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ABSTRACT 

This report investigates the effectiveness of the minimum- 

power array p   messing technique in determining seismometer inequaliza- 

tions.    The technique involves partitioning the seismometer array into two 

groups and designing MCF's for each group so that the iruan-square-error 

between the two MCF outputs is a minimum under the constraint that the out- 

put power of one of the MCF's is unity.    The two MCF sets are known as the 

group-coherence filters; the difference between these sets is known as the 

minimum-power array processor. 

Estimates of the noise wavenumber spectrum from the wave- 

number responses of the group-coherence filters are distorted due to seis- 

mometer inequalization; however, a more reasonable estimate of the noise 

wavenumber spectrum from the wavenumber response of the minimum-power 

array processor should be possible because the minimas in the processor's 

wavenumber response correspond to the wavenumber regions where the wave- 

number responses of the two group-coherence MCF's are very similar (e.g. , 

at the peaks of the noise wavenumber power spectrum). 

Seismometer inequalization was to be determined from the ad- 

justment in weight and phase required for each filter so that the wavenumber 

responses of the group-coherence MCF's would agree with a reasonable noise 

wavenumber spectrum.    However, results from the TFO long-noise sample 

and two synthetic models show that the technique, although excellent for gen- 

erating maximum coherent channels, lacks the wavenumber resolution de- 

sired for studying seismometer inequalization.    This latter conclusion is at 

least true for small arrays such as TFO. 
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ACRONYMS 

MCF Multichannel .Filter 

TFO Tonto Forest Seismological Observatory 
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SECTION I 

INTRODUCTION 

In applying linear least-mean-square-error theory to a single- 

channel prediction problem,  a reference channel is estimated by linearly 

combining a group of channels y_ so that the mean-square-error is a minimum. 

The minimum-power array theory is a generalization of this concept where 

the reference channel itself is a linear combination of another group of chan- 

nels x and has unity power. 

In this report, vectors x and y_ represent two ordered sets of 

complex Fourier transforms obtained at a given frequency from the two groups 

of seismometer outputs.    There are now two sets of linear multichannel fil- 

ters (MCF's):   one operates on group x to generate the reference channel; 

the other operates on group ^ to predict the reference channel. 

Minimization of the mean-square-error by varying the two 

sets of MCF's leads to the solution of a general'     d eigenvalue matrix equa- 

tion.    The minimizing pair of multichannel filters are known as the group- 

coherence filters.    The multichannel filter formed from the difference be- 

tween the two group-coherence filters is called the minimum-power array 

proceesor. 

Mean-square-error is numerically equal to the fraction of the 

power in the normalized reference channel (the channel obtained by applying 

the group-coherence filter to the set of channels x) which cannot be linearly 

predicted from group ^.    The numerical value of the group coherence is de- 

fined to be the predictable fraction of the power in the reference channel; 

thus, a minimum mean-square-error is associated with a maximum group 

coherence, and vice versa. 

1-1 •cl»nc»«»rvlc«« division 



An important property of group coherence is its invariance 

with respect to any nonsingular linear transformation of the channels within 

the two groups; i.e.,  group coherence is unchanged by scaling, by frequency 

filtering,  or by combining the channels within a group by any linear rever- 

sible network filter.    For seismometer arrays,  the group coherence between 

two arrays is independent of any inequalization problems possessed by the 

seismometers in the arrays; however, if seismometer inequalization is 

severe,  the wavenumber responses of the group-coherence filters differ from 

reasonable wavenumber power responses.    Except for this inequalization ef- 

fect,  the wavenumber responses of the two group-coherence filters should 

tend to peak and be highly similar in regions where the wavenumber power 

spectrum of the array data is a maximum.    The wavenumber response of the 

minimum-power array processor, which is the difference between the two 

group-coherence filters, should have a small power response at the wavenum- 

ber peakb.   Thus,  highly coherent energy such as that generated by storms or 

earthquakes would appear as deep troughs in the wavenumber response of the 

minimum-power array processor.    A reasonable estimate of the wavenumber 

power spectrum should be possible from the wavenumber response of the 

minimum-power array processor. 

