimens and of the photostress analyses. Consulting services were provided by Dr. R. L. Tucker, Professor of Civil Engineering, University of Texas at Arlington, Texas. This report was submitted by the authors on 31 January 1968.

This technical report has been reviewed and is approved.

FRANCIS J. JANIK, JR. Chief, Theoretical Mechanics Branch Structures Division

ABSTRACT

An engineering procedure for determining the distribution of loads in the mechanically fastened joints of splice and doubler installations has been developed. Methods for both hand analyses and computer analyses are presented. Routines for solution by digital computer are provided.

The methods are generally limited to the cases of a single lap arrangement and a single sandwich arrangement, but the case of multiple (stacked) members is discussed. The members may have any form of taper or steps and the effects of fastener-hole clearance, or "slop", and plasticity can be accounted for. The particular primary data that must be supplied but which are not generally available in the literature are the spring constants of the fastener-sheet combinations.

A test program has been carried out to substantiate the methods and the results are included.

This abstract is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Air Force Flight Dynamics Laboratory (FDIR), Wright-Patterson Air Force Base, Ohio 45433.

TABLE OF CONTENTS

Page	No.

-1-1-5.5.7

I	Int	roduction	1
	1.	General	1
	2.	Literature Survey	1
	3.	Scope and Applications	3
II	Met	chod 1 - Analysis By Theoretical Formulas	5
	1.	Introduction	5
	2.	Elementary Theory	5
	3.	Analysis of a Splice	11
	4.	Extended Elementary Theory	12
	5.	Analysis of a Bonded Joint Using The "Generalized Force Method"	18
	6.	Summary of Formulas	21
III	Met	chod 2 - Numerical Method For Hand Analyses	
	1.	Introduction	31
	2.	Numerical Analysis Method for Doubler Installations	31
	3.	Numerical Method For Splices	39
	Ц.	Comparison of Doublers and Splices	42
	5.	Grouping Structural Elements	43
	6.	Fastener Loads In The Plastic Range	45
	7.	Successive Loadings In The Plastic Range	54
	8.	Multiple Doublers and Splices	57
	9.	Analysis For The Case of a Wide Base Structure	64

v

な形にした時間の

TABLE OF CONTENTS (Continued)

A CALL OF A CALL

Page No.

IV	Con	puter Routines	69
	1.	Introduction	69
	2.	General Routines For Analysis by Digital Computer.	69
	3.	Analog Computer Analysis	91
	4.	Other Digital Computer Routines	<u>9</u> 2
	5.	Additional Programs Presented in Appendix III	92
v	Dat	a For Analyses	93
	1.	Introduction	93
	2.	Fastener Spring Constants	93
	3.	Axial Member Spring Constants	96
	4.	Fastener-Hole Clearance Or "Slop"	97
	5.	Effect of Friction	100
VI		plication of Results of Analyses To The erall Structure	101
	1.	Introduction	101
	2.	Procedure	101
	3.	Application of the Results of a Doubler Analysis	101
	4.	Application of the Results of a Splice Analysis	102
	5.	Eccentric Doubler Installations	104
	6.	Eccentric (Single Lap) Splice Installation	105
VII	Tes	st Program	106
	1.	Introduction	106

.

TABLE OF CONTENTS (Continued)

Page	NO.
	Statement in succession.

	2.	Assembly Tests and Specimens	106
	3.	Doubler Assembly Specimens	106
	4.	Splice Assembly Specimens,	111
	5.	Individual (Element) Test Specimens	114
	6.	Photostress Plastic Test Specimens	115
	7.	Testing Procedures	116
	8.	Test Results	118
VIII	Pra	ctical Applications	139
	1.	Introduction	139
	2.	General Guides For Doubler Designs	140
	3.	General Guides For Splice Design	141
	4.	General Procedure For Disigning a Doubler	141
Referen	ces.	• • • • • • • • • • • • • • • • • • • •	147
Bibliog	raph	у	148
Appendi	хI	Additional Topics And Methods	157
	1.	Introduction	157
	2.	Short Cuts For Symmetrical Doublers And Splices	157
	3.	Accounting For The Effect of "Slop" and Plasticity On Internal Loads	15 9
	4.	Accounting For The Effect of "Slop" in the Plastic Range On Residual Loads	160
	5.	Accounting For Slop At One Or More Fasteners In A Row Or Group	163
	6.	Doublers On Wide Base Structures	163
	7.	Doublers Reinforcing A Cut-Out For Axial Strength Or Stiffness	165

vii

TABLE OF CONTENTS (Concluded)

_ .

	Page No.
Appendix II Reversed Loadings	167
Appendix III Additional Computer Routines	169
Appendix IV Computer Analysis Data	208
Appendix V International Units Table	214

viii

LIST OF ILLUSTRATIONS

Figure No.	Title	Page <u>No.</u>
II.1	Types of Doubler Installations Analyzed	5
11.2	Conversion of Doubler Installation Into Its Equivalent Structure	7
II.3	One Half Of A Doubler Installation	8
II.4	A Splice	11
II.5	Static Equilibrium Of A Splice	13
11.6	Static Force Equilibrium of a Differential Element	13
II. 7	Idealization of a Splice Structure For Analysis	17
8.II	Internal Stresses In A Bonded Splice	19
II.9	Idealized Structure For Generalized Force Analysis	20
II.10	Half Of A Doubler Installation	23
II.11	Half Of A Doubler Installation	23
II.12	Half Of A Loubler Installation	24
II.13	A Splice Installation	24
II.14	A Splice Installation	25
II.15	A Splice Installation	25
11.16	A Splice Installation	26
II.17	A Doubler Installation	27
II.18	A Splice Installation	28
III.l	A Doubler Installation	31
III.2	Displacement Of Members Due To Applied Loads	32

ix

٢

. سو ٽي

 . .

N.K.X

LIST OF ILLUSTRATIONS (Continued)

Dowo

No.	<u>Title</u>	No.
III.3	Sign Convention For Applied Loads And Internal Loads	32
III.4	A Doubler Installation	36
111.5	Displacement Of Members Due To Applied Loads	39
111.6	Sign Convention For Applied Loads And Internal Loads	39
111.7	A Splice Installation	40
111.8	Comparison Of Internal Loads In Doublers And Splices	¹ t3
111.9	Grouping Of Fasteners To Facilitate Analysis	44
III.10	Division Of A Fastener-Sheet Load - Deflection Curve Into Linear Increments	46
III.11	A Doubler Installation	49
III.12	Loading And Unloading In The Plastic Range	55
111.13	A Multiple Doubler Installation	58
111.14	A Multiple Doubler Installation	60
111.15	Doubler Installed On A Wide Base Structure	64
111.16	A Doubler Installed On A Wide Base Structure	66
IV.1	Doubler Program	72
IV.2	Load-Deflection Curve for a Fastened Joint Replaced by Straight Line Increments	83
·IV.3	Example Input Data	84
IV.4	Example Output Data	86
IV.5	A Doubler Installation Analyzed by an Analog Computer	91

Ľ

.)

x

LIST OF ILLUSTRATIONS (Continued)

Figure <u>No.</u>	Title	Page No.
V.1	Deflection At A Joint	93
V.2	Typical Load-Deflection Curves For Fastened Joints	94
v. 3	A Lap Joint Having Dis-similar Sheets	95
v. 4	Effective Area Of A Cross-Section	97
V. 5	"Slop" At A Fastened Joint	97
v. 6	"Slop" At A Fastened Joint	98
VII.1	Constant Width Doubler Specimens	109
VII.2	Tapered Planform Doubler Specimens	109
VII.3	Wide Base Structure Specimen I-E	110
VII.4	"Stacked" Doubler Specimen I-F	110
VII.5	Constant Width Splice Specimens	113
VII.6	Tapered Planform Splice Specimens	113
VII.7	Short Bolted Splice Specimen II-D	113
VII. 8	Photostress Plastic Splice Specimens	115
VII.9	Load-Deflection Test Plots From The Autographic Recorder	117
VII.10	Load-Deflection Test Plots From The Autographic Recorder	117
VII.11	Load-Deflection Curves - HL1870 Fasteners Having Sliding Fit	121
VII.12	Load-Deflection Curves - HL1870 Fasteners Having .005" Initial "Slop"	122
VII.13	Load-Deflection Curves - NAS Bolts Having Sliding Fit, Fingertight Nuts	123

xi

٢

LIST OF ILLUSTRATIONS (Continued)

Figure No.	Title	Page No.
VII.14	Load-Deflection Curves - NAS Bolts Having Sliding Fit, Torqued Nuts	124
VII.15	Load-Deflection Curves - NAS Bolts Having .005" Initial Slop, Fingertight Nuts	125
VII.16	Load-Deflection Curves - NAS Bolts Having .005" Initial Slop, Torqued Nuts	126
VII.17	Load Deflection Curves - Spotwelds	127
VII. 18	Strain Distribution in Photostress Plastic Specimens	132
VII.19	Strain Distribution in Specimen II-A2 (Doubler)	133
VII.20	Strain Distribution in Specimen I-Dl (Tapered Doubler)	134
VII.21	Strain Distribution in Specimen II-Cl (Tapered Splice)	135
VIII.1	Doubler Installation On A Wing Skin	142
VIII.2	A Preliminary Doubler Installation	143
VIII.3	A Tapered Doubler	145
AI.1	Diffusion Lines For Practical Analysis Purposes	164
AI.2	Solid Doubler Reinforcing A Cut-Out	166
AII.l	Load Deflection Curve For Reversed Loadings	167
AITI.1	Splice Program	170
AIII.2	Splice Program Input Data	180
AIII.3	Splice Program Output Data	182
AIII.4	Stacked Doubler Program	186
AIII.5	Stacked Doubler Program Input Data	194
AIII.6	Stacked Doubler Frogram Output Data	195

į

xii

LIST OF ILLUSTRATIONS (Concluded)

Figure No.	Title	Page No.
AIII.7	Stacked Splice Program	196
8.IIIA	Stacked Splice Program Input Data	205
AIII.9	Stacked Splice Program Output Data	206
AIV.1	Routine Loading Configuration	213

i di

ALC: NO.

xiii

٢

Ľ

LIST OF TABLES

Table No.	Title	Page No.
II.1	Stiffener AE Values	20
11.2	Stiffener Loads and Shear Flow In Webs	21
111.1	Tabular Method For Doubler Analysis	38
111.2	Tabular Method For Splice Analysis	41
111.3	Determination of Internal Loads In The Plastic Range	51
III. 4	Determination Of The Allowable Applied Load For The Structure	53
III.5	Comparison Of Results From Hand And Computer Analyses	54
111.6	Determination Of Residual Loads	56
111.7	Determination Of Successive Loads In The Plastic Range	57
111.8	Results Of Steps a And b, First Trial	61
111.9	Results Of Steps c And d, First Trial	62
111.10	Results of Step e, First Trial	62
111.11	Results Of Steps b Through d, Second Trial	63
111.12	Base Structure (AE/L) _{eff.} For Fastener Loads Imposed	67
111.13	Internal Load Distribution For The Diffusion Lines Assumed In Figure III.16	68
VI.1	Determination Of The Effective Area And Effective Width Of A Doubler	102
VI.2	Determination Of The Effective Area And Effective Width Of A Splice	103
VII.l	Test Loads For Assembly Specimens	116
VII.2	Comparison of Test and Predicted Internal Loads For Doubler Assembly Specimens	136

xiv

LIST OF TABLES (Concluded)

Table No.	Title	Page No.
VII.3	Comparison of Test and Predicted Internal Loads For Splice Assembly Specimens	138
AI.1	Determination Of Internal Loads In The Plastic Range When Initial Slop Is Present	162
AI.2	Calculation Of Superposition Loads For Determin- ing Residual Loads	162
AI.3	Residual Loads And Slop	162
AIV.1	Conversion Factors for the International System of Units	214

XV

CARGE COM

Ë.

NOMENCLATURE, SYMBOLS AND DEFINITIONS

- A area of a cross-section
- B a ratio of two thicknesses
- C constant of integration
- D designation for an axial member, either a doubler or the upper member in a splice; also used to designate a hole diameter
- E modulus of elasticity
- e natural logarithm base; also designates an eccentricity
- ft a tensile stress
- f_c a compressive stress
- f_s a shear stress
- F an allowable stress
- G modulus of elasticity in shear
- h dimension involving thicknesses of axial members and the bond
- k spring constant of a member or of a fastened joint
- ko the "secondary" spring constant of a fastened joint obtained in unloading or reloading the joint.
- L the length of a member, or of an element of a member
- m a subscript referring to the number of a set of calculations within a larger set.
- n a subscript referring to the number of a member or of a calculated value
- p fastener spacing (or "pitch")
- P internal load
- q internal shear flow
- q_e applied shear flow
- Q applied axial load
- r a ratio of loads

xvî

- R an external reaction
- S designation for a base structure member, or the lower member in a splice
- t a thickness
- T a tension or compression load in a direction normal to the applied axial loads.
- U strain energy
- w normal running load (lbs/in.)
- W width of an axially loaded member

١

- x coordinate in the direction of the axial load
- z coordinate normal to x (or "vertical")
- δ the total strain in a member (or in an element of a member) or in a fastened joint; referred to as the "deflection" in a fastened joint
- \triangle an increment
- 4 Poisson's ratio
- Δc the initial clearance or "slop" in a fastened joint.

xvii

SECTION I

INTRODUCTION

I.1 GENERAL

There are numerous occasions both in the design stages and in the service life of aerospace vehicles when it may be desirable to use either splices or doublers (reinforcing members) having many rows of fasteners in the direction of the applied loading. The proper, or the optimum, arrangement of such members requires a definition of the loads transferred by the various fasteners. To be practical this definition of loads must also reasonably account for possible fastenerhole clearance (or "slop") and for loadings that carry the joints into the plastic range. Once defined, the fastener loads can be used to assess the structure for adequacy under any general criteria. That is, where a stipulated fatigue life is a requirement the local fastener bearing stresses on the members must be small enough so as not to result in an unacceptable fatigue life limitation. And, where yielding and/or ultimate strength are the criteria, the fastener loads must be small enough that these are satisfied. Finally, any such methods of analysis should be useable for a hand analysis of specific structures. That is, even though a computer program is available and even though some "idealization" of the structure may be necessary, the advantages of hand analyses can be numerous in many instances.

I.2 LITERATURE SURVEY

A considerable number of published papers, reports and textbooks containing discussions related to the subject of this report have been reviewed. These are listed in the Bibliography. Those which appear to be most pertinent for this effort are listed as References and are referred to in the applicable section of this report. In general it was found that most discussions were for spliced members having a bonded joint, a few were for spliced members with bolted or riveted joints, but none were found for the case of the installation of a doubler. Where outlined, most methods were limited to the elastic range, the members and attachments were uniform (no taper or steps), the effect of fastener-hole clearance was not included and, importantly, no significant data defining the stiffnesses (or the "spring constants") of the fastener-sheet joints appears to be in the literature. Summarizing, the present literature does not appear to provide the engineer with suitable general methods and data necessary for proceeding with the analyses of doubler and splice installations having mechanically fastened joints. A brief description of these references follows.

Reference (1) makes use of a large rubber analog (model) for measuring and actually observing, by marked grid-lines, the displacements taking place in a cemented and in a riveted joint. The report is interesting in that it gives a better insight as to the physical manner in which such joints actually deform. A theoretical analysis for a cemented joint is presented and the results obtained by using it were verified from tests of the model. The tension forces across the joint, as well as the shear distribution were discussed. No qualitative data or methods were presented, however, that could be used directly for predicting the load distribution in a mechanically fastened joint. The analysis presented uses the elementary theory and is for the lap splice only. The effects of fastener "slop" and plasticity are not included.

والمتحد والمتحد والمتحد والمتحد والمتحد والمتحافظ والمتحافظ والمتحافظ والمحافظ والمحافظ والمحافظ والمحافظ والم

Reference (3) is generally referred to as the "exact" analysis of a bonded lap splice. Equations are developed for the shearing and "tearing" (tension) stresses in the bond. The equations are quite lengthy and involve hyperbolic functions. The extreme cases of a relatively flexible bond and of a "rigid" bond are evaluated. The members are uniform (no taper). The results are of interest primarily for the case of short bonded lap splices, rather than for mechanically fastened joints.

Reference (4) discusses the analogy between the distribution of current in a ladder-type resistance network and the distribution of loads in a bolted joint (and also in stiffened panels). A simple "computer" consisting of variable resistors and a constant current source was described. It s use was shown to give a very rapid determination of bolt loads with an accuracy quite acceptable for engineering design. Such a simple computer would be especially useful where long joints are involved and also where unsymmetrical structural arrangements are present. It would also serve to define load distributions in stiffened panels where shear-lag effects are present.

Reference (5) presents (as part of a larger effort) a computer program for the determination of fastener loads in a splice having multiple axial members. The program is based upon the elementary theory and arrives at the fastener loads by solving simultaneous equations. Hence, it is not useful for hand analyses. This reference is discussed further in Section IV.

Reference (6) is the first major effort published by the NACA on the subject. Only the symmetrical case is discussed, however. An equation for determining the spring constants of bolts in double shear and in the elastic range is presented. The method consists of using an equation developed for the load relationship between adjacent fasteners to obtain the loads in all of the fasteners in the elastic range. Hence, as presented, the method is restricted to bolted symmetrical butt joints in the elasti "enge. No consideration is given to unsymmetrical arrangements, bol ...ole clearance, or stresses above the elastic range. Tests were carried out which verified the results of the method.

Reference (7) is an extension of the earlier work in Reference (6). It consists essentially of developing a "recurrence formula" which can be used, with the appropriate boundary conditions, to rapidly write simultaneous equations for the bolt loads. Then, to avoid the solution of simultaneous equations, a method of solution by a finitedifference equation is presented for uniform bolt size and spacing. This enables the direct solution of each bolt load to be obtained. The analogy between the bolted joint problem and the shear lag problem was mentioned and the shear-lag equation for single-stringer structures (NACA Report 608) was used to obtain the individual bolt loads. The main advantage of this method over the earlier effort is a saving of computational labor when a long joint with many fasteners is involved. It, too, is restricted to bolted symmetrical butt joints in the el^ostic range and also to uniform bolt size & spacing for the special techniques. Tests were carried out which verified the results obtained by the calculations.

I.3 SCOPE AND APPLICATIONS

3

The purpose of this effort is to provide the engineer with useable methods for determining the load distributions in any practical structural splice or doubler arrangement. The methods are generally restricted to a single lap or to a single sandwich (3 axial members) but it is believed that this covers the majority of practical cases likely to be encountered. The effects of both fastener hole clearance ("slop") and plasticity can be accounted for. The load distributions can be calculated either by hand analyses or by using either a digital or an analog computer There are two types of hand analyses. One type (Method 1) uses theoretical formulas that are strictly applicable only for the case of uniform members in the elastic range and does not account for fastener-hole clearance. The other type of hand analysis (Method 2) is a numerical procedure and hence applies to any case since the effects of taper, fastener-hole clearance and plasticity are accounted for. The results of a test program carried out to assist in defining parameters and to substantiate the method are presented.

The use of splices in aerospace vehicle structures is well known. It is accepted as "good design practice" to use a minimum number of rows of attachments in designing splices, but there are occasions when such practice cannot be observed and many rows are required. It is in these cases, particularly, that an accurate determination of the individual fastener loads is necessary.

The use of doublers in zerospace vehicle structures would possibly be made for any of several general purposes which are

- a. Reinforcement for strength purposes in order to
 - (1) strengthen an existing structure
 - (2) salvage a damaged area
 - (3) strengthen an axially loaded member having a "cutout"

7

In any case the possibility of a limitation in fatigue life due to such a doubler installation should be considered as a possible unacceptable limitation. If this is no problem, then either a yielding or strength capability is the main criteria.

- b. Reinforcement for fatigue purposes in order to:
 - (1) increase the life of an existing design
 - (2) properly salvage a damaged structure from a service life consideration.
 - (3) salvage a "fatigue damaged" structure (i.e. where, fatigue damage has been accumulated too rapidly in a particular vehicle or group of vehicles)
- c. Reinforcement for stiffness purposes which should include a consideration of a possible fatigue life limitation.
- d. Although not necessarily intended as such, any member attached to an axially loaded structure will act as a doubler, picking up load. In such cases an investigation of possible harmful effects on fatigue life is sometimes desirable or necessary.
- e. An additional application of the method is in investigating the possible consequences of ending a member, such as a stringer, that is attached to a skin or sheet. Occasionally such practice may be desirable from the manufacturing or salvage standpoint, and any possible harmful consequence will require analysis.

Summarizing, it is believed that this report provides the engineer with practical methods for proceeding with the analyses of mechanically fastened joints. The fastener data necessary for such analyses are discussed and some typical data are presented.

SECTION II

METHOD 1 - ANALYSIS BY THEORETICAL FORMULAS

II.1 INTRODUCTION

The purpose of this section is to present the development of Normulas that can be used to predict load distributions in various splice and doubler configurations. The formulas will give approximate predictions since they are obtained from elementary principles and simplifying assumptions. However, they are useful for making engineering estimates for the cases to which they apply. It appears that any attempt to use other than an elementary approach results in expressions that are not of a useable form for design purposes. Also, the available data for the installed fasteners does not warrant such a refinement in analysis at present. (Such is not the case for bonded joints, however, where some provision in analysis must be made to account for the tension stresses in the bond at the ends of the joint. This particular stress is not accounted for by the elementary theory).

Although the numerical methods of Section III are the ones that will actually be used by the engineer in nearly all practical cases, it appears to be quite helpful for him to have an understanding of the elementary theory including its limitations and applicability. This is presented in Section II.

II.2 ELEMENTARY THEORY

The following analysis is based on several specific assumptions. Referring to Figure II.l which represents a doubler installation:

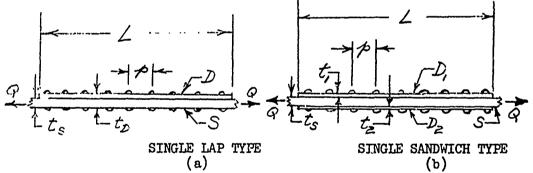


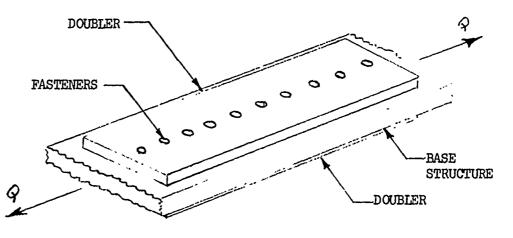
Figure II.1. Types of Doubler Installations Analyzed a. There are only 2 joint configurations to which the analysis applies

- (1) a single lap as in Fig. II.la
- (2) a single sandwich as in Fig. II.1b

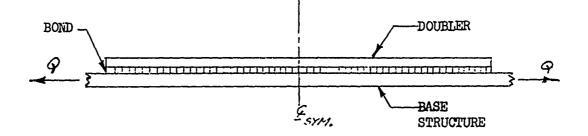
(The same would apply to splice configurations)

b. All stresses are in the elastic range.

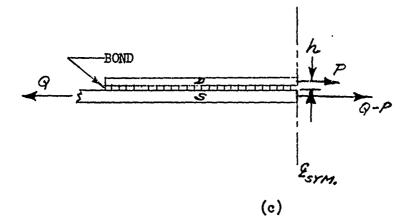
- c. The axial members, S and D are each of uniform size, no taper or steps.
- d. The axial members are subject only to uniform axial stress (no bending stresses). Bending effects are discussed in Section VI *.
- e. The fasteners are of a uniform size and are at a uniform spacing, p.
- f. The fasteners have a spring constant in shear, k_f , obtainfrom experimental load-deflection data for particular sheet thickness, t_s and t_D . These are discussed in Section VII. These discrete spring constants can be replaced by an "equivalent bond" having a shearing spring constant per inch of length given by


$$k = \frac{k_F}{P}$$

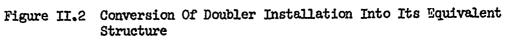
where p is the fastener spacing.

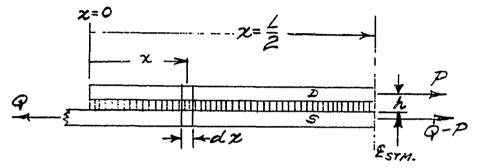

A sandwich configuration as in Fig. II.lb can then be analyzed in the same manner as the configuration in Figure II.la by combining the separate members D_1 and D_2 into one member D (having their total crosssectional area) and using the spring constant, k_F , that corresponds to the actual double lap fastener sheet combination in determining the value of k for the single bond.

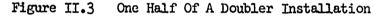
Thus, an arrangement consisting of a base structure, S, subjected to the applied axial load Q and having (either one or two) doublers installed, as shown in Fig. II.2a, (and II.1b) can be analyzed using the equivalent structure shown in Figure II.2b. Due to symmetry the structure can be further simplified as shown in Figure II.2c.


* In Ref. 6 (Bolted Sardwich Splices) it is shown that the bending has a negligible effect upon the distribution of fastener loads.

(a)







Since an equivalent bond is being used, the results will of course also apply to members which are actually bonded together.

As the member S stretches under the load Q the member D will be cause i to stretch also, because of the common bond (or the attachments). A d, P, will thus be developed in the member D, varying from zero at the ends to a maximum at the centerline. At any station the net load in the base structure will then be Q less the load in D.

Referring to Figure II.3, the load in the doubler at any station, x, can be determined as follows, using the previously listed assumptions.

From the minimal energy principle the variation of the load P must be such as to result in a minimum of energy being stored in the structure as a whole. There are, per the assumptions, three sources of stored energy, \mathcal{U} . These consist of axial strain energy in the members D and S and shear strain energy in the bond, or

 $U = U_{D} + U_{S} + U_{B}$

In differential form, for an element of length dx,

where

$$dU = dU_{b} + dU_{s} + dU_{b}$$

$$dU_{b} = \frac{P^{2}dx}{2A_{p}E_{b}}$$

$$dU_{s} = \frac{(Q-P)^{2}dx}{2A_{s}E_{s}}$$

$$dU_{g} = \frac{(dP)^{2}}{2K} = \frac{(dP)^{2}dx}{2kdx} = \frac{(dP)^{2}dx}{2k}$$

Hence,

And,

1 ,

$$T = \left[\frac{p^{2}}{zA_{z}} + \frac{(Q-P)^{2}}{zA_{z}} + \frac{1}{zA_{z}} \frac{dP}{dx} \right]^{2} dx - \dots (2)$$

Referring to the bracketed terms in Eq (1) and (2) as F, Eq.(2) becomes

$$U = \int_{0}^{4/2} F dx \qquad -----(3)$$

It is shown in the literature, Reference (2), that when F is a function of the variables P and dP/dx, the particular manner in which P must vary with x in order to minimize the integral as in Eq.(3) is defined by the equation

$$\frac{3}{2P} = \frac{d}{dx} \left(\frac{\partial F}{\partial dx} \right) = 0 - \dots - \dots - (4)$$

Eq. (4) is usually referred to as "Euler's Equation"

Therefore in order to apply Equation (4) to Equation (2), the derivatives are first obtained, from Equation (2), as

$$\frac{\partial E}{\partial p} = P\left(\frac{1}{A_s E_s} + \frac{1}{A_p E_p}\right) - \frac{Q}{A_s E_s}$$

$$\frac{\partial F}{\partial \frac{dP}{dx}} = \frac{1}{k} \frac{dP}{dx}$$

$$\frac{d}{d\chi}\left(\frac{\partial F}{\partial \frac{dP}{d\chi}}\right) = \frac{1}{k}\frac{d^2 P}{d\chi^2}$$

9

٢

CX.

Then, substituting these terms into Equation (4)

$$P\left(\frac{1}{A_{s}E_{s}}+\frac{1}{A_{p}E_{p}}\right)-\frac{R}{A_{s}E_{s}}-\frac{1}{k}\frac{d^{2}P}{dx^{2}}=0 \quad -----(5)$$

Rearranging terms

$$\frac{d^{2}P}{d.z^{2}} - k\left(\frac{1}{A_{s}E_{s}} + \frac{1}{A_{p}E_{p}}\right)P = -\frac{kQ}{A_{s}E_{s}}$$

or

$$P = C_{e} e^{\sqrt{m} \chi} + C_{e} e^{-\sqrt{m} \chi} + \frac{N}{M} - - - - - (7)$$

The constants C_1 and C_2 are determined from the end conditions, which are, for this case,

At
$$\chi = 0$$
, $P = 0$ and at $\chi = \frac{L}{2}$, $\frac{dP}{d\chi} = 0$

This results in

$$C_{1} = -\frac{N/M}{1+e^{\sqrt{M}L}}$$
 and $C_{2} = C_{1}e^{\sqrt{M}}$

Hence

$$P = C_{i} \left(e^{\sqrt{m}z} + e^{\sqrt{m}z} \cdot e^{\sqrt{m}z} \right) + \frac{N}{M} - \dots - (8)$$

L

Equation (8) thus defines the doubler load at any station x.

The shear flow, q, at any station, x, can then be obtained by differentiating (8), giving *

$$g = \frac{dP}{dX} = \sqrt{M} C_1 \left(e^{\sqrt{M}X} - e^{\sqrt{M}L} \cdot e^{\sqrt{M}X} \right) - \dots - (9)$$

and in a similar manner the tension on the bond (normal to the applied load) can be obtained at any station x except the end by differentiating Equation (9), and multiplying by the distance h, giving *

$$w = h \frac{dq}{dz} = h M C_{q} \left(e^{V H z} + e^{V H L} \cdot e^{V H z} \right) - \dots - (10)$$

where h is the distance between the centroid of D and the inner surface of S as in Figure II.3.

The actual shear load, P_F , on a fastener at any station x can be obtained as (approximately)

$$P_F = g_z P$$

* See Figure II.5

where p = fastener spacing

 $q_x = shear$ flow from Eq. (9)

For the end fastener, however, the shear flow is usually changing so rapidly that it is more accurate to use Eq. (8) with x = p to obtain P_{F_1} . That is, $P_{F_1} = P_{x=p} - P_{x=0} = P_{x=p}$

Although Equations(8) and (9) are somewhat lengthy, the designer or analyst using them would only be interested in calculating the value of P at one station, at x = L/2, and in calculating the value of the end fastener load. Hence, not a great deal of computational labor is actually involved. And even this can be shortened by reducing these particular equations to the approximate expressions

which are sufficiently accurate for practical doubler installations. The larger the value of the parameter e^{VHL} , the more accurate are Equations (11) and (12). Then for the end fastener, $P_{F'_i}$

$$P_{F_{i}} = \frac{N}{M} \left(1 - e^{-\sqrt{M} + p} \right)$$

The results for other loadings on a doubler installation are summarized in Article II.6

II.3 ANALYSIS OF A SPLICE

Proceeding in a similar manner for a single lap splice (or for a single sandwich splice as mentioned previously) as illustrated in Figure II.4, the same differential equation, Equation (6), and general solution, Equation (7), are obtained

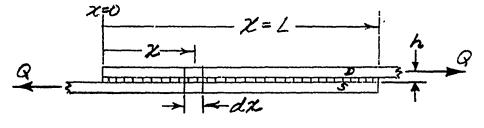


Figure II.4 A Splice

$$\frac{d^2 P}{d\chi^2} - MP = -N$$

$$P = C_{e} e^{\sqrt{H}\chi} + C_{2} e^{-\sqrt{H}\chi} + \frac{N}{M}$$

and

where, as before, P is the axial load in member D. In this case, however, the end conditions are

At
$$x=0$$
, $P=0$ and at $x=L$, $P=Q$

giving

$$C_{1} = \frac{Q - \frac{N}{M} \left(1 - e^{-\sqrt{M}L} \right)}{e^{\sqrt{M}L} - e^{-\sqrt{M}L}} \quad and \quad C_{2} = -\left(C_{1} + \frac{N}{M}\right)$$

The resulting equations are then

$$P = C_{i} \left(e^{\sqrt{M} \mathcal{X}} - e^{\sqrt{M} \mathcal{X}} \right) + \frac{N}{M} \left(1 - e^{-\sqrt{M} \mathcal{X}} \right) - \dots - (13)$$

$$q = \sqrt{M} C_{i} \left(e^{\sqrt{M} \mathcal{X}} + e^{\sqrt{M} \mathcal{X}} \right) + \frac{N}{\sqrt{M}} e^{-\sqrt{M} \mathcal{X}} \dots - \dots - (14)$$

and as discussed for Eq. (10),

$$w = hMC, \left(e^{\sqrt{H}\mathcal{X}} - e^{\sqrt{H}\mathcal{X}}\right) - Ne^{-\sqrt{H}\mathcal{X}} - \dots - \dots - (15)$$

These equations are somewhat lengthy, but, as discussed before, the designer would only be interested in obtaining the value of the end fastener load, (at the end of the larger member, S or D, where it is largest). This can be arranged by letting D be the larger member. Hence, only very little computational labor is involved. Equations (13)-(15) give the same results as their counterparts in Reference (1).

The results for other types of splices and splice loadings are presented in Article II.6. Although the various equations apply only to a configuration having uniform members, they can be used in making estimates for other cases. This is discussed in Article II.6. The main difficulty in practice is obtaining the values of k, as discussed in Section V. Example problems are presented at the end of this section.

II.4 EXTENDED ELEMENTARY THEORY

The previous elementary analysis considered only axial strain energy in the axial members and shear strain energy in the bond. The resulting static balance for, say, the splice of Figure II.4 is shown in Figure II.5.

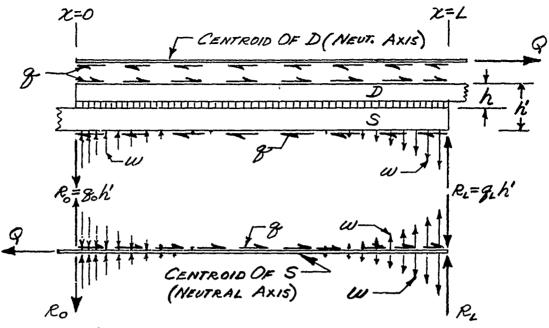


Figure II.5 Static Equilibrium of a Splice

The reactions, w and R, (which must be supplied per the assumptions) obviously will produce normal stresses in the bond which have been ignored. That is, any tension or compression energy in the bond has been assumed to be zero (or the bond is assumed infinitely rigid in this normal direction, as are the members S and D). It is of interest to see what the effect of including this energy would be on the final equations for P, q and W. This will also demonstrate how refining the elementary theory in even a simple manner results in expressions that are too involved for practical useage. Also, the results will apply only to an actual bonded (glued) joint rather than to a mechanically fastened one, as discussed later.

This particular effect can be accounted for by adding a fourth energy term to those of Equation (1), namely the normal force energy in the bond (which is, in practice, far greater than that in the normal direction for the stiffer members, S and D). Considering a small element dx as shown in Figure II.6,

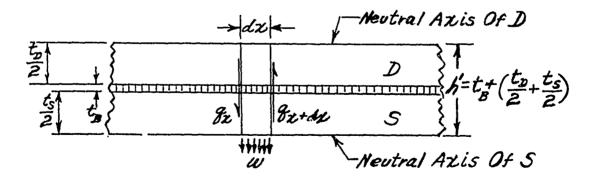


Figure II.6 Static Force Equilibrium of a Differential Element

For static equilibrium of forces in the normal direction,

 $h(g_{z+z}, g_{z}) = h(\frac{dx}{dz}) dx = w dx$ The average normal load, T, in the bond can then be calculated as

where

$$B = \frac{t_{p/2} + t_{s/2}}{h} = \frac{t_{2}(t_{p} + t_{s})}{t_{s} + t_{2}(t_{p} + t_{s})}$$

When $t_p = t_s$, $B = \frac{1}{2}$ and $T = \frac{1}{2} w dx$

The tension energy in a differential element is then

$$dU_r = \frac{T^2}{2K'} = \frac{(Bwdz)^2}{2k'dz}$$
(16)

. 2

and since

$$-\omega = h' \frac{dq}{dx} = h' \frac{d^2 P}{dx^2}$$

$$dU_r = \frac{B^2 h'^2 (d^2 P)^2}{2k'} dx$$
(17)

where

 \mathbf{k}^{t} is the spring constant of the bond, in the normal direction; per inch of length, or

$$k' = \frac{A_B E_B}{t_B} = \frac{W \times I \times E_B}{t_B} = \frac{W \times 2(I+4)G}{t_B}$$

where

W = width of the bond

G = shearing modulus of elasticity of bond

 $\mathcal{A} = Poisson's ration$

Adding the term, (17) to those in Equation (1)

$$dU = \left[\frac{p^{2}}{2A_{p}E_{p}} + \frac{(Q-\bar{p})^{2}}{2A_{s}E_{s}} + \frac{j}{2k}\left(\frac{dp}{dx}\right)^{2} + \frac{B^{2}h^{2}}{2k'}\left(\frac{d^{2}\bar{p}}{dx^{2}}\right)^{2} dx - \cdots (18)$$

and

$$U = \int \left(\frac{p^2}{2A_pE_p} + \frac{(Q-P)^2}{2A_sE_s} + \frac{1}{2k} \left(\frac{dP}{dx} \right)^2 + \frac{B^2h^2}{2k'} \left(\frac{d^2P}{dx^2} \right)^2 dx - \dots (19) \right)$$

In this case the bracketed expression, F, is a function of P, dP/dx and also dP/dx. Hence, the "extended" form of Eulers Equation must be used. This is (compare to Equation (4))

$$\frac{\partial F}{\partial P} - \frac{d}{dx} \left(\frac{\partial F}{\partial \frac{dP}{dx}} \right) + \frac{d^2}{dx^2} \left(\frac{\partial F}{\partial \frac{d^2 P}{dx^2}} \right) = 0 \quad \dots \quad \dots \quad (20)$$

The higher order term in (20) is obtained by differentiating F as indicated.

$$\frac{\partial F}{\partial \frac{d^2 P}{dx^2}} = \frac{B^2 h'^2}{k'} \frac{d^2 P}{dx^2}$$

and then

$$\frac{d^{2}}{d\chi^{2}} \left(\frac{\partial F}{\partial \chi^{2}} \right) = \frac{B^{2} h^{2}}{k^{\prime}} \frac{d^{4} P}{d\chi^{4}}$$

Then, substituting this into Eq. (20) along with the other terms (as in Equation (5)),

$$P\left(\frac{1}{A_sE_s} + \frac{1}{A_bE_b}\right) - \frac{Q}{A_sE_s} - \frac{1}{k}\frac{d^2P}{dx^2} + \frac{B^2h'^2}{k'}\frac{d^4P}{dx^4} - \dots - (21)$$

And, rearranging terms,

$$\frac{d^{4}P}{dx^{4}} - \frac{k'}{B^{2}h^{2}k} \frac{d^{2}P}{dx^{2}} + \frac{k'}{B^{2}h^{2}} \left(\frac{1}{A_{s}E_{s}} + \frac{1}{A_{b}E_{b}}\right)P = \frac{4k'Q}{R^{2}h^{2}A_{s}E_{s}}$$

or

$$\frac{d^{*}P}{dx^{*}} - L'\frac{d^{2}P}{dx^{2}} + M'P = -N -----(22)$$

ţ

Where

$$L' = \frac{k'}{B^2 h'^2 k}, M' = \frac{k'}{B^2 h'^2} \left(\frac{1}{A_s E_s} + \frac{1}{A_p E_p} \right), N' = \frac{k' Q}{B^2 h' A_s E_s}$$

1.5

Comparing (22) to (6) it is seen that there is now a fourth order term, which considerably complicates the solution, and that the constants are now effected by the stiffness of the bond in the normal direction. The solution of (22) is

where

$$P = C_{r}e^{D_{r}x} + C_{2}e^{D_{2}x} + C_{3}e^{D_{3}x} + C_{4}e^{D_{4}x} + \frac{N'}{M'} - (23)$$

$$P = \left(\frac{L' + V'^{2} - 4M'}{2}\right)^{\frac{1}{2}} , \quad D_{2} = -D_{r},$$

$$D_{3} = \left(\frac{L' - V'^{2} - 4M}{2}\right)^{\frac{1}{2}} , \quad D_{4} = -D_{3}$$

Although general formulas cannot be written as in the previous (elementary) cases, for any specific problem L', M' and N' and hence D_1 - D_1 are known. Thus, for a specific problem, a solution for P can be obtained from (23). The expressions for q and w will then also be available (by successive differentiation of Eq (23)) as

$$g = D_{r}C_{r}e^{D_{r}x} + D_{2}C_{2}e^{D_{2}x} + D_{3}C_{3}e^{D_{3}x} + D_{4}C_{4}e^{D_{4}x}...(24)$$

$$\omega = h' \left[D_{r}^{2}C_{r}e^{D_{r}x} + D_{2}^{2}C_{2}e^{D_{2}x} + D_{3}^{2}C_{3}e^{D_{3}x} + D_{4}^{2}C_{4}e^{D_{4}x} \right]...(25)$$

Since there are 4 constants, C, 4 boundary conditions are required to define them. For the splice these are

$$@ X = 0, P = 0 ; @ x = 0, q = 0$$

 $@ X = L, P = Q ; @ x = L, q = 0$

or, for a symmetrical configuration

at
$$x = \frac{1}{2}$$
, $P = \frac{Q}{2}$ and at $x = \frac{1}{2}$, $\frac{dq}{dx} = 0$

The use of these relationships is illustrated in the following example.

Example:

Determine the values of P, q and w for the sandwich type splice shown in Figure II.7a and consider the normal forces in the bond. The results will also apply to a single lap splice for the assumptions of Art. II.1, that bending is prevented.

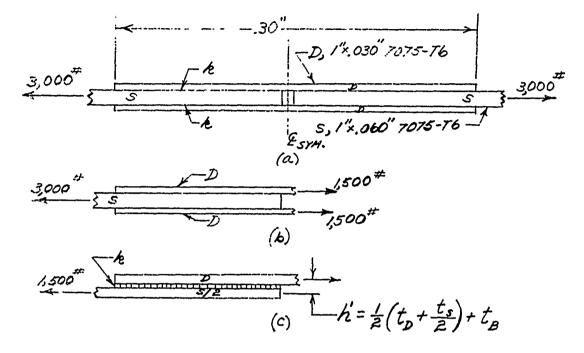


Figure II.7 Idealization of a Splice Structure for Analysis

The splice of (a) is converted to the equivalent structure of (c) for analysis. The following values are assumed for the structure:

$$A_{\rm D}E_{\rm D}=\frac{A_{\rm s}E_{\rm s}}{2}=.030\times10^7$$

Bond is "Redux", having

hence

$$k = \frac{WG}{t_B} = 1.87 \times 10^8$$
; $k' = \frac{WE}{t_B} = 4.86 \times 10^8$

For these specific values a solution is obtained as follows:

$$h = .030 + .0053 = .0353''$$
 and $B = 1/2$
Then, $L' = 8340$, $M' = .2595 \times 10^6$, $N' = 194.8 \times 10^6$
and $D_1 = 70.8$, $D_2 = 70.8$, $D_3 = 57.7$, $D_4 = -57.7$

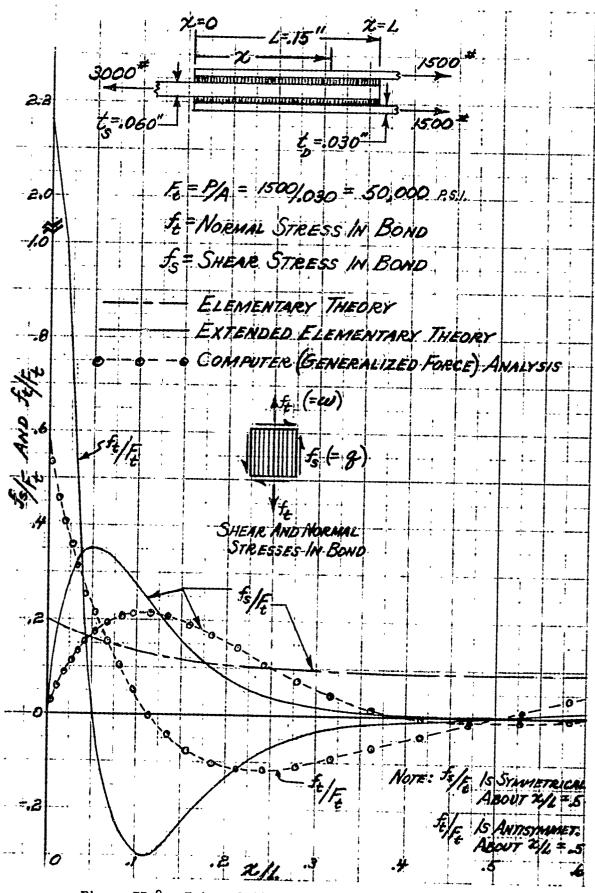
ج

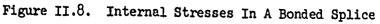
These values and the end conditions result in the final equations (for this particular structure).

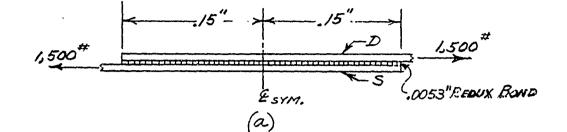
$$P = 2.78 \times 10^{3} \text{ pro.8x} + 3.30 \times 10^{3} \text{ e}^{-70.8x} - 1.96 \times 10^{2} \text{ e}^{57.7x} + 4.053 \times 10^{8} \text{ e}^{-77.7x} + 750$$

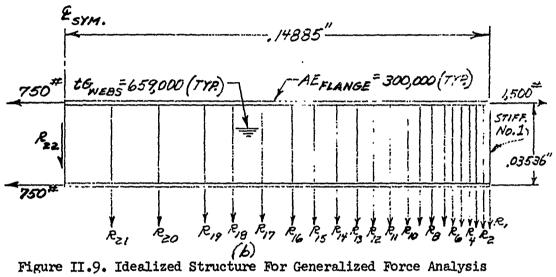
$$T = .1966 \text{ e}^{-70.8x} - 233,500 \text{ e}^{-70.8x} - 1.132 \text{ e}^{-57.7x} + 233,500 \text{ e}^{-57.7x}$$

$$\frac{dg}{dx} = .13.93 \text{ e}^{-70.8x} + 16,530,000 \text{ e}^{-70.8x} - 65.30 \text{ e}^{-13,480,000} \text{ e}^{-57.7x}$$


$$u = .492 \text{ e}^{-70.8x} + 584,000 \text{ e}^{-70.8x} - 2.305 \text{ e}^{57.7x} - 4.76,000 \text{ e}^{-57.7x}$$


From these equations values of the shear stress, f_s (= q/l"), and the tension stress f_t (= w/l") in the bond are calculated at various values of x. The ratios f_s/F_t and f_t/F_t are then computed and plotted in Figure II.8. F_t is the tensile stress in the members away from the joint. The large tension stress in the bond at the ends is of the same order of magnitude as that predicted for similar splices in the "exact" analysis of Reference (3).


The main purpose of this analysis and example is to illustrate that even this most simple additional refinement of the elementary theory results in an analysis effort that is too cumbersome for practical design purposes. The particular refinement illustrated could apply to a glued splice but not to a mechanically fastened one. This is because the fasteners are discrete, they carry bending as well as tension in transferring the shear, they may be "pre-loaded", their spring constants usually vary with the load level, and these effects are partially included in the elementary analysis in using an experimentally obtained spring constant, k, for them. Hence, the elementary analysis, later substantiated by test results, appears to be the only practical one for the case of mechanically fastened joints.


11.5 ANALYSIS OF BONDED JOINT USING THE "GENERALIZED FORCE METHOD"

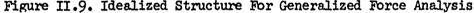

The previous example was also solved by digital computer using the conventional "Generalized Force Method" for obtaining internal loads in a structure (based on the minimum energy principle). That is, the splice was analyzed as shown in Figure II.9, the equivalent structure for analysis being taken as in (b)

TABLE II.1

STIFFENER AE VALUES

NO.	AE	NO.	AE	NO.	AE
1	5250	8	8900	15	18280
2	5250	9	8900	16	25100
3	5250	10	13470	17	25100
4	5480	11	13470	18	25100
5	5480	12	13470	19	37700
6	5480	13	18280	20	37700
7	8900	14	18280	21	37700

The bond was converted into the shear web and stiffeners shown by first dividing it into seven parts of increasing length from the end. Each part was then replaced by three stiffeners (and a web) which would have the same strain energy due to the Reaction loads as would the actual bond. These stiffener AE values are shown in Table II.1.

There were, thus, 22 reactions including the web shear at the centerline of symmetry. The web has a value for tG that provides the same shear rigidity as does the bond. The results (the stiffener loads and web shear flows) are shown in Table II.2.

TABLE II.2

STIFF- ENER	LOCATION	LOAD	SHEAR FLOW	STIFF- ENER	LOCATION	LQAD	SHEAR FLOW
2	x	R	q	n	x	R	q
n	in.	lbs.	lbs./in		in .	lbs.	lbs./in.
1 2 3 4 5 6 7 8	.00115 .00345 .00575 .00810 .01500 .01500 .01290 .01605 .01995	-59.10 -52.92 -47.09 -43.29 -37.74 -30.76 -42.42 -31.03	1671 3168 4500 5724 6791 7661 8861 9738	12 13 14 15 16 17 18 19	.04055 .04750 .05150 .06350 .07300 .08400 .09500 .10875	11.95 30.24 40.12 44.96 62.23 58.38 50.10 56.34	10438 9583 8448 7177 5417 3766 2349 757
9 10 11	.02385 .02875 .03465	-21.06 -15.68 .05	10334 10777 10776	20 21 _{R2}	12525 14175 2 = - 484	33.03 10.79 #/in.	-179 -484

LOADS IN "STIFFENERS" AND SHEAR FLOW IN "WEBS"

The results are also plotted in Fig.IL.8 as the dashed lines. It is seen that the tension stresses at the end are not as large as the peak values obtained analytically. The maximum shear stress is also lower, but the distributions of shear and tension stresses **are** of similar form. Possibly using more elements in the computer solution would have given better agreement in this respect, but this was not investigated further. The reactions conform to the basic assumptions of restraint against bending; thus, these analyses would be more representative of a sandwich type splice, than for a lap splice, in actual practice.

An extended digital computer analysis of this type might be useful in analyzing the more complicated splices involving composite structural materials. Since such materials consist of multi-layers, any purely analytical effort would become too cumbersome for practical application and the numerous possible configurations would require too massive an amount of data for a purely empirical approach. (The simple elementary theory is inadequate since it does not account for the high tension stresses at the ends of the layers.)

II.6 SUMMARY OF FORMULAS

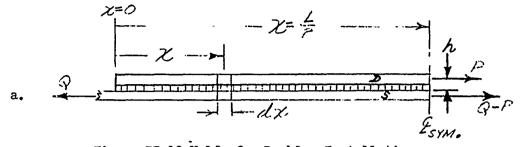
This article presents a summary of theoretical formulas for various doubler and splice structural configurations. These have been generated as illustrated in Article II.2 and II.3 and are subject to the same assumptions and limitations as discussed earlier in using the elementary theory. In all cases illustrated the formula for P gives the load in the upper member, D. The load in S can then be obtained from statics. The designer would usually be interested in only 2 results in using these formulas, namely:

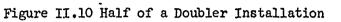
- a. The maximum (end) fastener load, which will be that developed over a distance, p, from the end (x = p) in either the case of a doubler or splice.*
- b. The load developed in the doubler, at the station x = L/2.

Hence the practical useage of the formulas is not as laborious as their form would indicate.

The formulas can, of course, also be used to obtain "rough estimates" of loads and shear flows in non-uniform (i.e., tapered or stepped) members. This would be done by substituting "average" values for A, E and k. Such members are much more accurately, analyzed, however, as discussed in Section III, using the numerical procedure.

Seven cases are presented. For each case the basic differential equation is shown, for informative purposes only. The equations numbered 1, 2 and 3 are used for load predictions. If desired, hyperbolic functions can be used to replace some of the exponential forms since


$$e^{z} - e^{-z} = 2 \sinh z$$


and

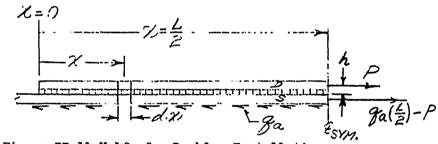
$$e^{z} + e^{z} = 2 \cosh z$$

This might be more convenient in cases e, f, and g and is illustrated for case g.

* When $t_D \neq t_s$, let x = p be near the end of the thicker member in the splice (i.e., let D be the thicker member).

$$\frac{d^{2}P}{dx^{2}} - MP = -N$$
where
$$P = C_{1} (e^{\sqrt{M}x} + e^{\sqrt{M}L} \cdot e^{\sqrt{M}x}) + N/M$$

$$C_{1} = \frac{-N/M}{1 + e^{\sqrt{M}L}}$$


$$R = \frac{kQ}{ASES}$$

$$R = hMC_{1} (e^{\sqrt{M}x} + e^{\sqrt{M}L} \cdot e^{\sqrt{M}x})$$

$$M = k(\frac{1}{ASES} + \frac{1}{ADED})$$

Approximate Equations:

1.'
$$P \approx \frac{N}{M}$$
 (1-e^{-VMx}) At x = L/2, $P \approx N/M$
2.' $q \approx \frac{N}{\sqrt{M}}$ e^{-VMx} At x = 0, $q \approx N/\sqrt{M}$
3.' $W \approx -hNe^{-\sqrt{M}x}$

Ъ.

Figure II.'l Half of a Doubler Installation

$$\frac{d^{2}P}{dx^{2}} - MP = -N_{O}x \qquad \text{where}$$
1. $P = C_{1} (e^{\sqrt{M}x} - e^{-\sqrt{M}x}) + \frac{N_{B}x}{M} \qquad \begin{pmatrix} C_{1} = \frac{-N}{M^{3/2}(e^{\sqrt{M}L/2} + e^{-\sqrt{M}L/2})} \\ N_{B} = \frac{kq_{B}}{A_{S}E_{S}} \\ N_{B} = \frac{kq_{B}}{A_{S}E_{S}} \\ M = k(\frac{1}{A_{S}E_{S}} + \frac{1}{A_{D}E_{D}}) \end{pmatrix}$

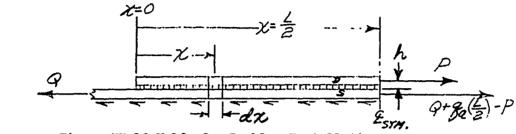
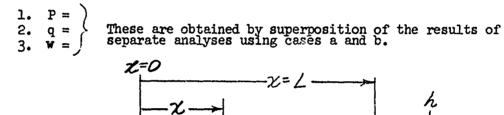



Figure II.12 Half of a Doubler Installation

$$\frac{\mathrm{d}^2 \mathrm{P}}{\mathrm{d} \mathrm{x}^2} - \mathrm{M} \mathrm{P} = - (\mathrm{N} + \mathrm{N}_{\mathrm{a}} \mathrm{x})$$

c.

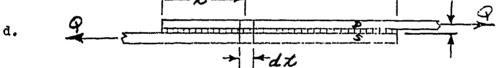
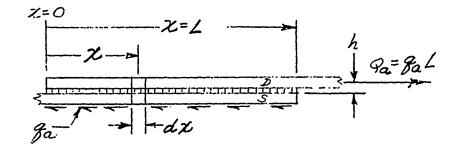


Figure II.13 A Splice Installation

$$\frac{\mathrm{d}^2 \mathrm{P}}{\mathrm{d} \mathrm{x}^2} - \mathrm{M} \mathrm{P} = -\mathrm{N}$$


1.
$$P = C_{1}(e^{\sqrt{Mx}} - e^{-\sqrt{Mx}}) + \frac{N}{M}(1 - e^{-\sqrt{Mx}})$$
2.
$$q = \sqrt{MC_{1}}(e^{\sqrt{Mx}} + e^{-\sqrt{Mx}}) + Ne^{-\sqrt{Mx}}$$
3.
$$W = h\left[MC_{1}(e^{\sqrt{Mx}} - e^{-\sqrt{Mx}}) - Ne^{-\sqrt{Mx}}\right]$$

$$C_{1} = \frac{Q - \frac{N}{M}(1 - e^{-\sqrt{ML}})}{e^{\sqrt{ML}} - e^{-\sqrt{ML}}}$$

$$N = \frac{kQ}{A_{S}E_{S}}$$

$$M = k(\frac{1}{A_{S}E_{S}} + \frac{1}{A_{D}E_{D}})$$

where

e.

Figure II.14 A Splice Installation

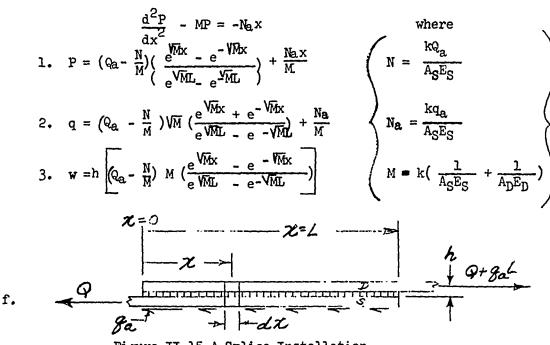


Figure II.15 A Splice Installation

$$\frac{d^2P}{dx^2} - MP = -(N + N_{\rm R}x)$$

1. P =2. q =3. w =

These are obtained by superposition of the results of separate analyses using cases d and e.

