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FOREWORD
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ABSTRACT ,:,V..

The filament-matrix compatibility was evaluated forB,, SiC, andcTiB2 vapor deposited

' f'l&T-•i- ts witni high purity, commercial purity titanium, aid Ti-6A1-4V. Filament-matrix
diffusion sandwiches were prepared by solid state resistance bonding. These samples were
subsequently heated at 800-991°C for times of 1-100 hours. The reaction rates and reaction
products were evaluated using light microscopy, electron replicas, microhardness measure-
ments, and microprobe analysisj /' r

S\ he order of decreasing filament-matrix interaction was B, SiC, and TiB 2 in each of the

three materials. High purity Ti, commercial purity Ti, and Ti-6A1-4V is the order of de-
creasing reactivity with the filaments after 100 hours at 850-991 0C. The reaction of B with
unalloyed titanium is characterized as the formation of a TiB 2 layer adjacent to the filament

with an external acicular TiB layer. The reaction layers were formed by the predominately
outward diffusion of the boron as evidenced by the lack of recession of the initial filament
diameter and the void formation in the filament. The interaction of B with Ti-6A1-4V is
characterized by the formation of TiB 2 with the rejection of Al ahead of the advancing TiB2

front which stabilizes the d -titanium phase around the TiB2 reaction layer. The SiC filament

reacts with titanium to form a multi-phased reaction layer. The SiC-Ti interaction takes
place by the simultaneous growth inward and outward of the reaction zone. A uniform dis-
tribution of 0.1 weight percent titanium was observed in the SiC filament after 100 hours at
850 0C. The TiB2 filament reacted with titanium to form a TiB layer adjacent to the filament.

The SiC and TiB2 filaments did not react with their respective tungsten or molybdenum core

after 100 hours at 8500C.. -

Distribution of this abstract is unlimited. It may be released to the Clearinghouse, Dept. of
Commerce, for sale to the general public. 44
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SECTION I

INTRODUCTION

The technical potential of metal matrix composites has been recently reviewed (Ref-
erence 1). In this article, it was pointed out that the major problem in developing metal
matrix composites for elevated temperature use is the lack of filament-matrix compati-
bility. At the Air Force Materials Laboratory, various filaments have been screened to
determine their compatibility with the more important aerospace metals. Figures 1 through
3 show the interaction of B, SiC, and TiB 2 filaments with iron, nickel, and cobalt, after

anneals for various times at 900'C. Since these metals are the basis of the superalloys, 9000C
was selected as the screening temperature as this is a representative use-temperature for
the superalloys. This initial screening showed that the reaction of B, SiC, and TiB2 filaments

is sufficiently rapid with iron, nickel, and cobalt, at 9000C that these filaments cannot be
used to reinforce the superalloys without some approach to improve the filament-matrix
compatibility.

Similar studies were started to evaluate the interaction of these filaments for use in
titanium matrices. Titanium is an extremely important aerospace metal which would receive
wider use if the strength and stiffness could be enhanced by reinforcing with low density,
high modulus filaments. The purpose of this investigation was to study these filament-
matrix interactions to determine the rate of interaction and to assess the potential of rein-
forcing these matrices with B, SiC, and TiB2 filaments.

1
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SECTION II

EXPERIMENTAL

1. MATERIALS

Table I lists some properties of the various filaments which were used in this investi-
gation. Boron and SiC filaments are production filaments which are deposited on a 1/2 mil
tungsten wire substrate. The TiB2 is a filament which is in the early stages of development.

This filament is deposited on a 1 mil molybdenum substrate.

Table II lists the major impurities of the three types of titanium materials. The iodide
titanium listed is a three-pass, zone-refined 1/4 inch rod. The commercial purity titanium
listed is Grade 55 1/16 inch sheet. The titanium alloy (Ti-6A1-4V) listed is commercially
procured 1/16 inch sheet.

2. PROCEDURE

Small composite specimens for this compatibility study were prepared by solid state,
electrical resistance bonding of two identical metal sheets with filaments placed between
them. Figure 4 shows a schematic of the specimen lay-up which was used. The steel wires
were used both to complete the electrical circuit and to prevent the filaments from being
crushed before the metal coupons reached the bonding temperature. Prior to bonding, the
metal couples were metallographically polished through 600 grit paper to remove any sur-
face layer and to prepare a smooth surface. After polishing, the samples were rinsed con-
secutively in acetone, methyl alcohol, and distilled water. The filaments were similarly
cleaned prior to bonding. The specimens were bonded in an argon atmosphere with low
voltage, high amperage current. In this work, the welding temperature was not measured,
but was roughly estimated at approximately 900'C by visual observation of the radiating
sample. Pressure is applied while the sample is at temperature and visible deformation
occured which insured good metal flow around the filaments. Bonding times were of the
order of 5 to 10 seconds. When the current was turned off, the specimen cooled in flowing
argon to room temperature in approximately 45 seconds.