If the weights of the group-coherence filters were adjusted to 

compensate for seismometer inequalizations, the filters' wavenumber re- 

sponses would agree with the noise wavenumber power spectrum.    Adjurt- 

ments could be made by fixing the filter weight for one seismometer (the 

center one, for example) as unity and varying the filter weights correspond- 

ing to other seismometers so that the difference between the group-coherence 

filter wavenumber responses and the estimated noise wavenumber spectrum 

would be a minimum.    The possibility that this processing scheme would lead 

to determining the amount of seismometer inequalization motivated the in- 

vestigation covered in this report. 

{.2 «clence ••nrio** division 



The broader objectives of this study are 

• To investigate whether the wavenumber 
response of the minimum-power array 
processor can be used for estimating the 
noise wavenumber power spectrum by de- 
tecting and isolating regions of highly co- 
herent energy 

• To investigate whether the group-coherence 
filters and their wavenumber power responses 
can be used for determining the amplitude and 
phase-response inequalizations of the seis- 
mometers in the array 

Data used in the study are from the TFO long-noise sample 

which was the subject of Array Research Special Report No.  23. 1   Also used 

are synthetic data modeled to resemble the TFO data but having no seiamom- 

eter equalization problem.    The following results concerning group coherence 

have been derived from this research. 

The group-coherence technique is excellent for measuring the 

basic similarity between the two arrays of seismometers,  and the group- 

coherence filters are useful if the objective is to generate the maximum 

coherent MCF outputs.    The group-coherence concepi is of little value Hi 

determining seismometer inequalization — at least, between array groups 

having small array separation,  such as TFO.    This is because the wave- 

number response of the minimum-power filter lacks the resolution needed 

for estimating the noise wavenumber power spectrum. 
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SECTION II 

MINIMUM-POWER ARRAY PROCESSING THEORY 

A.    GENERALIZED MULTICHANNEL PREDICTION 

The term "channel" in this report denotes a complex random 

variable.    The Fourier transform of the output of a -seismometer,  since it 

is a complex random variable, is called a seismic channel. 

Let an array of m + n seismic channels (Figure II-1) be par- 

titioned into two ordered groups x = jxj |i = 1,  .... m| and X = Uj M = ^   • • • n| 

where x and ^ form two complex multivariate random column vectors.    In 

the generalized multichannel prediction problem,  group x is linearly com- 

bined to form a reference channel of unity power, and a linear combination 

of group y is used for obtaining a least-mean-square-error estimate of the 

normalized reference channel. 

Let the two arbitrary sets of complex linear multichannel fil- 

ters which operate on groups x and x be 1 = {ßi U = l'   "•' m[ and ll = lhj I 

j = 1,   .. . , n[,  respectively, e.nd let e be the difference between the outputs 

of B and h.    Note that MCF £ generates the reference channel, that MCF h is 

the prediction filter, and that G is a complex random variable which, in the 

future, will be referred to as error.    Thus, 

T ^T 
£    x   -   h    X   = e 

or 

1 

■h 

=   e (2-1) 

where T is used to denote conjugate transpose. 
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B.    MINIMIZATION OF MEAN-SQUARE-ERROR 

The mean-square-error is given by 

I    I2 T 
e I    =   ee 

g] 

•h 

T/    .\   T 

where a line indicates the average value.    Therefore, 

2 
e      ■ 

£ 
T 

X X 
T 

£ 

-h 1 1 -h 

& 
T 

föcx       Qxy" £ 

-h i T* Syy -h 

where 

Q      is autopower matrix for group x 

A      is autopower matrix for group ^ 

£     is crosspower matrix for groups x and ^ 

T 
Q     ■ n —yx      -«xy 

(2-2) 

It is desired to find £ and h, which will minimize | e |    , under 

the constraint that |g   xl     is unity. 

Keeping £ fixed, the variation of le | ' with respect to h in 

Equation 2-2 gives 

6   e 
-6h 

Q Q =xx      =x.y 

h n Q -h 
—'     L^yx    "yyj      — 

£ £ 
+ 

T 

-h -h 

II-3 

Q Q    ' ==xx s=xy 

n Q L-yx -yy 

■ol« 

0 

-6h 
(2-3) 
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where 0 is the null vector and 6 denotes the variation.    Note that 

& 

-h 

T   _ n 

Q n 
=yy. 

o 

-6h 

0 

•6h 
-yx 

n 

-yyj 
-h 

= -6hT fn    g - n    h")      (2-4) -     V-yx Ä        -yy -^ 

From Equations 2-3 and 2-4, it is seen that 

6|e|2    =-2 Real   [öh1*  (Qyx Ä   -   nyy h)] (2-5) 