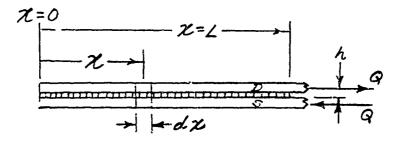
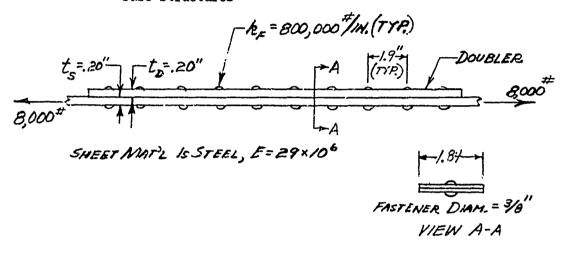


Figure II.16 A Splice Installation


g.

$$\frac{d^{2}P}{dx^{2}} - MP = 0$$
1. $P = Q \left(\frac{e^{\sqrt{Mx}} - e^{-\sqrt{Mx}}}{e^{\sqrt{ML}} - e^{-\sqrt{ML}}}\right) = Q \frac{\sinh \sqrt{Mx}}{\sinh \sqrt{ML}} \qquad \begin{cases} \text{Where} \\ M = k\left(\frac{1}{A_{S}E_{S}} + \frac{1}{A_{D}E_{D}}\right) \end{cases}$
2. $q = \sqrt{MQ} \left(\frac{e^{\sqrt{Mx}} + e^{-\sqrt{ML}}}{e^{\sqrt{ML}} - e^{-\sqrt{ML}}}\right) = \sqrt{MQ} \frac{\cosh \sqrt{Mx}}{\sinh \sqrt{ML}}$
3. $W = hMQ \left(\frac{e^{\sqrt{Mx}} - e^{-\sqrt{Mx}}}{e^{\sqrt{ML}} - e^{-\sqrt{ML}}}\right) = hMQ \frac{\sinh \sqrt{Mx}}{\sinh \sqrt{ML}}$

EXAMPLE PROBLEM

A doubler installation is shown in Figure II.17. This is the same structure as in Figure III.4 without the slop at the left end fastener. Determine

- a) The shear load developed in the end fasteners
- b) The load developed at the center of the doubler and of the base structures

This is representative of Case a. The "approximate" equations will be used. The various constants are

$$k = \frac{n_{e_e}}{n_{e_e}} = \frac{800,000}{1.9} = \frac{421,000}{1.9} \#/\ln/\ln$$

 $A_s = NET EFFECTIVE AREA* = (Width - .8D) t_s$

$$A_{D} = 1.84 - .8 (.375) (.20) = .308 \text{ in}^{2}$$

$$A_{D} = 1.84 - .8 (.375) (.20) = .308 \text{ in}^{2}$$

$$N = \frac{\&Q}{A_{5}E_{5}} = \frac{421,000}{.308(29\times10^{\circ})} = \frac{377}{.308(29\times10^{\circ})}$$

$$M = k\left(\frac{1}{A_{5}E_{5}} + \frac{1}{A_{D}E_{D}}\right) = 421,000\left[\frac{1}{.308(29\times10^{\circ})} + \frac{1}{.308(29\times10^{\circ})}\right]$$

$$= \frac{.0943}{.30943}$$

1000

LARGEDAN LA LANGE CALL

 $\sqrt{M} = \sqrt{.0943} = \underline{.307}$

L

* See Figure V.4

a) The load at the left end fastener is calculated using formula 1' of case a as $P_{F_1} = P_{D_{X=P}} - P_{D_{X=P}} = P_{D_{X=P}}$ hence,

$$P \approx \frac{N}{M} \left(1 - \frac{\sqrt{M} 2}{c} \right) = \frac{377}{.0943} \left(1 - \frac{-307 \times 19}{c} \right) = \frac{377}{.0943} \left(1 - \frac{1}{1.795} \right) = \frac{1770}{1.795}^{\text{#}}$$

That is, since each fastener has been replaced by a bond 1.9" long the load developed over this length of bond is the fastener load. Due to symmetry the load on the right end fastener is the same as that on the left end fastener.

b) The load developed at the center of the doubler, $(x = \frac{L}{2})$ is

$$P \approx \frac{N}{M} \left(I - e^{VM \times} \right) = \frac{377}{.0943} \left(I - e^{-307 \times 9.5} \right) = \frac{3780}{.0943}$$

The load in the base structure is then, from statics,

EXAMPLE PROBLEM

A splice is shown in Figure II.18. This is the same splice as in Figure III.4 without the "slop" at the left end fastener. Determine

- a) The shear load developed in the end fasteners
- b) The load in the center elements of the splice member (at x = L/2)

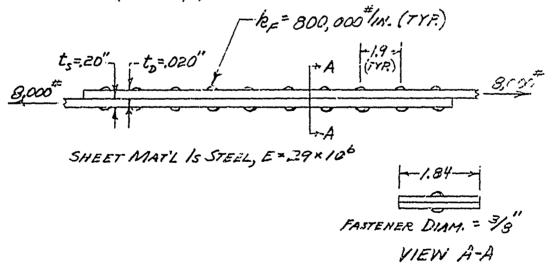


Figure II.18. A Splice Installation

This is Case d, and, as in the previous examples,

$$k = 421,000 \#/In, A_s = A_D = .308 In^2,$$

N = 377, M = .0943, $\sqrt{M} = .307$

And, for this case,

$$C_{i} = \frac{Q - \frac{N}{M} \left(1 - \frac{e^{N}}{E} \right)}{e^{NHL} - e^{NHL}} = \frac{B000 - \frac{377}{0.943} \left(1 - \frac{e^{-307 \times 19.0}}{2.307 \times 19.0} \right)}{\frac{307 \times 19.0}{E} - \frac{307 \times 19.0}{2.307 \times 19.0}} = \frac{B000 - 3990}{340 - \frac{1}{340}} = \frac{11.8}{1.8}$$

a) the load in the (left) end fastener is determined as that developed over the end (1.9") segment of the bond, as in the previous example problem.

$$P_{F_{r}} = C, \left(e^{\sqrt{H}x} - e^{\sqrt{H}x}\right) + \frac{N}{M}\left(1 - e^{\sqrt{H}x}\right)$$

$$= 11.8 \left(e^{\cdot 307\times1.9} - e^{\cdot 307\times1.9}\right) + \frac{377}{.0943} \left(1 - e^{\cdot 307\times1.9}\right)$$

$$= 11.8 \left(1.793 - \frac{1}{1.793}\right) + 399.8 \left(1 - \frac{1}{1.793}\right)$$

$$= 1792^{\#}$$

Since the members D & S have the same values of AE (or since $t_s = t_D$) the right end fastener will feel the same load. If $A_D E_D \neq A_s E_{s}$, the end fasteners will not feel the same load. The largest load will be at the end of the stiffer member.

b) The load developed in the center segment of the upper member (D) is determined from Eq. d.l, for x = L/2 = 9.5",

$$P = II.8 \left(e^{307 \times 9.5} - e^{-.307 \times 9.5} \right) + \frac{377}{.0943} \left(I - e^{-.307 \times 9.5} \right)$$
$$= 2.18 + 3782$$
$$= 4000^{\#}$$

The load in the center segment of the lower splice member(S) is then, from statics,

Had the members D and S not had the same value of AE, (or $t_s \neq t_D$) the loads P_s and P_D would not have been equal at the center segment.

These two examples are also solved by the numerical method in Section III, assuming one of the end fasteners to be installed in a "sloppy" (oversize) hole.

SECTION III

METHOD 2 - NUMERICAL METHOD FOR HAND ANALYSES

III.1 INTEDUCTION

The previous analytic equations apply only to the particular case involving uniform members. In general the geometry and the attachments will vary along the length. Hence, the Constants M and N of Eq. (6) will be functions of x and simple solutions will not be available. In this case a numerical integration of the differential equation (6), for each specific problem would be required. This could, of course, be done and used as a tool (but not for an accurate final load distribution) in an analysis of an actual glued joint. However, in the case of discrete fasteners it is advantageous to use a different procedure, which allows for including the effects of fastener-hole clearance ("slop") and plasticity. In addition, it is also more meaningful to the engineer.

111.2 NUMERICAL ANALYSIS METHOD FOR DOUBLER INSTALLATIONS

A practical engineering method for determining the distribution of fastener loads in a doubler or splice by hand analysis is often helpful. Such a procedure is described below, first for the case of a doubler. It is essentially one of successive trials using the principle of static equilibrium as the criteria for the correct distribution of internal loads. Figure III.1 shows a base structure, S, subjected to the applied loadings Q_L , Q_R , and q_a , q_a being an applied shear flow. A reinforcing member, or doubler, D, is attached to S by the mechanical fasteners, F. The "gap" between D and S is exaggerated for purposes of illustration.

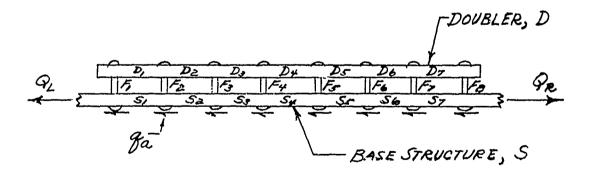


Figure III.1 A Doubler Installation

As the member S stretches under the applied loads, the common fasteners will, in turn, tend to stretch the member D. Loads will thus be generated in the fasteners. Considering only those forces in the axial direction, the shear loads in the fasteners can be determined as follows. Letting the end fastener, #1, at the base structure be the reference point for axial stretching, or displacement, the resulting relative movement is as shown in Figure III.2. The dotted lines show the displaced positions.

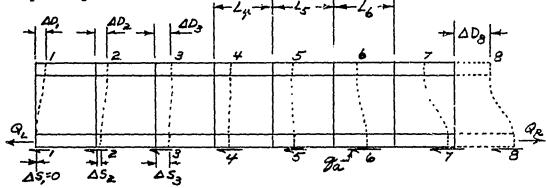


Figure III.2 Displacement of Members Due to Applied Loads

Figure III.3 shows the applied and the internal loads and also the sign convention used. That is, all applied and internal loads are positive when acting as shown.

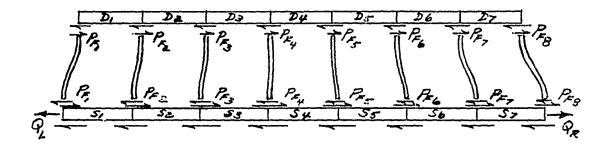


Figure III.3 Sign Convention for Applied Loads and Internal Loads

As in Figure III.2 let ΔD_n be the total movement of each fastener at the doubler and ΔS_n be that at the base structure. Then, at the doubler,

 $\Delta D_{f} = \delta_{f_{f}} = \Delta \delta_{f_{f}}$ = the displacement at the first fastener,[#]1, which is also the net strain (in shear) for fastener #1, $\Delta \delta F_{1}$, since $\Delta S_{1} = 0$.

$$\Delta D_2 = \delta_{F_1}$$
 + the total strain, or stretch, in the doubler element 1.

Then, in general, at any point, n,

$$\Delta D_n = \delta_{F_i} + \sum \delta_{D_n}$$

The total displacement at any fastener on the base structure, S, will be the sum of the individual total strains of the elements, S_n , up to that point, or,

$$\Delta S_n = \sum_{n=1}^{n-1} \delta_{S_n}$$

The <u>net</u> strain (in shear) of any fastener will, therefore, be the <u>difference</u> between the total displacements of its ends, at D and at S. This is

$$\Delta \delta_{F_n} = \Delta D_n - \Delta S_n$$

= $\delta_{F_n} + \sum_{\sigma \in D_n}^{n-1} \delta_{\sigma \sigma} - \sum_{\sigma \in S_n}^{n-1} \delta_{\sigma \sigma}$ ------(26)

The corresponding fastener load can then be determined from the relationship

$$P_{F_n} = k_{F_n} \Delta \delta_{F_n} \qquad -----(27)$$

where $k_F = spring$ constant of the fastener-sheet combination, discussed further in Section V.

Once P_{F_n} is known the corresponding loads in the next axial elements P_{F_n} and P_{S_n} are defined, since as indicated in Figure III.3,

$$P_{\mathcal{D}_n} = \sum_{n}^{n} P_{\mathcal{F}_n}$$
(28)

and

The state

$$F_{s_n} = Q_L + \sum_{n=1}^{n} g_n \left(\frac{L_{n-1} + L_n}{2} \right) - \sum_{n=1}^{n} P_{F_n} - \dots - (2q)$$

n

where $L_n = \text{length of elements S (or D) with } L_0 = 0$ (i.e., for n = 1)

The total axial strain in the elements ${\rm S}_n$ and ${\rm D}_n$ can then be calculated as

$$\delta_{D_n} = P_{D_n}/k_{D_n}$$
 -----(30)

and

$$\delta_{s_n} = P_{s_n}/k_{s_n}$$
 -----(31)

Where $k_n =$ the spring constants of the elements D_n and S_n (i.e., AE/L), as discussed in Section V.

The next fastener load, $P_{F_{n+1}}$, can then be calculated from Equations (26) and (27) and then all those remaining in a similar successive repetitive manner.

An engineering procedure for determining the fastener loads is therefore as follows:

- a. Assume a value for the first fastener load P_{F_1} and using Eq. (27) calculate the corresponding fastener strain, \mathcal{S}_{F_1} . (This assumption is discussed later)
- b. Calculate the strains in the members S_1 and D_1 from Eq. (30) and (31).
- c. Calculate the strain in the second fastener, $\Delta \delta_{F_2}$, using Eq. (26) and then calculate the fastener load, P_{F_2} using Eq. (27).
- d. Repeat steps (b) and (c) repetitively until all of the fastener loads have been determined.
- e. Add up all of the fastener loads. If their sum is not zero (needed for static balance of the doubler, as in Figure III.3) the initial guess in step a is in error. Then assume another value in step a and repeat the procedure. After a few trials the true distribution of fastener loads can be determined, with sufficient accuracy for engineering purposes. Plotting the values of each assumed fastener load versus the corresponding error in static balance (i.e., versus the sum of the fastener loads) will assist in rapidly determining the true initial fastener load.

If there is present a clearance, or "slop", at any fastener and hole, the effect can be accounted for by modifying Equation (26). That is, the fastener will not be strained through the full relative movement, $\Delta D_n - \Delta S_n$ since all or part of this will be used in "closing up" the clearance. Thus, if the fastener hole clearance is denoted by Δc , Equation (26) becomes

$$\Delta \delta_{F_n} = \delta_{F_i} + \sum_{j=1}^{n-1} \delta_{D_n} - \sum_{j=1}^{n-1} \delta_{S_n} - \Delta c_n - \dots - (32)$$

However, there is a limit here in that Δc can, at most, only reduce $\Delta \delta_{F_n}$ to zero, as in the case of a large clearance. That is, it cannot load up the fastener in the opposite direction.

The procedure can be carried out by hand most easily if a tabular form is used. Such a tabular form is shown in the following example.

A first guess for the end fastener load can be made, arbitrarily, by first assuming that the doubler will carry a portion of the applied load in proportion to its stiffness. That is

$$P_{\text{DOUBLER}} = Q \left(\frac{A_D E_D}{A_D E_D + A_S E_S} \right)$$

It can then be assumed that the outer 25% of the fasteners will pick up this load uniformly. Thus, if there are N fasteners (or rows of fasteners) and Q is the average applied end load, the initial guess for the end fastener load would be

$$P_{F_{i}} = \frac{Q}{N/4} \left(\frac{A_{D}E_{D}}{A_{D}E_{D} + A_{S}E_{S}} \right) = \frac{4Q}{N} \left(\frac{A_{D}E_{D}}{A_{D}E_{D} + A_{S}E_{S}} \right)$$
where $Q = \frac{Q_{L} + Q_{R}}{R}$ and ADED and ASES are average values.

The analysis is then carried out using the tabular form. (Table III.1).

The second guess is made in such a manner as to reduce the error (i.e., $\sum P_{\pi_n}$) that results from carrying out the procedure the first time. That is, if $\sum P_{\pi_n} > O$, the second guess would be a smaller load and if $\sum P_{\pi_n} < O$, it would be a larger one. The second analysis is then carried out, followed by a third analysis, etc. as necessary.

EXAMPLE PROBLEM:

Determine the internal load distribution in the doubler - sheet structure shown in Figure III.4

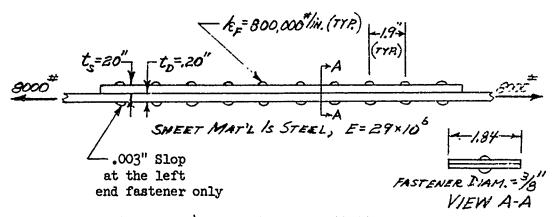


Figure III.4. A Doubler Installation

The Fastener Spring constant is given as

The Doubler and Sheet Spring constants are then calculated (as discussed in Art. V.3) as

$$k_{p} = \frac{AeE}{L} = \frac{(1.84 - .375 \times .80)(.20)(29)(10)^{\circ}}{1.9} = \frac{4.7 \times 10^{\circ}}{1.9}$$

$$k_{s} = \frac{AeE}{L} = \frac{4.7 \times 10^{\circ}}{1.9}$$

These values of kF, k_D and k_s are then listed in Col. (5), (8) and (14) respectively of Table III.1. The applied load of 8000# is listed in Col. (12) and O# is listed in (10) since no intermediate loads exist.

An initial value for the first fastener load would be taken as, (if no "slop" were present)

$$P_{F_{1}} = \frac{Q}{N/4} \left(\frac{A_{D}E_{D}}{A_{D}E_{D} + A_{S}E_{S}} \right) = \frac{B000}{10/4} \left(\frac{9.95 \times 10^{6}}{8.95 \times 10^{6} + 8.33 \times 10^{6}} \right) = \frac{1600^{4}}{1000}$$

but since .003" "slop" is present at this left end fastener this is arbitrarily guessed to be only half as much, or

$$P_{F_1} = 800 \#$$

Thus 800# is listed in Col. (6) for n = 1. The first trial Table III.1 is then completed (working "backwards" to obtain the value for Col. (2) for n = 1)

For the correct value of P_{F_1} the doubler load at the last fastener (#10) will be zero, or Col. $(7)_{10} = 0$. Since in this trial $(7)_{10} = 101,010 > 0$, another trial is necessary assuming a smaller value for Col. $(6)_1$

After several trials, including plotting the "error" (which is the value in Col. $(7)_{10}$) vs. the assumed value, Col. $(6)_1$, the final loads are obtained. It is seen that $(7)_{10} = 6\#\approx 0$, sufficiently accurate for common engineering purposes.

This relatively simple analysis is all that is necessary for those installations where all internal loads are in the elastic range (i.e., where no yielding is to be allowed, usually at limit load).

If the slop is "too large" at the left end fastener #1, the load in the fastener must of course be zero. This would be indicated in a tabular solution if assuming $P_1 = 0$ was not "small enough" to obtain a static balance $(7_{n=N} \neq 0)$. Actually, the smallest value of slop that causes the first fastener load to be zero can be obtained as follows. Assume $P_{F_1} = 0$. Then, by "trial and error" tables, find the value of ΔC_1 ((3)) that gives a static balance. For this and any larger value of slop the first fastener load is zero. That is, the first fastener is "out of action" The two load distribution in the other fasteners

 ΔC_1 ((3)₁) that gives a static balance. For this and any larger value of slop the first fastener load is zero. That is, the first fastener is "out of action". The true load distribution in the other fasteners is then obtained by starting with fastener #2 (i.e. ignoring fastener #1 since $P_1 = 0$) and assuming a value for fastener #2. Should #2 have too much slop also, then $P_{F_1} = 0$, $P_{F_2} = 0$ and the distribution of loads must be obtained by "starting" with fastener #3, etc.

TABLE III.1

40 - (

.

TABULAR METHOD FOR DOUBLER ANALYSIS, ACCOUNTING FOR APPLIED AXIAL END OR INTERMEDIATE (SHEAR FLOWS) LOADS AND ATTACHMENT "SLOP"

						4	•]		RS I	r :	IR	[A]	5	-		4-		FI	NA	L	TR	IA	L	-		
67	DIFF. IN STRAIN		5- 5D	(j) - (j)	× /06	1362	565	-244	-1029	-2168	-4040	-7290	-13020	-23180	•	1538	877	514	326	250	256	349	564	696	ł	Assume
ଲ	BASE STRUCT	_	és	(I)(I)		1532	1184	622	336	-234	-1170	-2790	-5660	01/201-	;	 1620	1290	1108	1014	779	8	1026	1133	1336	1	zero). load.
	BASE			GIVEN	12	4.70	=	=	=	=	=	-		11 0	=	4.70		=		=	=	=	-		!	e'(2) only to applied axial
	UADI IN	BASE	Louis a	- D		7200	5090	3432	1580	011-	-5510		-26610	-50510		7615	6063	5208	476	4584	1460	4824	5325	627	1	e (2) applie
ALTACHIMAN (ACCUM, ACCUM, TNTERMAPLIED	IOADS		TT+To		8000	-	-	=	=				-	=	8000		-			=	2	-	-	1	can "reduce" a local ap n _{∃N} =O
	ACCUM. TNTERM	LOADS		Σw		0	-			=	·	11	-	1	=	0		11	-	11	-	=	-	1	1	:50
SUNAUL (INTERM TOADS	_	Jax 1	GIVEN		0	-		-	1	=	1	-	-	=	0		-	-	2	-	=	-11	1	1	
$(\frac{1}{2}) $	DOUB-		ŝ	@/@	×/06	170	619	973	1365	1934	2870	4500	7360	12440	:	82	413	594	688	727	724	677	569	367	:	the "sign" shear flo assumed (
(a)	DOUB- LER	SPRING	LenioT.	GIVEN	×/0-6	4.7	11	11	11	2	11			11	=	4.7	-	-	1	11	-	-	F		1	: reverse t n applied correctly
(L) (DOUBL		وم	20		800	2910					21150	34610	900 585:10	OTOTOI					3416						annot reverse her an applied For correctly
	FAST-	IOAD	Qu	ExG		800	סדוצ	1650	1852	2680	01111	7640	13460	23900	42500	385	1553	854	21717	182	-18	-222	-501	-953	-1728	0.2
END OR	FAST-	SPRING	CUNST.	GIVEN ExG	×/0 ⁻⁶	.80	-	-		=	-	-	5	-		•80	=	11	-	=	-	=	F	F	=	due t
AXIAL (4)	FAST-	"SLOP"STRAIN	ASEAR CUNST.	@ 1 @*	×/06	8	2638	2073	2317	3346	5514	9554	111891	29864	53044	482	1944	1067	553	227	-23	-279	-628	-1193	-2161	ss than 2 load is du & complete
3	FAST-	"SLOP"	Ac	GIVEN	×/08	3000	0	-	11	11	2	-	11	¥	н	3000	1	11	-		11		-	= :	=	
(2)	A DIFF	STRAIN	$\Delta(\delta_s^-\delta_s)$	©n-1 -19n-1	×/06	1000	2638	2073	2317	3346	5514	9554	110891	29864	53044	3482	1944	1067	553	227	-23	-279	-628	-1192	-2161	Makes intermedie (
	FAST-	OR	STAT-	R			N	m	4	ŝ	9	2	ω	6	50	1	2	ε	4	5	9	2	8	6	70	

Č,

State of the second

「「「「「「「」」」」

III.3 NUMERICAL METHOD FOR SPLICES

.

ŧ

In the case of a splice the same general procedure would be used as can be seen from an inspection of Figure III.5 compared to Figure III.2. In this case, however, there is an applied load acting on each member, S and D. Thus, the criteria for the correct fastener load distribution will be, from statics, and an addition of the second states the second second second second second and the second second second second

$$\sum_{n}^{n} P_{F_{n}} = Applied Loads on either member.$$

This can be seen in Figure III.6 which shows the applied and internal loads for a splice configuration. As discussed in Section II a candwich type splice is converted to a single lap arrangement for purposes of analysis.

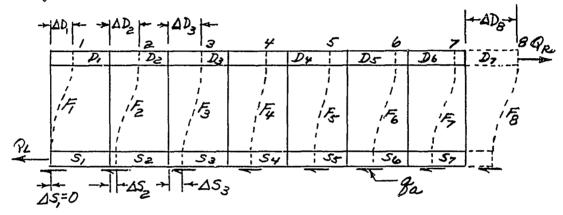
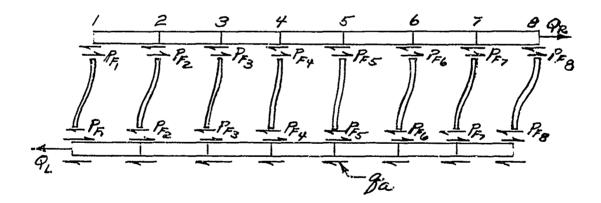
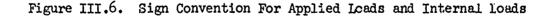




Figure III.5. Displacement of Members Due to Applied Loads

In general the end fastener loads will be largest and those in the middle the smallest. The procedure can be carried out in tabular form as discussed previously by assuming a value for P_{F1} , the first fastener load. A value for the first guess can be taken as,

$$P_{F_{i}} \approx \frac{2Q}{N}$$

which is obtained by assuming that 1/2 of the average applied end load is transferred by the outer 25% of the fasteners at each end. The following example illustrates the method for the case of a splice.

EXAMPLE PROBLEM.

Determine the internal load distribution in the splice structure shown in Figure III.7

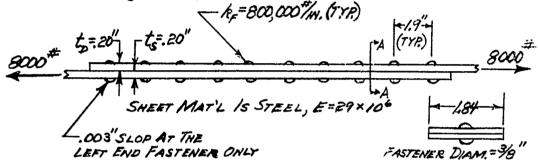


Figure III.7. A Splice Installation

The fastener spring constants are given as 800,000 #/in. The dcubler and base structure spring constants are computed as in the previous example (and have the same values).

These values and the applied load of 8000# are listed in Table III.2, as discussed for Table III.1.

An initial guess for the first fastener load, Col. 61, would be taken as (if no "slop" were present)

$$P_{F_{i}} = \frac{2Q}{N} = \frac{2(8000)}{10} = \frac{1600}{7}$$

Rut, since .003" slop is present at this left end fastener this load is arbitrarily guessed to be only half as much or

 $P_{F_{1}} = 800^{\#}$

The trials are then carried out in Table III.2 as discussed for Table III.1. However, in this case, a splice, the correct value for \bigcirc_1 results in the value of \bigcirc_{10} being equal to the applied end load of 8,000# (instead of zero, as for the doubler).

In this case, a splice, the "error" would be

 $Error = Col. (7)_{10} - 8,000$

TABLE III.2

and the second party succession and the second s

TABULAR METHOD FOR SPLICE ANALYSIS, ACCUUNTING FOR APPLIED AT FRAMEDIATE (SHEAR FLOWS) LOADS AND ATTACHMENT "SLOP"

									4	-F	IR	ST	T	RI,	AL				+	-F	IN	AĮ,	T	R I /	٩ī	-	≁	-	·
	60	DIFF. IN	STRAIN			02 gp	(D)-(D)	× /06	1362	565	trti2-	-1029	-2168	-	-7290	-13020	-23180	5	1525	845 045	454	219	57	-87	-258	-517	-951	:	Assume
	69	ė.		NTWILS	ر ر	50	(T)	×/06	1532	11811	6:12	335	-234		-2790		07/01-	;	1614	1273	1078	962	880	808	722	593	374	:	zero). load.
P''	9	MEMB	ER S	SPERIM	roy.	Ser	-	× /0-6	4.70	-			11		-	-	i		4.70		2	21		-				ł	only to d axial
NT "SLOP"	ල	ILOAD	NI			25	@-@		7200	5090	3432	1580	0011-	-5510	-13150	-26610	-50510	1	 7534	5988	5068	4512	4131	3795	3390	2789	1755	;	
ATTACHMENT	ଜ	ACCUM.	APPLIED	ICADS			QLI+ID		8000		=	1		-		13	8000	1	8000					=	=		8000		l "reduc local M 2
AND	Ð	ACCUM.	Σ	IOADS					0		1							1	 0	-		-	11	-				1	
ILOADS	** 07	INTERM	LOADS			Bax Ln	GIVEN		0		-		1	-	-	-			0	-			=	2		-	-	- 1	m". (i.e low, ga, (0n=l)
SHOTI Y	6	y.	ER D	STRAIN	(وم	@/@	× /06	170	619	973	1365	1934	2870	4500	7360	12440	1	89	428	624	743	823	895	086	OTTI	1325	:	the "sign". (shear flow, assumed 6n
(SILEAR	ବ	Ę		SPRING	CONST.	୶	GIVEN	\$.01×	4.7		-				-	-	F		4.7	-	-	-	-		11	F	-	1	r reverse t n applied correctly
ERMEDIATE	(-)	MEMB-	ER	A	I OBI	29	\sum_{0}		800 800	2910		6420	0016	13510	21150	34610	58510	101010	914		2632				0194	5220		8025	sannot rev er se ther an applied For correctly
TNI	(9)	FAST-	-	IOAD	C	14	©×£		800 800	0112	. 1658	1852	2680	0114	7640	Q	_	42500	914	1596	920	556	381	336	1405	610	1025	1780	10+2
END OR	(6)	FAST-	ENER	SPRING	CONST.	er	GIVEN	× /0-6	80.	-		-	F	F	F	F	F		80.	F	-	F		H	-	-	-	-	et aue
AXIAL	* (†)	FAST-	ENER	"SLOP"STRAIN	(SHEAR)CONST.	15r	Given 2±3	×/06	1000	2638	2073	2317	3346	5514	9554	168444	19862	53044	520	1995	1150	596	1771	420	507	765	1282	2231	less than (2), but te load is due to ei =1 & complete table.
	(3)	E	ENER	"SLOP"	•	Å	1	× /06		0	0	0	0	0	0	0	0	0	3000	0	0	0	0	0	0	0	o	0	Makes (4) less than (intermediate load is te for $6_{n=1}$ & comple
	(2)	A DIFF.	NI	STRAIN		\Z(55-52)	En-1	× m6		8692.	2073	2317	3346	5514	9554	16811	20864	53044	3520	1995	1150	969		120	507	765	1282	2233	(3) Makes (The interme value for (
	E	FAST-	ENER	OR	님	NOI	2		-		r		· u		6	·œ	σ	10	-		19		· Ľ	6	-	-02	6	01	

41

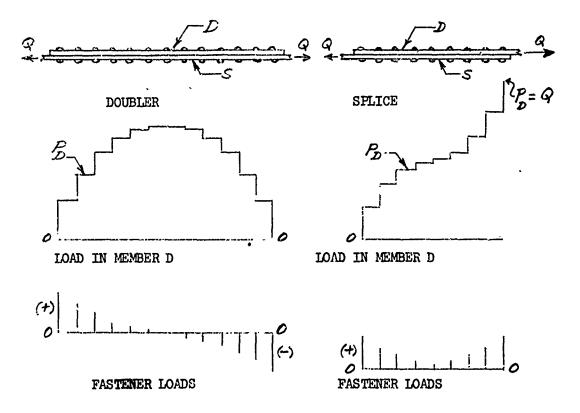
٢,

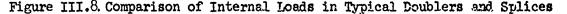
This relatively simple analysis is all that is necessary for those installations where all internal loads are in the elastic range (i.e., where no yielding is to be allowed, usually at limit load). The same note on p. 37 regarding "large slop" at Fastener #1 applies here also.

Some labor-saving "short-cuts" in determining the internal loads of doubler and splice installations are presented in Appendix I, Article AI.2.

III.4 COMPARISON OF DOUBLERS AND SPLICES

It is helpful to keep in mind that there are two basic differences between doublers and splices

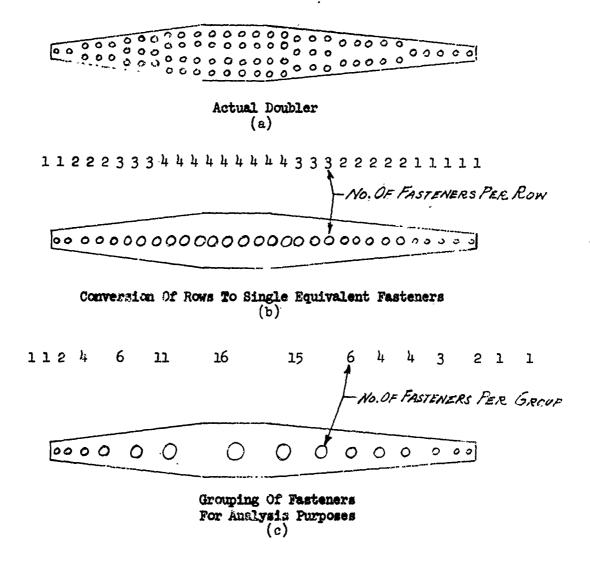

a. They have different purposes


ويني مكوميت جرام المالك مستخليته متراقفيت فالرام الالماري الراري

- (1) A splice's function is to transfer a given load. It is kept as as short as possible in accomplishing this.
- (2) A doubler's function is to pick up load (and relieve another member). In order to do this efficiently it must have some considerable length, although this is kept to a minimum. Therefore doublers are, by nature, relatively long members compared to splices.
- b. As can be seen from an inspection of the results of Table III.l and III.2, Column (6)
 - (1) The fastener loads in splices can be made to approach a somewhat uniform distribution efficiently since they are all acting in one direction (unless unusual intermediate applied loads are present)
 - (2) In a doubler, however, the fastener loads form two groups acting in opposite directions to load and unload the doubler. Thus, the fastener loads will be larger at the ends and vanish at the center where the relative displacement between members D and S is zero. They will not, efficiently, approach uniformity as in the case of the splice.

うちんとうというで あったった けっち

These facts are illustrated in Figure III.8



III.5 GROUPING STRUCTURAL ELEMENTS

When there is more than one fastener in a row (normal to the loading, or to the axial direction) the spring constants of the individual fasteners in the row can be simply added together and considered as one fastener. The spring constants of the axial members are calculated in terms of their "adjusted" net average cross-sectional area, and the effect of more than one fastener is considered, as illustrated in Section V, Figure V.4. This substitution is illustrated in Figure III.9.

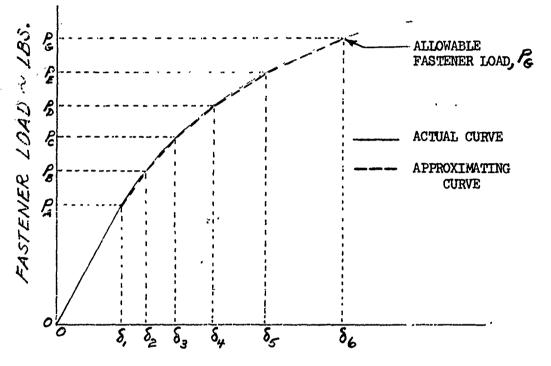
Frequently, however, in the case of doubler installations there are too many rows of fasteners for a hand analysis to include all of them, and it is necessary to group, or "lump", two or more rows together as one row, or one fastener actually. Since the end fasteners are the most highly loaded it is best to do the least grouping at the ends and the most at the middle. Figure III.9 illustrates how this is carried out.

Constant of the second

As seen, the doubler having 30 rows of fasteners (a total of 77 fasteners) would be first considered, for analysis purposes, as having 30 "equivalent" fasteners as in (b). Then, since these are too many for a hand analysis, they would be "lumped" into say, 15 groups, that is, into 15 equivalent fasteners for a hand analysis. In either case, (b) or (c) the equivalent fastener has a value of kp obtained as the sum of the individual values of $k_{\rm Fn}$ which it replaces ($= \sum k_{\rm Fn}$). It can be seen that the largest grouping in (c) is done in the middle portion, where the fasteners are strained the least. The location of each group (or equivalent fasteners, D and S, are obtained from (c) but include the effect of the fastener holes as they actually exist, in (a). The equivalent structure in (c) is the method as discussed.

Once the fastener group loads are determined they can be distributed to the individual fasteners making up the group on the basis of fastener spring constants, since fasteners having different values of k_F are sometimes grouped together. That is,

$$P_{F_n} = P_{Group}\left(\sum_{k \in F_n}^{k \in F_n}\right)$$


This method of grouping can also be used should there be too many rows for the computer routine to hendle, as discussed in Section IV.

111.6 FASTENER LOADS IN THE PLASTIC RANGE

In the previous discussions and examples it has been assumed that the fastener spring constants, k_F , are known as supplied data. However, as discussed in Section V and illustrated in Figure V.2, these values may not be constant. Therefore, if the applied loads are large enough, a procedure is necessary that accounts for the reduction in k_F , at each affected fastener in the "plastic" range. (A review of Section V is helpful at this stage).

This can be done by using the previous tabular method of analysis but carrying out separate analyses for successive increments of the applied load until their total equals the applied load. That is, the method of superposition is used. During each increment of applied load the values of kr will be assumed to be constant, but they may change for successive increments. The procedure is as follows:

- a. The maximum load to which any fastener is allowed to be subjected must be determined. This value will be established by either a fatigue or yielding requirement, or else as the ultimate load for the fastener sheet combination. (This is discussed further in Section VIII).
- b. The load-deflection curve (for each type of fastener) is divided into several straight line portions that

approximate it as shown in Figure III.10. Although not necessary, it may be convenient to use equal increments on the P scale, as shown, for all but the first increment.

Figure III.10 Division Of A Fastener-Sheet Load-Deflection Curve Into Linear Increments

Six increments are shown in Figure III.10 since this number is used in the computer routine. (A lesser number of increments, only 2, are used for hand analyses as illustrated in the following example problem). The increments are chosen as follows. The first increment, from 0 to P_A, includes the linear portion. The difference in load between P_A and the maximum value to be allowed, P_G, is divided into 5 equal load increments and the corresponding deflections, S_n , are determined. Then the value of k_F for each linear portion is calculated as

$$k_{FA, B, C} = \left(\frac{\Delta P}{\Delta \delta}\right)_{A, B, C}$$

- c. Assuming all fastener spring constants to have their initial (elastic) values, k_{F_A} , the loads in the fasteners for the full applied load, Q_{L}^{A} are determined by the conventional tabular analysis.
- d. The largest resulting load, $P_{F_{n_1}}$, at each different type of fastener-sheet combination is examined in light of its load deflection curve (Figure III.10). If ony of the fast-eners are loaded above their P_A values, all of the results in c. above, including the value Q_i are reduced by the fraction, $P_A/P_{F_{n_1}}$. $P_A/P_{F_{n_1}}$ is the smallest fraction obtainable from the results. The first applied load increment, ΔQ_1 , is then calculated as

$$\Delta Q_{1} = Q_{L} \left(\frac{P_{A}}{P_{F_{n_{1}}}} \right)$$

Steps c and d are repeated for an applied load of Q_L e. ΔQ_1 and a new set of loads, P_{Fn2} , is obtained; but this time k_{FA} is used for all fasteners except that one in d above that has reached its limit of P_A . For this fastener k_{FB} is used in the analyses. The sum of the loads at each fastener is then computed. Examining the results as before, another fraction, $PA - PF_n$, is obtained. However, it PFn2

is possible that the same fastener may again reach a new limit, PB, and that the fraction PB - PFn here may be PFn2

the smallest. The corresponding loading increment is calculated as

$$\Delta Q_2 = (Q_L - \Delta Q_1) \left(\frac{P_A - P_{F_{n_1}}}{P_{F_{n_2}}} \right),$$

or as $\Delta Q_2 = (Q_L - \Delta Q_1) \left(\frac{P_B - P_{F_{1_1}}}{P_{F_{1_2}}} \right)$

f. Steps c and d are repeated again, repetitively, until after m sets of calculations the sum of the increments of ΔQ_m , or $\sum \Delta q_m$, is equal to the applied load, q_L . The fastener load distribution will be the sums of those obtained in each increment, that is, those obtained in each analysis after ratioing down the results. The same applies to the axial loads in the members D and S.

- g. If any fastence reaches its maximum allowable load before $\sum \Delta Q_m = Q_L$ then $\sum \Delta Q_m$ is the max. load the structure can take. Summarizing, for any analysis increment, m, the following steps will be used.
 - (1) Calculate $Q_m = Q_L \sum \Delta Q_m$, and if an applied shear flow, q_a , is present

$$d_m = q_A \times \frac{Q_m}{Q_T}$$

- (2) Calculate the internal load distribution by a conventional tabular analysis, for the applied loads Q_m and q_m (if present).
- (3) Determine the smallest ratio

$$\mathbf{r}_{\mathbf{n}_{\mathrm{m}}} = \frac{\mathbf{P}_{\mathrm{N}} - \sum \mathbf{P}_{\mathrm{F}_{\mathbf{n}_{\mathrm{m}}}}}{\mathbf{P}_{\mathrm{F}_{\mathbf{n}_{\mathrm{m}}}}}$$

where N refers to the selected P_N values as in Figure III.10. If all values of r_{n_m} are greater than 1.0, then $r_{n_m} = 1.0$ is used.

(4) Calculate the increment of applied load for this analysis, m, as

$$\Delta Q_m = Q_m \times r_{n_m}$$

and
$$\Delta q_m = q_m \times r_{n_m}$$

(5) Calculate the increments of fastener loads for this analysis, m, as (for each fastener)

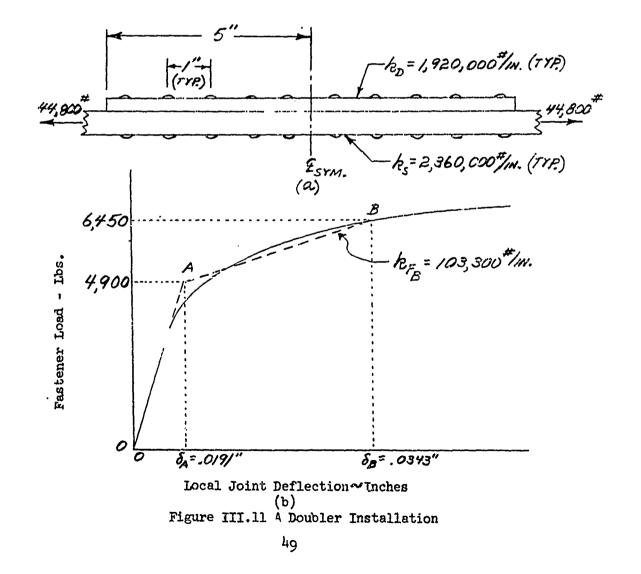
$$\Delta P_{F_{n_m}} = P_{F_{n_m}} \times r_{n_m}$$

(6) Calculate the increments of load in the members D and S as

 $\Delta P_{D_{n_m}} = P_{D_{n_m}} \times r_{n_m}$ $\Delta P_{D_{n_m}} = P_{D_{n_m}} \times r_{n_m}$

Steps (1) through (6) can then be repeated in the next analysis, m + 1, etc, until $\sum_{m=1}^{m} \Delta Q_m = Q_L$.

1,8


The analysis can be carried out most easily by using a tabular form for the calculations. The details of this are illustrated in the following example problem.

For cases where slop is present an additional refinement is necessary as discussed at the end of this article.

EXAMPLE PROBLEM

A doubler is attached to a base structure as shown in Figure III.lla. The fastener load-deflection curve is shown in Figure III.llb. Determine by hand analysis:

- a. the internal load distribution corresponding to the applied load of 44,800#
- b. the maximum value the applied load could have if the allowable fastener load is 6450#, as shown in Figure III.llb, and the corresponding internal loads.

- a. The analysis is carried out in Table III.3 as follows:
 - (1) The actual load-deflection curve of Figure III.llb is replaced by one consisting of 2 straight lines, as shown by the dashed lines. This has been done in such a manner as to obtain approximately the same area under each curve. The maximum (allowable) value of P_F is 6450# as arbitrarily specified above. Hence, it is seen that for all fasteners $P_A = 4,900^{\#}$ and $P_B = 6,450^{\#}$. The two resulting spring constants for the fasteners are found to be (the "slopes")

$$k_{F_A} = 256,000 \text{ #/in}$$
 and $k_{F_B} = 103,300 \text{#/in}$

- (2) A conventional tabular hand analysis is then carried out to determine the internal load distribution in the structure for the applied load of 44,800# and for k_1 -- $k_5 = 256,000$ #/in. This is referred to as the "first unit solution" and the results are entered in Col (2). Only the doubler and base structure internal loads in the center elements, P_{D_5} and P_{S_5} are shown, to save space.
- (3) The limiting load levels for the fasteners for this first analysis are shown in Col. (3) as 4900# (which is P_A). The limiting value of Q_L is the applied value of 44,800#.
- (4) The possible limiting ratios are calculated in Col. (4).
- (5) The <u>smallest</u> value in Col. (4) $(r_1 = .6!.6)$ is then applied to the internal loads of Col. (2) to obtain the actual loads making up the first so-called "increment" of loading. This increment is based upon $k_1 --- k_5 = 256,000$ #/In. The results are listed in Col. (5) . Col. (6) is the sum of all previous increments, which is identical to the first increment of Col. (5) . This brings the first fastener up to its max. value of load, $P_{F_1} = 4900$, that is consistent with $k_{F_1} = 2.56,000$ #/in. This is seen to correspond to an applied load increment of 28,900#.
- (6) A second conventional tabular hand analysis is then made for the remaining applied load of $44,800 - 28,9^{\circ}0 = 15,900\#$ and for $k_{F_1} = 103,300$ and $k_{F_2} - - k_{F_5} = 256,000\#/in$. This is called the "second unit solution" and the results are entered in Col. (7).

DEFERMENTION OF ENTERNAL LOADS IN THE FLASTIC RANGE

A REAL PROPERTY AND A REAL

ł

长之母

i t		L I	 3		1	<u> </u>					100.00-3,9 9		-
0	FOURTH UNIT SOLUTION		0°0°-1			•	0	•	0	•	0	0	0
9	SUM TO NUS	22		© • (i)		11,800	6,317	4,970	176'2	1,522	\$ 70	16,220	28,580
9	THIRD LONDING INCREM.	Δ_3		Q		1070	101	20	101	52	J 6	346	724
9	POESIBLE LIDUTTING RATIOS	223		() () () () () () () () () () () () () (5= 256,000	1.000	2.25	22.1	20.4	65.9	278.0	;	:
9	LINTTRG LOAD LEVELS		° ^{Lia} °2	Paris III.115	103,300, k3k5= 256,000	003,44	6,450	6,450	4,900	4,900	^{1,} 900	1	1
ම	THIRD UNIT SOLUTION		⁵ -0,0	TROM TABUTAR ANALYSIS		1070	101	70	101	25	1 6	346	724
0	BUN OF LOADS	Zda		9 .000.00		14,830 43,730	6,210	4,900	2,840	1,470	オシオ	15,874	27,856
ග	SECORD LOADING INCREM.	2ء		0.0		14,830	1,310	1,950	1,130	585	181	5,156	9,674
6	POESIALE LINITING RATION	ん		<u>8</u> -0			1.103	·933	2.63	6.40	23.8	:	1
0	LIDGTTING LOAD LEVELS		°111. °©	PIO. III.11b	k1=103,300, k2k5= 256,00	44,800	6,450	4,900	4,900	4,900	4,900	1	ł
©	SECOND UNET SOLUTION		ی <mark>ہ</mark> '(ج) (6)	FROM TABULAR ANALYEIS	k1=103,300, k	15,900	104,1	2,090	1,212	621	ş	5,527	10,373
9	SUM OF LOADS	ZA		ଡ		28,900	4,900	2,950	1,720	88; ;	273	10,718	13,182
9	FIRST LONDING INCREM.	Δ,		©,		28,900	4,900	2,950	1,710	885 885	513	10,718	18,182
9	POSSIBLE LINGTTING RATIOS	Je,		0	5	1.000	.646	1.074	1.848	3.57	17.71	:	:
0	TEVEL UNDI DATTINGI		ه - د@	Prow FIG.	56,000	14,800	4,900	4,900	4,900	4,900	4,900	;	;
0	FIRST UNIT SOLUTION		91- 9 ⁷	TABULAR TABULAR AMALYSIS	k1k5 =256,000	44,800	7,592	4,568	2,649	1,371	ł ₂₃	16,603	28,197
Θ	noi		 			P.I.	£	Pr2	P.3	Ę.	ž	Ê	Ps5

51

•

٢

A. A.

المراجع المراجع المكال كالاستيار المراكبان بالمعاطيك المتكريك المعاصف والمقارب المعالم والمحافظ والمحافظ

.

(7) The remaining columns are then completed in a similar manner to that for Col. (2) - Col. (6). It is seen in Col. (14) that the limiting ratios for the fasteners are all greater than 1.0 Hence, the value $r_3 = 1.0$ is used and Col. (15) is identical to Col. (12). The final loads are then those obtained in Col. (16) since Col. (17) shows Q_x to be zero.

Although this analysis happened to be completed in only three increments, other configurations might require more. Such could have happened in this case if the fasteners were more closely spaced or if the fasteners were less stiff initially than shown.

- b. The maximum "allowable" applied load, Q_L , and the corresponding internal loads can be calculated by revising Col. (14) - (18) as shown in Table III.4.
 - (1) Since the load Q_L is to be determined no limiting ratio is specified for it in Col. (14).
 - (2) The smallest of the remaining limiting ratios in Col. (1), or 2.25, is then applied to the values of Col. (12) to obtain the values of Col. (16) . Col. (16) then gives the allowable applied load $Q_{\rm I}$ (=46,140#) and the corresponding internal loads. It is seen that, in this case, it is the end fastener that reaches its allowable load of 6450# first and limits the load carrying ability of the structure.

TABLE III.4

1	2 - 🛈	62	(3)	֎	65	6
Load		THIRD UNIT SOLUTION	LIMITING LOAD LEVELS	POSSIBLE LIMITING RATIOS,	THIRD LOADING INCR'MT,	SUM OF LOADING INCR'M'T,
	Same As Table III.3	Q3=Q2-Q k1& k2 = 103,000 k3k5= 256,000	PN FROM Fig. III.11b			
		FROM TABUL AR ANALYSIS	°®	() () () () () () () () () () () () () ()	(+) •	∰+ Ø
QL PF12 PF3 PF4 PF55 PF55 P55	Same As Table III.3	1070 107 70 101 52 16 346 724	6,450 6,450 4,900 4,900 4,900	2.25 22.1 20.4 65.9 278.0	2,410 240 158 227 117 36 778 1631	46,140 6,450 5,058 3,067 1,587 490 16,652 29,487

DETERMINATION OF THE ALLOWABLE APPLIED LOAD FOR THE STRUCTURE

The problem of Table III.4 was repeated (by computer) using a fastener load-deflection curve consisting of 6 straight lines. The results are compared with the previous ones in Table III.5. It is seen that, in this particular case, the difference in results is negligible from an engineering standpoint. This is believed to be true in general for fasteners having a significant initially linear portion on the load-deflection curve.

Ň

The second s

A PARTY CONTRACTOR OF THE PARTY OF THE PARTY

TABLE III.5	
-------------	--

LOAD	RESULTS USING 2 STRAIGHT LINE CURVE (TABLE III.4)	RESULTS USING 6 STRAIGHT LINE CURVE (BY COMPUTER)
бГ	46,140	45,986
PFl	6,450	6,450
PF2	5,058	4,949
PF3	3,067	3,080
PF4	1,587	1,593
PF5	490	492
PD5	16,652	16,564
PS5	29,488	29,422

COMPARISON OF RESULTS FROM HAND AND COMPUTER ANALYSES

Although not illustrated, the same general procedure can be used for the case of a splice having fastener loads in the plastic range. That is, the same steps as outlined for the doubler would be taken. The only difference would be that the unit solutions of Table III.3 would be made for a splice.

This article has considered only the case of the fasteners "going plastic". Although less likely, the doubler or the base structure elements might also be loaded into the plastic range. In such cases the same general procedure would apply, but the stress-strain curve of the sheet material would be used (similar to the fastener load-deflection curve) and "replaced" by straight line segments. That is, the tangent modulus, E_t , would be used to calculate k_D or kg in the non-linear portion. Any such doubler or base structure elements would, for example, be included in Col. (1) of Table III.3 and they, also, would have values for Col. (2), (3) and all subsequent columns, just as did the fasteners in the example illustrated.

The method of this article has not included provision for slop. If slop is present a slight additional refinement must be made. This is discussed and illustrated in Appendix I, Article AI.3.

III.7 SUCCESSIVE LOADINGS IN THE PLASTIC RANGE

When the applied loading results in any fastener(s) being loaded in the plastic range, permanent set will occur. Therefore, when the applied load is removed there will remain some distribution of internal, or residual, loads in the structure. That is, the structure will be "pre-loaded". Any successive applied load will start from this basis. Thus, it may be necessary to be able to predict these residual loads in order to obtain the true internal load distributions corresponding to subsequent applied loads. This might be necessary in a fatigue life evaluation, particularly. A method of accomplishing this follows. *

Assuming that a doubler installation has been loaded so that one or more fasteners is in the plastic range, when the applied load is removed these fasteners will unload at an essentially constant rate (lbs/in). This rate will be very nearly the same as the slope of the initial linear portion of the load-deflection curve, as evident from experiments. This is illustrated in Figure III.12 and is analagous to what occurs when any ductile material is loaded beyond the proportional limit. (Actually the line $B^{-}\delta_{1}$ or $C^{-}\delta_{2}$ is a hysteresis "loop" and $B^{-}\delta_{1}$ and $C^{-}\delta_{2}$ have a significantly steeper slope than does OA. But this is ignored in the suggested analysis and is discussed in Sections V and VIL)

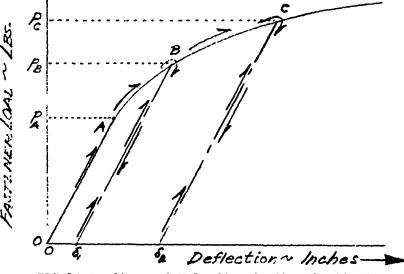


Figure III.12 Loading and Unloading in the Plastic Range

That is, if a fastener were initially loaded beyond the elastic (linear) range, PA, to say, PB, it would return to a residual strain, δ_1 , when unloaded. Then if loaded again to a higher load level, PG, it would, essentially, follow the line δ_1 -B-C and upon being unloaded it would follow the line C- δ_2 to a permanent set of δ_2 when P = 0. The lines δ_1 -B and δ_2 -C are essentially parallel to the initial linear portion, O-A. The main point is that in unloading the fastener load decreases at a rate (lbs per inch of deflection) that corresponds, essentially, to the initial (elastic) slope of its load-deflection curve and follows this slope in loading up again.

* As discussed in Sections V and VII some permanent set will always occur, even at low load levels in the so-called elastic range, due to the "seating" of the fastener in the holes.

The residual internal loads can therefore be calculated by a superposition precedure as follows:

- Calculate the set of internal loads, using the specified a. applied load but assuming that the spring constants, kFn, for all fasteners are the initial (elastic) values.
- b. Subtract these values from those obtained in the plastic analysis (as in Article III.6). The resulting values are the residual loads in all members.

Table III.6 illustrates the determination of the residual loads for the doubler of Art. III.6, Figure III.11 loaded into the plastic range.

TABLE III.6

0 0 3 • RESIDUAL RESULTS OF THE ELASTIC ANALYSIS FOR $Q_{\rm L} = 44,800$ LOADS PLASTIC ANALYSIS k1---k5= 256,000 #/in LOAD Q - G TABLE III.3, COL. (18) TABLE III.3, COL. (2) $Q_{\mathbf{L}}$ 44,800 44,800 0 -1,275 P_{F_1} 6,317 7,592 P_{F_2} 4,970 4,568 402 PF3 2,941 2,649 292 PF4 1,522 1,371 151 P_{F5} 470 47 423 PD5 -383 16,220 16,603 PS5

DETERMINATION OF RESIDUAL LOADS

Then for any subsequent applied loading that does not exceed the original applied load the internal loads are obtained by

28,580

a. Calculating the load distribution assuming that the spring constants for all fasteners are the initial (elastic) values.

28,197

383

b. Adding the residual loads to the values obtained above, to obtain the true internal load distribution.

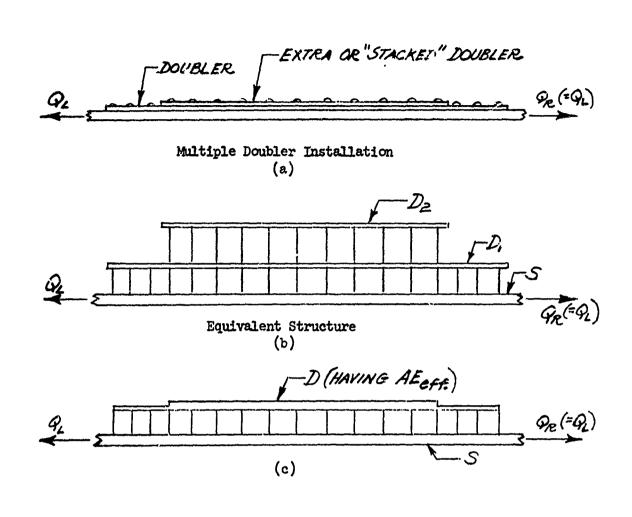
If a subsequent applied load is greater than all previous ones, then a "new" plastic analysis is simply carried out as discussed in Article III.6. The residual loads due to this will then be the basis for all lesser subsequent applied loads.

