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ABSTRACT

This report investigates the effectiveness of the minimum-
power array p' 'cessing technique in determining seismometer inequaliza-
tions. The technique involves partitioning the seismometer array into two
groups and designing MCF's for each group o that the mean-square-error

between the two MCF outputs is a minimum under the const.aint that the out-
put power of one of the MCF's is unity., The two MCF sets a-e known as the
group-coherence filters; the difference between these sets is known as the

minimum-power array processor.

Estimates of the noise wavenumber spectrum from the wave-
number responses of the group-coherence filters are distorted due to seis-
mometer inequalization; however, a more reasonable estimate of the noise
wavenumber spectrum from the wavenumber response of the minimum-power
array processor should be possible because the minimas in the processor's
wavenumber response correspond to the wavenumber regions where the wave-
number responses of the two group-coherence MCF's are very similar (e.g.,

at the peaks of the noise wavenumber power spectrum).

Seismometer inequalization was to be determined from the ad-
justment in weight and phase required for each filter so that the wavenumber
responses of the group-coherence MCF's would agree with a reasonable noise
wavenumber spectrum. However, results from the TFO long-noise sample
and two synthetic models show that the technique, although excellent for gen-
erating maximum coherent channels, lacks the wavenumber resolution de-
sired for studying seismometer inequalization. This latter conclusion is at

least true for small arrays such as TFO.
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SECTION I
INTRODUCTION

In applying linear least-mean-square-error theory to a single-
channel prediction problem, a reference channel is estimated by linearly
combining a group of channels y so that the mean-square-error is a minimum.
The minimmum-pcwer array theory is a generalization of this concept where
the reference channel itself is a linear combination of another group of chan-

nels x and has unity power.

In this report, vectors x and y represent two ordered sets of
complex Fourier transforms obtained at a given frequency from the two groups
of seismometer outputs. There are now two sets of linear multichannel fil-
ters (MCF's): one operates on group x to generate the reference channel;

the other operates on group y to predict the reference channel.

Minimization of the mean-square-error by varying the two
sets of MCF's leads to the solution of a generali~=d eigenvalue matrix equa-
tion. The minimizing pair of multichannel filters are known as the group-
coherence filters. The multichannel filter formed from the difference be-
tween the two group-coherence filters is called the minimum-power array

procegsor.

Mean-square-error is numerically equal to the fraction of the
power in the normalized reference channel (the channel obtained by applying
the group-coherence filter to the set of channels x) which cannot be linearly
predicted from group y. The numerical value of the group coherence is de-
fined to be the predictable fraction of the power in the reference channel;
thus, a minimum mean-square-error is associated with a maximum group

coherence, and vice versa.
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An important property of group coherence is its invariance
with respect to any nonsingular linear transformation of the channels within
the two groups; i.e., group coherence is unchanged hy scaling, by frequency
filtering, or by combining the channels within a group by any linear rever-
sible network filter. For seismometer arrays, the group coherence between
two arrays is independent of any inequalization problems possessed by the
seismometers in the arrays; however, if seismometer inequalization is
severe, the wavenumber responses of the group-coherence filters differ from
reasonable wavenumber power responses. Except for this inequalization ef-
fect, the wavenumber responses of the two group-coherence filters should
tend to peak and be highly similar in regions where the wavenumber power
spectrum of the array data is a maximum. The wavenumber response of the
minimum-power array processor, which is the difference between the two
group-coherence filters, should have a small power response at the wavenum-
ber peaks. Thus, highly coherent energy such as that generated by storms or
earthquakes would appear as deep troughs in the wavenumber response of the
minimum-power array processor. A reasonable estimate of the wavenumber
power spectrum should be possible from the wavenumber response of the

minimum-power array processor.