The condition for |e|    to be stationary is that, for an infini- 

T                2. T 
tesitnal change 5h   ,   6 | e |    =0. This implies that the coefficient of 6h    in 

Equation 2-5 must vanish; i. e., 

n   g - n    h = o ■iyx a        ayy — 

or 

0      h   =   n       a 
ssyy — =yx m (2-6) 

Since 0      is a covariance matrix, it is positive definite and, 
"VT ., 

hence, nonsingular; i.e., ft exists.    Premultiplying both sides of Equa- 

tion 2-6 gives 

h a n   '   n    g — =yy =yx Ä (2-7) 
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Substituting h from Equation 2-7 into Equation 2-2 and factor- 

ing gives 

Ä 

T 
I 

....... 

_=yy       =yx_ 

T n 
"OCX 

Q 

Q -xy 

a 
=yyj 

I 

1 
-o -1 a 

£ 

£ fn    - n    n   ^ n   \      o ^=xx       =«y =yy        =yxy =1 

-a -1 a ==yy       ssyx 

i = ur 

or 

K ^=3cx        ^xy   =yy        =yxy   Ä (2-8) 

where 1^ is the m x m identity motrix and 0 is the m x n null matrix. 

From Equation 2-8, it is seen that mean-square-error |e| 

depends only on the choice of the MCF vector £ which generates the reference 

channel.    The problem now is to find a minimizing MCF vector ^ which is 

normalized to unity output power.    Since the matrix fl      is positive definite 
^ T , -yy 

and since ^ = g^   , the matrix 0^ f^-1  n^ is positive definite.    The 

matrix n,  because it is a covariance matrix,  also is positive definite. 

From matrix theory,    if either of the two matrices f)      or fl       Q    "1   0 
=sxx        =xy   seyy       =syx 

is positive definite, there exists a nonsingular matrix which will simultanerasly 

reduce both the Q      and Q      0    "    O      matrices to a diagonal form.    Let 
ÄA. Ay —yy     ""yx 

G be such an m x m matrix normalized so that 

G"   n 
=       =ccx 

G   =   I (2-9) 
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and 

c1  \Q     n   ^ n   1   G =   |x|2 (2-10) 

where 1^1    is a diagonal m x m matrix. 

Equations 2-9 and 2-10 are generalized eigenvalue matrix 

equations. 

Since G is an m x m nonsingular matrix,  its column vectors 

form a basis for generating arbitrary MCF's for group x.    Let £ be such an 

MCF given by 

Ä   =   Q   £ 

where £ = |ci |i = 1,..., m[ is a set of arbitrary complex scalars.    Normal- 

izing ^ to unity output power gives 

S? gxx&.=  1 (2-11) 

or 

£    QT Q      G £ =   ! (2-12) =      =xx = — 

simplifies to 

T 
Since, from Equation 2-9, G      Q      Q ■ !• Equation 2-12 

T 
c     c =   1 

or 
m 2 
E   ci = 1 (2-13) 

Equation 2-13 gives the condition for unity normalization. 
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-1 T Pre- and postmultiplying Q      0 Q      by g    and c,  re- 
=xy =yy      —yx    ' • * 

spectively,  yields 

T -1 T     T -1 
finn       ng = cGanQGc (2-14) ■a     =xy  =yy       =yx A      —    «     =xy =yy      ^yx = - x          ' 

T                  -1 2 Since,  from Equation 2-10,  G     ft       fi           Cl       G  = Ixl   . 
=     =xy =yy     =yx = 's1' 

Equation 2-14 reduces to 

T -1 T?111 77 
£    QxyQyy

1Qyx&=  cT|Xl2c  =   E     Ic.l2^.!2 (2-15) 

Subtracting Equation 2-15 from Equation 2-11 and factoring, 

*T (ßxx - Öxy Cyy"1 ayx)l ■   »   -  f     IcJ2 IX,]2 (2-16) 

Comparing Equations 2-8 and 2-16, it can be seen that 

? m , 9 

ur = i -E ic.r i\r a-tn 

Equation 2-17 gives the mean-square-error associated with an arbitrary 

normalized filter £ = G £.    | e j2 is minimized by setting c. = 1 when | X. |2 = 
2 ^ l 

