NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution: Further dissemination only as directed by U.S. Army Engineer Waterways Experimental Station. Vicksburg, MS 39181, 21 MAR 1968, or higher DoD authority.

AUTHORITY

USAEWES ltr, 24 Jan 1972
INTEGRATED ENGINEERING AND SERVICE TESTS OF
DUST CONTROL MATERIALS

FINAL REPORT

BY

LT R. C. CRAIG

AND

SPS M. K. BAKER

SCIENTIFIC AND ENGINEERING
USAARENBD

AND

MR. R. C. LAUGHLIN

USAGTA

21 MARCH 1968

US ARMY
ARMOR & ENGINEER BOARD
FORT KNOX, KENTUCKY

US ARMY
GENERAL EQUIPMENT TEST ACTIVITY
FORT LEE, VIRGINIA

Manufacturers' code sheet contained within this report will be removed before this report is distributed outside the Department of Defense.
DISTRIBUTION STATEMENT

This document may be further distributed by any holder only with specific prior approval of US Army Engineer Waterways Experiment Station.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software. This report may not be cited for purposes of advertisement.
SUBJECT: Approved Final Report of Integrated Engineering and Service Tests of Dust Control Materials, RDTE Project No. 1064J324D-55603, USATECOM Project No. 7-7-0868-01/02

1. References:

 c. Approved Plan for Integrated Engineering and Service Tests of Dust Control Materials, USATECOM Project No. 7-7-0868-01/02, 5 July 67.

 d. Pre In-Process Review (IPR) conference for Technical Characteristics, Engineering Concept and Design Characteristics on Distribution, Dust Control Material, DA Task 1064J324D59631, held at U. S. Army Mobility Equipment Research and Development Center on 22 March 1968.

2. Forwarded for information and appropriate action is the U. S. Army Test & Evaluation Command Approved Final Letter Report of the Integrated Engineering and Service Test of six different commercial-type dust palliative materials. This report covers test operations up until test termination on 24 October 1967. The test was terminated by this headquarters (reference 1a) because the six test materials fail to meet the performance requirements of the QMR (reference 1b).

3. This headquarters concurs in the statements made in the report except for two statements that require further clarification. Paragraph 3d(2) states that "All the test materials except Code F failed to perform
Approved Final Report of Integrated Engineering and Service Tests of Dust Control Materials, RDTE Project No. IG6/332/US-55603, USATECOM Project No. 7-7-0888-01/02

satisfactorily under ground vehicular traffic." Ground vehicular traffic in this case was only the vehicular traffic occurring at the test site. The QMR (reference 1b) requirement for the material to be effective, with only minor maintenance for one month in areas trafficked by ground vehicle or aircraft, requires clarification of the amount of traffic involved. This clarification is required before it can be clearly stated that the Code F material met the requirement. The second statement which requires further clarification is paragraph 3d, which states "the top opening-type drum be considered suitable for storage and handling of test materials when a polyethylene lining has been provided under the lid of drums containing emulsion-type materials." What is intended by this statement is that emulsion-type materials require a lining and should not come in direct contact with the drum. The storage and handling requirements of the QMR were not determined during this test. Information presented at the pre In-Process review of Distributor, Dust Control Material by USAMRDC personnel (reference 1d) was that the open top drum does not meet overseas shipment requirements.

4. This headquarters concluded at the time of test termination (reference 1a) that the materials have some limited use and that informal reports from Vietnam indicate use in that theater of several of the materials with varying degree of success. Analysis of the Engineering and Service Tests results indicate the Code F material ranks the highest and is considered to be the most effective of the materials tested. The Code A material ranks second to the Code F material and is considered to be the best of the emulsion-type materials.

5. This headquarters reiterates the conclusions made at the time of test termination:

 a. It is concluded that the test materials are not suitable for army use in that they do not meet the qualitative material requirements as defined in the QMR.
SUBJECT: Approved Final Report of Integrated Engineering and Service Tests of Dust Control Materials, RIFE Project No. 10613324D-55603, USATECOM Project No. 7-7-0888-01/02

b. It is further concluded that the materials, specifically Code F and Code H may have some limited use.

FOR THE COMMANDER:

JAMES O. DAULTON
Colonel, GS
Director, General Equipment
Testing Directorate

Copies furnished: (w/incl)
CG, USAEC
ATTN: AMCMI (1 cy)
ATTN: AMCPSU (1 cy)
ATTN: AMCWA-R (1 cy)
ATTN: AMCQA (1 cy)
ATTN: AMCEA-F (1 cy)
ATTN: AMCPE (1 cy)
CG, USACDC
ATTN: USACDC/Lo (USATECOM) (10 cy)
CG, USQUARC
ATTN: ATIT-RM-MD (1 cy)
OCE/DA
ATTN: ENGTE-E (1 cy)
SUBJECT: Final Report of Integrated Engineering and Service Tests of Dust Control Materials, RDT&E Project No 1G645324D55603, USATCOM Project No 7-7-0888-01/02

TO: Commanding General
US Army Test and Evaluation Command
ATTN: AMSTE-GE
Aberdeen Proving Ground, Maryland 21005

1. REFERENCES
 a. USAARENBD Plan for Integrated Engineering and Service Tests of Dust Control Materials, USATECOM Project No 7-7-0888-01/02, 5 Jul 67.
 c. Ltr, AMSTE-GE, Project No 7-7-0888/01/02, HQ USATECOM, 4 Nov 66, subject: Test Directive, USATECOM Project No 7-7-0888-01/02 Integrated Engineering/Service Test of Dust Control Materials, DA Project No 1V0217G1AC46, w 9 incl.
 d. Msg, TEC 6716, AMSTE-GE, HQ USATECOM, 27 Apr 67, subject: Amendment to Test Directive, USATECOM Project Number 7-7-0888-01/02, Integrated Engineering Test Service Test of Dust Control Materials, DA Project Number 1V0217G1AC46.
 e. Ltr, AMSTE-GE, HQ USATECOM, 23 Oct 67, subject: Integrated Engineering and Service Tests of Dust Control Materials, USATECOM Project No 7-7-0888-01/02.
2. RESPONSIBILITIES

a. The Engineer Division, US Army Armor and Engineer Board (USAARENBD), Fort Knox, Kentucky, was responsible for preparation of the integrated test plan (reference la), test coordination, service test execution, and preparation of the final report.

b. The US Army General Equipment Test Activity (USAGETA), Fort Lee, Virginia, was responsible for preparation of the engineering tests included in the integrated test plan, execution of the engineering test, and preparation of the engineering test input for inclusion in the integrated final test report.

c. The US Army Engineer Waterways Experiment Station (USAEWES), Vicksburg, Mississippi, was responsible for providing test materials at the test sites (Eglin AFB, Florida; Dyess AFB, Texas; Fort Leonard Wood, Missouri); for support of the US Army General Equipment Test Activity in engineering test execution, and for support of the US Army Armor and Engineer Board in execution of the service test.

3. BACKGROUND

a. The immediate need for effective dust control materials in the theater of operations is readily apparent. In response to this requirement, the US Army Materiel Command RDT&E Project/Task No 1064334DE.503 provided for development of dust palliatives to fulfill the requirement specified in the QMR (reference lb). The US Army Engineer Waterways Experiment Station was assigned this project/task as the developing agency. Through accelerated laboratory tests and analysis of numerous materials, USAEWES recommended as an interim measure six commercial products be included in an integrated engineering and service test (ES).

b. Six existing commercially-produced materials were evaluated on three selected sites. The test sites, each with different type soil, were selected by a team from the USAARENBD and USAEWES and were located at Eglin AFB, Florida (sand); Dyess AFB, Texas (clay); and Fort Leonard Wood, Missouri (clay).

c. The test was conducted under the authority contained in references lc, d, and f.
d. The test was terminated on 24 Oct 67 (reference le) for the following reasons:

(1) All of the test materials failed under the C-130E aircraft and the CH-47A helicopter tests on one or more of the soil conditions.

(2) All of the test materials except Code F failed to perform satisfactorily under ground vehicular traffic.

(3) Codes D and F emplaced at the Eglin site, and Code D at the Dyess site failed to meet product specifications.

4. DESCRIPTION OF MATERIAL. The test items were six different commercial-type dust palliative materials.

a. CODE A. A clear, water-dispersed, air-drying adhesive. It is a polyvinyl acetate emulsion modified with plasticizers, surfactants, and other inorganic elements.

b. CODE B. A green-colored, water-dispersed, air-drying adhesive. The solids content is approximately 50 percent and consists primarily of synthetic rubber, resins, pigments, and fillers. A small amount of solvent, such as toluol and methyl alcohol, is present in concentrations of less than 5 percent each. The remainder of the solvent is water.

c. CODE C. An air-drying adhesive which is available in many colors and is water-dispersed. It is an elastomeric polymer emulsion containing a latex, sodium polyacrylate, kaolin pigment, and surfactants.

d. CODE D. A dark brown to black conventional slow-curing grade of cutback asphalt. The appropriate penetration asphalt cement (SO) is liquified with petroleum solvents of low volatility.

e. CODE E. A light-grade oil containing approximately 70 percent of a high-boiling aromatic oil.

f. CODE F. A dark brown to black proprietary cutback asphalt product. It is synthesized from a low penetration grade (10-20) asphalt and selected solvents.
5. TEST OBJECTIVES

a. To determine the technical performance and safety characteristics of the dust control materials as described in the QMR and as indicated by the particular design, and to determine the suitability of the materials for Army use.

b. To determine the capabilities of the test items to meet dust control material requirements of the Department of Army Approved QMR for Dust Control Material.

c. To determine the capability of the USAE WES - procured asphalt distributor and any available truck-mounted asphalt distributor in the Army inventory to meet the performance requirements for dispersing in the DA Approved QMR.

d. To determine the adequacy of the USAE WES preliminary guide manual for use with Code A test material.

e. To determine the suitability of top opening-type drums during storage and handling operations.

6. SUMMARY OF RESULTS. Test results are based on testing conducted during the period April - October 1967. The test items met criteria (inclosure 3) except as otherwise indicated below:

a. Safety (ET). Evaluations of the developer's safety statement; the OSG toxicity clearance for testing; laboratory test results of flash point, water extractables from dried palliatives, and changes in gage pressure with increases in temperature; and experience during use in engineering tests show that the six palliatives are safe for field use when the following safety findings are considered and observed:

(1) All of the liquid palliatives should be handled with caution, in that skin contact, ingestion, and inhalation of fumes should be avoided; therefore, adequate clothing, supplemented by the use of barrier creams on uncovered skin, should be worn by personnel during application, and the earliest possible removal of palliatives from the skin by washing is recommended.

(2) Code F has a flash point below 175° F. and must be considered a flammable liquid (para 1.1, inclosure 4), while Code E and Code D will burn but are not easily ignited. Code A, Code B, and Code C are non-flammable water-dispersed liquids. None of the materials were considered fire hazards after drying on soil surfaces.
USATECOM Project No 7-7-0888-01/02

(3) Calculations combining laboratory tests of vapor pressure and densities with considerations of reduced atmospheric pressures expected at 40,000 feet altitude result in a required rigid-container strength of at least 20 pounds per square inch for safe air transport.