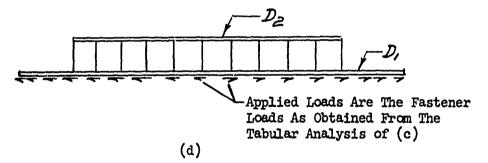
Table III.7 illustrates the determination of the true internal load distribution for subsequent loadings. The case illustrated is for an applied load, $Q_L = 22,400 \ \#$, a previous load having been the 44,800 $\ \#$ value in Table III.6.

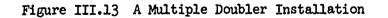
TABLE III.7

LOAD	ELASTIC ANALYSIS FOR QL = 22,400 # klk5= 256,000 #/IN	RECIDUAL LOADS	TRUE INTERNAL LOAD DISTRIBUTION
	22,400 44,800 × COL. (2), TABLE III.3	TABLE III.6, COL.	© + ©
QL PF1 PF2 PF3 PF4 PF5 PD5 PS5	22,400 3,796 2,284 1,324 685 211 8,302 14,099	0 -1,275 402 292 151 47 -383 383	22,400 2,521 2,686 1,616 836 258 7,919 14,482

DETERMINATION OF SUCCESSIVE LOADS IN THE PLASTIC RANGE


Additional subsequent applied loads up through 44,800#, would be dealt with similarly.


The above illustration was for a doubler configuration. The same procedure would be used for a splice, however.


The method of this article has not included provisions for including slop. If slop is present a slight additional refinement must be made. This is discussed and illustrated in Appendix I, Article AI.3.

IIT.8 MULTIPLE DOUBLER AND SPLICES

As specified earlier, the specific methods of this report apply only to doublers or splices consisting of a single lap or a single sandwich configuration. Occasionally, however, the situation may arise where there are several axial members. This would represent a case of multiple or "stacked" members as illustrated in Figure III.13.

A DESCRIPTION OF A DESC

The actual structure is shown in (a) and the equivalent structure for purposes of analysis in (b). The distribution of fastener loads and the loads in the members could be determined most directly in such a case by using the analog method discussed in Section 5.0. If this is not available an approximate fastener load distribution can be obtained by successive trials using the basic method of this report as follows:

- a. Combine the stacked doublers D_1 and D_2 into one member, D_3 (by adding the k values) as in Figure III.13c. This assumes the fasteners between them to be rigid.
- b. Determine the corresponding fustemer loads between this assumed member, D_{γ} and the base structure, S, in the conventional tabular manner. Note the strains, Col. (9) of the table.
- c. Then consider only the two doublers, as they actually exist, to be a structure subjected to the loads of (b) above, upplied to the member D1, as in Figure III.13d.
- d. Determine the internal loads for this configuration and loading and also note the strains in the member D_1 Col. (1) of the table. Member D_1 is the "base structure" in this analysis.
- e. Calculate an effective k_D value for the combined members D_1 and D_2 using the member strains from (b) and (a) above as follows:

For any segment the effective \mathbf{k}_D of the combined members is taken as

(kp) eff. = (kp)_{assumed}
$$\left(\frac{\delta p}{\delta p_1} \right)$$

f. Repeat steps (b) through (e) using $(kD_2)_{eff}$ from step (e) above in step (b). Then repeat again as necessary until the strains obtained in (d) are sufficiently identical to those in (b), that is, until at each element, D_{n} and Dl_{n}

$$S_{D_n} = S_{P_{i_n}}$$

It can be seen that this involves considerably more effort than for a single doubler, particularly where hand analysis is used. A rougher estimate can, of course, be obtained simply by carrying out steps (a) and (b) only one time. This assumes the doublers to be one integral member and therefore results in the fastener loads and the doubler load being larger than they actually are.

Only the case of one "extra" doubler has been illustrated. The same approach could 'e used if more than one were present. However, the labor would increase significantly since the steps outlined would have to be made for each "pair" of doublers, successively, and more than two sets of fastener loads would have to be sufficiently identical in the successive analyses.

EXAMPLE PROBLEM.

Determine the internal loads in the structure shown in Figure III.14a, where 2 doublers (a "stacked" arrangement) are attached to a base structure.

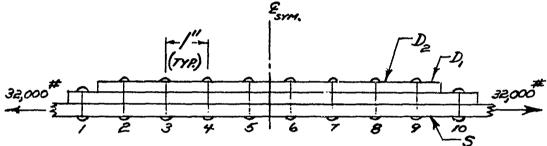


Figure III.14a. A Multiple Doubler Installation

The spring constants of the parts are

(a) $k_{F_n} = .47 \times 10^6$ for all fasteners, and

(b)
$$k_{S_n} = 2.47 \times 10^6$$
, $k_{D_{L_n}} = 2.47 \times 10^6$, $k_{D_{2_n}} = 1.23 \times 10^6$

Proceeding according to the previously outlined steps:

a. The two doublers, D₁ and D₂, are considered to be one integral member, D, as in Figure III.13c, having

$$k_{D_n} = k_{D_{1_n}} + k_{D_{2_n}}$$

b. A tabular analysis is then made (as in Article III.2) to determine the internal loads in this structure, D and S, and also the strains in the member D. The results of this analysis are shown in Table III.8 including the resulting strains in member D. Since the structure is symmetrical only half of it is presented.

TABLE III.8

ELEM.	PF	PD	kŋ	δD
(RESULTS	OBTAINED	FROM A TA	BLE SIMILAR TO	III.1)
1	7816	7816	2.47 x 10 ⁶	.00317
2	4700	12516	3.70 x 10 ⁶	•00338
3	2590	15106	11	.00408
4	1290	16396	11	.00443
5	399	16795	11	.00454

RESULTS OF STEPS a AND b, FIRST TRIAL

c. The two doublers and their attachments are then considered to be a structure subjected to the set of applied loads, PF, as shown in Figure III.14b.

Same States

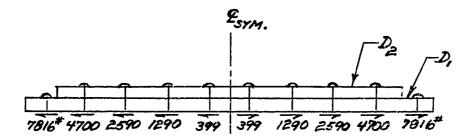


Figure III.14b Loading Applied to the Multiple Doublers

d. An analysis of this structure and loading (as in Article III.2) gives the results shown below, including the strains in the member D_1 . Note that only elements 2 through 9, common to D_1 and D_2 , are involved in this analysis, as indicated in Table III.9.

۲

TABLE III.9

RESULTS OF STEPS c AND d, FIRST TRIAL

ELEM.	PF1	PD1	kDl	δD1		
(RESULTS	OBTAINED	FROM A TA	ABLE SIMILAR TO	III.l)		
l		7816	2.47 x 10 ⁶	.00317		
2	2409	10107	11	.00409		
3	1410	11287	11	.00461		
4	719	11858	11	.00408		
5	198	12059	11	.00488		

Note that the values δ_{D_n} differ considerably from δ_{D_n} (previous).

e. An effective kD is then calculated for each of the combined doubler elements as

$$k_{\text{Deff} \cdot n} = k_{\text{D}_n} \times \frac{\delta_{\text{D}_n}}{\delta_{\text{D}_{1_n}}}$$

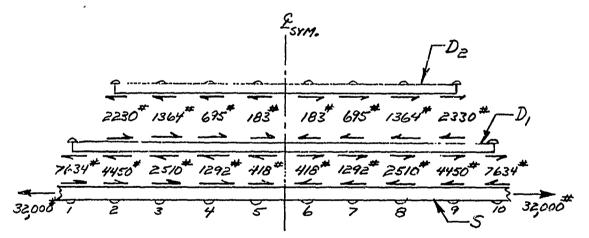
where $k_{\mbox{Dn}}$ is the value in the previous step a. This is shown in Table III.10.

TABLE III.10

RESULTS OF STEP e, FIRST TRIAL

ELEM.	kŋ	5D	δD1	$kD_{eff} = kD \times \frac{\delta D}{\delta D_1}$
1	2.47 x 10 ⁶	.00317	.00317	2.47
2	3.70 x 10 ⁶	.00338	.00409	3.06
3	11	.00408	.00461	3.28
4	11	.00443	•00480	3.41
5	11	.00454	•00488	3.44

steps (b) through (e) are then repeated using the values of k_{Deff} in step (b). The results are summarized below.


TABLE III.11

STEP c & d RESULTS STEP b RESULTS ELEM. Meffx 10-6 kD1x10-6 PF1 $\delta_{\rm D}$ δ_{D_1} P_{F} PD1 PD 1 7634 7634 2.47 7634 .00309 2.47 -.00309 11 4450 12084 3.06 2 .00395 9754 2330 .00395 11 3 2510 14594 3.28 .00445 1364 10900 .00442 4 15886 3.41 695 n 1292 .00466 11497 .00466 11 5 .00475 418 16304 3.44 .00474 183 11732

RESULTS OF STEPS b THROUGH d, SECOND TRIAL

Since the strains δ_{D_n} and $\delta_{D_{l_n}}$ are essentially identical, it is not necessary to carry out step e and repeat steps b - d again.

The final loads (from steps b - d above) are then as shown in Figure III.14c.

Figure III.14c. Fastener Loads in a Multiple Doubler Installation

Although this analysis was accomplished in only two sets of steps, others might require more than two. A computer program is also presented for this procedure in Section IV and checks the above results quite closely. This routine is, however, limited to only one extra doubler (and does not account for slop or plasticity).

III.9 ANALYSIS FOR THE CASE OF A WIDE BASE STRUCTURE

Kon Serioad

The previous method of analysis requires only a single definition of A_sE_s for each element of the base structure (and of A_DE_D the doubler elements). From these the spring constants, k_s , are calculated, and used to compute the strain in the members. However, as seen in Equations (31) and (29), it is assumed that only one value of k_s (at each element) applies to all loads acting on the element being considered, as accumulated in Equation (29). This would actually be the case only for relatively narrow base structures (or doublers) having a width of, say, up to 10 times the fastener diameter. When the member is "wide" the fastener loads are not "immediately" effective over the entire cross-section. That is, each fastener load "diffuses" into the base structure (lengthwise) in a manner similar to that considered in evaluating "shear-lag" effects. Therefore, at any element of the base structures, the effective width (and area) is, generally, a different value for each of the fastener loads being accumulated at it in Equation (29). Hence, Equation (31) would be more accurately written as

$$\delta_{s_n} = \frac{Q_L}{\left(\frac{A_s E_s}{L}\right)_n} + \sum_{n=1}^{n} \frac{q_a \left(\frac{L_{n-1} + L_n}{2}\right)}{\left(\frac{A_s E_s}{L}\right)_n} - \sum_{n=1}^{n} \frac{P_{F_n}}{\left(\frac{A_s E_s}{L}\right)_n}$$
(31a)

It is probably sufficiently accurate to deal with the values $(A_s E_s)_n$ in the first 2 terms as discussed in Section V. * But the value of $A_s E_s$ in the last term is more accurately evaluated by consider-

ing the diffusion mentioned above. This is illustrated in Figure III.15.

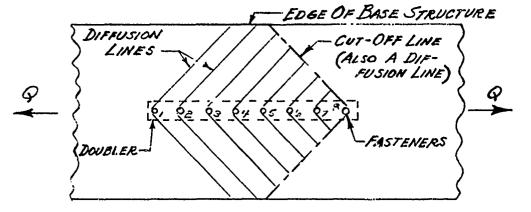


Figure III.15 Doubler Installed on a Wide Base Structure

* There is also a diffusion of any intermediate loads $(q_a L_n)$ into the base structure. However, this effect is not as severe and such loads are not generally present, so the suggested analysis is not further complicated by including it.

The diffusion lines assumed for each of the fastener loads are shown (a 45° slope is arbitrarily used). A "cut-off" line eminating from the last fastener (#8) is shown. This is simply a "reversed" diffusion line at the last fastener. The effective width of the base structure at any element (center) for any fastener load (the last term in Equation 31a) will then be the smallest of the widths between

- a. the diffusion lines, or
- b. the actual edges of the base structure, or
- c. the cut-off lines

Therefore, for each base structure segment there will be a specific width for each fastener load to the left of it. A proper definition of the diffusion lines must be determined experimentally.

The result of this additional refinement (i.e., the various effective widths as defined by the diffusion lines) is to predict smaller fastener loads (and a smaller doubler load) than would otherwise be predicted. However, it does involve considerable additional computation effort, there being essentially 2 extra columns in the table of calculations for each fastener. The following example illustrates the details of the analysis and shows how the basic table of calculations is revised to account for the diffusion effect.

In general it should not be necessary to account for this diffusion effect in the doubler, only in the base structure. This is because the form of the doubler is (efficiently) such as to allow the fastener load to be, essentially, constant over the cross-section. That $\exists u$, as the doubler widens more fasteners will usually be added, and, more importantly, where the fastener loads are large (at the ends) the doubler is, by nature, narrow rather than wide like the base structure. Similarly, in splices it should not usually be necessary to consider the diffusion effect because of the natural (narrow) form of the members. More specific suggestions for establishing the diffusion lines in practical problems are presented in Appendix I. EXAMPLE:

A doubler is installed on a wide base structure as shown in Figure III.16.

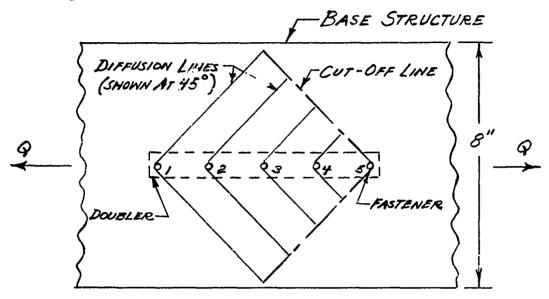


Figure III.16 A Doubler Installed on a Wide Base Structure

The following properties and load are assumed for the example: $k_f = 100,000 \#/\text{in.}, k_D = \frac{A_D E_D}{L} = 1 \times 10^6, k_s = \frac{A_s E_s}{L} = 4 \times 10^6$ $A_p E_p = 1 \times 10^6, A_s E_s = 4 \times 10^6, Q = 40,000 \#$

For the diffusion lines as assumed in Figure III.16, the effective AE/L of any base structure segment, for each fastener load, n, to its left is shown in Table III.12. These are obtained as previously discussed.

TABLE III.12

ELEM.	EFF. $\frac{A_sE_s}{L}$	5_ FOR FAST	TENER LO	ADS P _{Fn}
	PF1	PF2	PF3	P _{F4}
1	500,000			
2	1,500,000	500,000		
3	1,500,000	1,500,000	500,000	
4	500,000	500,000	500,000	500 , 000

BASE STRUCTURE AE FOR FASTENER LOADS IMPOSED

The analysis is carried out in Table III.13. This table is similar to the conventional one (Table III.1) through Col. (12). Beginning with Col. (15), however, additional columns are provided to define the spring constants (AE/L) for the effective widths of the base structure as defined by the diffusion lines. There is a column for each fastener (except the last), Col. (15) through (18). Then an additional set of columns, (19) through (22), is provided for the values of strain, P/k. These strains are summed up in Col. (23) and subtracted from the strain (Q/k_{5o}) in Col. (24) to give the net strain in the base structure at the fastener. The difference in strain between the doubler and the base structure at each fastener is computed in Col. (25).

The fastener loads are shown in Col. (6). The final loads should in this example (from symmetry) be symmetrical about the center fastener, #3, and the center fastener load should be zero. This is not quite the case, but is probably due to the assumptions made in accounting for the diffusion effect. However, the method is believed to be suitable for common engineering purposes and is more accurate than ignoring the effects of diffusion altogether. The results obtained when the diffusion effect is ignored are shown in Table III.14, Col. (6). It is seen that considerably larger fastener loads are predicted in Table III.14.

Some suggested practices for practical design purposes are presented in Appendix I, Articles AI.6 and AI.7. These are based upon the results of the test program and related calculations for doublers on wide base structures. -

	Ē										••• -																					
	3)	STIVITS	3	()- ()- ()- ()- ()- ()- ()- ()- ()- ()-		×106	6,070	5,610	2,68	;	6130	6,220 6,220	5,380	Ľ,	6,220 7,020	6,70	010 ⁴ 9			6,736											
	6	i.	BASE STR STRAIN BTRAIN	51	19-99	ŀ	00 7	7,380	288 288 288	6,65		7,420	8°56	6,920		8-6- 6-6-	8°50	897		288 888	8,657											
	6		LOCAL	_		Ţ		2,620	2000	3,350			1,728	3,080		2,20	1,350	8		387	1,343											
	8				J.Co		202	;	: :	8		; ;		8 9 1	•- •	::	:			::	1827-											
	ø		J/483		03/G	7	 8 7	:	- 8	88,		: :	10	Å ;		::	88	3;		:	ತತ											
	8		-/ - 25		05/Q		201	;		100	•		<u> </u>		•	1,280+	64 64 64 64 64 64 64 64 64 64 64 64 64 6		. :	1,265	1,265											
	ଷ	_	r i i		© ⁷ (0	4	2017	8 8 8		5,620	7, EQ.	, 38	8				860	; ;	2.510		2,510	-										
917 HL	6	· I —	ส์		DAEA			1	: :	8,1	· -		1	3			89		 	ł	1 8				Ā		ą	6				
yique n	1-		ĥ		VIVI		0-01X 01X	:	8	8,	,		88	<u>,</u>	-	1	88			;	<u>88</u>	- -		(91)	DIT. II		5	9		8.00 8.00	5445	
Ħ		+	ŕ		VZVO	9.25		15	28	<u>8</u> :	1	8	ส		1		88	_			2.8			E	BASE STR.			69		8 28 8	0 6 7 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 7 8 9 8 7 8 9 8 7 8 9 8 9	
(1) ABCUCC	9		f'	_	VINI	5	·	88	-			1.50	-1 8 8 8	<u>}</u> 1			88		8	88	88				L	ATTS -	2	9		8 3 8 8 8	000	
TOR THE DITUSION LINES	8	BASE STR	PRUMUT BITATI	°5°	ତ /ଡ	200			88	88 22	10.000	10,00	86	8 2 2	10.000	10,00		00,01	20,000	88	88 22	000 ⁴ 01		(F)	BASE STR.	CONSTANT	ž	DATA			888	-
	0	R	STR.		VIV	210-6	• •	_	_	88	8	8	88	8	8°4	88	88	8	8	88	888	3	EFFECTIVE	69				<u>୍ବ</u>		38,472	37,753 37,753 37,753	
-		ACCUR.	TONDE		() () () () () () () () () () () () () (88 99	89	88	000.04	80.0	88	000,01	40,000	88	28	00°9	000		8	~	N	6)	VOV		-	() () () () () () () () () () () () () (T		888	
RUNTO	(đ)	ACCUK.	19000		<u>7</u> 9			00	0	00	0	0	00	•	0	00	0	•,			00	7	BIRUCIURE TO	a	8	LONDS	Т	<u> </u>				
TELO OK	9	H.		ľ	1.1		~	0	0	00	0	• •		0.	0	00	0	•	••	 > 0	• •		BT BTRO	3	INT.		1	VI VI	t	00		
DITERMAL LOAD DISTRIBUTION	0	Dougues		5	ତ /ତ	, Rioę		18			1,290	56	1,537	;	1,260	1,958 1,958	50	;	1,256	្តិន៍	612		N THE	6	BLER DOUBLER DIT.	s,		3	800	528	2,247	
	9	DOUBLIN			AIM	عتمو		8				-	38			-	8		800	-		4		8	SPRIDIC S	consr. /e.,	Ť	YIYO	×10-0		88	
	0	DOUBLER DOUBLER			97	-	****	ເສີ	_	-			1,537				1,39		1,256					-	LOND 3P	8 Q9	t		ľ		2,247	
	୭	TANT.	_		9 7		-	ĝ	-		1,200			_	1,250 1	_	-631 1	_	1,256 1,633	_		8			TOWN DO	-	0	7	╞	1528 1,		
			_	1	a a	×10-6		8				_	8	-	-	_	88		<u>4</u> 88 48	_	_			\uparrow			G	A	×10-6		-100 -120 -719 -719	
ł		STRATE		t	୭		3,100	200		otto	84				8.4		-12 - P		2000 2000 2000 2000 2000 2000 2000 200			"	F		STRAD: STR.		3) DATA		-	1,190		1
ŀ	Т			Γ	<u> </u>		,		_								-12	3					-			125	(^ ()) 	207 X 100	3.5	-15	
+		ao 18	ζ. Δ	Ľ	-	ML 2100		<u>9</u> 0		5	00				00 	-	00	3	00				[-	TAST TO T		Ac 2	ATM A		×100		000	
L			14 (S-S) 4	3		PLAST TRIM	01161	1,120	8	10000	88 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8	5 -10.6401	ECU TAI	28. 98. 98.	9	2 - 12,380	OTATH (F		7,4 9-	1-12,58		6	4	A	$\frac{\Lambda(\overline{c}; \overline{c}_{0})}{\Lambda(\overline{c}; \overline{c}_{0})}$	د) ا	- (<u>(</u> §	×106	1,190	-7,192	
Ĕ	9		 .	a		P4	-10	N m		0	4 (1)	ന <u>.</u>	, 4 m		4 0	რ.:: `	tw	1	1 (1) (n-#	4			1.5						 (1) (1)	 ח-ד יין	

SECTION IV

COMPUTER ROUTINES

IV.1 INTRODUCTION

Because of time and/or the complexity of the doubler or splice a hand analysis may not be feasible. A routine for determining the internal load distribution by computer is then desirable or necessary. One such routine, using a digital computer is presented and discussed in Article IV.2. Another method, using an analog computer is discussed in Article IV.3. Other digital computer routines including one designed for splices with multiple members ("stacked" splices) are mentioned in Art. IV.4. All are based upon what is referred to as the elementary theory in this report.

IV.2 GENERAL ROUTINES FOR ANALYSIS BY DIGITAL COMPUTER

Routines have been established for accomplishing the analyses by digital computer. The routines essentially perform the same operations as shown in Table III.1 and III.2 and their accompanying discussions in Section III. In addition, the routines have been extended to include the effects of fastener (joint) plasticity and to present the residual loads existing after an excursion into the plastic range of the fastener loaddeflection curves. The weight of the doubler is also computed. This weight does not allow for the holes or for the weight of the attachments themselves.

The basic input data is the same as for the hand analysis method. However, the computer calculates the spring constants of the axial members, requiring an input only of the width and thickness of the members and the fastener hole diameters. Also, it is not necessary to make the initial "guess" for the end fastener load since this (and subsequent guesses) is made by the computer.

The program for the doubler analyses is presented in Figure IV.1. The computer programs for a splice, for stacked doublers, and for stacked splices along with the data and output are presented in Appendix III. The splice program is almost identical to that for the doubler. The stacked doubler and splice programs are for elastic problems without alop. The other programs include provisions for both "clop" and fastener loads in the plastic range.

The first 34 program lines are format, dimension, integer or double precision statements. Statement 35 reads the number of problems to be worked during the run. Statement 41 reads the problem configuration number and case number. Statement 44 reads if residual loads are desired. A positive number if residual loads are required and zero if nct. Statement 45 reads the modulus of elasticity for the base structure and doubler. Statement 46 reads the rows of fasteners in the problem and 47 reads the doubler density.

Statements 48 - 56 are data write statements. Statement 63 reads the average length, width, and thickness of the doubler in front of the first fastener for weight calculations. Statement 64 reads the data for each station and statements 66 - 67 writes the data out. Statements 70 - 71 calculated the base structure and doubler spring constants for each fastener station. Statements 76 - 78 calculates the doubler weight.

Statement 79 reads the axial load on the base structure. Statements 92 - 97 reads and writes the fastener spring constants and "cut-off" and allowable load data for the specific spring constants. Statements 110 ~152 change the fastener spring constant if the "cut-off" or allowable load for the specific spring constant used is exceeded. A fastener loaddeflection curve is illustrated by Figure IV.2 which explains the fastener cut-off and allowable loads. The multiple slopes of the load-deflection curve allow an accurate fastener spring constant definition to be used. If desired, less than six slopes can be used.

Statements 155 - 157 calculate the first fastener load guess. Statements 159 - 222 change the first guess fastener load to a number nearer the actual fastener load. If the problem has a sloppy first fastener, the second fastener load is adjusted. If the 20ed is increased until the slop closes up in the first fastener, the first fastener load is adjusted for subsequent load increments.

The total load is compared to the doubler load as the doubler load after the last fastener. The doubler load must be within less than 25% of the total applied load after the last fastener. If the doubler load is greater than 25% of the total load (magnitude), the first fastener load is adjusted by + 125 lb. to - 500 lbs. to 1.x10-9 lbs.

If the first fastener load is adjusted by 1.x10⁻¹⁰ pounds and the doubler load after the last fastener is not equal to zero, the problem is too sensitive and a solution can not be obtained without combining some of the fasteners into groups as explained in Article III.5 and Figure III.9.

Statements 224 thru 270 are the first fastener load and calculate the remaining fastener loads, doubler loads, and base structure loads. Within this section, statements 235 - 253 check each fastener station for sloppy fasteners. If slop is found at a station, the fastener load at that station is made equal to zero and the base structure spring constant and the doubler spring constant for the preceding fastener is combined with the spring constants at the sloppy fastener station. Statements 274 thru 279 check the doubler lowd after the last fastener and if the magnitude is not less than 25% of the applied load the first fastener load is adjusted.

Statements 281 thru 288 adjusts the third point first fastener load if the third point extrapolation does not dictate a doubler load of zero after the last fastener.

Statements 289 thru 320 involves making a second guess based on the first point. After the second guess first fastener load is obtained the doubler load, base structure load, and the remaining fastener loads are calculated.

The statements 321 thru 409 calculates the third set of data points based upon the first two sets of points. The extrapolation, statement 393, is method used to "zero in" on the correct fastener loads. The terms of this equation are double precision, sixteen significant digits, to allow the needed accuracy for the first fastener load extrapolation. If the third point extrapolation does not "zero in" on the correct load, statement 403 thru 407 sends the problem back to statements 281 thru 288 to make the needed adjustment. Within this third point calculation are statements 343 thru 360 which **checks** to see if slop is taken out of the problem and statements 370 thru 388 to see if the fastener cut-off load or allowable is exceeded.

Statements 430 thru 432 calculates the slop remaining at any fastener as the doubler is loaded.

Statements 446 thru 464 keeps a record of the loads and totals the loads as the doubler is loaded. If the fastener cut off load is exceeded the spring constant is changed for that fastener. If any fastener cut-off load is exceeded or slop removed, the same process is repeated with the changed spring constants and the remaining loads until the total load is carried by the base structure and doubler, and the fastener cut-off loads or the allowable loads are not exceeded. If the fastener allowable is exceeded the problem goes to 481 thru 483 where the fastener, the failed, and the total load at failure is recorded.

Statement 491 writes the load data at each station after the problem is complete. Statements 497 and 499 writes the doubler weight. Statement 500 checks to see if residual loads are required. Statement 502 checks to see if all of the problem sets are complete.

Every program follows the basic format of establishing two data points and solving for the third correct point. Example input and example output data is shown on the following pages in Figure IV.3 and IV.4 respectively.

The data for the plastic doubler and splice computer is explained in Appendix IV along with the stacked splice and doubler data.

	C PLASTIC DOUBLER
5.0001	275 FCRMAT(//1X,37HFIRST FASTENER FAILURE AND TOTAL LOAD//)
5.0002	459 FORMAT(3X, 2HXL, 5X, 3HXD 1, 3X, 3HX + C, 3X, 3HXLU, 5X, 3HXTS, 3X, 3HXWS, 4X,
	x2Hx5, 7x, 3HXNR, 2x, 3HxCO)
5.0003	462 FCRMAT(//1X,4HXQI=,F7.0)
5.0004	451 FORMAT(//1X,13HCONFIGURATICN,1X,4HNO.=,110)
5.0005	452 FORMAT(1X,4HCASE,1X,4HNC.=110)
5.0006	457 FERMAT(1X,3HXN=,F6,C)
5.0007	454 FORMAT(/1x,4HPLA=,F6.0)
5.0008	455 FORMAT(1X,4HXED=,F9,0)
5.0009	456 FORMAT(1X,4HXES=,F9.0)
5.0010	438 FORMAT(1X,3HXW=,F6.4)
5.0011	857 FCRMAT(F10,2)
5,0012	461 FCRMAT(1H1,1X,8HXAL(1,1),2X,8HXAL(1,2),2X,8HXAL(1,3),2X,8HXAL(1,4)
	1,2X,8HXAL(1,5),2X,8HXAL(1,6))
5.0013	46° FORMAT(1H1,1X,8HXKA(1,1),3X,8HXKA(1,2),3X,8HXKA(1,3),3X,8HXKA(1,4)
	1, 3X, 8HXKA(1,5), 3X, 8HXKA(1,6))
5.0014	453 FCRMAT(1H1,20X,7HDOUBLER,1X,5HINPUT)
<u>\$.0015</u>	45° FORMAT(2110)
<u>S.0016</u>	27 FORMAT(F13.3)
S.0^17	2P FURMAT(//3X.7HDOUBLER.2X.6HhEIGHT)
<u>S.0018</u>	29 FORMAT(F6.4)
5.0019	17 FORMAT(34X.7HDOUBLER.1X.3HANS/)
S.0020	14 FCRMAT(F6.0)
<u>S.CC21</u>	13 FORMAT(F7, ")
S.C022	496 FORMAT(1X, 3HSAY, 1X, 6HFELLCH, 1H, , 4HTHIS, 1X, 7HPROBLEM, 1X, 2H1S, 1X,
	X3HTOO, 1X, 9HSENSITIVE, 1H, , 7HREGRCUP, 1X, 9HFASTENERS)
5.0023	19 FCRMAT(1X,2HXZ,2X,3HXNR,3X,3HXKA,7X,3HXPA,5X,3HXDL,6X,3HXKD
	1,6X,3HXQT,5" 3HXQB,8X,3HXKS)
<u>S.0024</u>	10 FCRMAT(2F1 !)
<u>S.0025</u>	21 FCRMAT(6F10.0)
5.0026	2° FORMAT(6F11.0)
<u></u>	1° FORMAT(8F10.4)
<u>S_0028</u>	11 FORMAT(F8.5.F6.3.F6.2.F8.5.F6.3.F6.2.F6.3.F4.0.F7.0)
5.0029	16 FURMAT(F4.C.F4.C.F9.C.2F8.C.F11.O.2F8.O.F11.O)
5.0030	DIMENSION XKD(99), XKS(99) , XKDD(99), XKSS(99), XLSS(99)
<u>S.0031</u>	DIMENSION XL(59), XDT(99), XWC(99), XLK(99), XTS(99), XWS(99),
	<u>1xS(99), XNP(99), XQN(99), XLU(99), Z(99), XQK(99)</u> DIMENSION_XKA(95,6), XD(99), XPF(99), XB(99), XT(99), XTC(99)
5.0032	INTEGER XST, XZP, XMC, XO, XTT, XJM, XC, RYT, PLA
<u>S.0032</u> S.0034	COUBLE PRECISION XSD, XAS, XCS, XTDA, XR, XPA, XZA, XZB, XDLA, XDL B, XTD,
	1xQ8, x85, xRP, xDL, xAP(99), xLD(99), xPQ(99), xAL(99,6), xYZ, XP, XPR
	1,XAW(49),XA2(99) ,XSSP(99)
\$,035	READ(5,14) XKP
\$.C036	NKP=0
5.0037	NNP=XKP
5.0038	950 CONTINUE
5.0039	WT=0.0
5.0040	₩S=0.0
5.0041	READ(5,451) AA,AL
5.0042	NKP=NKP+1

Figure IV.1. Doubler Program

6 60/2	KYT=0
<u></u>	READ(5,14) PLA
<u>S.0044</u> S.0045	READ(5,18) XED, XES
<u>S.C.046</u>	READ(5,14) XN
5.0047	REAU(5,25) XW
5.0047	hRITE(6,453)
<u> </u>	WRITE(6,451) AA
S.0050	
	WRITE(6,452) AB
<u>S.0051</u> S.0052	NRITE(6,454) PLA
	+RITE(6,456) XES
<u>S.0053</u>	
<u>S.CC54</u> S.C255	N=XN hrite(6,457) XN
and the second se	
<u>S.0056</u>	<u>write(6,438)</u> XW XLRP=1.0
<u> </u>	
S.0058	$x_{\Delta h}(1) = 0.0$
S.COEC	$10^{\circ} Z(I) = 1.$
<u>S.0061</u>	NT=N-1
<u>S.0062</u>	3kT=0
S+0063	READ(5,10) XDTA, XWDA, XLLA
S.0064	READ(5,10)(XL(1),XDT(1),XHD(1),XLU(1),XTS(1),XWS(1),
3.0.004	$\frac{(ADUS)}{XI=1,N}$
5.0065	READ(5,897) (XGC(I),I=1,N)
S.0066	wRITE(6,459)
5.0067	WRITE(6,11) (XL(1),XDT(1),XhD(1),XLU(1),XTS(1),XWS(1)
	1XNR(1), XQC(1), I=1,N) , XS(1),
5.0068	DU 195 I=1,N
5.0065	XOK(T)=0
5.0070	XKD(I)=XDT(I)*XWD(I)*XED/XLU(I)
5.0071	XKS(I)=XTS(I)*XWS(I)*XES/XLU(I)
S.C072	XKSS([)=XKS(])
5.0073	xKDD(I)=XKD(I)
5.0074	XAW(I)=0.0
S.0075	xLSS(I)=XS(I)
S.0076	195 XHT=XLU(I)*XHD(I)*XDT(I)*XH+XHT
S.0077	XKT=XLUA+XhDA+XDTA
S+0078	x h T = x W T + x K T * x W
S.0079	READ(5,13) XQP
S+0080	XCI=XQP
5.0081	xTQ(N)=C.0
S.0082	GC TO 979
S.CC83	97C CONTINUE
S.CC84	RYT=1.
5.0085	XQI=-XTQ(I)+XTQ(I)/XYR*XQQK
5.0086	DO 1055 I=1,N
S.0087	XCO(I)=-XQK(I)
S-0068	XS(I)=XLSS(I)
S.0089	1055 CONTINUE
5.0090	PLA=0.0
5.0091	979 CONTINUE

Figure IV.1. Doubler Program (Continued)

1. The second state of a state of

73

5.0092	READ(5,20)(XKA(I,1), XKA(I,2),XKA(I,3),XKA(I,4),XKA(I,5),XKA(I,6)
	1,I=1,N)
5.0093	READ(5,21)(XAL(I,1), XAL(I,2), XAL(I,3), XAL(I,4), XAL(I,5), XAL(I,6)
	1, [=1,N]
5.0094	WRITE(6,46C)
5.0095	WRITE(6,2C)(XKA(1,1),XKA(1,2),XKA(1,3),XKA(1,4),XKA(1,5),
	1×KA(I,6),I=1,N)
5.0096	hRITE(6,461)
5.0097	WRITE(6,21)(XAL(1,1),XAL(1,2),XAL(1,3),XAL(1,4),XAL(1,5),
	1×AL(1,6),I=1,N)
5.0058	hRITE(6,462) XQP
5.009	x2P=0
5.0100	× Y=G
S.C1C1	XP=0.00
S.0102	×AP=1.
5.0103	XII=-1.
S.01C4	XST=0
5.0105	XPR=0
S.OIC6	XTP=0
<u></u> <u>S.C1C7</u>	
5.0108	I = 1
\$.C109	GC TO 430
<u>S.C11C</u>	410 CONTINUE
<u></u>	hT=0.0
<u>5.0112</u>	ws=0, ^
<u>S.0113</u>	IF(.9999-XP) 3C2,3C2,1798
<u>S.0114</u>	1798 CONTINUE
\$.C115	(F(XP) 401,1302,401
S.C116	13r2 CONTINUE
5.0117	IF(ABS(XCI)-ABS(XCP)) 4(1,302,401
5.0118	4/1 CONTINUE
	00 1005 I=1.N
5.0120	xQC(I)=XQC(I)+(1XP)
<u>S.0121</u>	1005 CONTINUE
5.0122	XC[=XC[*(],-XP)
5.0123	458 CONTINUE
5.0124	x2P=0
5.0125	xy=0
<u>S.0126</u>	XAM=1.
<u></u>	XIT=-].
5,0128	X \$T = -1 •
<u>S.C129</u>	IF(XUT) 377,43C,371
<u>S.C130</u>	371 CONTINUE
<u></u>	
<u>S.0132</u>	IF(Z(III)-6.) E4C.840.998
<u>S.0133</u>	84C CONTINUE
<u>S.C134</u>	[KA=XAL([[[,JJ]+1]
<u>S.0135</u>	IF(IKA) 999,995,368
<u>S.0136</u>	368 CONTINUE
<u>S.C137</u>	XKA(111,J) = XKA(111,JJJ+1)
<u></u>	XAL(III,J) = XAL(III,JJ+1)
<u> </u>	

Figure IV.1. Doubler Program (Continued)

5.0139	Z(III)=7K+1.
5.0140	<u>GC TO 37C</u>
5.0141	<u>cc5 II=III</u>
<u>S.C142</u>	GC TO S98
<u>S.0143</u>	37° CONTINUE
<u>S.C144</u>	J_J=YK
<u>S.C145</u>	<u>7(II)=YK+1.</u>
<u>S.C.146</u>	IF(Z(II)-6.) 75.75.958
<u>S. M147</u>	79 CCNTINLE
5.148	IKS=XAL(II,JJ+1)
S.C149	IF(IKS) 999,998,429
S.C15C	429 CONTINUE
<u>S.C151</u>	XAL(II,J) = XAL(II,JJ+1)
<u>S.C152</u>	XKA(II,J)=XKA(II,JJ+1)
<u>S.0153</u>	430 CONTINUE
<u>S.0154</u>	I=1
S.0155	XAEU=XDT(I)*XWD(I)*XED
<u>S.0156</u>	XAES=XTS(I)*XWS(I)*XES
<u>S.0157</u>	xpA=((8./XN)/(XAED+XAES))*XCI*XAED
<u>S.0158</u>	<u>GC TO 56</u>
<u>S.0155</u>	49 IF(XZP) 183,180,181
<u>S.C16C</u>	181 XAM=.1
<u>S.C161</u>	XJM=1.
<u>S.0162</u>	<u>×TT=1.</u>
<u>S.C163</u>	XPA=XR+XAM
<u>S.0164</u>	<u>GC TO 32</u>
<u>S.0165</u>	<u>18C_XAM=125.</u>
<u>S.C166</u>	<u>xPA=XR+XAM</u>
<u>\$.0167</u>	<u>XTT=0</u>
<u>S.C168</u>	<u>GC TO 32</u>
<u>S.0169</u>	183 IF(XMC) 186,185,184
<u>S.C170</u>	184 XAM=.001
<u>S.C171</u>	XPA = XR + XAM
<u>S.0172</u>	X JM=C
<u> </u>	GC TC 32
S.0174	185 XAM=.00001
<u>S_C175</u>	XPA=XR+XAM
<u>S.0176</u>	XJM=-1.
<u>S.C177</u>	XQ=-1
<u>S.C178</u>	GC TO 32
5,0179	186 IF(XC) 187,188,189
<u>S.0180</u>	187 XAM=.CC00001
5.0181	XPA=XR+XAM
<u>S.0182</u>	XQ=0
<u>S.0183</u>	GC TO 32
5.0184	188 XAM=.0000001
<u>S.C185</u>	XPA=XP+XAM
<u>S.C186</u>	xQ=1.
<u>S.0187</u>	GO TO 32
5.0198	189 CONTINUE
5.0189	hRITE(6,496)

Figure IV.1 Doubler Program (Continued)

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

And a line

1

5.0190	GC TO 599
5.0151	51 IF(XTT) 31,34,33
5.0192	?4 XAN=- 5.
5.193	xPA=XR+XAM
5.5104	x2P=1.
5.0195	GC TO 37
S.C196	73 IF(XJM) 37,36,75
5.197	35 XAN=01
S.0198	×PΔ=XR+XΔ*
5.199	x M C = 1 •
5.0200	x2P=-1.
5.0201	GO TG 3?
5.0222	36 XAM=0001
S.0203	XPA=XR+XAM
5.0224	X * C = C
S.C205	GC TC 3?
5.0276	37 [F(XQ) 38,39,40
5.0207	39 X4M=000001
S.0208	XPA=XR+XAM
5.0209	X^=-1.
S.C21C	x v C = - 1.
5.0211	GC TO 3?
<u>S.C212</u>	36 XAM=-*UCCUUUUI
<u>S.0213</u>	XPA=XR+X4M
5.0214	x,=0
5, (215	GC TO 32
5.0216	4r XAM= rrnrrrg1
<u>S.C217</u>	xPA= XR + XAM
5.0218	x°=1
<u>S.C215</u>	GC TO 32
S.C220	31 XAM=-5°°.
<u>S.C221</u>	
S.C222	3? XR=XPA
<u>S.(223</u>	$\frac{I=1}{5 \leftarrow X/A=XNR(I) \neq XPA/XKA(I,J) \neq XS(I)}$
<u>S.0225</u>	
<u>S+0225</u>	X0LA=^
<u>S.0227</u>	۲۷۵۲۳
S.02?8	x@S=0
S. C225	XR=XPA
<u>S.0236</u> S.0231	
<u> </u>	
<u>S.C233</u>	81 CONTINUE
<u>S.0734</u>	I=I+1
S.0235	x t0= x t0- x0 s
5.0236	
<u>S.(232</u>	xA S=X TD
5.0238	IF(XS(1+1)) 424,428,424
5.0239	474 CENTINE
5.0740	xPA=^.C

.

× +

Figure IV.1. Doubler Program (Continued)

5.0241	IF(XLPP)_165,165,1001
5. 24?	1001 CENTINUE
5.0243	IF(xZ-XN+1.) 561,165,165
5.0244	561 CENTINLE
S.C.245	XKDD(I)=XKD(I)
5.0246	×KSS(I)=XKS(I)
5.247	GC TO 165
5.0248	428 CENTINUE
5.7249	IF(I-1) 999,426,425
5.0250	425 CENTINUE
S. C 251	IF(XS(1)) 427,426,427
S.0252	427 CENTINLE
5.0253	xKDU(I)=XKD(I)
5.02-4	xKSS(1)=XKS(1)
5.0255	426 CONTINUE
S.0256	xPA=xAS*xK4(I,J)
S.r257	165 CONTINUE
5.12-6	XDLA=XDLA+XPA*XNR(I)
5.0250	× SD= XLCA/×KDD(I)
S.C260	xJS=XL(I) + XC^(I) + XQS
5.0261	×CT=XCS+XQI
5.0762	XCB=XQT-XDLA
5.1263	x3S=XQB/XKSS(1)
5.0264	xD S= XR S- X SD
5.0265	xZ=XZ+1.
5.0266	IF(XST) 589,589
S.C267	598 XYR=XQS+XQP
S.C?68	XQQK=XCS
5.0269	5PC CENTINUE
5.0270	IF(XN-XZ) 1C1,1C1,91
5.0271	101 CONTINUE
S.C272	IF(XQT) 237,53,238
5.0273	233 CENTINUE
S.C.274	IF(X0LA/XGT25) 42,42,45
5.0275	42 IF(.25-XDLA/XCT) 51,53,53
S.C?76	23A CONTINUE
S.C277	IF(XDLA25*XQT) 57,57,51
5.0278	57 IF(.25*XQT+XDLA) 49,53,53
5.1275	53 CENTINUE
5.0280	GC TO 71
S.0281	P9 CENTINLE
S.C2F?	ΔΤΥΧΑ=ΧΥΩΔ
5.0283	XDLA=XLD(I)
S.C284	$XR = XRP \neq XKA(I,J)$
S.0285	[=]
S.r286	XZB=XZA+XDLA+(XZA-XZB)/(XCLB-XDLA)
5.0287	xPA=XKA(I,J)*(XZB-XS(I))
5.0288.	IF(XZB-XZA) 95,999,95
5.0299	71 [=]
5.0290	XPA=XR+XAM/10.
5.0291	124 XZB=XNR(I)*XPA/XKA(1,J)+XS(I)

1

Salar Strates

Figure IV.1. Doubler Program (Continued)

٢

5.0292	95 XID=XZB
S.0293	XR=XPA
S.C294	xD S=0
S.0295	x018=0
S.C296	xZ=0
<u>S.C296</u> <u>S.C297</u>	
<u>S.0258</u>	GC TO 84
<u>S.C299</u>	R5 CONTINUE
5.0300	
5.0301	e4 xTD=xTD-xDS
<u>S.C302</u>	
<u>S.0303</u>	IF(XS(I)) 419,418,419
S.0304	419 CONTINUE
<u>S.C3C5</u>	x SSP(1) = xTD
S.C306	XPA=0.0
5.0307	<u>GC TO 265</u>
5.0308	418 CONTINUE
5.0309	XPA=XAS=XKA(I,J)
S.031C	265 CONTINUE
S.0311	XDLB=XDLB+XPA+XNR(1)
S.0312	X SD=XDLB/XKOD(I)
S.0313	xQS=xL(I)*XQC(I)+XQS
5.0314	xQT=XQS+XQI
S.C315	XQB=XQT-XDLB
S.C316	X8S=XQB/XKSS(I)
5.0317	XDS=XBS-XSD
S.0318	XZ=XZ+1.
<u>S.0319</u>	IF(XN-XZ) 1C3,103,85
5.0320	103 CONTINUE
<u>S.0321</u>	87 CONTINUE
5.0322	XPR=0
5.0323	×Z=0
5.0324	[=]
5.0325	xLD(1)=^
5.0326	XQS=0
S.C327	X0 \$=0
S.0328	X Y=0
5.0329	XP1=0
S.0330	xVF=XP
S.0331	XUT=C.C
S.C332	xp=0.0
S.0333	131 ×TD=XZB+XDLB+(XZB-XZA)/(XDLA-XDLB)
S.0334	XTDA=XTD
\$.0335	132 XRP=XTDA
S.C336	GG TO 86
S.0337	74 CONTINUE
S.C338	[=[+]
\$.0335	XTD=XTD-XDS
5.0340	86 CONTINUE
S.0341	X4 S=XTD
S.0342	IF(XS(I)) 4(9,408,409

Figure IV.1. Doubler Program (Continued)

S.0343	409 CONTINUE
<u> </u>	xAP(I)=C.C
<u>S.C345</u>	XSSP(I) = XTD
<u>S.C346</u>	wT = (DABS(XTD) - XS(I)) / DABS(XTC)
<u>S.(340</u>	IF(WT) 385,350,350
<u> </u>	385 CENTINLE
<u>S.C349</u>	NT=C.0
<u>S.0350</u>	GC TU 332
<u>S.C351</u>	390 CONTINUE
S.0352	wt=ABS(WT)
<u>S.(353</u>	1F(WT-XP) 332,374,375
<u>S.0354</u>	<u>375 XP=wT</u>
<u>S.0355</u>	
<u>S.0356</u>	<u>GC TO 332</u>
5.0357	374 CONTINUE
<u>S.0358</u>	
<u>S.0355</u>	<u>GG 10 332</u>
<u>S.C360</u>	4CB CONTINUE
<u>S.C?61</u>	349 CONTINUE
<u>S.(362</u>	$\frac{XAP(I) = XAS * XKA(I,J)}{XAP(I) = XAS * XKA(I,J)}$
5.0363	XA2(I)=XTD
<u>S.0364</u>	365 CONTINUE
<u>S.C365</u>	$\frac{[F(RYT) \ 64E, 64P, 33]}{(12.000)}$
<u></u>	648 CONTINUE
<u>S.C367</u>	<u>IF(XST) 937,909,999</u>
<u>S.0368</u>	909 CONTINUE
<u>S.0369</u>	$\frac{XPF(I)=0}{C^{2/2}-C^{2/2}N^{1/2}}$
<u>S.0370</u>	S37 CONTINUE
<u>S.0371</u>	XYZ=XAL(I,J)-ABS(XPF(I)) IF(DABS(XYZ)-DABS(XAP(I))) 396,306,331
<u>S.C372</u> S.C373	3°4 WT=DABS(XYZ/XAP(I))
<u> </u>	hS=XP
<u>S.0375</u>	n T=1hT
<u>S.0376</u>	IF(WT-WS) 331,305,308
<u>S.0377</u>	3rs CONTINUE
<u>S.C?78</u>	
<u>S.C.379</u>	<u>ZK=Z(1)</u>
5.0360	
<u> </u>	GC TO 332
5.0382	309 []=[
<u>S.C383</u>	YK=Z(1)
5.0384	XPI=1.
5.0385	XUT=-1.
5.0386	XP=DABS(XYZ/ XAP(I))
S.C387	xp=1xp
5.1388	GC TO 332
5.0385	331 CONTINUE
5.0350	337 IF(1-1) 750,775,750
5.0361	$775 \times LD(1) = XAP(1) + XNR(1)$
5.0392	GC TU Erc
5.0353	757 XLD(I)=XLD(I-1)+XAP(I)*XNR(I)
مىرى مەركەن ئەتلەر يەتلەر يەتلەر يەتلەر مەركە بىرىپى مەركە بىر	

endered tames

Figure IV.1. Doubler Program (Continued)

.

(

5.0394	80° CONTINUE
<u> </u>	×SD=XLD(1)/XKDD(1)
<u>S.C396</u>	XQS=XL(1)*XQC(1)+XQS
5.0397	xGT=xGS+XQI
<u>\$.0398</u>	XBQ(1)=XQT-XLD(1)
\$.C399	xBS=xBQ(1)/xKSS(1)
<u> </u>	xD S= XB S- X SD
S.0401	x2=xZ+1.
<u>S.0401</u>	117 IF(XN-XZ) 102,102,74
<u>S.0402</u>	102 CONTINUE
S.0403	AXLD=XLD(1)
<u> </u>	AAQT=.0/01+XQT
S.0406	IF(ABS(AXLD) - ABS(AAQT)) 880,880,88
S.0408	esc centinue
5.0408	IF(XS(II)*100C.) 481,421,481
S.0409	481 CONTINUE
<u>S.0409</u> S.0410	XLT=C.C
<u> </u>	
<u> </u>	$\frac{XSSP(II)=C \cdot O}{XS(II)=C}$
<u> </u>	XKDD(II)=XKD(II) XKSS(II)=XKS(II)
<u>S.0414</u>	
<u> </u>	<u>IF(II-1) 479:421,479</u> 479 CONTINUE
<u>S.0417</u>	xKDD(II-1)=XKD(II-1)
S.0417	
<u>S.0418</u>	<u>xkss(II-1)=xks(II-1)</u> 421 CONTINUE
S.0420	
<u> </u>	IF(XS(III)+10C()) 515,422,515 515 CONTINUE
<u> </u>	
<u> </u>	XS(III)=0.0
S.0424	XSSP(III)=0.0 XKDD(III)=XKD(III)
S.0425	XKSS(III)=XKS(III)
<u>S.0425</u> S.0426	XKDD(III-1)=XKD(III-1)
<u> </u>	×KSS(III-1)=×KS(III-1)
5.0427	422 CONTINUE
5.0429	XP=1XP
S.0429	DC 1000 I=1.N
S.0431	XS(I)=XS(I)-DABS(XSSP(I)*XP)
S.0432	1000 CONTINUE
<u> </u>	IF(RYT) 70,70,359
<u> </u>	7C CONTINUE
S.C435	IF(XP) 359, 3CC, 359
<u>S•C436</u>	3(C XP=1.
S.0437	359 CONTINUE
<u>S.0438</u>	I=1
<u> </u>	×Z=1•
<u> </u>	IF(XST) 737,707,999
5.0441	7.7 CONTINUE
S.0441	IF(RYT) 7CE,7CE,737
<u> </u>	768 CONTINUE
<u>S.C444</u>	GC TO 7 ² 6

£

Figure IV.1. Doubler Program (Continued)

5.0445	735 I=I+1
5.0446	736 CONTINUE
5.0447	XB(I)=C
5.0448	XD(I)=?
5.0449	XTQ(I)=C
5.0450	XPF(I)=0
S.0451	IF(N-I) 999,734,735
S.0452	734 [=]
5.0453	GC TO 737
S.0454	65 CENTINUE
S.0455	1=1+1
S.0456	xZ=XZ+1. XQK(1)=XQQ(1)*XP+XQK(1)
S.0457	737 CONTINUE
S.0458	xPF(I)=xP*XAP(I)+xPF(I)
5.0459	XO(1)=XLD(1) + XP+ XD(1)
5.0460	XB(I)=XBC(I) + XP+ XB(I)
5.0461	XTQ(I)=(XBQ(1)+XLD(I))*XP+XTC(I)
5.0462	xBQ(1)=xTQ(1)-xD(1)
5.0463	XLRP=C.O
5.0464	IF(XN-XZ) 301,301,65
5.0465	3°1 CONTINUE
5.0466	IF(RYT) 485,485,486
5.0467	486 CONTINUE
S.C468	ITQ=XTC(I)
5.0469	IF(ITQ) 4°C, 3C2, 4GC
5.0470	485 CONTINUE
5.0471	I YR=XYR
S.0472	ITQ=XTQ(I)
S.C473	711 CCNTINLE
5.0474	IF(IYR-ITQ) 5(5,3(2,400
S.0475	505 ABC=TABS(TYR-ITQ)
5.0476	IF(ABC001*XYR) 302,3C2,305
5.0477	3°2 I=1
S.C47P	GC TO 3C4
5.0479	998 CONTINUE
5.0480	XI=II
5.0481	WRITE(6,279)
5.0482	WRITE(6,18) XI, XTQ(I)
S.C483	GC TO 30?
S.C484	3C3 I=I+1
5.0485	XZ=XZ+1.
S.C486	GC TO 410
S.0487	304 WRITE(6,17)
S.0488	WRITE(6,19)
5.0489	×Z=1.
5.0490	410 CONTINUE
5.0491	WRITE(6,16) XZ, XNR(I), XKA(I, J), XPF(I), XD(I), XKD(I)
	1XB(1), XKS(1) , XTQ(1),
5,0492	IF(XN-XZ) 959,959,3C3
5.0493	315 XP=(XYR-XTC(I))/XYR
5.0494	XZ=1.

N. P.

Figure IV.1. Doubler Program (Continued)

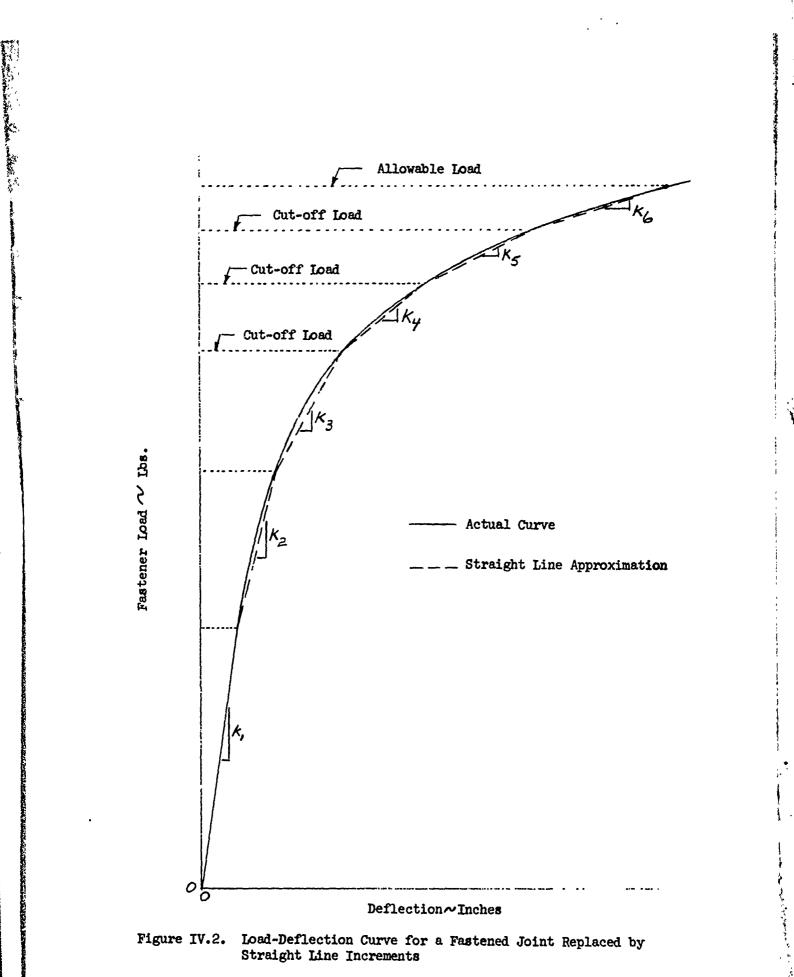
٢

. •

「ない」で

えまい

a special sector of


a manage and the second

.