If the weights of the group-coherence filters were adjusted to
compensate for seismometer inequalizations, the filters' wavenumber re-
sponses would agree with the noise wavenumber power spectrum. Adjurt-
ments could be made by fixing the filter weight for one seismometer (the
center one, for example) as unity and varying the filter weights correspond-
ing to other seismometers so that the difference between the group-coherence
filter wavenumber responses and the estimated noise wavenumber spectrum
would be a minimum. The possibility that this processing scheme would lead
to determining the amount of seiamometer inequalization montivated the in-

vestigation covered in this report.
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The broader objectives of this study are

e To investigate whether the wavenumber
response of the minimum-power array
processor can be used for estimating the
noise wavenumber power spectrum by de-
tecting and isolating regions of highly co-
herent energy

e To investigate whether the group-coherence
filters and their wavenumber power responses
can be used for determining the amplitude and
phase-response inequalizations of the seis-
mometers in the array

Data used in the study are from the TFO long-noise sample
which was the subject of Array Research Special Report No. 23. 1 Algo used
are synthetic data modeled to resemble the TFO data but having no seismom-
eter equalization problem. The following results concerning group coherence

have been derived from this research.

The group-coherence technique is excellent for measuring the
basic similarity between the two arrays of seismometers, and the group-
coherence filters are useful if the objective is to generate the maximum
coherent MCF outputs. The group-coherence concep. is of little value in
determining seismometer inequalization — at least, between array groups
having small array separation, such as TFO. This is because the wave-
number response of the minimum-power filter lacks the resolution needed

for estimating the noise waovenumber power spectrum.
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SECTION II
MINIMUM-POWER ARRAY PROCESSING THEORY

A. GENERALIZED MULTICHANNEL PREDICTION

The term ''channel" in this report denotes a complex random
variable. The Fourier transform of the output of a seismometer, since it

is a complex random variable, is called a seismic channel.

Let an array of m + n seismic channels (Figure II-1) be par-
titioned into two ordered groups x ={x1 Ii =], o0, m} and y = {yj IJ wll, n}
where x and y form two complex multivariate random column vectors. In
the generalized multichannel prediction problem, group x is linearly com-
bined to form a reference channel of unity power, and a linear combination
of group y is used for obtaining a least-mean-square-error estimate of the

normalized reference channel.

Let the two arbitrary sets of complex linear multichannel fil-
ters which operate ca groups x and y be g = {gi |i =1, ..., m} and h = {hj |
ji=1, ..., n} , respectively, znd let € be the difference between the outputs
of g and h. Note that MCF g generates the reference channel, that MCF h is
the prediction filter, and that ¢ is a complex random variable which, in the

future, will be referred to as error. Thus,

T T
g x-h y=e¢

or T

g x

= ¢ (2-1)

g it y

where T is used to denote conjugate transpose.
II-1 science services division
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- B. MINIMIZATION OF MEAN-SQUARE-ERROR

The mean-square-error is given by

T T

X

T
2 T g |X E
le]® = ee™ =
-h

yli/ \p) ¥

e

—

where a line indicates the average value. Therefore,

iR T
2 g X \xX 4
le|” =
-h) {y) (¥} (-B
T
g Q g
_ 8x Oxy 35
-h ny ny -h

where

is autopower matrix for group x
is autopower matrix for group y

is crosspower matrix for groups x and Yy

T
= Q
=y

PP

It is desired to find g and h, which will minimize Ie |2 » under

2
T :
the constraint that |g _ng is unity.

W, - 2 . g
Keeping g fixed, the variation of l¢|” with respect to h in

Equation 2-2 gives

T T
] 1Y Q Q g £ Q Q
5 |€|2= =xX =Xy + =X =Xy (2-3)

-6h 0 -h)  |-n Q0 -6h
2P 18y Ly) 2 =l L=yx =yy ia
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Eﬂ
where 2 is the null vector and § denotes the variation. Note that

T
0 0 9]

-h 0 0 -6h -8h Q .
=y X - = -y x Ew a

R

From Equations 2-3 and 2-4, it is seen that

6 Ielz = -2 Real [é_llT (g-yx& - gyy E)] (2-5)

2
The condition for |¢|”to be stationary is that, for an infini-

T,
tesimal change GET, 6 |e |2= 0. This implies that the coefficient of th™ in

Equation 2-5 must vanish; i.e.,

53
.

or

h = E (2-6)

%‘D

0l
=7y

Since } is a covariance matrix, it is positive definite and,

hence, nonsingular; i.e., L exists. Premultiplying both sides of Equa-

tion 2-6 gives

-1
Q Q
=y =yx

=

4 (2-7)
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Substituting h from Equation 2-7 into Equation 2-2 and factor-

ing gives
i "o, a I
i = =xXX =xy =
Sl e I i I H
- -1
y 0 0 0 -0 0
=y  Zyx =yx =yl L=y =y
=
-1
= 18 T Q.-8 0 0 ol |----------- gl = |e]
=xx =Xy fyy  syx = .
-0 0
=yy =yx
or
T -1 2
£ (Lo 2y 8,7 g, ) &= I 2-9)

wherel is the m x m identity rnatrix and 0 is the m x n null matrix.