(4) Laboratory analyses of water decanted from dried palliative samples showed that only small quantities of the dried materials are borne away by water, indicating that these materials as applied in the field would be expected to have little, if any, adverse effects on water supplies, livestock, or agricultural enterprises.

b. Weight and Volume Characteristics (ET). Laboratory determinations of the specific gravity were used as a basis for calculating the weight and volume characteristics of each of the six candidate materials to determine relationships to the maximum allowed application rates under the QMR. The QMR maximum weight allowance of 3 pounds per square yard limits the volume of each of the materials to less than 0.40 gallons per square yard. Volumes ranged from 0.33 gal/sq yd of basic material for Code A (the heaviest) to 0.38 gal/sq yd of basic material for Code F (the lightest). None of the materials diluted with water required as much as 2.0 gallons of water per square yard for dilution before application.

c. Corrosion Tests (ET). Tests were not completed prior to test termination and results were inconclusive.

d. Drying Tests (ET). Although test data were insufficient to provide a basis for statistically valid conclusions, studies of loss of weight curves coupled with subjective observations of dryness indicate the following:

(1) The water-dispersed polymers, Code A, Code B, and Code C, formed films on sunlit dry soils within approximately 4 hours after application but required additional curing time to completely harden.

(2) The petroleum-base materials did not behave alike. Code F formed a surface film in approximately 5 hours but required more time to harden. Code D required approximately 48 hours to cure enough to permit contact, and Code E remained "oily" indefinitely.
e. Wind Erosion Tests (ET). Tests were not completed. Available data indicating the percentages of dust palliation for three types of dry soils are presented in Table I below.

TABLE I

PERC NT DUST PALLIATION BY WEIGHT
(Average of Five Samples Each)

<table>
<thead>
<tr>
<th>Test Material</th>
<th>Dry Sand</th>
<th>Dry Clay</th>
<th>Dry Sandy Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code A</td>
<td>99.8%</td>
<td>85.2%</td>
<td>99.7%</td>
</tr>
<tr>
<td>Code B</td>
<td>100.0%</td>
<td>96.8%</td>
<td>98.4%</td>
</tr>
<tr>
<td>Code C</td>
<td>99.9%</td>
<td>85.4%</td>
<td>98.4%</td>
</tr>
<tr>
<td>Code D</td>
<td>91.1%</td>
<td>93.9%</td>
<td>92.8%</td>
</tr>
<tr>
<td>Code E</td>
<td>99.8%</td>
<td>*26.0%</td>
<td>94.8%</td>
</tr>
<tr>
<td>Code F</td>
<td>98.6%</td>
<td>97.1%</td>
<td>98.4%</td>
</tr>
</tbody>
</table>

*Resultant due to poor coverage because of lack of penetration in the dry soil.

f. Storage Tests (ET). No storage test results were obtained prior to test termination.

g. Freezing Point Tests (ET). Results of laboratory freezing point determinations are shown in Table II below.

TABLE II

FREEZING POINTS
(Average of Two Tests Each)

<table>
<thead>
<tr>
<th>Test Material</th>
<th>Degrees F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code A</td>
<td>30.0</td>
</tr>
<tr>
<td>Code B</td>
<td>20.0</td>
</tr>
<tr>
<td>Code C</td>
<td>29.0</td>
</tr>
<tr>
<td>Code D</td>
<td>-57.0</td>
</tr>
<tr>
<td>Code E</td>
<td>-46.0</td>
</tr>
<tr>
<td>Code F</td>
<td>-50.0</td>
</tr>
</tbody>
</table>
The above results show that the water-dispersed palliatives can be expected to be difficult to store and use in intermediate and cold climates.

h. Soil Characteristics (ET). At each test site, the following data were collected: water content, dry density, surface water content, airfield index, gradation curves. (See pages 2 through 15, inclosure 1.)

i. Emplacement (ST).

(1) Site preparation was required to bring the medium-lift airfields to an acceptable testing condition.

(a) At Eglin AFB, grading of the site to clear vegetation and an existing residue of dust palliative was performed by Base Engineer personnel.

(b) At Dyess AFB, grading and rolling of the site to clear vegetation and to prepare the soil surface were performed by Post Engineer personnel and attached troops.

(2) The test materials were received at each test site as indicated on page 1, inclosure 1.

(a) The Code F material used at Eglin AFB (page 38, inclosure 1) failed to meet specifications and was not representative of the proprietary product.

(b) The Code D material used at Eglin AFB (page 37, inclosure 1) failed to meet ductility requirements on the 100 penetration residue. On the basis of the analysis, the material is considered to be a borderline Code D cutback asphalt.

(c) The Code D supplied to Dyess AFB (page 39, inclosure 1) also is considered to be a borderline material in that it failed to meet viscosity and float-test requirements.

(3) The following difficulties were encountered in the supply of the test materials.

(a) A solid film formed on the surface of the test material in the open-top drums of Code A supplied to Fort Leonard Wood because there were no plastic liners under the lids. Removal of this film delayed loading operations.
(b) The open-top drums of Code C supplied to Dyess AFB and Fort Leonard Wood were difficult to reseal because several of the lids were warped when received at the test sites.

(c) The open-top drums of Code B supplied to Dyess AFB were difficult to reseal because several of the lids were warped when received at the test site.

(d) The bung-type drums of Code E supplied to Eglin AFB were easily caved in and/or punctured. The 3-inch-diameter opening in the top of the drums caused difficulty in unloading the test materials from the drums. A 1-1/2-inch-diameter nozzle was inserted into the drums to pump out the materials.

(4) The equipment used in emplacement was as follows:

(a) A Code H 2-1/2-ton truck with a 900-gallon capacity procured by USAEWES was used for material distribution. It has the following attachments: material heater, material pump, and adjustable (1-20 feet) spray bar. The dispersing rate of material was set on dials inside the cab which were linked to the speed of the distributor. (See page 16, inclosure 2.)

(b) A military distributor was procured from the Army inventory. This item was a 2-1/2-ton truck with a capacity of 900 gallons. It has the following attachments: material heater, material pump, and a 12-foot spray bar. The dispersing rate of the material could not be linked to the speed of the distributor. (See page 8, inclosure 2.)

(c) A 2-1/2-ton truck with a capacity of 1,200 gallons procured by USAEWES was used in the prewetting operations. It had the following attachments: towed spray bar unit, 20-foot spray bar. It had no gauges for material usage. (See page 7, inclosure 2.)

(5) The following difficulties were encountered with the test materials and dispersing equipment in the emplacement of the test materials.

(a) At Eglin AFB, the tire tracks of the asphalt distributor created many surface irregularities in the sand. This condition resulted in weak areas in the emplaced film-forming materials. (See page 1, inclosure 2.) A chain drag was placed behind the distributor wheels to reduce rutted areas; however, its smoothing effect was negligible. (See page 16, inclosure 2.)
(b) At Dyess AFB, excessive maneuvering of the asphalt distributor was required due to site restrictions (culvert).

(c) At Fort Leonard Wood, considerable rolling throughout emplacement operations was required due to the ease with which surface irregularities were formed in the silt with the various types of traffic. Rocks and roots added greatly to the surface roughness.

(d) At each test site, all of the emulsion materials temporarily clogged the spraying apparatus of the asphalt distributor. (See page 36, inclosure 1.) In using the emulsion materials, the asphalt distributor remained operational for approximately 5 hours, emplacement involving approximately 12,000 yd². Beyond these limits, clogging of the spraying apparatus is likely to occur. The asphalt materials contained lubricating qualities; therefore, no clogging occurred. With emulsion materials, modification of the pump design for external lubrication and frequent cleaning are required on the distributor.

(e) After emplacing the emulsion materials, the dispersing equipment must be thoroughly flushed; otherwise, material left in the distributor will set up and cause failure of the pump and spraying systems. Also, an accumulation of the materials build up and eventually break off and clog the spray apparatus. (See page 35, inclosure 1.)

(f) It was necessary to make a modification to the pump system of the truck-mounted asphalt distributor. The bushings in the pump of a conventional asphalt distributor are lubricated by the asphalt materials being dispersed. Since the emulsion materials do not have any lubricating capability, it was necessary to install fittings and lines for furnishing grease to the pump shaft bushings (See page 40, inclosure 1.)

(6) The emplacement data and task structure employed are contained in pages 16 through 29, inclosure 1.

(7) Each material was tested for operational usability 4 hours after emplacement. An automobile was driven on the runway area and the condition of the shoulder was examined. Three of the test materials were not operationally usable within 4 hours after application. (See para 1.2, inclosure 4.)
(a) At Eglin AFB, Code F required 1 day to cure in the shoulder area and 4 days to cure in the runway area. Several puddles remained on the shoulder after 11 days and on the runway after 22 days.

(b) At Eglin AFB, Code D required approximately 34 hours to cure.

(c) At Dyess AFB, Code B required approximately 48 hours to cure.

(d) At Fort Leonard Wood, Code B and Code F required approximately 46 hours to cure.

(8) Test material cost per square yard was as follows:

(a) Code A, $0.36
(b) Code B, $0.96
(c) Code C, $0.37
(d) Code D, $0.05
(e) Code E, $0.10
(f) Code F, $0.10

Above costs do not include cost of application equipment which was negligible. Code B exceeded the maximum allowable cost of $0.50 per square yard. (See para 1.5, inclosure 4.)

j. Operational Effectiveness - Air Force C-130E Aircraft (ST).

(1) There were two landings and takeoffs at Eglin AFB and one landing and takeoff at Fort Leonard Wood. Because the aircraft was taxied to the test site at Dyess AFB, no landings and takeoffs were required.

(2) The C-130E aircraft was taxied to the edge of the runway and placed at varying angles (90° at Eglin AFB, 37° at Dyess AFB, 37° at Fort Leonard Wood) to the centerline with the tail extending over the treated section to be air-blasted. (See page 2, inclosure 2.) With the 37° angle, more of the material was exposed to the blast. The aircraft maintained each of the following conditions for 1 minute:
SUBJECT: Final Report of Integrated Engineering and Service Tests of Dust Control Materials, RDT&E Project No 6643324D55603, USATECOM Project No 7-7-0888-01/02

(a) Condition 1 - Ground Idle 18° throttle
(b) Condition 2 - 25 Percent Full Power 36° throttle
(c) Condition 3 - 50 Percent Full Power 54° throttle
(d) Condition 4 - 75 Percent Full Power 72° throttle
(e) Condition 5 - Full Power 90° throttle
(f) Condition 6 - Power Check Ground Idle to Full Power

(3) The following failures occurred in the test materials. (See para 1.3, inclosure 4.)

(a) At Eglin AFB, each emulsion-type test material peeled, and each asphalt-type test material eroded when subjected to propwash.

(c) At Fort Leonard Wood, each emulsion-type test material peeled, and each asphalt-type test material eroded when subjected to propwash.

(4) The following list ranks the materials from most effective to least effective during aircraft operations. (See pages 30 and 31, inclosure 1.) Slightly damaged areas may be repaired in 1 hour or less. Moderately damaged areas required an hour or more to repair. Severely damaged areas are considered unrepairable.