After bonding, the samples were polished to show the filaments in cross section to deter-
mine the extent of the filament-matrix interaction which occurred during the bonding opera-
tion. Next, the filament-matrix sandwich was removed from the Bakelite mount and prepared
for the thermal treatment. The samples were wrapped loosely in tantalum foil and sealed

in an evacuated (<10-6 Torr) quartz ampule to prevent oxidation of the titanium during the
thermal treatment.

A series of samples were annealed for 100 hours at 850'C. Selected samples were annealed
for times of 1, 10, and 100 hours at selected temperatures. Metallographic samples were
prepared after each thermal treatment to determine the extent of the filament-matrix inter-
action. The titanium matrix was etched with a solution of 2 ml HF, 4 ml HNO 3 , and 94 ml

H2 0. The filament-matrix interaction was evaluated using microhardness traverses, single-

stage electron microscope replicas, conventional metallography, and the electron microprobe.

2
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SECTION III

RESULTS AND DISCUSSION

1. HIGH PURITY TITANIUM

Figure 5 shows the interaction of the B, SiC, and TiB2 filaments with high purity titanium

after a 100 hour isothermal anneal at 850°C. If the size of the reaction layer between the
matrix and the filaments is taken as the measure of the degree of interaction, B, SiC, and
TiB2 is the order of decreasing filament-matrix interaction. As it has been shown in pre-
vious studies conducted.at this laboratory the reaction can be represented by a parabolic
equation (Reference 2). JFigure 6 shows a comparison of the parabolic rate constants for the
equation "

X2 kt (1)

where x is the reaction zone width in centimeters, t is time in seconds, and k is the parabolic
rate constant. The parabolic rate constants shown in Figure 6 were calculated by using only
the reaction zone thickness after 100 hours 2  , ' ..

a. Boron Filament

Figure 7 shows the typical reaction between boron and high purity titanium after a 100 hour
anneal at 8500C. The reaction layer adjacent to the boron is TiB2 . Figure 8 is an electron

microscope replica of the etched surface of the polished sample which shows the 14/1 TiB2

layer. This TiB2 phase was identified by Blackburn et al (Reference 2) in their investigation
of the interaction of boron with Ti-8AI-lMo-lV. The acicular structure shown in Figure 7
ahead of the TiB2 is probably TiB. The TiB phase was indicated by results from the electron
microprobe which showed a decrease in boron concentration in comparison to the TiB2

phase. These reaction layers were formed by the predominately outward diffusion of the
boron as evidenced by the lack of recession of the initial filament diameter and the void
formation in the filament. The presence of the TiB2 and TiB phases agree with the titanium-
boron phase diagram (Reference 3).

Figure 9 shows the core of the boron filament after 100 hours at 8500C. The tungsten has
been completely converted to the respective borides as previously reported by Hammond et al
(Reference 4) as there is no unreacted tungsten present. The conchoidal fractures overlap
around the core. These fractures probably occur during polishing and are the result of the
complex residual stress state of the filament because of the tungsten-boron interaction during
the filament manufacture (Reference 4). Figure 10 shows the conchoidal fractures in the
boron filament which appears as gross void in the filament in the light micrograph (Figure 7).
These fractures occur during polishing and probably are initiated at voids caused by the
condensation of vacancies which result from the predominantly outward diffusion during the
interaction with titanium.

b. Silicon Carbide Filament

Figure 11 shows the interaction between a SiC filament with high purity titanium after
100 hours at 8500C. The reaction layer is multi-layered which agrees with the phase diagram
(Reference 5) which indicates that TiC, Ti 5Si 3 , and TiSi2 should form between diffusion

3
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couple of titanium and SiC. Microprobe work showed a uniform distribution of approximately
0.1 weight percent of titanium in the SiC filament. This is in agreement with the earlier
findings of Feingold (Reference 6). The residual titanium-to-titanium bond line is present
although some grain growth has occurred across this interface. Figure 12 shows more
clearly the structure of the reaction layer. The initial SiC diameter (prior to the thermal
treatment) coincides with the scalloped looking phase; therefore, the SiC-titanium interaction
proceeds by a simultaneous recession of the SiC diameter and growth of the reaction zone
into the titanium. The coherent nature of the SiC filament, in comparison with the B filament
after interaction, can probably be attributed to this simultaneous inward and outward growth
of the reaction layer. Figure 13 shows that the reaction zone between the tungsten core and
the SiC is less than 0. 2 5/1; therefore, the majority of the core is unreacted tungsten. Adler
et al (Reference 7) has shown that the tungsten core starts to react rapidly with the SiC at
10000 C.