I*-   a   I     and setting all other c.'s   = 0 in Equation 2-17; i.e. , 

lerr,inl2      =     *    "     U ^ (2-18) 1   mm ' '   max' 

C.    GROUP COHERENCE 

Section I states that group coherence is measured by the maxi- 

mum predictable fraction of power in the normalized reference channel.   Since 

the reference channel is normalized to unity power and since |c        I    is the 1   min ' 
minimum prediction error. Equation 2-18 shows that the group coherence 

equals the largest eigenvalue  | X        \ . 
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The eigenvector associated with the largest eigenvalue is ob- 

tained by solving Equations 2-9 and 2-10, using an iterative scheme called 

the power method.    (This scheme has been described in Large-Array Signal 

and Noise Analysis Special Scientific Report No.   13. r   If g is such an 

eigenvector, then, from Equations 2-9 and 2-10, 

T 
•"max   =3oc *max " 

and 

Ä_        1"°       0    "     0 Ä_        =    K I2 (2-20) ^max     -ocy  ««yy      —yx     ^max '   max1 v ' 

The eigenvector fi is known as the group-coherence MCF associated with 

group x. 

The sroup-coherence MCF h associated with croup y is 0      r —max 0      r -*- 
obtained by substituting g into Equation 2-7: 

h ■ 0,..."     Q       Ä_a„ (2-21) —max      =yy      =yx ^max * ' 

The minimum-power array processor output is obtained by replacing & and 

h in Equation 2-1 by g and h        ,  respectively. 
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D.    AUTO- AND CROSSPOWER SPECTRA OF THE TWO MAXIMUM- 
COHERENT CHANNELS 

The autopower spectrum of the reference channel is given by 

Equation 2-19.    To obtain the autopower spectrum of the estimated referenc 

channel,  take the conjugate transpose of Equation 2-21 while recalling that 

ü    -1 •    „ T 
«yy     is Hermitian and fi =0     .    Thus. =yx       =xy 

h        T   = T   n       n     "1 
-max ^max     *xy »yy (2-22) 

By postmultiplying Equation 2-18 on both sides by 0      h 
,      i.       , -1 asyy —max 

and noting that^^     g^ = ^ where I' is an n x n identity matrix. 

T X 
-max =yy -max        ^max   Äxy ^max (2-23) 

By replacing h^^ on the right-hand side of Equation 2-23 by 

its equivalent expression from Equation 2-21, 

T T -1 
-max     Qyy -max ^max    ^xy £yy     Qyx ^^ 

=   ÄmaxT(axySyy"1äyx)Ämax       <2-24> 

A comparison of Equations 2-24 and 2-20 shows that 

T 2 
-max    äyy  -max   "    'max' (2-25) 

The expression on the left-hand side of Equation 2-25 is the 

autopower spectrum of the estimated reference channel, which is automati- 

cally normalized to the numerical value of the group coherence (\l        \Z) 
V    max'   / * 
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A comparison of Equations 2-23 and 2-25 shows that 

I        h =    IX 
«xy  —max '   max a    .J ü       h =    |X |2 (2-26) ^max    =xv   -max '   max1 ' ' 

The expression on the left-hand side of Equation 2-26 is the 

crosspower spectrum between the reference channel and the estimated 

reference channel. 

E.    SUMMARY OF MINIMUM-POWER ARRAY PROCESSING 

The salient features of this section are summarized below: 

• Equations 2-9 and 2-10 can be iteratively 

solved,  using the power method,  to give 

the group coherence  1 X I     and the 1  max' 
MCF*™x; the MCFÄTnax generates 
the maximum-coherent reference 

channel from group x 

• MCF h        . v/hich estimates the reference —max 
channel by linearly operating on group ^, 

can be obtained from m by Equation 2-7 

• The minimum-power array processor is 

the MCF 

h 
—max 

-^m, ax 

and the power in the corresponding error 

channel is given by 

KJ* • ' - i\-J2 
max 
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F.    THE COMPLETE SET OF m EIGENVALUES 

Thus far,  only the group coherence which is numerically 

equal to the largest eigenvalue of Equations 2-9 and 2-10 has been dis- 

cussed.    However,  the generalized eigenvalue equations have m-1 other 

solutions. 