(a) At Eglin AFB (Sand)

1. Code A Slight damage
2. Code C (light) Slight damage
3. Code F Moderate damage
4. Code D Moderate damage
5. Code E Moderate damage
6. Code C (dark) Severe damage
7. Code B Severe damage

(b) At Dyess AFB (Clay)
1. Code A No damage
2. Code F Slight damage
3. Code D Moderate damage
4. Code E Moderate damage
5. Code C Moderate damage
6. Code B Severe damage

(c) At Fort Leonard Wood (Silt)
1. Code F Slight damage
2. Code D Moderate damage
3. Code E Moderate damage
4. Code A Moderate damage
5. Code B Severe damage
6. Code C Severe damage

(5) At Eglin AFB, Code C appeared dark green in the east section of the treated area and light green in the west section. (See page 23, inclosure 1.) There was no outstanding change in the soil composition (see pages 2 through 6, inclosure 1) or emplacement rates (see page 17, inclosure 1). Under the C-130E propwash, the light green Code C was only slightly damaged. (See page 31, inclosure 1.) No explanation can presently be offered for the behavior of this test material.
SUBJECT: Final Report of Integrated Engineering and Service Tests of Dust Control Materials, RDT&E Project No 1G643324D55603, USATECOM Project No 7-7-08:8-01/02

(6) Data accumulated from pilot reports have been incorporated in the above test results.

k. Operational Effectiveness - Army Helicopter (ST).

(1) The CH-47A Helicopter performed test conditions 1, 2, 3, and 9 over the shoulder area; conditions 4, 5, 6, and 7 were performed on the runway. (See page 3, inclosure 2.)

(a) Condition 1 - Steep approach to 10-foot hover (hover 5 min)
(b) Condition 2 - Land from 10-foot hover
(c) Condition 3 - Takeoff from hover
(d) Condition 4 - Full flare landing to ground
(e) Condition 5 - Maximum performance takeoff from ground
(f) Condition 6 - Running landing
(g) Condition 7 - Ground taxi maneuver
(h) Condition 8 - Hover (5-min) over area of taxi maneuvers and over edge of treated surface.

(2) The following failures occurred in the test materials. (See para 1.3, inclosure 4.)

(a) At Eglin AFB, Code B and Code C peeled and Code E eroded when subjected to rotor downwash; Code A, Code F, and Code D were slightly damaged.

(3) The following lists rank the materials, from most effective to least effective, during helicopter operations. (See pages 30 and 32, inclosure 1.)

(a) At Eglin AFB (Sand)

1. Code A Slight damage
2. Code F Slight damage
3. Code D Moderate damage
4. Code E Moderate damage
5. Code B Severe damage
6. Code C Severe damage

(b) At Dyess AFB (Clay). As a result of heavy rainfall damage, all of the test materials were removed so that normal aircraft operations could resume at the test site. Consequently, the helicopter operations were cancelled.

(c) At Fort Leonard Wood (Silt)

1. Code F Slight damage
2. Code E Moderate damage
3. Code A Moderate damage
4. Code D Moderate damage
5. Code C Severe damage
6. Code B Severe damage

(4) The following list ranks the test materials from most effective to least effective during the helicopter operations involved in the 3-month evaluation at Eglin AFB. Codes C, D, and E materials were not exposed to the rotor downwash because of inclement weather and scheduling difficulties. Similar 3-month evaluations were not held at the other sites because of termination of testing.
STEBB-EN-P
SUBJECT: Final Report of Integrated Engineering and Service Tests of Dust Control Materials, RDT&E Project No 10643324035603, USATECOM Project No 7-7-0888-01/02

(a) Code F Shoulder area - no damage
(b) Code A Shoulder area - previously damaged areas expanded
(c) Code B Severe damage

Data accumulated from pilot reports have been incorporated in the above test results.

m. Maintainability (ST).

(1) The only difficulty experienced during repair operations was the frequent clogging of the patching apparatus. This problem was solved by running water through the lines and cleaning the compressor filter. (See page 4, inclosure 2.)

(2) Code B and Code C failed to perform the dust control function in the maintained areas. The remaining test materials were effectively maintained.

(3) The amount of man-hours and dispersing equipment hours for maintenance operations is listed on page 33, inclosure 1.

n. Reliability (ST).

(1) Each material was tested for effectiveness in areas trafficked by ground vehicles for 1 month.

(2) Daily vehicular traffic on an access road near the test sites at both Dyess AFB and Fort Leonard Wood was observed during the first 15-20 days of testing.

(3) The following lists rank the materials from most effective to least effective during vehicular operations. (See para 1.6, inclosure 4.)

15
(a) Dyess AFB

1. Code F Slight damage
2. Code D Moderate damage
3. Code A Moderate damage
4. Code E Moderate damage
5. Code C Severe damage
6. Code B Severe damage

(b) At Fort Leonard Wood

1. Code F No damage
2. Code A Slight damage
3. Code E Slight damage
4. Code D Slight damage
5. Code B Moderate damage
6. Code C Moderate damage

(4) At Eglin AFB within 3 days after emplacement, ants and vegetation had pushed through the film of Code A, B, and C test materials creating ruptured areas. (See para 2.1, enclosure 4.)

(5) The test material, Code A became tacky when the surface temperature reached an average of 120°F. The tackiness interfered with the operational effectiveness only when objects remained in a stationary position for about 15 minutes and then moved. (See para 2.2, enclosure 4.)

(6) The test materials, Code B, C, D, E, and F were no longer operationally usable after being subjected to 3.04 inches of rainfall within 11 hours on 11 and 12 June at Dyess AFB. Code C appeared operationally usable after the rainfall. (See page 34, enclosure 1, and para 1.4, enclosure 4.)

(7) The test materials were removed 3 to 4 days following the heavy rainfall at Dyess AFB. During this period, the weather was very dry with temperatures in the 80° - 95°F range. As the
STEBB-EN-P
SUBJECT: Final Report of Integrated Engineering and Service Tests of Dust Control Materials, RDT&E Project No 10643324D55603, USATECOM Project No 7-7-0888-01/02

When emulsions were removed, the soil under the films was still very moist; therefore, any bonding between the film and soil was practically nonexistent.

c. Human Factors Engineering (ST).

(1) Code C emitted fumes and vapors which were irritating to the personnel involved in the loading operations.

(2) Although they were not harmful, the emulsion materials Code A, B, and C were difficult to remove from clothing and/or skin.

(3) When Code E came in contact with the skin, a slight irritation was experienced.

p. Training (ST).

(1) Personnel possessing the knowledge and skills required by the MOS 51A10 (Construction Helper), 62B30 (Engineer Equipment Repairman), 62E20 (Grader Operator), and 64B20 (Heavy Vehicle Driver) were able to prepare the test site and emplace and maintain the test materials. Cited MOS are pertinent to an Engineer Construction Battalion and Light Equipment Company.

(2) No special training was required.

q. Technical Manuscripts and Manuals (ST).

(1) Applicable portions of TM 5-366, Planning and Design for Rapid Airfield Construction in the Theater of Operations, Nov 65, was used as a guide throughout testing.

(2) With the exception of minor changes recommended in correspondence (reference 1f) the USAEWES Preliminary Guide Manual for the Use of Code A as a Dust-Control Agent (reference 1g) is considered a suitable interim publication for use with Code A test material.

(3) Publications pertinent to the other test materials were not received.
r. Safety Confirmation (ST).

(1) Codes D, E, and F are flammable liquids and must be applied away from spark or flame. (The safety requirements of the DA Approved QMR, para 2.3, enclosure 3, were not met in this respect.) None of the palliatives were considered fire hazards after drying on soil surfaces.

(2) All of the liquid palliatives should be handled with caution in that skin contact, ingestion, and inhalation of fumes should be avoided. Adequate clothing, supplemented by the use of barrier creams on uncovered skin, should be worn by personnel during application and the earliest possible removal of palliatives from the skin by washing is recommended. Eye goggles should be worn during application phase. Once the materials have been emplaced and cured, the toxicity is considered minimal.

(3) The QMR safety requirements (para 2.2, enclosure 3), are considered met.

7. CONCLUSIONS. The US Army Armor and Engineer Board concludes that:

a. All six of the test dust control materials are unsuitable for Army use in that each material failed to meet two or more essential requirements of the Department of the Army Approved QMR for Dust Control Material.

b. The USAEWES-procured asphalt distributor is capable of adequately dispersing all test materials provided that:

 (1) Fittings and lines are installed to furnish grease to the pump shaft bearings.

 (2) Equipment is thoroughly cleaned and flushed after emplacing emulsion-type materials to prevent setup of materials and failure of pumps and spray systems.

c. The USAEWES preliminary guide manual is adequate as an interim publication for use with Code A test material.

d. The top opening-type drums are suitable during storage and handling of test materials; however, with emulsion-type materials, a polyethylene liner under the lid is required.

d. RECOMMENDATIONS. The US Army Armor and Engineer Board recommends that:
SUBJECT: Final Report of Integrated Engineering and Service Tests of Dust Control Materials, RDE Project No 1G643324D55603, USATECOM Project No 7-7-0888-01/02

a. All six test materials be considered unsuitable for Army use pending correction of all deficiencies and as many as practicable of the shortcomings contained in inclosure 4.

b. The distributor be modified to ensure lubrication of the pump shaft bearings during application of dust control materials.

c. The USAEWES preliminary guide manual be considered a suitable interim publication for use with Code A test material.

d. The top opening-type drums be considered suitable for storage and handling of test materials when a polyethylene lining has been provided under the lid of drums containing emulsion-type materials.

e. Any future development of dust control materials incorporate correction of all deficiencies and as many as practicable of the shortcomings contained in inclosure 4.

5 Inc1 MARSHALL WALLACH
1. Test Data COL, Armor
2. Photographs President
3. Findings
4. Deficiencies and Shortcomings
5. Distribution List
TEST DATA

SUPPLY OF TEST MATERIALS

<table>
<thead>
<tr>
<th>SITE</th>
<th>MATERIAL</th>
<th>CODE</th>
<th>MODE OF SUPPLY</th>
<th>QUANTITY RECEIVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGLIN AFB</td>
<td>CODE A</td>
<td>Open-Top Drum**</td>
<td>44 Drums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>Open-Top Drum*</td>
<td>44 Drums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>Open-Top Drum</td>
<td>44 Drums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>Bulk (unheated)</td>
<td>3,759 Gal in Truck, Tanker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>Bung-Type Drum</td>
<td>72 Drums</td>
<td></td>
</tr>
<tr>
<td>DYESS AFB</td>
<td>CODE A</td>
<td>Open-Top Drum**</td>
<td>51 Drums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>Open-Top Drum*</td>
<td>51 Drums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>Open-Top Drum</td>
<td>51 Drums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>Bulk (heated)</td>
<td>4,014 Gal in Truck, Tanker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>Bulk (unheated)</td>
<td>5,000 Gal in Truck, Tanker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>Bulk (heated)</td>
<td>5,457 Gal in Truck, Tanker</td>
<td></td>
</tr>
<tr>
<td>FORT LEONARD WOOD</td>
<td>CODE A</td>
<td>Open-Top Drum</td>
<td>51 Drums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>Open-Top Drum*</td>
<td>51 Drums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>Open-Top Drum</td>
<td>51 Drums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>Bulk (heated)</td>
<td>4,030 Gal in Truck, Tanker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>Bulk (heated)</td>
<td>4,000 Gal in Truck, Tanker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>Bulk (heated)</td>
<td>4,200 Gal in Truck, Tanker</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: A drum contains approximately 50 gallons.