c. Titanium Diboride Filament

Figure 14 shows the interaction of the TiB2 filaments with high purity titanium to form a

reaction layer adjacent to the filaments which is probably a TiB phase. The TiB phase was
indicated by the electron microprobe results which showed a decrease in boron concentration
in comparison to the TiB 2 phase. Figure 15 shows more clearly the structure of filament

and the filament-matrix interaction. No interaction can be seen between the molybdenum
core and the TiB2 filament. The inner concentric rings are present in the as-deposited

filament and are a result of the deposition process and not filament-matrix interaction. The
TiB phase is approximately 6 pL in width. Figure 16 shows the increase in the matrix hard-
ness from 230 to DPH 777 as a result of the boron diffusion into the matrix. The triangular
areas adjacent to the filament are matrix void caused by insufficient matrix deformation
during sample bonding. The hardness of molybdenum does not change as a result of the
thermal treatment as the molybdenum core does not react with TiB2 to any detectable amount
after 100 hours at 900'C.

2. COMMERCIAL PURITY TITANIUM

Figure 17 shows the interaction of B, SiC, and TiB 2 with commercial purity titanium. The

general microstructures are similar to those for the interaction with high purity titanium.
In Figure 6, it can be seen that B, SiC, and TiB2 is the order of decreasing reactivity although

the relative values of the parabolic rate constants are lower in commercial purity titanium
than in the higher purity titanium. This slight decrease in reactivity may be the result of
the higher impurity levels of Fe, Mn, and W in the commercial purity material.

Figure 18 shows the progressive growth of the reaction layer between B and commercial
purity titanium formed at 900'C. After one hour, voids start to form in the boron filament
and adjacent to the filament core. In nine hours, substantial void formation is present and
the reaction zone has continued to grow. After 100 hours, it can be seen that the reaction
zone is separated from the filament at the filament-TiB2 reaction zone interface. This

separation probably occurs on cooling after the reaction layer has grown to a certain thick-
ness. This separation probably did not occur at temperature because the reaction zone is
rather uniform. The reaction layer does not separate after only a nine hour anneal at 900'C.
This probably indicates the need for the reaction layer to be a certain thickness before
separation. In Figure 17 (a), it can be seen that some cracking has been initiated in the,
TiB2 phase formed at 850'C although the gross separation is not present.

4
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3. TITANIUM ALLOY: TI-6Al-4V

Figure 19 shows the interaction of B, SiC, and TiB2 filaments with Ti-6AI-4V titanium alloy

after 100 hours at 850 0C. Figure 6 shows that B, SiC, and TiB2 is the order of decreasing

reactivity of the filaments in Ti-6A1-4V. High purity, commercial purity, and alloy titanium
is of the order of decreasing reactivity with all the filaments.

The reaction of boron with Ti-6AI-4V is slower than with either of the unalloyed titanium /.
metals. Ti-6A1-4V is a two-phase alloy composed of approximately 70% alpha and the re-
maining beta (Reference 8). Figure 20 shows the white a-phase which completely surrounds
the reaction layer. This is probably the result of the formation of the titanium diboride and
the rejection of aluminum ahead of the reaction front which stabilizes the a-phase. This may
partially explain the reduced rate of reaction of boron with the titanium alloy compared to the
two unalloyed titanium matrices.

The SiC and TiB2 filaments react with Ti-6A1-4V in a way similar to that in the unalloyed

titanium. With SiC in Ti-6AI-4V, the reaction zone is multi-layered and both alpha and beta
phases are in contact, with this reaction zone. The reaction zone between the TiB2 filament
and Ti-6A1-4V is single-layered and is probably the TiB phase.

Parabolic rate constants for the growth of the reaction layer between SiC and Ti-6A1-4V
were established at 800, 900, and 991 0 C. These rate constants were then plotted (Figure 21)
to the best fit of the Arrhenius equation

E
A e RT (2)

where k is the parabolic rate constant, E is the app arent activation energy, R is 1.987 cal/
deg-mole, A is a constant, and T is the temperature in degrees Kelvin. The apparent acti-
vation energy is 31.3 k cal/mole. By extrapolating this curve to 1200°F (the maximum useful
temperature of the titanium alloys), the reaction zone thickness may be calculated using
Equation 1. For example at 1200'F for 100 hours, the reaction zone thickness between SiC
and Ti-6AI-4V would be approximately 1.5)u.

5
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SECTION IV

CONCLUSIONS

1. The order of decreasing filament-matrix interaction is B, SiC, and TiB2 in the three
titanium matrices after 100 hour anneals at 850 to 900'C.