5.0495	I=1
5.0456	GO TO 737
5.0457	999 CONTINUE
5.0458	KRITE(6,28)
5.0499	WRITE(6,27) XWT
S.0500	IF(PLA) 98C, 58C, 57C
5.0501	S8º CONTINUE
S. C5C2	IF(NKP-NNP) \$50,851,951
5.0503	951 CONTINUE
5.0504	STOP
S.C505	END

Figure IV.1. Doubler Program (Concluded)

ú

83

•

٢

A CONTRACTOR OF THE

<u> </u>	•						
1	3					·	
1			· · · · · · · · · · · · · · · · · · ·				
102.0000	1.3						
14					······································		
<u>1</u>							
<u>`````````````````````````````````````</u>	1.95					•	
!	. 72	1,38	1 <u>.</u>	<u>102</u>	2.88	•Ü	<u>یہ آ۔</u> او آ۔
<u> </u>	. 172	1,38		• 102	2.88	<u>. UU1</u>	<u>_</u>
1.0		1.38	1.0	• 102	<u>/ 00</u>	0UU1	لہ ا 1 ہ ل
<u>_</u>		1. 18	1.U	• 10Z			<u>ده ا</u>) و ا
<u>-</u>			JeV	• ivc		<u></u>	لعــــــــــــــــــــــــــــــــــــ
<u>1</u> 0		1.38		A 1 U C	<u> </u>	•001	i.e.(
<u> </u>		1.38	1.0. 1.0.	• 1 1 2	<u>2.00</u>	<u>•UUI</u>	<u>لغن</u>
1,0		1.38		• 1 U2	2.88		<u>Ì.e.</u>
1_()	<u>0,7</u> ?	1.28		•102	2.88		<u>i e</u> v
<u>1.0</u>	::72	1,58	1.0	• 102	2.88		<u>_</u>
		1.38	1.0	102	2.88	0001	
· 1`		1.38	1	1U2	2.88	• VU1	
	. 17?			1.02	2.88	• vul	
	. 172	1,38		102	2.88		i
<u></u>		1,38	1.0	102	2.88	• UUI	i.v
225	·····				<u> </u>		<u>+</u>
225							
225							
226					· ····································		
225							
225							
225							
225			``				
725							
225		-					
225							
225							
275							
225							
225	<u></u>						
0.0		·					
10000			<u> </u>				
117500	1:5600.	697.0.1.	32.000	192	J	12000	
117600.	1.15500.	60701.	32 1.10		<u></u>	12900	
117500.	1 156 1).	607	32.0	19,	00.	12900.	
11757.14	1 15600	<u> </u>	32000.		00.	129000	
117500.	1156 11	607.00			<u></u>	12900.	
117603	1 54 1.4	6070			<u></u>	129000	·····
117500.	1 54 0	407 11.			<u>vı .</u>	124000	
1176.00.	1 56 30	607011				12900.	
117500	1 5400.	607.00			<u></u>	12900.	
1175600	1.56.00.	60700			00.	12900.	
117500.	1. 56 10.	501	32000		00.	12900.	
117500.	1.56.11	6311.	32.000		JU.	12900.	
117500	1 5 - 11	60700.	320000	107	90.	129000	

.

いるころも

•

a start the start with the second start and a store

. •

Figure IV.3. Example Input Data

84

117500	1:5600.	697.) :.	32000.		125000
117500.	105600.	<u>6970.</u>	320000		<u> </u>
117500.	105610.	<u>6970:</u>	32.000		129000
750.	1125	1390.	1450.		<u>h</u> U.
750.	1125	1300.	1550.		<u>hue</u>
750.	1124.	1390.	1550.		50.
190.	1127.	1.210	<u>()</u>		
/50	1124	1390.	1550.		2Û∙
<u> </u>	1125.	134:	1.550.		<u>.:v.</u>
750	1125	1390	<u>1550.</u> 1550.		<u>י א</u> ל , פ
<u> </u>	1125.	139/1	1550.		5
750.	1125,	1390.	1550.	فتكر وسنكر ومقنطين ومستاري وسبر والتروي والمراجع	NU .
750	1125.	139.	1550.		· · · · · · · · · · · · · · · · · · ·
750.	112"	1390.	1550.		5Ue
750	1123.	130	1550.		5U.
750,	112%.	1390.	1550.		5U.
750.	1125	1390.	1550.		50.
750	1125	1390.	1550.		50.
1175 10			10000	<u> </u>	
17500					
117500	· · · · · · · · · · · · · · · · · · ·				·····
117500					
117500					
1175-00			·		
117500					
117500					
117500.		·····			
117500.					
117500.					
117500.	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
117500.			· · · · · · · · · · · · · · · · · · ·		
117500.				······	· · · · · · · · · · · · · · · · · · ·
117500.	·····				
117500.					
10000					
10000					
10000					
10000					
10000.					
10000.					
10000					
10000.					
10000					
10000.					
10001.					
10000					
10000					
10000					
10000					
10000					
	· · · · · · · · · · · · · · · · · · ·				

「日本なんまで」

Service Services

Same and the same and a second second

「日本をする

ALC: NOT

0.92 m

Figure IV.3. Example Imput Data (Concluded)

85

٢

ALCONTRACTION OF

OUTPUT DATA

XZ = fastener row XNR(I) = no. of fasteners in row XDA(I, J) = spring constant of fastener XFF(I) = fastener load at I fastener station XD(I) = doubler load at fastener station I SKD(I) = doubler spring constant at I XTQ(I) = total load at Station I XB(I) = load in base structure at I XKS(I) = effective base spring constant at I XWT = weight of doubler

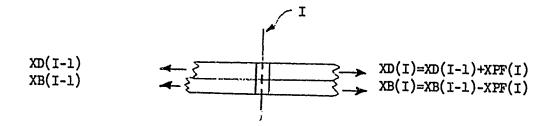


Figure IV.4. Example Output Data

1001001	C 0	INPUT
UUUDE	L L K	INPUL
		a second se

<u>CONFIGURATION ND.= 1000000</u> <u>CASE ND.= 3000000</u> <u>PLA= 1.</u> XEC=10300000.

XN = 16	•								
XW=0-10'	<u>in</u>								
XL	XET	XHC	XLL	XTS	XhS	XS	XNR	XQO	
1.00000	C. C72	1.38	1.00000	1.102	2.88	0.0	1.	225.	
1.0000	C.C72	1.38	1.00000	0.102	2.88	0.100	1.	225.	
1.0000	<u>c.c72</u>	1.38	1.00000	<u>0.102</u>	2.88	C.001	1.	225.	
100001	°.(7?	1.38	1.0000	C.102	2.88	0.001	1.	225.	
1.0000	C.C72	1.38	1.00000	C.1C2	2.88	0.001	1.	225.	
1.00000	<u>^. (72</u>	1,38	1.0000	<u>c.102</u>	2.88	r.001	1.	225.	
1.0000	<u>°. C72</u>	1.38	1.00000	C.102	2.88	<u>c.001</u>	1.	225.	
1.00000	<u></u>	1.38	1.00000	0.102	2.88	0.0	1.	225.	
1.00000	<u></u>	1.38	1.00000	<u>0.102</u>	2.98	0.0	1.	225.	
1.00000	C.(72	1.39	1.01000	C.102	2.88	C.001	1.	225.	
1.00000	<u>C.C72</u>		1.00000		2.88	C.001	1.	225.	
1.00000	C. C72	1.30	1.0000	0.102	2.88	0.001	1.	225.	
1.00001	<u>C.C72</u>	1.38	1.00000	0.10?	2.88	0.001	1.	??5.	
1.0000	<u>C.C72</u>	1.39	1.00000	0.102	2.88	9.001	1.	225.	
1.00000	C. C72		1.00000		2.88	0.001	1.	225.	
1.00000	5.072	1.38	1.00000	0.102	2.88	C.001	1.	0.0	

.

÷

A france

いていいないないでも

XKA(1,1)	XKA(1,2)	XKA(1,3)	XKA(1,4)	XKA(1,5)	XKA(1,6)
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105690.	65700.	32000.	19200.	12900.
117500.	10-600.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19270.	12900.
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105640.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900.

٢

Figure IV.4. Example Output Data (Continued)

XAL(I,1)	XAL(1.2)	XAL(1,3)	XAL(1.4)	XAL(1,5)	XAL(1.6)	
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1350.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
750 .	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	155^.	1670.	1750.	
75^.	1125.	1390.	1551.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
(<u>CI= 18rcc</u>						

and the state of the second state of the

DCURLER ANS

XZ	XNR	ХКА	XPA	XDL	XKC	XQT	XCB	XKS
1.	1.	32000.	1524.	1524.	1023407.	19225.	16701.	3025724
2.	1.	117500.	r.	1524.	1523467.	18450.	16926.	3025726
2,	1.	105600.	1005.	2529.	1023407.	18675.	16146.	3025726
4.	1.	117500.	697.	3226.	1023407.	13900.	15674.	3025726
5.	1.	117500.	459.	3685.	1023407.	19125.	15440.	3025726
6.	1.	117500.	282.	3967,	1023407.	19350.	15382.	3025726
7.	1.	117500.	152.	4119.	1-23407.	19575.	15456.	3025726
8.	1.	117500.	131.	4250.	1023407.	19800.	15550.	3025726
5.	1.	117500.	15.	4265.	1(23407.	21025.	15760.	3025726
10.	1.	117500.	٢.	4265.	1023407.	27250.	15985.	3025726
11.	1.	117500.	-121.	4144.	1023407.	20475.	16331.	3125726
12.	1.	117500.	-287.	3864.	1023407.	20700.	16836.	3025726
13.	1.	117500.	-490.	3374.	1023407.	20925.	17551.	3025726
14.	1.	115600.	-781.	2593.	1023407.	21150.	18557.	3025726
15.	1.	69700.	-1140.	1445.	1023407.	21375.	19930.	3025726
16.	1.	32000.	-1445.	-0-	1023407.	21375.	21375.	3025725

COUBLER WEIGHT C.164

× •••• -×-

Figure IV.4. Example Output Data (Continued)

XKA(I,1)	XKA(1,2)	XKA(1,3)	XKA(1,4)	XKA(1,5)	XKA(1,6)
117500.	^ `	с.	0.	Q.	0.0
117500.	Ç.	С.	^ .	0.	0.9
117500.	<u>^.</u>	٢.	^.	0.	0.0
117500.	٢.	С.	Λ,	0.	0.9
117590.	٢.	С.	G.	9.	0.0
117500.	· ·	<u> </u>	ິ.	0.	0.0
117500.	ŗ.	· ·	r.	n.	0.0
117500.	С.	ſ.	0.	0.	0.0
117500.	C.	с.	0.	0.	0.0
117500.	<u> </u>	Ç.	0.	2.	0.0
117500.	ſ.	С,	<u>n.</u>	0.	0.0
117500.	·ŋ.	C.	0.	ົ.	0.0
117500.	r.	C.	n.	0.	0.0
117500.	<u>^.</u>	Ć.	0.	0.	0.0
117500.	<u>^</u>	Ç.	0.	0.	0.0
117500.	^ .	с.	<u>.</u>	0.	0.0

111

XAL(1.1)	XAL(1,2)	XAL(1,3)	XAL(1.4)	XAL(1.5)	XAL(1.6)
10000.	٢.	ņ,	Ç.	9.	0.0
10000.	С.	۰.	<u>c.</u>	Ω.	C.0
10000.	<u>r.</u>	С.	Ç.	Ω.	0.0
10000.	<i>с</i> .	с.	2.	0.	0.0
10000.	n,	C.	n.	0.	0.0
10000.	G.	0.	0.	<u>n.</u>	0.0
1000r.	<u>^</u>	ſ.	<u>.</u>	с.	0.0
10000.	<u>^.</u>	r.	<u>,</u>	0.	0.0
10000.	٢.	G.	ſ.	Λ.	0.0
10000.	ŕ.	ŕ.	<u>.</u>	0.	0.0
10000.	<u>^.</u>	<u> </u>	<u>.</u>	0.	0.0
10000.	<u>^.</u>	с.	٢.	٦.	00
10000.	<u>^.</u>	с.	<u>0.</u>	0.	0.0
10000.	ŕ.	<u>^</u>	<u> </u>	Ŋ.	0.0
10000.	^.	n.	<u>.</u>	<u>^</u> .	0.0
10000.	<u>^.</u>	Ç.	<u>^.</u>	0.	<u> </u>

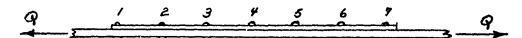
XGI= 18000.

STATES AND A STATE AND A

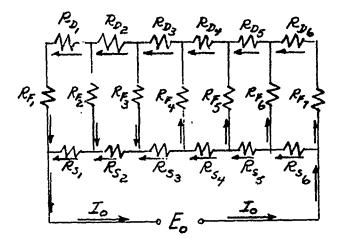
Figure IV.4. Example Output Data (Continued)

¢

89


and Sugar

				ſ	DOUBLER ANS		<u></u>	
ΧZ	XNR	XKA	XP۵	XCL	XKC	XGT	XQB	XKS
1.	1.	117500.	-353.	-353.	1023407.	-0.	353.	3025726.
2.	1.	117500.	· ·	-353.	1023407.	-0.	353.	3025726.
3.	1.	117500.	93.	-260.	1 (23407.	-0.	260.	3025726.
4.	1.	117500.	81.	-179.	1023497.	-0.	179.	3025726.
5.	1.	117500.	54.	-125.	1023407.	-0.	125.	3025726.
٤.	1.	117500.	35.	-90.	1023407.	-0.	. 90	3025726.
7.	1.	117500.	21.	-69.	1023407.	-0.	69.	3025726.
.8	1.	117500.	11.	-58.	1023407.	0.	58.	3025726.
9.	1.	117500.		-57.	1(23407.	-0.	57.	3025726.
10.	<u> </u>	117566.	<u>^.</u>	-57.	1023407.	-0.	<u>57.</u>	3025726.
11.	1.	117500.	-16.	-72.	1023407.	-0.	72.	3025726.
12.	1.	117500.	-27.	-99.	1023407.	<u>0.</u>	99.	3025726.
13.	1.	117500.	-42.	-142.	1023407.	-0.	142.	3025726.
14.	1.	<u>1175CC.</u>	-60.	-202.	1023407.	-9.	202.	3025726.
15.	1.	117500.	-37,	-239.	1023497.	0.	239.	3025726.
16.	1.	117500.	239.	-0.	1023407.	<u>).</u>	0.	3025726.
10								


Figure IV.4. Example Output Data (Concluded)

IV.3 ANALOG COMPUTER ANALYSIS

A method of determining the distribution of fastener loads in a splice by using an analog computer is described in detail in Reference (4) and can also be used for a doubler installation. The method consists of replacing the actual structural elements (fasteners and axial members) by an electrical network of resistors in the form of potentiometers. The resistances are adjusted so that the relative values of their reciprocals (or "mhos") are the same as the relative values of the spring constants in the actual structure. That is, $\frac{R_{n+1}}{R_n} = \frac{R_n}{R_{n+1}}.$

Physical Structure And Applied Load (a)

Equivalent Electrical Circuit And Applied Current, I (b)

Figure IV. 5. A Doubler Installation Analyzed By An Analog Computer

A voltage E is applied, generating a total current I. The current I divides among the resistances in the same manner (proportionally) as the load Q is distributed in the structural network. Therefore, reading I and I with an ammeter (or by other determination), the load in any structural member can easily be calculated as

$$P_n = Q \times \frac{I_n}{I_o}$$

91

The analog computer can also be used for multiple (or "stacked") doublers and splices as well as for shear-lag problems in sheet-stringer panels. It can be used for load levels where the values of k are in the plastic range, by using the method of superposition as discussed in Section III. In this case, the resistors would be adjusted for the specific spring constant values existing (as selected per Figure IV.10) for each increment of applied load. Reference (4) also describes a practical constant voltage source necessary for applying a distributed load (i.e., such as an applied shear flow) or any intermediate load. In any case, the same results would be obtained as by using the other methods discussed in Sections III and IV, since they are all derived from the same elementary theory.

IV.4 OTHER DIGITAL COMPUTER PROGRAMS

Although this report is based upon the trial and error solution for the internal loads,

the loads can be determined in the conventional manner for redundant structures by solving a set of simultaneous equations. That is, if there are N fasteners in a line in the direction of the applied load, there are N-1 redundant fastener loads. A set of equations can be written for any given condition of the structure (i.e., for any specific values of k_F , k_D , k_s and for any slop, meaning that the sloppy fastener is ineffective). Then the results obtained after solving the simultaneous equations can be used as the "unit solutions" discussed in this report. This procedure is frequently used where digital computers are available.

Reference (5) presents a routine for determining the fastener load distributions in splices involving two or more axial members. The basic approach involves the solution of simultaneous equations (hence it is not useful for hand analysis.) Provision is made for including the effects of plasticity and temperature. The method is based on what is referred to as the elementary theory in this report. As presented, however, the routine is not arranged for the analysis of a doubler installation and provision is not made for the inclusion of "slop". Considerable practical discussion concerning the development, use and presentation of fastener load-deflection data is presented and specific data for one type of fastener (Blind Hi-Shear bolts) are included.

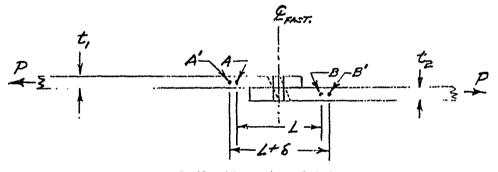
IV.5 ADDITIONAL PROGRAMS PRESENTED IN APPENDIX III

Digital computer programs for a splice, a stacked doubler (one extra doubler) and a stacked splice (one extra member) are presented in Appendix III.

SECTION V

DATA FOR ANALYSES

V.1 INTRODUCTION

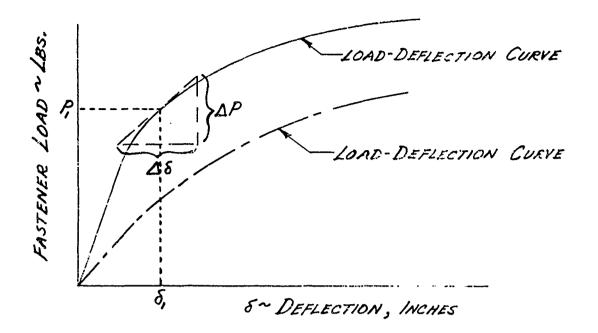

As discussed in previous sections, there are three specific types of data that are necessary for determining the fastener load distribution. These are

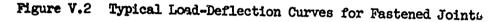
- a. The fastener spring constants, h_F
- b. The axial member spring constants, k_D and k_S
- c. The fastener hole clearance or "slop", Δc

Each of these is discussed below from the standpoint of practical design and analysis.

V.2 FASTENER SPRING CONSTANTS

This factor is the index of the amount of load, ΔP_F , required to strain the joint through a small displacement ΔS . The displacement S (called the "deflection") is the local "shearing" displacement, normal to the centerline of the fastener as shown in Figure V.1. δ is obtained experimentally as the difference between the unloaded length L (actually 2") between points A and B and the stretched length, L + δ , between the points A' and B' under a load P. This deflection, therefore, includes not only the shearing bearing and bending displacements of the fastener but also those due to the local bearing and axial deformations of the sheats in the region of the hole.





By testing specimens as shown in Figure V.1 (which are the same specimens as used in obtaining conventional fastener-sheet strength and yield data) a load-deflection curve for any specific type of joint can be obtained. Such a curve is sketched in Figure V.2. A discussion of the manner in which such a curve is obtained is presented in Section VII.

Frequently the curve has a considerable linear portion at low load levels. The slope of the curve at any point is the value of $k_F = \Delta P / \Delta \delta$. Hence, it can be seen that k_F is a function of the load itself. Thus, k_F is

93

South and the second and the second second of the second second second second second second second second second

analogous to the tangent modulus, E_t , of a stress strain curve for a material. The non-linear portion of the deflection curve is referred to as the "plastic range". In this range k_F decreases from its initial largest value to lesser ones as the value of P increases.

For most of the fasteners and gages used in a practical doubler or splice installation (high strength steel fasteners), there is usually a fairly extensive initial linear portion. This allows the joint to handle reasonable load transfers without excessive permanent set, or yielding.

The exact shape of the load-deflection curve depends upon several items:

- a. The fastener type, size, and material properties
- b. The material properties of each sheet
- c. The thickness of each sheet (different thicknesses giving different results)
- d. The fastener hole-clearance or "slop",

e. The number and arrangement of the axial members

Items (a) and (b) are fairly obvious effects. Countersunk types will be more flexible that protruding heads, solid fasteners stiffer than hollow ones (blind types), temperature is a variable since it affects material properties, etc.

As to item (c), most test data appears to be obtained using sheet specimens of the same material and thickness. Hence, when members of significantly different thicknesses (or materials) are

joined either the test data for this particular combination must be obtained experimentally or some reasonable adjustment of available data for other combinations must be made. Although not substantiated by significant testing, the following adjustment is suggested for such cases, referring to Figure V.3.

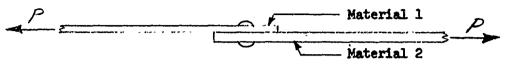


Figure V.3 A Lap Joint Having Dis-similar Sheets

Let k_1 be the value for two members of material and thickness 1. Let k_2 be the value for two members of material and thickness 2. Then the "effective" value of k_F for the joint is taken as

$$k_{F_{eff.}} = \frac{2(k, k_2)}{k_1 + k_2}$$

As to item (d), a tight hole, or one with little clearance(s/op), will result in a stiffer joint that one having a considerable clearance even after the initial clearance has been "closed up" under load. The effect of slop on the load-deflection curve is discussed in Article VII.7.

The number and arrangement of the members will affect the spring constant since these affect the "end fixity" for the fastener. That is, the spring constant is a value relative to two adjacent members and is easily determined by tests as previously discussed for single lap members, or for single sandwich joints (since a sandwich joint is considered in analysis as a single lap joint). However, when the members are stacked, as in Figure III./4. the relative fixity between adjacent members actually depends upon the loads in all of the members. Hence in this case even an experimental determination of the relative spring contant (i.e., the load-deflection curve) between the adjacent members is a difficult undertaking. This is because each load deflection curve would depend upon the actual test load applied to each member. In addition, the relative deflections between all adjacent members would have to be determined experimentally in order to describe the proper curve for adjacent members. It may be that there is little difference in such spring constants due to variation in member loads, but this subject is not investigated in this report.

Thus, the load deflection curve shown by the broken line in Figure V.2 could be the result, (compared to the solid line) if a less stiff fastener, or sheet material, or a thinner sheet gage were used, or if more "slop" were originally present at the hole. Hence, it can be seen that in order to analyze joints in general, a large amount of load-deflection data defining the fastener spring constants is needed.

Such data are, apparently, not available in the literature at present. This indicates a significant area of technology that needs to be explored to provide the designer with practical data necessary for joint analyses. Very likely, many data of this type are available from various sources, but they are not, unfortunately, in published form. Once determined, such data could be presented in compact tabular form, eliminating the voluminous load-deflection curves. That is, since the load-deflection curves are similar in form and effect to typical material stress-strain curves, it would appear to be advantageous to use the Ramberg-Osgood approach for presenting such fastener data. In this way the actual load-deflection curve for a given fastener sheet combination could be expressed in terms of three parameters, including the shape factor, n. Such a presentation has actually been suggested in some detail in Reference (5) and suggests using the initial slope, k_{F_0} , the yield load, P_{γ} , and a shape factor, n. This appears to merit consideration, since one table could describe a multitude of practical test data.

For the present, since no sources of general load-deflection data can be referenced, the designer or analyst must determine the spring constants of the fasteners being considered, using whatever data and means he has available. For the particular case of bolts in double shear, References (6) and (7) present a method that will define the bolt spring constant in the elastic range. A few fastener loaddeflection curves are also presented in Section VII for the specimens tested in this program.

V.3 AXIAL MEMBER SPRING CONSTANTS

In general it is suggested that these be calculated as

$$k_{\rm D} = \frac{A_{\rm D_e} E_{\rm D}}{L}$$

$$k_{\rm S} = \frac{A_{\rm S_e} E_{\rm S}}{L}$$

and

where L =length of segment being used (normally the fastener spacing)

- A_e = the average cross-sectional area of the element arbitrarily omitting 80% of the diameter of a fastener, in computing this, as being ineffective area. The figure 80% is arbitrary but is the amount used in the calculations of this report. The closer the holes, the more this figure approaches 100% of the fastener diameter. 80% would be more likely to be reasonable for a very close spacing, say 4D or less. The data of Section VII was not sufficient to define this percentage.
- E = the tangent modulus (or Young's Modulus in the elastic range)

This calculation is illustrated in Figure V.4.

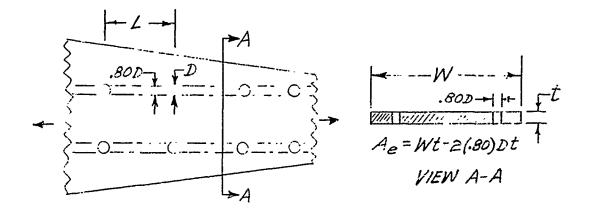


Figure V.4 Effective Area of a Cross Section

If the fasteners have been grouped together, as discussed in Section III, the length, L, is taken as the distance between the centroid of the groups (see Figure III.9c). The area, A_e , however, should be adjusted to reasonably account for the holes, as they actually exist. The adjustment becomes even more arbitrary when the successive holes are not in line.

V.4 FASTENER-HOLE CLEARANCE OR "SLOP"

In this report, the "slop", ΔC , at a fastened joint is defined as the distance over which either sheet can move relative to the other before the fastener bears upon both sheets. This is probably easiest to define by considering the fastener to be fixed in space and then determining the distances over which each sheet can move before bearing upon the fastener. The "slop" will then be the sum of these movements. Referring to Figure V.5 it can be seen that

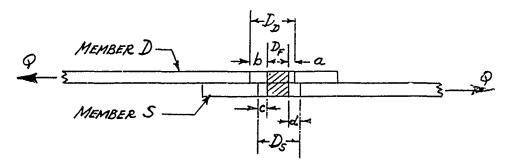


Figure V. 5 "Slop" at a Fastened Joint

for the direction of loading, Q, shown

a. The upper sheet, D, can move a distance "a" before it bears on the fastener (which has the diameter D_p).

- b. The lower sheet, S, can move a distance, "c", before bearing on the fastener.
- c. Hence the slop at the joint is $\Delta c = a + c$.

If the direction of loading were reversed,

- a. The sheet D could move a distance, b
- b. The sheet, S, could move a distance, d
- c. The slop would then be

$$\Delta c = b + d$$

Thus, it is seen that, in general, the slop depends not only upon the geometry at the joint but also upon the direction of loading. As will be seen later, in the more common case of concentric holes, the direction of loading is not a factor.

A general expression defining the slop in terms of the fastener diamet, hole diameters, hole eccentricities, and direction of loading at the joint can be obtained from Figure V.6.

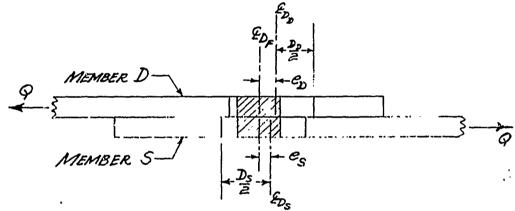


Figure V.6 Slop at a Fastened Joint

 D_{F} = diameter of fastener

Ċ

 D_D = diameter of hole in upper number, D

 D_{S} = diameter of hole in lower number, S

G = center line of fastener or holes

ep = distance which f_2 of D_D lies to the right of the of the fastener φ .

 $e_S = distance which \notin of D_S lies to the right of the of the fastener <math>\pounds$.

a. For a "tension" loading, as shown in Figure V.6,

n + n

- (1) Member D can move a distance $D_D/2 + e_D D_F/2$ before bearing on the fastener.
- (2) Member S can move a distance $D_S/2 e_S D_F/2$ before bearing on the fastener.
- (3) Hence the slop is the sum of these distances, or

$$\Delta c = \frac{D_D + D_S}{2} - D_F + (e_D - e_S)$$

- b. For a reversed loading, producing compressive stresses in the sheets of Figure V.6,
 - (1) Member D can move a distance $D_D/2 e_D D_F/2$ before bearing on the fastener.
 - (2) Member S can move a distance $D_S/2 + e_S D_F/2$ before bearing on the fastener.
 - (3) Hence the slop is the sum of these distances, or

$$\Delta c = \frac{D_{\rm D} + D_{\rm S}}{2} - D_{\rm F} - (e_{\rm D} - e_{\rm S})$$

Thus, it is seen that in one case, tension, the term $(e_D - e_S)$ is added and in the reversed case it is subtracted to obtain the total slop.

In most practical cases the holes will be concentric, or $e_{\rm D}$ = $e_{\rm S}$, and

$$\Delta c = \frac{D_{D} + D_{S}}{2} - D_{F}$$

Thus, the slop is independent of the direction of loading. If, as frequently occurs, $D_D = D_S$ (= D_{hole}) the slop is simply

$$\Delta c = D_{hole} - D_{F}$$

The amount of slop to be considered at a joint in any specific ctructure depends, of course, upon the specified type of fit, the manufacturing and assembly methods and, hence, upon the laws of probability. Thus the determination of the actual amount of slop to be used (except for the salvage of inspected pieces of hardware) is somewhat arbitrary and involves the judgment of the engineer. Hence, it is beyond the scope of this report. In general the following guides are helpful:

- a. When a fascener is "sloppy" those fasteners immediately adjacent to it (on each side) pick up more load, then when it is "tight".
- b. Slop at the fasteners makes a doubler less efficient. That is, the doubler picks up less load from the base structure it is relieving.
- c. The effect of slop at a fastener is much more pronounced in "short members" having only a few fasteners (or rows of fasteners) than in a long member having many fasteners in the direction of the load. Splices are the most usual cases of such "short" membros.
- d. An analysis which includes the possible or the probable slop is frequently helpful in establishing the type of fit necessary for an assembly.
- e. An analysis which includes the existing slop in a specific case is helpful in establishing the course of action necessary in a salvage operation involving sloppy holes.

V.5 EFFECT OF FRICTION

Since in practical cases nearly all fasteners are installed with some amount of "clamp-up", there will always be some accompanying amount of friction force opposing the deflection. This effect can be seen in the actual test data curves of Figures VII.9 and VII.10 as line OA. However, this effect, the initial extra stiffness, is removed in presenting the final load-deflection curves (Figures VII.11 through VII.17) as discussed in Section VII. Hence, friction is ignored.

SECTION VI

APPLICATION OF RESULTS OF ANALYSES TO THE OVERALL STRUCTURE

VI.1 INTRODUCTION

The methods of determining the internal load distributions in splices and doublers are used to properly design such installations. Once installed, these members become an integral part of the overall structure and will influence the distribution of internal loads not only where they are located but also in other areas of the structure. That is, the basic structure has been altered and it is sometimes desirable, or necessary, to include this new effective area in a revised general analysis.

VI.2 PROCEDURE

This can be done for common engineering purposes by determining the "effective" areas of the doubler, or splice members, and including these in any revised overall internal loads analysis. The effective area of the doubler can then be taken (at any station) as

$$A_{eff} = A_{actual} X \frac{P}{P_o}$$

where

P = Load in doubler from the original analysis (Section III or IV)

P = Load that would exist in doubler if it were fully effective with the base structure, or

$$P_{o}$$
 = Applied Axial Load x $\frac{A_{doubler}}{A_{doubler} + A_{base str.}} = Q_{L} + \sum_{n=1}^{n} \frac{a_{n}}{a_{n}}$

Once the effective areas of the doubler are determined, the overall structure can be re-analyzed using conventional methods of analysis. In order to do this the doubler is assigned effective widths at stations along its length that correspond to the effective areas determined (i.e., $W_{eff} = A_{eff}/t$). This effective member is then assumed to be an integral part of the overall structure and future analyses are carried out on this basis, using conventional methods.

VI.3 APPLICATION OF THE RESULTS OF A DOUBLER ANALYSIS

Example

The doubler of Table III.l would be dealt with as illustrated in Table VI.l in establishing it as an effective integral part of the base structure.

101

SELECT_CONT

1	2	3	4	5	6	\bigcirc	8	9	10	Û	12
STA.	A _D E _D	ED	ťD	^A s ^E s	^A D ^E D ⁺A _S E _S	APPL. LOAD	Po	P _D	effect. ^A d ^E d	EFFECT. AREA	EFFECT. WIDTH
	TABLE III.1	DATA	DATA	TABLE III.1	2+5	TABLE III.1	ED.	TABLE III.1	@ x@	<u>(0)</u> (0)	Ð
}	x10 ⁻⁶	x10 ⁻⁶		x10 ⁻⁶	x10 ⁶				x10 ⁻⁶		
1	4.7	29 "	.10	4.7	9,4	8,000	4,000	385 1,938	•45 2•28	.016 .079	.16 •79
34	п 11	<u>,</u> п	11 11	11 11	11 11	11 21	11 11	2,792	3.28 3.80	.113	1.13 1.31
5	" "	17 11	11 11	11 11	11 12	11 11	11 11	3,416 3,398	4.01	.138 .138	1.38 1.38
7	11 11 -	11 11	11 11	11 11	11 11	11 11	11 11	3,176		.129	1.29 1.08
<u> </u>	11	11	"	"	11	"	н	1,722	2.03	.070	.70

TABLE VI.1

DETERMINATION OF THE EFFECTIVE AREA AND EFFECTIVE WIDTH OF A DOUBLER

The desired results, the effective area or the effective width of the doubler, are shown in Columns (1) and (2) respectively, at the stations listed.

VI.4 APPLICATION OF THE RESULTS OF A SPLICE ANALYSIS

Example

The effective areas of the splice of Table III.2 would be determined in a manner similar to that used for the doubler. The calculations are shown in Table VI.2. The effective area (and width) of both splice members (S and D) are determined. These would then, in any future analyses of the whole structure, be considered as one integral number. TABLE VI.2

DETERMINATION OF THE EFFECTIVE AREA AND LFFECTIVE WIDTH OF A SPLICE

.

			1	1									
6)	EFF. WIDTH OF S	870		4.70	4.70	4.70	4.70	.470 4.70	.445 4.45	.399 3.99	.325 3.25	.206 2.06	
6	EF.	E 1 9		·470	•470	•470	.470 4.70		· 1,45	• 399	.325	.206	
Ð	EFF. F ASES A	TABLE (16, CONTINUE)	x10-6	4,000 7,584 4.7** .470 4.70	5,988 4.7** .470 4.70	5,068 4.7** 470 4.70	4,512 4°7**	4,131 4.7**	4.45	3.99	3.25	1,755 2.06	
	$^{\mathrm{P}}_{\mathrm{S}}$	TABLE III.2		7,584	5,988	5,068	4,512	4,131	3,794 4.45	3,390 3.99	2,780 3.25	1,755	
Ð	Pos	Oxe		4,000	=	=	=	=	=	5	=	н	
A	EFF. D OF D	<u>1</u> 1		64.	.236 2.36	.344 3.44	01.4 014.	444 4. 144	470 4.70	.470 4.70	4.70	•470 4•70	ġġ.
(3)	EFF. AD	ଧ୍ୱାପ		640.	.236		.410	444.	•470	.470			Colum
ත	EFF.* AD ^E D		9-01x	64.	2.35	3.44	4.10	44.4	t.7*	4.7*	h.7*	4.7*	lue for lue for
3	е ^Д	TABLE III.2		914	2.012	2,932	3,488	3,869	4,205	14,610	5,220	6,245	() () () () () () () () () () () () () (
9	PoD	e B B		4,000	=	=	=	6	=	=	T	=) nmulo: olumn (
6	A	TABLE III.2		8,000	z	=	1	5	=	5	5	t	$\begin{array}{llllllllllllllllllllllllllllllllllll$
0	A _D ED +A _S ES	IA @+@ TABLE III.2	9 <u>-</u> 01x	9.4 8,000	=	=		=	=	8	=	2	
Ð	ъ ^с	DATA		5.	=	=	=	=	=	=	=	=	1
9	ы Б	DATA	9-01x	q	2	=	=	=	=	=	=	=	greater than greater than
2	$A_{S}^{E}_{S}$	TABLE III.2	x10 ⁻⁶	7.4	2	=		2		z	11	1	is greater is greater
Ð	P.	DATA		ß	=	=	=	=	=	=	=	:	
6	ED ED	DATA	9-01x	IO	u	=	t	=	z	2	=	=	column Q
0	A _D ^E D	TABLE III.2	x10 ⁻⁶	4.7	=	=	=	=	=	=	5	*	* IF (
Ð	STA.				دم ا	m	4	2	9	2	ω	6	

The total effective area of the splice at any station, n, is the sum, $\mathbb{Q}_n + \mathbb{Q}_n$.

N. N. 1 .

103

VI.5 ECCENTRIC DOUBLER INSTALLATIONS

Another type of problem involving the effective area of a doubler would occur when an external doubler is attached over a stringer-skin element. In this case the eccentricity of the (single) doubler would affect the stress level and it could result in significant bending stresses being present due to the installation. Such stresses could be quite important if either fatigue life or compressive strength were the reason for adding the doubler. That is, in the fatigue case the bending stresses due to the eccentricity might need to be accounted for, and in the compressive strength case the beam-column effect due to the eccentricity should always be considered.

For common engineering purposes, a method of accounting for the effect of the single (or "eccentric") doubler would be as follows:

- a. As discussed previously, (Table VI.1) determine the effective area distribution of the doubler and consider this to be integral with the base structures (the stringer-skin element).
- b. Determine the centroid distribution of this integral unit. (This centroid will not coincide with that of the original skin stringer element.) These centroids establish the neutral axis of the integral unit.
- c. Carry out a conventional analysis of the effective structure which now has a "bent shape" for the neutral axis of the integral unit (members attached to the doubler). In this analysis
 - (1) There will be an "initial" bending moment, $P \cdot e_x$, where P is the axial load and e_x is the distance between the centroid line and the load line at any station x. (The centroid line is obtained by considering only the effective area of the doubler together with the actual base structure.)
 - (2) The moment of inertia of the cross section, however, will include all of the doubler cross section (not just the effective area, which is used only in determining e_x in (1) above). That is, the usual engineering bending theory is assumed to apply for the calculations involving bending.
 - (3) The actual analysis (a beam-column analysis, or a beam in tension analysis) will then be an iterative

procedure* beginning with the applied axial load P and the initial bending moments, at any station, x, given by

$$M_x = P \cdot e_x$$

As in all such analyses, it is necessary to consider some of the structure beyond the members attached to the doubler, but this depends upon the analyst's judgment and the degree of accuracy required. The results give the final bending moments, M', along the members, enabling the total stresses

$$f = \frac{P}{A} \pm \frac{M'c}{I}$$

to be calculated. The fatigue life, the yield strength or the ultimate strength can then be assessed.

VI.6 ECCENTRIC (SINGLE LAP) SPLICE INSTALLATIONS

The remarks of Article VI.5 above would also apply to a single lap splice installation.

* Since the effective members are tapered, EI is not constant and hence the standard formulas for beam-columns (with either compressive or tensile axial loads) do not apply. Hence, either "average" constant EI values must be assumed for solution by formulas, or else an iterative (numerical) procedure must be used to determine the final bending moments. A practical engineering method for such numerical beam-column analyses is presented and illustrated in Reference (10).

105

S'LE DIN ME

SECTION VII

TEST PROGRAM

VII.1 INTRODUCTION

In order to accomplish the purposes of this report, the test program described below was conducted. Since there is such a large number of suitable types and sizes of fasteners, sheet gages, hole clearances, etc., the test program was generally limited to one representative fastener for the various assembly tests. The protruding head Hi-Lok Pin was used since it is a widely used, stiff and permanent type. The tests and test specimens are of two general types, assembly tests and element tests. The assembly tests were conducted to verify the methods of analyses. The element tests were conducted to obtain specific data necessary for the predictive analyses of the assemblies tested.

VII.2 ASSEMBLY TESTS AND SPECIMENS

The purpose of the Assembly Tests was to verify experimentally the methods of analysis. In these tests doubler and splice assemblies were loaded in a tension test machine and the distributions of internal loads were obtained by using photostress plastic and methods. There were two types of Assembly Tests.

- a. Doubler Assembly Tests
- b. Splice Assembly Tests

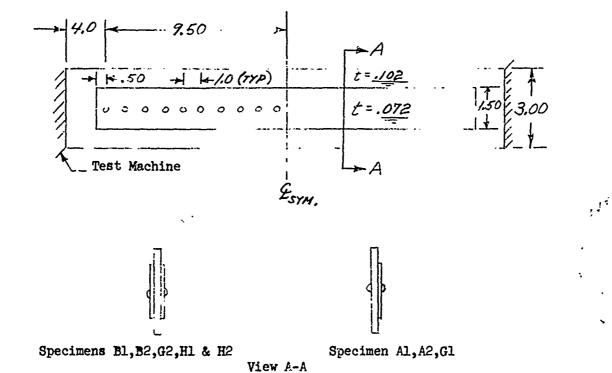
Fifteen assembly tests were made using specimens having 5/32" diameter Hi-Lok (HL1870) Fasteners of the protruding head type. Three tests involved specimens having 1/4" bolts and two tests were made using . spotwelded doubler assemblies. 7075-T6 Al. alloy sheet material was used in all Assembly Test Specimens.

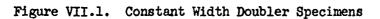
VII.3 DOUBLER ASSEMBLY SPECIMENS

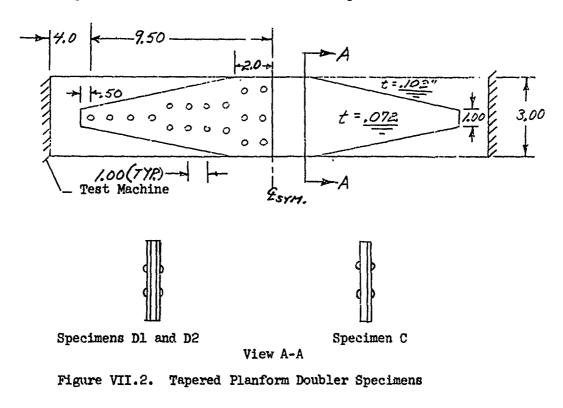
Details of these are shown in Figures VII.1 through VII.4. There are 13 specimens. Except where noted otherwise, the fasteners were 5/32" Hi-Lok 1870 and the holes were reamed for a sliding fit (no "slop"). Photostress plastic was applied to the outer surface of each member of single lap specimens and to the outer surface of one of the outside members of all sandwich specimens except when it was applied to the outer surface of both outside members.

- a. Specimen I-A.1
 - (1) This specimen is as sketched in Figure VII.1 except that there were only 10 fasteners, spaced at 2 inches.

- (2) The purpose was to verify the methods of analysis using a uniform specimen and a wide fastener spacing.
- b. Specimen I-A2
 - (1) This specimen was as sketched in Figure VII.1.
 - (2) The purpose was the same as for I-Al, using a closer fastener spacing.
- c. Specimen I-Bl
 - (1) This specimen was identical to I-A2 except that there were two doublers (a "sandwich").
 - (2) The purpose was
 - (a) The same as I-Al and
 - (b) To reduce the effects of eccentricity.
- d. Specimen I-B2
 - (1) This specimen was the same one as I-Bl except that the second and third fastener holes at one end only were reamed 0.005" oversize for this test.
 - (2) The purpose was
 - (a) To illustrate the effect of hole clearance ("slop") and the method of accounting for it.
 - (b) To verify the method of analysis using an unsymmetrical specimen.
- e. Specimen I-C
 - (1) This specimen was as sketched in Figure VII.2.
 - (2) The purpose was to verify the method for a tapered member and for a specimen having multi-fastener rows.
- f. Specimen I-Dl
 - (1) This specimen was identical to I-C except that there were two doublers (a sandwich).
 - (2) The purpose was to reduce the effects of eccentricity.
- g. Specimen I-D2 (I-D1 re-used)
 - This was the same as specimen I-Dl except that the 7th and 9th rows of fasteners (from both ends) were not installed.

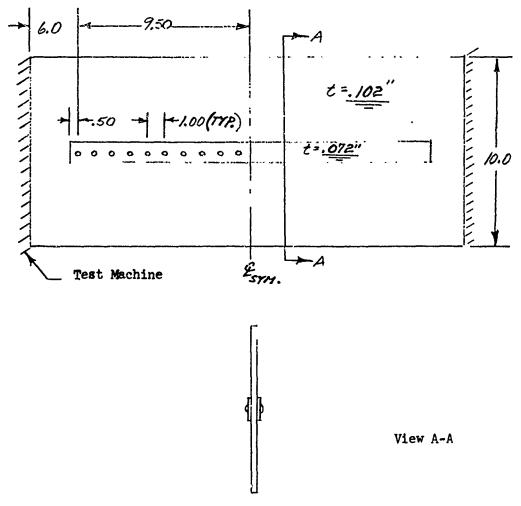

- (2) The purpose was to illustrate that fewer (and, hence, smaller) fasteners can be used near the center with little effect on internal loads.
- h. Specimen I-E
 - (1) This specimen was as sketched in Figure VII.3.
 - (2) The purpose was to show the effect of a "wide" base structure, to verify the method of analysis, and to define the fastener load diffusion rate into the base structure.
- i. Specimen I-F
 - (1) This specimen is as sketched in Figure VII.4, a "stacked" doubler.
 - (2) The purpose is to evaluate the suggested method of analyzing such cases.
- j. Specimen I-Gl
 - (1) This specimen is identical to I-A2 except that spotwelds are used instead of HL 1870 Rivets.
 - (2) The purpose is to verify the applicability of the analyses to spotwelded assemblics.
- k. Specimen I-G2
 - (1) This specimen is identical to I-Bl except that spotwelds are used instead of HL 1870 Rivets.
 - (2) The purpose is to reduce the effects of eccentricity.
- 1. Specimen I-HL

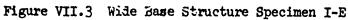

This specimen is similar in design and purpose to Specimen I-Bl, but 1/4" NAS Bolts and AN 320 Nuts (fingertight) were used instead of the HL 1870 Rivets.

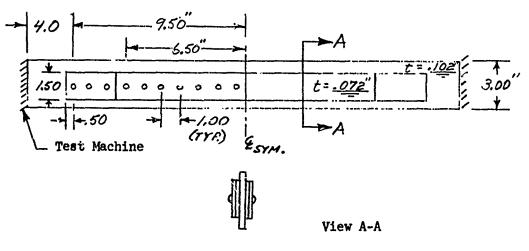

m. Specimen I-H2

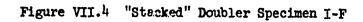
and and an and the set of the

This specimen is similar in design and purpose to Specimen I-B2, but 1/4" NAS Bolts and AN 320 Nuts (fingertight) were used instead of the HL 1870 Rivets.






109


Seven A second

the sale the way . . .

VII.4 SPLICE ASSEMBLY TEST SPECIMENS

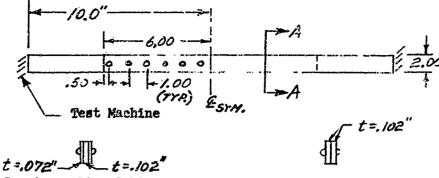
A SALAR S

Details of these are shown in Figures VII.5 --- VII.7. There are seven specimens. Except where noted otherwise the fasteners were 5/32" HL 1870 and the holes were reamed for a sliding fit (no "slop"). Photostress plastic was applied in the same manner as for the doubler assembly specimens.

- a. Specimen II-Al
 - (1) This specimen is as sketched in Figure VII.5 except that there are six fasteners at a 2 inch spacing.
 - (2) The purpose is to verify the methods of analysis.
- b. Specimen II-A2

This specimen is the same one as for II-Al except that there are 12 fasteners at a 1" spacing.

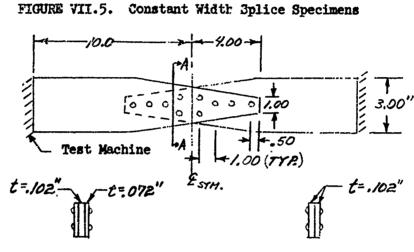
- c. Specimen II-Bl
 - (1) This specimen is as illustrated in Figure VII.5, a sandwich.
 - (2) The purpose is to reduce the eccentricities present in II-A2.
- d. Specimen II-B2
 - (1) This specimen is the same as II-Bl except that the second and third fastener holes at one end only were reamed 0.005" oversize.
 - (2) The purpose is to illustrate the effect of fastenerhole clearance and also an unsymmetrical case.
- e. Specimen II-Cl
 - (1) This specimen is as illustrated in Figure VII.6.
 - (2) The purpose is to verify the method for a tapered member and also for a case involving multi-fastener rows.
- f. Specimen II-C2
 - (1) This specimen is identical to II-Cl except that it is a sandwich.
 - (2) The purpose is to reduce the eccentricities present in II-Cl.


111

g. Specimen II-D

ないいというないで、

- (1) This specimen is as illustrated in Figure VII.7. The AN 320 Nuts are installed fingertight.
- (2) The purpose is to illustrate a "short splice" without clamping friction.



Specimens B1 and B2

Specimens Al and A2

ALCONDA ALWARD

Specimen C2

Specimen Cl

And the second second second second

Figure VII.6 Tapered Planform Splice Specimens

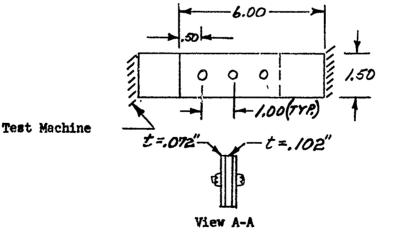


Figure VII.7. Short Bolted Splice Specimen II-D

VII.5 INDIVIDUAL (ELEMENT) TEST SPECIMENS

والمتحال والمتحد

In order to obtain the specific data necessary for predicting the internal loads in the various test assemblies, the following element tests were required. Most of these were for the purpose of obtaining the load-deflection curves (fastener spring constants) for the selected sheet thickness and fastener hole sizes. These tests were made using the same type of specimen (and test) that is conventionally used at Vought Aeronautics Division to obtain fastener-sheet load-deflection data. It has been found previously that three specimens of any fastener-sheet combination must be tested to obtain sufficient data to define the relationship accurately. The specimens of this type are referred to as Type III and are described below. All sheet material was 7075-T6 aluminum alloy. All HL 1870 Fasteners are 5/32" ciameter.

a. Specimen III-Al

One HL 1870 Rivet fastening two 0.072" sheets, hole reamed for sliding fit.

b. Specimen III-A2

One HL 1870 Rivet fastening two 0.102" sheets.

c. Specimen III-A3

One HL 1870 Rivet fastening a 0.102" and a 0.072" sheet.

d. Specimen III-A4

One HL 1870 Rivet fastening a sandwich of two 0.072 sheets and one 0.102 sheet.

e. Specimen III-Bl through III-B4

Same as III-A1 through III-A4 but holes reamed for 0.005" clearance.

f. Specimens III-Cl through III-C4

Same as III-Al through III-A4 but using NAS 464 and AN 364 Shear type Nuts (and washer) with nut fingertight. (1/4" Bolts).

g. Specimens III-Dl through III-D4

Same as III-Cl through III-C4 but with nuts torqued to 35 in/lbs.

h. Specimen III-A5

One HL 1870 Rivet fastening a double sandwich of four 0.072" sheets and one 0.102 center sheet. The center sheet is not loaded.

i. Specimen III-El through III-E4

Same as III-Cl through III-C4 but with holes reamed for 0.005" clearance.

j. Specimens III-fL through III-F4

Same as III-El through III-E4 but with nuts torqued to 35 in/lbs.

k. Specimen III-G

Same as III-Al but using spotwelds instead of HL 1870 Rivets.

1. Specimen III-H

Same as III-A4 but using spotwelds instead of HL 1870 Rivets.

VII.6 PHOTOSTRESS PLASTIC TEST SPECIMENS

These tests were made using photostress material, as shown in Figure VII.8. The three photostress plastic specimens shown in Figure VII.8 were tested.

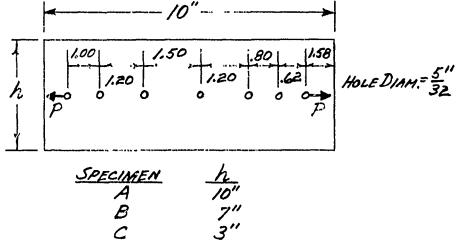


Figure VII.8 Photostress Plastic Test Specimens

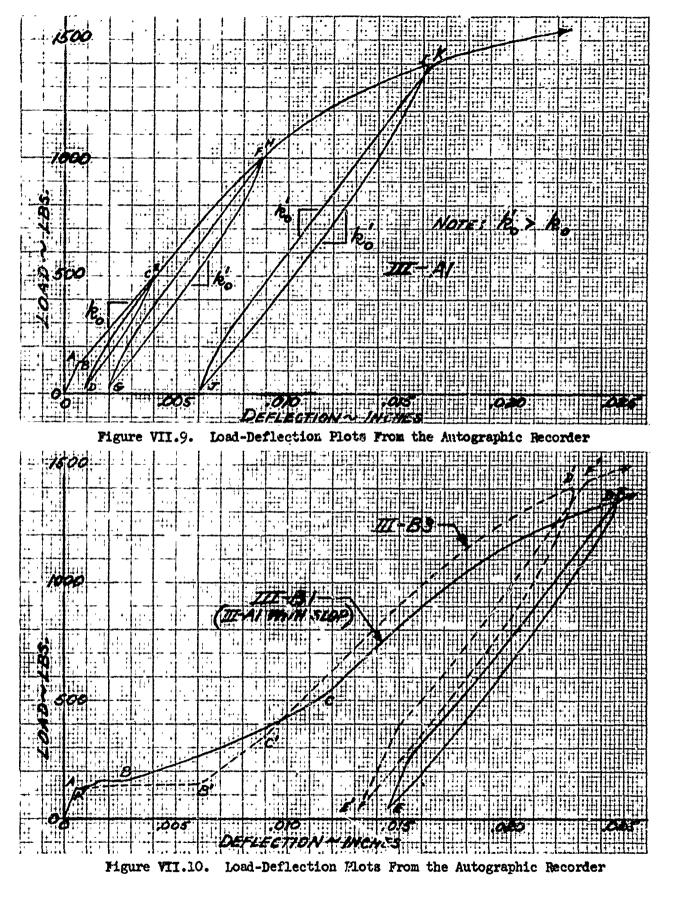
The purpose of these tests was to help define

- a. Rate at which the fastener load "diffuses" into the sheet.
- b. The "dead" area between the holes (as a percent of the fastener diameter).

VII.7 TESTING PROCEDURES

a. Load-Deflection Tests

Each of the specimens of Type III was mounted in a suitable tension testing machine and load-deflection data was obtained using an autographic recorder. (Figures VII.9 and VII.10 show typical results.)


b. Doubler and Splice Assembly Specimen Tests

Each of the specimens of Types I and II was mounted in a suitable tension testing machine and loaded successively to the three values specified in Table VII.1. Each load was released before proceeding to the subsequent one. Color photographs of the photostress plastic strain distribution were obtained for each loaded and unloaded condition.

TABLE VII.1

TEST LOADS FOR ASSEMBLY SPECIMENS

ODEVITIEN	APPL	EO TEST I	OAD	SPECIMEN	APPLIED TEST LOAD				
SPECIMEN	Q1	ବ୍ୟ	Q 3		Q1	ବ୍ୟ	ହ3		
I-Al	7,120	10,910	18,000	II-Al	3,330	5,620	11,910		
I-A2	9.210	14,150	18,000	II-A2	4,800	8,150	12,000		
I-Bl	6,760	12,300	18,000	II-Bl	4,530	8,224	12,000		
I-B2	5,670	11,240	18,000	II-B2	3,790	7,525	12,000		
I-C	8,660	13,290	18,000	II-Cl	5,520	9,320	18,000		
I-Dl	6,540	11,870	18,000	II-C2	5,555	10,039	18,000		
I-D2	6,520	11,890	18,000	II-D	2,655	6,021			
I-3	18,950	34,517	60,000						
I-F	12,400	18,000							
I-Gl	3,802	7,000	13,550						
I-G2	3,640	7,330	15,890		, F				
I-H1	6,280	14,530	18,000				1		
I-H2	5,190	13,490	18,000						

117

antes - rough a faith and a bar a

Then, using photostress analysis methods, the internal loads at selected stations were determined for all specimens. The results are presented in Table VII.2 together with the "predicted" loads for the purposes of comparison. Pictures of some typical photostress plastic strain distributions are shown in Figures VII.19, VII.20, and VII.21.

- c. The photostress plastic specimens of Figure VII.8 were tested as follows:
 - Each specimen having only the end holes drilled was mounted in a loading apparatus. A tensile load, P, was then applied of sufficient magnitude to obtain a well-defined color photograph of the resulting strain distribution in the specimen.
 - (2) Step (1) was repeated for a compressive load, -P.
 - (3) Step (1) was repeated after drilling the additional holes in the specimen.
 - (4) Step (3) was repeated for a compressive load, P.
 - (5) Equal tensile loads, P, were then applied at the two holes at each end (4 loads, P) and a color photograph of the resulting strain distribution was obtained.
 - A typical photograph is shown in Figure VII.18.