*Completely lined with polyethylene

**A sheet of polyethylene was under lid

Incl 1
USAE Waterways Experiment Station

Results of Soil Tests for USAECOX Project
No. 7-7-0888-01/02 (Integrated Engineering and Service Tests of Dust-Control Materials)

Eglin AFB, Florida
April 1967

<table>
<thead>
<tr>
<th>Station</th>
<th>Sample from 1/2-in. to 3/2-in. Depth</th>
<th>Surface Water Content *</th>
<th>Airfield Index at 20 in. (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water Content (%)</td>
<td>Dry Density lb/cu ft</td>
<td>0</td>
</tr>
<tr>
<td>0+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.2</td>
<td>109.5</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>6.9</td>
<td>111.4</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>10.8</td>
<td>116.7</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>11.8</td>
<td>89.1</td>
<td>-</td>
</tr>
<tr>
<td>1+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.6</td>
<td>97.7</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>10.3</td>
<td>115.1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>9.1</td>
<td>116.7</td>
<td>-</td>
</tr>
<tr>
<td>4+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.2</td>
<td>116.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>9.5</td>
<td>118.3</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>10.6</td>
<td>118.0</td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>5.3</td>
<td>101.2</td>
<td>0.8</td>
</tr>
<tr>
<td>7+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.6</td>
<td>110.9</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>10.5</td>
<td>114.7</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>10.7</td>
<td>115.5</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>5.9</td>
<td>106.9</td>
<td>0.6</td>
</tr>
<tr>
<td>10+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.4</td>
<td>110.7</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>5.8</td>
<td>118.7</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>11.2</td>
<td>115.8</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>4.1</td>
<td>109.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

*Sample Location:

1. Sample from the water content and dry density.

2. Surface water content.

3. Airfield index at 20 in. depth.
<table>
<thead>
<tr>
<th>Station</th>
<th>Sample Location</th>
<th>Sample from 1/2-in. to 3/4-in. Depth</th>
<th>Surface Water Content*</th>
<th>Airfield Index of Depth (in.) of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water Content</td>
<td>Dry Density (lb/cu ft)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>12+50</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.9</td>
<td>107.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.6</td>
<td>116.3</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11.4</td>
<td>117.5</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.5</td>
<td>107.9</td>
<td>0.5</td>
</tr>
<tr>
<td>16+00</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.0</td>
<td>112.9</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.6</td>
<td>114.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.2</td>
<td>119.9</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.6</td>
<td>105.8</td>
<td>0.2</td>
</tr>
<tr>
<td>19+00</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5.6</td>
<td>113.6</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.7</td>
<td>122.0</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.7</td>
<td>119.9</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.3</td>
<td>110.2</td>
<td>0.3</td>
</tr>
<tr>
<td>22+00</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5.8</td>
<td>126.0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.3</td>
<td>114.3</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.2</td>
<td>112.3</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.9</td>
<td>112.4</td>
<td>0.2</td>
</tr>
<tr>
<td>25+00</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.5</td>
<td>113.1</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.1</td>
<td>122.2</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.5</td>
<td>118.5</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.2</td>
<td>105.1</td>
<td>0.1</td>
</tr>
<tr>
<td>28+00</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10.5</td>
<td>111.5</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.8</td>
<td>121.1</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.5</td>
<td>115.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>
* Legend for sample location is as follows:

<table>
<thead>
<tr>
<th>Sample Location No.</th>
<th>Distance and Position from Runway Center Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60 ft left</td>
</tr>
<tr>
<td>2</td>
<td>15 ft left</td>
</tr>
<tr>
<td>3</td>
<td>15 ft right</td>
</tr>
<tr>
<td>4</td>
<td>60 ft right</td>
</tr>
</tbody>
</table>

** Surface water contents were taken from 0- to ½-in. depth immediately prior to dust-control treatment.
Samples taken from:

<table>
<thead>
<tr>
<th>Sta</th>
<th>Distance from runway E (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
</tr>
<tr>
<td>1+00</td>
<td>15</td>
</tr>
<tr>
<td>4+00</td>
<td>15</td>
</tr>
<tr>
<td>22+00</td>
<td>60</td>
</tr>
</tbody>
</table>

Gravitation curves

Sample No.

<table>
<thead>
<tr>
<th>FLD OR DEPTH</th>
<th>CLASSIFICATION</th>
<th>NAT W%</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to ½ in.</td>
<td>clayey sand (SD)</td>
<td></td>
<td>26-28</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Average)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

PROJECT

USACE/CEC 7-7882-01 (Int.)

GRADED ET/ST of Dust-Contro' Materials

AREA

Kelin AFB, Florida

DATE

April 1967
<table>
<thead>
<tr>
<th>Station</th>
<th>Sample from 1/2-in. to 3 1/2-in. Depth</th>
<th>Surface Water Content</th>
<th>Airfield Index at Depth (1:1) of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water Content (%)</td>
<td>Dry Density (lb/cu ft)</td>
<td>0</td>
</tr>
<tr>
<td>3+00</td>
<td>1</td>
<td>12.5</td>
<td>95.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.8</td>
<td>102.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.7</td>
<td>100.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.8</td>
<td>98.4</td>
</tr>
<tr>
<td>6+00</td>
<td>1</td>
<td>12.9</td>
<td>96.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.2</td>
<td>110.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.5</td>
<td>110.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8.7</td>
<td>103.4</td>
</tr>
<tr>
<td>9+00</td>
<td>1</td>
<td>10.1</td>
<td>96.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.2</td>
<td>110.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.0</td>
<td>104.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12.2</td>
<td>97.9</td>
</tr>
<tr>
<td>12+00</td>
<td>1</td>
<td>10.8</td>
<td>95.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.9</td>
<td>103.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.6</td>
<td>100.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14.9</td>
<td>89.9</td>
</tr>
<tr>
<td>15+00</td>
<td>1</td>
<td>10.7</td>
<td>97.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.2</td>
<td>106.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.3</td>
<td>101.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.9</td>
<td>94.1</td>
</tr>
</tbody>
</table>
Sample from 1/2-in. to 3/4-in. Depth and Surface Water Contents

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Water Content

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>99.3</td>
</tr>
<tr>
<td></td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Airfield Index

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15+</td>
</tr>
</tbody>
</table>

Legend for sample location is as follows:

- **Sample Location**

<table>
<thead>
<tr>
<th>Location No.</th>
<th>Distance and Position From Runway Center Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65 ft left</td>
</tr>
<tr>
<td>2</td>
<td>15 ft left</td>
</tr>
<tr>
<td>3</td>
<td>15 ft right</td>
</tr>
<tr>
<td>4</td>
<td>65 ft right</td>
</tr>
</tbody>
</table>

Surface water contents were taken from 0- to 1/2-in. depth immediately prior to dust-control treatment.
U.S. Standard Sieve Opening in Inches U.S. Standard Sieve Numbers

| Size | 6 | 4 1/2 | 3 | 2 1/4 | 1 1/2 | 1 1/4 | 1 | 1/2 | 3/4 | 1 | 2 | 3 | 4 | 6 | 8 | 10 | 14 1/2 | 20 | 30 | 40 | 50 | 70 | 100 | 140 | 200 |
|------|---|--------|---|-------|-------|-------|---|-----|-----|---|---|---|---|---|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Hydrometer |

Gradation Range

Sampling Taken From

<table>
<thead>
<tr>
<th>Distance from Runway E (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>3+00</td>
</tr>
<tr>
<td>6+00</td>
</tr>
<tr>
<td>12+00</td>
</tr>
<tr>
<td>15+00</td>
</tr>
<tr>
<td>18+00</td>
</tr>
<tr>
<td>21+00</td>
</tr>
<tr>
<td>24+00</td>
</tr>
<tr>
<td>27+00</td>
</tr>
</tbody>
</table>

Grain Size in Millimeters

- **Coarse**: 6 to 0.075 mm
- **Fine**: 0.075 to 0.005 mm

<table>
<thead>
<tr>
<th>Grain Size</th>
<th>0.5</th>
<th>0.1</th>
<th>0.05</th>
<th>0.01</th>
<th>0.005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sand or Clay

- **Sample No**: 30-01-01
- **Location**: 7-2-85
- **Material**: Blended 1/3 of Dust-Cloud Material
- **Tests**: 37-17-20
- **Date**: May-June 1967
Sample Details

Distance from runway E (ft)

<table>
<thead>
<tr>
<th>Sta</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+00</td>
<td>65</td>
<td>--</td>
</tr>
<tr>
<td>9+00</td>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>21+30</td>
<td>65</td>
<td>--</td>
</tr>
<tr>
<td>27+00</td>
<td>15</td>
<td>--</td>
</tr>
</tbody>
</table>

Grain Size Distribution

- **Cobbles**
- **Gravel**
- **Sand**
- **Silt or Clay**

<table>
<thead>
<tr>
<th>SAMPLE NO</th>
<th>BORING NO</th>
<th>FLEX DEPTH</th>
<th>CLASSIFICATION</th>
<th>SOIL TYPE</th>
<th>LL</th>
<th>PI</th>
<th>PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5 in. sandy clay (CL) with gravel</td>
<td>May-June 1987</td>
<td>36</td>
<td>14-19</td>
<td>18-22</td>
<td>38</td>
<td>17</td>
<td>Area: DFW, Texas</td>
</tr>
</tbody>
</table>

Gradation Curves

- **U.S. Standard Sieve Opening in Inches**
- **U.S. Standard Sieve Numbers**
- **Hydrometer**

ENG FORM 2087

Replaced WES FORM NO. 1241, Sep 1962, which is obsolete.
Results of Soil Tests for USACE Project

USACE Waterways Experiment Station

Results of Soil Tests for USATECOM Project

No. 7-7-0884-01/02 (Integrated Engineering and Service Tests of Dust-Control Materials)

Fort Leonard Wood, Missouri

July 1967

<table>
<thead>
<tr>
<th>Station</th>
<th>Sample Location</th>
<th>Sample from 1/2-in. to 31/2-in. Depth</th>
<th>Surface Water Content**</th>
<th>Airfield Index at Depth (in.) of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water Content</td>
<td>Dry Density (lb/cu ft)</td>
<td>%</td>
</tr>
<tr>
<td>3+00</td>
<td>1</td>
<td>18.1</td>
<td>91.3</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.7</td>
<td>97.0</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>16.8</td>
<td>91.1</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>19.6</td>
<td>86.5</td>
<td>15.3</td>
</tr>
<tr>
<td>6+00</td>
<td>1</td>
<td>20.2</td>
<td>101.0</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18.4</td>
<td>98.1</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>19.7</td>
<td>97.4</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>19.8</td>
<td>95.8</td>
<td>10.3</td>
</tr>
<tr>
<td>9+00</td>
<td>1</td>
<td>17.5</td>
<td>95.3</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>19.2</td>
<td>98.3</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>18.2</td>
<td>94.6</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16.3</td>
<td>95.9</td>
<td>13.1</td>
</tr>
<tr>
<td>12+00</td>
<td>1</td>
<td>21.0</td>
<td>91.1</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.4</td>
<td>96.9</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17.2</td>
<td>93.3</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20.9</td>
<td>90.0</td>
<td>15.0</td>
</tr>
<tr>
<td>15+00</td>
<td>1</td>
<td>19.3</td>
<td>93.5</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18.1</td>
<td>100.0</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>15.6</td>
<td>92.6</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20.0</td>
<td>93.3</td>
<td>10.8</td>
</tr>
<tr>
<td>Station</td>
<td>Sample Location*</td>
<td>Sample from 1/2-in. to 3 1/2-in. Depth</td>
<td>Surface Water Content**</td>
<td>Airfield Index at Depth (in.) of:</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>---------------------------------------</td>
<td>-------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water Content %</td>
<td>Dry Density lb/cu ft</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td></td>
<td>16.8</td>
<td>95.2</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.4</td>
<td>89.6</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.1</td>
<td>89.1</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.9</td>
<td>87.4</td>
<td>13.9</td>
</tr>
<tr>
<td>2100</td>
<td></td>
<td>16.7</td>
<td>96.8</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.1</td>
<td>99.6</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.1</td>
<td>96.8</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.3</td>
<td>91.0</td>
<td>12.6</td>
</tr>
<tr>
<td>2400</td>
<td></td>
<td>14.0</td>
<td>92.8</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.4</td>
<td>92.0</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.2</td>
<td>90.3</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>91.9</td>
<td>14.0</td>
</tr>
<tr>
<td>2700</td>
<td></td>
<td>17.5</td>
<td>91.9</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.6</td>
<td>91.2</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.4</td>
<td>93.0</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.6</td>
<td>90.2</td>
<td>13.2</td>
</tr>
</tbody>
</table>