The properties of the entire set of m eigenvalues and the 

associated eigenvectors are investigated in Appendix A, 

TT_ 11/17 sol»no« ••rvlo«s division 
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SECTION III 

DATA PREPARATION 

The minimum-power array processing technique consists of 

the following three stages: 

• Computation of the crosspower matrix at a 
chosen frequency 

• Computation of the maximum group-coherence 
MCF's for the two partitioned sets 

• Computation of wavenumber responses of the 
two group-coherence MCF's and of the mini- 
mum-power array processor 

Presented in this report are the results from two sets of 

models and the TFO long-noise sample. 1   The TFO crossarray (Figure III-l) 

was partitioned into four sets (Figure III-2) and group coherence was studied 

at various frequencies. 

The three models designed at 0. 22584 Hz,  0. 52696 Hz, and 

0.82808 Hz in model set 1 are close approximations to the TFO noise field. 

Figure III-3 shows these wavenumber spectrum models,  using the following 

conventions. 

A solid disk represents Isotropie energy propagating above a 

certain minimum speed,  a cylinder represents Isotropie energy propagating 

at a fixed speed, and an arrow represents directional energy such as that 

generated by storms and earthquakes.    Background mantle P-wave energy, 

due to its high apparent speed, is modeled by an 8-km/sec disk.    The Isotro- 

pie fundamental Rayleigh-wave energy is modeled by the 3-km/sec cylinder 

and higher-order modes by the 3-km/sec disk.    Highly directional P waves 

and Rayleigh waves are represented by the arrows. 
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Model set 2 is the same as Model set 1 except that 1-percent 
white noise is added. 

The crosspower matrices for these models are derived from 

formulas pubUshed in the final report on Seismometer Array and Data Pro- 

cessing Systems. 4   These formulas are reproduced in Appendix B. 

The crosspower matrix for TFO data is computed from spectral 

estimates of the TFO noise sample5 obtained by Bartlett-smoothing and 

Fourier-transforming the auto- and crosscorrelation functions discussed in 

an Array Research semiannual technical report.^ 

m-5/6 •oU 



I 
I 
1 
I 
I 
I 
] 
] 
.1 
D 
1 
1 

SECTION IV 

DISCUSSION OF RESULTS 

With respect to the original purpose of determining seismometer 

inequalization, the study of group coherence filters has been unsuccessful in achiev- 

ing useful results.   However, the following detailed discussion of results does illu- 

minate the properties of group coherence filters and indicates that they will be use- 

ful for uncovering and analyzing coherent energy between subarrays. 

A.    PARTITIONS A AND B 

Table IV-1 shows group coherences obtained from the four partitioned 

sets A,  B,  C, and D.    Partitions A and B give high group coherences. 

Minimum-power array MCF's computed from TFO data at 0. 52696 Hz, 

corresponding to partitions A and B,  are plotted as vectors in Figure IV-1.    An 

arbitrary scale factor and an arbitrary phase reference are used for plotting these 

vectors.    The scale factors are different for the two partitions. 

Both vector diagrams show that the MCF's with the largest weights 

are located near the center seismometer, which is not included in these partitions. 

Thus,   both groups x and ^ seem to be trying to predict the output of the missing 

center seismometer. 

Figure IV-2 shows wavenumber responses of the minimum-power 

arrays (shown in Figure IV-1 as vector diagrams).    These wavenumber responses are 

computed along the two TFO arms, i.e. , S370W-N370E and S530W-N530E.    Also 

shown in Figure IV-2 are the inverted K-line wavenumber power spectra, * which are 

projections of 2-dimensional power-density spectra onto the two arms of the TFO 

crossarray;    they serve as references for checking the performance of the minimum- 

power arrays. 

*K-line wavenumber spectra are obtained from the maximum entropy spectral 
analysis, a technique developed by John P.  Burg and presented in November 1967 
at the 37^ annual SEG meeting in Oklahoma City.    The properties of K-line 
wavenumber spectra have been discussed and extensively illuminated in Array 
Research Special Report No.  23. 
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Table IV-1 

GROUP COHERENCES 

Partitions 

0.22584 Hz 0.52696 Hz 0.82808 Hz 
Model 

1 
Model 

2 
TFO 
Data 

Model 
1 

Model 
2 

TFO 
Data 

Model 
1 

Model 
2 

TFO 
Data 

A NC 0.980 0.980 NC 0.880 0.880 NC 0.750 0.82 
B NC NC NC NC NC 0.975 NC NC NC 
C 0.995 0.880 0.860 0.600 0,400 0.270 0.378 0.360 0.390 
D 0.999 0.840 0.860 0.560 0.300    0.320 0.358 0.340 0.320 