VII.8 TEST RESULTS

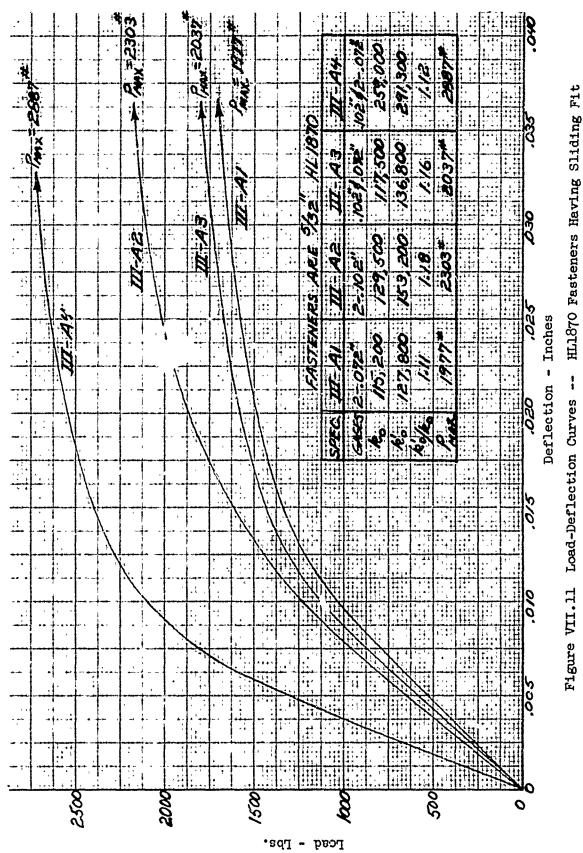
a. Load-Deflection Tests

Some typical load-deflection curves, as obtained directly from the autographic recorders, are presented in Figures VII.9 and VII.10. Although all tests were carried to failure, the deflections at these points were beyond the limits of the recorder. In Figure VII.9 OA shows the initial stiffness due to friction, AB shows a slight slip when friction is overcome, and BC shows the steady linear rise to C where the applied load is reduced. The specimen then unloads at a faster rate, CD, than it loaded up, BC. (An initial loading of about 50 pounds is held on the test machine.) Then, as the loading is increased, DE shows the action in "returning" to the basic curve of which EF is a continuation. Similar action continues from point F on until P_{Max}. seen that the "loops" CED, FGH, and IJK represent a hysteresis effect always present, even at low load levels in the initial linear range. The average slope of the linear portion (the "sides") of these loops is referred to as the secondary spring constant, k'o, and this is seen to be larger than the initial (linear) spring constant, ko. Actually, k'o is largest when obtained well out in the plastic range, but most of the increase $(k'_{0} - k_{0})$ is obtained early in the region of the initially linear portion of the load-deflective curve. The values of k' reported are obtained from "loops" that are somewhat past the "knee" of the loaddeflection curve. As can be seen from Figure VII.10 (and also in later figures), k'o is only slightly affected (reduced) by slop. Although k'o may be as much as 50% larger than ko for certain combinations, this value is not usually presented in reporting fastener-shect load-deflection results. However, using ko in determining residual loads does not, fortunately, result in significantly large errors and this usage is suggested when k' is unknown.

The solid curve of Figure VII.10 shows what happens when a specimen, III-Al, is manufactured with a slop of approximately 0.005 inches. There is the initial friction OA, the slipping AB, and a transition, BC, to the basic curve CD. From C on the action is similar to that of a specimen having no initial slop. The dashed curve is for a different specimen. Here the slipping A'B' is more as would be expected (about 0.005"). This is followed by a steeper transition, B'C', to the basic curve CD. Actually the two curves shown represent the extremes in the region ABC for specimens having 0.005" initial slop.

Figures VII.11 through VII.17 present the "final" loaddeflection curves for the various types of joints tested. Each of these has been obtained as follows:

- The outer envelope, KIHFECA, as in Figure VII.9, was "smoothed out" for three similar specimens tested. The portion CA was extrapolated to intersect the abscissa (at a point to the left of zero), thereby climinating the friction effect. This extrapolation established a new origin for the curve.
- (2) The results of this procedure for the three specimens were averaged to obtain the "final" load-deflection curve for the joint.


This procedure can be seen by comparing the "final" curve for specimen III-A, (Figure VII.11) with one of the test curves for III-A, (Figure VII.9).

For the cases of specimens having slop, the same procedure was used except that, as in Figure VII.10, the portion DC or D'C' was extrapolated to intersect the abscissa (to the right of zerc). This procedure thus establishes a new origin and removes the "slop". (The slop is then considered separately as discussed in Section III.) The results of this procedure can be seen by comparing the test results for specimen III-B1 and III-B3 (Figure VII.10) with the "final" load-deflection curves presented in Figure VII.12. The "final" curves of Figure VII.12 are thus for such joints after the applied loads are large enough to "close up" any initial slop in the actual structural assembly, and they are, specifically, for the 0.005" initial slop in these tests.

An alternate method of considering the slop effect would be, in Figure VII.10, to simply draw a straight line from 0 to C, or to C'. This would result in a load-deflection curve having an unchanged origin, OCD etc., but it could not be used with the simpler analysis of Articles III.2 and III.3 (for the elastic range). That is, the superposition approach of Article III.6 would always be required because of this initial small slope of the curve. Actually, in practice, there will seldom, if ever, be available any specific load-deflection curves of this type. That is, only the load-deflection curves for "tight" joints can be expected, and even these are not at present merally available for many fasteners. Hence, in most cases,

the analyst must use these curves and consider the slop as discussed in Section III.

The "final" load-deflection curves derived from the loaddeflection tests are presented in Figures VII.11 through VII.17. Each of these curves has been obtained by averaging the loaddeflection data from the tests of three similar specimens. An inspection of these results shows how some of the parameters such as sheet thickness, single and double lap, fastener size (1/4" bolts and 5/32" rivets) clamp-up (bolt torque-up) and "slop" affect the stiffness of the joint as discussed in Section V. In the case of fasteners with slop, the lop has been removed from the results as discussed previously. The maximum load for each specimen is also indicated. However, this occurs at a large deflection (as does the maximum stress in a typical ductile material stress-strain curve) that is beyond the limits of the test machine plotting equipment. For

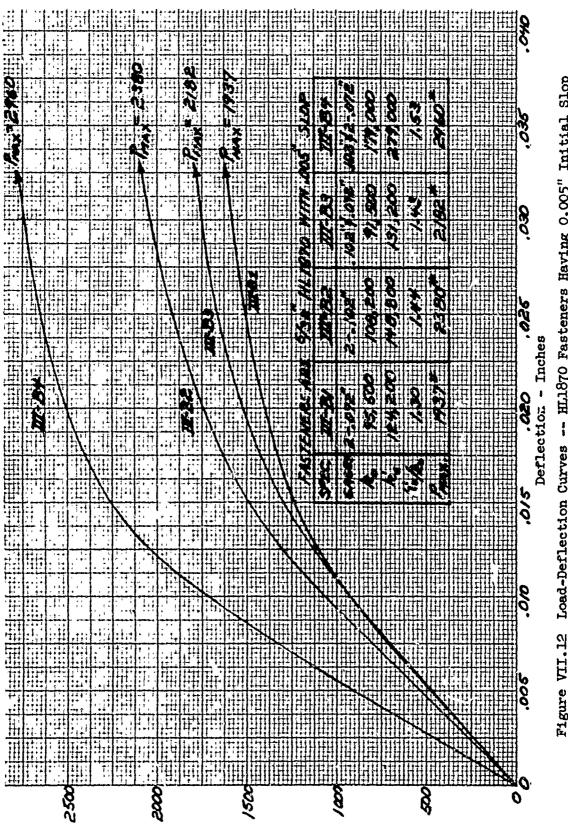


Figure VII.12 Load-Deflection Curves -- HLAGO Fasteners Having 0.005" Initial Slop

122

.adl - bsol

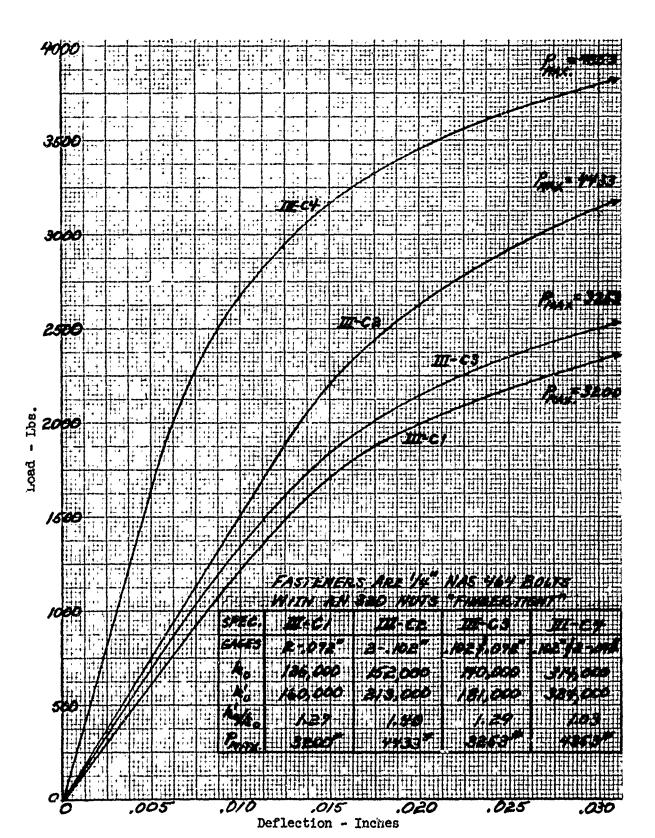
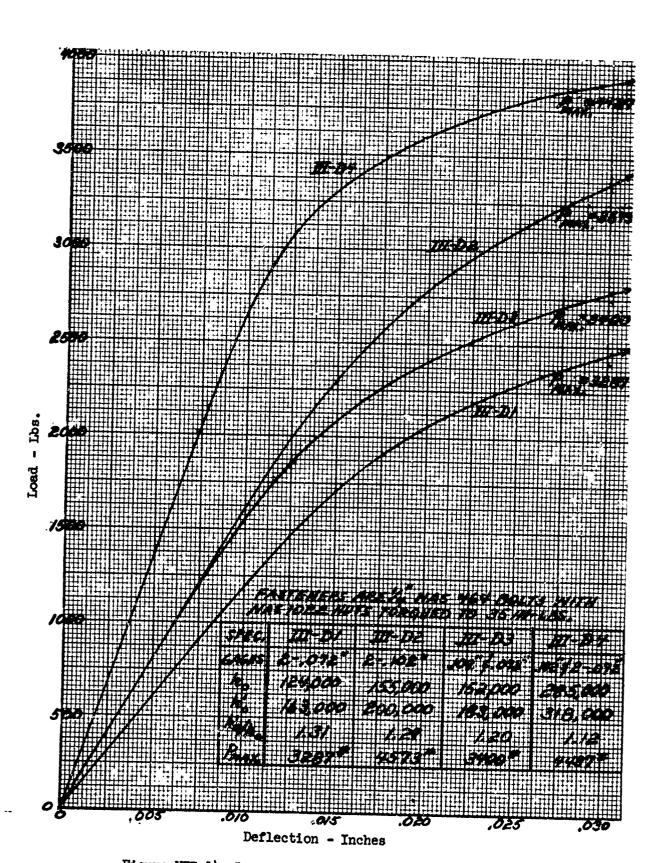
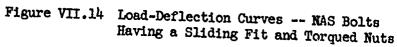




Figure VII.13 NAS Bolts Having a Sliding Fit and Fingertight Nuts

L 30 12.2 Load - Lbs. 150 2 20 16**0**0 10 . .020 .026 010 .015 .050 .005 Deflection - Inches

Figure VII.15 Load-Deflection Curves -- NAS Bolts Having 0.005" Initial Slop and Fingertight Muts

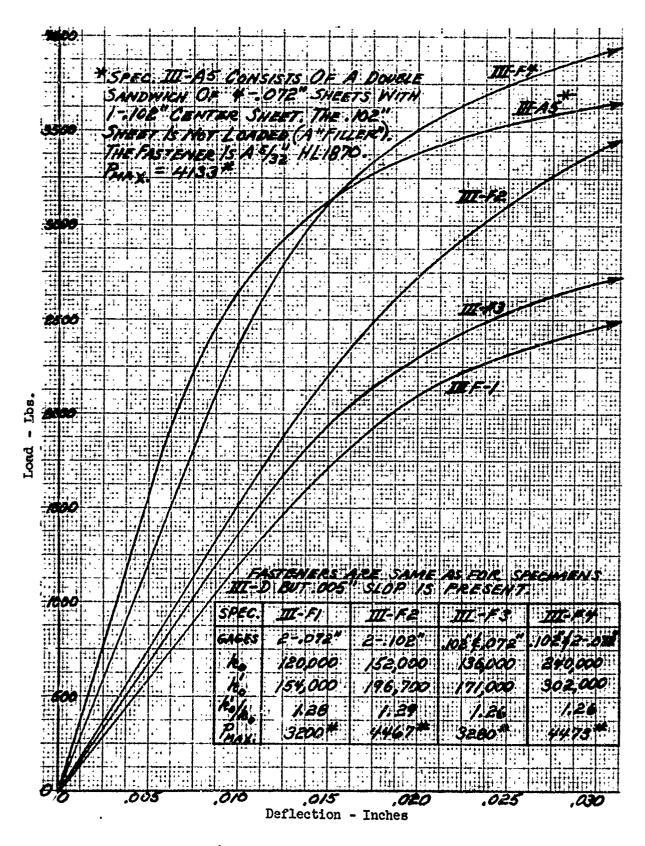
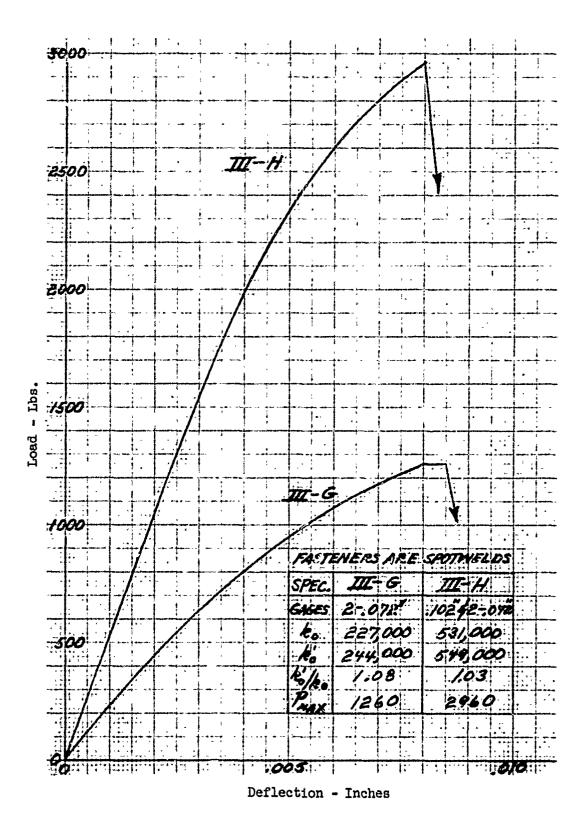
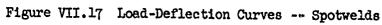




Figure VII.16 Load-Deflection Curves -- NAS Bolts Having 0.005" Initial Slop and Torqued Nuts

1. AN

.

example, P_{max} , for the specimens of type III-A (Figure VII.11) is estimated to have occurred at a deflection of about 0.10" - 0.15", or at 3 to 4 times the deflection range shown on the graph.

Not all of the fastener combinations tested were used in the assembly test specimens (Types I and II) but have been included in the test program to show the effects of the various parameters. The results for specimens II-Al-A3, III-Cl-C3 and III-Dl-D3 indicate the reasonableness of obtaining k_0 for a joint of two different thicknesses as suggested in Article V.2. They also show that the "secondary" spring constant, k^*_{0} , can be estimated in this manner.

The results for the spotwelded sheet combinations, Figure VII.17, show the joint to be of a brittle nature as would be expected. There is no significant plasticity as in the more "ductile" mechanically fastened joint. (However, if the mechanical joint is critical in shear rather than bearing, it becomes "brittle" like the spotweld.) Although the actual spotweld load-deflection curve was used for predicting the internal loads, it would probably be sufficient to simply replace it with a straight line having the initial slope and the maximum value of P_{max} . Shown.

b. Doubler Assembly Tests

The results of these tests are presented in Table VII.2. For purposes of comparison both the test loads and the predicted loads are tabulated. The three (or four in some cases) outer fastener loads at one end and the maximum load in the doubler are listed. The fastener loads were obtained as the difference between the loads in the doubler at successive stations midway between the fasteners. The doubler loads at these stations are not listed but were obtained at each station by

- (1) determining the stress at five points across the member by means of a photostress analysis. This was actually done making a visual point analysis while the specimen was strained in the test michine. However, the analysis can also be made from the color photographs obtained.
- (2) plotting these stress levels to establish a curve showing the stress variation across the member
- (3) Integrating this curve to obtain the total load in the member at the selected station. This hoad is, therefore, based upon the stress in the outer surface of the member and includes any bending stresses present. It does not separate the

bending stresses.* For illustrative purposes the predicted residual loads are also listed. These are small except where significant yielding has occurred at the larger applied loads. The test values of the residual loads, where significant, were also estimated from the color photographs.

In order to demonstrate the effect of using k'_{F_0} , the secondary fastener spring constant, upon the residual load, the residual loads were also calculated using this value for some cases. These cases are for the largest value of the applied load only. Hence, in Table VII.2 where two sets of values are shown for the largest applied load, the last is for k'_{F_0} . It is seen that, for these fasteners, very to little difference in residual loads is predicted from that obtained when k_{F_0} is used.

The predicted loads listed were obtained from the computer routines presented. The predicted loads shown for Specimen HE were not made using the suggested diffusion method; hence, they would be expected to be somewhat larger than the test results.

By comparing the tabulated test and predicted values the following can be seen.

- (1) The largest value of fastener load is seen to occur at the end fastener, as predicted, in nearly all cases. The magnitude of this load is in reasonably close agreement with the predicted value, in general.
- (2) The maximum load developed in the doubler is in general, fairly close to the predicted value. The variations are both above and below the predicted values for various specimens.
- (3) The values of the fastener loads are seen to be consecutively smaller in the second and third fasteners of the various specimens, in general. There is considerably less agreement between the test and the predicted values in these cases, however.

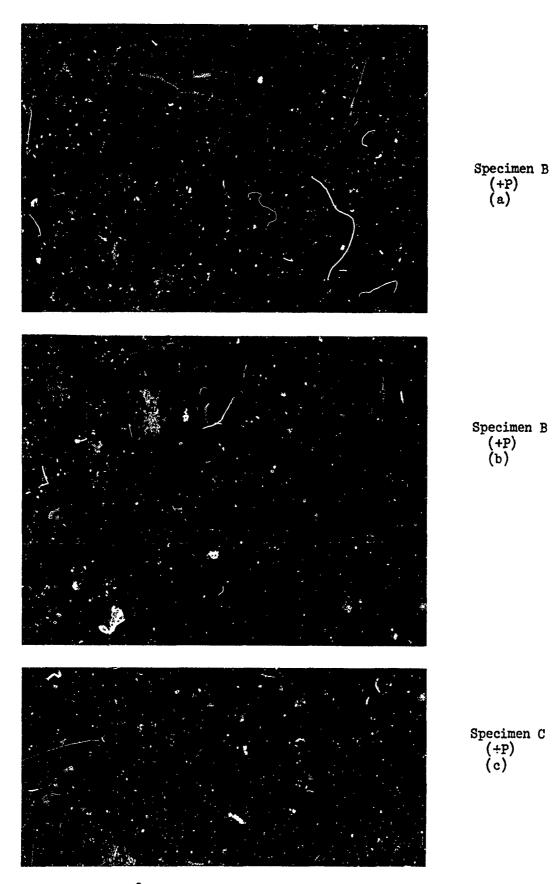
* Although it is not believed that the bending stresses are large, they would be more significant in the cases of single lap specimens. An analysis as suggested in Article VI.5. would be helpful, but was not carried out.

There is one major factor that affects the test results, the initial slop. Although care was taken so that a sliding fit could be obtained by careful reaming of the holes, it is apparent that some significant slop is present in some of the holes. In general, when a hole is "sloppy" a lesser load will be developed there, and the fasteners adjacent to it will be loaded more than when the hole is "tight". In addition, somewhat less load will then be developed in the doubler than when no significant slop is present. Therefore, when a fastener has a considerably larger load than predicted it indicates that a hole near it is probably somewhat "oversize" and the fastener in that hole would be expected to develop less load than predicted. In Table VII:2 the results indicate some significant slop to be present for example, in Spec. I-Al, fastener #1 & 2, Spec. I-A2, fastener #2, Spec. I-Bl, fastener #1 and Spec I-D2 fastener #1,2,&3. In the wide base structure test, Spec. I-E, some significant slop appears to be present at fasteners #2 and #3.

Friction is snother item affecting results. In general, since it is neglected, it would be expected that the actual (test) loads in the doubler would be somewhat larger than the predicted values. Hence, it should compensate somewhat for small amounts of slop.

Although the tests results vary more than would be desired from the predicted loads, it is believed that they do substantiate the suggested methods of analysis.

c. Splice Assembly Tests

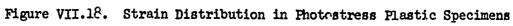

The results of these tests are presented in Table VII.3. For purposes of comparison, the predicted loads are also tabulated. In this case the three (or four) fastener loads at one end are listed. The fastener loads were obtained from the test data in the same manner as described previously for the doubler assembly specimens. The same remarks concerning the factors affecting the doubler fastener loads also apply to the fastener loads in the splice assemblies. In general the agreement between the test and predicted values was not as good as for the doubler assembly specimens. However, the large loads at the end fastener(s) can be clearly seen, and it is believed that the results do substantiate the suggested methods of analysis for the case of splices.

d. Further Notes on Tests

Since, in general, a small amount of slop appeared to be present in many of the specimens, a calculation of the internal loads in Specimen I-A2 was made arbitrarily assuming that fastener #1 was "tight" but that every other (alternate) fastener had .002" slop. That is, half of the fasteners had .002" slop. The resulting predictions showed that

- at the applied load Q = 14,152# P, would be about 160# larger, P, 70# smaller and P, about 130# larger. Thus, a moderate amount of slop can significantly affect the test results, as far as comparisons with predicted loa? values are concerned.
- (2) at the higher value, Q = 18,000#, there are smaller predicted differences since the slop is less significant.

MATCH AND MANDER AND SAVIN


. . . .

7

÷.,

Ċ.

19 A.

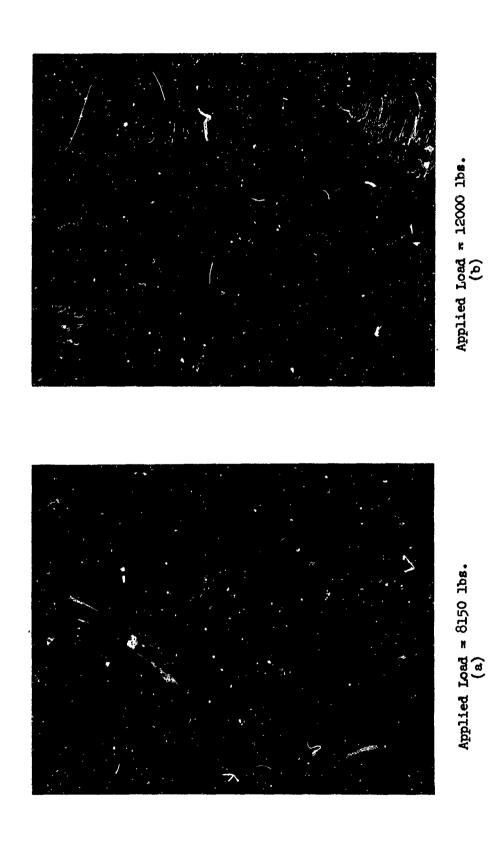


Figure VII.19. Strain Distribution in Specimen II-A.2 (Doubler)

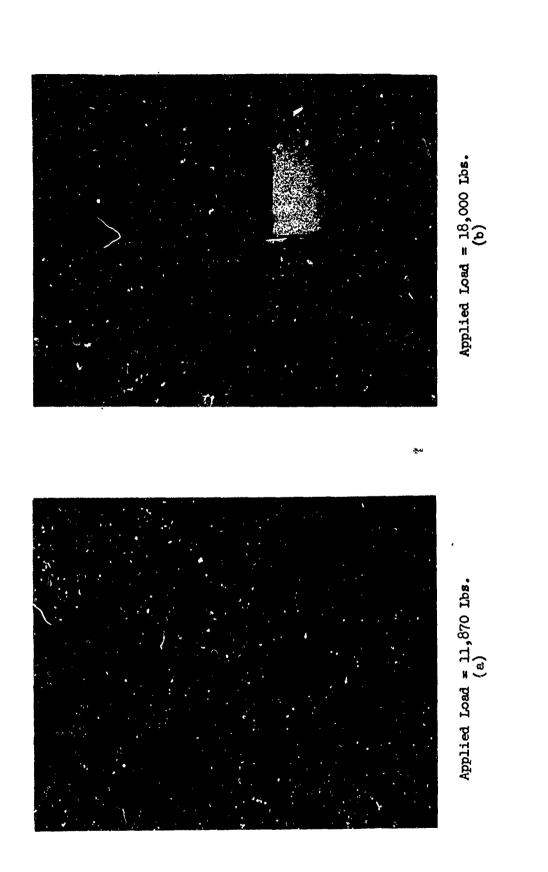


Figure VII.20. Strain Distribution in Specimen I-D1 (Tapered Doubler)

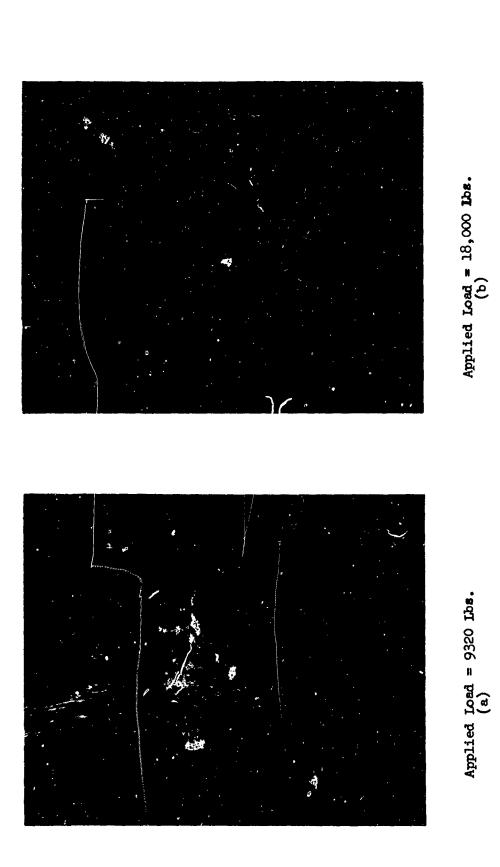


Figure VII.21. Strain Distribution in Specimen II-Cl (Tapered Splice)

				~ <u></u>					7
			1567 2397 3868	2233 3429 14355	2672 1856 7094	2226 11756 1019	3340 5127 6935	3710	Ì
	GNOT NETHEOOD	TEST	1450 2200 3220	2260 13320 13320	1953 4075 4920	1960 1780 5780	5320 2320 2320	3760 7320 8360	
	T TOND	HOX (CH	୦ ୷ଝ୍ଟି ସି	38520	0489 2085	60 00 00 00 00 00 00 00 00 00 00 00 00 0	\$% ₽	°	
	TESTERIAL LOND	1911		::::	::::	::::			
•	H H	PICEDI CTUE	118 346 346	8884 8984	455 575	ሏ ጟ ይ•	308 1477 6677	334 819 1000	
	TOND IF			::::	::::	41222 [#]			
	LL LOND	PREDICTED	89900	0~8X	° % § §	૰ૡ૽ૼઌૢ૽ ઌ	02821	° ని న జే	
	RESIDUAL LOAD	1981	::::				::::		
	TOND IN	PRODICING	*8%S	335 735 735	å ድርጊ	8.25 8.25 8.55	<u>1888</u> .	1408 1405 1405	
EQUD6	LON	1811	- 522 9329 - 3329 - 3329	888°	8802 830 830 830 830 830 830 830 830 830 830	ୡୖଌୢୡୄଽ	868 8	636 1260 1420	
DEFERINT LONDS	residual, load Di fasterer # 2	PRUDICTED	032£	៰៰៰ៜ៶	00K7	-254 -131 -162	Åt-Lo	07\$\$	
	ndisen Taky ng	1991	::::	::::	::::	::::			
	a a a a a a a a a a a a a a a a a a a	REDICTED	128 265 265 265 265 201 201 201 201 201 201 201 201 201 201	508 786 1012	633 1760 1760	250 799 1555	548 845 845 845 845 845 845 845 845 845	1235	
	I LOND I ABTERI	1991	335 545 513 513	\$2 % \$	837 946	1020 1020	630 930	128 1160 1560	
	L LOND DER # 1	PREDICTED	-25 -352 -467	0 -28 -123 -216	-553	-394 -394 -518	0 -27 -159 -248	0 764- 164-	
	RESIDUAL LOAD	1921	김김乌.	न्नन्न ् रूः	1120 1120 1120 1120 1120 1120 1120 1120	븹 영校.	· ┨ጷ҄ጷะ	년 11 12 12 12 12 12 12 12 12 12 12 12 12	
	-1 ਸ.**	PREDICTED	750 1125 1125	750 1343 1343	1750	1000 1750 2267	1125 1125	1000 1750 2257	
	I TOND IN	TEST	665 1020 1240	835 1270 1530	268 1415 2260	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	321 228 28 128 128	1603 2000 1000 1000 1000	
		y	7,120 10,913 18,000	9,207 14,152 18,000	6,763 12,297 18,000	5,66 18,239 18,000	8,658 13,293 18,000	6,537 11,870 18,000	
	OPECIDECI		* TV-I	* *	* E-1	* 24-1	* - -	* *	
		_							•

ì

1

ł

TABLE VII.2 Comparison of they and predicted intendal loads for doubling absorbed specifichs

								;	(CONTINUED)	(DADS									
SPECING	GNOT	ILOND TH PASTERER #	≓ ¤≝	TAN LANGTER # NUMBER	T # NOT	AL UNDI	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NGI SUN	RESIDUAL LOAD	LOAD IN FASTERER #	ШК ЕК#3	RESIDUAL LOAD	L LOAD	LOAD IN PASTERER # 4		RESIDUAL LOAD DI FASTENER # 4	L LOND 11 # 14	NACTARIN DOUBSIER LOAD	EN LOND
	,	TEST	PREDICTED	TST	PRED I CTEI	1811	PREDICTED	TEST	PREDICITE	TST	PRODICTED	TEST	PREDICTER	TEST P	TEST PREDICTED	ISI	misimi	TEST	FREDICITED
1-D2	6,520 11,890 18,000	500 S	1750 2251 2251	김김왕·	- 74 - 510 - 626	\$888 \$	682 1270 2075		5%%°	1460 1460 12450	1392 1392 1392		<u>አ</u> ይጅ	- 8650 8650 8650	4629 6230 1101		၀ စင်းမှိ	5280. 2560 2580. 2580. 2580.	3547 6466 9770
*	18,947 34,526 68,000	8938 .	1000 1750 2358	김김않-	° 24 89 89	888	613 5062 5062	::::	0 4 4 F	888 888 888 888 888 888 888 888 888 88	#60 1672 1672	::::	°त्रैत्तैत्त्		312 583 1178	::::	° अ हो री	1950 1950 5920	2000 2441 2378
4-1	00 18,000 18,000	1340 1960	850 1234		1	89	32			38 38	336 1488 1488				308			3600	21.54 31.25
ਚ ਮ	3,802 6,996 13,548		"888" 1288	琩뒴龄:	0 9 5 5 7 5 5 7 5 5 7 5 7 5 7 5 7 5 7 5 7 5	523 523 550 523	673 673 673 673 673 673 673 673 673 673	Ç.	៰៹៷៹	89 66 67 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1362 262 250 250		° ដ3្	::::	340123		0088	3260	952 1751 3386
20 1-	3,637 7,332 15,889	ន្តន្តំ៖	5788 2788	44%-	°។%្ក	98 *	366 743 1740		៰៷៹	\$25	¥&&		0 m 0	*	100 100 100 100 100		g in O	#160 ⁴	1463 2049 6389 6389
분 	6,281 14,524 18,000	1300 1300 3380 3380	* 66.50 26.55 27.55 26.55 27.5	ᅾᇃᅇ	50000 5000 50000	520 10 10 10 10 10 10 10 10 10 10	1795 t		° ~ 8 K	999 1899 1899 1899 1899 1899 1899 1899	366 871 1122	::::	0.4.8.2 2 5 5 0	246 520 720	523 524 685	::::	°.‡ያጽ	2330 6530 6530	2501 5781 7159
* H	5,189 13,487 18,000	970 2920 3190	1000 2250 2710	11 19 19 19 1	0 -155 -190	0001	<u> ਜ਼ਿਊ</u> ਤੂ-		-266 -198 -193	° 223°	ਸ਼ੑੑਲ਼ ੑ ਲ਼ੑ ੶		မိုးစိုးစို မိုးစိုးစို		8008±	::::	125 168 176	1824 4660 6200	0571 2360 2021
* Value	Values in this row calculated using the "secondary" fastener spring constant, $k^{2}F_{0}$ to show the effect on the residual loads predicted.	rov calc	ulated unit	ng the "s	econdary"	fastener	spring co	matant,	k'F ₀ to ah	ov the ef	fect on t	be residu	al loads ;	redicted.					T I

TABUE VII.2 (Continued)

* Values in this row calculated us: ** Epotwelds failed during loading

- - Server

• • • • -----

おいく ふくかせた し

ý

ł 1

11

					COM	PARISON C	01V 1921 X	PREJICIT	COMPARISON OF TEST AND PREVICTED INTERNAL LONG FOR SPLICE ASSEMPTIX SPECIMENS	LOADS FOR	SPLICE A	IS XUQUIS	ECIMENS				
			· · · · · · · · · · · · · · · · · · ·				*		DITERNAL LOADS	LOADS						1 3 1	
SPECIDEN	APPLIED UND LOND	TASTERER #	- Р	RESIDUAL LOAD		ICOND IN FASTERIES	N A	RISIDUA TAST	RESIDUAL LOAD	LOUD IN FASTENER #	е В В В В В	RESIDUAL LOAD	L LOND	LOAD IN PASTERIER # 4	A a	RESIDUAL LOAD	L 2000
		TEST	PREDICTED	1811	MEDICIED	TEST	PREDICED 1	1 2321	PREDICTED								
ТЧ-Ш	3,329 5,618 11,913	705 1,250	750 1,240 2,125		° % 669	83 * ‡	2,976 2,976		0 0 1 20 1 771	~~~~	10 10 10 10 10 10 10 10 10 10 10 10 10 1		° 7 9 9		104 1855 1855		0 L 664
* *	4,802 8,154 12,000	1,000 2,190 2,740	750 1,656 1,656	ननक्	° អ៊ីត្តឺតុ	888°	1 38 38 33 33	111.1	0440	1005	- 19 19 19 19 19 19 19 19 19 19 19 19 19 1	1111	୍ରମୟର		¥24		0048
#-11	4,533 8,224 12,000	5 040 5 040 5 040 5 040	1,000 1,757 2,231	448-	-19 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	*8 <u>8</u> 4%	630 1,1%2 1,748	::::	ဝဝလူထူ	8885	1,164	::::	0.4 621		989 1188 1188 1188	::::	° ភនិត្ត
* #-	3,793 7,525 12,000	8008 8008 8008 8008	1,750 2,2,000 2,2,000	┨ ┨ ᡭ•	٥ <u>8</u> 8 4 4	¥&&&	2495 1955 1956 1956		-250 -124 -124	189	158 1029 1029		°ဗိုဗံဒုံ	380 1180 720 80 1180	3212		0 8 1 1 S 0
7 1	125,52 125,932 100,132	870 2,045 2,045	1,240 2,360	គ្ន គ្គន្ធ-	-133 -133 -133 -133 -133 -133 -133 -133	800 17 10 10 10 10 10 10 10 10 10 10 10 10 10	1,021 1,982 1,982		૦ૡ૽ૡ૽	750 1400 2820	1,6973 1,6973		ondr		428.		38 F.o
ស្ * ដ	10,739 10,739 18,000	1,9360 1,630	1,000 2,416 2,416	뒴 <u></u> 큠않=	0 -57 -825 -931	9988 3088 3088 3088 3088 3088 3088 3088	728 1,312 2,241		0	5050 5610 5610 5610 560 560	2,0262 2,0262 2,0262	;;;;	0 9 4 9	• • •	414 767 1542		536 38 38 38 38 38 38 38 38 38 38 38 38 38
	2,655 6,021	1,006 3,000	2,250	ᇽᇽ	0 81-	88.8	782 1,792	•	ဝရာ	21865	872 1, <i>97</i> 8	11	00	ONLLY 3	3 ZABTERREG	E SPLICE	
* Values in	in this r	Values in this row calculated using the "secondary"	ted using	the "seco		ener spri	ing constar	it k'ro t	fastener spring constant k'ro to show the effect on the residual loads predicted.	effect on	the resid	unl loads	predicted.				

ł

i

Photostress plastic bond failed

E-IIV ENERT

SECTION VIII

PRACTICAL APPLICATIONS

VIII.1 INTRODUCTION

The general reasons for which a doubler or a splice installation and analysis might be necessary have been discussed in Section I. As listed there, these include the purposes of improving strength, stiffness and fatigue life necessitated by reasons involving design, service useage or salvage and repair. The purpose of this section is to illustrate some main design points and possible installations, including a suggested general procedure for designing a doubler.

In general, the design of a doubler will have the following basic requirements:

- a. Be of such a configuration as to "pick-up" enough load either to properly relieve the base structure, or to stiffen it as required. The amount of load to be picked-up by the doubler must be defined before the doubler design and analysis can be commenced.
- b. Accomplish this function without overloading any of the fasteners attaching it. That is, each fastener will have some maximum load that must not be exceeded, established by either a yielding or strength or fatigue consideration. These maximum loads for the fasteners are referred to as the fastener "allowable" loads and are of three principal types
 - The fastener load that produces yielding of the fastener-sheet combination. The definition of yielding is presented in Reference (9) along with specific values for numerous fastener-sheet combinations.
 - (2) The fastener load that produces static failure of the joint. These loads are presented in Reference (9) for numerous fastener-sheet combinations.
 - (3) The fastener load that produces such a bearing stress on either sheet as to begin to reduce the fatigue life of the sheet below its required amount. Or, stated another way, the fastener load that

produces the maximum bearing stress on either sheet that is permissable from the standpoint of the required fatigue life of the sheet. This bearing stress should include any "peaking" effects at the edges of the sheet. These peaking effects will be larger in the case of single shear joints than for double shear joints.

This fatigue consideration may be quite important in the design of dcublers and splices. As is well known, available data (Reference 8) shows that the fatigue life of an axially loaded member is a function not only of the tension stress, f_{\perp} , but also of the bearing stress, f_{br} , in any loaded hole in the member. The larger the ratio f_{br}/f_{\bullet} , the shorter becomes the fatigue life for repetitive cycles of the loading. Reference 8 shows, for example, that for the case of an applied loading (producing f_{br} and f_{c}) cycling between $f_{br} = 0$ and $f_{br} = 47,000$, the fatigue life for 7075-TO Alc. sheet will decrease from 10,000 cycles when $f_{br} = 47,000$ (= f_{br}). This is, of course, a most significant reduction in fatigue life. Although the data of Reference 8 is for a bearing stress distribution corresponding to a double shear application (obtained by using a pin for applying the bearing loads) it appears to be "useable" for typical single shear upplications where some clamp-up is present. Typical examples would be driven rivets or torqued nut installations. Therefore, it is important to consider these possible harmful effects of large fastener loads when a doubler or splice is designed.

In the case of a splice the same basic requirements would be present, except that the load to be transferred is all that must be defined, in VIII.la.

VIII.2 GENERAL GUIDES FOR DOUBLER DESIGN

The design of a doubler installation is, thus, a tailoring process to satisfy these requirements. The doubler's planform and thickness profiles and the types and numbers of fasteners are the main variables. Space limitations are also a frequent factor. Whe designing is essentially a "cut-and-try" procedure, using the following general guides.

a. To increase the load picked up by the doubler

- (1) increase the doubler planform width
- (2) increase the doubler thickness
- (3) increase the length of the doubler
- (4) increase the number of fasteners
- (5) increase the size of fasteners

- (6) use stiffer fasteners (material change)
- (7) use stiffer doubler material
- b. To reduce the "peaking effect", that is the large fastener loads developed at the ends of the doubler
 - (1) taper the doubler planform
 - (2) taper the doubler thickness
 - (3) use a narrower doubler width at the end.
 - (4) use more flexible (or smaller) fasteners at the ends
- c. In order to insure all fasteners loading up efficiently, and also more consistent results, the doubler should be installed (ideally) using close tolerance or reamed holes when non-hole filling fasteners are used. In most practical cases, fasteners of this type will be used since the stiffer steel fasteners are much more efficient in "picking-up" load. In instances where this cannot be done the effects of any possible "slop" should be considered by including this in the analysis.

An inspection of the predicted loads for the various assemblies of Table VII.2 reveals how changing some of these parameters affects the distribution of fastener loads and the load developed in the doubler or splice members.

VIII.3 GENERAL GUIDES FOR SPLICE DESIGN

The main effort is to keep the length of the splice as short as possible. Within this limit the "peaking effect" can be dealt with as outlined in VIII.2b previously. The comments in VIII.2c also apply to splices.

VIII.4 GENERAL PROCEDURE FOR DESIGNING A DOUBLER

The following steps would normally be taken in designing a doubler installation.

a. Define the general area of the base structure that requires reinforcing. This will determine whether the analysis must be made for all of the base structure (a conventional analysis) or for only a part of the base structure (a "wide base structure" analysis) which is somewhat more laborious. Two such cases are illustrated in Figure VIII.1 which shows the need for a doubler on the lower (tension) skin at the root of a swept wing (a) and (b) and on a straight wing, (c).

۲

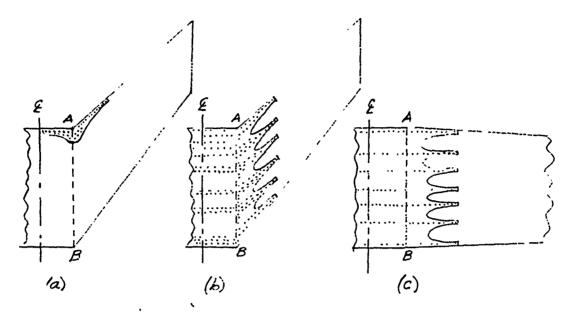
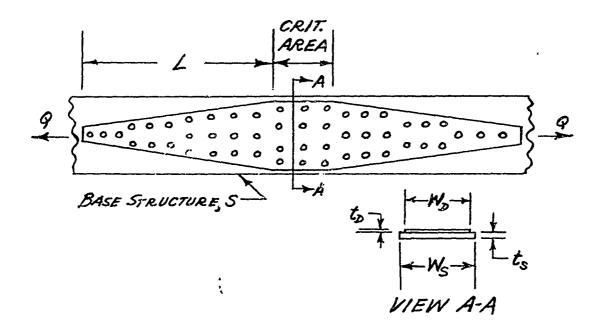
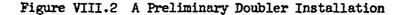



Figure VIII.1 Doubler Installation On A Wing Skin

In (a) the internal structural arrangement and the loads are such that a reinforcement of the skin is necessary only locally, within a few inches of the point A. Hence, the doubler is local on the skin and the "wide base structure" analysis is applicable.


In (b), and in (c), the situation is such that a doubler is required along the entire root chord, AB, and also across the entire root section. Hence a set of doublers, or a single "finger" doubler arrangement is required. Such a doubler is the same as several separate cases but made as an integral unit. The fingers may be required instead of a single edge in order to keep the load from building up too rapidly ("peaking") at the ends of the doubler. That is, the amount of taper that can be put in thicknesswise will usually not be enough in itself to reduce this peaking sufficient? In Cases (b) and (c) the wide base structure analysi .s not required.

(b) Sketch in a doubler over the critical area to be reinforced and extend it beyond this area in order to pick up the load that is to be kept out of the critical area, as in Figure VIII.2.

Y

فسيدطوركا سايكة يتحفظ سكاينا

- c. Obtain a first guess for the required size of the doubler in the critical area (View A-A) as follows:
 - (1) Assuming the doubler to be, say, 90%, efficient in picking up the required load, the load in the doubler at the critical section will then be given as

$$P = Q\left(\frac{.90A_{p}E_{p}}{.90A_{p}E_{p} + A_{s}E_{s}}\right)$$

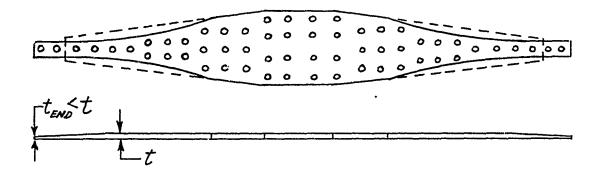
$$=Q\left(\frac{.90W_{D}t_{D}E_{D}}{.90W_{D}t_{D}E_{D}+W_{s}t_{s}E_{s}}\right)$$

(2) The required value for P is known, since this is the amount by which the doubler must relieve the base structure. Also the values W_g, t_g, E_g and E_D are known. Hence the required area of the doubler, W_Dt_D, can be initially estimated as

$$W_{D} t_{D} = \frac{P}{.90(Q-P)} \left(\frac{W_{s} t_{s} E_{s}}{E_{D}} \right)$$

 W_D should be about as wide as the base structure but it could be made smaller

*This is for the case of narrow base structures. For wide base structures the doubler width is, of course, much smaller as in Fig. VIII.la.


particularly if the resulting thickness, t_p , is judged to be too thin. However, the thinner the doubler the less the eccentricities involved (smaller secondary bending moments) and the better is the structural system in this respect.

- d. Next a value for L must be assigned. This should be as short as possible from weight consideration, but must be enough to pick up the required load P and still not generate too great loads at the ends. (as discussed in Art. VIII.1). This can be determined accurately only by a "cut and try" procedure, but as a first guess L can be taken as about 5 times W.
- e. A tapered planform for the doubler can then be sightharpoond in, wide enough at the ends to pick up can fastener. (The end fastener load can be initially guessed at using the suggested formula in Article III.2, to estimate the required size of fastener.)
- f. An array of fasteners can then be located as shown in Figure VIII.2. In order to pick up load efficiently the fastener-sheet combination must have a reasonably stiff joint spring constant, k_r. This usually means that steel fasteners are required. However, if aluminum fasteners are used the diameter should be large enough that the joint is critical in bearing, not in shear, to insure a ductile joint rather than p brittle one. In any event the load-deflection characteristics for the fasteners selected must be available.
- g. An analysis can now be made as discussed in Section III to determine the internal loads. In most practical cases the simple analysis of Art. III.2, and Table III.1 is adequate. The resulting internal loads must be such that
 - The resulting load (or stress) in the base structure is reduced to a satisfactory magnitude to satisfy any strength, stiffness or fatigue requirements.
 - (2) The load in the doubler is satisfactory. That is, the stress levels in the doubler (and, hence, the values of E_t used for the doubler

element spring constant determinations) are consistent with what was assumed in the analysis, normally elastic stress levels.

- (3) The local bearing stresses due to the fastener loads are low enough so as not to fail to meet the fatigue life requirements when the base structure and the doubler are in tension.
- h. If the load in the base structure is not found to be sufficiently reduced (doubler load is not large enough) some or all of the steps in Article VIII.2 are required. Opposite steps are, of course, taken if the doubler load is found to be larger than necessary, to keep the weight down.
- i. If the peaking effect at the ends is too large a reshaping in this vicinity is required as sketched in Figure VIII.3. The initially guessed shape is shown as the dashed lines. The final shape (arrived at by "cut and try") is shown by the solid lines. Note that the ends may be tapered in thickness to keep the end fastener loads small enough.

Tarta and a second second

Figure VIII.3 A Tapered Doubler

Summarizing, the final doubler design is arrived at by the "cut and try" procedure, using the previously outlined steps and engineering judgement as a guide in making successive trials. The final design must satisfy all strength, stiffness and fatigue criteria for the structure. In most practical cases the usual requirement of no significant yielding at limit load means a simple elastic analysis (as in Table II.1 or III.2). If each type of joint is ductile (critical in learing) the design should then

present no problems in carrying the ultimate load.* That is, a plastic analysis at the ultimate load factor should not usually be necessary in such cases, but it can be made as suggested in this report. Any detrimental secondary effects should be considered, as suggested in Article VI.5.

Some additional comments on this subject are included in Appendix I.

The design of a splice would be approached in the same manner when there are many rows of fasteners. That is, the thickness profile would be tapered to keep the peaking effect as small as necessary from any strength, yielding or fatigue considerations.

*When there are only a few fasteners present, which is the usual case for splices, the plastic analysis for the ultimate load is more likely to be necessary.

REFERENCES

- 1. Demarkles, L. R.: "Investigation of the Use of a Rubber Analog in the Study of Stress Distribution in Riveted and Cemented Joints", NACA IN 3413, November, 1955
- 2. Franklin, Philip: <u>Methods of Advanced Calculus</u>, McGraw Hill Book Co. 1944
- 3. Goland, M. and Reissner, E.: "The Stresses in Cemented Joints" Journal of Applied Mechanics, Vol. 11, No. 1, March 1944
- 4. Ross, R. D.: "An Electrical Computer for the Solution of Shear-Lag and Bolted-Joint Problems", NACA TN 1281
- 5. Gehring, R. W. and Lumm, J. A.: "Application of Applied Load Static Test Simulation Techniques to Full Scale Test Results", NAEC #SL-1094, January 1966
- 6. Tate, M. B. and Rosenfeld, S. J.: "Preliminary Investigations of the Loads Carried by Individual Bolts in Bolted Joints, NACA TN 1051, 1946
- 7. Rosenfeld, S. J.: Analytical and Experimental Investigation of Bolted Joints, NACA TN 1458, 1947
- 8. "North American Aircraft Company Fatigue Manual"
- 9. <u>Metallic Materials and Elements For Aerospace Vehicle Structures</u>, MIL-HDBK-5, 1966
- 10. Sruhn, E. F. et al: <u>Analysis</u> and <u>Design</u> of <u>Flight</u> <u>Vehicle</u> <u>Structures</u>, Tri-State Offset Co., Fourth Printing, 1968

٢.