* Legend for sample location is as follows:

<table>
<thead>
<tr>
<th>Sample Location No.</th>
<th>Distance and Position from P-lay Center Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65 ft left</td>
</tr>
<tr>
<td>2</td>
<td>85 ft left</td>
</tr>
<tr>
<td>3</td>
<td>85 ft right</td>
</tr>
<tr>
<td>4</td>
<td>105 ft right</td>
</tr>
</tbody>
</table>

** Surface water contents were taken from 0- to 1/2-in. depth immediately prior to dust-control treatment.
Samples taken every 300 ft beginning at sta 3+00 and ending at sta 27+00 at distances of 15 ft and 65 ft to the left and right of runway center line.
EMPLACEMENT DATA (Runway)

SITE: Eglin AFB

<table>
<thead>
<tr>
<th>MATERIAL PLACED</th>
<th>DATE</th>
<th>AREA TREATED</th>
<th>DILUTION RATIO*</th>
<th>RATE OF APPLICATION**</th>
<th>QUANTITY OF BASIC MATERIAL USED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sq Yd By Vol</td>
<td>By Wt By Vol</td>
<td>Gal/Yd**</td>
<td>Gal Yd Gal Yd LB/Sq Yd</td>
</tr>
<tr>
<td>CODE A</td>
<td>15</td>
<td>3.3 G 5.00</td>
<td>2.16 3.37</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>CODE B</td>
<td>17</td>
<td>2.17 2.40</td>
<td>1.75 1.90</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>CODE C</td>
<td>20</td>
<td>2.74 2.08</td>
<td>2.10 1.90</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>CODE D</td>
<td>19</td>
<td>2.75 2.08</td>
<td>-- 1.90</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>CODE E</td>
<td>19</td>
<td>2.75 2.08</td>
<td>-- 0.40</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>CODE F</td>
<td>20</td>
<td>2.75 2.08</td>
<td>-- 0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
</tbody>
</table>

*Dilution expressed as ratio of quantity of basic material to quantity of water.

**Includes water of dilution for applicable materials.
EMPLACEMENT DATA (Shoulder)

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>DATE</th>
<th>AREA</th>
<th>DILUTION RATIO*</th>
<th>RATE OF APPLICATION**</th>
<th>QUANTITY OF BASIC MATERIAL USED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1967</td>
<td>SQ YD</td>
<td>By Vol</td>
</tr>
<tr>
<td>CODE A</td>
<td>18 Apr</td>
<td>3,867</td>
<td>2.00</td>
<td>2.30</td>
<td>1.98</td>
</tr>
<tr>
<td>CODE B</td>
<td>17 Apr</td>
<td>3,544</td>
<td>2.00</td>
<td>2.20</td>
<td>1.75</td>
</tr>
<tr>
<td>CODE C</td>
<td>20 Apr</td>
<td>4,400</td>
<td>2.00</td>
<td>2.10</td>
<td>1.92</td>
</tr>
<tr>
<td>CODE D</td>
<td>19 Apr</td>
<td>3,667</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CODE E</td>
<td>19 Apr</td>
<td>4,125</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CODE F</td>
<td>20 Apr</td>
<td>4,400</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

* Dilution expressed as ratio of quantity of basic material to quantity of water.
** Includes water of dilution for applicable materials.
EMPLACEMENT DATA (Runway)

SITE: Fort Leonard Wood

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>DATE PLACED</th>
<th>AREA TREATED</th>
<th>DILUTION RATIO*</th>
<th>RATE OF APPLICATION**</th>
<th>QUANTITY OF BASIC MATERIAL USED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1967</td>
<td>SQ YD</td>
<td>DESIRED By Vol</td>
<td>ACTUAL By Vol</td>
<td>DESIRED Gal/Yd²</td>
</tr>
<tr>
<td>CODE A</td>
<td>9 Jul</td>
<td>3,586</td>
<td>2.00</td>
<td>2.20</td>
<td>2.08</td>
</tr>
<tr>
<td>CODE B</td>
<td>9 Jul</td>
<td>3,330</td>
<td>2.00</td>
<td>2.20</td>
<td>2.08</td>
</tr>
<tr>
<td>CODE C</td>
<td>6 Jul</td>
<td>2,850</td>
<td>2.00</td>
<td>2.10</td>
<td>2.11</td>
</tr>
<tr>
<td>CODE D</td>
<td>8 Jul</td>
<td>3,180</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CODE E</td>
<td>10 Jul</td>
<td>3,330</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CODE F</td>
<td>10 Jul</td>
<td>3,330</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*Dilution expressed as ratio of quantity of basic material to quantity of water.

**Includes water of dilution for applicable materials.
EMPLACEMENT DATA (Shoulder)

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>DATE PLACED</th>
<th>AREA TREATED</th>
<th>DILUTION RATIO*</th>
<th>RATE OF APPLICATION**</th>
<th>QUANTITY OF BASIC MATERIAL USED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CODE A</td>
<td>9 Jul</td>
<td>7,250</td>
<td>2.00</td>
<td>0.33</td>
<td>0.21</td>
</tr>
<tr>
<td>CODE B</td>
<td>9 Jul</td>
<td>7,340</td>
<td>2.00</td>
<td>0.33</td>
<td>0.21</td>
</tr>
<tr>
<td>CODE C</td>
<td>8 Jul</td>
<td>5,920</td>
<td>2.00</td>
<td>0.33</td>
<td>0.23</td>
</tr>
<tr>
<td>CODE D</td>
<td>8 Jul</td>
<td>7,770</td>
<td>--</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>CODE F</td>
<td>10 Jul</td>
<td>6,440</td>
<td>--</td>
<td>0.35</td>
<td>0.41</td>
</tr>
<tr>
<td>CODE F</td>
<td>10 Jul</td>
<td>7,220</td>
<td>--</td>
<td>0.37</td>
<td>0.38</td>
</tr>
</tbody>
</table>

* Dilution expressed as ratio of quantity of basic material to quantity of water.
** Includes water of dilution for applicable materials.
EMPLACEMENT DATA (Runway)

SITE: Dyess AFB

<table>
<thead>
<tr>
<th>MATERIAL PLACED</th>
<th>DATE</th>
<th>AREA TREATED Yd²</th>
<th>DILUTION RATIO*</th>
<th>RATE OF APPLICATION**</th>
<th>QUANTITY OF BASIC MATERIAL USED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Desired By Vol</td>
<td>Actual By Vol</td>
<td>Desired Gal/Yd²</td>
</tr>
<tr>
<td>CODE A</td>
<td>2 Jun</td>
<td>3,170</td>
<td>2.00</td>
<td>2.20</td>
<td>1.98</td>
</tr>
<tr>
<td>CODE B</td>
<td>4 Jun</td>
<td>3,170</td>
<td>2.00</td>
<td>2.20</td>
<td>2.15</td>
</tr>
<tr>
<td>CODE C</td>
<td>1 Jun</td>
<td>3,170</td>
<td>2.00</td>
<td>2.10</td>
<td>2.13</td>
</tr>
<tr>
<td>CODE D</td>
<td>1 Jun</td>
<td>3,170</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CODE E</td>
<td>2 Jun</td>
<td>3,170</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CODE F</td>
<td>4 Jun</td>
<td>3,170</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*Dilution expressed as ratio of quantity of basic material to quantity of water.

**Includes water of dilution for applicable materials.
EMPLACEMENT DATA (Shoulder)

SITE: Dyess AFB

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>DATE PLACED</th>
<th>AREA TREATED</th>
<th>DILUTION RATIO*</th>
<th>RATE OF APPLICATION**</th>
<th>QUANTITY OF BASIC MATERIAL USED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DESIRED By Vol</td>
<td>ACTUAL By Vol</td>
<td>DESIRED Gal/Yd²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DESIRED By Wt</td>
<td>ACTUAL By Wt</td>
<td></td>
</tr>
<tr>
<td>CODE A</td>
<td>2 Jun</td>
<td>7,170</td>
<td>2.00</td>
<td>2.22</td>
<td>0.34</td>
</tr>
<tr>
<td>CODE B</td>
<td>< Jun</td>
<td>7,200</td>
<td>2.00</td>
<td>2.40</td>
<td>0.33</td>
</tr>
<tr>
<td>CODE C</td>
<td>< Jun</td>
<td>7,200</td>
<td>2.00</td>
<td>2.44</td>
<td>0.33</td>
</tr>
<tr>
<td>CODE D</td>
<td>2 Jun</td>
<td>7,170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CODE E</td>
<td>< Jun</td>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CODE F</td>
<td>< Jun</td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Dilution expressed as ratio of quantity of basic material to quantity of water.
** Includes water of dilution for applicable materials.
Penetrations

<table>
<thead>
<tr>
<th>Site</th>
<th>Material</th>
<th>Runway</th>
<th>Shoulder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Film (inches)</td>
<td>Penetration (inches)</td>
<td>Film (inches)</td>
</tr>
<tr>
<td></td>
<td>Code C</td>
<td>1/32</td>
<td>1/16-3/16</td>
</tr>
<tr>
<td></td>
<td>Code D</td>
<td>--</td>
<td>1/16-1/8</td>
</tr>
<tr>
<td></td>
<td>Code E</td>
<td>--</td>
<td>1/16</td>
</tr>
<tr>
<td></td>
<td>Code F</td>
<td>--</td>
<td>1/32-1/16</td>
</tr>
<tr>
<td>Dyess AFB</td>
<td>Code A</td>
<td>1/32</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>Code C</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td></td>
<td>Code D</td>
<td>--</td>
<td>5/16-9/16</td>
</tr>
<tr>
<td></td>
<td>Code E</td>
<td>--</td>
<td>9/16-9/16</td>
</tr>
<tr>
<td></td>
<td>Code F</td>
<td>--</td>
<td>9/16-9/16</td>
</tr>
<tr>
<td>Fort Leonard</td>
<td>Code A</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Wood</td>
<td>Code B</td>
<td>1/32</td>
<td>1/32-1/16</td>
</tr>
<tr>
<td></td>
<td>Code C</td>
<td>1/32</td>
<td>1/64</td>
</tr>
<tr>
<td></td>
<td>Code D</td>
<td>--</td>
<td>1/64-1/2</td>
</tr>
<tr>
<td></td>
<td>Code E</td>
<td>--</td>
<td>1/64-1/2</td>
</tr>
<tr>
<td></td>
<td>Code F</td>
<td>--</td>
<td>1/64-1/2</td>
</tr>
</tbody>
</table>
EFFORT AND EQUIPMENT HOURS REQUIRED IN A LOADING/EMPLACING TEST MATERIAL CYCLE