From Equation 2-8, it is seen that mean-square-error 'el
depends only on the choice of the MCF vector £ which generates the reference
channel. The problem now is to find a minimizing MCF vector g which is
normalized to unity output power. Since the matrix ny is positive definite
and since 0  =Q T, the matrix 0 q -1

=yx =xy i s 4
matrix Q _, because it is a covariance matrix, also is positive definite.
From matrix theory, 25t slthe of the two matrices 0 _orQ 0 !

=xx

0
oy Wyy WX
is positive definite, there exists a nonsingular matrix which will simultanerusly

() _is positive definite. The
=yx

reduce boththe 3 and Q@ -1 (1 _ matrices to a diagonal form. Let
=xx =Xy =yy =yx
G be such an m x m matrix normalized so that

T

o

G =1 (2-9)

0
=XX =
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and

g’ q -1 G = IS

[va =yy Q'Vx] = (2-10)

2 5 .
where |X| is a diagonal m x m matrix.
=

Equations 2-9 and 2-10 are generalized eigenvalue matrix

equations.

Since G is an m x m nonsingular matrix, its column vectors
form a basis for generating arbitrary MCF's for group x. Let g be such an

MCF given by

n

ﬂ:

C

where ¢ = {ci |i =1,... ,m} is a set of arbitrary complex scalars. Normal-

izing g to unity output power gives

g=1 (2-11)

pa
o

K

or

no
o
n

c=1 (2-12)

g

Since, from Equation 2-9, G™ QG = I, Equation 2-12

simplifies to

or

Z c, =1 (2-13)

Equation 2-13 gives the condition for unity normalization.
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Pre- and postmultiplying Qx

spectively, yields

-1
= 0

Q
& =Xy =yy

Since, from Equation 2-10, QT Q

Equation 2-14 reduces to

T -1
Q =
8 B,y 8y Oy

9!
Y. =Yy

-1 T
e} xbyg and g, re-

=y

-14
yy Byy gyxgg =%
-1 g2
=xygyy gyx=- ‘;\‘ ’

Im
) D A L P S T

Subtracting Equation 2-15 from Equation 2-11 and factoring,

2 2

T -1 m
B (o Gy Gy 2)E= 1% lel” Iyl (2-16)

Comparing Equations 2-8 and 2-16, it can be seen that

le]? =1

m

- %

e,

l2

9k (2-17)

Equation 2-17 gives the mean-square-error associated with an arbitrary

normalized filter g =G c. |e |2 is minimized by setting c, = 1 when |)\i|2 =

| A

max|

C. GROUP COHERENCE

2 and setting all other ci's = 0 in Equation 2-17; i.e.,

| (2-18)

Section I states that group coherence is measured by the maxi-

mum predictable fraction of power in the normalized reference channel. Since

the reference channel is normalized to unity power and since ‘emin‘z is the

minimum prediction error, Equation 2-18 shows that the group coherence

equals the largest eigenvalue p‘max

‘2

I1-7
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The eigenvector associated with the largest eigenvalue is ob-
tained by solving Equations 2-9 and 2-10, using an iterative scheme called
the power method. (This scheme has been described in Large-Array Signal
and Noise Analysis Special Scientific Report No. 13. )3 1f E . is such an

eigenvector, then, from Equations 2-9 and 2-10,

T
Erax gxx Bmax : (2-19)

and

i .l 2
Emax [Qxy 8y ny] Brax = Mooy (2-20)

The eigenvector g P is known as the group-coherence MCF associated with

group Xx.

The group-coherence MCF hmax associated with group y is

obtained by substituting B oax into Equation 2-7:

!-l*max - ny’ gyx Emax (2-21)

The minimum-power array processor output is obtained by replacing g and

h in Equation 2-1 by j — and _l_lmax, respectively.