NC:   not computed 

The broad low region in the wavenumber power responses of 

the minimum-power arrays suggests that a reasonable noise wavenumber 

power spectra should have a corresponding broad peak.    This is not, in fact, 

the case,  as can be seen by comparing these wavenumber responses with the 

inverted K-line wavenumber power spectra.    However,  a basic similarity 

between the two shapes can be seen,  as both the minimum-power array 

wavenumber response and the inverted K-line wavenumber spectra indicate 

that the ambient seismic-noise energy sharply drops outside the 3-km/sec 

dashed lines. 

B.    PARTITIONS C AND D 

Partitions C and D have been selected to provide higher reso- 

lution in the wavenumber response than achieved by partitions A and B.    The 

minimum separation distance between the two groups of seismometers in 

partitions C and D is nearly 4 km, which is two times the minimum separa- 

tion for partitions A and B.    With increased separation, the responses of the 

two group-coherence filters can be similar only over a much narrower wave- 

number region than in the cases of partitions A and B; also, as a result of 

increased separation between the groups, the coherences for partitions C 

and D are low (Table IV-1). 
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Figure IV-1.    Vector Diagram of Minimum-Power Array Processor, 
TFO Noise Data:   Frequency, 0. 52696 Hz 
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Figures IV-3 and IV-4 show the wavenumber power responses 

along the two TFO arms.   Minimum-power array wavenumber responses in 

model set 1 generally resemble the energy distribution in the model but do 

not show the very strong directional Rayleigh wave coming from N50oE 

(0.22584 Hz).    Minimum-power array wavenumber responses for model set 2 

show poor resolution.    Minimum-power array wavenumber responses obtained 

from TFO data generally resemble the corresponding inverted K-line wave- 

number spectra obtained from the same data,  but the former show poor reso- 

lution and are unreliable for estimating a reasonable wavenumber power 

spectra.    This last conclusion is based on the presence of extraneous low 

regions in the wavenumber responses at 0.52696 Hz (TFO data, partition C). 

Since a similar effect is observed for synthetic data (model set 2,   0. 52696Hz, 

partition D),  this phenomenon appears to be a property of the technique and 

not of inequalization. 

C.    2-DIMENSIONAL WAVENUMBER POWER RESPONSE 

Figure IV-5 shows 2-dimensional wavenumber responses of 

the minimum-power array computed at the three frequencies for partition D, 

model set 1. 

Comparisons of these wavenumber responses with the wave- 

number power distributions in the actual model (Figure III-l) again show 

that the technique lacks the resolution and reliability needed for estimating 

with any reasonable accuracy the wavenumber power spectra; at least,  this 

is true for the array groups which have little separation,  such as TFO. 

D.   GROUP-COHERENCE MULTICHANNEL FILTERS 

The wavenumber responses of group-coherence MCF's show 

very poor resolution and, since no conclusions can be drawn from them, they 

are not presented in this report. 

IV.5 soi«ne* ••rvlo*s division 



* « c 
2 o 

« u 
V n) 

u 
< 
u 
i) I- • 
F  P  « 
f.  c _ 
2  0»« |S| 

* 2J c 
M • o 

u m u 
U V (4 

I 

G 1 « 

—   flj   o 

§ i 
^      CO        • 

a)   v   rd 

l*A °  u Q 

C    C    *    C! g g o o 
P c z 5 

2 ^ Hfc 

s 
u 

.S w 
-1 h 

aj 

«•9 
4) *-• 
U 
0) 
> 

/S 
0) 
m 

O 
Z 
o K 
h 

tn 
1) 
in 
C 
O 
a 
0) I 

ö 7 

u 
u 
< 
u 

t 
CU 

i 

u 
4-1 
u 
ex 

iJ 

p ■) 

.a m 

VI m 

9 3 
o ' 

ff 2 P ¥ O > 
ü 5 

l 

> 
►-I 

« 
k. 
3 
00 

IV-6 sclance ••rvic»s division 



^mn 

IV-7 science services division 



0.229MM 

Figure IV-5.    2-Dimensional Wavenumber Response (in db) of 
Minimum-Power Array, Model Set 1, Partition D 
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APPENDIX A 