AN EMULSION-TYPE MATERIAL (i.e., CODE B)

<table>
<thead>
<tr>
<th>Operation No and Task</th>
<th>Type Equipment Used</th>
<th>Man-hours</th>
<th>Men</th>
<th>Equipment-hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Open 12 drums (See page 5, inclosure 2.)</td>
<td>1 Bolt Cutter, 1 pair Pliers, 1 Screwdriver, 1 Wrench</td>
<td>0.267</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>2. Position drums</td>
<td>--</td>
<td>0.666</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>3. Load distributor (See page 6, inclosure 2.)</td>
<td>1 Distributor, Asphalt</td>
<td>1.250</td>
<td>5</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>1 Distributor, Water</td>
<td>0.300</td>
<td>2</td>
<td>0.150</td>
</tr>
<tr>
<td>4. Circulate distributor</td>
<td>1 Distributor, Asphalt</td>
<td>0.084</td>
<td>2</td>
<td>0.084</td>
</tr>
<tr>
<td>5. Prewetting (See page 7, inclosure 2.)</td>
<td>1 Distributor, Water</td>
<td>0.100</td>
<td>2</td>
<td>0.050</td>
</tr>
<tr>
<td>6. Placement of material (See page 8, inclosure 2.)</td>
<td>1 Distributor, Asphalt</td>
<td>0.300</td>
<td>3</td>
<td>0.100</td>
</tr>
<tr>
<td>7. Measure residue</td>
<td>1 Distributor, Asphalt, Measuring Rod</td>
<td>0.020</td>
<td>1</td>
<td>0.020</td>
</tr>
<tr>
<td>8. Placed on road</td>
<td>1 Distributor, Asphalt</td>
<td>0.100</td>
<td>3</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>1 Distributor, Water</td>
<td>0.100</td>
<td>2</td>
<td>0.050</td>
</tr>
<tr>
<td>9. Travel and maneuver</td>
<td>1 Distributor, Asphalt</td>
<td>0.250</td>
<td>2</td>
<td>0.250</td>
</tr>
</tbody>
</table>
AN ASPHALT-TYPE MATERIAL (I.E., CODE: E) TAKEN FROM 55-GALLON DRUMS

<table>
<thead>
<tr>
<th>Operation No and Task</th>
<th>Type Equipment Used</th>
<th>Man-hours</th>
<th>Men</th>
<th>Equipment-hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Open 18 drums</td>
<td>1 pair pliers</td>
<td>0.025</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>1 Screwdriver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Wrench</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Position drums</td>
<td>--</td>
<td>0.666</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>3. Load distributor</td>
<td>1 Distributor,</td>
<td>0.865</td>
<td>5</td>
<td>0.217</td>
</tr>
<tr>
<td>(See page 9,</td>
<td>Asphalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inclosure 2.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Circulate and heat</td>
<td>1 Distributor,</td>
<td>0.500</td>
<td>2</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>Asphalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Prewetting</td>
<td>1 Distributor,</td>
<td>0.100</td>
<td>2</td>
<td>0.050</td>
</tr>
<tr>
<td>(See page 7,</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inclosure 2.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Placement of</td>
<td>1 Distributor,</td>
<td>0.270</td>
<td>3</td>
<td>0.100</td>
</tr>
<tr>
<td>material</td>
<td>Asphalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(See page 8,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inclosure 2.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Measure residue</td>
<td>1 Distributor,</td>
<td>0.020</td>
<td>1</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>Asphalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Measuring rod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Place on road</td>
<td>1 Distributor,</td>
<td>0.100</td>
<td>3</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>Asphalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Distributor,</td>
<td>0.100</td>
<td>2</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Travel and maneuver</td>
<td>1 Distributor,</td>
<td>0.250</td>
<td>2</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>Asphalt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AN ASPHALT-TYPE MATERIAL (I.E., CODE F), TAKEN FROM A TANKER TRUCK

<table>
<thead>
<tr>
<th>Operation No and Task</th>
<th>Equipment Used</th>
<th>Man-hours</th>
<th>Men</th>
<th>Equipment-hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Load distributor</td>
<td>1 Distributor, Asphalt</td>
<td>0 166</td>
<td>5</td>
<td>0.083</td>
</tr>
<tr>
<td>2. Circulate and heat</td>
<td>1 Distributor, Asphalt</td>
<td>0 500</td>
<td>2</td>
<td>0 250</td>
</tr>
<tr>
<td>3. Prewetting</td>
<td>1 Distributor, Water</td>
<td>0.100</td>
<td>2</td>
<td>0.050</td>
</tr>
<tr>
<td>4. Placement of material</td>
<td>1 Distributor, Asphalt</td>
<td>0.270</td>
<td>3</td>
<td>0.100</td>
</tr>
<tr>
<td>5. Measure residue</td>
<td>1 Distributor, Asphalt</td>
<td>0.020</td>
<td>1</td>
<td>0.020</td>
</tr>
<tr>
<td>6. Placed on road</td>
<td>1 Distributor, Asphalt</td>
<td>0.100</td>
<td>3</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>1 Distributor, Water</td>
<td>0.100</td>
<td>2</td>
<td>0 100</td>
</tr>
<tr>
<td>7. Travel and maneuver</td>
<td>1 Distributor, Asphalt</td>
<td>0 250</td>
<td>2</td>
<td>0 250</td>
</tr>
</tbody>
</table>
TIME AND MANPOWER UTILIZATION

<table>
<thead>
<tr>
<th>SITE</th>
<th>MATERIAL</th>
<th>TIME RATE OF PLACEMENT</th>
<th>MANPOWER UTILIZATION</th>
<th>MANPOWER UTILIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eglin AFB</td>
<td>CODE A</td>
<td>1,866</td>
<td>33.8</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>1,790</td>
<td>31.3</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>3,180</td>
<td>22.5</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>2,120</td>
<td>18.2</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>2,160</td>
<td>31.8</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>4,520</td>
<td>9.5</td>
<td>754</td>
</tr>
<tr>
<td>Dyess AFB</td>
<td>CODE A</td>
<td>4,130</td>
<td>25.1</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>5,810</td>
<td>18.2</td>
<td>582</td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>4,940</td>
<td>20.5</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>7,220</td>
<td>7.5</td>
<td>1,440</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>4,090</td>
<td>12.5</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>8,860</td>
<td>5.8</td>
<td>1,770</td>
</tr>
<tr>
<td>Port Leonard Wood</td>
<td>CODE A</td>
<td>4,350</td>
<td>24.7</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>4,420</td>
<td>24.2</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>3,550</td>
<td>24.7</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>7,400</td>
<td>7.5</td>
<td>1,480</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>6,520</td>
<td>7.5</td>
<td>1,380</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>1,120</td>
<td>10.8</td>
<td>1,020</td>
</tr>
<tr>
<td>SITE</td>
<td>MATERIAL</td>
<td>SHOULDER DAMAGE</td>
<td>RUNWAY DAMAGE</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH-47A</td>
<td>C-130E</td>
<td>CH-47A</td>
<td>C-130E</td>
</tr>
<tr>
<td></td>
<td>Rotor Wash</td>
<td>Prop Wash</td>
<td>Rotor Wash</td>
<td>Prop Wash</td>
</tr>
<tr>
<td>Eglin AFB</td>
<td>CODE A</td>
<td>None</td>
<td>Slight</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>Severe</td>
<td>Severe</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>Severe</td>
<td>Slight*</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>None</td>
<td>Slight to</td>
<td>Moderate</td>
</tr>
<tr>
<td>Dyess AFB</td>
<td>CODE A</td>
<td>--</td>
<td>--</td>
<td>Slight</td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>--</td>
<td>Severe</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>--</td>
<td>Severe</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>--</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>--</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>--</td>
<td>Slight</td>
<td>--</td>
</tr>
<tr>
<td>Fort Leonard Wood</td>
<td>CODE A</td>
<td>Slight to</td>
<td>Severe</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>Moderate</td>
<td>Severe</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>Slight to</td>
<td>Moderate</td>
<td>Slight to</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Slight</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>Slight</td>
<td>Slight</td>
<td>Slight</td>
</tr>
</tbody>
</table>

*On light green section
<table>
<thead>
<tr>
<th>SITE</th>
<th>MATERIAL</th>
<th>DATE 1967</th>
<th>AREA TESTED</th>
<th>AREA DAMAGED</th>
<th>PERCENT OF TESTED AREA DAMAGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eglin AFB</td>
<td>CODE A</td>
<td>10 May</td>
<td>850</td>
<td>3</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>10 May</td>
<td>712</td>
<td>16</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>CODE C (Lt)</td>
<td>11 May</td>
<td>850</td>
<td>3</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>CODE C (Drk)</td>
<td>11 May</td>
<td>850</td>
<td>19</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>11 May</td>
<td>600</td>
<td>8</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>10 May</td>
<td>660</td>
<td>3</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>11 May</td>
<td>850</td>
<td>13</td>
<td>1.50</td>
</tr>
<tr>
<td>Dyess AFB</td>
<td>CODE A</td>
<td>7 June</td>
<td>1,000</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>8 June</td>
<td>1,300</td>
<td>41</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>7 June</td>
<td>1,000</td>
<td>2</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>8 June</td>
<td>1,000</td>
<td>2</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>7 June</td>
<td>1,200</td>
<td>12</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>8 June</td>
<td>1,000</td>
<td>1</td>
<td>0.10</td>
</tr>
<tr>
<td>Fort Leonard Wood AFB</td>
<td>CODE A</td>
<td>12 July</td>
<td>1,560</td>
<td>78</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>12 July</td>
<td>1,450</td>
<td>50</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>12 July</td>
<td>1,450</td>
<td>58</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>12 July</td>
<td>1,480</td>
<td>1.33</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>12 July</td>
<td>1,600</td>
<td>10</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>12 July</td>
<td>1,450</td>
<td>1</td>
<td>0.05</td>
</tr>
</tbody>
</table>
DAMAGES INCURRED

CH-47A HELICOPTER

<table>
<thead>
<tr>
<th>SITE</th>
<th>MATERIAL</th>
<th>DATE</th>
<th>AREA TESTED</th>
<th>AREA DAMAGED</th>
<th>PERCENT OF TESTED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1967</td>
<td>yd²</td>
<td>yd²</td>
<td>%</td>
</tr>
<tr>
<td>1. Eglin AFB</td>
<td>CODE A</td>
<td>25 Apr</td>
<td>1,250</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>CODE B</td>
<td>25 Apr</td>
<td>1,250</td>
<td>150</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>27 Apr</td>
<td>1,250</td>
<td>375</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>1 May</td>
<td>1,250</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>27 Apr</td>
<td>1,250</td>
<td>5</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>1 May</td>
<td>1,250</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>2. Dyess AFB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Fort</td>
<td>CODE A</td>
<td>18 Jul</td>
<td>2,300</td>
<td>184</td>
<td>8.00</td>
</tr>
<tr>
<td>Leonard Wood</td>
<td>CODE B</td>
<td>18 Jul</td>
<td>900</td>
<td>9</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CODE C</td>
<td>18 Jul</td>
<td>1,000</td>
<td>15</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>CODE D</td>
<td>18 Jul</td>
<td>900</td>
<td>9</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CODE E</td>
<td>18 Jul</td>
<td>1,200</td>
<td>6</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>CODE F</td>
<td>18 Jul</td>
<td>1,430</td>
<td>1</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Runway 640 yd² - 23% Combination wheel