2. High purity, commercial purity, and Ti-6Al-4V alloy titanium is the order of de-
creasing filament-matrix interaction with the three filaments used in this investigation.

3. The boron filament r e a c t s similarly in both the unalloyed titanium matrices. A

coherent TiB2 layer was formed in contact with the filament after 100 hours at 850'C. A

TiB acicular structure was formed adjacent to the TiB2 phase in the titanium. The boron-

titanium interaction takes place by a predominantly one-way diffusion of boron outward
which is evident by the lack of recession of the initial boron-metal interface and the void
formation in the filaments.

4. The SiC filament reacted with the unalloyed titanium to form a multi-layered reaction
zone which was formed by the simultaneous growth outward and inward of the reaction zone.
A uniform distribution of approximately 0.1 weight percent titanium was observed in the
SiC filament after 100 hours at 850'C. The activation energy for the interaction with Ti-6A1-4V
was determined to be 31.3 k cal/mole.

5. The TiB2 filament reacted with the titanium matrices to form a layer of TiB adjacent

to the filament.

6. The reaction of boron with Ti-6A1-4V can be characterized as the formation of TiB2

with rejection of aluminum ahead of the reaction front which stabilizes the a-titanium phase
in contact with the TiB 2 phase.

7. The SiC and TiB2 filaments do not significantly react with their respective cores after

100 hours at 900'C. The tungsten core of the boron filament appears to be completely con-
verted to the respective tungsten borides during the filament deposition process.

6
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Figure 6. Comparison of the Parabolic Rate Constants for the Filament-Matrix
Interaction After 100 Hours at 850 0C
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Figure 7. Boron Filament Interaction With High-Purity Titanium After a
100 Hour Anneal at 850*C (250X)
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TiB Phase

Ti B2 Reaction Layer

Boron Filament

Figure 8. Electron Micrograph of the Reaction Layer Between B and High-
Purity Titanium After a 100 Hour Anneal at 850'C (2400X).

B Filament

Filament Core A, A i )

Figure 9. Electron Micrograph of the Figure 10. Electron Micrograph of the
Core of the Boron Filament Boron Filament After
After a 100 Hour Anneal at 100 Hours at 850 0 C (110OX).
850 0 C (2400X).
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SiC Filament
Intiol Filament Diameter

Titanium Matrix

Figure 11. Silicon-Carbide Interaction Figure 12. Electron Micrograph of the

With High-Purity Titanium Reaction Layer Between SiC

After a 100 Hour Anneal and High-Purity Titanium

at 850 0 C (500X). After a 100 Hour Anneal at
850 0 C (2400X).

-SiC Filament

Tungsten Core

Figure 13. Electron Micrograph of the Tungsten Core of SiC Filament After a 100 Hour

Anneal at 850"C (2400X).
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V.--

Figure 14. Titanium-Diboride Filament Interaction With High-Purity Titanium After a
100 Hour Anneal at 850°C (50OX).

I7

Molybdenum Core

TiB2 Filament

TiB Phase {0
Figure 15. Electron Micrograph of the Reaction Layer Between a TiB 2 Filament With

a High-Purity Titanium After a 100 Hour Anneal at 850 0C (3200X).
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z ~, ~ 4

(a) 9 Hours (b) 100 Hours

Figure 16. Microhardness Traces Which Show the Increase in Hardness Due to the
Filament-Matrix Interactions at 900 0C (50 Gram Load - 550X).
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Figure 20. Filament-Matrix Interaction of the Boron Filament With Ti-6A1-4V Titanium
Alloy After a 100 Hour Anneal at 850°C (250X).
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Figure 21. Arrhenius Plot of the Reaction of a SiC Filament With Ti-6A1-4V
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TABLE I

FILAMENT DATA

Diameter Cravg Eavg P 3
Filaments Mils (,) Supplier (ksi) (106 psi) (gm/cm)

B 4.1 (104) Texaco 450 55 2.37

SiC 3.6 ( 92) GTC 360 61 3.5

TiB2  2.6 ( 66) GTC 140 65 5.2

TABLE II

SPECTROGRAPHIC ANALYSIS OF TITANIUM SHEET

Iodide Commercial Alloy
Titanium Titanium Ti- 6A1-4V

Impurities (PPM) (PPM) (PPM)

Al 140 170 (5.9%*)
V ND ND (3.8%*)
Mg 20 20 20
Mn 140 840 250
Sn 20 170 35
Pb 20 20 20
Fe 20 1700 1700
Ni 20 80 20
Cu 90 170 70
Na ND ND 1700
Cr 20 170 20
W 20 330 200
Ca 170 170 200
Mo 20 20 200

* Atomic Absorption
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