THE m SOLUTIONS OF THE GENERALIZED 
EIGENVALUE PROBLEM 

The generalized eigenvalue problem is stated as 

G      n       G   =   I 

GT Tn    £  ^ n  1 G =  U 
=   [=xy —yy    ^yxj =        = 

(A-l) 

(A-2) 

where 

_! denotes m x m identity matrix 

| A. |'     denotes m x m diagonal matrix of eigenvalues 

G denotes m x m nonsingular matrix of eigenvectors 

Section II of this report shows that a pair of MCF's jt am* 

h exist,  corresponding to the eigenvalue JX        |   , which produce two 

maximum coherent channels when linearly combined with groups x and ^r, 

respectively.     Similarly,   a pair of MCF's g. and h. exist,  corresponding to 

each of the m eigenvalues of the set 

{IS I , =   1, . . . ,m> 

where ^ is called the reference MCF and h. is called the prediction MCF. 

The MCF h. is related to the MCF ^ by Equation 2-7, which is 

-1 
-i ssyy asyx  % (A-3) 
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Since the set jjk  |   i =   1 m| is the m x m matrix G, 

the set H = |h.      i =   1, . .. , m| is an n x m matrix given by 
-B «—1 

H = n  '1 n     G (A-4) ~       isyy      =yx  = x 

To complete the relationships between the matrices G, H,  and 
i    i2 IX |   , the following two equations are given: 

HT   Q       H  -    |X|2 (A-5) 

and 

GT   Q       H   =    |X|2 (A-6) 

These are equivalent to Equations 2-25 and 2-?.6 for the m 

eigenvalue case. 

• Lemma 1 

The m reference MCF's, which are the column vectors of the 

m x m matrix G, are linearly independent. 

Since G is nonsingular, its column vectors are linearly in- 

dependent. 
Q.E.D. 

• Lemma 2 

The m prediction MCF's which are the column vectors of the 
2 

n x m matrix H are linearly independent if the matrix | X|    is nonsingular. 

Rank is defined as the maximum number of linearly independent 

column or row vectors in a matrix.    Since all the columns or rows of a non- 

singular matrix are linearly independent, its rank equals the number of rows 
i    i2 

or columns.    Thus, the rank of the m x m matrix | X 1    is m and that of the 

n x n matrix n      is n. 
=yy 
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The ranks of the matrices on the two sides of Equation A-5 

are given by 

P(HT  Qyy   H)   =   p   (lX|2) =   m (A-7) 

where p denotes the rank.    According to a theorem in matrix theory, the 

rank of a product of matrices cannot exceed the rank of any of the component 

matrices and,  since p (H) =  p (HT), Equation A-7 takes the form 

min    rp(H),   n |   i m (A-8) 

Since H is an n x m matrix, another theorem in matrix theory 

gives 

p (H)   s   min (m, n) (A-9) 

It is seen from Inequalities A-8 and A-9 that 

p(H)   =   m   s   n (A-10) 

Equation A-10 says that the number of linearly independent 

vectors in H is m and that this number cannot exceed the dimension (n) of 

the space. 
Q.E.D. 

•   Lemma 3 

The column vectors of the m x m matrix G, when used as 

reference MCF's on group x, give m linearly independent outputs. 

Letting the outputs of the MCF's   JJ.C G and ^. C G be the two 

random variables x. and x,, 

Xj   =  1^   x (A-ll) 

and 

ij   =  .8? * (A-12) 
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To prove the lemma,  the covariance   a., between x. and x. 

will be shown to be 0 for alii = 1, . . ., m and j ^ i: J 

T 
a..   =  x.  x. 

T     .T 
= (^i ^   (*j   2) 

T        T 

^   Oxx   *j 
(A-U) 

T 
Equation A-l shows that j-      Q     JJ. = 0 if i ^ j. 

Thus,  it can be seen that a.. = 0.    Since this is true for all 

1 = 1. . . • , m and j ^ i, the theorem is proved.    The term "linear independence" 

is used in Lemmas 3, 4, and 5 in a statistical sense. 

Q.E.D. 

•   Lemma 4 

The column vectors of the n x m matrix H, when used as pre- 

diction MCF's on group ^ give m linearly independent outputs. 

This lemma can be proved by following the same procedure as 

J :yy used in Lemma 3 and recalling the HT Q       g = j X |2 (Equation A-5). 

