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FOREWORD

This report was prepared by the General Applied Science
Laboratories, Inc., Westbury, New York, a wholly owned sub-
sid~ary of The Marquardt Corporation, on Contract F-33(615)-
67-C-1084, Task 3012, "Investigation of the Low Speed Fixed
Geometry Scramjet." The work was administered under the
direction of the Air Force Aero Propulsion Laboratory, Air
Force Systems Command. Mr. R. Canny, (APRP) was the project
engineer for the laboratory.

The studies presented began in September 1966 and were
concluded in August 1967. Mr. James Johnson was responsible
for the technical direction of this program at GASL. The
technical efforts were performed by the following scientists;
Messrs. M. Abbett and G. Bleich for the two-dimensional flow
analysis and programming, and Drs. S. Angelucci and C. Ruger
for the thiee-dimensional flow analysis and programming.

This report, GASL TR-667, was submitted November 1967.
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ABSTPACT

Computer progrjns have been written to aid the design and
analysis of two-dimensional, axisymmetric, and three-dimensional
supersonic inlets. This report presents the fundamental analytic
techniques, the use and operation of the computer programs, and
the application to the design of supersonic inlets. The programs
are written in Fortran IV for use on the 7094 high speed digital
computer.

SThe two-dimensional and axisymmetric prog'rams presented
herein are written for generalized inviscid supersonic internal
flow problems with uniform or non-uniform inlet entry conditions

* for entropy, total enthalpy, pressure, Mach number and flow
direction. The program capabilities include the intersections
and reflections of both family waves, the formation of shocks or

4 expansions at corners, the formation of shocks by coalescence of
waves from smooth walls, and the formation of contact discon-
tinuities.

The three-dimensional programs presented herein are written
for the calculation of the inviscid supersonic flow fields associ-
ated with basic elements of three-dimensional supersonic inlets.

The methods utilized exact and linearized supersonic flow theory
with engineering approximations to yield solutions to the following
unit problems; delta wing flow, conical shock interacting with a
plane surface, plane shock interacting with a conical surface, and
the interaction of two different conical flow fields.
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NO•E...CLATt.RE FOR SECTION IV

a speed of sound, a2 = v P/p

b VM 2 -1 /pu 2

cp, c coefficients of specific heat

G ~ (T-X)r
p v

y

h specific static enthalpy, h = -'Y p/o
VY-1

H specific total enthalpy, 11 = h + q 2 /2

M Mach number, M = q/a

p pressure

q magnitude of the velocity vector, q2 = u2 + v2

R gas constant

S entropy

u velocity component in x direction

v velocity component in y direction

x abscissa (horizontal axis = z in cylindrical polar
frame (z, r, 8) for axisymmetric flow)

y ordinate (vertical axis = 4 in cylindrical polar
frame for axisymmetric flow)

angle flow turns when going through oblique shock

V c p/Cv, the ratio of specific heats

characteristic slope

viscosity (=0 in this report

xiv
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V Prandtl-Meyer turning angle (see equation 15)

p density

a angle oblique shock makes with incident flow

T streamline slope, T = v/u

A angle velocity vector makes with x axis

Subscripts

x ax

1, 2 conditions in front of and behind shock, respectively

A,B,C,etc. variable is to be evaluated at the indicated point

Superscripts

j 0 for two-dimensional flow
1 for axisymmetric flow

averaged quantity, also indicates a line between two
points

I, II down running and up running characteristic,
respectively

The following is standard notation on the fi ures

down running characteristic

--- up running characteristic

_ _ _oblique shock

__contact discontinuity (interface, slip stream)
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INTRODUCTION

The use of three-dimensional flow fields in the design of
supersonic and hypersonic inlets has been under experimental
and analytical investigation at GASL for several years under
Air Force sponsorship as reported in References 1 through 6.
Three-dimensional designs can be used for either fixed or vari-
able geometry inlet configurations over a wide flight Mach number
range to obtain, for example, high inleft contraction ratios and
capture mass flows, to prevent boundary layer separation, and to
reduce heating loads to the inlet structure. General use of
three-dimensional designs however, has been limited by the devel-
opment of practical analytic techniques. in most cases where
three-dimensional analytic techniques are available, they are
either so highly restricted, or complicated and time consuming,
that they are impractical for use in a typical inlet design effort.

Practical methods Z-- the design and analysis of three-
dimensional supersonic inlets have been under development at
GASL for the Air Force Aero Propulsion Laboratory as part of
the overall investigations of the low speed range supersonic
combustion ramjet (SCRAMJET). These methods combine exact
and linearized three-dimensional theory with engineering ap-
proximations to yield solutions to unit problems which are basic
elements of three-dimensional supersonic internal flow fields,
i.e., delta wing flow, coniual shock interacting with a plane
surface, plane shock interacting with a conical surface, and
the interaction of two different conical flow fields. A com-
bination of these unit problems can be used to design and
analyze a large variety of supersonic and hypersonic three-

F' dimensional inlets.

These methods for two and three dimensional inlet design
v and analysis,have been programmed in Fortran IV for use on

the IBM 7094 digital computer. This report presents the com-
plete description of the fundamental analysis, the program use
and operation, and the application to the design of three and
two dimensional supersonic inlets. This work was performed
for the Wright-Patterson Air Force Base Aero Propulsion Labora-
tory under contract F33(615)-67-C-1084.
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PROGRAM OBJECTIVES AND APPROACH

The overall objective of this effort was to generate digital
computer programs for aid in the design and analysis of two and
three dimensional supersonic inlets. The analytic techniques
which form the basis of this work have been developed at GASL
during the past several years under Air Force sponsorship. The
purpose of this report is to present these fundamental analytic
techniques, the use and operation of the computer programs, and
the application to the design of supersonic inlets. The aim is
to provide a practical tool for two and three dimensional inlet
design, in addition to a detailed description of the analysis.
To this end, the following sections describe;

Section III - A discussion of the methodology used for three-
dimensional inl"t design and the use of the
computer programs in these efforts.

Section IV - A complete description of the two-dimensional
and axisymmetric internal flow field analysis
and computer programs.

Section V - A complete description of the three-dimensional
analysis and computer program elements.

It is seen then, that this report can be used as a "tDesign
Manual" to aid in three-dimensional inlet design, or as an initial
step in developing a more sophisticated or modified analysis. in
either case, it must be noted that the current work presented here
has limitations which should be the object of continuing study.
These limitations will be clear as they arise in the following
sections in this report. A summary of the overall limitations
however, is given here.

(1) Viscous effects are neglected

(2) Completely supersonic flow required

(3) Completely supersonic leading edgas required

(4) Three-dimensional computations only for unit problems.

2



III

METHODS FOR THREE-DIMENSIONAL INLET DESIGN

The detailed three-dimensional and two-dimensional analytic
techniques and computer programs will be described in the follow-
ing sections. It is necessary here, however, to describe the over-
all methodology for using these techniques before going into the
analysis.

The overall inlet design process is schematically shown
in Figure 1. It is seen that several steps are required in
the design process:

a) choice or definition of inlet design performance
characteristics

b) choice ox: definition of inlet design concept, e.g.,
two-dimensional, three-dimensional, with or without
centerbody, etc.

c) two-dimensional calculations to define essential per-
formance properties

d) three-dimensional corrections to define exact perfor-
mance propetties

e) evaluation of performance with respect to initial re-
quired performance levels

f) repeat steps (b) to (e) until required performance is

obtained.

A summary of each of the above design process steps is given

in the following discussion.17
The initial steps (a) and (b) are closely interrelated sincethe required inlet design performance characteristics generally

dictate the choice of the inlet design concept. The requirement

of fixed geometry operation over a wide Mach number range, for
example, might require a more highly three-dimensional inlet
design (with possibly one or more inlet central bodies) than a
fixed geometry inlet design for a more restricted Mach number

F
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variable geometry inlet design to attain performance goals. In

any case, these initial steps of the design process require
decisions based upon inlet design experience.

The next step (c) utilizes the two-dimensional and/or axi-

symmetric computer programs described in Section IV. This step
would rsbe the final step for a completely two-dimensional or
axisymmetric design. For the case of a three-dimensional design,
however, it forms the first step. Several overall inlet design
geometries are roughed out by the inlet designer and the computer
program provides a detailed analysis of eacb one. The overall
properties of the various inlet flow fields are then evaluated
with respect to the initial design goals and the most promising
designs are chosen for further consideration by including the
effects of three-dimensionality.

Tf e the nter of a pa e three-dimensional computer
program elements described in Section v. The basic elements of
a large variety of supersonic three-dimensional inlet flow fields
are programmed for machine calculation in this phase of the design
process. These elements as shown in Figure 2 are ouhe delta wing
flow field, the interaction of a conical shock with a plane sur-
face, the interaction of a plane shock with a conical surface•, and

the interaction of two different conical shocks. The techniques
used for these machine computations however, can also be used
manually to compute the flow field of almost any supersonic three-

dimensional configuration. The level of three dimensionality
.- designed into the inlet geometry in this step of course depends
i ~again upon the initial design goals. The overall procedure here
S~again is to investigate various geometries until the desired

performance conditions are achieved. However, here the overall
S~configuration Is known from the two-dimensional and axisyn.Lnetric

analysis of step (c). The procedures in this step are to incor-
[ porate, for example, various leading edge sweep angles, cone

angles, etc.

An inlet configuration is now defined and analyzed. Step (e)
calls for an evaluation of the resulting performance based upon
the initial design performance goals. At this point, either these
goals are satisfied or steps (c) and (d) are repeated. In this
manner then the required inlet performance characteristics are

" " achieved.

SIi

[.I



S• II

/ / II

I" I / '1'

I- , -r

m/

n r1

o- (

* , / /

0 0

tnt

Lii

II.
01

~1

2



IV

TWO-DIMENSIONAL AND AXISYMMETRIC SUPERSONIC INTERNAL
FLOW COMPUTER PROGRAM

A. Summary dind Introduction

A computer program has been written for the computation
of two-dimensional and axisymmetric inviscid supersonic internal
flows for configurations typical of supersonic and hypersonic
inlets. The program is designed for use either for the d-sign
and analysis of completely two-dimensional or axisymmetric
inlets, or as part of the design eLfort of a three-dimensional

inlel: a, described in Section III. The program is written in
Fortran IV for use on the IBM 7094 and the CDC 6600 high speed
digital computers.

The overall computer program can be summarized as
follows:

General - Calculation of complete inviscid two-dimensional
and axisymmetric supersonic internal flow fields.

Input - Uniform or non-uniform entry conditions for

entropy, total enthalpy, pressure, Mach number
and flow direction.

Capabilities

• Intersection and reflections of waves of same
and opposite families - no limit to number.

• Formation of shocks at compression corners.

. For ation of shocks by coalesence of waves
from smooth walls.

• Formation of contact discontinuities.

- Reflection of waves from walls.

Perfect gas.

7
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Output - Fluid mechanic and thermodynamic parameters, wave
locations and contact discontinuity location at
each point of the characteristic mesh.

A complete detailed description of this computer program is
given in this section. Part B describes the types of flcws con-
sidered and summarizes the assumptions and simplifications in the
analysis and computer program. in Part C the Euler equations of
motion are presented and non-dimensionalized. In addition, the
special forms of the governing equations are given here for charac-
teristic, oblique shock, and Prandtl Meyer expansion computations.
Part D describes the manner in which the computation is performed
and gives outlines of the -,aric'us types of computations. Appendix
I gives most of the information required by the user of the program.
In Appendix _-I7 some sample calculations are presented.

A person who wishes to use the program with a minimum
amount of effort should skim Part B and Part D. He should care-
fully read, in order, Part C-a and Appendices I-III.

B. Outline of the Program

a) Type of Flows Considered

The program computes internal flows typical of
supersonic and hypersonic inlets. Included in the flow field com-
putation are weak shocks of both families, their formation at sharp
corners and by the coalesence of characteristics (envelope shocks),
the intersection of shocks of the same and opposite families, the reflec-
tion of shocks on the inlet walls, the intersection of weak shocks and
slip streams, and centered corner expansions. The gas is considered
to be an inviscid perfect gas of constant ratio of specific heats.