đ,

BIBLIOGRAPHY

Atsumi, A. "On the Stresses in a Strip Under Tension and Containing Two Equal Circular Holes Placed Longitudinally" Journal Applied Mechanics 23, 555-562, 1956

Ault, Robert Michael, "Elasto-Plastic Stress Field Surrounding a Crack" Univ of Arizona, May 1966

Barker, W. T. "Joining, The Real Challenge on Use of Advanced Structures" SAE Paper 650788

Baron, F.; Larson, E. W. "Comparison of Bolted and Riveted Joints" ASCE Trans, 1955

Barzelay, M. E. "Interface Thermal Conductance of 27 Riveted Aircraft Joints" NACA TN 3991, July 1957

Barzelay, M. E. "Effect of Pressure on Thermal Conductance of Contact Joints" NACA TN 3295

Barzelay, M. E. "Effect of an Interface On Transient Temperature Distribution in Composite Aircraft Joints" NACA TN 3824

Batlo, C. "The Partition of the Load in Riveted Joints" Journal Franklin Inst (Canada) 1916

Bendigo, R. A. "Long Bolted Joints" ASCE (Jour of Struct Div) V89, Dec 1963

Bert, C. W. "Discussion on Influence of Couple Stresses on Stress Concentrations" Experimental Mechanics, Vol 3, Dec 1963

Bhargava, R. D. "Circular Inclusion in an Infinite Elastic Medium with a Circular Hole" Cambridge Philosophical Society Proceedings, July 1964

Bloom, J. M. "The Effect of a Riveted Stringer on the Stress in a Shell with a Circular Cutout" Jour of Applied Mechanics, March 1966

Bloom, J. M. "The Reduction of Stress Intensity of a Crack Tip Due to a Riveted Stringer" U.S. Army Materials Research Agency, 1966

Bloom, J. M. Sanders, J. L. "The Effect of a Riveted Stringer on the Stress in a Cracked Shear", Journal of Applied Mechanics, Sept 1966

Bodine, E. G. "Interaction of Bearing and Tensile Loads on Creep Properties of Joints" NACA TN 3758

Bodine, E. G. "Creep Deformation Patterns of Joints under Bearing and Tensile Loads" NACA TN 4138

Bresler, B. "Design of Steel Structures", 1960

Bruhn, E. F. "Analysis and Design of Flight Vehicle Structures" Tri-State Offset Co., 1965

Buckens, F. "On the Stress Distribution in Bolted Fastenings" Catholic Univ of Lorwain, March 1966

Budiansky, B. "Transfer of Load to a Sheet From a Rivet-Attached Stiffener" Journal of Math Phys; V 40, July 1961

Chesson, Eugene "High Strength Bolts Subjected to Tension and Shear" Struc Div Jour of the American Society of Civil Engrs., Oct 1965

Clark, D. S. "Physical Metalurgy for Engineers", 1962

Cox, H. L. "Stresses Round Pins in Holes" Aero/Quarterly Vol 15, Nov 1964

Cox, H. L., M. A. and A.F.C. Brown, "Stresses Round Pins in Holes" ARC 24,418

Crum, R. G. "Fatigue in Metal Joints" Machine Design Vol 33 I -Mechanical Joints, March 1961

Crum, R. G. "Fatigue in Metal Joints - II, Welded Joints" Machine Design Vol 33, April 1961

Daniel, I. M. "Stress Distribution on the Boundary of a Circular Hole in a Large Plate due to an Air Shock Wave Traveling along on Edge of the Plate" ASEM Paper 64-APM-20, 1964

Davies, G.A.O. "Stresses Around a Reinforced Circular Hole Near a Reinforced Straight Edge" Aero/Quarterly Vol 14, Nov 1965

Davies, G.A.O. "Stresses In A Plate Pierced by Two Unequal Circular Holes" Royal Aero Society Journal, July 1963

Dinsdale, W. O. "High Temperature Fatigue Properties of Welded Joints in Heat Resisting Alloys" British Welding Journal, Vol 12, July 1965

Dixon, J. R. "Elastic-Plastic Strain Distribution in Flat Bars Containing Holes or Notches" Jour of Mech and Phys of Solids, Vol 10, Jul-Sep 1962

Dolly, J. W. "Dynamic Stress Concentrations at Circular Holes in Structures" Jour of Mech Engineering Science, Vol 7, March 1965

Donald, M. B. "Behaviour of Compressed Asbestos-Fibre Gaskets in Narrow-faced Bolted, Flanged Joints" Inst of Mech Engrs, Preprint 3-8 Dec 1957

149

(

Durelli, A. J. "Elastoplastic Stress and Strain Distribution in a Finite Plate with a Circular Hole Subjected to Unidimensional Load" Journal of Applied Mech (ASME), Vol 30, March 1963

Durelli, A. J. "Stress Distribution on the Boundary of a Circular Hole in a Large Plate During Passage of a Stress Pulse of Long Duration" Journal of Applied Mechanics (ASME) Vol 28 June 1961

Fessler, H. "Plasto-Elastic Stress Distribution in Lugs" Aero/ Quarterly Vol. 10, Part 3, Aug 1959

Fisher, John W. "Analysis of Bolted Butt Joints" Struct Div Journal of Am Soc of Civil Eng, Vol 91, Part I, Oct 1965

Fisher, J. W. and Beedle, L. S. "Bibliography on Bolted and Riveted Structural Joints" Fritiz Eng Laboratories, 1964

Gehring, R. W. "Application of Applied Load Ratio Static Test Simulation Technique to Full Scale Structures: Volume I - Methods of Analysis and Digital Computer Programs" NAEC, May 1965

Gehring, R. W. "Application of Applied Load Ratio Static Test Simulation Techniques to Fuel Scale Structures; Vol II, Material Properties Studies and Evaluation" Naval Air Engineering Center, Oct 1965

Goodier, J. N. "Thermal Stresses at an Insulated Circular Hole Near the Edge of an Insulated Plate Under Uniform Heat Flow" Quarterly Jour of Mech and Applied Math., Vol 16, Part 3, Aug 1963

Goodwin, J. F. "Research and Thermomechanical Analysis of Brazed or Bonded Structural Joints" ASD-TDR-63-447, Sept 1963

Green, W. A. "Stress Distrigution in Rotating Discs with Noncentral Holes" Aero/Quarterly Vol 15, May 1964

Griffel, William "More Concentration Factors for Stresses Around Holes" Product Engineering Vol 34, Nov 1963

Gupta, D. P. "Stresses in a Semi-Infinite Plate with a Circular Hole due to a Distributed Load on the Straight Boundary" Jour of Tech, Vol 5, June 1960

Guz, A. N. "Stress Concentration about Curvilinear Holes in Physically Nonlinear Elastic Plates" NASA TT-F-408

Hansen, N. G. "Fatigue Tests of Joints of High Strength Steels" ASCE, Jour of Struct Div), Vol 85, Mar 1959

Hartman, A.; Jacobs, F. A. "The Effect of Various Fits on the Fatigue Strength of Pin Hole Joints" National Luchtvaærtlaboratorium Amstraam, 1946

Hartman, A. "A Comparative Investigation on the Influence of Sheet Thickness, Type of Rivet and Number of Rivet Rows on the Fatigue Strength at Fluctuating Tension or Riveted Singly Lap Joints of 24 ST-Alchod Sheet and 17 S Rivets" Report M 1943, 1943

Hartman, E. C. "Additional Static and Fatigue Tests of High Strength Aluminum Alloy Bolted Joints" NACA TN 3269

Heywood, R. B. "Simplified Bolted Joints for High Fatigue Strength" Engineering Vol 183 Feb 57

Heywood, R. B. "Designing Against Fatigue of Metals", 1962

Holister, G. S. "Recent Developments in Photoelastic Coating Techniques" Roy Aeronautical Society Journal, Vol 65, Oct 1961

Hofer, K. E. "Studies of Mechanical Attachments for Brittle Materials" ASME Paper 65-MET-17 and ASME Paper 65-MET-18, 1965

Jessop, H. T.; Snell, C.; Holister, G.S.; "Photoelastic Investigation on Plates with Single Interference Fit Pins with Load Applied (a) to Pin Only (b) to Pin and Plate Simultaneously" Aero/Quarterly Vol IX, May 1958

Jessop, H. T.; Snell, C.; Holister, G. S. "Photoelastic Investigation in Connection with the Fatigue Strength of Bolted Joints" Aero/Quart Vol VI, Aug 1955

Jessop, H. T.; Snell, C.; Holister, G.S. "Photoelastic Investigation on Plates with Single Interference Fit Pins with Load Applied to Plate Only" Aero/Quarterly Vol VII, Nov 1956

Kaminsky, A. O. "Elliptical Hole with Cracks" FID-TT-65-600

Kaufman, A. "Investigation of Tapered Circular Reinforcements around Central Holes in Flat Sheets under Biaxial Loads in the Elastic Range" NASA TN-D-1101

Kaufman, A. "Investigation of Circular Reinforcements of Rectangular Cross Section Around Central Holes in Flat Sheets under Biaxial Loads in the Elastic Range", NASA-TN-D-1195

Kelsey, S. "Direct Stress Fatigue Tests on Redux-bonded and Riveted Double Strap Joints in IOSWS Aluminum Alloy Sheet" Aero Res Council, London, Current Paper 353, 1957

Kerchenfault, R. D. "Stress Concentration Factors in Milti-Holed Aluminum Panels" Douglas Aircraft, July 1965

Kraus, H. "Flexure of a Circular Plate with a Ring of Holes" Journal of Applied Mechanics (ASME) V29, p 489-496, Sep 62

Kubenko, V. D. "Stresses Near An Elliptic Hole Subject to Oscillating Pressure" NASA TT-F-9795

Kusinberger, Felix N.; Barton, John R.; Donaldson, W. Lyle "Nondestructive Evaluation of Metal Fatigue" AFOSR 64-0668, March 64 and AFOSR 65-0981, Mar 65

Kutscha, D. "Mechanics of Adhesive-Bonded Lap-Type Joints: Survey and Review" ML-TDR-64-298, Dec 64

Lambert, T. H. "The Influence of the Coefficient of Friction on the Elastic Stress Concentration Factor for a Pin-Jointed Connection" Aero-Quart Vol 13, pp 17-29, Feb 62

Lambert, T. H. "Use of Interference-Fit Brush to Improve Fatigue Life of Pin-Jointed Connection" Aero Quarterly Vol 13, pt 3, p275-84, Aug 62

Lambert, T. H.; Snell, C.; "Effect of Yield on the Interface Between a Pin and a Plate" Journal Mech Engr. Science, 1964

Laupa, A. "Analysis of U-Shaped Expansion Joints" Jour of Applied Mech, pp 115-123, Mar 1962

Lewitt, C. W. "Riveted and Bolted Joints-Fatigue of Bolted Structural Connections" ASCE, V89, p49-65, Feb 63

Lewitt, C. W.; Chesson, E., Jr.; Munse, W. H.; "Restraint Characteristics of Flexible Riveted and Bolted Beam to Column Connections" Univ of Illinois, March 1966

Ligenza, S. J. "On Cyclic Stress Reduction Within Pin-Loaded Lugs Resulting From Optimum Interface Fits" SESA Paper No. 629

Ligenza, S. J. "Cyclic-Stress Reduction within Pin-Loaded Lugs Resulting from Optimum Interference Fits" Experimental Mech, V 3, p 21-28, Jan 63

Little, R. E. "Stress Concentrations for Holes in Cylinders" Machine Design, Vol 37, p 133-135, Dec 23, 1965

Lobbett, J. W. "Thermo-mechanical Analysis of Structural Joint Study" WADD TR 61-151

Logan, T. R. "Wing-Skin Basic Structure Fatigue Test, Vol I" Douglas Aircraft, Nov 65

Logan, T. R., "Fail Safe Design of Wing and Fuselage Structure", Douglas Aircraft, Jan 66

Lunsford, L. R.; "Design of Bonded Joints"; Jour of Applied Polymer Science, Vol No. 20, Mar-Apr 62, pl30-135

Lynn, E. K.; "Flange Stress and Bolt Loads"; Experimental Mechanics Vol 4, No. 3, Mar 64, p19A-23A

Malyshev, B. M. "The Strength of Adhesive Joints Using the Theory of Cracks"; Inter Joun of Fracture Mech, Vol I, June 1965; pl14-128

Manson, S. S.; "Fatigue: A Complex Subject - Some Simple Approximations"; Exper Mechanics, pp 193-226, July 65

Marin, J.; "Determination of the Creep Deflection of a Rivet in Double Shear"; Jour of Applied Mechanics; pp285-290, Jun 59

Martini, K. H.; "The Stressing of Cylinder-Head Bolts"; Sulzer Tech Rev, Vol 45, pp 57-62, 1963

Maunse, W. H.; "Strength of Rivets and Bolts in Tension"; ASCE (Jour of Struct Div), Vol 85, Mar 1959, p7-28

Mead, D. J.; "The Damping Stiffness and Fatigue Properties of Joints and Configurations Representative of Aircraft Structures"; WADC TR 59-676

Mead, D. J.; "The Internal Damping due to Structural Joints and Techniques for General Damping Measurement"; Aero Res Counc, Lond, Paper 452, 1959

Mindlin, R. D.; "Influence of Couple-Stresses on Stress Concentrations"; Society for Exper Stress Analyses, Proceedings; Vol 20, No 1, 1963

Mindlin, R. D.; "Effects of Couple-Stresses in Linear Elasticity"; R.D.; Tiersten, H. F.; Rational Mech, Anal 11; 417-448, 1962

Mittenbergs, A. A.; "Effects of Pin-Interference and Bolt Torque on Fatigue Strength of Lug Joints"; ASTM Proc Vol 63, pp 671-683; 1963

Mordfin, L.; "Investigations of Creep Behavior of Structural Joints under Cyclic Loads and Temperatures"; NASA TND-181

"Creep Behavior of Structural Joints of Aircraft Materials under Constant Loads and Temperatures"; NACA TN-3842, Jan 57

"Creep and Creep-Rupture Characteristics of Some Riveted and Spot-Welded Lap Joints of Aircraft Materials"; NACA TN-3412

Mori, Kyahei; "On the Tension of an Infinite Plate Containing Two Circular Holes Connected by a Slit (Japan)"; JSME Bulletin Vol 7, Nov 64, p660-667

2012 0 2013

Munse, W. H.; "Behavior of Riveted and Bolted Beam-to-Column Connections"; ASCE (Journal Struc Div), V85, Mar 59, P29-50

Nisida, M; "Stress Distributions in a Semi-Infinite Plate due to a Pin Determined by Interferometric Method"; Saito, H.; Inst of Physical and Chemical Research, Japan, Oct 65

Nisitani, H.; "On the Tension of an Infinite Plate Containing an Infinite Row of Elliptic Holes"; JSME, Bulletin, Vol 6, Nov 63, P635-638

Nordmark, G. E.: "Fatigue Tests of Riveted Joints in Aluminum Alloy Panels Subjected to Shear"; Eaton, Jan D.; ASTIA Report No 12-56-18

Pickett G.; "Bending, Euckling and Vibration of Plates with Holes"; 2nd Southeastern Conference on Developments in Theoretical and Applied Mechanics, Proceedings of Atlanta, Ga; Mar 64, Vol 2

Rosenfeld, S. J.; "Analytical and Experimental Investigation of Bolted Joints"; NACA TN 1458, Oct 47

Ross, D. S.; "Assessing Stress Concentration Factors"; Engineering Materials and Design, Vol 7, Jun 64; p 394-398

Savin, G. N.; "Nonlinear Problems of Stress Concentration Near Holes in Plates"; NASA TT F-9549

Schijve, J.; "The Fatigue Strength of Riveted Joints and Lugs"; NACA TM 1395

Shaffer, B. W.; "A Realistic Evaluation of the Factor of Safety of a Bolted Bracket"; Inter Journal of Mech Science, Vol 1, pp 135-143; Jan 60

Sharfuddin, S. M.; "Interference-Fit Pins in Infinite Elastic Plates"; Inst of Math and Its Applications, Journal Vol 1; Jun 1965, p 118-126

Smith, C. R.; "Riveted-Joints Fatigue Strength" ASTM STP-203

Smith, C. R. "Interference Fasteners for Fatigue-Life Improvement" Experimental Mechanics, Vol 5, p19A-23A, Aug 1965

Smith, C. R. "Tapered Bolts-Digest of Test Data and Users Experience" Convair Div of General Dynamics, Nov 1965

Snell, Lambert "Yield Characteristics of Normalized Mild Steel" Engineering Materials and Design, 1963

Sobey, A. J. "The Estimation of Stresses around Unreinforced Holes in Infinite Elastic Sheets" British ARC-R & M-3354

Starkey, W. L. "The Effect of Fretting on Fatigue Characteristics of Titanium-Steel and Steel-Steel Joints" ASME Paper 57-A-113, 1957

Swinson, W. F. and C. E. Bowman "Application of Scattered-Light Photoelasticity to Doubly Connected Tapered Torsion Bars" Experimental Mech. 6, June 1966

Switzky, H., Forrary, M.J., Newman, M. "Thermo-Structural Analysis Manual" WADD TR 60-517, Vol I, August 1962

Tate, M. B. and Rosenfeld, S. J. "Preliminary Investigation of the Loads Carried by Individual Bolts in Bolted Joints" NACA TN 1051, May 46

Tuba, I.S. "Elastic-Plastic Stress and Strain Concentration Factors at a Circular Hole in a Uniformly Stressed Infinite Plate" Jour of Applied Mechanics (ASME), Vol 32, p710-711, Sep 65

Tuttle, O. S. "New Joint Designs for More Efficient Sandwich Structures" Space/Aeronautics, Vol 38, No 4, Sep 62

Tuzi, Ichiro "Photoelastic Investigation of the Stresses in Cemented Joints" JSME, Bulleton V8, P330-336, Aug 65

Ungar, E. E. "Energy Dissipation at Structural Joints: Mechanisms and Magnitudes" FDL-TDR=64-98

Van Dyke, Peter "Stresses About a Circular Hole in a Cylindrical Shell" AIAA Journal, Sep 65

Viglione, Joseph "Nut Design Factors for Long Bolt Life" Machine Design Vol 37, Aug 65

Vogt, F. "The Load Distribution in Bolted or Riveted Joints in Light-Alloy Structures" NACA TM 1135, Apr 47

Wang, D. Y. "Influence of Stress Distribution on Fatigue Strength of Adhesive-Bonded Joints" Society for Experimental Stress Analysis Proceedings, Vol 21, Jan 64

Whaley, Richard E "Stress-Concentration Factors for Countersunk Holes" Experimental Mechanics Vol 5, Aug 65

Wilhoit, J. C. "Experimental Determination of Load Distribution in Threads" ASME Paper 64-PET-21

Wittrick, W. H. "On the Axisymmetrical Stress Concentration at an Eccentrically Reinforced Circular Hole in a Plate" Aero/Quarterly Vol 16, Feb 65

Wittrick, W. H. "Stress Concentrations for a Family of Uniformly Reinforced Square Holes with Rounded Corners" Aeron/Quarterly Vol 13, Aug 62

BIBLIOGRAPHY (Concluded)

Wittrick, W. H. "Stress Concentrations for Uniformly Reinforced Equilateral Triangular Holes with Rounded Corners" Aeron/Quarterly Vol 14, Aug 63

Yienger, J. A. "Bolt Point Reactions" Mach Design V37, June 65

"Thermo-Mechanical Analysis of Structural Joint Study" WADD TR 61-151, May 61

"Thermo-Mechanical Analysis of Structure" WADD TR 61-152, May 61

"Fatigue Prediction Study" WADD TR 61-153, Jan 62

1. O. .

APPENDIX I

ADDITIONAL TOPICS AND METHODS

AI.1 INTRODUCTION

The purpose of this appendix is to present additional methods, discussions and illustrative examples which, for purposes of clarity, have not been included in the previous sections of the report. The following topics, by article number, are included.

> AI.2 "Short-Cuts" For Symmetrical Doubler and Splice Installation.

- AI.3 Accounting For The Effect of "Slop" and Plasticity on Internal Loads.
- AI.4 Accounting For the Effect of "Slop" and Plasticity on Residual Loads.
- AI.5 Accounting For "Slop" at One Or More Fasteners In a Row or Group.
- AI.6 Doublers on Wide Base Structures
- AI.7 Doublers Reinforcing A Cut-Out

AI.2 SHORT-CUTS FOR SYMMETRICAL DOUBLERS AND SPLICES

When symmetry is present in both the structure and in the applied loads it is not necessary to calculate all of the fastener loads as in Table III.1 and III.2. This can save considerable time and chance for error in a hand analysis. The analyses can be shortened as follows:

- a. Structure having an even number of fasteners, N.
 - (1) Doubler Calculations

The two center fasteners, n = N/2 and n = N/2 + 1 must have equal and opposite loads. Hence it is only necessary to include N/2 + 1 fasteners in the table of calculations. The "error" in any trial will then be

$$P_{N/2} + P_{N/2+1}$$
 or $G_{N/2} + G_{N/2+1}$

(2) Splice Calculations

Again, only N/2 + 1 fasteners need to

be included. However, in this case the two center fasteners must have equal (but not opposite) loads. Hence the "error" will be $P_{N/2} - P_{N/2 + 1} \text{ or } O_{N/2} - O_{N/2 + 1}$

- b. Structures having an odd number of fasteners, N.
 - (1) Doubler Calculations

Only (N+1)/2 fasteners need to be included in the analysis. The center fastener, n = (N+1)/2 must have no load. Hence the "error" will be $P_{N+1/2}$ or $O_{N+1/2}$

(2) Splice Calculations

Only (N+3)/2 fasteners need to be included in the analysis. The fasteners on each side of the middle one, n = (N-1)/2 and n = (N+3)/2 must have equal loads. Hence the "error" will be $P_{(N-1)/2} - P_{(N+3)/2}$ or $O_{(n-1)/2} - O_{(N+3)/2}$.

It should be remembered, however, that an unsymmetrical distribution of "slop" destroys the symmetry of an otherwise symmetrical structure. Sometimes, however, a structure which is very nearly symmetrical is considered to be so in order to facilitate a hand analysis and obtain quick estimates.

AI.3 ACCOUNTING FOR THE EFFECT OF "SLOP" AND PLASTICITY ON INTERNAL LOADS

The analysis outlined in Article III.6 does not (as presented) include provision for the presence of "slop" at one or more fasteners. However, this effect can be accounted for by a simple addition to the procedure outlined in Article III.6 and illustrated in Table III.3. It is only necessary to include the effect of "closing up" the slop by including the term $\Delta (\delta_{\rm S} - \delta_{\rm D})_{\rm n}$ at any fastener, n, subject to slop. The procedure then accounts for the fact that until the slop is "closed-up" the fastener is ineffective (or $k_{\rm F} = 0$).

Procedure (Carried out in a table similar to III.3)

a. At any fastener having a specified slop, Δc , include the term $\Delta (\delta_s - \delta_D)$ in Col. (). The value of this

is obtained from Col. (2) of the basic table (Table III.1 or III.2) for each unit solution.

- b. Then in the analysis include the limiting effects as these clearances are successively closed up and the respective fasteners become effective. That is, for the first increment, $k_{\rm F} = 0$ but when the value of $\Delta(\delta_{\rm S} - \delta_{\rm D})_{\rm n}$ is required for the fastener becomes effective, $k_{\rm F} \neq 0$, and another unit solution is required for the next loading increment.
- c. The previous effects of limits due to plasticity (as in Table III.3) are still present and are considered just as before.
- d. It is possible that in some cases the initial slop will not be completely closed up. This would be most likely to occur at the "center area" of a long doubler (or splice). The following example illustrates the procedure.

Example Problem

Rework the example problem of Figure III.ll assuming that there is an initial slop of .005" at fastener #2, #4, #7 and #9. Since the slop is symmetrical, only half of the structure needs to be considered, as n the previous example.

The analysis is carried out in Appendix Table AI.1 which is similar to Table III.3. Note, however, that provision is made in Column 1 for the value of $\Delta(\delta_{\rm S} - \delta_{\rm D})$ at fastener #2 and #4.

- a. the first unit solution is made assuming $k_2 = k_4 = 0$ (= $k_7 = k_9$) because of the slop.
- b. the values of $\Delta(\delta_{S} \delta_{D})$ are entered in Col. (2) as obtained in (a).
- c. the limiting values of .005", the initial slop, are entered in Col. (3) for these terms. This means that when any slop closes up a "new" structure is present since that fastener becomes effective.
- d. Columns (4) (6) are completed as indicated. It is seen that the smallest limiting ratio is due to the slop at fastener #2 closing up.

- e. the second unit solution is made having only k_F (and k_F) = 0 and columns(7)-(1) are F₄ F₉ completed. The slop at fastener #4 (and #9) is not yet closed, but fastener #1 goes plastic, limiting this loading increment.
- f. a third unit solution having $k_{F_1} = 103,300$

and $k_{F_{l_1}} = 0$ is made and Col. (12) - (16) are completed. The limit for this increment is due to the slop at fastener #4 finally closing up.

g. a fourth unit solution is made for $k_{\rm F}$ = 103,300 and all other fasteners ${}^{\rm Fl}$ having $k_{\rm F}$ = 256,000. The limit here is the allowable load for fastener #1 of 6450# (per Figure III.11b). It is seen that this occurs for an applied load of $Q_{\rm T}$ = 44,205#.

The values of $\Delta(\delta_{\rm S} - \delta_{\rm D})_{\rm n}$ are accumulated as shown in order to be able to determine the residual loads after the applied load, $Q_{\rm L} = 44205$, is removed. This is discussed next.

AI.4 ACCOUNTING FOR THE EFFECT OF "SLOP" IN THE PLASTIC RANGE ON RESIDUAL LOADS

In order to determine the residual loads the procedure of superposition can be used but not as simply as in Article II.7 where slop was not considered. In this case the loading to be superposed on the results of Table AI.1 must be arrived at as follows, referring to Table AI.2.

a. To begin the "unloading" procedure, which uses the applied load for later superposition, all fasteners are effective (as indicated in Col. (2) of Table AI_1. Hence a unit analysis is made for an applied load of $Q_L = 44205$ and $k_{F} - - k_F = 256,000$, the elastic values. I F_5 The limiting values of $\Delta(\delta_S - \delta_D)_n$ are shown in Col. (2) since, "working backwards", at these values the fasteners will again become ineffective. These values of $\Delta(\delta_S - \delta_D)$ are obtained by subtracting the initial slop from the values in Col. (2) of Table AI.1. It is seen that fastener #4 is the limiting one, becoming ineffective before fastener #2 does.

- b. A second unit solution is then made in which $k_{F_{4}} = 0$ (and, hence, $P_{F_{4}} = 0$). The limiting value of $\Delta(\delta_{S} \delta_{D})_{2}$ is still .01648" since it has not yet reached this amount. The limiting value of $\Delta(\delta_{S} \delta_{D})_{4}$ is shown as .00732", the initial slop, since this represents a return to the original condition (before any loading) The value .00732" is from Col. (21) of Table AI.1. Actually, because of yielding, the value of $\Delta(\delta_{S} \delta_{D})_{n}$ can never reach its limit from Col. (2). Col. (7) through (1) are completed as shown, with fastener #2 now becoming ineffective.
- c. A third unit solution is made having $k_{F_2} = k_{F_4} = 0$. The limits for both $\Delta(\delta_S - \delta_D)_4$ and $\Delta(\delta_S - \delta_D)_2$ are now from Col. (21) of Table AI.1. The final results are shown in Col. (16).

The residual loads are obtained by superposition, subtracting the values of Col. (16) Table AI.2 from those in Col. (21) Table AI.1. It is seen that because of yielding at fastener #1, the "slop" at fastener #2 and #4 does not return to its original value of .005", but remains partially closed-up. Hence, any future analyses (having Q_{T} less than 44,205#, the allowable amount in this structure) would start from this basis. That is they would be simple elastic analyses made as in Table III.1 or III.2 but would have initial slop values included for the fasteners #2 and #4 of the amount

> $\Delta c_2 = .00500 - .00298 = .00202" (= <math>\Delta c_9$) $\Delta c_4 = .00500 - .00114 = .00386" (= <math>\Delta c_9$)

The analysis would be made as in Table AI.1, the limits in Col. (3) (8) etc. being either these "net slop" values or the values of Q applied. The results would then be added to the residual loads to obtain the final values, just as in Table III.7.

	8	NITH UNIT SOUTION			# 05	19		(beol :	bellaw stored	(Allo]		Γ.				
	Ð	N 80	22	ଷ୍ଡ • ଷ୍ମ		T		500 00 10 10 10 10 10 10 10 10 10 10 10 10 1	.œ146" 3,286	.00732" 571	29,103		AND SLOP	- (m)	-123°	,96200.	3 9 5 3 9 5	ន ង់ម
	8	FOURTH LONDING LONDING	44	©				1,277	.00743	.00233	5,000 9,480 9,480	TABLE AT.3	ADITO ON STATE AND SLOP	a)				
	9	POSSIBUL LIDUTIDU RATION	r'			h1 103,300, k2-ky 296,000		888 1 1 1 1 1	2.37	8°57 57°9	::			Ă	38	E	ee.	££E
	9	DIG LIDIT		e Mi		00, k2-		8888 1997 1997	: 8	8:8								
	9	POLICIE UNIT UNITION			TROM PA TROM	103. J		52.44 52.53 52.53 52.54 52.55 52.54 52.555	1,150	8.88 8.88 69	5,225			Γ	000		000	•••
	ଡ	Tous Sup	50	0 -0				29.765 5.173 5.173	2,178	38.00	10,012				1,205	0.850	.00616"	28,392
	9		40			8		306	.00162" 251	.00058 16	888 8882 8882				3505	.00200"	.00072	5,10% 5,10%
	⊕	POINT DIST	20	00-00 00-00 00-00		2992 -51	(1	00 1 62 1 00 1 62 1	1.2%	17.00	::		1 ABOVE	0-17-24	1.000	2.47	2.58	
	9	LINE COLUMN		2. T. C.	Pr Prov	0, 12-43	"Lop" 🛛 👫	14 89,49 89,80 89,80	8 4	8,88	11		TABLE AL	256,000, 1	11,205	-01120-	-00732	
buce and The states when here more fire to these	8			۲. ۲۵-۹ D	TAGK TABLEAR		a	18,033 1,623 1,623 1,623	1,492	.0345" 272	2,850		TYDER LITE THAT IS BY BUILDING BAR -	ti-tt3=tt5=	3,505	.00200		10.00
	9	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2d					\$288 \$286 \$286	1,927	.00442" 352	9,090 17,645		SAME EDUAD		10,780 10,780 10,780 10,780		0250	25,997 25,997
	9	SECON DICIONOL DICIONOL	20	ବ୍ୟ. ଦ				18,075 3,110 1,900	1,150	.00562" 210	т, 738 1738		I LONDS -		21,300 3,670	.00875*	.0311°	1,518
TE SUICE ANEXEMIC NO INCLUSION	0	POBSITIUM LIDGETDIO BATTON	22	<u>ଡ - ତ</u> ାବ୍ୟ. ଦାବ -			Î.	888	1.793	х. 23. 1.33	::		TANDURAL D	्र	1.000	98°.	1.370	
	0	Di COLONI CI		Sin O	Part Part	236,000	"e10p"	1 8888 8886	86	81.8	::		DETERMINED TO THE ALL'S	ty 256,001, ht	łt, 205	-01648-	.00732"	
	0	ALCOND ALCOND SOLUTION		42-46 40-46	TROM TABULAR AULITEDE	F1E3-E5	E4=0 (1.4.	8888 8888 8888		.0052°	23400			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2, 20 2, 270 2, 270	.01018" 1,583	0365	8,752
	ଭ	20 0 S	20	ତ			ĉ	8630 1798 0	8 E	_	20165		OBIFICH L		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1,118	2.20 2.20 2.20	1,195
	0	FILME LOWDING	Δ,	©			F 16 .00	8650 1790	ê E'	.00180"	2110		CALCULATION OF SUPERPOSITION LANDS FOR		19,400 1,200 1,200	_	465 000- 181 181	7,195
	0	POMATRIZ LIDUTING RAFICE	ř	୭			1 2 4 0 .	1.8 88	1.216	6.68	::		CULVETON		2°00	-937	.438	
	0	LIDGTDO UKNU UKNU		⁹ 1.Ĩn. ⁹ ©	Print Prok	256,000	lç=lt=0(1.e. "slop" @ #2 & #1 1s .005")	8888 1			::		- 1	_[-01648-	.0032	
	0	FIDET URIT BOLIFICH		а. 19	FROM Pr PROM	ST ST IT	1)0-11-21	84,800 9,262 9,262		800 171	38 19 8			h1k5- 256,000	889 1 - 4	.01760 2,615	1,355 .00539 118	16,388 21,811
	Θ	Mali						355		6(2:-5) (2:-5)	6£		ĺ	T		4	4(6.25)	£.5

AI.5 ACCOUNTING FOR SLOP AT ONE OR MORE FASTENERS IN A ROW OR GROUP

In Article III.5 and Figure III.9 the grouping of several fasteners in a row into a single larger effective fastener was discussed. If one or more fasteners in a row (or in a group of several rows) is in a "sloppy" hole and if the effect of this is to be evaluated, an additional refinement is required. This uses the principle of superposition of separate analyses as discussed elsewhere and illustrated in Art III.6 and AI.3. The steps are as follows:

- a. Assume the sloppy fasteners are "out" or ineffective. Then determine the effective k_p for the remaining fasteners in the group and carry out a unit analysis for the internal loads.
- b. Determine the increment of applied load, AQ, required to close up the first of any sloppy holes and let this fastener be then considered as fully effective. This increment is calculated as was done in Table AI.1
- c. Repeat steps a and b until the sum of the increments of the applied loading equal the true applied loading. Lue internal loads will be the sum of the various increments of internal loads obtained in the successive analyses (as in Table AI.1)

This can be quite an effort if there are numerous groups having varying amounts of slop within the group. In such cases it may be more desirable to simply omit one or more such fasteners from the entire group, assume the remaining ones to be "tight", and thereby avoid the above tedious analysis. This requires some engineering judgement, but it can in many cases be an adequate approach.

AI.6 DOUBLERS ON WIDE BASE STRUCTURES

Such cases would arise where it is necessary to reinforce a skin at a local (or small) area only. This could be due to local structural or loading conditions or cut-outs as discussed in Article AI.6. Such a case could also arise simply because an unrelated member (bracketry) is attached to a skin.

The basic approach has been suggested in Article III.9 However, the results of the tests of the specimen of Figure VII.8 and of separate calculations for "shear-lag" show that it is more reasonable to establish the individual diffusion lines as shown in Figure AI.1 not as in Figure III.15 or III.16.

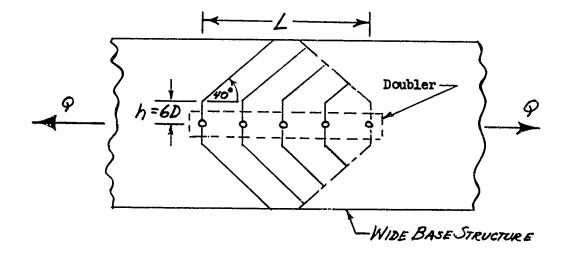
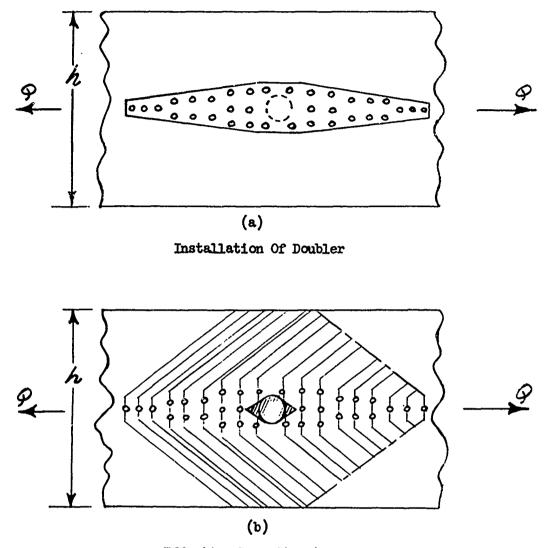


Figure AI.1 Diffusion Lines For Practical Analysis Purposes

That is, as would be expected the dimension h appears to be some function of the rivet diameter and the length L. This function is not known and would need considerable experimental and analytical work to be accurately defined. For purposes of preliminary engineering design the value h = 6D (D = FastenerDiameter) is arbitrarily suggested. The slope of the diffusion lines would also need further experimental effort to be accurately defined. However, the slope of 40°, or perhaps slightly less, seems to be reasonable for arbitrarily defining the effective width for preliminary design purposes. It should be remembered that these arbitrary diffusion lines are being used not to define the local stresses in the sheets, but rather to obtain a more realistic estimate of the fastener loads. There are two consequences here:

- a. If the diffusion lines are taken at too steep a slope (a 90° angle is equivalent to considering the base structure fully effective) the fastener loads and the doubler load will be over-estimated.
- b. If the diffusion lines are at too shallow an angle the fastener loads and the doubler load will be underestimated.

It is believed that the assumptions of Figure AI.1 give a reasonable compromise. The analyst can, of course, calculate "limiting" cases for a and b above using a lesser slope, say 25°, in b. Then, to be conservative, use a for checking out the doubler and the bearing stresses on the base structure and b for checking out the base structure in its critical area where load relief was originally required.


The predicted loads for Specimen I-E in Table VII.2 were computed assuming all of the base structure to be effective. That is, the suggested diffusion analysis was not made. Hence, it would be expected that the resulting test values of fastener loads and maximum doubler load would be smaller than the predicted values. This is what is seen in the table except at the end fastener, #1, where the test load is larger. It appears that this is partly due to some slop in fastener #2, which makes the results somewhat less clear as to the exact effect of the wide base structure and the associated diffusion effects. However, the total load developed in the doubler is seen to be considerably less in the test results than is predicted by assuming all of the base structure to be effective. This would be anticipated.

The suggested analysis for the case of wide base structures is admittedly arbitrary and much data is needed for making it more accurate. However, such structural arrangements do arise and the designer needs some practical rational procedure for estimating the internal loads for such cases. The suggested approach is made on this basis.

AI.7 DOUBLERS REINFORCING A CUT-OUT FOR AXIAL STRENGTH OR STIFFNESS

It may be necessary to install a doubler to provide either the strength or stiffness lost in a member because of the presence of a cut-out. (This should not be confused with the reinforcing of a hole from a shear strength or buckling consideration which is another problem). Two general cases are mentioned below. In either case the suggestions of Article VIII.4 and AI.6 apply. In the first case the doubler covers the hole. In the second case the doubler also has the hole.

- a. Doubler Covering the Hole
 - The effective edge of the base structure at the hole is arbitrarily defined by the lines having a 40° slope as shown in Figure AI.2b. These are drawn tangent to the cut-out. The cross-hatched width is ineffective.
 - (2) The base structure is then defined by these edges, (1) above, by the diffusion lines shown, and by the outer edges of the base structure if they lie within the diffusion lines (See Art. III. and VIII.4)
 - (3) An analysis is then carried out to determine the internal loads and the adequacy of the doubler installation as discussed in Article VIII.4.

Effective Base Structure

Figure AI.2 Solid Doubler Reinforcing A Cut-Out

- b. Doubler Having The Cut-Out Also
 - (1) The base structure would be defined as suggested previously.
 - (2) The effective edge of the doubler in the area of the hole would be defined by the 40° lines as shown in Figure AI.2b. That is, the effective edge of the doubler at the hole would be defined in the same manner as the base structure.
 - (3) The analysis would then be carried out as described previously.

APPENDIX II

REVERSED LOADINGS

The methods discussed in this report and the specimens tested have been for the case of loads applied in one direction only. The tests were all made for the simpler applied tension load. In practice, the loads may be in either direction.

The methods suggested should also be applicable for the case of successive applied loads that include load reversals. That is, both tensile and compressive loads may be applied in random order. The "bookkeeping" would be more involved, of course, for excursions into the plastic range, particularly when slop is present. However, the basic approach suggested in Appendix I, Article AI.3 could be used. Under the usual circumstances of having no available experimental loaddeflection data for "compressive" joint loads, it would be necessary to assume the compressive data to be identical to the tensile data. This is sketched in Figure AII.1 where (+) indicates tensile and (-) indicates compressive loads.

Figure AII.l Load-Derlection Curve for Reversed Loadings

Under a reversed loading (+ to -), the action could be assumed as follows:

1. Beginning at O, the tensile load causes movement as described by the line OA.

A STATE OF A STATE OF

- 2. When this load is removed, the line $A\delta_1$, is followed, leaving a permanent set, δ_1 .
- 3. When a compressive load is applied, the movement is assumed to be along the line $\delta_1 B$ which has the same slope as the "compressive" load deflection curve. Actually, it would be expected that this would not occur but that there would be a "transition region" for small values of load (-P) having a considerably lesser slope. This could be defined only by tests and would probably be s. function of the specific fastener and sheet combination.
- 4. When the compressive load is removed the movement would be defined by the line $B\delta_2$, to the permanent set δ_2 etc.

In most practical applications either the tensile or the compressive loadings would be dominant. That is, the reversed loading would be smaller and would not extend into the reversed plastic range. If it did a serious fatigue problem might be anticipated.

Thus, it is seen that attempting to account for the effects of reversed loadings is a difficult task, requiring even more experimental data that is not presently available. However, when the loads are in the elastic range no significant permanent set is generated and only the simpler analyses as in Tables III.1 and III.2 are necessary.

ないというないたい

APPENDIX III

ADDITIONAL COMPUTER ROUTINES

AIII.1 INTRODUCTION

The purpose of this appendix is to present additional routines that have been developed for specific installations. These are described below.

AIII.2 SPLICE ROUTINE

This routine has been discussed in Section IV and is presented in Figures AIII.l through AIII.3.

AIII.3 STACKED DOUBLER ROUTINE

This routine applies only to an installation having one extra (stacked) doubler. No provision is made to account for the effect of slop or plasticity. The routine is presented in Figures AIII.4 through AIII.6.

AIII.4 STACKED SPLICE ROUTINE

 This routine applies only to an installation having one extra (stacked) splice member. No provision is made to account for the effect of slop or plasticity. The routine is presented in Figures AIII.7 through AIII.9.

	CPLASTICSPLICE
	461_EORMAT(1H1,1X,8HXAL(I,1),2X,8HXAL(I,2),2X,8HXAL(I,3),2X,8HXAL(I,4)
	1.2X.8HXAL(1.5).2X.8HXAL(1.6))
-S.CCC2	
	1,3X, PHXKA(1,5), 3X, 8HXKA(1,6))
_\$.0003	
_S.0004	455_FORMAT(3X,2HXL,5X,3HXDT,3X,3HXHD,3X,3HXLU,5X,3HXTS,3X,3HXWS,4X,
	X2HX S+2X+3HXNR+2X+3HX00)
	455_EORMAI(1x,4+XED=,E9.0)
_S.CO06	457_EORMAT()X, 3HXN=,E6.C)
<u></u>	454_E0RHAT(/1X,4HPLA=,E6.0)
_S.nnn8	456_EORMAT(1X,4HXES=,E9.0)
_S.CC09	453_EORMAI(1H1,20X,6HSPLICE,1X,5HINPUT)
S.neir	<u>11_EORMAT(ER.5,E6.3,E6.2,E8.5,E6.2,E6.2,E6.2,E6.3,E6.2,E6.3,E4.0,E7.0)</u>
_ <u>S.CC11</u>	452_EORNAT(1X+4HCASE+1X+4HN0+=110)
_ <u></u>	451_EORMAI(//IX+13HCONEIGURATION+1X+4HNO+=+110)
_S.C013	275 EORMAT(//1X+37HEIRST EASTENER EATLURE AND TOTAL LCAD//)
_ <u>S.0C14</u>	450_E0RMAT(2110)
_ <u>S.0015</u>	496_ECRMAT(1X,3HSAY,1X,6HFELLCW,1H,4HTHIS,1X,7HPRCBLEM,1X,2H1S,1X,
	X3HJOO+1X,9HSENSIJIVE+1H++7HREGROUP+1X+9HFASTENERS)
5.0016	<u>17_EORMAI(28X+6HSPLICE+1X+5HJOINT+1X+3HANS/)</u>
5.0017	<u>15 FORMAT(1X,2HX7,2X,3HXNR,3X,3HXKA,7X,3HXPA,5X,3HXDL,6X,3HXKD</u>
	<u>1,6X,3HXQI,5X,3HXQB,8X,3HXXS</u>
_ <u>S.0018</u>	18_EORMAT(2E11.C)
	21_EORMAT(6E10.0)
\$.020	20_ECRMAT(6E11.0)
	14 FORMAT(F6.0)
5.0022	10 EORMAT(8E10.4)
5.0023	AST FORMAT(FIC. 2)
5.0024	16_EORMAT(E4.0.E4.0.E9.0.2E8.0.E11.0.2E8.0.E11.0)
5.0025	13 FORMAT(E7.0)
	DIMENSION_XKD(99),XKS(99)XKDD(99),XKSS(99),XISS(99)
<u></u>	DIMENSION_XL(99), XDT(99), XWD(99), XLK(99), XTS(99), XWS(99),
	1X51991, XNR (991, X00199), XLU(99), 7(991, X0K (99)
	DIMENSION_XKA(99,6),XD(99),XPE(99),XB(99),XT(99),XT0(99)
<u></u> <u></u> <u></u> <u></u>	INTEGER_XST.XZP.XMC.XC.XTT.XJH.XQ.RYT.PLA
_5.0030	MUBLE PRECISION XSD, XAS, XDS, XTDA, XR, XPA, XZA, XZB, XDLA, XDLE, XTD,
	1XQR . XR S . XR P . XDL . XAP (99) . XLD (99) . XAQ (99) . XAL (99,6) . XYZ . XP . XPR
_S.0031	1, XAW(99), XA2(99), XSSP(99)
S_0033	<u>NNP≈ XKP</u>
S_0034	
<u>S.0035</u>	95C CONTINUE
<u>S_0036</u>	WI=0.0
<u>S.C^37</u>	
S.0038	READ(5,45C) AA,AB
<u>S.0039</u>	<u>NKP=NKP+1</u>
5.0040	
S_0041	READ(5,14) PLA
S.0042	BEAD(5,18) XED, XES
	READ(5.14) XN

Figure AIII.1. Splice Program

5.0043	WRITE(6,453)
<u>S.0044</u>	WRITE(6.451) AA
5.0045	WRITE(6,452) AB
5.0046	hRITE(6,454) PLA
<u>S.0047</u>	WRITE(6,455)XED
5.0048	WRITE(6,456) XES
5.0049	WRITE(6.457) XN
5.0050	XIRP=1,0
5.0051	N= XN
5.0052	00 100 I=1.N
5.0053	X4H([)=0.0
S.0054	
5.0055	READ(5,10)(XL(1),XDT(1),XHD(1),XLU(1),XTS(1),XWS(1),XS(1),XNR(1),_
	XI=1.N)
5.0056	READ(5,897) (X0?(I),I=1.N)
5.0057	WRITE(6,459)
5.0058	WRITE(6,11) (XL(1),XDT(1),XbD(1),XLU(1),XTS(1),XWS(1),XS(1),
	1×NR(I), ×QC(I), I=1.N)
5.0059	READ(5.13) XOP
5.0060	WRITE(6,462) XOP
5.0061	00 195 I=1.N
5.0062	XKD([]=XDT([)*XWD(])*XED/XLU([)
5.0063	xKS(1)=XTS(1)*XHS(1)*XES/XLU(1)
5.0064	XLSS(I)=XS(I)
5.0065	XKSS(I)=XKS(I)
5.0066	XKDD(I)=XKD(I)
5.0067	XQK(I)=".C
5.0068	195 CONTINUE
S.CC69	XQI=XOP
5.0070	xTQ(N)=0.0
5.0071	GC_TC_979
5.0072	970 CONTINUE
5.0073	XQ[=-XTQ([)+XTQ(])/XYR*XQQK
5.0074	DO 1955 [=]+N
5.0075	xQr([)=-xQK([)
S.0076	×S(1)=×LSS(1)
5.0077	1055 CONTINUE
5.0078	PLA=C.0
5.0079	RYT=1.
5.0080	975 CONTINUE
5.0081	READ(5,20)(XKA(1,1), XKA(1,2),XKA(1,3),XKA(1,4),XKA(1,5),XKA(1,6)
	1.[=1.N)
S.0082	WRITE(6,460)
5.0083	WRITE(6,20)(XKA(1,1),XKA(1,2),XKA(1,3),XKA(1,4),XKA(1,5),
	1×KA([.6).[=1.N)
S-C084	READ(5,21)(XAL(1,1),XAL(1,2),XAL(1,3),XAL(1,4),XAL(1,5),XAL(1,6)
	1, [=1,N)
S.0085	WRITE(6.461)
5.0086	WRITE(6,21)(XAL(1,1),XAL(1,2),XAL(1,3),XAL(1,4),XAL(1,5),
ورجو والالتركي المحمور ومو	1XAL(1.6).I=1.N)
5.0087	X7P=0
مى بىلى ئۆرىخى «رەي يەر يەر يەر يەر يەر يەر يەر يەر يەر	

+

Figure AIII.1. Splice Program (Continued)

٢

Star Same

,

5.0088	X A = 0
5.0089	xP=0.00
5.0290	XAM=1.
5.0091	XTT=-1.
5.0092	x s t = 0
5.0093	xPR=0
5.0094	XIP=0
S.0095	
5.0096	[=]
5.0097	GO TO 43C
<u>S_0098</u>	40° CONTINUE
<u>S.0099</u>	
5.0100	WS=0.0
	IF(.9999-XP) 302,302,1798
S_0102	1798 CONTINUE
<u>S.0103</u>	IF(XP) 401-1302+401
<u>S.0104</u>	1302 CONTINUE
<u>S.0105</u>	IF(ABS(XQI)-ABS(XQP)) 4C1,3C2,4C1
5.0106	4C1 CONTINUE
<u>S_0107</u>	XCI=XOI*(1,-XP)
<u>S_0108</u>	00 1005 I=1.N
	xQC(1) = xQC(1) + (1 - xP)
<u>S.011C</u>	1905 CONTINUE
<u>S-0111</u>	458 CONTINUE
5,0112	x7P=0
<u> </u>	x y = 0
5.0114	$X \Delta N = 1$
5.0115	XTT=-1.
<u>S.0116</u>	XSI=-1.
S.0117	[E(XUT) 370.430.371
<u>S.0118</u>	371 CONTINUE
S.0119	J.J.J=7 K
S-0120	IE(Z(III)-6.) 840.840.598
5.0121	R40 CONTINUE
S.0122	[KA=XAL(III,JJJ+1)
<u></u>	IF(IKA) 999,995,368
<u>S.0124</u>	368 CONTINUE
Sc0125	XKA([!]]) = XKA([[]], JJJ+])
S.0126	$XAI(III_{0}I) = XAI(III_{0}III+1)$
<u>S.0127</u>	7(III)=7K+1.
<u>S-0128</u>	<u>GC TO 37C</u>
5.0129	995 [[=1]]
5.0130	<u>GO_TO_998</u>
<u></u>	37C CONTINUE
5.0132	J.J=YK
5.0133	<u>7(11)=YK+1</u>
<u>S-0134</u>	<u>IF(Z(II)-6.) 79,79,998</u>
<u>S. 0135</u>	79_CONTINUE
5.0126	IKS=XAL(II,JJ+1)
<u>S.0137</u>	IF(IKS) 999,998,429
<u></u>	429 CONTINUE
	XAL(II,J)=XAL(II,J)+)

<u>S.0140</u> XKA(11,J)=XKA(11,JJ+1) S.0141 43C CONTINUE	
•	
S_0142 [=]	
S.0143 XAED=XDT(1)*XWD(1)*XED	
S.0144 XAES=XTS(1) *XNS(1) *XES	
S.0147 45 [F(XZP) 183,180,181	
S.0148 181 XAM=.1	
S. C149 X.IM=1.	
S_0150 XTJ=1	
S.C152 GO TO 32	
S.0153 18C XAM=125.	
S.0154 XPA=XR+XAM	
S_0155 XTI=0	
S.0156 GC TO 32	
S.0157 183 IF(XMC) 186.185.184	
S.C158 194 XAM=. CC1	
$S_{\bullet}C159 \qquad \qquad XPA = XR + XAM \qquad \qquad$	
S.0160 XJM=0	· · · · · · · · · · · · · · · · · · ·
<u>S.0161</u> <u>GO_TO_32</u>	
S.C162 185 XAM=.00001	
<u>S.0163</u> <u>XPA=XR+XAM</u>	
<u>S.0164 XJM=-1.</u>	
S.0165 XQ=-1	
<u>S.C166 GO TO 32</u>	
S.C167 186 IF(XC) 187,188,189	
<u>S.C168 187 X4M=.C000001</u>	
<u>S.C170</u> XU=0	
S.C171 GO TO 32	
S.C172 188 XAM=.CCC000001	
<u> </u>	
S.0174 XQ=1.	
S. r175 GO TO 32	
S.Q176 199 CONTINUE	
S.0177 WRITE(6,496)	
<u>S. 178 GO TO 999</u>	
S.C179 51 IF(XTT) 31, 34, 33	
<u>S.0180 34 XAM=-5.</u>	
<u>S.0191</u> XPA=XR+XAM	ووجندانة الاورجينات
<u>S.0182</u> <u>XZP=1.</u>	
<u>S.0183</u> <u>GO TO 32</u>	
S.C184 33 IF(XJM) 37.36.35	
<u>S.0185</u> 35 XAM=01	
<u>S.0186</u> XPA=XR+XAM	
<u>S.CIA8</u> <u>XZP=-1.</u>	······································
<u>S.0189</u> <u>GC TO 32</u>	
<u>S.C190 36 XAM=0001</u>	

とうらいまいけた

•1

Sec. Sec.

USAN CONTRACTOR

1

Figure AIII.1. Splice Program (Continued)

٢

5.0191	XPA=XR+XAM
<u>\$.0192</u>	X+C=U
5.0193	GO TO 32
5.0194	37 [F(XO) 39.39.49
5.0195	38 XAM= (COCO)
5.0196	+• A= XR + XAM
<u>S_0197</u>	x0==1.
5,0198	XMC = - 1.
S_0199	GO TO 32
5.0200	39 XAM=+, CO00001
S.0201	$xPA = xR + xA^{M}$
S.G202	
S.0202	GO TO 3?
5.0204	4° XAM=00000001
S.0205	XPA=XR+XAM
5.0206	
S.0207	<u>G0 T0 32</u>
5.0208	31 X4N=-511C.
5.0209	XPA=XR+XAM
5.0210	32 XR=XPA
5.0211	1=1
<u>S.0212</u>	$\frac{1-1}{56 \times Z \Delta = X N R (1) * X P A / X K A (1 \cdot J)}$
5.0213	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
5.0214	X0LA=0
<u> </u>	<u>x7=9</u>
5.0216	
<u> </u>	
<u>5.0218</u>	
<u>S. 721'9</u>	<u>x TD=XZA</u>
5.0220	
<u>S.0271</u>	81 CONTINUE
<u> </u>	
<u>S. 723</u>	x ID=XID-XDS
<u> </u>	BC CONTINUE
<u>S.0225</u>	
<u>S.0226</u>	IF(XS(1+1)) 424,478,424
<u>S.r227</u>	424 CONTINUE
<u>S.0228</u>	<u>XSD≃C.C</u>
<u><u><u> </u></u></u>	
5.0230	IF(XLRP) 165,165,1001
<u>S. (231</u>	1001 CONTINUE
<u>S.0232</u>	IF(XZ-XN+1.) 561,165,165
<u></u>	561 CONTINUE
<u>S.0234</u>	XKDD(I)=XKD(I)
<u>S.0235</u>	XKSS([]=XKS([]
<u>\$.0236</u>	GO_IO_165
<u>S.0237</u>	428_CONTINUE
<u>S.0238</u>	<u>IF(I-1) 999,426,425</u>
<u></u>	425_CONTINUE
<u></u>	IF(XS(I)) 427,425,427
<u>S.C241</u>	427 CONTINUE
<u>S_0242</u>	XPA=C.O

Figure AIII.1. Splice Program (Continued)