I1-8 sclence services divisicn
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Eﬂ
D. AUTO- AND CROSSPOWER SPECTRA OF THE TWO MAXIMUM-
COHERENT CHANNELS

The autopower spectrum of the reference channel is given by
Equation 2-19, To obtain the autopower spectrum of the estimated reference

channel, take the conjugate transpose of Equation 2-21 while recalling that

gyy-l is Hermitian and )

=Q . Thus,
=yx  =xy
T T -1
= 2-
hmax Bmax Qxy gyy w2y
By p\')lstmultxplymg Equation 2-18 on both sides by gyy Emax
and noting that Q 0 = I,wherel'isannxn identity matrix,
=yy =yy = =
T T
-}-l'max ny -}lmax = Bmax &xy Emax e

By replacing h on the right-hand side of Equation 2-23 b
y € 2hmax g Y

its equivalent expression from Equation 2-21,

T -1
hmax ny llmax Emax gxy gyy ny Emax

-1
gﬂf)a_s('r (gxy QYY gyx) Emax (2-24)

A comparison of Equations 2-24 and 2-20 shows that

T 2
llmax gyy -}lmax - |)\maxl t4%23)
The expression on the left-hand side of Equation 2-25 is the

autopower spectrum of the estimated reference channel, which is automati-

cally normalized to the numerical value of the groun coherence (I ).maxlz).

1I-9 science servicea divialnn



A comparison of Equations 2-23 and 2-25 shows that

=|X

2-26
Emax =9=xy P—max max ( )

The expression on the left-hand side of Equation 2-26 is the

crosspower spectrum between the reference channel and the estimatsd

reference channel.

E. SUMMARY OF MINIMUM-POWER ARRAY PROCESSING

The salient features of this section are summarized below:

® Equations 2-9 and 2-10 can be iteratively

solved, using the power method, to give
2
the group coherence |\ |© and the
max
MCF B ax the MCF B ., Benerates
the maximum-coherent reference

channel from group x

MCF h » which estimates the reference
~max
channel by linearly operating on group Y
i £ i =
can be obtained ‘rom Erax by Equation 2-7

The minimum-power array processor is
the MCF

h

—max

“Bmax

and the power in the corresponding error

channel is given by

II-10 sulence services division
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F. THE COMPLETE SET OF m EIGENVALUES

Thus far, only the group coherence which is numerically
equal to the largest eigenvalue of Equations 2-9 and 2-10 has been dis-
cussed. However, the generalized eigeavalue equations have m-1 other

solutions.

The properties of the entire set of m eigenvalues and the

associated eigenvectors are investigated in Appendix A.

\\
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SECTION III
DATA PREPARATION

The minimum-power array processing technique consists of
the following three stages:

e Computation of the crosspower matrix at a
chosen frequency

e Computation of the maximum group-coherence
MCF's for the two partitioned sets

e Computation of wavenumber responses of the
two group-coherence MCF's and of the mini-
mum-power array processor

Presented in this report are the results from two sets of
models ard the TFO long-noise sample. 1 The TFO crossarray (Figure III-1)
was partitioned into four sets (Figure III-2) and group coherence was studied

at various frequencies.

The three models designed at 0.22584 Hz, 0.52696 Hz, and
0.82808 Hz in model set 1 are close approximations to the TFO noise field.

Figure UI-3 shows these wavenumber spectrum models, using the following

conventions.

A solid disk represents isotropic energy propagating above a
certain minimum speed, a cylinder represents isotropic energy propagating
at a fixed speed, and an arrow represents directional energy such as that
generated by storms and earthquakes. Background mantle P-wave energy,
due to its high apparent speed, is modeled by an 8-km/sec disk. The isotro-
pic fundamental Rayleigh-wave energy is modeled by the 3-km/sec cylinder
and higher-order modes by the 3-km/sec disk. Highly directional P waves

and Rayleigh waves are represented by the arrows.

III-1 science services division
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Figure III-3. TFO Noise Model Set 1 in Wavenumber Space
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Model set 2 is the same as Model set 1 except that l-percent

white noise is added.

The crosspower matrices for these models are derived from
formulas published in the final report on Seismometer Array and Data Pro-

cessing Systems. 4 These formulas are reproduced in Appendix B.