Since the method of characteristics is used to perform the calculation,
the flow must remain supersonic throughout. Strong shocks are not

considered.

b) General Comments - App-zoximations and Simplifications

A schematic representation of a typical inlet is given
in Figure 3. The flow impinges on the inlet at some specified angle
of autack. There may be an expansion, a shock, or neither, at the
leading edge of the lower wall and at the cowl. Due to smooth or
abrupt compressions along the two walls, shocks may form. in addition,
expansion waves may be generated by smooth or sharp expansions of
the walls. The shocks and e.-pansions will then interact in complicated
ways.

8
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Because of storage and time considerations and the
desire to keep the program as simple as possible while retaining
sufficient accuracy, various assumptions and simplifications have
been made. These are outlined here withb ti.eir justification.

1. Intersection of Two Weak Shoch. of the
Same Family

In general, such an intersection will result
in the two shocks continuing as either two shocks and a contact
di-continuity or as one shock, an expansion fan, and a contact
discontinuity (Figure 4). However, in cases of interest here
the second shock or expansion fan (0E of Figure 4) and the con-
tact disconuity (O-D) usually have a much smaller effect on the
flow field than does the primary shock (6-C). Hence, in the
program, two shocks of the same family intersecting are continued
as only one shock of that family.

2. Intersection of Two Shocks of Opposite Families

When two weak shocks of opposite families inter-
sect they will in general continue as two shocks of opposite families
and a contact discontinuity (Figure 5). In the program such an inter-
section is treated with no simplifications.

3. Intersection of a Weak Shock and a Contact
Discontinuity

Ordinarily such an intersection will continue
as a shock, a centered expansion, and a contact discontinuity
(Figure 6). Presently, the contact discontinuity is dropped when
it intersects an oblique shock.

4. Formation of Attached Oblique Shocks
By Discontinuous Compression

This is done in a straightforward fashion
(Figure 7) with no simplifying assumptions.

5. Reflection of Oblique Shocks from Walls

This is done in a staightforward fashion, the
shock being reflected with strength such that the reflected shock
has a turning angle which is minus that of the incident shock.

(Figure 8).

10
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6. Formation of Detached Oblique Shocks
By Coalescence of Characteristics

After each point of the characteristic mesh
has been computed, tests are made to detect the crossing of character-
istics of the same family, indicating the formation of an oblique
shock. When such a crossing occurs, a shock is entered in the flow
field at that point and its subsequent development is followed.
(Figure 9)

7. Centered Expansions Due to Discontinuous
Expansion Corners

These are performed by dividing the turning angle
of the corner into a finite number of segments and then making
regular characteristic computations. (Figure 10)

8. Reflection of an Oblique Shock from the Axis
of Symmetry

In the case of axisymmetric flow, the possible
flow configurations arising when an oblique shock reflects on the
axis of symmetry, are several and complicated. There is no provision
in the program to treat this problem. One can expect the program
to usually blow up as an oblique shock approaches the symmetry axis.
However, it may be that the shock will reflect, as from a wall, away
from the symmetry axis.

9. Compression Corner on the Symmetry Axis in
Axisymmetric Flow

The only compression corner allowed on the
symmetry axis in axisymmetric flow is at the leading edge of the
lower wall. In addition, the initial data line must go through
the leading edge of the lowe. wall. (See Part D-a)

10. Viscous Effects

At present there is no consideration of viscous
effects in the program.

C. Analysis

a) Non-Dimensionalization and General Equations of Motion

The dimensional Euler equations of motion for the steady,
inviscid, nonisentropic flow of a perfect gas of constant specific heat
ratio, y. are

continuity (p yJ u)x + (p yJ v) = 0 (1)

momentum puu- + pvu- + p- = 0 (2a)x • y x
v + ý + =0 (2b)

energy uS- + vS- = 0 (3)
x y

14
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where x and y are axes of a right handed cartesian frame
(cylindrical frame) with velocity components u and v re-
spectively. The x axis is positive in the general direction
of the incident flow. j=0 for two dimensional flow and j=l
for ayisymmetrical flow, p is the density, p the pressure, S
the entropy, and the bars indicate dimensional quantities.
Now we divide all pressures by reference pressure Po
densities by p-, temperatures by T , lengths by o , veloc-
ities by /pR To where R is the gas

constant and p o - - and we subvract Sfrom al en-
tropie- --, -'> "ide the difference by cv. Then, in non-
dimension- f" itities p, p, u, v, x, y, S, the equations

are, (w , " o p = p/P, S = (S- I/CF, etc.

(Puy3) + (pvy3) = 0 (4)
x y

puu + vuy + Px 0 (5a)

puv + pvvy + py =0 (5b)

uS + vS =0 (b)
x y

where

S = in (p) - y In (p) (7)

The user of this program is free to pick any reference
length, i , he chooses. If the incident flow is uniform and the
simplifieS input is used (see Appendix I), the reference
pressure and temperature are chosen to be the free stream (i.e.
incident) static pressure and temperature. The non-dimensional
specific static enthalpy is given by

h =__P- (8)

and the specific total enthalpy by

2 2 2 2
h +u +v =a (9)

2 v-+ 2
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where q ( u + v ) is the modulus of the velocity and a (=Pp/ )
is the square or the speed of sound.

Since the flow is inviscid and steady, H and S are con-
stant along a streamline. When there are shocks, the entropy, S,
suffers a jump increase.

For completeness, the remaining parts of this section will
present well known special forms of the governing equations to be
used when we make certain computations, e.g., characteristic compu-
tations. All variables in the equations are non-dimensional. Those
readers wishing more detailed explanations of the mathematical
character of supersonic, inviscid,perfect gas flows should look in
any standard text book on gas dynamics, e.g., References 7,8,9.

b) Characteristic Equations

Along characteristic, or Mach, lines, in the absence
of shock waves, the Euler equations can be combined so that we have
only total derivatives of certain quantities in the direction of the
characteristic line. It is well known that for our cases thecharacteristic directions are given by

-~-uv - a u2 2 (10a)
u 2 2 2

X II dy Uv + a / 2 +v -a2 a(lb)0b)
dx 2 2 2

Skl y v+ +v T (10b)

dx u

Henceforth, I will be referred to as a down-running characteristic

and XII as an up-running characteristic. Along XIIl the Euler
" equations can be combined to give

dx b dx = L( .- A'y I T] di (11)

F,

17

1 ...i

f-I



where

b = JM2 _ i /pu 2 and M (=c/A) is the Mach number.

Along XI, the streamline, we have

dS = dH = 0 (no snocks) (12)

We can write equations (lla) in differential form as:

AT - bip = T .j Ax = G Ax -j (13a)

along a down running characteristic and

( CT T)
AT + bAp Ax -j = G Ax -j (13b)y

along an up running characteristic.

c) Oblique Shocks - Rankine Hugoniot Equations

Let subscript 1 refer to the conditions in front of
(upstream) ti'e shock and subscript 2 refer to the conditions behind
(downstream) the shock and let a be the acute angle the incident
flow makes with the shock wave.

Oblique Shock

Diffracted Flow

Incident Flow

18



A is the turning angle of the flow. The Rankine Hugoniot equations
are

-2 = M I (14a)

p1 +

P2 (y+l) p 2 + (v-I) Pl-- = -(14b)
P1  (v+l) p1 + (Y-l) P2

tan 2 6=tan 2 (14c)

(tan a + p2 /P l )

2 2
2(-i) M sin r + 2

2 sin2 - (14d)

2y M( i-) (v+l) M2 sin2 a1 1S S +In - in 1 (14e)'S2 = 1+i .... •i - 2 2i?

I + [(v-l) M sin a+ 2

H H2 1 (14f)

tan 1 (T 2 ) = tan- (TI + 6 (14g)
12

"= (H2  - ) (14h)v-i 
P2

d) P.andtl-Meyer Expansion

The Prandtl-Meyer relation is

S=-/V = tan-I v-i (M2 _I)- tan 1, 4+1- (15)

where v is the angle turned from Mach =1 to reach the Mach number

19
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M. If we have a corner with other than sonic velocity just prior
to the corner, then denoting the conditiL.ns just prior to the ex-a pansion by subscript 1 and just after the expansion by subscript 2,
we have

Flow Direction

e 1 -e 2 = 2 -% i (1 6 a )

4 2 2 fl (16b)

v-~1 M
P2 1 2 2

-2 2 1ý 
(16c)

1l +T-1 M21

H = H1 (16d)

S2 = Si (16e)

T 2 tan 02 (16f)

q 2 = p2M 2  (16g)
22
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D. The Program - General Outline

a) Initial Conditions - Boundary Conditions -

Coordinate Systems

As indicated previously, the purpose of the program
is to compute supersonic and hypersonic inviscid inlet flows. The
coordinate system and body geometry are represented schematically
in Figure 11. The x axis is aligned in the general direction of
the free steam flow (it is the axis of symmetry in the case of axi-
symmetric flow) but need not be exactly parallel to the incident
flow. It is positive in the general direction of the incident flow.
The y axis is normal to the x axis and is positive in the direction
determined by rotating the positive x axis 900 counterclockwise. It
corresponds to the radial axis in a cylindrical (x,r, 8) frame in
the case of axisymmetric flow. It is assumed that the tips of both
the cowl and the lower wall are pointed, and of small enough included
angle relative to the incident flow so that any tip shocks are
attached and there are no regions of subsonic flow. Furthermore,
for axisymmetric flow with a lower leading edge on the axis of sym-
metry, it is assumed that, in the coordinate system used, the x
coordinate of the tip of the cowl is greater than or equal to the
x coordinate of the tip of the lower wall.

The line'parallel'to the y axis through the tip of
the lower wall, TA"', is considered to be the "data line" of the
incident flow (see Appendix I ).

The geometry of the upper and lower walls must be
specified.

b) Order of Progression of The Computation

1. in The Absence of Shocks

The computation proceeds along down running
characteristics issuing either from points on the initial data
line, (AA', Figurell) or from the upper wall. Referring to Figure
12, let us follow the outline of a typical computation, forgetting
for the moment the possibility of shocks or centered expansions.
Mesh points are indicated by circles and the flow is completely
specified initially along the initial data line, AA'. The flow
field at point C can be computed for the known conditions at
points A and B (see Part D-c-l), where C is the point of inter-
section of the up running characteri-Aic from A and the down
running characteristic from B. The down running characteristic
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from C intersects the wall at D, and the flow conditions at D
can then be obtained from the known conditions at C and the
specified wall slope at D. '(See D-c-2)

The computation proceeds in this manner
working along down running characteristics from the initial
data line to the bottom wall. Eventually, however, one of
the down running characteristics will cross the cowl as illus-
trated in Figure 13a. C, the point formed by the intersection
of the characteristics from D and Bis computed as an ordinary
point. Then the conditions at E, the tip of the cowl, are
obtained by interpolation between points A, B, C, and D. The
computation is continued by working along the down running
characteristic issuing from E (forget for the moment the
possibility of a shock at E), Figure 13b. When that character-
istic is completed, the intersection, with the upper wall of the
up running characteristic FG, from point F, can be determined.
The flow conditions at G can then be computed using the known
conditions at F and the specified wall slope at G. Then the
computation can be continued in a normal fashion working along
the down running characteristic issuing from G.

In the absence of shocks and centered
corner expansions, the entire inlet flow field could be com-
puted in this fashion. In actual fact however, there will
often be not only one, but several oblique shocks (of either
or both families) which complicate matters somewhat.

2. In the Presence of Attached Shocks

Although up and down running characteristics
have equal stature in the mathematical theory of supersonic in-
viscid flow, the situation is somewhat different in the program.
"That is to say, since the computation proceeds along down running
characteristics, we have implicitly created a favoritism between
the characteristics of opposite families. This difference is

F important when shocks and contact discontinuities are present.

This unequal treatment of characteristics
of different families does not affect the basic order of the
computation when up running shocks are present. (See Figure 14)

2
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If there are such shocks, the intersection of each shock with
each down running characteristic defines a mesh point (actually
two, one in front of and one behind the shock, see Part D-e-l).

he on•ly ,oplicati-on in the program is that, as it proceeds

along a down running characteristic, the program must be instruc-
ted to look for the intersection of the down running character-
istic with any up running shocks from the previous down running
characteristics. When such an intersection occurs, a special com-
putation must be made.