5.0243	
n na manalatan Seria an	XKDD(I)=XKD(I)
<u>S.0244</u>	XKSS(1)=XKS(1)
<u>S.C245</u>	426 CONTINUE
S.024E	XPA=XAS*XKA(I,J)
	165_CONTINUE
<u>\$.0248</u>	XOLA=XOLA+XPA+XNR(1)
5.0249	x SD = x I DA / x K DO (I)
<u>S.C25C</u>	xQS=XL(I)+XQS
	XQI=XQS+XQI
<u>S_0252</u>	XQB=XQT-XDLA
5.0253	x3.S=XQB/XK5S(1)
5.0254	<u>×D S= XB S- X SD</u>
<u> </u>	<u>x7=x7+1.</u>
<u>S.0256</u>	IF(XST) 589,598,589
<u>S_^257</u>	598 XYR=XQS+XQP
5.0258	XQGK=XQS
5.0.269	589 CONTINUE
<u>S.026^</u>	<u>83 [F(XN-X7) 71,71,81</u>
<u>S.0261</u>	88 CONTINUE
	IE(DABS(XLD(1)-XQT)-1.) 72,72,857
	857 CONTINUE
5.0264	
<u>S.^265</u>	XDLA = XLD(1)
<u>S_0266</u>	$\frac{XR = XRP * XK\Lambda(I_{\bullet}J)}{ZR = XRP * XK\Lambda(I_{\bullet}J)}$
<u>S_0267</u>	
<u>S.C268</u>	X7B=X7A+(XDLA-XCTA) *(X7A-X7B)/(XCLB -XQTB-XDLA+XCTA)
<u> </u>	<u>XPA=XKA(I,J)*(X7B)</u>
<u>S.0270</u>	IF(X7B-X7A) 95,999,95
<u>S.0271</u>	<u>71 [=1</u>
<u>S.^272</u>	
<u>S.r273</u>	<u>IF(XQT) 233,999,238</u>
5.0274	233_IE(XDLA)_2005,2005,2006
<u>\$.0274</u> <u>\$.0275</u>	233 IE(XDLA) 2005,2005,2006 2006 GG TO 51
<u> </u>	233 IE(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDLA/XQI75) 51,53,2007
<u>S.0274</u> <u>S.0275</u> <u>S.0276</u> <u>S.0277</u>	233 IE(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDLA/XQI75) 51,53,2007 2007 IE(XDLA/XQI - 1.0) 53,53,49
<u>S.0274</u> <u>S.0275</u> <u>S.0276</u> <u>S.0277</u> <u>S.0278</u>	233 IE(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDLA/XQI75) 51,53,2007 2007 IE(XDLA/XQI - 1.0) 53,53,49 239 IE(XDLA) 2008,2009
<u>S.0274</u> <u>S.C275</u> <u>S.C276</u> <u>S.C277</u> <u>S.0278</u> <u>S.C279</u>	233 IE(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDLA/XQL75) 51,53,2007 2007 IE(XDLA/XQL - 1.0) 53,53,49 239 IE(XDLA) 2008,2009 2009 GC IO 49
S.0274 S.C275 S.C276 S.C276 S.C277 S.O278 S.C279 S.C280	233 IE(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDLA/XQL75) 51,53,2007 2007 IE(XDLA/XQL - 1.0) 53,53,49 239 IE(XDLA) 2008,2009 2009 GC IG 49 2009 IE(XDLA/XQL75) 49,53,2010
<u>S.0274</u> <u>S.C275</u> <u>S.C276</u> <u>S.C277</u> <u>S.0278</u> <u>S.C279</u> <u>S.C280</u> <u>S.C280</u> <u>S.C281</u>	233 IE(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDLA/XQI75) 51,53,2007 2007 IE(XDLA/XQI - 1.0) 53,53,49 239 IE(XDLA) 2006,2008,2009 2009 GC IG 49 2009 IE(XDLA/XQI75) 49,53,2010 2010 IE(XDLA/XQI - 1.0) 53,53,51
<u>S.0274</u> <u>S.C275</u> <u>S.C276</u> <u>S.C277</u> <u>S.0278</u> <u>S.C279</u> <u>S.C291</u> <u>S.0282</u>	$\begin{array}{r} 233 \text{IE(XDLA)} & 2005, 2005, 2006 \\ 2006 \text{GG} \text{IO} 51 \\ 2005 \text{IE(XDLA/XQL} = .75) 51, 53, 2007 \\ 2007 \text{IE(XDLA/XQL} = 1.0) 53, 53, 49 \\ 239 \text{IE(XDLA)} 2006, 2008, 2009 \\ 2009 \text{IE(XDLA)} 2006, 2008, 2009 \\ 2009 \text{IE(XDLA/XQL} = .75) 49, 53, 2010 \\ 2009 \text{IE(XDLA/XQL} = .75) 49, 53, 2010 \\ 2010 \text{IE(XDLA/XQL} = 1.0) 53, 53, 51 \\ 53 \text{CONTINUE} \end{array}$
S.0274 S.0275 S.0276 S.0277 S.0278 S.0279 S.0279 S.0280 S.0281 S.0282 S.0283	233 IE(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDLA/XQL = .75) 51,53,2007 2007 IE(XDLA/XQL = 1.0) 53,53,49 239 IE(XDLA) 2006,2008,2009 2009 GC IG 49 2009 IE(XDLA/XQL = .75) 49,53,2010 2010 IE(XDLA/XQL = .75) 49,53,2010 2010 IE(XDLA/XQL = 1.0) 53,53,51 53 CONTINUE XPA=XP+XAM/10.
<u>S.0274</u> <u>S.C275</u> <u>S.C276</u> <u>S.C277</u> <u>S.0278</u> <u>S.C279</u> <u>S.C280</u> <u>S.C281</u> <u>S.0282</u> <u>S.C283</u> <u>S.C283</u> <u>S.C284</u>	233 IE(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDLA/XQI75) 51,53,2007 2007 IE(XDLA/XQI - 1.0) 53,53,49 239 IE(XDLA) 2006,2008,2009 2009 GC IG 49 2009 IE(XDLA/XQI75) 49,53,2010 2010 IE(XDLA/XQI - 1.0) 53,53,51 53 CONTINUE XPA=XP+XAM/10. 124 X7B=XNR(1)+XPA/XKA(1.J)
<u>S.0274</u> <u>S.C275</u> <u>S.C276</u> <u>S.C277</u> <u>S.0278</u> <u>S.C279</u> <u>S.C280</u> <u>S.C281</u> <u>S.0282</u> <u>S.C283</u> <u>S.C284</u> <u>S.0285</u>	233 IE(XDLA) 2005,2005,2006 2006 GG IO 51 2005 IE(XDLA/XQL = .75) 51,53,2007 2007 IE(XDLA/XQL = 1.0) 53,53,49 239 IE(XDLA) 2006,2008 2009 GC TO 49 2009 IE(XDLA/XQL = .75) 49,53,2010 2010 IE(XDLA/XQL = .75) 49,53,2010 2010 IE(XDLA/XQL = 1.0) 53,53,51 53 CONTINUE XPA=XR+XAM/10. 124 X7B=XNR(1)*XPA/XKA(I,J) 55 XID=XZB
<u>S.0274</u> <u>S.0275</u> <u>S.0276</u> <u>S.0277</u> <u>S.0278</u> <u>S.0279</u> <u>S.0280</u> <u>S.0282</u> <u>S.0283</u> <u>S.0284</u> <u>S.0285</u> <u>S.0286</u>	233 IE(XDIA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDIA/XQI = .75) 51,53,2007 2007 IE(XDIA/XQI = 1.0) 53,53,49 239 IE(XDIA) 2006,2008,2009 2009 GC IG 49 2009 IE(XDIA/XQI = .75) 49,53,2010 2010 IE(XDIA/XQI = 1.0) 53,53,51 53 CONTINUE XPA=XR+XAM/10. 124 X7B=XNR(1)*XPA/XKA(I.J) 95 XID=XZB XR=XPA
<u>S.0274</u> <u>S.0275</u> <u>S.0276</u> <u>S.0277</u> <u>S.0278</u> <u>S.0279</u> <u>S.0280</u> <u>S.0280</u> <u>S.0282</u> <u>S.0284</u> <u>S.0285</u> <u>S.0286</u> <u>S.0287</u>	233 IE(XDIA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDIA/XQI = .75) 51,53,2007 2007 IE(XDIA/XQI = 1.0) 53,53,49 239 IE(XDIA) 2008,2008 2009 GC IG 49 2009 IE(XDIA/XQI = .75) 49,53,2010 2010 IE(XDLA/XQI = .75) 49,53,2010 2010 IE(XDLA/XQI = 1.0) 53,53,51 53 CONTINUE XPA=XP+XAM/10. 124 X7B=XNR(I)*XPA/XKA(I.J) 95 XID=X7B XR=XPA XDS=0
S.0274 S.0275 S.0276 S.0277 S.0278 S.0279 S.0279 S.0280 S.0281 S.0282 S.0283 S.0284 S.0286 S.0286 S.0286 S.0288	233 IE(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDLA/XQI = .75) 51,53,2007 2007 IE(XDLA/XQI = 1.0) 53,53,49 239 IE(XDLA) 2008,2009 2009 IE(XDLA/XQI = .75) 49,53,2010 2009 IE(XDLA/XQI = .75) 49,53,2010 2010 IE(XDLA/XQI = 1.0) 53,53,51 53 CONTINUE XPA=XR+XAM/10. 124 X7B=XNR(I)*XPA/XKA(I.J) 55 XID=X7B XR=XPA XDS=0 XDLB=0
S.0274 S.0275 S.0276 S.0277 S.0278 S.0279 S.0279 S.0280 S.0281 S.0282 S.0283 S.0284 S.0285 S.0286 S.0286 S.0288 S.0288 S.0288	233 IE(XDLA) 2005,2005,2006 2006 GG IO 51 2005 IE(XDLA/XQL75) 51,53,2007 2007 IE(XDLA/XQL - 1.0) 53,53,49 239 IE(XDLA) 2006,2008,2009 2009 IE(XDLA/XQL75) 49,53,2010 2010 IE(XDLA/XQL75) 49,53,2010 2010 IE(XDLA/XQL - 1.0) 53,53,51 53 CONTINUE XPA=XP+XAM/IO. 124 XZB=XNR(I)*XPA/XKA(I.J) 55 XID=XZB XR=XPA XDS=C XDLB=C XZ=0
S.0274 S.0275 S.0276 S.0277 S.0278 S.0279 S.0279 S.0280 S.0280 S.0282 S.0283 S.0284 S.0285 S.0285 S.0286 S.0286 S.0287 S.0288 S.0288 S.0289 S.0289	233 IF(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IF(XDLA/XQI = .75) 51,53,2007 2007 IF(XDLA/XQI = 1.0) 53,53,49 239 IF(XDLA) 2006,2008,2009 2009 GC IG 49 2009 IF(XDLA/XQI = .75) 49,53,2010 2010 IF(XDLA/XQI = 1.0) 53,53,51 53 CONTINUE XPA=XP+XAM/IC. 124 X7B=XNR(I)+XPA/XKA(I.J) 55 XID=XZB XR=XPA XDS=C XDLB=C XQS=0
S.0274 S.0275 S.0275 S.0277 S.0278 S.0279 S.0279 S.0280 S.0282 S.0282 S.0283 S.0285 S.0285 S.0285 S.0285 S.0286 S.0286 S.0288 S.0288 S.0289 S.0289 S.0289 S.0290 S.0291	233 IE(XDLA) 2005,2005,2006 2006 GO IO 51 2005 IE(XDLA/XQI75) 51,53,2007 2007 IE(XDLA/XQI - 1.0) 53,53,49 239 IE(XDLA) 200E,2008,2009 2009 IE(XDLA/XQI75) 49,53,2010 2010 IE(XDLA/XQI75) 49,53,2010 2010 IE(XDLA/XQI - 1.0) 53,53,51 53 CONTINUE XPA=XP+XAM/10. 124 X7B=XNR(1)*XPA/XKA(I.J) 95 XID=X7B XR=XPA XDS=0 XDLB=0 XZ=0 XQS=0 GO ID 84
S.0274 S.0275 S.0276 S.0277 S.0278 S.0278 S.0279 S.0280 S.0280 S.0282 S.0282 S.0284 S.0285 S.0286 S.0286 S.0286 S.0286 S.0288 S.0289 S.0289 S.0289 S.0289 S.0292	233 IE(XDLA) 2005,2005,2006 2006 GG IG 51 2005 IE(XDLA/XQI75) 51,53,2007 2007 IE(XDLA/XQI - 1.0) 53,53,49 239 IE(XDLA) 2006,2008,2009 2009 GC IG 49 2009 IE(XDLA/XQI75) 49,53,2010 2010 IE(XDLA/XQI - 1.0) 53,53,51 53 CONTINUE XPA=XP+XAM/10. 124 X7B=XNR(1)*XPA/XKA(I.J) 55 XID=X7B XR=XPA XDS=0 XDLB=0 XQS=0 GO ID 64 P5 CONTINUE
S.0274 S.0275 S.0275 S.0277 S.0278 S.0279 S.0279 S.0280 S.0282 S.0282 S.0283 S.0285 S.0285 S.0285 S.0285 S.0286 S.0286 S.0288 S.0288 S.0289 S.0289 S.0289 S.0290 S.0291	233 IE(XDLA) 2005,2005,2006 2006 GO IO 51 2005 IE(XDLA/XQI75) 51,53,2007 2007 IE(XDLA/XQI - 1.0) 53,53,49 239 IE(XDLA) 200E,2008,2009 2009 IE(XDLA/XQI75) 49,53,2010 2010 IE(XDLA/XQI75) 49,53,2010 2010 IE(XDLA/XQI - 1.0) 53,53,51 53 CONTINUE XPA=XP+XAM/10. 124 X7B=XNR(1)*XPA/XKA(I.J) 95 XID=X7B XR=XPA XDS=0 XDLB=0 XZ=0 XQS=0 GO ID 84

5,0295	XAS=XTD
5.0296	IF(XS(I)) 419.418.419
<u>S.</u> C297	419 CONTINUE
<u>S.0299</u>	x S S P (L) = X T D
<u>S.0295</u>	<u>9_92X</u>
<u>S.C30C</u>	XPA=0, (
5.0301	<u>GC TO 265</u>
<u>S.0302</u>	418 CONTINUE
5.0303	<u>xPA=XAS*XKA(I,J)</u>
<u>S.0304</u>	265_CONTINUE
5.0305	XDLB=XDLB+XPA+XNR(I)
<u>S.0306</u>	XSD=XDLB/XKDD(I)
5,0207	xQS=XL(I)*XQ?(I)+XQS
5.0378	xQT=XQS+XCI
5.0309	XQB=XQT-XDLB
5.0310	xBS = xOB / XKSS(1)
5.0311	xDS = xBS - xSD
5.0312	xZ=XZ+1.
5.0313	87 CONTINUE
<u>S.0314</u>	IF(XN-X7) 104,104,85
S.0315	104 CONTINUE
5.0216	XQTB=XCT
5.0317	XPR=0
5.0318	x7=?
5.0219	[=]
5.0320	$XLD(1) \neq 0$
5.0271	XQS=0
5.0322	XD S=0
5.0323	XY=0
5.0224	XP I = 0
5.0325	XVF=XP
5.0276	xuī=0
S.0327	xo=0.0
5-0328	$\frac{131 \times TD = XZB + (XDLB - XGTB) + (XZB - XZA) / (XDLA - XGTA - XDLB + XQTB)}{131 \times TD = XZB + (XDLB - XGTB) + (XZB - XZA) / (XDLA - XGTA - XDLB + XQTB)}$
5.0329	
5.0330	122 XRP=XTDA
S.0331	
<u>S.0332</u>	74 CONTINUE
S.0333	
5.0334	x TD= X TD- XD S
<u>S.0335</u>	<u>PE CONTINUE</u>
5.0236	
5.0237	IF(XS(T)) 4C9.4C8.4C9
S.0238	4°S CONTINUE
<u> </u>	
<u>S.0340</u>	$\frac{x_{\text{SSP}}(1) = x_{\text{D}}}{x_{\text{SSP}}(1) = x_{\text{D}}}$
<u>S.0241</u>	$w_{I} = (DABS(XTD) - XS(I)) / DABS(XTD)$
S.0342	IF(WI) 285.390.390
	385_CONTINUE
<u>S.0343</u>	
<u>S.C344</u> S.0345	<u>GC TO 332</u>
<u>Del1345</u>	00 10 32

176

STATES IN

5.0346	390 CONTINUE
5.0247	WT=ABS(WT)
5.0348	[F(WT-XP) 232,374,375
5.1240	375 XP=WT
5.0350	
S.0351	GO TO 332
5.0252	374 CONTINUE
S.0353	
S.0254	GC TO 332
S.r355	408 CONTINUE
S.0356	$XAP(I) = XAS * XKA(I \cdot J)$
S.0357	$\frac{x_{A1}(1) = x_{D2}}{x_{A2}(1) = x_{D2}}$
S.0358	IF(RYT) 648.648.331
S.C359	648 CONTINUE
	IF(XST)_937,909,999
	9C9_CONTINE
<u>S.n.362</u>	
	937_CONTINUE
	$\frac{337}{XYZ} = XAL(1,1) - ABS(XPE(1))$
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
	$= 3^{6} \text{WI} = DABS(XY7/XAP(1))$
<u>S.C368</u>	
<u></u>	hT=1hT IE(_WT-bS)_231.3C5.3C8
<u>S.C.37C</u>	
<u></u>	<u>3^9_CONTINUE</u>
<u>S.c372</u>	
<u></u>	
<u></u> <u>S_0374</u>	XUT=1
	<u></u>
<u>S_C376</u>	
<u>S.C377</u>	$X_{1}^{+} = 1$
<u>S.C378</u>	XPI=1.
<u>S_0380</u>	$\frac{XP = DABS(XYZ / XAP(I))}{2}$
	$\frac{XP=1-XP}{2P}$
<u></u> <u>S_0301</u>	<u>GC_/IO_332</u>
<u>S.0382</u>	331 CENTINUE
<u></u> <u></u> <u></u>	<u>332 IF(I-1) 750,775,750</u>
<u> </u>	$\frac{775 \text{ XLD(I)} = \text{XAP(I)} * \text{XNP(I)}}{220000000000000000000000000000000000$
<u> </u>	
<u></u>	$\frac{75^{\circ} \times LD(I) = \times LD(I-1) + \times \Delta P(I) + \times NR(I)}{200 \times CRNTINUS}$
<u></u> <u></u> <u></u> <u></u> <u></u>	<u>ACC CONTINUE</u>
<u>S_C388</u>	
<u>S_0389</u>	<u>XQS=XL(I)*XQ?(I)+XQS</u>
<u> </u>	
<u>S.C391</u>	$\frac{XBQ(I) = XQI - XID(I)}{XBQ(I) + XDQ(I)}$
<u> </u>	<u>xBS=XBQ(1)/XKSS(1)</u>
<u></u>	<u>xD S= XB S= X SD</u>
<u> </u>	<u>X7=X7+1</u>
<u></u> <u>S_^295</u>	42° IE(XN-XZ) 102,102,74
<u></u> <u></u> <u></u> <u></u>	1C2 CONTINUE
<u>S.r397</u>	421 XQTA=XQT

2

5.25

F

<u>S.C398</u>	IF(DABS(XLD(L) - XQT) - CABS(.91*XAP(L))) 72.72.88
5.0399	
5.0400	IF(XS(II)+1000.) 481.482.481
5.0401	491 CONTINUE
5.0407	$\gamma_{2} = \gamma_{1} = \gamma_{2} = \gamma_{1}$
5,0403	XI.T=0.0
5:0404	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
5.0405	xKCD(II) = xKD(II)
5.0406	×KSS(11)=×KS(11)
5.0407	IF(II-1) 479,462,479
5.0408	479 CONTINUE
5.0400	XKCD([]-1)=XKD(]]-1)
5.0410	XKSS(11-1)=XK((11-1)
5.0411	482 CONTINUE
5.2412	IF(XS(111)*1000.) 515.422.515
5.0412	515 CONTINUE
5.0414	XS([[])=1, r
5,7415	x SSP(III) = 0, 0
5.0416	XKCU(111)=XKD(111)
5.0417	xKSS(ILI)=XKS(ILI)
5.0418	XKDD(III-1)=XKD(III-1)
5.1419	xKSS(III-1)=XKS(III-1)
5.0420	422 CONTINUE
<u>S_0421</u>	XP=1XP
<u>S.C422</u>	DC 1000 I=1.N
5.0423	xS(1)=xS(1)-DABS(xSSP(1)*xP)
5.0474	ICCC CONTINUE
<u>S. 6425</u>	<u>IF(RYT) 70,70,355</u>
<u>S.r426</u>	<u>7C CCNJINUE</u>
<u>S.0427</u>	IF(XP) 359, 300, 350
<u>S,r.428</u>	3(C XP=1.
<u>S.r429</u>	355 CONTINUE
<u>S.^43^</u>	
5.0431	X7=1.
<u>S. n43?</u>	IF(XST) 737,777,99
<u>S.0433</u>	77 CONTINUE
<u>S.r434</u>	IF(RYT) 7C8,7C8,737
5.0435	7CA CONTINUE
<u>S.0436</u>	<u>GC TO 736</u>
<u> </u>	725 <u>I=I+1</u>
<u>S.0438</u>	736 CONTINUE
<u>S. r439</u>	<u> </u>
<u>S.r44</u> 0	
<u>S. 7441</u>	
<u>S.0442</u>	<u>xpf(1)=0</u>
<u>S.r443</u>	$\frac{1F(N-1) 999,734,735}{724,125}$
<u>S.0444</u>	
<u>S.~445</u>	<u>GO TO 737</u>
5.0444	65 CONTINUE
<u> </u>	
<u>\$.0448</u>	$\frac{XZ = XZ + 1}{ZZ = CONTIANS}$
5.0449	737 CONTINUE

6 0/50	v(v(t)) = v(0)(t) + v(0)(t)
<u>S.0450</u>	$\frac{x_0K(1) = x_0^{-}(1) + x_P + x_0K(1)}{x_0E(1) + x_0E(1)}$
<u>S.r451</u>	$\frac{xPF(1)=xP*xAP(1)+xPF(1)}{xP(1)+xP(1)}$
5,0452	$\frac{\text{XD}(1) = \text{XLD}(1) + \text{XP} + \text{XD}(1)}{\text{XD}(1) + \text{XD}(1)}$
<u> </u>	$\frac{xB(1) = xRC(1) + xP + xB(1)}{xEC(1) + xP + xB(1) + xEC(1)}$
5.0454	$\frac{x \tau_{Q}(I) = (x B_Q(I) + x L_Q(I)) * x P + x \tau_{Q}(I)}{x P + x \tau_{Q}(I)}$
<u>S.C455</u>	$\frac{xBO(1) = xTO(1) - xD(1)}{xBO(1) - xD(1)}$
<u> </u>	$\frac{X[RP=0,0]}{X[RP=0,0]}$
<u>S.^457</u>	IF(XN-XZ) 301,65
<u>S.C459</u>	<u>C1 CONTINUE</u>
<u>S.^459</u>	<u>IF(RYT) 485,485,486</u>
<u>S.r46r</u>	486 CONTINUE
<u>S.r461</u>	
<u>S.0462</u>	IF(ITQ) 400,302,400
<u>S.0463</u>	485 CONTINUE
<u>S.0464</u>	I Y F = X Y R
<u>S.C465</u>	
<u>S.C466</u>	711 CONTINUE
<u>S.0467</u>	$\frac{1F(1YR-1YG)}{505,302,400}$
<u>S.r46</u> R	505 ABC=IABS(IYP-ITQ)
<u>S.r469</u>	IF(ABC-,00001 #XYR) 302,302,305
5.0470	<u>302 I=1</u>
<u>S.r471</u>	
<u>S.^472</u>	SSP CONTINUE
<u>S.r473</u>	
<u>S.0474</u>	<u>WRITE(6,279)</u>
<u>S.1475</u>	$\frac{\text{WRITE}(\mathcal{E}, \mathbb{P}) \times \mathbb{I} \times \text{TO}(\mathbb{I})}{\mathbb{P}^{2}}$
<u>S.0476</u>	<u>GO TO 302</u>
<u>S.^477</u>	<u>303 [=1+]</u>
<u>S. °478</u>	<u>XZ=XZ+1.</u>
<u>S.C479</u>	<u>GO TO 410</u> 3°4 WRITE(6.17)
<u>S.0480</u>	
5.0481	<u>WRITE(6,19)</u>
<u>S.0482</u>	XZ=1. 41° CONTINUE
<u>S.C482</u> S.C494	WP ITE(6,16) XZ, XNR(1), XKA(1, J), XPF(1), XO(1), XKD(1), XTQ(
	1xB(1), xKS(1)
5.0495	IF(XN-X7) 999,999,303
<u>S.0486</u>	3C5 XP = (XYR - XTC(1)) / XYR
<u>S.C487</u>	
5.0488	
S.CARG	<u>60 T0 737</u>
<u>S_C490</u>	S99 CONTINUE
<u>S_0691</u>	IF(PLA) 580,980,970
<u>S_^492</u>	SAC_CONTINUE
<u></u> <u>S_^493</u>	LE(NKP-NNP) 950.951.951
<u>S_C494</u>	SET CONTINUE
<u>S.C495</u>	STCP
<u></u>	<u>END</u>
مىسى بەيىرىغىلىلىمىڭ «««» خو «سەيىسى»».	

Figure AIII.1. Splice Program (Concluded)

179

¥,Q

	3			······································		

	. 10300000.	ويرجع والمناطقة فتكر مناكر والمساوية والمساوية والمراجع والمناطقة والمراجع والمساوية				
0						
1.0	<u>\$072</u>	<u>1,• 38</u>	1.0	102	2.88	
			1.0	.102	88	
			1.0		288	
	0.7.2	1.38	1.0-	.102	2.38	
	<u>07.2</u> :	1.38	1.0	<u>102</u>	2,88	
10	.072	<u>139</u>	1.0	102	2.53	.301
		<u>1,38</u>	_1.0	<u>107</u>	2.85	
<u> </u>	0.7.2	1,38	1.0	.102	2.88	
<u> </u>	072	1.38	1.0	1.02	2.88	
<u> 1.0 </u>		<u>1.38</u>	1.0	.102	2.88	<u> </u>
	072		1.0	.102	2.88	001
0	072	1,38	1.0	.102	2.38	.0.01
0		1.38	1.0	.102	2.88	
1.0	072	1.38	1.0	102	2_88	001
1.0	.072	1.38	1.0	.102	2.88	
	0.72	138	1.0	•102	2.38	.0.01
1.0	6.72	1.38	1.0	.102	2.88	•001
_1.0	072	1.38	1.0	.102	2.88	.001
<u>1</u> .0	072	1.38	1.0	.102	2.88	.0.01
1.0		1.38	1.0	10?	2.88	.001
_0_0						
0_0			<u> </u>			
0_0						
0.0						
- 0.0	,			4.5		
0.0						
_0_0_						
0.0						
0:0						
		· · · · · · · · · · · · · · · · · · ·				
0.0				· · · · · · · · · · · · · · · · · · ·		
0.0						
0.0		· · · · · · · · · · · · · · · · · · ·				
0.0 0.0 0.0 0.0 0.0	······································					
0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0.						
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			· · · · · · · · · · · · · · · · · · ·			
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			· · · · · ·			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
0.0. 0.0.	1056004	69/40-	32007-	192	200	12900
0.0. 0.0.	105600. 105600.		32003.	192	200.	12900.
0.0. 0.0.	1.05600	6070(32000	193	:00 .	12200.
0.0. 0.0.	105600. 105600. 105600. 105600.			<u> 193</u> 193	200 • 200 • 200 • 200 •	12900. 12900. 12900. 12900.

Figure AIII.2 Splice Program Input Data

 \rangle

2

180

1

5.4

うろうろ

117500.	105600.	69700.	32000.	19200%	1:2900.
117500.	105600.	6970 0 .		19200.	
117500	105600.	69700.	32000.	19200.	12900.
117300.	105600.	697.00	32000.	<u>19200</u> .	12900.
117500.	105600.	60700.	32000.	19200.	12900.
117500.	105600.	6.9700.	32000.	19200.	12900.
117500.	105600.	69700.	.32000.	.19200'.	12900.
117500.	105600.	69700.	.32000.	19200.	
117500.	105600.	69700%	32000.	19200.	12900:
117500.	105600.	69700.	32000.	<u> </u>	12900.
117500.	105600	69700	32000.	19200	12900
117500	105600	69700	32000		
117500.	105600.	69700.	32000.		
117500.	105600.	5970C.	" 32000.	19200.	
117500.	105620.	6970(.	32000.	19200.	12900.
750.	1125.	1390.	1550.	16/0.	1750.
750.	1125.	1390.	1550.	1610.	1750
750•	1125.	1390.	1550.	1670.	1750.
750.	1125.	1390.	1550.	1670.	1750.
750.	1125.	1390.	1550.	1670.	1750•
750.	1125.	1390.	1550.	1670.	1750.
750.	1125.	1390.	1550.	1670.	1750
750.	1125.	1390.	1550.		1750.
750.	1125.	1390.	1550.		1750•
750.	<u>1125.</u>	1390.	1550.		1750.
750.	1125.	1390.	1550.		1.750
750.	1125.	1390 €	1550.		1750
750.	1125.	1390.	1550.		1750•
750.	1125.	1390.	1550.		1750.
750.	1125.	<u>`1390</u>	1550.		1750.
750.	1125.	1390.	1550.		1750.
750.	1125.	1390.	1550.		1750.
750.	1125.	1390.	1550.	1670.	1750.
750.	1125.	1390.	1550.	1670.	1750•
750.	1125.	1390.	1550.	1670:	1750.
117500					
117500.		<u>.</u>			<u> </u>
117500.					
117500.					
117500.			·	······································	
117500.					
117500	, <u></u> ,,		, , , , , , , , , , , , , , , , , , , ,		
<u>117500</u>	<u> </u>				······
117500.	· · · · · · · · · · · · · · · · · · ·				
117500	i	······	·····		
117500	``				
117500			······································	······	
117500			<u>`````````````````````````````````````</u>		
117500		•		At 7	······································
117500					······································

ł.

.

ł

" ... States - " Sec. M. "

A.

Same and an and a second

Figure AIII.2 Splice Program Input Data (Concluded)

		1	
<u>~ 117500.</u>			
<u>1°17500</u>			
117500		1	
117500.		ļ	
10000		<u> </u>	
10000	· · · · · · · · · · · · · · · · · · ·		
10000			-
10000			
10000.	<u> </u>		
10000			
10000.		v	
10000		· · · ·	
10000.			
10000			
10000.		<u> </u>	* **
10000.		······	· · · · · · · · · · · · · · · · · · ·
10000	<u> </u>		
10000			
10000	· · · ·	*	
. 10000.			
10000.	1		····
10000	1		
10000	1		
10000	Ŷ.		

Figure AIII.3 Splice Program Output Data

SPLICE INPLT

CUNFIGURATION NG.= 100000 CASE NU.= 3000000

04.4-	· · · · · · · · · · · · · · · · · · ·				ىيە بورىلىرى تتورىنى		`			
PLA=	1.							`		
XED=103		<u></u>								
XES=1C3		·							,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
and the second s	U•			1						
<u> </u>	XCT	AWU	ALU	ATS	XAS	ÂS	ANR	<u>_x:20</u>	-	والمحمد ومسور بسر يثبعو
i. (C(CC	0.012	1.38	1.66660	and the second se		U.100	Lie.	<u> </u>		
1.00000	0.072	1.38	1.00000	C.102	2.88	0.100	1.	0,•		
1.0000	<u>C.C72</u>	1.38	1.0000	C.102	2.88	0.001	<u> </u>	. 0.		
1.0000	0.072	1.38	1.66660	<u>0.102</u>	2.88	0.001	1.	. U •	<u>~/</u>	
1.00000	0.072	1.38	1.00000	0.102	2.88	0.001	1.	0.	**	
1.2.66	6.172	1.38	1.00000	C.102	2.88	C+001	1.	0.		
12 COCC.)	0.072	1.38	1.00000	C.102	2.88	0.001	1.	υ.		
1.0000	0.072	1.30	1.00000	0.102	2.88	0.001	1.	0.		
1.((U.L72	1:+38	1.00000	0.102	2.88	0.	1.	0.		
1.0000	6.672	1.38	1.0000	0.102	2.88	0.	1.	0.		
1.0000	0.012	1.30	1.00000	0.102	2.00	0.001	1,0	0.		-
1.LLLU	0.072	1.38	1.00000	C.102	2.88	0.001	1.	Ú.		
1.0000	·U.C72	1.38	1.00000	0.102	2.88	0.001	1.	0.	· · · · · · · · · · · · · · · · · · ·	
1.0000	0.072	1.30	1.00000	.V.102	2.80	*G.001.	1.	V.		
1.00000	0.072	1.38	1.00000	C.102	2.86	0.001	1.	. Or.		
LOLLUU	0.172	1.38	1	.6.102	2.88	0.001	1.	V		~
1.00000	0.072	1.38	1.0000	0.102	2.88	0.001	1.	0.,		
1.0000	0.072	1.38	1.00000	0.102	2.88	0.001	1.		1	
LOULLUN	U.172	1.38	1.6600	U.102	2.88	0.001	<u> </u>	· U.		
1.00000	V.C72	1.38	1.0000	0.102	2.88	0:001	1.	0.		
									٠.	-
	·····		·····			*			<u></u>	مان البير الكرين والم عند البريسان
XQ 1= 18	0004		·							
			· ·					<u></u>	. ويتعلقون فتهيوا ويتو ويشيون ا	

XKA(1,1)	XKA(1+2)	XKA(1,3)	XKA(1.4)	XKA(1.5)	XKA(1.6)
117500	105600.	6970C.	32000.	19200.	12400.
117500.	" LUSELL.	697LL.	32000.	19200.	12965.
111500	165600.	69100.	32000.	19200.	12900.
117500.	105660.	69700.	32000.	19200.	12900.
117500.	105600.	<u>697CC.</u>	32000.	19200.	12900.
117500.	105600.	69700°.	32000.	19200.	12400.
111566.	1.5000.	<u>69700.</u>	32000.	19200.	12900.
117500.	105600.	69766.	32000.	19200.	12900.
11/500.	105600.	6910C.	32000.	19200.	12900.
117500.	105600-	69700.	32000.	. 19200.	12900.
117500.	1656062	··· 6970C.	32006.	19200.	12900.
117500.	105600.	69700.	32000.	19200.	12900%
117500.	105600.	6970C.	32000.	19200.	12900.

Figure AIII.3 Splice Program Output Data (Continued)

١

「東日常長」ない

「夏湯」え

A STATE

ritaut.	Luscul.	69706.	32000	19	200. 12	900.
117500.	105600.					900.
And the Party of t	المحادثة المحاكية والأستان والمتحدث والمحاج والمحاجي ويأبي		Contraction of the local division of the loc		and the second se	900.
117560.	10500.		والمتحديق والمتحد والمتحد والمتحد والمحدي المتهي	_	the second s	2900.
<u>11/1266 -</u>	iuseuc.					900.
117500.	105600.		ويتعاد والمتكري والمتحدث			2900
117500.	105600.					
117500.	105t00.	69700	. 32000	19.	200. 12	2900.
				<u>.</u>		<u></u>
AAL(1,1)	AAL (1,2)			(AL(1:5)	XALII:61	
1:50 •	1125.	1390.	1550.	1676.	1750.	
750%	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1/50.	· · · · · · · · · · · · · · · · · · ·
156.	1125	1390.	1550.	1670.	1750.	
750.	1125. '	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	17,50.	
750.	1125.	1390.	1550.	1670.	1750.	
/ 150.	1125.	1390.	1550.	1610.	1750.	
75,0,•	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	
/50.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1390.	1550.	1670.	1750.	`
750.	1125.	1390.	1550.	1670.	1750.	· · · · · · · · · · · · · · · · · · ·
150.	1125.	1390.	1550.	1676.	1750.	·
750.	1125.	1390.	1550.	1670.	1750.	·····
.756.	1125.	1390.	1550.	1670.	1.750	, in the second s
750.	1125.	1390.	1550.	1670.	1750.	
750.	1125.	1340.	1550.	1670.	1750.	
750%	1125.	1390.	1556.	1670.	1750.	
750.	1125.	139,0.	1550:	1670.	1750.	
<u>, , , , , , , , , , , , , , , , , , , </u>		137,0+	10000	.1010.	1190+	·

FIRST FASTENER FAILURE AND TUTAL LOAD

	<u>.</u>	U., <u>144</u>	122.	N 3.5 4	<u></u>			
				SPLICE	JUINT ANS	,		
AL_	ANK.	AKA	<u>xpa</u>	XOL	XKD	XQT	XQB	XKS
<u> </u>	1.	117500.	C è	. C.,	1023408.	11422.	11422.	3025728.
2.	1.	117500%	0.	0.	1023408.	11422.	11422.	3025728.
3.	1.	105600.	534.	934.	1023408.	11422.	10487.	3025728.
4.	1.	117500.	,649.	1583.	1023408.	11422.	9839.	3025728.
5.	1.	117500.	. 441.	2024.	1123408.	11422.	9398.	3025728.
0.	1.	117500.	300.	2324.	1023408.	11422.	9097.	3025728.
7.	1.	117500.	.204.	2528.	1023408.	11422.	8894.	3025728.
٥.	1.	117500.	137.	2605.	1623408.	11422.	8757.	3025728.
9.	1.	117500.	2045	2069.	1023408.	11422.	8552.	3025/28.
10.	.1.	117500.	202.	3072.	1023408.	11422.	8351.	3025728.
11.	1.	117506-	124.	3195.	1023408.	11422.	8226.	3025728.
12.	1.	L11500.	102.	3371.	1023408.	11422.	6044.	3025720.
13.	1.	117500.	206.	3043.	1023408.	11422.	7779.	3025728.
14.	1.	117500.	390.	4033.	1023408.	11422.	7389	3025728.
15.	3.	11/500.	573.	4606.	1023408.	11422.	6816 .	3025728.
10.	1.	165000.	834.	5439.	1023408.	11422.	\$982.	3025728.
17.	1.	69100.	1165.	6066.	1020408.	11422.	4814.	3025728.

Figure AIII.3 Splice Program Output Data (Continued)

.

18.	1.	32000. 1	446.	8054.	16234	08.	11422-		50.	- 3025	728.
19.	1.	15200.	618.	9072.	10234	00.	11422.	14	50.		120.
20.	1.	12500. 1	750. 1	14220	16234	vð.	11422.		<u>.</u>	302	125.
AKA	[],])	<u></u>	~KAL	ردها			XKAL I .	51	XKALL	•64	
	liouu.	-(-i.		-0.		-0.	1.741.7	-0.	•
	17000.					-0.		-0.		-0.	- X
	17200.	- (•	- C .		-0.		-0.		-0.	
	17560.	-0	•	-C'.		<u>-</u> 0.	• • • • • • • • • • • • • • • • • • •	-0.	-	-0.	
1	17500.	-0		-C.		-0.		-0.	• •	-0.	
1	17500.	0	•	-0.		-0.		-0.		-0.	* .
1	17566.	- (•-	-C.		-0.		-0.	and salayan see a	-0.	A 🖷 🖌
1	1560.	-0	•	-0.		-U.		-J.		ົ 🚽 🖓 🖡	
1	17500.	70	•	-C.		-0.		-0.		-0.	
ì.	17500.	-0	•	-0.		-0.		-0.		-Ú.	
1	11500.	- C	•	<u>-L.</u>		-U.		-J.		-1.	
1	17506.	-0		-0.		-0.		-0.		-0.	
1	17566.	<u> </u>	•		and the set of the set of the set	-1.		-0.		-0.	
No. 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	17500.	-0	and the party of the local data of the	<u> </u>		-0.		-0.		-0.	
· · · · · · · · · · · · · · · · · · ·	17200.	-0		-0.	ر رود ما کور بر منا وردانگارین در او و	-0.		-0.		-0.	·
A VES OF THE PARTY OF	17566.	<u> </u>		<u>-j.</u>		-0.	-	-0.	ر در ورفانستند در . د	-0.	-
وجداد التقاسيني ويهيز النبغ دجينا لاق	11500.	بساعدا يبغد سنو ومنتثرهم مقاب وبسائلي ويبدئ		-C.		-0.		-0.		-0.	
	11500.		•	-0.	• • • • • • • • • • • • • • • • • • • •	-0.	-	-0.		-0.	
	17566.			-0.		-0.	•	-0.		-0.	3 -v are Am
1	11500.	- (•	-4.			• •	- V e		~ ý •	
10	1,1) CCC. CCC.	AAL(1,2) -C. -C.	XAL(1) -(-().	L(1,4) -0. -0.	XAL	-0.		-0.	مر میں اور میں اور	, , , , , , , , , , , , , , , , , , ,
		<u> </u>	- i		-0		-0.		-0.		*
	.000.	-C.	(The second s	-0.	.1 .	-0.	10 10 - 10 - 10 - 10	-0	-, *	
	000.	-0.	-(-0.						
		<u>-Ľ.</u>		<u>J.</u>	- <u>C</u> .		-0.		-0.		× a
	2000.	-c. -c.).			-0.		A 10 10 40 40 10	* ** **	•
	1000.	-C.	ومحاجبه المرجعة المرجعة المرجع ومشرو	<u>.</u>	0. -0.		-0.		-0.		
	<u></u>	-0.		J •		- 18 - 12 - 18	-U.		-0.		* •
	0000.	-0.	·····		-0.		-0.		-0.		x internet
		<u> </u>			<u> </u>		-0.		-0.		• • ·
	<u></u>	-6.	and the second design of the s	J.	~U.				-0.		. /
states a second second	2000.	-0.).	-0.	··			-0.		-94 · Y KX
	CCCC.	-0.		3. 3.	-0.		-0.		-0.		No. a wat
want og it be gement terreter		 ,,		J.	-6.		-0.	set and a manufactor of	-(/ •	gu-f-b ∧an.	·* * -
	0000.	-C.		0.	-0.		-0.	And in the local division in the local divis	-0.		` %
المتاكا ويجار التهيدات بارجيبها		-0.	The second design of the secon	J.		~	-0.		-0.	ورجع معادي	•• ••*
	000.	-C.			-0.	• • • • • • • • • • • • • • • • • • •	70.		-0.	A -87-	• • •
	000.	-0.		0.	-0.	-	-0.	Classifi We would have be	-0.		•
		U •	·		~ ~ ~						

7/5 :4

- States

A STATE OF A

Figure AIII.3 Splice Program Cutput Data (Concluded)

XZ	XNK	ХКА	XPA	XCL	XKD	ACT	AQB	XK S
1.	1.	117500.	C.	0.	1023408.	- Ú.		3025728
2.	1.	117500.	C.	С.	1023408.	-0.	-0.	3025728
3.	1.	117500.	2.	ĉ.	1023408.	0.	-2.	3025728
4.	1.	117500.	16.	18.	1023408.	0.	-18.	3025728
5,-	ľ.	117500.	12.	3C.	1023408.	-0.	-30.	3025/20
6.	1.	117506.	٤.	38.	1023408.	U.	-38.	3025728
7.	1.	117500.	45	41.	1023408.	-0.	°-41.	3025728
8.	1.	117566.	-2.	39.	1023408.	-0.	-39.	3025/28
9.	1.	117566.	3.	42.	1623468.	. U.	-42.	3025728
10.	1.	117500.	. 9.	51.	1023408.	-0.	-51.	3025728
11.	1.	117560.	29.	80.	1023408.	-0.	-80.	3025/28
12.	~1.	1175UC.	51.	131.	1023408.	0.	-131.	3025728
13.	1.	11/500.	80.	210.	1023408.	-u.	-210.	3025728
14.	1.	117500.	120.	330.	1023408.	0.	-330.	3025728
15.	1.	117500.	177.	507.	1023408.	. 0.	-507.	3025728
16.	1.	117500.	252.	759 .	1023408.	-0.	-759.	3025728
17.	1.	117500.	312.	1071.	1023408.	-0.	-1071.	3025728
18.	1.	117500.	181.	1252.	1623408.	-0.	1252 -	3025728
14.	1.	117500.	-248.	1004.	1623406.	υ.	-1004.	3025728
20.	1.	117500.	-1.004.	Č	1023408.	-0.	-0.	3025728

Augura the counterparticulation

1

Figure AIII.4. Stacked Doubler Program

186

ŵ

<u>C STACKEL ULUBLERS</u> 465 FEKMA1(/3X+2FXL+8X+3HXKA+7X+4)4KE1+7X+4H4KD2+9A+3H4KS+6A+2HXS+
17X, 3FXNK, 4X, 3HXCC)
463 FUKMAT(1x,5+xAED=,+9.0)
464 FURMAT(1x, 5+ XAES=, FY. 0,
$\frac{462 \text{ FCRMAT}(//1x, 4\text{HxC1}=, F7.0)}{462 \text{ FCRMAT}(//1x, 4\text{HxC1}=, F7.0)}$
457 FURMAT(1x, 3hxn=+F6.0)
453 FORMAT(1H1,2CX, 7HECUBLER, 1X, 5HINPET)
$\frac{451 \text{ FORMAT(//1x.13+CONFIGURATION.1x.4HNC.=.11c)}}{251 \text{ FORMAT(//1x.13+CONFIGURATION.1x.4HNC.=.11c)}}$
452 FURMAT(1X, 4HCASE, 1X, 4HNL,=110)
450 FORMAT(2110)
456 FCRMAT(1X, 3HSAY, 1X, 6HFELLGh, 1H, , 4HTHIS, 1A, 7HPROBLEM, 1X, 2HIS, 1A,
X3+1CC,1X,9FSENSITIVE,1H,,7HREGROLP,1X,9FFASTENERS)
17 FORMATI 34X, 7HDCUBLER, 1X, 3HANS/)
15 FLRMATI4 2H X2, 5X, 3FXQT, 7X, 4HXAF1, 5X, 3FXL1, 6X, 4FXAP2, 6X, 3HXD2, 7X,
<u>13HxBS</u>
<u>18 FURMAT(2H11.C)</u>
14 FLKMAT(FE.C)
10 FORMAT(F10.5.4F10.C.F10.3.2F10.C)
13 FURPET (F7.0)
16 FLRMAT(F7.0,2F9.C,F10.0,F9.0,2F1C.0)
DIMENSIUN XL(99). XKA(99). XKS(99). XS199). XNR(99). XQQ(99)
<u>1.AKU(99.2).XCK(95).XJA(99)</u>
UDUELE PRECISION XSD+XAS+XDS+XTCA+XF+XPA+XCA+XCB+XDLA+XDLB+XDLB+XDL
1xCH+XES+XRP+XLL+PXA(9+)+SUX(99)+XSE(99)+TP(99)+XAP(99)+SXU(99)
<u>NAF=XKP</u>
<u>NKP=C</u>
950 LONTINUE
<u>NKP=1</u>
500 CUNTINUC
λΑΑ=0
KEAC(5:45C) AA.AK
WRITE(6,453)
WRIJE(6,451) AA
<u>hRITE(0.452) AB</u>
REAL(5,14) XKP
KEAC(5,14) XNN
REAU(5.18) XAED.XAES
WRITE(0,403) AAEE
hkite(0,464) XAES
REAC(5,14) XN
<u>NRITEL6.457) XN</u>
REAC(5,13) XQ1
nRIFE(6,462) AGI
XAM=1.
iV=X.N
λερ=ς
XII=-1.
<u>AY=U</u>
REAL(5,10) (XL(1),XKA(1),XKC(1,1),XKD(1,2),XKS(1),XS(1),XNR(1),
[XQU(]), I=1,N)

Figure AIII.4. Stacked Doubler Program (Continued)

· · · · · · · · · · · · · · · · · · ·
<u>nkllEló,4c5)</u> <u>nkllEló,10)(xL(1),xKA(1),xKD(1,1),xKD(1,2),xKS(1),XS(1),XNR(1),</u>
ARTICLO I DI ALTI JAKATI JAKUTI JAKUT
$\frac{1 \wedge U(1)}{U(1)} = 1 \cdot N$
$\frac{1}{C} \frac{C}{C} \frac{C}{A} \frac{1}{A} \frac{1}$
45 1E1X/E) 1E3+1EC+1E1
lcl AAK=.1
<u></u>
<u>APA=AK+AAB</u>
10C AAM=122.
<u>X11-C</u>
183 1F (XrC) 185.184
104 AAM = (U)
ΑΗΔΞΟΟΙ ΑΗΔΞΟΟΙ
125 XAN=. LUJU1
$X_{i} = 1$
<u></u>
1 c / AM= COUCCU
<u> APA=XK+XAM</u>
<u>Au=0</u>
<u> </u>
IEE XAM=.UUUUUCCCI
APA=2A+AAM
XL=1.
<u>í í í í sz</u>
189 CLATINLE
<u>hRlitic.456</u>
<u> </u>
<u>51 IF(X[1] 31, 34, 33</u>
34 AM=-5.
AKA=XAtxar
X/F=1.
<u> </u>
<u>33 1F(XJM) 37,50,35</u>
it AAM (1
XPA=>R+XAP
AML=1.
$\frac{\lambda(P=-1)}{2}$
<u> </u>

Contraction of the second

Figure AIII.4. Stacked Doubler Program (Continued)

$ \frac{1}{2} 0 \text{ APR=-AUCL} $ $ \frac{1}{2} APR=-AUCL} $ $ \frac{1}{2} 0 \text{ APR=-AUCL} $ $ \frac{1}{3} 0 \text{ APR=-AUCL} $ $ \frac{1}{3} 0 \text{ APR=-AUC} $ $ \frac{1}{3} 1 \text{ AUC} $ $ \frac{1}{3} 1 \text{ APR=-AUC} $ $ \frac{1}{3} 1 \text{ AUC} $		
$\begin{array}{c} RC=0 \\ \hline & GG \ IL \ 12 \\ \hline & GG \ IL \ 12 \\ \hline & GG \ IL \ 32 \\ \hline & APA=z, CCCCC1 \\ \hline & APA=z, CCCCCC1 \\ \hline & APA=z, CCCCCCC1 \\ \hline & APA=z, CCCCCCCC1 \\ \hline & APA=z, CCCCCCCCC1 \\ \hline & APA=z, CCCCCCCC1 \\ \hline & APA=z, CCCCCCCC1 \\ \hline & APA=z, CCCCCCCC1 \\ \hline & APA=z, CCCCCCCCC1 \\ \hline & APA=z, CCCCCCCCC1 \\ \hline & APA=z, CCCCCCCCC1 \\ \hline & APA=z, CCCCCCCCCC1 \\ \hline & APA=z, CCCCCCCCCCC1 \\ \hline & APA=z, CCCCCCCCCCCC1 \\ \hline & APA=z, CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$	26 XAM=CCC1	
G0 fL 31 1F1KL1 32 APA=X+XAR. X0 X XKC=-1. X G0 11.32 35 AAP= G0 11.32 35 AAP= G0 11.32 35 AAP= G0 X X0 X X0<		· · · ·
$\begin{array}{c} 33 & 1F18(1) & 3x_135_14(\\ 35 & \lambda AM=-xCCCCG1 \\ & APA=xA*AAM \\ & X0=-1 \\ & X0=$		
$ \frac{3}{5} \text{ AM} = -5 \text{ CCCC1} $ $ \frac{APA = 2M + 4AR}{APA = -5} $ $ \frac{AU = -5}{AV} = -5 \text{ CCCCCC1} $ $ \frac{AV = -5}{2} \text{ AA} = -5 \text{ CCCCCCC1} $ $ \frac{APA = 2M + 2AR}{APA} = -5 \text{ CCCCCCC1} $ $ \frac{APA = -5 \text{ CCCCCCCC1} }{2M = -5 \text{ CCCCCCCC1} } = -5 \text{ CCCCCCCC1} $ $ \frac{APA = -5 \text{ CCCCCCCC1} }{2M = -5 \text{ CCCCCCCC1} } = -5 \text{ CCCCCCCC1} $ $ \frac{APA = -5 \text{ CCCCCCCCC1} }{2M = -5 \text{ CCCCCCCC1} } = -5 \text{ CCCCCCCC1} = -5 \text{ CCCCCCCC1} $ $ \frac{APA = -5 \text{ CCCCCCCCC1} }{2M = -5 \text{ CCCCCCCC1} } = -5 \text{ CCCCCCCC1} = -5 \text{ CCCCCCCC1} = -5 \text{ CCCCCCCC1} = -5 \text{ CCCCCCCCC1} = -5 \text{ CCCCCCCCC1} = -5 \text{ CCCCCCCCC1} = -5 \text{ CCCCCCCCC1} = -5 \text{ CCCCCCCCCC1} = -5 \text{ CCCCCCCCCC1} = -5 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$		
$\begin{array}{c} APA=x+x+AR\\ xU=-1, \\ xU=-1, \\ du 1t, 32\\ \hline \\ 35 AR=-,CCCCCCC1\\ xP=xR+xAR\\ xG=0\\ \hline \\ dt 1t, 32\\ \hline \\ dt 0 xAH=-,0000CCCC1\\ \hline \\ AFA=xR+xAR\\ \hline \\ xO=1\\ \hline \\ dt 1t, 32\\ \hline \\ xAH=-500, \\ \hline \\ xPA=xR+xAR\\ \hline \\ xI=1\\ \hline \\ xI=1\\ \hline \\ xI=2\\ \hline \\ xR=xR+xAR\\ \hline \\ xI=1\\ \hline \\ xI=1\\ \hline \\ xI=2\\ \hline \\ xR=xR+xAR, \\ \hline \\ xI=1\\ \hline \\ xI=1\\ \hline \\ xI=2\\ \hline \\ xR=xR+xAR, \\ \hline \\ xI=1\\ \hline \\ xI$		
$ \begin{array}{c} XU = -1 \\ XH (z = 1) \\ GU = 1 \\ GU = 1 \\ GU = 1 \\ XA = - CCCCCCC1 \\ XA = - CCCCCCCC1 \\ XA = - CCCCCCCC1 \\ XA = - CCCCCCCCC1 \\ XA = - CCCCCCCCC1 \\ XA = - CCCCCCCCC1 \\ XA = - CCCCCCCCCC1 \\ XA = - CCCCCCCCCC1 \\ XA = - CCCCCCCCCCC \\ XA = - CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$		
$ \begin{array}{c} XKG = -1 \\ GU 1L 32 \\ 25 AA = -, GCCCCCC1 \\ XP = XR * AAM \\ XD = 0 \\ GL IL 32 \\ 40 XAH = -, GDU0UCCCCC1 \\ AF = AR * AAM \\ XO = 1 \\ GU IL 32 \\ 31 XAH = -5U0 \\ XP = XR * AAM \\ XO = 1 \\ GU IL 32 \\ 31 XAH = -5U0 \\ XP = XR * AAM \\ XO = 1 \\ XZ = U \\ XR = APA \\ I = 1 \\ XZ = U \\ XR = APA \\ I = 1 \\ XZ = U \\ XR = APA \\ XI = 1 \\ XZ = U \\ XR = APA \\ XI = 1 \\ XZ = U \\ XR = APA \\ XI = 1 \\ XZ = U \\ XR = APA \\ XI = 1 \\ XZ = U \\ XR = APA \\ XI = 1 \\ XZ = U \\ XR = APA \\ XI = 1 \\ XZ = 0 \\ XR = APA \\ XI = 1 \\ XI = 0 \\ XR = APA \\ XI = 0 \\ XR = APA \\ XI = 1 \\ XI = A \\ XI = 0 \\ XR = APA \\ XI = 1 \\ XI = A \\ XI = 0 \\ XR = APA \\ XI = 1 \\ XI = A \\ XI = A$		
$ \frac{35}{3} \lambda A^{\mu} = cCCCCCCC1 $ $ \frac{\lambda P \Delta = XR \times XAM}{\lambda C = 0} $ $ \frac{c}{c} TL 32 $ $ \frac{30}{40} XAM = cOUNCCCCC1 $ $ \frac{\lambda P \Delta = xR + \lambda AM}{\lambda C = 1} $ $ \frac{\lambda C = 1}{\lambda C} $ $ \frac{\lambda C = 1}{\lambda C} $ $ \frac{\lambda P \Delta = XR + \lambda AM}{\lambda C = 1} $ $ \lambda P \Delta = XR$		
$ \begin{array}{c} XP \Delta = XR + XAM \\ X \Delta = 0 \\ \exists L \ 1L \ 3Z \\ 40 \ XAM = - 0.0 \cup 0.0 CCCCC1 \\ AF \Delta = AR + AAM \\ XO = 1 \\ \exists L \ AF = - 5 \cup 0. \\ XP = - XR + XAM \\ 32 \ AR = AF \Delta \\ \vdots \\ I = 1 \\ XZ = 0 \\ XRZ = 4. \\ IF \ (XV) \ 204 + 56 + 56 \\ 56 \ AC = - AAR(1) + ACA(1) + ACA(1) \\ XLS = 0 \\ XRZ = 0 \\ XI = 0 \\ XI = 0 \\ XI = 0 \\ XI = - 0 \\ XI = - 0 \\ XI = 0 \\ X$	<u> </u>	
$ \begin{array}{c} \chi 0 = 0 \\ \zeta L \ 1L \ 3Z \\ 40 \ XAM = - 60 0 0 C C C C 1 \\ AP = - 8 0 0 0 C C C C 1 \\ AP = - 8 R + A AM \\ \chi 0 = 1 \\ \chi 0 = 1 \\ \chi 0 = 1 \\ \zeta = 1 \\ \chi 2 = 0 \\ \chi R = - 8 P A \\ I = 1 \\ \chi 2 = C \\ \chi R Z = 1 \\ IF (XIV) \ 204 + 56 + 56 \\ S6 \ AC = - A R R (1) + a P A / a K A (1) + a S (1) \\ \chi L S = C \\ \chi C L A = 0 \\ \chi Z = 0 \\ \chi $		
GU TL 32 $40 XAM=-000000000000000000000000000000000000$		
$\begin{array}{c} 40 \ \text{XAM} =0300000000000000000000000000000000000$		
$ \begin{array}{c} AFA = A R + A A M \\ X 0 = 1 \\ G U IL 32 \\ \hline \\ 31 XAM = -500 \\ XPA = XF + XAM \\ \hline \\ 32 AR = A P A \\ \hline \\ 1 = 1 \\ X 2 = C \\ KR 2 = 1 \\ \hline \\ KR 2 = 1 \\ \hline \\ XR 2 = C \\ \hline \\ XL 4 = 0 \\ \hline \\ XL 4 = 0 \\ \hline \\ XL 2 \\ \hline \\ XL 0 \\ \hline \\ C S = C \\ \hline \\ XR 2 \\ \hline \\ R = A P A \\ \hline \\ R = A \\ \hline \\ R = A P A \\ \hline \\ R = A P A \\ \hline \\ R = A $		
$ \begin{array}{c} & \chi_{0} = 1 \\ & \zeta_{0} & I(-32) \\ & \chi_{0} = \chi_{0} \times \chi_{$		-
$\begin{array}{c} GU IL 32 \\ 21 XAM = -500. \\ XPA = XF + XAM. \\ \hline \\ 32 AR = APA \\ \hline \\ 1 = 1 \\ XZ = C \\ XRZ = 1. \\ If (XIV) 204, 56, 56 \\ \hline \\ 56 AZ = AR(1) + APA/AKA(1) + XS(1) \\ XLS = C \\ XLA = 0 \\ XRZ = C \\ XZ = 0 \\ ALS = C \\ XZ = 0 \\ ALS = C \\ XZ = 0 \\ ALS = C \\ XI = 0 \\ X$	<u></u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X0=1	·
$\begin{array}{c} XPA=XR+XAR \\ \hline 32 AR=APA \\ \hline 1=1 \\ X2=C \\ XRZ=1. \\ IF(XIV) 204,56,56 \\ \hline 56 AZA=ARR(1)+APA/AKA(1)+AS(1) \\ XUS=C \\ \hline XES=C \\ \hline XES=C \\ \hline XEA=0 \\ XRZ=C \\ \hline XZ=0 \\ \hline XZ=C \\ \hline XEA=XR \\ \hline XISA=XA $	<u> </u>	
$\begin{array}{c} 32 AR=APA \\ \hline 1=1 \\ \times Z=C \\ XRZ=1 \\ \hline 1F(X1V) 204, 56, 56 \\ \hline 56 Az A= ANR(1) + PA/AKA(1) + AS(1) \\ XUS=C \\ \hline XS1=C \\ XS1=C \\ XS1=C \\ XZ=C \\ XZ=C \\ XZ=C \\ XZ=C \\ XZ=C \\ XZ=C \\ XR=APA \\ XIC h=AC \\ XIC h=AC \\ \hline XI$	<u>31 XAM=-500.</u>	، مورجه می اور دار می اور دار می اور دور اور استان می مارد و اور و اور و اور و می و می و دور و می و دور و می و م
$ \begin{array}{c} 1 = 1 \\ \times Z = C \\ \times R \ge 1 \\ F(X1V) = 204, 56, 56 \\ \hline \\ 56 & A \le A = A R R(1) \neq A P A / A K A (1) + A S(1) \\ \times U \le - C \\ \times L L A = C \\ \times L L A = C \\ \times L L A = C \\ \times Z = C \\ \hline \\ X = A P A \\ \times I \subseteq A R \\ \hline \\ X = A P A \\ \hline \\ X = L + 1 \\ \hline \\ x = 1 \\ \hline \\ x = 1 + 1 \\ \hline \\ $	<u>XPA=XR+XAM</u>	
$\begin{array}{c} X Z = C \\ X R Z = 1 \\ IF (X T V) 204, 56, 56 \\ \hline \\ 56 x \Delta Z = x h R(1) * x P A / x K (1) + x S(T) \\ X U S = C \\ X C L A = 0 \\ X R Z = C \\ X Z = 0 \\ A L S = C \\ X R = x P A \\ \hline \\ X I C D \\ A L S = K \\ \hline \\ X R = x P A \\ \hline \\ X I C D \\ A L S = K \\ \hline \\ X R = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L D = x P A \\ \hline \\ X I L A = x D \\ A \\ X U = x P A \\ \hline \\ \hline \\ X U = x P A \\ \hline \\ \hline \\ X U = x P A \\ \hline \\ \hline \\ X U = x P A \\ \hline \\ \hline \\ X U = x P A \\ \hline \\ \hline \\ X U = x P A \\ \hline \\ \hline \\ X U = x P A \\ \hline \\ \hline \\ \hline \\ X U = x P A \\ \hline \\ \hline \\ \hline \\ X U = x P A \\ \hline \\ \hline \\ \hline \\ \hline \\ F A \\ \hline \\ X U = x P A \\ \hline \\ \hline \\ \hline \\ F A \\ \hline \\ F A \\ \hline \\$	<u>32 AR=APA</u>	
$\begin{array}{c} XR2=1. \\ IF(XIV) 204,56,56 \\ 56 & A \leq ARR(1) \neq APA \langle AKA(1) \neq AS(1) \\ XUS=0 \\ XUS=0 \\ XZ=0 \\ A \leq S=0 \\ XZ=0 \\ A \leq S=0 \\ XR \leq APA \\ XI[\Delta = AR \\ $	<u>l=1</u>	
$ \frac{1F(x1V) 204, 56, 56}{56 \\ x \le x \le x NR(1) * x PA/xKA(1) * x S(1)} \\ x U \le C \\ x C L A = 0 \\ x R \ge C \\ x Z = 0 \\ A \le S \le C \\ x R \ge A P A \\ x I C A \ge A R \\ x T \le Z X A \\ G G T C = B U \\ A L C B X I D = A D S \\ B C S X = A D \\ A L S = A D \\ A L S X I D = A D S \\ B C S X = A D \\ A L S X I D = A D S \\ A S = A D \\ A S D = A D S \\ A S = A D \\ A S D = A D S \\ A S = A D \\ A S D = A D S \\ A S = A D \\ A S D = A D S \\ A S = A D \\ A S D \\ A S D = A D \\ A S D \\ A S D = A D \\ A S D \\ A \\ A B \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A C B / A K S (1) \\ X U \\ S = A$	xZ=C	
$ \frac{56}{4c} AcA = ANR(1) + APA/AKA(1) + AS(1) XLS=C XC1A=0 XRZ=C XZ=0 ACS=C XR=APA X1C= xZA GG IC AU S1(C= xZA GG IC AU S1(C= xZA S1(C= xZA GG IC AU S1(C= xZA S1(C= xZ$	XR2=1.	
$ \frac{56}{4c} AcA = ANR(1) + APA/AKA(1) + AS(1) XLS=C XC1A=0 XRZ=C XZ=0 ACS=C XR=APA X1C= xZA GG IC AU S1(C= xZA GG IC AU S1(C= xZA S1(C= xZA GG IC AU S1(C= xZA S1(C= xZ$	LF(XIV) 204,56,56	
$ \begin{array}{c} XUS=C \\ XCLA=0 \\ XRZ=C \\ XZ=0 \\ ACS=C \\ XR=APA \\ XICA=AR \\$		·
$\begin{array}{c} XRZ=C \\ XZ=0 \\ ACS=C \\ XR=XPA \\ XICA=AR \\ XICA=AR$		
$ \begin{array}{c} XZ = 0 \\ A \zeta S = \zeta \\ X = A P A \\ X I L A = A R \\ X I L A = A R \\ Z I L A = A R \\ A I C G N I N U H \\ I = I + 1 \\ X I D = A I D = A D S \\ A S = A I D = A S S \\ A S = A I D = X S (1) \\ X = X Z + 1 \\ A P A = A A S S A K A (1) \\ X = X L + 1 \\ A P A = A A S S A K A (1) \\ X = X D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ X = X D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A S D = A D L A Z X P A * X N R (1) \\ A A I = X C I \\ X H B = X D L A Z X D A Z \\ X H B = X D L A Z X D Z \\ X H B = X D L A Z X D Z \\ X H B = X D L A Z X D Z \\ X H B = X D L A Z X D Z \\ X H B = X D L A Z X D Z \\ X H B = X D L A Z X D Z \\ X H B = X D L A Z X D Z \\ X H B = X D L A Z Z Z Z \\ X H H A Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z$	XCLA=0	
$ \begin{array}{c} A \subseteq S = C \\ \hline XR = APA \\ \hline XI[A = AR \\ \hline XI[L = X_LA \\ \hline GG \ IC \ BU \\ \hline H \ CGN I \ NUL \\ \hline I = I + 1 \\ \hline XIU = A \ ID = ADS \\ \hline BC \ XAS = A \ ID = XS \ (1) \\ \hline XL = X \ L + XS \ (1) \ L + XS \ (1) \\ \hline XL = X \ L + XS \ (1) \ L + XS \ (1) \\ \hline XL = X \ L + XS \ (1) \ L + XS \ (2) \$	XRZ=0	
$ \begin{array}{c} A \subseteq S = C \\ \hline XR = APA \\ \hline XI[A = AR \\ \hline XI[L = X_LA \\ \hline GG \ IC \ BU \\ \hline H \ CGN I \ NUL \\ \hline I = I + 1 \\ \hline XIU = A \ ID = ADS \\ \hline BC \ XAS = A \ ID = XS \ (1) \\ \hline XL = X \ L + XS \ (1) \ L + XS \ (1) \\ \hline XL = X \ L + XS \ (1) \ L + XS \ (1) \\ \hline XL = X \ L + XS \ (1) \ L + XS \ (2) \$	XZ=0	
$ \begin{array}{c} X I f A = & A R \\ X I f L = & X Z A \\ \hline & G G & I f L = & A U \\ \hline & A I & C G N I I N U F \\ \hline & I = I + I \\ \hline & X I D = & A I D - & A D S \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	ALS=C	
$ \begin{array}{c} X I f A = & A R \\ X I f L = & X Z A \\ \hline & G G & I f L = & A U \\ \hline & A I & C G N I I N U F \\ \hline & I = I + I \\ \hline & X I D = & A I D - & A D S \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	XR=XPA	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c} x 1 \psi = x 7 A \\ \hline & GO \ I \ C \ A U \\ \hline & H \ C \ O \ I \ I \ I \ U \\ \hline & H \ L = I + 1 \\ \hline & x 1 D = A \ I D - A D S \\ \hline & B \ C \ X A S = A \ I D - X S \ (1) \\ \hline & X / = X / + 1 \\ \hline & A P \ A = A \ A S + A K \ A \ I \ I \\ \hline & X (1 A = X D \ A + X P \ A + X N R \ (1) \\ \hline & A \ S D = A D \ A / X D \ (1) \\ \hline & X U \ S = A \ I \ I \ A + X \ C \ S \ A \\ \hline & X U \ S = A \ I \ I \ A \times L \ S \ A \\ \hline & X U \ S = A \ I \ I \ A \\ \hline & X U \ S = A \ I \ I \ A \\ \hline & X U \ S = A \ I \ I \ I \ A \\ \hline & X \ I \ S = A \ I \ I \ I \ A \\ \hline & X \ I \ S \ S \ A \\ \hline & X \ I \ S \ S \ S \ S \ S \ S \ S \ S \ S$	XICA=AR	
$ \begin{array}{c} GG \ TC \ BU \\ \hline \\ & & & \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ \\ & & \\ \hline \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ \hline \\ & & \\ \hline \\ \\ & & \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline$		
$\begin{array}{c} 81 \ CONTINUT \\ 1=1+1 \\ \times 1D=ADS \\ \hline & XD=ADS \\ \hline & XAS=AD=XS(1) \\ \times Z=XZ+1. \\ APA=AAS \neq AKA(1) \\ \times ZLA=XDLA \neq XPA \neq XNR(1) \\ ASD=ADLA/XDK(1) \\ \times QS=AL(1) \neq XCS \\ \hline & XUS=XDI \\ AXDS=XDI \\ AXDS=XDI \\ AXDS=XDI \\ AXDS=XDI \\ XDS=XDI \\ XDS=XSD \\ IF(XL) \\ ZBS=XSD \\ ZBS=XSD \\ ZBS=XSD \\ IF(XL) \\ ZBS=XSD \\ ZBS$		
$ \begin{array}{c} 1 = 1 + 1 \\ \times 10 = & \lambda 10 - & \lambda 0 \\ \hline \\ & \& C \ XAS = & A 10 - & XS (1) \\ & & XZ = & XZ + 1 \\ & & & A PA = & A S + & AKA (1) \\ & & & XCL A = & XDL A + & XPA + & XNR (1) \\ & & & & XCL A = & XDL A + & XPA + & XNR (1) \\ & & & & & A S D = & A DL A / & XDK (1) \\ & & & & & & A S D = & A DL A / & XDK (1) \\ & & & & & & & X D = & A DL A / & XDK (1) \\ & & & & & & & & X D = & A DL A / & XDK (1) \\ & & & & & & & & & \\ & & & & & & & & $		
$ \begin{array}{c} XID = AID - ADS \\ BC XAS = AID - XS(I) \\ XZ = XZ + 1 \\ APA = AAS + AKA(I) \\ XELA = XDLA + XPA + XNR(I) \\ ASD = ADLA / XDK(I) \\ XQS = AL(I) + XCS \\ XQS = AL(I) + XCS \\ XQS = AL(I) + XCS \\ XQS = AUI - XCIA \\ AAI = XCI \\ AAI = XCI \\ XLS = ACB / AKS(I) \\ XLS = XDS - XSD \\ IF(ACI) + Z33, SS9, Z400 \\ \end{array} $		
BC $XAS = \lambda I U - XS(I)$ $XZ = XZ + I$. $APA = \lambda AS \neq AKA(I)$ $XELA = XULA \Rightarrow XPA \neq XNR(I)$ $XELA = XULA \Rightarrow XPA \neq XNR(I)$ $ASU = AULA \Rightarrow XPA \neq XNR(I)$ $XUS = AULA \Rightarrow XPA \neq XNR(I)$ $ASU = AULA \Rightarrow XPA \neq XNR(I)$ $XUS = AULA \Rightarrow XPA \neq XNR(I)$ $ASU = AULA \Rightarrow XPA \neq XNR(I)$ $XUS = AULA \Rightarrow XPA \neq XNR(I)$ $ASU = AULA \Rightarrow XPA \neq XNR(I)$ $XUS = XULA \Rightarrow XPA \neq XNR(I)$ $ASU = AULA \Rightarrow XPA \neq XNR(I)$ $XUS = XULA \Rightarrow XPA \neq XNR(I)$ $ASU = AULA \Rightarrow XPA \neq XNR(I)$ $XUS = XULA \Rightarrow X$		
$\begin{array}{c} X = X + 1. \\ A P = A S \neq A K A \{ 1 \} \\ X E L A = X D L A \Rightarrow X P A \neq X N R (1) \\ A S D = A D L A / X D K (1) \\ X Q S = A L (1) \neq X (L \{ 1 \} + X C S \\ A Q S = A L (1) \neq X (L \{ 1 \} + X C S \\ A A 1 = X Q I \\ A A 1 = X Q I \\ A A 1 = X Q I \\ X L S = X Q I - X D L A \\ X L S = X Q I - X D L A \\ X L S = X Q I - X D L A \\ I = X Q I - X D L A \\ I = X Q I - X D L A \\ I = X Q I - X D L A \\ I = X Q I - X D L A \\ I = X Q I - X D L A \\ I = X Q I - X D L A \\ I = X Q I - X D L A \\ I = X Q I - X D L A \\ I = X Q I - X D L A \\ I = X Q I - X D L A \\ I = X Q I - X D L \\ I = X Q I - X D \\ I = X Q I - X D \\ $		
$\begin{array}{c} & \lambda PA = \lambda A S \neq \lambda KA \{ 1 \} \\ & X L A = X D L A \Rightarrow X PA \neq X NR (1) \\ & \lambda S D = \lambda D L A / X D K \{ 1 \} \\ & X U S = \lambda 1 (1) \neq X (C \{ 1 \} + X C S \\ & & & & \\ & \lambda U S = \lambda 1 (1) \neq X (C \{ 1 \} + X C S \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$		
$\begin{array}{c} X \square A \Rightarrow X \square A \square A \Rightarrow X \square A \square A \Rightarrow X \square A \square$		
$ \frac{A SD = A DL A / X DK (I I)}{X Q S = A I (I) * X (C (I) + X C S)} $ $ \frac{X Q S = A I (I) * X (C (I) + X C S)}{X Q I = X Q S + X Q I} $ $ \frac{A A I = X C I}{X Q S = A C S / A K S (I)} $ $ \frac{X Q S = A C S / A K S (I)}{X Q S = A C S / A K S (I)} $ $ \frac{X Q S = A C S / A K S (I)}{Z S = A C S / A K S (I)} $		
$\frac{XUS=\lambda I (I) * X(C(I) + XCS)}{\lambda UI=XUS+XUI}$ $= \lambda UI=XUS+XUI$ $= \lambda UI=XUI + XCIA$ $= XUS=\lambda UI=XUIA$ $= XUS=XUIAKS(I)$ $= XUS=XUS=XU$ $= IF(\lambda UI=233,999,2400$		
$\frac{\lambda \sqrt{1} = x \sqrt{5} + x \sqrt{1}}{x \sqrt{5} = x \sqrt{5} + x \sqrt{1}}$ $\frac{\lambda \sqrt{5} = \lambda \sqrt{5} - x \sqrt{5} \sqrt{5}}{x \sqrt{5} = x \sqrt{5} - x \sqrt{5} \sqrt{5}}$ $\frac{\lambda \sqrt{5} = x \sqrt{5} - x \sqrt{5} \sqrt{5}}{1 \sqrt{5} - x \sqrt{5} \sqrt{5} \sqrt{5}}$		
$\frac{\lambda \lambda 1 = x \zeta 1}{\lambda \zeta B = \lambda Q I - x C L A}$ $\frac{\lambda B = x C B / x K S (1)}{\lambda \zeta S = x S D}$ $\frac{1 F (\lambda \zeta 1) - 2 x 3, S S S , 2400}{1 F (\lambda \zeta 1) - 2 x 3, S S S , 2400}$,	
$\frac{XLB = XQI - XQIA}{XBS = ACB/AKS(I)}$ $\frac{XLS = XBS - XSD}{IF(ALI) = 233,559,2400}$		
$\frac{XBS = ACB/AKS(1)}{XLS = XBS - XSD}$ IF(ALT) 233,999,2400		
<u>XLS=XUS-XSU</u> <u>IF(XLT) 233,999,2400</u>		
LF(XLT) 233, 999, 2400		
633 WORD HIVE		
	633 WOND 1110L	