Runway 236 yd² - 40% and prop damage

Most of this damaged area was material which had billowed but not ruptured.
Effort and Equipment Hours Required in a Loading/Patching Test Material Cycle

Eglin AFB, Using a Compressor and a Spraying Unit Operating Directly from a 10-Gallon Mixing Container

<table>
<thead>
<tr>
<th>Operation No and Task</th>
<th>Equipment Used</th>
<th>Man-hours (4 men used)</th>
<th>Men</th>
<th>Equipment-hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Loading equipment on truck</td>
<td>1 Code G Spray System</td>
<td>0.40</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>(See page 4, inclosure 2.)</td>
<td>1 1/2-Ton truck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Loading mixer</td>
<td>1 Code G Spray System</td>
<td>0.20</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>3. Emplace</td>
<td>1 Code C Spray System</td>
<td>0.83</td>
<td>5</td>
<td>0.166</td>
</tr>
<tr>
<td>(See page 11, inclosure 2.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL MAN-HOURS/CYCLE 1.43

Fort Leonard Wood, Using a Compressor and a Spraying Unit Operating Directly from a 55-Gallon Drum

<table>
<thead>
<tr>
<th>Operation No and Task</th>
<th>Equipment Used</th>
<th>Man-hours (4 men used)</th>
<th>Men</th>
<th>Equipment-hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Loading truck</td>
<td>1 Compressor and spraying unit</td>
<td>0.40</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>1 1/2-Ton truck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Emplace</td>
<td>1 Compressor and spraying unit</td>
<td>2.50</td>
<td>5</td>
<td>0.30</td>
</tr>
<tr>
<td>(See page 12, inclosure 2.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL MAN-HOURS/CYCLE 2.90
WEATHER DATA* (1967)

<table>
<thead>
<tr>
<th>SITE</th>
<th>APRIL</th>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eglin AFB</td>
<td>0.57</td>
<td>4.01</td>
<td>5.62</td>
<td>2.05</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>75-86</td>
<td>71-90</td>
<td>64-94</td>
<td>77-90</td>
<td>47-92</td>
</tr>
<tr>
<td>Dyess AFB</td>
<td>-</td>
<td>1.97</td>
<td>3.92</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>55-102</td>
<td>60-102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Leonard Wood</td>
<td>-</td>
<td>-</td>
<td>5.87</td>
<td>2.69</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>49-88</td>
<td>49-92</td>
<td>47-92</td>
</tr>
</tbody>
</table>

Top Line: Total rainfall for month (inches). Bottom Line: Range of temperatures for month (°F)
Effort Required in Cleaning Operation Following Emplacement of an Emulsion-Type Material

<table>
<thead>
<tr>
<th>Operation No. and Task</th>
<th>Type of Material Used</th>
<th>Man-hours</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Load distributor</td>
<td>Water (900 gal)</td>
<td>0.83</td>
<td>5</td>
</tr>
<tr>
<td>(See page 13, inclusion 2)</td>
<td>Laundry detergent (8 boxes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Flush distributor</td>
<td>Water (900 gal)</td>
<td>0.25</td>
<td>3</td>
</tr>
<tr>
<td>(See page 14, inclusion 2)</td>
<td>Laundry detergent (4 boxes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Load distributor</td>
<td>Water (900 gal)</td>
<td>0.83</td>
<td>5</td>
</tr>
<tr>
<td>(See page 13, inclusion 2)</td>
<td>Laundry detergent (4 boxes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Flush distributor</td>
<td>Water (900 gal)</td>
<td>0.25</td>
<td>3</td>
</tr>
<tr>
<td>(See page 14, inclusion 2)</td>
<td>Laundry detergent (4 boxes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Scrub valves on spray bar</td>
<td>1 wire brush</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>6 Scrub distributor filter</td>
<td>1 wire brush</td>
<td>0.16</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>7.57</td>
<td></td>
</tr>
</tbody>
</table>
EFFORT REQUIRED IN MAINTENANCE OPERATION WHEN SPRAYING APPARATUS IS CLOGGED WITH AN EMULSION MATERIAL.

<table>
<thead>
<tr>
<th>Operation No and Task</th>
<th>Type of Materials Used</th>
<th>Man-hours</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear valves on spray bar</td>
<td>1 screwdriver</td>
<td>0.83</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 wire brush</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free the linkage on spray</td>
<td>1 can penetrating</td>
<td>0.33</td>
<td>2</td>
</tr>
<tr>
<td>bar (See page 15,</td>
<td>oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inclosure 2.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 1.16
LABORATORY ANALYSIS REPORT

Material: CODE D
Source: Lamar Refining Company; Lumberton, Mississippi
Used for: USATECOM Project No. 7-7-0888-01/02
(Integrated Engineering and Service Tests of Dust-Control Materials)
Location: Eglin AFB, Florida
Sampled by: USAE Waterways Experiment Station
Date Sampled: 19 April 1967

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>ASTM Test Method</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematic Viscosity @ 140°F; c*</td>
<td>D 2170</td>
<td>70</td>
<td>140</td>
</tr>
<tr>
<td>Flash Point; C.O.P.; °F</td>
<td>D 92</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Distillation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Distillate to 680°F; % by volume</td>
<td>D 402</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Float Test on Distillation Residue @ 122°F; sec</td>
<td>D 139</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>Asphalt Residue:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residue of 100 Penetration; %</td>
<td>D 243</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ductility of 100 Penetration Residue @ 77°F; cm</td>
<td>D 113</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Solubility in Carbon Tetrachloride; %</td>
<td>D 2042</td>
<td>99.5</td>
<td></td>
</tr>
<tr>
<td>Water; %</td>
<td>D 95</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

* Alternate test also run with following results:
 Ductility of 100 Penetration Residue @ 60°F; cm 100 23
Material: CODE F

Source: Okaloosa Paving Company, Shalimar, Florida

Used For: USAECOM Project No. 7-7-0688-01/02

(Integrated Engineering and Service Tests of Dust-Control Materials)

Location: Eglin AFB, Florida

Sampled by: USAE Waterways Experiment Station

Date Sampled: 20 April 1967

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ASTM No.</th>
<th>Test Method</th>
<th>Value</th>
<th>Max</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Penetration T.O.C. @ 25°</td>
<td>D 1107</td>
<td>50</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration Penst. Pen. Penetration</td>
<td>D 88</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration Penst. Penetration</td>
<td>D 2170</td>
<td>65</td>
<td>122.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration @ 60° F</td>
<td>D 402</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration Penst. Penetration</td>
<td>D 113</td>
<td>3</td>
<td>150+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration Penst. Penetration</td>
<td>D 36</td>
<td></td>
<td>135°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration Penst. Penetration</td>
<td>D 1754</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration Penst. Penetration</td>
<td>D 102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration Penst. Penetration</td>
<td>D 98</td>
<td>95</td>
<td>350.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration Penst. Penetration</td>
<td>D 402</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration Penst. Penetration</td>
<td>D 5</td>
<td>50</td>
<td>9.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Maximum softening point shall be as follows:

When Residue Penetration (on Distillation to 680°F) Is:

<table>
<thead>
<tr>
<th>Less than 7</th>
<th>Maximum Softening Point (Ring and Ball) Shall Be:</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 to 12</td>
<td>180°F</td>
</tr>
<tr>
<td>12 to 18</td>
<td>165°F</td>
</tr>
<tr>
<td></td>
<td>155°F</td>
</tr>
</tbody>
</table>
Analysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematic Viscosity @ 140°F; cS</td>
<td>D 2170</td>
<td>70</td>
<td>140</td>
<td>132.3</td>
</tr>
<tr>
<td>Flash Point; C.O.P.; °F</td>
<td>D 92</td>
<td>150</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Distillation: Total Distillate to 600°F; % by volume</td>
<td>D 402</td>
<td>10</td>
<td>30</td>
<td>26.5</td>
</tr>
<tr>
<td>Distillation Test on Distillation Residue @ 122°F; sec</td>
<td>D 139</td>
<td>20</td>
<td>100</td>
<td>112</td>
</tr>
<tr>
<td>Asphalt Residue: Residue of 100 Penetration; %</td>
<td>D 243</td>
<td>50</td>
<td></td>
<td>70.6</td>
</tr>
<tr>
<td>Ductility of 100 Penetration Residue @ 77°F; cm</td>
<td>D 113</td>
<td>100</td>
<td></td>
<td>150+</td>
</tr>
<tr>
<td>Solubility in Carbon Tetrachloride; %</td>
<td>D 2012</td>
<td>99.5</td>
<td></td>
<td>99.9</td>
</tr>
<tr>
<td>Water; %</td>
<td>D 55</td>
<td>0.5</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
TYPICAL MODIFICATION REQUIREMENTS FOR CONVENTIONAL ASPHALT DISTRIBUTOR
DUST CONTROL MATERIALS

WEAK AREAS IN FILM FORMER CAUSED BY SURFACE IRREGULARITIES

Incl 2
DUST CONTROL MATERIALS
TESTING WITH A C-130E AIRCRAFT
DUST CONTROL MATERIALS

TESTING WITH A CH-47A HELICOPTER
DU-7 CONTROL MATERIALS

CODE G SPRAYING SYSTEM (LOADED ON TRUCK)
USED IN PATCHING OPERATIONS
DUST CONTROL MATERIALS

OPENING THE OPEN TOP DRUMS
DUST CONTROL MATERIALS

LOADING THE ASPHALT DISTRIBUTOR FROM THE OPEN TOP DRUMS
DUST CONTROL MATERIALS

PREWETTING TEST SITE BEFORE EMLACEMENT
DUST CONTROL MATERIALS

EMPLACEMENT OF TEST MATERIAL ON TEST SITE
DUST CONTROL MATERIALS
LOADING CODE A ASPHALT DISTRIBUTOR FROM BUNG-TYPE DRUMS
DUST CONTROL MATERIALS

LOADING CODE # ASPHALT DISTRIBUTOR
FROM A TANKER TRUCK
DUST CONTROL MATERIALS

EMPLACEMENT OF TEST MATERIAL DURING PATCHING OPERATIONS
DUST CONTROL MATERIALS

EMPLACEMENT OF TEST MATERIAL DURING PATCHING OPERATIONS
DUST CONTROL MATERIALS

LOADING THE ASPHALT DISTRIBUTOR
DURING THE CLEANING OPERATIONS
DUST CONTROL MATERIALS

EMPTYING THE ASPHALT DISTRIBUTOR DURING THE CLEANING OPERATIONS
DUST CONTROL MATERIALS

FREEING THE LINKAGE ON THE SPRAY APPARATUS
OF THE ASPHALT DISTRIBUTOR
DUST CONTROL MATERIALS

CODE H ASPHALT DISTRIBUTOR WITH DRAG APPARATUS
FINDINGS

The following shows the extent to which the test item met the characteristics specified in the qualitative material requirement referenced in para 1b of basic letter.