However, the situation is not quite so simple
when there are down running shocks. For, the down running char-
acteristics down stream of the shock terminate at the shock (see
Figure 15), i.e. characteristics terminate at a shock of the same
family. Thus, as the program proceeds along a down running
characteristic, it must make a special provision upon encountering
a down running shock since the down running characteristic does
not continue on the other side (up stream) of the shock.

The proceedure that is followed in such cases
is illustrated in Figure 16 for the case of a compression corner
on the upper wall. When such a corner is detected, the con-
ditions upstream of the shock are obtained by a regular charp-ter-
istic wall computation between the corner and A, the data at A
being computed by interpolation on the previous down running
characteristic. The program then computes the down running
characteristic, BC, that would issue from B if no compressive

* corner were present. All the data computed on characteristics
upstream of and including BC is referred to as region X and is
stored for later use by the program.

With the specified turning angle and the con-
ditions in front of the shock at B, the shock angle and the con-
ditions behind the shock can be determined (see Part C-c). The
shock will always have a slope less than the local slope of
the down running characteristics in region I, hence, the shock
will always be in region I. The intersection, E, of the shock
and the next up running characteristic of region I is determined
and the conditions upstream of the shock are determined by inter-
polation between points, 0 andP. In region I+l, the region behind
the shock, FE is the down running characteristic from the upper wall
to the point E. Tt is assumed that the conditions at F are equal
to the conditions behind the shock at B. Then, the flow behind the

L shock and the shock slope at E can be determined by simultaneously
solving the compatibility equation (Eq. 13) along -E and the Rankine-
Hugoniot equations across the shock.
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With the known conditions behind the shock
at E, the intersection, Hof the up running characteristic front
E with the upper wall can be determined. The flow field at H
can be determined by solving the compatibility equation (13b)
along EH using the known wall slope at H. J

4ow we work along the down running character-
istic, HJ, in region 141. If the shock, BD, crosses the next up
running characteristic of region 1 at a point K before it inter-
sects T-'., then the conditions in front of the shock at K are
determined by interpolation in the characteristic mesh of region

I. By interpolation, the point M, on EH, whose down running
characterisgic passes through K, and the data at M are determined.
The flow behind the shock at K is determined by simultaneously

solvina the compatibility equation along _im with the Rankine
Hugoniot jump conditions across the shock at K.

Then the location and conditions at L are
determined by a regular characteristic computation between H and
K. This process continues untUl the down running characteristic,
HJ, intersects the shock, BD, at a point J. The conditions in
front of the shock at J are determined by interpolation as above;
the conditions behind by using the compatibility equation along
LJ and the jump conditions at J.

SThe result is that the flow field is divided
into a number of regions, or strips, the boundaries of which are
down running shocks.

3. In the Prescnce of Detached Shocks

it may happen that shocks are formed by the
coalesence of compression waves due to a smooth turning of either
of the walls (see Part D-f-2). The formation of up running shocks
by such a process in no way affects the progression of the com-
putation on the cross scale now under discussion.

However, if a down running shock is formed by
the coalescence of compression waves, we again divide the flow
field into two strips as illustrated in Figure 17.
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4. The Presence of Centered Expansions on the U

e e r l c c -, S2 -_ SiChangen jhe pro-

gressioh of the computation (see Part D-d).

c) Computation of Regular Points

Now that we have indicated the gross order of pro-
gression of the computer program, we can look into the various
specific computations in a little more detail.

1. Interior Flow Field Points

As mentioned in Part I of thi!. section, regular
interior points are determined by the intersection of a down running
characteristic with the up running characteristic issuing from a
"mesh point on the previous down running characteristic. This is
illustrated in Figure 18 t:-here C is the point to be computed. All
of the points, including :, on the (I-1) st down running character-
istic have been comput&e, as have all the points through A on the
i th characteristic. Point C is the next point to be computed.

First Equations 13a and 13b are written in
finite difference form:

(TC - T -bAC (P - P) = GAC (xc -x A) j (17a)

(T -T)+ (p -p G (x X) j (17b)
C B BC C B BC C B

,~ where the barred quantities are averaged quantities on the
appropriate characteristic. Equations 17a and 17b are solved

simultaneously to give

AC A BC PB C A + TB GAC C A' BC C-XB~ j B

PC= - (1a)
bAC b BC

T C TA +bAC (P +A) +G I (x x) b)A-CC P AC (x c-Aj
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In addition,we have the following definitions and equations
available:

ln(pC)-Sc
SC =ln pc y ln PC or PC (9a)

2

HC =-1 pc/pc + 2 or q - "2(H- ZjS) (19b)

2
q2  2 +2 o 2  C (19c)" q c = U+Vc;ouC 1+T2

c

v V

T=-; orvc = UcTc (19d)

Now, it is fairly common to perform a regular computation in some-
what the following form.

1) Get the location of C by the intersection
of characteristics from A and B.

2) Compute p and T using (18a) and (18b)
where, in the first pass, the averaged quantities are taken as those
at A or B, whichever is appropriate.

3) Project tbe streamline of slope T back
from C to intersect the line AB c- inecting A and B (riot shown in
Figure 18).

4) Since S and H are constant along streamlines
(in the absence of shocks) obtain HC and S by linear interpolation
along AD.

5) Use equations 19 to determine Uc, v, p
from the known PC' TC' SC' HC.

I6)' Compute the coefficients bC8 G , Gc etc.,

average the coefficients along each characteristic, and iterate
until the characteristic slopes at C dc not change within' some specified
tolerance.
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However, if one proceeds in this manner, and if
the flow is nonisentropic, he will find that the linear inter-
polation in step 4 introduces errors that can become quite large
(Reference 4). These errors are quite evident when, after computing
a number of characteristics, one checks the mass flow, where the
error can exceed 40%.

A much better way of proceeding is to set up a
mass flow-entropy, enthalpy table. The fact that S anJ H are con-
stant along streamlines (and that we can compute the change in S
through a shock) means that we can set up functions defined point-
wise for S and H with mass flow as independent variable. Then we
replace steps4-5 by another process.

4-5 a) guess SC and HC, compute p., u c vc"

b) compute the mass flow through AC,
subtract it from the known mass flow
below A to get the mass flow at C.

c) go to the mass flow - S, H table and
obtain SC, HC

d) compare with the guessed values of Sc
and H and iterate until convergence.C

Then continue with 6) in the indicated manner.

The result is a very accurate computation with the
error in the integrated mass flow often less than 1% in the compu-
tation of two-dimensional flows. Of course, the mass flow-entropy
table must be modified when there are shocks.

The dependence of S and H on mass flow are
determined initially from the known conditions on the initial data
line.

This technique is used in the present program.

The increment of mass flow across AC is given by

-sin 1tan1  - tan- 1 I ] A area (20)
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where the barred quantities are averaqed between A and C and Aarea
is the area between A and C, given by,

I 2 2'
Aarea = I (x -x ) + (y -Y ) for 2-dim. flow (j=0) (21a)

C A C A

2 2
area = (1 + 1 (y- y ) for axi-sym. flow (j=l) (21b)

A C

2. Boundary Points

Boundary points are computed in the same manner
as interior points, except for a few simplifications. First, since in an
entirely inviscid flow the boundaries are streamlines, we know a priori
what S and H are along the boundary (the case of shocks is explained
in Part D-0, and we need not do the mass flow - S, H iteration required
at interior points. In addition, T_ = v /u = dy/dx on the boundaries" •5 .C c .
is a specified function of x. To compute a point on the lower wall we
"use Equation 17a along the down running characteristic to get p . To. C*
compute a point on the upper wall we use 17b along an up running
characteristic. Naturally, erations are made in averaging coefficients
"when the equations are solvw.

3. Centerli . Points

When the flow is axisymmetric, it may happen that
the lower wall ends at the dxis of symmetry and then the lower wall
"computation must be replaced by a symmetry coydition. The only effect
this has, in the absence of shocks, is that G and G", which take the
i-determinate form 0/0 at y = 0, must be evaluated by L'HospitaI's rule.

G T- 1 =1> dy (22GI = II I = I(¶" y=0 y y=0 dy y=0 (2

The program requires a cusp at the trailing edge
"of the lower wall.

There is no provision to compute the reflection of
shocks at the axis of symmetry.

3
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d. Centered Expansion on the Boundaries

Everytime we compute the location of an upper or lower
boundary point, a test is made to determine whether or not there is a
corner between the current point and the last point on that boundary.
If a corner has been detected, the next operation is to find out
whether or not it is an expansion or a compression corner. The latter
is treated in Part D-f.

If it is an expansion corner, the conditions just up-
stream of the corner are first determined (see Figure 19). Then the
total turning angle , 69, of the flow is determined. This turning
angle is divided into a number of increments, n,of size 8(AO)=A8/n,
and the conditions corresponding to the flow which has turned from
the state just prior to the corner, say e, to e8" + m 8 (Ae), m=l,n,
are determined. This is done by determining the change in Mach number
to go from e to 0 + m 8 (AO) from Equation 15). Then the rest of the
conditions can be determined by using Equation 16.

If the expansion is on the upper boundary, a new down
running characteristic is put in the mesh for each value of m, and the
regular upper boundary point computation is bypassed until all of the
down running characteristics issuing from the corner have been computed
(see Figure 19a).

If the expansion is on the lower wall, a number, n+l,
of mesh points is put at the corner and the current down running
characteristic is finished by making a series of regular interior
point computations as indicated in Figure 19b.

e. Computation of Interior Shock Points

I1. Up Running Shock Points

In Figure 20, AB is a down running characteristic
along which we know everything, including the location and slope of

any up running shocks crossing AB. Such a characteristic shock inter-

section is designated by two points (H,I of Figure 20) which have
the same physical coordinates, one having the properties of the flow
just in front of the shock and the other properties just behind the

shock. We want to compute CD5, the next down running characteristic.
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Supposing the shock. %.' L '4' '* S up runni~ng
shock to cross CD, all points through E on CD can be computed as
ordinary points. As each such point is computed, we test to see if
the down characteristic and the shock intersect before we can com-
pute any other regular points. When such an intersection occurs,
we locate it (M in Figure 20) by intersecting the down characteristic
EM from E, the last good regular point, with the up characteristic,

m,from F*, an interpolated point on AB. The conditions at M are
determined by a regular characteristic computation between F* and E.

Now we must determine the new shock slope at M
and the conditions behind the shock at N. To do this, a point J*
on A is found by interpolation such that the up running character-
istic,J*N,from J, intersects the shock at N. Then the compatibility
equation (131) along J*N is solved simultaneously with the Rankine
Hugniot conditions across the shock to determine everything including
the shock slpe, at N. In outline, the process of solution is:

1) guess a, the shock slope at M-
2

2) compute, p, p, T, M at N from Rankine
Hugniot equations (14) and the known
conditions at M,

3) compute p', at N from the known conditions
at J* using the compatibility equation
(17b) along J*N and the T from 2, above,

4) compare p' and p; if they do not agree,
guess another value of a and repeat the
process until convergence.

When the iteration has converged, an additional
test is made cn PPM". If an expansion has caused the shock to
become so weak that, within the numerical accuracy of the computation,
the shock no longer has finite strength, it is desirable to eliminate
it from the flow field. Thus if PNPM 1 1, we drop the shock.

2. Down Running Shock Points

The intersection of a down running characterist.c
and a down running rhock were outlined in Part D-b-2, although
the manner in which the iteration is carried out was not given. The
iteration is performed exactly as in the case of a down character-
istic up shock intersection detailed in Part D-e-l, except that the
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compatibility equation is 17a written along a down running character-
i-stic %fae Figur 16 and Part ---b-2). There i presently no provision
to drop a down shock whic" has become very weak. This should not cause
any trouble in the use of the program.

f. Ho.: Are Shocks Started?

Shocks may arise in two fashnions, differing only in their
smoothness. There may be sharp compressiý,e corners in the flow field
which will give rise to attached oblique shocks (Figure 7) (the case of
strong shocks is not considered here). Or, a continuous smooth compres-
sion may coalesce into a shock as illustrated in Figure 9.