Q.E.D. 
•   Lemma 5 

An error channel is defined as a random variable obtained 

from the difference between the outputs of the reference MCF and the pre- 

diction MCF.    The error channels generated by m such MCF pairs are 

linearly independent. 

s 
I 
B 
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Let c^,  e. C G be two reference MCF's and h,. h.C  H be two 

associated prediction MCF's.    Then, from Equation 2-1, 

T 

-h. 
=    €. (A-14) 

and 

■h. 
=  e. 

J (A-15) 

To prove the lemma,  the covariance 0.. between the error 

channels €. and e. will be shown to be 0 for all i = 1, . .. , m and i 4 i: 

a.. = e 
T 

. e. 
i   J 

S 
k 

T 
-XX =xy 

-h. 
—i .Oyx 

n 
=yy. 

Il 

-h. 
-J 

(A-16) 

or 

ij  ' (^   Bxx   ■   if   Sy.) 1, 

(£.    Q      -  h.    n    )   h. V-»     =Xy -1     syyj    -j (A-17) 

From Equations A-l and A-5, 

T T 
£.     n       g.   =   h.     n     h,   = 0 ■i      hxx   Äj -!      =yy-j 

A-5 



I 
D 

Therefore,  Equation A-17 simplifies to U 

(hT  Q      fi. + K
T
  n     h.") /A   iov \i    =yx  aj      ^i    =XY -jj (A-18) 

D 
a..   ■ 

Equation A-6 and its transpose conjugate show that 

T T 
K,     fl       h.   =   h.     Q       £.   =   0 ■1    =xy —j       —i    =yx -"j 

Substituting this result in Equation A-18 yields a    =0.    This 

is true for all i = 1,. .. , m and j ^ i. 
Q. E.D. 

0 
D 
D 
D 
0 
0 
0 
0 
D 
D 
0 
0 
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APPENDIX P 

FORMULAS FOR CROSSPOWER SF ECTRA USED IN MODELS 

•   Crosspower spectrum due to directional 
energy: 

cos 6 
gy UI 

r12 

•   Crosspower spectrum due to Isotropie 
energy propagating with fixed speed 
(cylinder model): 

•i2
(f'-JoH^) 

where J    represents the zero-order Bessel 
function. 

Crosspower spectrum due to Isotropie 
energy propagating with speeds above V : 

»n« T\irT rJlutkJ) 

Seismometer 2 

Seismomete 
j Direction of        .   . 
r j      Propagation        'vl 

|x|   *   Separation between 
seismometers 

|V| -   Propagation speed 

8 =   Angle between line joining 
seismometers and 
propagation direction 

f  =  frequency 

Figure B-l 

where J    represents the first-order Bessel function. 

NOTE 

The crosspower spectrum in the first case depends on the seis- 

mometer separation |x |   as well as on the seismometer orienta- 

tation 6   relative to the direction of propagation.    In the latter 

two cases,  however,  the crosspower spectra are independent of 

the orientation 9 and depend only on the separation    Ixl. 
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APPENDIX C 

SUMMARY OF NOTATION 

T Conjugate transpose 

C Contained in 

I   I Absolute value 

x Complex multivariate random column vector of m elements 

lxi   I i = If • • • .m| which are complex Fourier transforms of the 

outputs of m seismometers in group x at fixed frequency f 

X Complex multivariate random column vector of n elements 

j'1': I j = 1»• • • # n| cor re sponding to group y 

£_ Complex column vector of m elements |g.  | i = 1,... ,m} which is the 

reierence MCF associated with group x 

h Complex column vector of n elements |h. | j = 1,... ,n} which is the 

prediction MCF associated with group y 

e Error channel, which is the difference between the outputs of MCF c 

and that of MCF h 

M 2 

T 
= (ee   ) Mean-square-error 

Q m x m autopower matrix for group x 

Q n x n autopower matrix for group ^ 

Q m x n crosspower matrix for groups x and y xy _ j- 

T 
Q Q = yx —xy 
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n x n identity matrix 

I m x m identity matrix 

\\\ m x m diagonal matrix of eigenvalues |X| 

G m x m matrix formed by group-coherence MCF'sj^ | i = 1; . . , ,m| 

H n x m matrix formed by group-coherence MCF'sjh. | j = 1, . .. ,m[ 

p(H) rank of matrix H 

min{a,b) smaller of the two quantities a and b 

Q 
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