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>DEGREE OF ACHIEVEMENT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Met</td>
<td>Short</td>
</tr>
<tr>
<td>1. Performance Characteristics - Dust control material(s) shall:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Be effective and operationally usable within 4 hours after application to the surface of all types of soil, and without extensive prior grading, scarifying, or preconditioning of the ground surface.</td>
<td>Codes A, Codes B, C, and E, D, and F</td>
<td>See para 6d(1), 6d(2), 6i(1), and 6i(7)</td>
</tr>
<tr>
<td>1.2 Withstand, without failure or peeling, helicopter rotor downwash (10 psf disc loading) and C-130 aircraft propwash (100 mph air velocity).</td>
<td>X</td>
<td>In at least one of the three test sites, each test material was damaged by rotor downwash and/or propwash. See para 6j(3) and 6k(2).</td>
</tr>
<tr>
<td>REQUIREMENT</td>
<td>DEGREE OF ACHIEVEMENT</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2. Physical Characteristics - Dust control material(s) shell:</td>
<td>Met</td>
<td>X</td>
</tr>
<tr>
<td>2.1 Be noncorrosive and noninjurious to metals, alloys, rubber, and plastics, be compatible for use in conjunction with prefabricated landing mats and membrane surfacings and suitable for trafficking by aircraft, ground vehicles, and application equipment without adverse effect to these.</td>
<td>Short</td>
<td>Tests were not completed and results were inconclusive.</td>
</tr>
<tr>
<td>2.2 Be nontoxic, noninjurious, and noncontaminating to human beings, animals, water supplies, and agricultural areas after being applied.</td>
<td>Not Determined</td>
<td>See para 6a(1), 6a(4), and para 60.</td>
</tr>
<tr>
<td>REQUIREMENT</td>
<td>DEGREE OF ACHIEVEMENT</td>
<td>REMARKS</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>1.3 Be effective, with only minor maintenance, for the following minimum time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.1 Six months in non-traffic areas.</td>
<td>X</td>
<td>Testing was terminated before this requirement could be fully evaluated.</td>
</tr>
<tr>
<td>1.3.2 Three months in areas subjected to infrequent traffic of ground vehicles or aircraft, such as shoulders and overruns.</td>
<td>X</td>
<td>This requirement was not determined because only the CH-47A helicopter was used to test only one type soil condition. See para 6k(4). There was no further testing on other soil conditions because of project termination.</td>
</tr>
<tr>
<td>1.3.3 One month in areas trafficked by ground vehicles or aircraft.</td>
<td>Code F Code A thru E</td>
<td>This requirement was evaluated on clay and silt soil under vehicular traffic tests. All of the test materials except Code F failed to perform satisfactorily. See para 6n(2) and 6n(3).</td>
</tr>
<tr>
<td>REQUIREMENT</td>
<td>DEGREE OF ACHIEVEMENT</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2. Physical Characteristics - Dust control material(s) shell:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Be noncorrosive and noninjurious to metals, alloys, rubber, and plastics, be compatible for use in conjunction with prefabricated landing mats and membrane surfacings and suitable for trafficking by aircraft, ground vehicles, and application equipment without adverse effect to these.</td>
<td>X</td>
<td>Tests were not completed and results were inconclusive.</td>
</tr>
<tr>
<td>2.2 Be nontoxic, noninjurious, and noncontaminating to human beings, animals, water supplies, and agricultural areas after being applied.</td>
<td>X</td>
<td>See para 6a(1), 6a(4), and para 6o.</td>
</tr>
<tr>
<td>REQUIREMENT</td>
<td>DEGREE OF ACHIEVEMENT</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2.3 Be nonflammable and nonexplosive within specified conditions of handling, storage, and application, and fire retardant after being applied to soil surfaces.</td>
<td>Codes A, Codes D, E, and F</td>
<td>Codes D, E, and F are flammable liquids. See para 6a(2).</td>
</tr>
<tr>
<td>2.4 Be capable of being stored in other than controlled environmental storage conditions for a minimum of 1-1/2 years, 3 years desirable.</td>
<td></td>
<td>No storage test results were obtained due to test termination.</td>
</tr>
<tr>
<td>2.5 Weight and volume characteristics of the material shall not exceed 3 pounds per square yard or 0.45 gallons per square yard of ground surface treated on trafficked areas. If material requires dilution with water for application, volume shall not exceed 2 gallons per square yard of ground surface treated.</td>
<td></td>
<td>See para 6b and pages 16 through 21, inclosure 1.</td>
</tr>
<tr>
<td>REQUIREMENT</td>
<td>DEGREE OF ACHIEVEMENT</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Met</td>
<td>Short</td>
</tr>
<tr>
<td>2.6</td>
<td>Be available or manufacturable in quantities to treat at least 5 million square yards at a cost not to exceed $0.50 per square yard including material(s) and application equipment.</td>
<td>Codes A, Code B and C thru F</td>
</tr>
<tr>
<td>2.7</td>
<td>Be capable of being used, stored, and transported under the following conditions (AR 705-15).</td>
<td>X</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Use: Intermediate, hot-dry and warm-wet climatic conditions, excluding precipitation, wind greater than 20 knots, and ambient air temperature below 40°F. Desirably be capable of use under cold-dry conditions with ambient air temperatures of 0°F.</td>
<td></td>
</tr>
<tr>
<td>REQUIREMENT</td>
<td>DEGREE OF ACHIEVEMENT</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2.7.2 Storage: Intermediate and high-temperature storage conditions.</td>
<td>Not Met</td>
<td>No storage test results were obtained due to test termination.</td>
</tr>
<tr>
<td>3. Training. No special training other than normal MDS and on-the-job training will be required. No equipment will be required solely for training purposes.</td>
<td>Not Met</td>
<td>Military personnel were used to load and unload materials, transfer materials, operate application equipment, grade and clear areas, and lay out test sections. No special training was required. See para 6p.</td>
</tr>
</tbody>
</table>

Note: "X" indicates all test materials.
DEFIENCIES AND SHORTCOMINGS

1. DEFIENCIES

<table>
<thead>
<tr>
<th>Deficiency</th>
<th>Suggested Corrective Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Codes D, E, and F are considered flammable liquids.</td>
<td>None</td>
<td>No Equipment Performance Report (EPR) was submitted. Code F has a flash point below 175°F; Codes D and E will burn but are not easily ignited. (See para 6a(2).)</td>
</tr>
<tr>
<td>1.2 Codes B, D, and F were not operationally usable within 4 hours after application.</td>
<td>None</td>
<td>See EPR No KD-1, KD-1-2 through KD-1-5, and para 6i(7).</td>
</tr>
<tr>
<td>1.3 All six test materials were damaged by rotor downwash of a CH-47A helicopter and/or propwash of a C-130E aircraft.</td>
<td>None</td>
<td>See EPR No KD-2, KD-2-2 through KD-2-9; KD-4, KD-4-2 through KD-4-14, KD-4-16, KD-4-17; para 6j(3) and 6k(2).</td>
</tr>
<tr>
<td>1.4 All test materials except Code A were not operationally usable after a heavy rainfall.</td>
<td>None</td>
<td>See EPR No KD-5, KD-5-2 through KD-5-4 and para 6n(6).</td>
</tr>
<tr>
<td>1.5 Code B exceeded the the maximum allowable cost of $0.50 per square yard.</td>
<td>None</td>
<td>See para 6i(8).</td>
</tr>
</tbody>
</table>
Deficiency

1.6 Code A thru E failed under vehicular traffic on clay and silt soil.

Suggested Corrective Action

None

Remarks

See para 6n(2) and 6n(3). No EPR was submitted.

2. SHORTCOMINGS

Shortcoming

2.1 Vegetation and ants ruptured Codes A, B, and C.

2.2 Code A become tacky during an average surface temperature of 120°F and stuck to the tire of a parked truck.

Suggested Corrective Action

None

Remarks

See EPR No KD-3 and para 6n(4).

See EPR No KD-6 and para 6n(5).

NOTE: EPR No KD-4-15 was submitted for "information only", requires no correction action, therefore, has been omitted from this enclosure.
MANUFACTURERS' CODE SHEET
USATECOM PROJECT NO 7-7-0888-01/02

<table>
<thead>
<tr>
<th>Code</th>
<th>Product</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>UCAR-131</td>
<td>Union Carbide Corp New York, New York</td>
</tr>
<tr>
<td>B</td>
<td>Fastbond-30 Contact Cement</td>
<td>Minnesota Mining and Manufacturing Company St Paul, Minnesota</td>
</tr>
<tr>
<td>C</td>
<td>Soil Gard</td>
<td>ALCO Chemical Corp Philadelphia, Pennsylvania</td>
</tr>
<tr>
<td>D</td>
<td>SC-70 Cutback Asphalt</td>
<td>Most petroleum firms</td>
</tr>
<tr>
<td>E</td>
<td>Dustrol</td>
<td>Mobile Oil Company Kansas City, Missouri</td>
</tr>
<tr>
<td>F</td>
<td>Peneprime</td>
<td>Empire Petroleum Company Denver, Colorado</td>
</tr>
<tr>
<td>G</td>
<td>Binks Spraying System</td>
<td>Sherman Williams Company Vicksburg, Mississippi</td>
</tr>
<tr>
<td>H</td>
<td>Etnyre Black Topper</td>
<td>Allied Equipment Company Jackson, Mississippi</td>
</tr>
</tbody>
</table>

This code sheet will not be distributed outside the Department of Defense.
INTEGRATED ENGINEERING AND SERVICE TESTS OF DUST CONTROL MATERIALS

Final Report: April through October 1967

US Army Test and Evaluation Command
7-7-0888-01/02

CRAIG, Randal L.
COFFEE, William A.
LEHMAN, R. C.

This report also includes test results obtained from USAGETA and USAEMES

12 SPONSORING MILITARY ACTIVITY
US Army Engineer Waterways Experiment Station
P. O. Box 631
Vicksburg, Mississippi, 39181

15 ABSTRACT: Test objectives were to determine the technical performance and safety characteristics of the dust control materials as described in the QMR; the suitability of the materials for Army use; and the capability of the USAEMES procured (and military standard) distributors to meet performance requirements of the QMR for dispersing the test materials. The materials (three asphalt type and three emulsion-type) were emplaced on airfields at three test sites with different type soils. Each of the test materials was damaged by rotor downwash of a CH-47A Helicopter and/or propwash of a C-130E Aircraft. Each of the test materials failed to meet two or more essential requirements of the QMR. Therefore, the test was terminated.

It was concluded that the test materials were unsuitable for Army use; the distributors were capable of adequately dispersing test materials when modified to provide lubricant for the pump shaft bearings and were thoroughly cleaned after use; and the top-opening type drums were suitable during storage and handling operations; however, with emulsion-type materials a polyethylene liner is required under the lid. USAARENBD recommended that all six test materials be considered unsuitable for Army use pending correction of all deficiencies (and the shortcomings if practicable) in inclusion 4 of the report; the distributor be modified, and the top-opening drums used for emulsion-type materials be provided with polyethylene linings under the lids. It was further recommended that any future development of dust control materials incorporate correction of deficiencies (and shortcomings if practicable) listed in inclusion 4 of the report.
INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 1 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is in absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

8. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. a. b. c. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

10. OTHER REPORT NUMBERS: If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter these number(s).

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief factual summary of the document indicating the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as indexing devices for cataloging the report. Key words must be selected from that in this document. Classification of the report, such as equipment model designation, trade name, or other product name, geographic location may be used as key words but will be followed by an indication of technical control. The assignment of rules and weights is optional.