1. Formation of Attached Oblique Shocks by Sharp Corners

a) Lower Boundary - When a corner is encountered on
the lower boundary, the conditions just in front of the shock are found
by an ordinary lower boundary computation (Part D-c-2) along MA of
Figure 21 where M is an interpolated point. The turning angle of the
flow is specified and the conditions behind the shock at B and the shock
slope at 1 (A,B) arl completely determined from Equations 14 where
6 = tan B- tan T " The intersection of the shock with the down running
characteristic (E oJ Figure 21) iJs found and the conditions in front of
the shock are determined by a regular characteristic compuation between
G and H where G is an interpolated point on the previous down character-
istic and H is the last computed point in front of the shock on the
current characteristic. C is the point on the wall behind the shcck
whose up running characteristic intersects the shock at (E,F). The
conditions at C are assumed to equal those at B. A regular shock com-
putation between E, F, and C is then performed (see Part D-e) determin-
ing the conditions at F and the slope of the shock at (E,F). Then D
is computed as a regular boundary point.

b) Upper Boundary - The computation of the for-
mation of shocks on the upper boundary has been outlined in Part D-b-2
except that no indication was given of the equations used to determine
the conditions behind the shock. However, the equations are those in-
dicated in the preceeding paragraph and there is no need to duplicate
here a description of the computational procedure outlined in
Parts D-b-2 and D-f-l.

2. Shocks Formed by Coalescence of Smooth Compressions

The formation of oblique shocks by the coalescence
of a smooth compression is manifested numerically by the crossing of
characteristics of the same family as illustrated in Figure 9 for a
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compression from the lower wall. In the program such shocki are
detected by testing each regularly computed mesh point to see if
there has been a crossing of either characteristic family. In
such an instance a shock of that family J • initiated.

g. Reflection of Oblique Shocks at the Walls

1. Up Running Shock Reflected at the Upper Wall

The reflection of an up running shock at the
upper wall is illustrated in Figure 22. It is easy to detect such
a reflection since the counter indicating the mesh point of the
shock on the down running characteristic approaches one (1) as the
shock approaches the boundary. When such a reflection occurs, we
proceed in a manner similar to that used when we have a sharp corn-
pressive corner on the upper wall. Referring to Figure 22, AB is
assumed to have been completely computed. The location, (C,D,F) of
the intersection is determined and the conditions at C in front of
the incident shock are determined by a regular upper wall computation
(H is an interplated point on A Then the slope of the incident
shock at the point of intersection and the conditions at D (behind
the incident shock but in front of the reflected shock) are deter-
mined by a regular up shock-down characteristic computation (Part
D-e-l). The characteristic DE_ is then completed in the usual manner.

Now since the up shock reflects as a down shock,
tb-i latter will separate the flow field into two strips, say the I'th
s -p in front of the reflected shock and the (I+l) st strip behind
it The incident shock turns the flow toward the wall, and we can
think of there being an effective compressive corner at the point
of reflection which turns the flow from its dircction at D, betweenr
the two shocks, to the direction parallel to the wall at F, behind
the reflected shock. Thus, after DE is computed the reflection is
treated exactly as a sharp compressive corner (see Part D-f-*-b).

2. Down Running Shock Reflected at the Lower wall

The configuration arising when a down running shock
reflects at the lower wall is illustrate& in Figure 23. Whilc working

Salong the down running characteristic, DE1, i . the I'th strip, tests
are made to see if the characteristic intersects the lower wall before
it intersects the down shock, G7, separating the I'th and (I-l)st
strips. When this happens, the point of intersection (A,B,C) of the
shock with the wall is determined. Thne conditions at A are determined

e by interpolating on the (I-l)st strip. The conditions at B are
determined by making a regular down shock computation as previously
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outlined. The incident shock turns the flow toward the wall at B,
between the two shocks. The slope of the reflected shock and the
flow at C is then determined by requiring the known flow at D to turn
back parallel to the wall at C. By extrapolating the reflected shock
we find E, the last good computed point on DEF. By a procedure
identical with the case of a sharp compressive corner on the lower
wall (Part D-f-l) the rest of DE- is recomputed as indicated in the
figure.

h. Intersection of Shocks of the Same Family

In general, such an intersection will be continued as
a shock, a contact discontinuity, and a reflected expansion or shock
as is illustrated in Figure 4. We neglect the contact discontinuity
and reflected expansion or shock because they should be weak compared
to the shock OC.

i. Intersection of Shocks of Opposite Family

This situation is illustrated in Figure 24. Such an
intersection will result in the diffraction of the two incident shocks
and the creation of a contact discontinuity along which the pressure
and velocity direction are continuous. While working along the down
characteristic N in the Ith strip, tests are made to determine whether
or not the down shock COB separati'ng the two strips intersects an up
shock of the (I-l)st strip. When this happens, the p~iht of inter-
section, 0, is determined. The conditions at 0 (in front of both
intersecting shocks) are obtained by interpolation on the (I-l)st
strip. The slopes at 0 of the two incident shocks and the conditions
at E and F are then determined, the slopes being assumed equal to
the slope at the nearest previous shock point and the conditions at E

* and F being then computed directly using the Rankine Hugoniot rela-
tions.

The slope of the diffracted up shock, O-K, is then
guessed and the conditions at G are determined, including T . Then
the slope of the diffracted down shock, O-B, is determined w~ich gives
TH-TG. Then p and p are compared and, if they disagree, the slope
of 'M is changed an an iterationis performed. Then the intersection,

SK, of the down characteristic, AB, with the diffracted up shock, OK,
is determined as are the other intersections indicated in the figure.
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[ The next down running characteristic in the Ith strip
is then made in the normal fashion.K j. Intersection of Shocks with Contact Discontinuities

The situation which arises in this case is depicted
in Figure 6 where it is seen that the intersecting shock and contact
discontinuity are diffracted at the point of intersection with a
weak centered expansion often arising at the point of intersection, 0.

Currently, contact discontinuities are dropped from
the computation upon intersecting a shock.

I.I .
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THREE-DIMENSIONAL SUPERSONIC FLOW COMPUTER PROGRAM ELEM'NTS

A. Summary and Introduction

Computer programs have been written for machine com-
putation of the basic flow elements which compose a large variety
of three-dimensional supersonic inlet flow fields. A combin-
ation of these unit problems can be used to design and analyze
three-dimensional inlets as described in Section III. The pro-
grams are written in Fortran 1V for use on the IBM 7094 high
speed digital computer.

.Te overall program can be summarized as follows:

General - Computer calculation of the basic elements
of three-dimensional supersonic inlet flow
fields

• Plane shock - conical body
Conical s.-ock - plane body

• • conical shock-conical shock
i • Delta wing

Input -Uniform free stream conditions
S• Supersonic leading edges

Any combination of Mach number, body
surface angle and leading edge sweep anglei • Perfect gas

Output • Aerodynamic flow properties along the axis
of symmetry of the locus of the three-
dimensional wave intersections

• Aerodynamic properties, incident and re-
flected wave angles and locations,
immediately behind the three-dimensional
wave intersections

• Complete flow field behind intersections
calculated for plane shock - conical body
and conical shock.- plane body
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Complete descriptions of these program elements are given
in this section. The prob]ms a divirId into t-wo% ;%=
Firstly, the swept wedge (Part B) which is considered co be
infinite, i.e., no end expansions. This problem requizes the
analyt'c description of a shock envelope and flow field com-
posed of a central conical region between two two-dimensional
regions which extend from the central region boundaries to the
leading edges. Secondly, for the remaining problems (Parts C,
D and E) the initial shock envelopes and flow fields are either
purely conical or two-dimensional tnd therefore =re known a
priori.

For each of the above problems, once the initial shock
envelope and the associated flow field is determined, the various
three-dimensional reflection and intersection curves are com-
puted by using linearized and two-dimensional supersonic flow
theory and working in planes normal to the tangent of the inter-
section curve. The flow • elds behind the intersection curves
are then constructed from two-dimensional characteristics with
entropy variations.

It is suggested that the reader study the analysis given
in Parts B through E before using these programs, in order to
fully understand the approximations involved. The operating in-
structions, including the input formats, definition of symbols,
and example problems, are given in the Appendic&s to this
section.

5
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B-I Swept Wedge Flow (Delta Wing) .
According to linear theory the effect of the

vertex of a supersonic swept wedge is limited to a region
inside the free-stream Mach cone from the vertex. In the
analysis presented herein the two dimensioihal leading edge
shock and flow field (the region outside this central Mach
cone) are obtained from exact oblique shock theory applied
in a plane normal to the wedge leading edge. Since an ex-
act solution for the region influenced by the vertex Mach
cone is nonexistent, linear theory is used on the base
plane of the wedge to obtain the flow properties inside
the Mach cone corresponding to the two dimensional Mach
number. This cone is assumed to divide the two- and three-
dimensional regions. Similar to the solution of Babaev 1 2

and Fowel1 1 3 for a swept flat plate at an angle of attack,
a second order curve is used as an approximation for the
shock envelope in the 3-D central region. The flow con-
ditions behind the reflection of the wedge shock from a
plaLie surface are then determined from oblique shock
theory in planes normal to the tangent of the intersection
curve.

The supersonic flow over a swept wedge as shown
schematically in Figure 28 is considered here. The sweep
angle is designated by -nd the wedge angle in the plane
of symmetry is denoted . The leading edges are
assumed to be supersonic _.,d the wedge is taken to be of
infinite span.

As is well knownI, the influence of the wedge
apex (0') is only felt inside of a Mach cone whose vertex
is at 0'. Outside of this cone the flow field behind the

leading edge shock is two-dimensional. This region may
be analyzed in the usual way by breaking the free stream
Mach number into two components, tangent and normal to
the leading edge. Oblique shock theory can then be used
in the plane normal to the leading edge to determine the
flow behind the two-dimensional portion of the shock.
The wedge angle in this normal plane is determined geo-
metrically to be

- tan- (tan A (23)

n cos Xl
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and the flow devi atinn on the wm:.dge -lrface with respect
to line O'C (Fiq.28), is

r - COS (cos X sin t) tan'

The general. s1ape oi the swepi: wedgc shock consists of
the two plane shocks attacheu& to the leading edges, as
described above, connected through t!ie cenitral region by
a curved section which is determined by the three-

dimension&•a l'.cure ,'i the i½w.. In oide'r to analyze this
central region it is necessary to make some approximations
concerning the shock shape and the distribution of the
flow properties. The local Mach cone defined by Pi,

with the vertex at 0' and an axis along O'C is assumed to

sep)arate the two-. _&ors~onal flow field from the central
portion, whi.ch is c-.nical under The assumption of linear
theory1 4 . Due to the conical nature of the central flow,
the element of the wedge shock in the vertical plane of
symmetry (x =0) is a straight line and, therefore, a
linear function of z' In a plane normal to the z' axis
the shock is assumed to be a paiabola, which is tangent
to the two-dimension,•o shocks at their points of inter-
section with the local Mach cone (Fig. 29). A parabola
is chosen since this family of curves have asymptotes,
which is desired sit,' the curve m,-t match with the
straight two - ,. The nes that the two--
dimensional sb3ct's make with the base plane of the wedge
in the y-z aric( x--y pl.anes are respectively:

t* Lan (i.an 01 co~s )(1

-Iccn (31)
tan (t in sin ') (32)

Using these r-eiatioi~s the two-dimensional shock angle in
the plane normaa• to the z' axis can be found as

6' =tan os X tan (0*-.X) + sin X1 tan (33)

The points of intersection of the two-dimensional shocks
with the local Mach cone in the plane z' = cos X are
given by x! = i cos 0 coq A Qtan(O*--X) sin 8c +

•"[t2 3 c2 1
1 tan •l-tan2( 8-)cos2 cj

' - x'j tan 0 - cos X tan (A X) (34)SYj c

z= Cos
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Since the central portion of the wedge shock is
represented by a parabola tangent to the two-dimensional
shocks in a plane z' = const. and is linear in z', the
three-dimensional shock envelope is represented by a
parabolic sheet whose equation is

x = Az' (y' + hz') (35)

The constants A and h are determined by requiring, as
stated previously, that the shocks~pass through the point
(±•,.yv3, •) and have slope tan 0' in the plane z' =
const. at ihat point. The resulting values of these
constants are

A=

tan%' cos Ac

A cos j j COSA

The constant h, as can be seen from 136), is the tangent
of the angle esw that the three-dimensional shock makes
with the z' axis in the plane of symmetry (y-z).