Figure AIII.4. Stacked Doubler Program (Continued)

(

Z

1F1XULA/XUT-3.1 42.42.49 42 IF1 3 -- ADLA/ACT) 51:53.53 24CC CLATINUE 1+(XLLA-3.*X01) 57.57.51 57 1+(3, * AU1+XULA) 49, 53, 53 53 1F(XN-XZ) 101,101,81 ICI CCNI-INUE IF ((LAUS (XLLA))-. LI+UAES (XPA)) 7L, 7U, 83 83' CUNTINUE GC 16 71 88 CUNTINUE ALA=XIDA XI.LA=XUL XR=XinP*XKA(1) 1=1 $\frac{x}{b} = \frac{x}{A} + \frac{x}{b} = \frac{x}{A} + \frac{x}{b} = \frac{x}{A} + \frac{x}{A} + \frac{x}{A} + \frac{x}{A} = \frac{x}{A} + \frac{x}$ XPA = XKA (15) * (XZE - XS(1))1F(X28-X2A) 95, 595, 95 71 1=1 XPA=XK+XAM_ <u>124 X28=XNR(1)+>PZ/XKA(1)+XS(1)</u> 95 XTD=X20 XK=XPA XLS=C XII=-1. XLP=C XUL:3=0 XZ = CXCS=C 64 14 04 85 CUNTINUES <u>l=1+1</u> 24 X10= × 10- ×05 XAS=XID-XS(1) XPA=XAS#XKA(I) X/=X/+14 XLLB=XDLb+XPA*XNR(1) XSU=XDL3/XUK(I) <u>xLS=xL(1)*xLC(1)+XLS</u> XUS-XUS+XUI XGU=XGT-AULE xBS = xGB/xKS(I)XDS=XdS-XSU____ 1E1XN-X1 103.103.85 103 LUNTINUE IFCCCABS(XDIB))-.CI*CARS(XPA)) 7C.70.E7 87 LUNLINUE XZ=1.__ XCI L XY=C

Figure AIII.4. Stacked Doubler Program (Continued)

	I = 1
131	XIC=X2H+X/LE+(X2H-X2A)/(XDLA-ADLE)
	XTDA=XTU
132	XRP=XICA
	XK=XPA
	<u>ω Τύ ο</u> 6
74	CLNTINLE
	<u>l=l+1</u>
	<u>x1u=xTu-xDS</u>
86	XAS=XTU-XS(I)
	x2=x2+1.
	XAP(1) = XAS + XKA(1)
	XDL=XUL+XAP(1)+XNR(1)
	SXÚ(I)=XUL/XCK(I)
·	XQS = XL(1) + XCS
	xcT=xcS+xc1
	XLB=XQT-ADL
	XUS=XUD/XKS(1)
	XDS=XBS-SXD(I)
	IF(xN-x2) 102.102.14
102	CLNFINUE
	<u>IF((CAUS(XUL))U1*DABS(XPA)) 7C.70.88</u>
70	CUNTINUL
·	XIS=C
<u> </u>	
	<u>XCT=C</u> XST=XAP(1)*XNR(1)
	XZ=0
204	CONTINUE
207	xIV=-1.
	xct=x S1
	1F(XRL1_C40,318,246
318	CUNTINUE
	xPA=xKU(1,1)/(XKU(1,1)+XKU(1,2))*XST
240	LCNTINUE
	XID=C
	XULA=0
	xDS=C
	XK=XFA
	1F(XKA(1)/XKU(1,2)-100.) 337.4338.4338
4338	X JA(1) = AKD(1,2)
	6U TC 336
337	XJA(I) = AKA(I)
336	LUNTINLE .
···	$X_{A} = \lambda NK (I) * XPA / XJA (I) + XS (I)$
	XICA=AK
	XTU=XLA
·	<u>GU 1C 202</u>
201_	CUNTINUL
	XTC=X10-XDS

ţ

J.

, **`**

Figure AIII.4. Stacked Doubler Program (Continued)

٢.

$xCI = \lambda AP(1) + X R(1) + X CT$
202 CONTINUE
$\lambda A S = \lambda T \hat{U} - \lambda S (1)$
XZ=XZ+1.
IF1xKA(1)/AKD11,2)-100.1 339.335.335
335 XJA(1)=XKU(1,2)
[F(XNN-XL) 339,339,338
335 XJA(1)=>KA(1)
338 CONTINUE
XPA=AFS#AJA(1)
XULA=XULA+XPA+XNR(1)
XSC=XCLA/XKD(1,2)
XUB=XCT-XLLA
XSB(1)=XQB/XKD(1,1)
$\frac{ADS = ASB(1) - ASD}{ADS = ASB(1) - ASD}$
2C8 CUNIFINUE
IF(XXT) 333,555,34C
333 CUNTINUE
$\frac{1F(\lambda ULA/XXT-3.) 142,142,49}{142,142,49}$
142 IF(3.+AULA/ÁAT) 51,239,239 340 CUNTINUE
IF (AULA-3. *XXT) 238,238,51
31
238 CUNTINUE IF(3.*XXT+XDIA) 49.239.
239 CUNTINUE
$\frac{1}{16(xx-x^2)} = \frac{1}{2(2,203,201)}$
202 LONTINUE
XT S=C
· · · · · · · · · · · · · · · · · · ·
x/=0
ΔS1=ΔΗΡ(1) *ΔΝΚ(1)
$2(c_X/b=x_0R(1)+x_PAYXJA(1)+x_S(1)$
X10=228
<u>AK=XPA</u>
XDLU=0`
<u> </u>
<u>XUS=0</u>
XDS=C
<u>ACI=ASI</u>
GUTL 21C
211 LUNIINUE
A = A P (1) + X P
<u>210 XAS=XID=XS(1)</u>
<u>X2=X2+1.</u> X0Ld=X0L3+XPA*XNR(1)
ASD=AUL6/AKU11+2)

Figure AIII.4. Stacked Doubler Program (Continued)

	XQB=XQI-XDLB
	ABE (1) = ABE / AED (1.1)
<u> </u>	xpS=xSB(1)-xSD
	1+(xN-xZ) 212,212,211
21.7	
	XZ=0
	xuS=0
	xDS=C
	AY=0
	[=]
	A1S=C
	XT2-0 XST=XAP(1) + XNR(1)
<u> </u>	xuT=xST
	x T U = x L G + A U L G + (A L G - X L A) / (X D L A - X C L G)
<u></u>	XTCA=XTD
	AKP=XTUA
	60 IC 221
226	LUNTINUE
	1=I+1
	XTD=XTU=XUS
<u></u>	AUT=AAPIII+ANK(1)+AUT
251	XAS=X1U-XS(1)
661	x2=x2+1.
	$\gamma_{A}(1) = AAS^* \lambda JA(1)$
·····	XCL=>DL+PXA(1)+XNR(1)
	SUA(1)=x0L/xKD(1.2)
	XG6=XGT-XDL
·	XSB(1) = X U(1,1)
	<u>xCS=xSB(1)-SDX(1)</u> TP(1)=SXU(1)/XSB(1)
	XDK(1)=1P(1) + XCK(1)
	IF(XN-XZ) 222,222,220
222	
	00 (001 I-1 A
	$\frac{DU}{Pxx=FxA(NT)}$
	1F1XAA-PXX) 1CC2,1001,1002
1001	CONTINUE
	GC_TL_250
1662	xPA=1P(NT) * xAP(NT)
	1≈1
	XAA=FXA(NT)
F	X 2=0
	XZP=C
	XTT=-1.
	XTV= 1.
	GL IL DO
250	
	x2=0
	bR1)t10,17)
	wkIft(6,19)
•	

うちがく

ć

÷

1.1

the subscript of the

Figure AIII.4. Stacked Doubler Program (Concluded)

193

XU1=C	
XD2=C	· · · · · · · · · · · · · · · · · · ·
GL TE 252	
251 ÜENTINUE	*
1=1+1	
252 CUNTINUE	·
X4=X1+1.	
XLT=X01+XL(1)*X0C(1)	
XD1=XD1+XAP(1) *XNR(1)-PXA(1)*XNR(1)	
AL2=AD2+PXA(1)*XNR(1)	······································
<u>xBS=xüT-xU1-XL2</u>	
WRITE(6.16) XZ-XCT-XAP(I)-XDI-PXA(I)-XUZ-XBS	
1+1xN-XL) 595,595,251 -	·
999 CENTINUE	
1F(NKF-NNP) \$50, \$51, 951	
SS1 CUNTINUE	·
STGP	<u>`````````````````````````````````</u>
ÊND	

Figure AIII.5. Stacked Doubler Program Imput Data

đ

i	1						
1.				<u> </u>			<u>_</u> .
17.							
1030000.	1030000.	`				<u> </u>	
20.	· · · ·			~~			-
12400•	•					· · · · · · · · · · · · · · · · · · ·	
1.0	117000.	1030000.	1000.	3190000.	•0	1.	0.
1/30	117000.	1030000.	1000.	3190000.	• ()	1.	0.
1.0	117000.	1030000.	1000.	3190000.	<u>)</u>	1.	0.
1.0	259000.	1030000.	1030000.	3190000.	• 0	1.	0.
1.0	259000.	1030000.	1030000.	3190000.	• 0	1.	0.
1.0	259000.	1030000.	1030000.	3190000.	• 01	1.	0.
1.0	259000.	1030000.	1030000.	3190000.	•0	. 1.	0.
1.0	259000.	1030000.	1030000.	31900000	• 0	1.	0.
1.0	259000.	1030000.	1030000.	3190000.	• 0	1.	0.
. 1.0	259000.	1030000.	1030000.	3190000.	• (1.	0.
1.0	259000.	1030000.	1030000.	3190000.	• 9	1.	0.
1.0	259000.	1030000.	1030000.	3190000.	• 0	1.	0°•
1.0	259000.	1030000.	1030000%	3190000.	• 0	1.	0´•
1.0	259000.	1030000.	1030000.	3190000.	•0	1.	΄θ•
1.0	259000.	1030000.	1030000.	, 3190000.	• 0	1.	0.
1.0	259000.	1030000.	1030000.	3190000.	• 0	1.	0.
1.0	259000.	1030000.	1000.	3190000.	• 0	1.	0.
1.0	117000.	1930000.	1000.	31900000	• 0	. 1.	0.
1.0	117000.	1030000.	1000.	3190000.	•0	1.	0.
1.0	117000.	1030000.	1000.	3190000.	• 0	1.	0.

Figure AIII.6. Stacked Doubler Program Output Data

		DOLBLER	INPUT				
CONFIGURA	ELEN NUL	10000	0			<u></u>	
CASE NU.=							
XAEC= 1030							
XAES= 1030		-,					
XN= 20.		····	- (- ×		-		
,		à_*			*		
XQI= 12460	0	·	·		·		
<u> </u>		- X KD1	AKD.	2	JK S	ÀS	
LALLULU	1.1/666					 	
1.00000				CC. 3190		0.	1. 0
1.0000				CC. 3190		0.	1. 0
1.(()00	259000					0	1
1.0000	254060			موجد المراجع ا		0.	le ü
LALLU		. 103000	0. 10300			0.	l C
1.0000	259000			00. 3190	000.	0.	<u> </u>
1.0000	259000			00. 3190	000	V. Jan	<u> 1. </u>
1.00000	259000			<u>co. 3190</u>	000	0.	1. 0
1.00000					000	0	1. 0
1.0000	259000					0	l0
1,0000						0.	<u> </u>
Lateletel						Ue :	<u> </u>
1.00000	259000				000	0	<u> </u>
1.00000						0.	<u> </u>
<u> </u>						0	0
1.00000				<u>CC. 3190</u>		0.	0
1.00000	117666			00.3190		0	<u> </u>
1.00000				CC. 3190	666.	0	
I . LLULU		• <u>103000</u>		00. 3190 BLER ANS		U • •	<u>_</u> _
×/	XCT	XAP1			λC2	ÁBS	
	12400	1658.	1456.			14542.	
	12400.	1471.	3325.	- 2.	4.	9071.	
	12400.	1139.	4460.	4.	8.	7932.	
	14466	1877.	4485.	1852.	1860.	6055.	
5,	12400.	1.105.	40/9.	1191.	3051	46.10 .	
<u> </u>	124040	ILUE:	4903.	782.	3833.	3664.	
	12400.	709.	5099.	513.	4346.	2955.	
	12400.	405.	- 5244+	323.	4669.	2480.	
	124660	267	5232.	179.	4848.	2220.	
10.	12400.	87.	5261.	57.	4900.	2133.	
	12400.	-81.	5332.	-51.	4648.	2220.	
	12400.	-267.	5244.	-179.	4669.	2486.	
	12400.	-465.	5095.	-323.	4346.	2955.	
	12400	-709	4903.	-513.	3833.		
		-1006.	4672.	-782.	3052.		
160	<u>12400. ·</u>	-1305.	44.84.	-1191.	1801.	6055.	

Figure AIII.7. Stacked Splice Program

196

÷

.

÷

17.	12400.	-1877.	4457.	-1850.	11.	7932.	
18.	12400.	-1139.	3320.	-8.	3.	9071.	
17.	14400.	-1471	1626.	-1.	2	10542.	<u>``</u>
20.	12400.	-1858.	<u>-C.</u>	-2.	<u> </u>	12400.	
				, 			
			·		-		
				,	·		
							,

Figure AIII.7. Stacked Splice Program (Continued)

·
C STALKEL SPLICES
14 FURMAT(F6.C)
465 FURMAIL/3X+2+XL+EX+3HXKA+7X+4+XKL1+7X+4HXKU2+9X+3HXK5+6X+2HX5+
17x, 3HXNK, 4X, 3HXGC)
464 FCRMAT(1x, 5+ xAES=, Fy.0)
403 FURMATILX, SEXALU=, F9.0)
462 FURMA1(//12,4FXu1=,F7.0)
457 FURMAT(1x, 3+xN=, F6.0)
453 FURMATIIH1,2CX,0HSPLICE,1X,5HINPUT)
450 FURMAT(2110)
452 FURMAT(1X+4FCASE+1X+4HNU==11C)
451 FLKMAT(//1x,13FCONFIGURATION,1x,24HNC.=,110)
496 FURMAI(1X, SHSAY, 1X, OHFELLOW, 1H,, 4HTHIS, 1X, /HPRCOLEM, 1X, 2HIS, 1X,
X3HTCU, 1X, 9HSENSITIVE, 1H, , 7HREGREUP, 1A, 9HFASTENERS)
17 FURMAI(20X, 6HSFE1CE, 1X, 5FJLINT, LX, 3HANS/)
19 FURMAT(4x, 2F22, 5x, 3HX JT, 7X, 4HXAP1, 5X, 3HXD1, 6X, 4HXAP2, 6X, 3HXD2, /X,
13+X85)
10 FURMAT(2F11.C)
IC FLRMAT(F10.5,4F10.C,F10.3,2F10.0)
13 FLRMAT(F7.6)
16 FERMAT(F7.0, 2FS.C, F10.C, F9.C, 2F1C.0)
UIMENSION XL(95), XKA(99), AKS(99), AS(95), ANK(99), AWU(99)
1,XKD199,21,XCK1991,XJA199)
DUUBLE PRECISIUN XSD, XAS, ADS, ATDA, AR, APA, AZA, AZB, ADLA, ADLB, ATD,
1xub, xeb, xep, xul, pxA(99), SUX(99), XSB(99), TP(99), XAP(99), SXU(99)
REAU(5,14) XKP
KNF=XKP
NKP=C
NKH=NKP+1
SSC CUNTINUE
500 CGNI INUE
XAA=C
REAC(5,450) AA,AB
KEAU(5, 14) XNN
KLAL (5, 10) XALL, XACS
headis, 14) λΝ
KEAĽ(5,13) AĽ
WRITE(C, 451) AA
WRITELO, 4521 At
hrite (6,453)
WRITE10,457) XN
NRI[E16,462] XL
WRITE(6,463) XAED
WRITELO, 404) AAES
XAM=1.
w≈XN
<u> </u>
xTT=-1.
<u>^Y=0</u>
KLAU(5,10) [XL(1),XKA(1),XKU(1,1),XKD(1,2),XKS(1),XS(1),XNR(1),
$1 \times Q \cup (1), I = 1, N$
·

Figure AIII.7. Stacked Splice Program (Continued)

WRITE(6,465)	
wkITE(6,1C)(XL(I),XKA(I),XKD(I,1)	XKD(1.2), XKS(1), XS(1), XNR(1),
IAU(1), I=1,N)	
$\frac{1}{1} \frac{1}{1} \frac{1}$	
1CCG ADK(1)=AKD(1,1)+XKD(1,2)	
XPA=118+/XNJ/1XAED+XAESJJ*XQ1*XAE	<u>:0</u>
<u>l=1</u>	······································
<u>60 TU 56</u>	
45 IF(X2P) 183,180,181	
101 AAM=.1	·
XJM=1.	
xt1=1.	and the second
x PA = XK+ XAM	······································
GC TL 32	
19C XAM=125.	
<u>XPA=XR+XAK</u>	
<u>×IT=C</u>	
<u>GU TU 32</u>	
163 IF(XFC) 186,185,184	·
164 AAM=.001	
	· · · · · · · · · · · · · · · · · · ·
XJV=C	···
GU TU 32	· · · · · · · · · · · · · · · · · · ·
105 XAM=.00001	
APA=XR+XAM	
XJM=-1.	
<u>x(=-1</u>	····
<u>GU TO 32</u>	
186 IF(XC) 187,188,189	<u>`</u>
167 XAM=.C000001	
<u>xPA=XR+XAM</u>	
<u> </u>	
<u>GU TO 32</u>	
188 XAM=.000000001	
XPA=XK+XAM	
XG=1.	
GU TC 32	
185 CUNTINUE	
hRITE(6,496)	
GU TU 999	·
51 IF(>11) 31,34,33	
34 XAM=-5.	
XPA=XR+XAM	
X2P=1.	
<u>33 IF (XJP) 37,36,35</u>	
35 XAM=01	
<u>XPA=XK+XAM</u>	······································
κMC=1.	
$\frac{\lambda c P = -1}{2}$	
GU 1C 32	

÷ 199923299

107

معادما والمركبة كمكالأمليان المالي والمتناقب

11

Figure AIII.7. Stacked Splice Program (Continued)

٢

36 XAM=0001
XPA=XK+XAM
XMC=U
GU TC 32
37 1F(XC) 38,35,4C
36 XAM=COOUC1
xPA=xK+xAM
XU=1
XMC=-1.
GU TC 32
35 AAM=CCCCCCC01
XPA=XK+XAM
XU=0
UL TL 32
40 XAM=00000CCCC1
X0=1
GC TL 32
31 XAM=-500.
XP A= XR + XAM
32 AR=XPA
[=]
XL=C
XR L=1.
IF(XTV) 204,56,56
56 A/A=ANR(1) * APA/AKA(1) + AS(1)
XDS=C
XULA=C
XKZ=C
<u> </u>
<u>xús=c</u>
<u> </u>
ATUA=XR
<u> </u>
XTD=XTD-XDS BC XAS=XTD-XS(1)
XL=XL+1.
$\frac{AE - AE + I}{APA = ABS * AKA(I)}$
XULA=XULA+XPA+XNR(I)
XSU=AULA/XDK(1)
xùS=xL(1)*xL(1)+xLS
XCT=XQS+XQI
Ι.Ο.Α=Τ.Α.Α
XUB=XQI-XDLA
XBS=XUB/AKS(1)
XLS=XBS-XSU
IF(XCT) 233,959,2400
233 CUNTINUE

Figure AIII.7. Stacked Splice Program (Continued)

161761875-2 1 62 63 60
$\frac{1F1XLA/XLT-3.}{42.42.49}$
<u>2466 LUI-11106</u> 1F(XELA-3.+XGT) 57.51.51
111111111111111111111111111111111111
$\frac{53 \text{ IF}(xh-x2) \text{ e3,1(1,83)}}{53 \text{ e3,1(1,83)}}$
ICI LENTINUE AUTA=XUT
83 LUNIINUE
1F (AN-AL) 71,71,81 88 CUNTINUE
ALA=AIDA
XULA=XUL
XK=XKP*XKA(1)
X + B = X + X + X + X + X + X + X + X + X + X
1F(X20-X2A) 55, 35, 35, 35, 35, 35, 35, 35, 35, 35,
71 1=1
лга=лк+хам
124 XZB=XNK(1)*)FA/XKA(1)*XS(1)
95 x IU=X2B
<u>лк=ХҒА</u>
xUS=C
∧1] =−1.
x2P=L
XULB=C
xZ=C
x 4 5 = C
GU 16 04
E5 CLNTINLE
1 = I + 1
$04 \times 10 = 10 - \times 05$
xaS = xTD - xS(1)
APA=X45+XK4(1)
X2=X2+1.
ACLB=AULB+XPA*XNR(I)
XSU=XUL3/XDK(1)
X4S=XL(1)*X4L(1)+X4S
$\lambda = \lambda + \lambda Q I$
xuB=xu1-xu1.b
XBS=XGB/XKS(1)
.xus=xbs-xsd
IF (XN-XZ) 67,1C3,87
103 LUNTINUE
AL18=XGT
E7 CUNTINUE
1F (XN-X2) 104,104,65
1C4 CUNTINUE
X 2 = 0
XCL=C

Sector Sector

Figure AIII.7. Stacked Splice Program (Continued)

٢

201

and a same of the second s

xS(NS) = -XS(1)
$x \in A(NS) = X \times A(1)$
$\lambda NR(NS) = XNR(1)$
$XAF(NS) = - \lambda AP(1)$
VK=v+5
XKU(NS, 1)=XKU(1, 1)
xkU(NS, 2) = xKU(1, 2)
NXS=N+1
XKL(NXS) = XKL(N)
XS(NXS) = -XS(N)
XNR(NXS) = XNR(N)
xAP(NXS) = -XAP(N)
240 CUNTINUE
λ 1υ=0
λCL A=0
λÜ S= C
xK=xFA
IF (XKA(I)/XKL(1,2)-1CC.) 337,4338,4338
4338 AJA(1)=XKL(1,2)
GUTC 336
$337 \text{ XJA}(1) = \lambda \text{KA}(1)$
336 CUNTINLE
$\lambda \angle A = \lambda NR(I) + \lambda PA/X JA(I) + XS(I)$
XILA=XK
XTC=XZA
60 TU 202
201 CUNTINUE
λ10=λ 10-λ0 S
I=I+I
ΛUT=XA?(I)*XNK(I)+XUT
202 CGNTINUE
$\frac{1}{\lambda 4S = XTU - XS(1)}$
AL=AL+1.
1+ (XKA 1/XKU(1+2)-100.1 339,335,335
335 XJA(1)=XKD(1,2)
1F(XNN-AL) = 339, 339, 338
$\frac{11}{335} \times JA(1) = \lambda KA(1)$
338 CUNTINUE
xPA=xAS*xJA(1)
XÜLA=XÜLA+XPA*XNR(1)
ASU=ADLA/AKD(1,2)
$\frac{1}{1} = \lambda \nabla E / \lambda $
xu5=x58(1)-x8L
208 CUNTINUE
IF(AAT) 3333,559,340
3333 LUNT INUE
$\frac{3333}{1F(xDLA/xxT-3.)} \frac{142+142+49}{142+142+49}$
<u>142 IF(3.+XULA/XXTJ 51.239.239</u> 34C CUNTINUE

Figure AIII.7. Stacked Splice Program (Continued)

XÇS=C
XD S=C
XY=0
1=1
131 XIU=XZB+(XDLb-XLTB)*(XZB-XZA)/(XCLA-XQTA-XDLB+XCTB)
XTUA=XTU
132 XRP=>1DA
XR=XPA
GU TU 06
74 CUNTINUE
[=]+]
XTU=XID=XUS
86 XAS=XTÜ-XS(1)
XZ=XZ+1.
XAP(I) = XAS * XKA(I)
XCL=XUL+XAP(I)*XNR(I)
SXD(1) = XUL/XDK(1)
XCS=XL(I)*XLL(I)+XCS
XCT=XCS+XQ1
XUB=XQT-XDL
xBS = xQB / xKS(1)
xCS=xbS-SXD(1)
117 IF (XN-XZ) 102,102,74
102 CUNTINUE
IF((LABS(XUL-XGT))01*DABS(XAP(I))) 70,70,88
7C CUNTINUE
xis=0
1=1
XQI=C
XST = XAP(1) * XAR(1)
x2=0
204 CUNTINUE
xīv=-1.
NT=I
XQT=XST
1F(XRZ) 240,318,240
318 CUNTINUE
XPA=XKU(I,1)/(XKD(1,1)+XKD(1,2))*XST
NAB=N-1
DU 1500 I=1, NAB
NK=2*N-1
XKD(NK,2)=XKC(1,2)
XKD(NK,1)=XKC(1,1)
NS=2*N+1-1
XKA(NS)=XKA(I)
xS(NS) = -xS(1)
XNRINS)=XNR(I)
XAP(NS) = -XAF(I)
150C CUNTINUE
I=N
NS=2*N

Figure AIII.7. Stacked Splice Program (Continued)

IF(ADLA-3.*AXT) 238,238,51
238 CUNTINUE
IF(3.************************************
239 CUNTINUE
IF(2.*XN-XZ) 332, 333, 332
333 CUNTINUE
XQTA=XQT
332 CONTINUE
1+ (XN-XZ) 2C3,2C3,2C1
203 LUNTINUE
[=]
XTS=C
APA=XK+AAM
X2=0
XST=XAP(1)*XNR(1)
2CC ALB=ANR(1)*APA/AJA(1)+AS(1)
XTD=XZB
лк=хра
XULB=C
XZ=0
XUS=C
XDS=C
AU1=AS1
6 TC 210
211 CUNTINUE
I=I+1
x to= x to- xo s
λųΤ=λΑΡ(Ι)*XNR(Ι)+λųΤ
<u>210 XAS=XTD-XS(1)</u>
APA=XAS*XJA(I)
x2=x2+1.
XULB=XULB+XPA*XNR(1)
ASU=XDLB/XKD(I,2)
XGB= XQT XDLB
XSB(1)=XQB/XKD(1,1)
<u>xus=xsu(1)-xsu</u>
IF(XN-XZ) 212,212,211
212 CONTINUE
X2=0
XDL=C
XQS=C
XUS=C
XY=0
<u>l=1</u>
<u> </u>
XST=XAP(1)*XNR(I)
xQT=XSI
x TD=x2B+xDLB+(x2B-x2A)/(xDLA-xCLE)
X TDA= XTO
XKP=XTJA
GC TC 221

٩,

Figure AIII.7. Stacked Splice Program (Concluded)

220 LUNIINUE
[=]+]
x 1ú= x 1ú- xús
xu1=>AP111+XKT
221 AAS=xID-xS(1)
λί=χί+1.
PXA(1)=XAS+XJA(1)
XUL=XUL+PXA(1)*XNR(1)
SUX(1)=XUL/XKD(1,2)
XLB=XCI-XUL
XSB(1) = AQB / XKD(1,1)
xDS=xS3(1)-SDX(1)
TP(1)=SXU(1)/XSU(1)
XUK (I)=TP(I) + XUK(I)
if (2.+XN-XZ) 222,222,22C
222 UNTINUE
Du 1001 1=1,N
PXX=FXA(NT)
IF (XAA-PXX) 10C2,1C01,1C02
1LLI CUNIINUE
66 TC 250
1CC2 APA=1P(N1)*XPP(NT)
1=1
· XAA=+XA(NT)
X2=0
xiy=c
XTI=-1.
$\lambda V = 1.$
UL TL 50
250 1=1
XŹ=C
nRITE(0,1/)
wklTE(6,19)
xu1=C
XU2=0
00 TE 252
251 CUNTINJE
1=1+1
252 LUNTINUE
XZ=XZ+1.
$A \downarrow T = A \downarrow I + A \downarrow (I) * A \downarrow O(I)$
XU1=XU1+XAP(1)*XNR(1)-PXA(1)*XNR(1)
AU2 = AU2 + PAA(1) + AR(1)
X85=XQ1-XL1-XUZ
ARITE(0, 10) XZ, XQT, XAP(I), XUL, PXA(I), XUZ, XBS
1+1AN-AL1 555, 599, 251
999 CUNTINUE
IF(NKP-NNP) 95C, 951, 951
S51 CUNTINUE
STOP
END

Ander

Figure AIII.8. Stacked Splice Program Imput Data

(

205

1	1			
19				· · · · · · · · · · · · · · · · · · ·
247000	C2470000	·		
10,	-			
-32000-	17			
1.0	1470000	- 470000	1000	470000 0 1
<u>l</u>	1470000	470.00	271000	470000 0 1
<u> </u>	1470000	470.00	271000	470000 0 1
	1470000	470000	271000	<u>470000 0 1.</u>
1.0	1470000	470000	271000	470:00 0 1.
1.0	1470000	470000	271000	A70000 0 1
1.0 ~	1470000	470000	271000	170000 . G 1.
1.0	1470000	470000	271000	470.000 . 0 1.
<u> </u>	1470000	470000	1000	470000 .0 1.
1.0	1470000	470000	1000.	470:00 0 1

Figure AIII.9. Stacked Splice Program Output Data

		SPLICE	INPUT					
XN = 10	•							
							· ·	
XQ1=-320	فكالصاطلي بمتتهما							
<u> XAEU = 24</u>								
XAES= 24	70000							
XL	ХКА	XKD	L XI	KU2	XK S	XS	XNR	XCU
1.0000	0 14700	UC. 4700	000.	1000.	470000.	0.	1.	
1.000	0 14700	CC. 4700	00. 27	1000.	470000.	0.	1.	
1.CCCC	C 14700	00. 470	100. 27	1000.	476060.	U.	1.	
1.000	0 14/00	00. 4700	000, 27	1000.	470000.	0.	1.	
1.0000	U 14700	166. 4700		1000.	470000.	. 0.	1.	
1.000	0 14700	CC. 4700		1000.	470000.	0.	1.	
1.000	0 14700	00. 4700	000. 27	1000.	470000.	0.	<u> </u>	(
1.000				1000.	470000.	0.	1.	
1.000		GC. 470		1000-	470000.	0	1.	
1.0000	<u>14700 14700 </u>	00. 4700		1000.	410000.	0.	1.	
			SPLICE					<u> </u>
XZ	XQT	<u>XAP1</u>	<u>XC1</u>	XAP		XBS		
<u> </u>	-32000.	-14377.	-14360.	-17	and the second se			
<u> </u>	-32000.	-4173.	-12386.					
	-32060.	-244.	-12385.					
4.	-32000.	-150.	-12410.	-125				
<u> </u>	-32000.	-7.	-12413.	-4				
	-32060.	109.	-12409.	104				
<u> </u>	-32000.	576,	-12600.	767			·····	
	-32000.	2244.	-16545.					
<u> </u>	-32000.	-1406.	-17989.					
	-32000.	-13972.	-32000.	30	· 0.			

.

N.

Ş

all the second

1.30....

-

Figure AIII.9. Stacked Bplice Program Output Data (Concluded)

207

.....

(

APPENDIX IV

COMPUTER ANALYSES DATA

- IV.1 PLASTIC DOUBLER AND SPLICE DATA
 - IV.2 STACKED DOUBLER AND SPLICE DATA

APPENDIX IV

対応に

ある

Contraction of the second s

HOM - HOM

COMPUTER ANALYSES DATA

IV.1 PLASTIC DOUBLER AND	SPLICE DATA	
Data Set No. I	XKP (One Card) (F6.0 Format)	XKP = No. of problems To be Worked
Data Set No. II	AA, AB (One Card) (2 IlO Format)	AA = Configuration No. AB = Case No.
Data Set No. III	FLA (One Card)	PLA = 0 If Residual Load Not Desired and Positive If Desired
Data Set No. IV	XED, XES (One Card) XED = Modulas of Elasticity of Doubler Material XES = Modulas of Elasticity of Skin Material
Data Set No. V	XN (One Card) (F6.0 Format)	XN = No. of Fastener Rows
Data Set No. VI	XW (One Card) (F6.4 Format)	XW = Density of Doubler Material
Data Set No. VII	XDTA, XWDA, XLUA (One Card) (3Fl0.4 Format)	XDTA = Thickness of Doubler in Front of Fastener Station 1
		XWDA = Width of Doubler in Front of Fastener Station 1
		XLUA = Length of Doubler in Front of Fastener 1
Data Set No. VIII		<pre>XL(I) = Distance Shear Flow Acts on for Station I XDT(I) = Doubler Thick- ness for Station I XWD(I) = Effective Doubler Width for Station I XLU(I) = Distance Between Fastener Rows XTS(I) = Thickness of Base Skin at Station I XWS(I) = Effective Width of Base Skin at Station I</pre>

XS(I) = Fastener Slop at Station 1 XWR(I) = Mo. of Fasteners in Row X. XQP (One Card) XQP = Axial Load Applied Data Set No. IX to Base Structure (F7.0 Format) XKA(I,1), XKA(I, 2) XKA(I, 1) = First Data Set No. X (XM Cards) Fastener Spring Constant XKA(I, 3) XKA(I, 4) Corresponding to the XKA(I, 5) XKA(I, 6) First Fastener Cut Off (6 Fil.0 Format) Value at Station I XKA(I, 2) = Second Fastener Spring Constant Corresponding to the Second Fastener Cut Off Value at Station I XKA(I, 3) = Third Fastener Spring Constant Corresponing to the Third Fastener Cut Off Value at Station I XKA(I, 4) = Fourth Fastener Spying Constant Corresponding to the Fourth Fastener Cut Off Value at Station I XKA(I, 5) = Fifth Fastener Spring Constant Corresponding to the Fifth Fastener Cut Off Value at Station I XKA(I, 6) = Sixth Fastener Spring Constant Corresproding to the Sixth Fastener Cut Off Value at Station I XAL(I, 1), XAL(Î, 2)XAL(I, 1) = First Fastener (XN Cards) Cut Off Value at Station I Data Set No. XI XAL(I, 3), XAL(I, 4) XAL(I, 2) = Second Fastener Cut Off Value at Station I XAL(I, 5), XAL(I,6) XAL(I, 3) = Third Fastener (6 Fl0.0 Format) Cut Off Value at Station I XAL(I, 4) S Fourth Fastener Cut Off Value at Station I XAL(I, 5) = Fifth fastener Cut off Value at Station I $XAL(I, \delta) = Sixth Fastener$ Cut Off Value at Station I

Data Set No. XII

If PIA (DATA SET NO. III) is Positive,

Requiring Residual Loads, Data Sets XII and XIII are Required if FLA is Zero, Repeat Data Sets No. II-XIII (XII and XIII for Residual Loads) for the Mumber of Problems to be Worked (Corresponding to Data Set No. I) XKA (I, 1) (XN Cards) (F ll.O Format) XKA(I, 1) = Fastener Spring Constant Corresponding to the Fastener

Data Set No. XIII

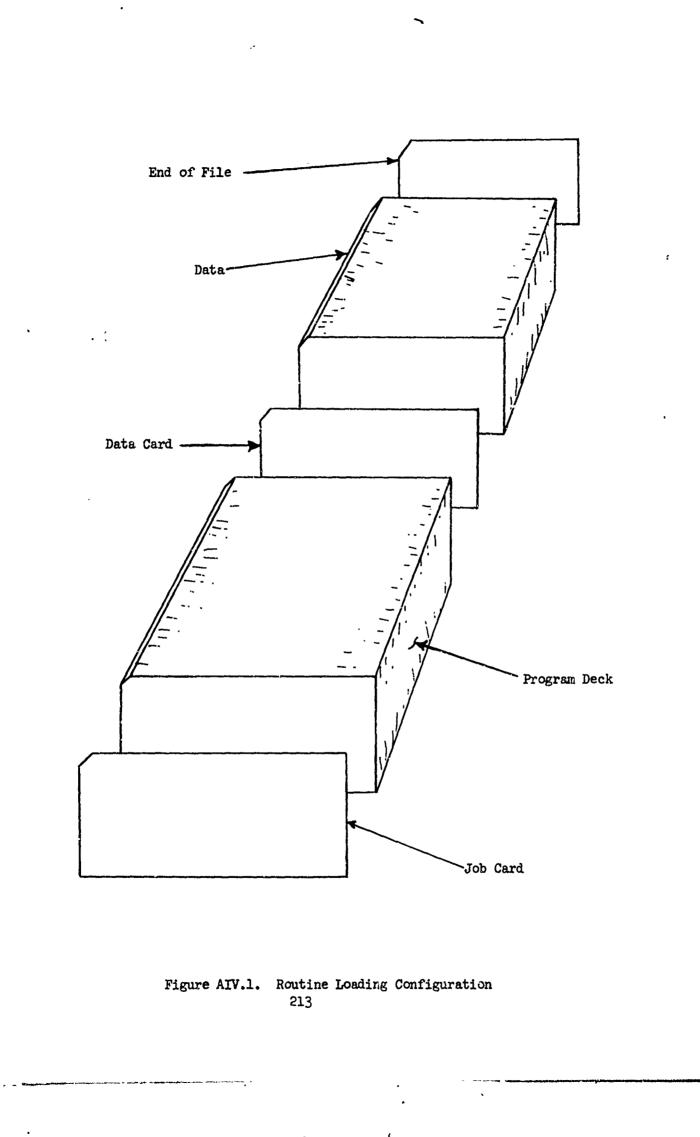
XAL (I, 1) (XN Cards)XAL(I, 1) = Fastener
(FI0.0 Format)
Cut Off Value at Station I
(For Residual Loads)
These Have To be larger
than any of cut off loads
for the fastener to insure
the proper results. The
exact number does not
matter but it just has to
be large to allow the
routine to function
properly.

Cut Off Value at Station I

(For Residual Loads)

stant of 1000 #/in is used in program (see example stacked doubler problem) If the second doubler runs the length of the first doubler, this number is larger than the No. of fastener rows.

Data Sets II - XIII (XII and XIII depend upon residual load requirements) arc repeated for the number or problems to be worked (corresponding to Data Sets No. I).


The Plastic splice problem data is identical to the above data except Data Sets VI and VII are omitted.

IV.2 STACKED DOUBLER AND SPLICE DATA

Data Set No. I		AA, AB (One Card) (2110 Format)	AA = Configuration No. AB = Case No.
Data Set No. I	I	XKP (One Card) (F6.0 Format)	XKP = No. of Problems to be worked.
Data Set No. I	11	XNN (One Card) (F6.0 Format)	XNN = Fastener station where spring constant of second doubler does not exist, but 2 dummy con-

Data Set No. IV	XAED XAES (One Card (2F11.0 Format)	 XAED = Spring constant of doubler at first fastener station. XAES = Spring constant of Base Structure at First Fastener Station
Data Set No. V	XN (One Card) (F6.0 Format)	XN = No. of Fastener Sta- tions
Data Set No. VI	XQI (One Card) (F7:0 Format)	XQI = Applied Axial Load
Data Set No. VII	XL, XKA, XKD1, XKD2, XKS, XS, XNR, XQO (XN Cards) (F10.5, 4F10.0, F10.3, 2F10.0 Format)	XL = Length Shear Flow act at fastener station I XKA = Fastener Spring Constant at Station I XKD1 = Spring Constant of bottom Doubler at station I XKD2 = Spring Constant of Top Doubler at station I If Top Doubler at station I If Top Doubler starts after Fastener Station I, place 1000 #/in into slot for a dummy spring constant. The same should be done if the top doubler ends before the bottom. XKS = Spring Constant of base structure at fastener station I XNR = No. of fasteners at Station I XQO = Shear flow applied at Station I

The stacked splice data is identical to the stacked doubler data, except data set I and II are reversed. All the programs are limited to 99 fastener rows because of the programs dimension statements.

沛

··· ··· ··· ··· ···

1.00

2

APPENDIX IV

and the second second restances and the second s

INTERNATIONAL UNITS CONVERSION TABLE

Table AIV.1 presents the constants and instructions for converting from the English system of units into the International system of units.

TABLE AIV.1

CONVERSION FACTORS FOR THE INTERNATIONAL SYSTEM OF UNITS

To Convert From	То	Multiply By	
Feet	Meters	0.3048	
Feet Per Minute	Meters Fer Second	0.00508	
Feet Per Second	Meters Per Second	0.3048	
Hours	Seconds	3600.0	
Inches	Meters	0.0254	
Knots	Meters Per Second	0.514444	
Miles	Meters	1609.344	
Pounds	Kilograms	0.4535	
Minutes	Seconds	60.0	
Pounds Per Square Inch (p.s.i.)	Newtons Per Square Meter	6894.7572	

21,4

UNCLASSIFIED

Security Classification				
	NTROL DATA - R&	-		
(Security classification of title, body of abstract and index	ing ernotation must be er			
1. ORIGINATING ACTIVITY (Corporate author)		La. REPOR	AT SECURITY CLASSIFICATION	
Air Force Flight Dynamics Laboratory (UNCLASSIFIED	
Wright-Patterson Air Force Base, Ohjo	45433	25. GROUP		
		<u>l</u>	، . ر وی در در از ایران ا	
3. REPORT TITLE				
(U) ANALYTICAL DESIGN METHODS FOR AIRC	RAFT STRUCTURAL	L JOINTS		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			· · · · · · · · · · · · · · · · · · ·	
Final report covering work effort cond	ucted from Janu	1ary 196	7 through January 1968	
5. AUTHOR(S) (Last name, lirst name, initial) MCCOMBS, WILLIAM F.				
MCQUEEN, JAMES C.				
PERRY, JEFFREY L.				
			·	
6. F IPORT DATE	74. TOTAL NO. OF P	AGES	75. NO. OF REFS	
January 1968	214		10	
8. CONTRACT OR GRANT NO.	94. OUIGINATOR'S RI	EPORT NUM	BER(S)	
F33615-67-C-1339		- 01:		
b. PROJECT NO.	AFFDL-TR-67-	104		
c.BPSN 7(611467-62405334)	95. OTHER REPORT	NO(S) (Any	other numbers that may be assigned	
<i>d</i> .				
10. A VAILABILITY/LIMITATION NOTICES				
This document is subject to special ex	port controls a	nd each	transmittal to	
foreign governments or foreign nationa the AF Flight Dynamics Laboratory, (FD	18 may be made	only wi	th prior approval of	
one AF Fiight Dynamics Daboratory, (FD	IN) Wright-Pact	erson A	FB, 0110 45433	
11. SUPPLEMENTARY NOTES	12. SPONSORING MILI	TARY ACT	VITY	
	AF Flight Dy	namics (Laboratory	
	Wright-Patte	rson AF	B, Ohio 45433	
	L			
13. ABSTRACT				
An engineering procedure for determining	g the distribut	ion of i	loads in the mechani-	
cally fastened joints of splice and dou	bler installati	ons has	been developed. Me-	
thods for both hand analyses and comput solution by digital computer are provide	er analyses are ed.	presen	ted. Routines for	
poracion of artificar combract and broater	çu e			
The methods are generally limited to the	e cases of a si	ngle la	p arrangement and a	
single sandwich arrangement, but the ca	se of miltinle	(stacks	d) mombang is discussed	
The members may have any form of taper (or steps and th	e effec	ts of fastener-hole	
clearance, or "slop", and plasticity can	n be accounted	for. T	he particular primary	
The members may have any form of taper of clearance, or "slop", and plasticity can data that must be supplied but which are are the spring constants of the fastener	e not generally r~sheet combina	tion¶.	ble in the literature	
A test program has been carried out to a	substantiate th	e metho	is and the results are	
included.				
Make ababusating and the time to the				
This abstract is subject to special expo	ort controls an	d each	transmittal to foreign	
governments or foreign nationals may be Flight Dynamics Laboratory (FDTR), Wrigh	made only with	prior	approval of Air Force	
radio alitantes haperanetà (thru) Milât	TALLET SOU AT	r rorce	Dase, 0110 47433.	
DD 1508M 1473				
JU 1 JAN 64 14/3		UN	LASSIFIED	
		Sec	urity Classification	

もう

UNCLASSIFIED

Security Classification

4. KEY WORDS		LINK A		LINK B		LINK C		
		ROLE	WT	ROLE	٣T	ROLE	WT	
Doubler Ana Doubler Des Fastener Lo	ign ed-Deflection Data ad Distributions							
		, '						

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES Enter the total number of references cited in the report.

8e. CONTRACT OR GRANT NUMBER. If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S). If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY. Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13 ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS) (S), (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words

14 KEY WORDS Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional

UNCLASSIFIED