The crosspower matrix for TFO data is computed from spectral
estimates of the TFO noise sample5 obtained by Bartlett-smoothing and
Fourier-transforming the auto- and crosscorrelation functions discussed in

an Array Research semiannual technical report. 6
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SECTION IV
DISCUSSION OF RESULTS

With respect to the original purpose of determining seismometer
inequalization, the study of group coherence filters has been unsuccessful in achiev-
ing useful results, However, the following detailed discussion of results does illu -
minate the properties of group coherence filters and indicates that they will be use-

ful for uncovering and analyzing coherent energy between subarrays.
A. PARTITIONS A AND B

Table IV-1 shows group coherences obtained from the four partitioned

sets A, B, C, and D. Partitions A and B give high group coherences.

Minimum-power array MCF's computed from TFO data at 0. 52696 Hz,
corresponding to partitions A and B, are plotted as vectors in Figure IV-1. An
arbitrary scale factor and an arbitrary phase reference are used for plotting these

vectors. The scale factors are different for the two partitions.

Both vector diagrams show that the MCF's with the largest weights
are located near the center seismometer, which is not included in these partitions.
Thus, both groups x and y seem to be trying to predict the output of the missing

center seismometer.

Figure IV-2 shows wavenumber responses of the minimum -power
arrays (shown in Figure IV-1 as vector diagrams). These wavenumber responses are
computed along the two TFO arms, i.e., S37°W-N37°E and S53°W-N53°E. Also
shown in Figure IV-2 are the inverted K-line wavenumber power spectra, * which are
projections of 2-dimensional power -density spectra onto the two arms of the TFO
crossarray;1 they serve as references for checking the performance of the minimum -

power arrays.

*K -line wavenumber spectra are obtained from the maximum entropy spectral
analysis, a technique developed by John P. Burg and presented in November 1967
at the 37tk annual SEG meeting in Oklahoma City. The properties of K -line
wavenumber spectra have been discussed and extensively illuminated in Array
Research Special Report No. 23, !
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Table IV-1
GROUP COHERENCES

0.22584 Hz 0.52696 Hz 0.82808 Hz

Model | Model | TFO |Model Model | TFO (Model | Model TFO
Partitions 1 2 Data 1 2 Data 1 2 Data

A NC 10.980 {0.980] NC |0.880 [0.880 NC ]0.750 | 0.82
B NC NC NC NC NC 0.975 | NC NC NC
C 0.995 10.880 [0.860]0.600 |0.400 | 0.270 0.378 10.360 | 0.390
D 0.999 1 0.840 [0.860[0.560 | 0.300 | 0.320 0.358 |1 0.340 | 0.320

NC: not computed

The broad low region in the wavenumber power responses of
the minimum-power arrays suggests that a reasonable noise wavenumber
power spectra should have a corresponding broad peak. This is not, in fact,
inverted K-line wavenumber power spectra. However, a basic similarity
between the two shapes can be seen, as both the minimum-power array
wavenumber response and the inverted K-line wavenumber spectra indicate
that the ambient seismic-noise energy sharply drops outside the 3-km/sec

dashed lines.
B. PARTITIONS C AND D

Partitions C and D have been selected to provide higher reso-

lution in the wavenumber response than achieved by partitions A and B. The

minimum separation distance between the two groups of seismometers in
partitions C and D is nearly 4 km, which is two times the minimum separa-
tion for partitions A and B. With increased separation, the responses of the

the case, as can be seen by comparing these wavenumber responses with the !

two group-coherence filters can be similar only over a much narrower wave-

¢ :
i

number region than in the cases of partitions A and B; also, as a result of '

increased separation between the groups, the coherences for partitions C !

and D are low (Table IV-1). '
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Figure IV-1.

Vector Diagram of Minimum-Power Array Processor,
TFO Noise Data: Frequency, 0.52696 Hz
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Figures IV-3 and IV-4 show the wavenumber power responses
along the two TFO arms. Minimum-power array wavenumber responses in
- model set 1 generally resemble the energy distribution in the model but do

not show the very strong directional Rayleigh wave coming from N50°E

- (0.22534 Hz). Minimum-power array wavenumber responses for model set 2
4 show poor resolution. Minimum-power array wavenumber responses obtained
- from TFO data generally resemble the corresponding inverted K-line wave-

number spectra obtained from the same data, but the former show poor reso-
i lution and are unreliable for estimating a reasonable wavenumber power
- spectra. This last conclusion is based on the presence of extraneous low

3 regions in the wavenumber responses at 0.52696 Hz (TFO data, partition C).