Linear theory has been used in the conical
region to obtain the variation of the flow properties
from their uniform values in the two-dimensional region
to the plane of symmetry. For this present work the
variations of the properties in the y direction has been
neglected. Therefore the variations used are truly valid
only on the baseplane (x-z*) of the wedge. However, for
small wedge angles (<10 degrees approximately) which are
generally used in supersonic and hypersonic inlet designs
the approximation is good for the whole region. Since
the local Mach cone has been used previously to construct
the shock and linear theory uses the free stream Mach
cone, the conical raye of linear theory must be adjusted
to fit into the local Mach cone. Thus, given the ratio
(x/z)i, which represents the slope of a conical ray .i,
the adjusted parameter used in linear theory is

(Cos 2  y sin An(7
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2z

where n = tan X M2 - I . The resulting variations of
pressure and Mach number in the conni1a! region are '

P1. P 1 + ; ½ M2 (38)
1 CO 138)

PO Pm I + ½ y M2 C
d po 1/2

nid 12 + u2

21
1i. K1

3. CPO n (39)
2 yu-rn- +tan X

where the pressure coefficients from linear theory for
the two-dimensional and conical regions are respectively,

2 tanX
qpo (M2-) (1- n2) (40)

and 1
2sin- n- I (41)

pi C po L i -/2 (41

and the lateral velocity u (x-direction) is

tan A -1 -_1 [n KU. = os-Cos_- cos (42)

The flow deviation with respect to the z' axis in the
conical region is

C
oI .

2 -tan (4

n C-(43]

(_)tan2

where c.a (Eq. 30). represents the flow deviation in the
two-dimensional region.

58



B-2 Swept Wedge Shock Reflection

A swept wedge shock reflecting from a plane
surface is considered next. The three-dimensional wedge
shock intersects a plane body along a curve which ends
in two straight lines (Fig.30), corresponding to the
intersection of the two-dimensional portions of the shock
with the plane. For the case under consideration, where
the plane body is parallel to the base plane of the wedge,
the two straight line sections are parallel to the lead-
ing edges of the wedge. The central curved portion of
the intersection curve is represented by the second order
eqpation

= [A + 2Cz. + D) 1/2 (44)

where

B = cos X (sin X + h cos X)

C = r (h sin X cos X + sin2 X- 1/2)

D = r2 sin X (h sin X - cos X) (45)

and where r is the distance between the plane and the
base of the wedge. Values of z. are obtained by in-
crementing from the value of z obtained from Eq (44)Sl=u
with x.i=0,0 i.e., z.=z +i z.

For each point on the curve the angle between
the tangent to the curve and the z axis is given by

, = tan- A(Bzi + C)X!= a (46)1 1i 1xil

When the value of X! reaches (77/2)- X, the intersection
curve becomes a straight line and the incrementation of
z. can be stopped.1

The intersection curve represents the line
along which the shock reflects from the plane body. .The
flow field between the incident and reflected shocks has
been assumed to be the same as the flow on the wedge sur-
face, i.e., no variation in the y-diiection (Fig.30). In
order to obtain the flow conditions behind the reflected
shock, it is necessary to use the oblique shock relations
in planes normal to the tangents of the intersection
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curve for earh point i. To simplify the procedure the
components of the Mach number between the incident and
reflected shocks in, the x-y-z directions are found first.

" M x cos(X - i) cos Xn sin X sinv -X

xi i'" i

M -Mii sin Xn sin(X _ * ) (47)

= M [sin X cos(x* - ) + cos X cos sin(X*-i
zi r

where the angle betwen the leading edge and the z' axis on
the wedge surface is

S* -l

X = cos (cos X sinX) (48)

Then the Mach number components normal and tangent to
the intersection curve on the plane surface are easily
found from

M = M sin X! - M, cos X
ni z. xi

(49)
M = M cos + M sin Xi

t. z, X.|
1 1 1

The total Mach number in the plane normal to the inter-
section curve is

2 2 1/2(2+ 2

1 Yi (50)

and the corresponding flow deflection is

(.
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since the flow behind the reflected shock must be
parallel to the plane body. The oblique shock relations
are also used to find the change in flow properties
across the reflected shock:

P2cM2N.; ; (h). and AS.
2 . P 2

These conditions together with the relation

M M ( (52)2t 1 t a 2/t1 i i

give the flow properties behind the reflected shock

2 (2 1/2
M = (M + M )(53)
2 2N. 2t.

1i 1

P2. P i.
P2 

(54)

2 = 2 1 (55)
n. 1 1

1

M 2 N.

a2. =a ( N) (56)
2t.

1

AS = AS 1 + AS. (57)

zlý

A1
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These relations give the flow conditions immediately be-
hind the curved portion of the intersection curve for
each point i. The point i for which the value of X(.'
reaches (v/2 - X) gives the conditions behind the two-
dimensional shock reflection.

The flow conditions in the whole region of the
plane surface behind the shock intersection can be found
by using two-dimensional characteristics which take the
variations of entropy, due to the curvature of the shock,
into account. This method has been applied to the
conical flow problems of Sections C and E and has been
presented in such a manner (separate subroutine in the
computer program), that it can easily be used in this
wedge program.

Other methods of solution for supersonic flow
over the wedge, which are more complicated than the
approximation of linear theory used here, include an
exact solution similar to the indirect method for a swept
flat plate at an angle of attack of Ref. 12. Also, the
present solutions can be improved by using three-
dimensional linear theory to give an approximation which
allows variation of the flow properties in the y-direction.
A method for determining the y-variation of the flow,
which should yield a better approximation than three-
dimensional linearized theory, is to use the conical
flow variation between the body and shock of an equiva-

• lent cone, whose surface pressure is matched to the

surface pressure of the wedge at the same free stream
Mzch number. In any case, the methods of the present
work and the analytic techniques presented above can
either be used directly in an inlet design and analysis
effort or as a starting point for additional investiga-
tions.

The program operation and example problems
F' are described completely in Appendices V and VI.

6
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C-I Impingement of a Conical Shock on a Plane Surface

The configuration examined here is the super-
sonic flow over a cone uf.half angle Yb at zero angle
of attack, in the presence of a plane surface inclined
by an angle 61 with respect to the cone axis (Fig.31).

The intersection curve of the conical shock, (6c)
produced by the cone, with the plane surface, (x', z'
plane), is represented by the second order equation

=! {(Az!2-2Bz! + C (58)

where / H
A = sin2 81 - tansy cos e1

B = r sin61 +q tan2 YcCos (59)
C = r2 - q~tan2y {

where 81 is the inclination of the plane surface to the
free stream direction and where r and q are the coordinates
of the origin 0', which is assumed to be in the y', z'
plane (Fig. 31). Values of z' are obtained by increment-
ing from the value of z= , obtained from Equation (58)
with x! = 0, i.e., z!= Zo+ i Az'

1 1 0

For each point of the intersection curve, the
angle between the tangent to the curve and the z' axis
is given by B

B-Az!
•i =tan-I I

Xt (60)

The intersection curve is cut off when Gibecomes 50 or
less in order to work on only one side of the cone. The
conical flow field of a cone at zero angle of attack is
completely defined by the values of the critical Mach
number M* and the flow direction angle 4i for each
conical ray angle y (1 5 ).The Mach number components along
and normal to a conical ray of angle v are, from Ref. 15. -

M = u/a
r

wrMt = M tan ( y - ) (61)
S~where

u =11
u M*I [l+tan( ( ]
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and
"=-- 2

a -/ ( + M* (62)
2 1 1

represent the velocity along the conical ray and the

speed of sound non-dimensionalized with respect to the
limiting velocity, respectively. The Mach number com-
ponents immediately behind the conical shock, which is
represented by the conical ray y = Vc, are found from
Eqs. (61) and (62) by setting - = yc. In order to calculate
the flow field beind the reflected shock, the oblique
shock relations are used in a plane normal to the tangent
of the intersection curve for each point i. The components
of the Mach number immediately behind the conical shock
in the x', y', z' directions are found first;

M2,x =Mrsinyc cosoi + Mt COSyc sinpi1

M2y. =Mr (siny.c cos •i cosO1 + cosyc sinO1 )

+ Mt (cosyc cos(i cosO1 - siny sin61 ) (63)
t c 1 c

M - (COS-M cosO - siny cospi sinS,)
z -Mr c c

M (cosy cos Oi sin61  + sinyc cos6l)

where

= tan ~ (xi/y!) with y! = r-z1 sine1i =tn 1 1/y 1it 1i

Then the upstream Mach number components normal and
tangent to the intersection curve on the plane surface
are found from

M2 = M2, sinG. - M2, cosO.n. 1! 1 [1 1 1
(64)

Mat. = -Mz cosi. - M2 , sinfl. (

The total Mach number and the flow deflection in the
plane normal to the intersection curve are

2 2 -
=2 (M2  + Ma 2(5

6,i = tan-1 (Msy!/Msni) (66)
1 1 i

properties across the shock as
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p

M4  (p 4 /P 2 )j ; a 4 /a 2 )i; S4
N

and the relation

M4 t = mat (a 2 /a 4 )i
t i (67)
1

the flow properties behind the reflected shock can be
found from

2 +42 ½
144 ( 4 +4t 4 (68)

1 N. t.K, 1 1i

V P4 ./p = 42i COD (69)

a 4  = f/2-fli + tan /4 NM~ /M4N
I . N (70)

6 4. 4. 62. (71)
1 1 1

2 .
S 1 [tn Ni I )

ZSS/R+ L~( 2 6 71
4.i 25ý 2 2y +

(-y~~m2sin 2 62 4.
N.
2n ( (72)

(37-1)S2 sin 4 +2
N. I
1

where pc/p., and S 2/R represent the pressure ratio and the
entropy increase acrossi the conical shock. The shock angle,
6• is referred to the plane surface.
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C-2 Characteristic Subroutine

The flow properties on the plane suriace behind
the reflection curve are.determined by using two-dimensional
chardcteristics. The flow conditions immediately behind
the reflected shock on the plane surface are calculated i

by the methods of the preceding section. Due to the
conical flow in front of the reflected shock, the properties
behind the shock vary in the y-direction. Therefore, the
flow is truly three-dimensional. However, the y-variations
are small for most cases of interest in inlet design (mb < 10
approximately) and thus a two-dimensional characteristic
calculation on the plane surface has been assumed appropriate.

On the plane surface, whose coordinates are
redefined as p,O the intersection curve is considered a
data line, since the flow conditions immediately behind
it are known (Fig.32). Due to the flow symmetry about
the plane x=x'=O, the p axis must be a streamline and
therefore can be considered as a wall with zero flow
deviation (0=0). The data line terminates when either
a five degree slope or a Mach reflection is reached.
The program computes the characteristic mesh between the
data line, the wall and the second family characteristic
line from the last data point. The characteristic equa-
tions include the effect of entropy due to the varying
strength of the reflected shock. This subroutine can also
be applied to find the flow field behind the intersection
curves of any of the problems considered in this report.

The data required for the characteristic equa-
tions at each point ( Pi, i ) on the data line are: the
flow deviation, ( , with respect to the p axis, the local
entropy S.=(S.-S )/2c , the local velocity, w., non-
dimensionalized with respect to the local limiting velocity
and the local Mach angle P.. The values of w. and P.
can be found from the known Mach number behiný the inter-
section curve from the relations: [

w. =M. _1 1(73)

2

P$= sin (1/M.i)
1 6
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The equations which determine the location of
- .. . 4.... 3 " "= .. .

3 = tan (6 1 ]1,3 (74)

•3-•2 + (p3-g 2) [tan (6 - i) )2,3

where the double subscript indicates the average value
between the two points. The relations which hold along
the first and second family characteristic lines are,
respectively

cotan P' 2 2
w 1,3 (w3-w 1)-( 3-0"1)= - (sin P cosp) 1,3

ds - (75)
dn 1Q3

cotan .L2 2 d
(w w (sin P cos%) d -

coaw •)2,3 w3-w2- (3- 2) 3%-I 2,3 dn Q2Q3

where ds/dn represents the entropy variation between the
points Q1 and Q normal to the streamlines.

The characteristic grid consists of first and
second family characteristics designated by j=l,2.... 2N-1
and i=1,2 .... N-1 respectively, where N is the number of
data points (Fig.32.) If the Eqs. (74) are rearranged
into a form su'itable for computation there results

j i+i,j - i j-l-O+ijtan(+) ij- tan(P-,)P i , = (.76 )
1tan (6-- ) - tan (W+p)

'Oij= oi,j-i- + (pi, -Pi.ij-1) tan(6--)

where

tana ((i)+=,•+•[tan(+0 )+tan(i *+, j) (77)
and

tan (6-P) =htan( 6 j- i - + tan(ei ,"-, j)

For the first approxEimation of these averages only the
values at the known point are used. The order of compu-
tation is to start at the point i=N, j=N and to move
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along second family characteristic lines, (i=const.),
from the datd line, Lowaard the wall. Thiu ca berp-

sented, in subscript form, by

i =N, N-i, N-2,....1

j =i, i+1, i+2, ...2N-1

A wall point is obtained whenever i=2N-j. At these
points =j. =6 0 and

P. .=j~'- + 0i'j-l tnO4 (78)

where

ctan~~ ~ ~ ~ ~ (.)1 ý ca 8ij--4ij1)ca ' (79)

Eqs. (75) ,solved for w and 6, give

2 jalý 2~ ds-an

-~~ (si (.81s)d

i~j-l i'j-l

adwhere
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2* )'i 2(1) 2½

L +( )2i 2½

ds i,j3-1 i+1,j

Li+1,j(in i+1, j + ME1j-inPij

.2P sip .n.2

sin 2p .COSP ='½sin 2 4i, cosp +

1 i+,j +1, i+1j i1,j(83)

.2
+ sin P. .COSP.

sin 2P . 1 csp.1  -½4 (sin 24pl- cosp +~-

+sin 2 1.l .cosp .~)

ctanp. ~ . ctanp. ctanpi.

I. ~i+ii h wi+lj + i 1I

F tanp. ctanP ctanp..
tl- .... iwt + il
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The Mach angli and the non-dimensionalized entropy are
r - 1-w 2

as- (84
1)L 2 Ii

-- -- -s (sinPi j) (85)

i,j i,j-l dn i,j-1

At the wall, (i=2N-j), the flow properties are

w1 2
i, 1 i, , cta'n i,j-l+ (86)

w i, J-lds -

x sn2P COPipd n ) ij-i (87)

6. .=0
where • S -S

(adn =s L, j-i Csinpi, j-1)

Since the wall is a streamline, the entropy has the
constant value SN,N and the pressure distribution can
be found from N

2 _

N- , N itw (88)
P1 

2  J
- WN NN

For this particular problem, p,/p is P4 /P

The program operation and example problems are
given in Appendices V and VI.

I7

¢:74 -



D Intersection of Two Conical Shocks of
Different Strengths

D-1 Conical Flow Fields

The problem examined here is the flow
field immediately behind the intersection of two conical
shocks of different strength. The conical shocks are-
generated by two unequal cones, one of which is at a
small angle of attack with respect to the free-stream
velocity. The cone axes are assumed to be in a plane.
These assumptions, which simplify the analytical solu-
tion of the problem, are consistent with common geo-
metrical configurations of inlets.

The analysis includes the definition of
the intersection curve between the two conical shocks,
the definition of an orthogonal reference frame attached
to the intersection curve, and the use of the two-
dimensional oblique shock relations in the plane defined
by the normal and binormal to the intersection curve.

In the analysis that follows, the cone
with the axis parallel to the free-stream direction will
be denoted as the "base cone" while the designation
"second cone" will be used for the cone at a small angle
of attack.

The flow fields of the two conical bodies
are found first. For the base cone, the velocity along
a conical ray line ( V= const.) in a spherical coordinate
system, and the speed of sound nondimensionalized with
respect to the limiting velocity are respectively 1 5

*

U V l+tan2 (N1, *.,)

a (1- MI*2 ½ (89)
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where M ando * which represent the critical Mach
number And the Ilow direction,are tabulated in Ref.15.
The Mach number components along and normal to the
conical ray line V =const. become (Fig.34)

M = u/a

Mt = M tan (0i*

The effect of a small angle of attack on
the conical flow field can be considered as a perturba-
tion of the flow conditions for no angle of attack. It
has been shown in Ref. 11 that a circular core at a
small angle of attack produces a circular conical shock
having the same half angle as the shock which would be
produced by the same concial body at no angle of attack,,
but inclined slightly with respect to the free stream
direction in the plane containing the body axes (z*) and
the free-stream velocity vector, Fig.35. Therefore, the
total nondimensional velocity components in a cylindrical
coordinate system u, v, and w, along the z axis, along
the r axes and normal to the meridian plane respectively,
may be defined by (16)

ui = uI cosy - V1 siny + & u 2 cosqi).

F
vi = vI cosv + u1 sinv + a v 2 costai (91)

wi = ey w2 sinti,

whereeai is the meridian angle defined in Fig.35, which

is incorrectly defined in Ref. 16. The velocity components
u. and vI are the zero-angle of attack values along and
normal to the conical ray y-- itwhere y2 is the shock

angle, and are given by h

- * 22 (92)1~ 1,2 jl+t an2 ( _!, )'

v = u tan (4, 2 -y 2 )
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where MI I and OT , are the critical Mach number and the j
flow diý.ation ol'lhe second cone flow with no angle of
attack. The perturbation velocities derived from Ref.16
are

u [- M* 2 -12 sin z,* + Cos= ~ t 02, 1,2 M•cs1,2

V2 M=12 C2 cos @,2 + M* sin 4* 1 (93)2 =, ,2 2 1,2

L M*2
w = M*'

2 v+2  W,2

where the flow direction 0 and the critical Mach numbers
M*2 and M* are tabulated in Ref. 16.2 w,2

To complete the definition of the flow
field cf the second cone, the local speed of sound and
the second cone shock axis inclination must be defined.
The speed of sound non-dimensionalized with respect to
the limiting velocity, is

a = 1F M2 ½ (94)
2i 2 i

where the total critical Mach nu.,ber Mt, is

M* = M* + O M* cos fa (95)

1 1,2 2

The inclination of the shock axis with
respect to the free-stream direction is given by

1(96)

where / tabuldted in Ilef.16, represents the ratio
between the deviation of the shock axes from the cone
axis and the angle of attack (Fig.36).

f
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D-2 Shock Intersection

In the preceding section, the conical flow
fields have been defined. In order to calculate the flow
field behind the intersection of the two conical shocks,
it is first necessary to determine the intersection curve.
On the base cone a conical coordinative system, p, 4 is
defined as shown in Fig. 37. The intersection curve of
the base cone shock, of angle vi, and the second cone shock,
of angle "2' whose axis is inclined by an angle e to the
free stream direction, is represented in this coordinate
system by

1 (D1 + C1 cos 0i) + ) D1 + C1 Cosoi) 2
Pi

- (A1 cos 2i + 2E, cosoi + BI(

where A .2

A1 (a 2 -1) sin2vi] /FI

B1 [(c2+b 2) cos2y,] IF,

C1 [(e 2 +b22 sin 21 - d2 COSA1) sinv] /1 F 1  (98)

D1= - (e 2 2
2 cose1 + d2 sinI) IcosI ]/FI

E1 = (f 2 siny1  cOsy1 )/FI

and where

b 2 = tan 2

b 2 = tan22
2 2

2 2 -2
a2 = Cos1- b si 1

2
c 2 = sin2 8! - b2 cos 2 e1
2 1e (99)

d2 = r cos81 + q sin I1 (99)

e 2 = r sinA1 .- q cos 0i

f•= cOsA sinl (l+b2)
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L, AS-- . V' .LO %ý%.AJLL A=L%.AL LJS .L.LD= J.LA•. Vrll j %..IL W iA . LV L I JJY

Oi=iA4,i=O,1,2"*'m/A Ointo Eq.(97) where 0 max. represents
the furthest point out on the intersection curve, before
the curve bends in a~ain

- D DC-E (DC-El 2 D-
=Cos +~( 2

maxCl A C 12-Ai C A
In order to determine the planes normal to the tangent to
the intersection curve, the direction cosines of the
tangent, bi-normal and normal with respect to the x-y-z
directions must be found. Following the procedure of Ref.17,
the direction cosines of the tangents to the intersection
curve are found as

cos(&x)i = sinyI (p! sin2 i - Pi c1s1i)/A;
1 1 . 1 1i p

cos(ty)i = sinV1 sin~i(p. s i+p!)/A# (100)

Cos )i = Pi cosy sini/ A

where

*P! =- 1 (.a P2 C(C 1-A I) cos4).+D1 C1 -E,
"1 sinoi BO i (C2-A )cos20i+2(D1C1-El)cos i+D2-ji

(101)

and
-* [,2 2 2 .2

.Pi) sin i+P in (102)

The bi-normal to the curve is the normal to the plane
t. tangent to the cone at the generic point i, and the

direction cosines are given by
SCos (b]x) = cosy sinzb

cos(ýy)i = cosy1 COS6i (103)

Cos (bAz) anyi 1sinv1

L Finally, the vector normal to the curve can be found
from the vector product n = t x b and lies on the plane
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tangent to the cone at the generic point i. Its direction

cosines are

A A A A A
cos(nx)i = cos(ty). cos(bz)i - cos(tz). cos(by).

cos(¢n(y)i = cos(tz). cos(L) i - cos(¢x) i Aos(A) i

A AA
cos(nz)i = cos(&x)i cos(by) - cos(y)i cos(bAx)

The Mach number components, irmmediately behind the base
cone shock (vy=ý ),in the t, b and n directions are from
Eq. (89) and (90).

M =M C+M cos(()z).
Mi = cos (tCx) ++MM 1 os(.y) i

A AMEi= MYl"COSA).+M cos(ny)Yi +Mzi cos(nfz). (105)

M~li= MXIi ccs(b x)i+M cos(by) .+Mz Cos(b'z)

where

M = (Mr sinyl + Mt cosvl) sin1i

Ml.= (Mr sinyl + Mt cosvl) cosoi (106)
1

Mz = M cosV1 - Mt sin-1

1i

The Mach number component and the flow deviation in the
plane normal to the tangent to the intersection curve areS2 2

M = (M- 2+ 2 )½ (107)

l. =D in, l i + M li M -l

61= i tan (- ) (108)

where ri, which represents the angle between the direction
of the free-stream Mach number and the normal (n) to the
intersection curve at each point i in this plane, is
given by

Al
tan-I cos(bz) (109)LCOS(AI)0
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For second cne , a s-j,--..uu. procedure Lb tCLJ. .L ±-U UUL

to find the Mach number components along the E, B, and
n directins,, when the value of Oi, corresponding to the
generic point i of the intersection curve, is known.
The coordinates of the generic point pi, Oi in the x',y',
directions (Fig. 36) are

x'i = °i sinoi sin1
4 1 1 11(110)

"Y'i= (Pi cosPi sinv1 -r) cos& + (P.i cosy-q) sin&

from which

lx.0 i =tan- (11

1y

For the second cone, the relations corresponding to
equations (105) become from equations (91), (94), and (111)
with y =Y 2

A A
•- : M cos(tx) + M cos(ty).+ M cos(tz).
t2. '2. 1 2. 2.1" 1 1 1 1

PA AM- =M cos(x) + M cos(ny) + M cos(nz-), (112)
n x i 1i z

2.2 . 2. 2.

i1 1 1 -1A A
ME =M x cos(bx) .+ M ycos(by) i+ M cc)s(9'z).

2. 2.2

where
v. w.

M + sini + L cosei~
x a sin1 a S2. 2. 2.F- 1 1 1

v. w. u.
"M =_ cos. + - sinti) cosi + -L sin (113)

S1 1 1 1
"v". W. U.