Since a similar effect is observed for synthetic data (model set 2, 0.52696 Hz,

partition D), this phenomenon appears to be a property of the technique and

not of inequalization.
C. 2-DIMENSIONAL WAVENUMBER POWER RESPONSE

Figure IV-5 shows 2-dimensional wavenumber responses of
the minimum-power array computed at the three frequencies for partition D,

model set 1.

Comparisons of these wavenumber responses with the wave-
number power distributions in the actual model (Figure III-1) again show
that the technique lacks the resolution and reliability needed for estimating
with any reasonable accuracy the wavenumber power spectra; at least, this

is true for the array groups which have little separation, such as TFO.
D. GROUP-COHERENCE MULTICHANNEL FILTERS

The wavenumber responses of group-coherence MCF's show
very poor resoluticn and, since no conclusions can be drawn from them, they

are not presented in this report.
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APPENDIX A

THE m SOLUTIONS OF THE GENERALIZED
EIGENVALUE PROBLEM

The generalized eigenvalue problem is stated as

g gxx g - ; (A-1)
and
T -1 2
G 9} 0 G = |\ -
G [=xy 8., =yx] G = Il (A-2)
where

L]

denotes m x m identity matrix
2 n . :
|>_\| denotes m x m diagonal matrix of eigenvalues

G denotes m x m nonsingular matrix of eigenvectors

Section II of this report shows that a pair of MCF's - and
h exist, corresponding to the eigenvalue |\ |2, which produce two
—max max
maximum coherent channels when linearly combined with groups x and y,
respectively. Similarly, a pair of MCF's g and 21 exist, corresponding to

each of the m eigenvalues of the set

{Ixii‘2 i= 1,...,m}

where & is called the reference MCF and Ex is called the prediction MCF.

The MCF }_11 is related to the MCF & by Equation 2-7, which is

-1
hi - gyy gyx 51 (A-3)
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Since the set{g_i | i= 1,...,m} is the m x m matrix G,
the set H = {b_ll i= l,...,m}is an n x m matrix given by
H=0. 0,6 (A-4)
= =Yy =YX =

To complete the relationships between the matrices g, g, and

IMZ, the following two equations are given:

T

H H = || (A-5)
= =YY - -

and
g g H=|? (A-6)
= =Xy = =

These are equivalent to Equations 2-25 and 2-26 for the m

eigenvalue case.

e Lemma 1

The m reference MCF's, which are the column vectors of the

m x m matrix G, are linearly independent.

Since G is nonsingular, its column vectors are linearly in-

d dent.
epen en Q. E. D'

e Lemma 2
The m prediction MCF's which are the column vectors of the

2
n X m matrix H are linearly independent if the matrix |A|  is nonsingular.

Rank is defined as the maximum number of linearly independent

column or row vectors in a matrix. Since all the columns or rows of a non-

singular matrix are linearly independent, its rank equals the number of rows
2

or columns. Thus, the rank of the m x m matrix ||  is m and that of the

n x n matrix is n.
=Yy
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are given by

The ranks of the matrices on the two sides of Equation A-5

P(ET a,, H) = o (lélz) = m (A-7)

where p denotes the rank. According to a theorem in matrix theory, the
rank of a product of matrices cannot exceed the rank of any of the component

matrices and, since p(H) = p ({-__IT), Equation A-7 takes the form

min [p (H), n] 2 m (A-8)
Since H is an n x m matrix, another theorem in matrix theory
gives

p(H) < min (m, n) (A-9)

It is seen from Inequalities A-8 and A-9 that
p(H) = m s n (A-10)

Equation A-10 says that the number of linearly independent
vectors in H is m and that this number cannot exceed the dimension (n) of

the space.
Q.E.D.

e Lemma 3
The column vectors of the m x m matrix G, when used as

reference MCF's on group x, give m linearly independent outputs.

Letting the outputs of the MCF's g;C Gand '&jc G be the two

random variables x, and x.,
—i = I

= -11
X =g X (A-11)
and
T
X, = g+ X A-12
= E:] & ( )
A-3 sclence servicee division
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will be shown to be 0 for all i = l,...,mandj # i:

To prove the lemma, the covariance oij between X and Ej

dx

- X.
1) -1

u

—~

"F'n'-]
I

u

"EQ'-]
I
I
Jm

(A-13)

T
E'ig'xx-g-j

Equation A-1 shows that giT Q. g = 0ifi#j.