MZ2 = (__--2 cose.z + -. sinwi) sine + -a2 s

Sz a a 1 217z2. a2. a2. a 2

The Mach number component and the flow deviation in the
plane normal to the tangent to 1-he intersection curve are
represented, similar to Eqs.(107) and (108) by

AMN 2 (M 2 ~ 2]

S~85

85 (114)



---r. -) (115)
2.1 1 14

S.1

The oblique shock relations in the plane
normal to the tangent to the intersection curve are used
to find the flow conditions at each point i, immediately
behind the intersection of the two shocks, which due to
the conical nature of the flow field, remain valid only
in the immediate vicinity of the point. In this present
work, the flows of the base cone and the second cone are
considered to be deflected by the angles 62 and 81

respectively. Using the oblique shock relations with MN

and 62., the Mach number behind the shock ,MB the shocki

angle A and the pressure and speed of sound ratios P2/P
A2/A1 are found for the lower portion of the intersectiKn.

The total Mach number behind the shock intersection is

M3 ( M3 t.2 + MB1.2)h (116)

1 1

where M43. = ME (117)

'The total pressure ratio and the total entropy change are
P 2  P(P3•. i P ( i P 1.8

PN-2 2 7
S1  1 f r2'yMNI. sin 83i-(v-i) I
- + - tn /

13~ R 2y (
i .• 2 2- A +

(/+l)i sin2  3. 2 (119)

(1•l)MN2 sin2 3 + 2 1
where p /p and S1 /R ar.e the values immediately behind the

base cone shock.
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Using MN and 81., the upper portion of the
2ii

f.low behinld theI sh1,1o ck I nt4Cc r rzc c i i c ~11 1 ted-i4 -n- A- m, 1J I
manner from the oblique shock relations. The flow properties
immediately behind the shock are

M4 t /(A 2 /Al)i (120)
ti 2i

M = (M42  + MB2 ) (121)4 ti 2i

212

(v ~(l)-(+-() M* cos 1 i-
P4 , p [ (M 2+ 2

2 p2
_ )e - - 21 2.i p (+)(l(M* 2j

12
1, (122)

S 2
e - 6CSLi

S 2 +C costp (123)
4. 2jý R R

2 2 n 2 2 2_ _ _ _ i

MN2" 4+ . --- 4.s[(v+l)MN2isin 64

2Y 1 1 sin' 4+2
1

The last two expressions contain factors which represent the

contribution of the angle of attack of the second cone. In
T- the present analysis, the shock strengths have been assumed to

be constant through the intersections. An iterative procedure
can be used to improve the results. The iteration consists of
varying the flow deviations .and 2 until the pressures in

the lower and upper region behind the shock intersection are
matched.

In order to define the flow field behind the
shock intersection, the characteristic subroutine can be used
in a plane which contains the projection of the intersection
curve. This curve becomes the data line and the flow properties
immediately behind it are obtained by averaging the values in
the upper and lower regions and finding the flow deviation in
this plane from the projections of the normal and tangent Mach

number components.

The program operation and example problems are
given in Appendix V and VI. 87
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E. Impingement of a Plane Shock On a Conical Surface

The impingement of a plane shock from a two-
dimensional wedge of angle 6 c1n a conical body is treated
here. In order to treat the most general case, the shock
of the conical body is included kCig. 38). The intersec-
tion of the conical and plane shocks is found first. After
the plane shock passes through the conical shock it is no

on m j-r, due to the effects of the conical flow field.
The -oc'- ;lination of this shock can be found by using
varir , .ons in the conical field between the conical
shocK d. cone surface as shown by dashed lines in I
Figure In this analysis the computation is carried out
only at the cone shock and at the cone surface. The proper-
ties obtained by crossing the "plane" shock at the cone sur-
face are used in the manner discussed in the preceding sections
to obtain the shock reflected from the cone surface. The flow
field behind the reflected shock is found by using the Cha-rac- V
teristic Subroutine after transforming the reflection curve,
which lies on the cone body, into a curve on a plane.

The computation starts by using oblique shock theory
for the given wedge angle, 61, and free stream Mach number to
obtain

MI 1, Pi, p/pD and a 1 /a

which represent the uniform flow properties behind the plane
shock. As in the previous sections, the conical field of the
cone at zero-angle of attack is defined by imputing the para-,
meters, Ic' M , Pc/p, Tc/T and S2 /R behind the conicalc c S

shock and b' on the body (see Ref. 15). This
data allows the conical ýlow properties to be computed. The
Mach number components along and normal to the conical ray -
y= const, are

M = U/a
(124)

Mt = Mr tan (0 1 -y)
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U = M* c -Y)
1+ 1 (125)

-lM*22+l 1

The intersection of the conical shock and the plane shock on
the z'-x' plane, (Fig. 38), is given by

r (Az' 2  2Bz.' + C)i (126)

where F

A = sin 2 - b 2 cos 2

B = r sineI + b2q cos8 (127) 1r

C = r2 b bq2-

b2= tan2 c .[

and where z'. is obtained by incrementing from the value of z'
corresponding to x' = 0 (z' ) and is given by

Z'. Z' + i Az' (128)
1 O[

90.
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I

7I"
The angle between the tangent to the intersection curve and
the z'-axis is

B-Az"'
-an (129)

X1

The computationof the intersection is terminated when
%1<50 in ordel to work on one side of the cone. The conical

flow Mach number components immediately behind the shock,
°" •'•c ),in the x'-y'-z' directions are

M = Mr sinYc sinoi + Mt cosvc sin.i
X..

M = Mr (sinyc cosoi coseI + cosyc sineI)

+ M, (cOS-/ cosD. cosP - siny sinAl) (130)
c c 1 1 c 1

M2 = Mr (cosv cose1 - siny cscoi sin~l)

S (Cos cos sin , + siny cosA)

where the meridian angle Oi is

ta xa i� t(131)

with 1

7- X. = X'.

Y q + z. sin1 (132)

Equations (13G) projected along the normal and the tangeht
to the intersection curve with z', x' plane become

M =M sinO. - M cosQ.
2 2z' 2 1 1

1 1 113)

(133)

M =-M cosf. - M sine.)2 t Z 2 X'.
91 1 1

•> • 91



With the total Mach number component in the generic plane
normal to the intersection curve at point i given by

M2 (M + M2 2) (134)N. ..a 
i

and the strength of the plane shock given by,

tan9 1 1tan(A -66*=tan- ( l)-tan [s-•n i (135)

the oblique shock relations can be used to find the flow
properties behind the lower region of the shock intersection.
The properties thus found are the Mach number component

the shock angle, A4 ., in the plane normal to the inter-
4 N.

section curve and the pressure and speed of sound ratios
2 . and (a 4 /a 2 )iJI respectively. The tangent Mach number

S(p 4 /P2 i
component , the total Mach number M the pressure ratio

M4-4

(p4/P-)i, the speed of sound ratio (a4/a")i and the change of

entropy S4. are respcctively

M = (M
. 2l a4 (136)

:•(4/) i =(P 4/P 2)i (c/p

(a 4/a)i =(a 4/a 2)i /Tc/Tw

2 1

l2 4.II S2 N T/

Rt, sM 2 sin2 q

(-IV) M12 sin2 + 2(3

2N ~4.

1.

The flow deviation with respect to the z' axis is
M44

N.
Cr ~ ~ -11 17



For the eventual computation of the upper intersection region
it will be useful to know the stxenith OL LIo e coniical shuock,
which is

- y'.- tans1

82 =tan ta1an (sin 1 (138)

n.

In each plane normal to the intersection curve a new
orthogonal coordinate system, (C,tp), is defined, in which C is
in the x'-z' plane and is coincident with the normal direction
previously defined, (Fig. 39). The angle of the lower shock,
referred to the • axis, is

4"=4 - tan (-) (139)

For each normal plane the point i . of intersection

between the shock and the conical body is found from the
following;

"i + 2_"(AO•i p p2 (140)

1

ci. =-n7co~tan~e4
where

P =L + e (E e + 2 G)

Q =e F + H (1.41)

an(; where
S2 2 si 2 1 _ 2 co 2 l

E = cos + sin ( -b Cos

F=-x. cos n. - (F1 sin61 + bF 2 Fcos19) sinO .
2 2

G = -sine 1 COSA 1 sini2. (1+b)(12
2(142)

FH = FI cosO1 -b2 F2 sin81
2 2.2F L = cos -b sin e

1 1
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N = (xi' )2 + F 2_b 2 FF2

FI= r- z' sine (143)
1 i 1

F 2= q + z. cosA 11

el= -cotan

The coordinates of these intersection points on the body are
transformed into a conical coordinate system, P, ,t, which
represents the polar distance from the conical body apex and
the meridian angle in the z = constant plane, respectively,
(see Fig. 40). This transformation is given by

Pi = + fxi2 + y.2 + zi~j

0i = tan-i X i/Yi (144)

where

xi X.' - i COs5i

S= r + r. cos I - sin 91 (zi sin n)SYil r n (ii+~si ~

z = q + . sin e + cos a (zi' + i sin (145)
1 11 1 1 1 11 nn,

In order to analytically represent the intersection
of the ahock on the conical body, a second order curve of the
form

2 2
+ bk2 +dk p + l=0 (146)

is fitted to three selected points

[i PoPo; PI' 1*i; 02' •2

which are the center line point, a point in the region near
the center line and one of the last points, respectively. The

95 -.
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coefficients of Eq. (146) are

ak = (p 2 -P 1 ) (Pl-Po)' (02-Po)/Ak

bk = [012 (P2-Po)- 02 2(p-po)]/Ak (147)

dk = lo22 (Pl2-0o2)_o12 ( 222_Po2)3/&k

where Ak = Po[lo,2 P2 02-00o)- 02 2Pl(°-Po)]

Similar to Section D a set of coordinates tanqent, binormal
and normal to the curve represented by Eq. (146) are defined.
Their direction cosines with respect to the x-y-z axes are

cos(tx)i = (oi sin '•i sin 7b - AA. cos ,ai)/BB.11

A
cos(ty) = ('. cos ,. sin Vb + AAi sin oi)/BBi (148)

cos(tz)i = (oi cos vb)/BBi

cos(&x)i = sin (,0i cos Yb

cos(ýy)i = cos pi Cos Yb (149)

cc-.zi= - sin Y

and

A
cos(rnx) i = NAi

Acos(ny)i = NB. (150)
1

Acos(nz) = AA

F.9
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where

d P. sin yb
AA. = (bk pi + k--)

k 2 2a

BB. = 2. + AA 2

S= cos • cos(by). - cos (y) cos bax)

NA 3. = cos(ýy ) i cos(b) cos(tz) cos(by)

NB =c cos(b6x)i - cos(tx)i cos(bz) (151)

Next it is desired to find the flow field
behind the "plane" shock near the conical surface. The Mach
number components of the conical flow field in front of
the "plane" shock on the conical body are

M 2 xt bi = M r sin yb sin 0, + Mt zos /b sin o.
Xbi

M 2 I = Mr (sin Yb cos a i cos I + cos Yb sin A1Ybi

+ Mt (cos yb cos ti cos 0i - sin vb sin 91) (152)

M =M (cos vb cos 91 - sin y cos 'i sin e1)
2, I bi 1 b1bi

Mt (cos Yb cos 'i sin 91 + sin vb cosel)

where M is found from Eqs. (124)and(125)with 1 = Vb ?I* =Mb
r Yb 1 b

and I = Olb" The components normal and tangent to the

original intersection curve are

M = M2 sin Qi -M2 cos .i

Zi bi 1 2 1

2 2, i 2,M2 =-M2 cosQO -M2 sinQ (153

tbi Zb i XL(153)
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The flow field behind the shock near the conical body can
SDe round joy using

2 (154)
"Nbi 'bi

and 6*(Eq. 135 ), in the oblique shock relations. The

S~shock strength has been assumed to be constant; however,
the flow behind the shock near the body differs from that

•- of the lower region of the shock intersection since the
, flow field in front of the shock is conical. In the

usual manner the properties obtained are: the normal Mach
number M4 , the shock angle 84i the pressure and speed

Sof sound ratios (P 4/P2)bi and (a 4/a 2)bi. The tangent Mach

Snumber and the total change in entropy are

SM4 =M2 (a 2/a 4)bi
t bi t bi

SS4bi 2 (y-1) +R ' "'"-1 5

•'bi - nY+i 1i@b

si

The Mach number components normal and binormal to the
I- original intersection curve are

SM4 =NM cos (7b.* + 81.* - '1.
•. bi N bii i

[.M4b = M4i sin (Ybi* +9i*i - 61.i) (156)
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where a ft-,-e r mutIChb I gcomtry I- 2

, =c~s-1Cos •

1. (l-cos 0 sin9

and
ys* C 1 1-cot 2i Cos 1sin ( )

-Cs / (t+cos 91 cot2 cot2 i 2

+ sine a, ) Cos )2 cot2  1}
where

(;W) =sin 8I cos A cot 2 (iL= 1 Q Yil

22 2

+ ,iCos 81cot ni -(Cos2 1 cot2 i

tan2 Vb) z, ] / [(sin 2 cot 20 + 1 ) Yi

+ Ki sin e1 cot 0. - z. sin 8 cos 81 cot 2

with K.- = 2 i1 1

= cot Q i (sin 1 Yi - cos z.)