Thus, it can be seen that cij = 0. Since this is true for all
1=1,...,mand j #i, the theorem is proved. The term '"linear independence'

18 used in Lemmas 3, 4, and 5 in a statistical sense.
Q.E.D.

e Lemma 4
The column vectors of the n x m matrix H, when used as pre-

diction MCF's on group Y» give m linearly independent outputs.

This lemma can be proved by following the same procedure as
H = |1|% (Equation A-5).

used in Lemma 3 and recalling the I;IT Qy
Qo Eo Do

¥

® Lemma 5
An error channel is defined as a random variable obtained
from the difference between the outputs of the reference MCF and the pre-
diction MCF. The error channels generated by m such MCF pairs are

linearly independent.

IS
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Letg., g.C G be two reference MCF's and h,, h,c H be two
g'l. ‘g'_] = - =] =

associated prediction MCF's. Then, from Equation 2-1,

T
x
- ei
-hi X
and
&) (2
o 4

(A-14)

(A-15)

To prove the lemma, the covariance oij between the error

channels ei and ej will be shown to be 0 for alii=1,...,m and j # i:

T
g,.. =€, ¢,
ij =i
T
_ & Exx =xy -EJ
S 0 -h
=i Yyx Hyy =j
or
/T T
ij -(31 O = 2y QYX) i

(A-16)

(A-17)

Q = h h 0
Hi =xx -gj I QY‘Y -5 =
A-5 science services division



Therefore, Equation A-17 simplifies to
T T
= - + g h,
o = B G Bl Gy B)
Equation A-6 and its transposc conjugate show that

T T
h, = I, . =0
B O By =Ly G &

(A-18)

Substituting this result in Equation A-18 yields oij = 0. This

is true for alli=1,...,m and j #i.

Q- E: Do
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APPENDIX B
FORMULAS FOR CROSSPOWER SPECTRA USED IN MODELS

D el & Ga

sclence services division



¥

APPENDIX P
FORMULAS FOR CROSSPOWER SF ECTRA USED IN MODELS

e Crosspower spectrum due to directional

energy: N
-jan-H cos 6

U (f) = e

e Crosspower spectrum due to isotropic
energy propagating with fixed speed
(cylinder model):

llz(f)sJo(Zn'f ‘ll?ﬂ-)

where J_ represents the zero-order Bessel
function,

e Crosspower spectrum due to isotropic
energy propagating with speeds above Ve:

v
e 2nf |x]
T | Jl( v )

Seismometer 2

Direction of _ v
Propagation = M

Seismometer 1

|x| = Separation between
seismoineters
|V| = Propagation speed

6 = Angle between line joining
seismometers and
propagation direction

f = frequency

Figure B-1

where Jl represents the first-order Bessel function.

NOTE

The crosspower spectrum in the first case depends on the seis-

mometer separation |x | as well as on the seismometer orienta-

tation 6 relative to the direction of propagation. In the latter

two cases, however, the crosspower spectra are independent of

the orientation 6§ and depend only on the separation |x|
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APPENDIX C
SUMMARY OF NOTATION
Conjugate transpose
Contained in
Absolute value

Complex multivariate random column vector of m elements
{xi | iz Llse0 ,m} which are complex Fourier transforms of the

outputs of m seismometers in group x at fixed frequency f

Complex multivariate random column vector of n elements

{yj |i=1,... »n} corresponding to group y

Complex column vector of m elements {gi li=1,... »m} which is the

reierence MCF associated with group x

Complex column vector of n elements {hj | ji=l,e.. ,n} which is the

prediction MCF associated with g=oup Yy

Error channel, which is the difference between the outputs of MCF g

and that of MCF h

Mean-square-error

m x m autopower matrix for group x
n x n autopower matrix for group Y

m x n crosspower matrix for groups x and Y

T
a,,
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I n x n identity matrix
3 m x m idcentity matrix

2 . . . 2
|)_\_| m x m diagonal matrix of eigenvalues |)\|
G m x m matrix formed by group-coherence MCF'S{_&i li=1,... , m}
H n x m matrix formed by group-coherence MCF's{hj liji=1,..., m}
p(H) rank of matrix H

min(a, b) smaller of the two quantities a and b
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