= (sin2 8 cot2 Qi + 1) Yi2

-2 sin 01 1 cot2 Qi Yil 1

+ (cos 2  i cot2 0. -tan2 2b) zi 2

1
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To obtain the flow field behind the reflected
shock it is necessary to find the upstream Mach number com-
ponents in the directions tangent, normal, and binormal to
the reflection curve which are

A ~AA
M M4 cos(tx) i + M4 cos(ty). + M4 cos(z) i

I Xbi Ybi Zbi

A A A

M4- M4 cos(nx)i + M4 cos(ny)i + M4 cos(nz)i

b. i Xbi Ybi Zbi

(157)

where

M4 = M4 cos Qi - M4 sin QSxbi nbi tbi

M4 M4 cos1 - M4 sin Q sin A1
Ybibi 4b 1 4i1 1

+ M4 cos Qi sin 91
tbi

M4 =M4 sin Qi cos - M4 cos Qi cosi
Zbi nbi tbi

+M 4bi sinA (158)

Then the total Mach number component in a plane normal to the
reflection curve

M4  {M4
2  +M4 2

Ni ni bi

(15S)
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and the flow deflection across $-he reflected shock in this
plane

4i =tan-' M• /M ,i (160)

can be used in the oblique shock relations to give the flow
properties behind the reflected shock on the cone surface.
The results are finally given by the following relations:

= M 2 +2MM6. 6 . 6 fN (161)
I N

where M6N is obtained from the oblique shock relations and

16

The shock angle with respect to the body is

86 if = 6 - 4 . (163 )

The pressure ratio is

IpI

The flow deviation in the p, 0 plane with respect to thep axes is

a 6 =1 2o I / (165 ) -6 ](2ai) 2 +(2bkpi+k)2

: tan (1M6N /M 6 . )
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If

and th e t-n t l rchn, ,e i n• . en r p is "

2 V M 2 sin2  6 ~l

S S +2  tn ~ bi

6. . . . . . - -. - • , ., , , . • , ,a , , .) ,I ,'

6 4 bi +l

/(v+l) M42 sin2 p (166)
4 6.

4N i i

To find the flow field on the body, the characteristic sub-
routine can be used in the p, b, plane, with the above condi-
'tions which are valid immediately behind the reflected shock.

The Pr.ogram operation and example problems
are given in Appendices V and VI.

10
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APPENDIX I

HOW TO USE THE PROGRAM
(Two-Dimensional and Axisymmetric Flow Computer Program)

1. General Comments

Very often instructions for operating a computer program are
more complicated than even the program itself. Many quite useful
programs have been rendered almost useless because the answers to
prospective users questions are either not provided by the in-
struction manual or are hidden in a plethora of jargon. The im-
portant questions which aXe answered here are:

Z a. What does the program do?

b. What are its restrictions and limitations?

c. What input data are required by physics?

d. What additional input data are required to make the
program work?

e. Vrhat is the required form of the input data?

4 f. Mthat is given in return (i.e. what are the outputs)?

g. How is the output to be interpreted?

h. What might go wrong? What can be done :,bout it?

Answers and parts of answers to some of these questions have
already been given. In such instances, the appropriate sections
will be designated and that information will not be repeated in
this section. The questions and answers are:

a. What does the program do?

The program computes the inviscid supersonic internal flow
of a perfect gas of c-nstant specific heat ratio for configurations
typical of supersoni. and hypersonic inlets. (Also see Section IV-A,B).
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b. What are its restrictions and limitations?

In standard notation:

y = constant (constant ratio of specific heats)

p = pRT (perfect gas equation of state)

g = 0 (inviscid)

M > 1 (supersonic)

c. What input data are required by physics?

Referring to Figure 11, the physics of these flows requires
one to specify the flow conditions completely on some initial data line
(which is not characterist.c) (•' of Figure 11) and the geometry
(y(x), y'(x)) of both the walls. When this data has been specified
"(maximum ordinate of the initial data must be great enough so that a

down characteristic from that point intersects the leading edge of the
upper wall) the entire inviscid flow in the inlet can be determined, so
long as it remains everywhere supersonic.

Needless to say, one must also specify y, the ratio of specific

heats.

d. What additional input data is required to make the program work?

In addition to the physically required data, the program needs
the following information: abscissa of upper and lower leading edges,
maximum abscissa of the upper wall to be computed, angle of attack of
the free stream flow with respect to the horizontal axis, spacing of mesh
points on the initial data line (uniform incident flow), a code indicating
whether data along the initial line i-- supplied or the simplified input is
used, a code indicating whether t.e flow is two-dimensional or axi-
symmetrical, and other codes related to the wall geometry. In addition,
for the convenience of the user, provision is made for inputing and
outputing the date and a run indentification number.

e. What is the required input data?
Physical Data

"As mentioned before all input data must be nondimensionalized
in the manner specified in Part C-a, Non Timensionalization and General

Equations of Motion. Read Part C-a befoxe continuing with this section.
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If the incident flow is uniform, the user may specify
the incident Mach number, M, the specific heat ratio, y, and, in
the case of two-dimensional flow, the angle of attack. In this
case the reference pressure anc temperature will be assumed to
be the incident pressure and temperature.

In the case of uniform incident flow, the leading edge
of the lower wall must be upstream of the leading edge of the
upper wall. However, if it is not, this requirement can be over-
come by extending the lower wall upstream of its leading edge
parallel to the incident flow. This can not be done in the case
of axisymmetric flow when the leading edge of the lower wall has
a sharp corner on the axis of symmetry. If it is desired to have
the output referred to another pressure and temperature, it is
necessary to input data on the initial data line point by point,
the data being referred to the desired reference pressure and
temperature.

If the incident flow is non-uniform, it is necessary to
specify the data point by point, starting at the leading edge of
the lower wall. A reference pressure and temperature (and length,
if desired) must be chosen. Then the coordinates of each data
point must be specif'ed along with the Mach number, the angle the
streamline makes wi"- the x axis, and either the static pressure
and temperature or the total enthalpy and total pressure (all
non-dimensionalizc.d).

It is important to realize that the initial data line may
not be arbitrarily specified. The first point must be at the lead-
ing edge of the lower wall and the subsequent points must be in
order of increasing ordinate. Also, the initial data line must
be oriented so that the characteristics emanating there-fcom point
downstream from the data line (see Figure 26). In addition, the
inital data line must be upstream of the leading edge of the upper
wall (cowl).

The required data are:

i) Free stream Mach number, M (simplified input, uniform
incident flow)orx,y,M, e, either p and T or Pt and H on the
initial data.

2) Specific heat ratio, -

3) Abscissae of the two leading edges and the maximum
abscissa to be computed on the upper wall. All lengths must be
dimensionally the same or non-dimensionalized consistently. If
non-dimensionalized, the program does not need to know how this
was done, nor is there any way of telling it.
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4) Angle-of-attack in degrees measured positive counter-
clockwise from the horizontal axis. (Two-dimensional, uniform incident
flow, only.)

5) The code for two-dimensional/axisyam~etrical flow is
an integer which is zero (0) if the flow is two-dimensional and one
(1) if it is axisymmetrical.

6) The run identification number and the date are read in
as integers, the identification number having a maximum of 5 digits.

7) Miscellaneous control integers.

8) y(x) on the lower and upper walls in the form of
second order polynomials. There are a maximum of 9 second order
polynomials on each wall. The polynomials are of the form

y(x) = a. +b. (x-x.) + c. (x-xi) , -1, 91 1 .1

for top and bottom. ai, bi, ci, and x. must be specified for each
polynomial. 1

Note: - A more complicated, but extremely versatile
way of specifying body ge' -etries is given in Appendix A. It can
be used to specify body c imetries in virtually any manner.

9) The x coo. inate of every sharp corner on the upper
and lower wall, but not "L eluding the leading edges. In addition,
the user must supply dy/dx before and after the corner. There are
a maximum of six such corners on each wall.

f. What is given in return? (What are the output?)

Data at each mesh point, including the location of the point,
are written on scratch tape in the following form:

1) abscissa and ordinate of the point (in the same units
or non-dimensionalized in the same manner as the input lengths).

2) pressure divided by the reference pressure

3) temperature divided by the reference temperature

4) the streamline angle, e

5) Mach number
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6) .... YU where S is dimensiunal entrupy "- is the0 -oYv 0~
entropy corresponding to the place where p0 and T'o are).

7) total enthalpy divided by the ratio of reference
pressure to reference density.

8) the mass flow between the mesh point and the lower
wall divided by [square root of (reference pressure x reference
density) times the square of the length used to non-dimensionalize
lengths (if they are non-dimensionalized)].

i.e. mass flow Po =po RT 0

In addition, in axisymmetric flow the mass flow is

also divided by r.

9) Pitot pressure divided by the reference pressure.

g. How is the output to be interpreted?

The output is given as a function of mesh points on each
down running characteristic. In each strip the down running character-
istics are identified integrally beginning with 1 for the first point
to be computed (see Part D-b on the order of progression of the com-
putation) in that strip. Similarly, the strips are identified integ-
rally beginning with 1 for the strip containing the initial data line.

These should be no problem so far as reference quantities
are concerned.

There is a little problem arising from the way in which
the computation proceeds. It will be recalled that (see Part D-b-2,3)
when a down shock is initiated, the region between (see Figure 16)
the last down characteristic B-Y, in the previous strip (Ith strip) and
the down shock, BDF, separating the two strips (i.e., the region between
B-_ and E) is computed first as a part of the Ith strip without con-
sidering the influence of the compression at B, and then is recomputed
as a part of the (I+l)st strip taking into account the compression.
This is necessary since we have no way of knowing a priori just where
the shock, ED, will go. We only know that it will always be upstream
of BC.
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For this reason, in computing the Ith strip, we write out
all of the data in that strip up to and includiiy all of- thle dat-a on
BC. Then, in recomputing the region common to both strips, we out-
put the new "good" data between FD and BC. Thus, one must be careful

-- to pick the "good" data for the common region.

But this is made simple by the following device.

Recall that the various strips are separated by down
running shocks. In general, the Itn down shock will separate
the Ith and the (I+l)st strip. Neglecting, for the moment, the
effect of any other down shocks, the data ambiguity is a result of
the fact that some of the data computed in the Ith strip is not valid
because it is downstream of the Ith shock. So the proper procedure
is to plot first the down running shocks and to use their locations
as a guide in determining which data has become invalid.

Note that, if two down running shocks coalesce, being
continued as one shock, downstream of the coalescence the difference

-- between the strip number on either side of the shock will be greater
than one (Figure 25).

h. How long will a computation take?

The program is written in Fortran IV for use with IBSYS 13
"on the IBM 7094. A typical case will take about 1-4 minutes execution
time.

On the CDC 6600, the same computation would be complete.i in
less than 2 minutes including compilation time.

["i. What might go wrong and what can be done about it?

Any computer program developed to compute phenomena as com-
plicated as those under consideration here is bound to have trouble
from time to time. Prospective users should be neither surprised nor
frightened by this fact. A good program will have difficulties, but
they should not occur too frequently under normal use nor should they
occur when relatively "simple" cases are being computed. But, when
troubles arise, the user should be given every opportunity to get

F around the difficulties in order to obtain the information (or at least
L• some of it) desired.
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The difficulties of this flow field program will ordinarily
fit into two categories, those resulting from computational inaccuracies
and those resulting from logical complications caused by extremely com-
plicated flow field patterns.

1) Problems resulting from computational inaccuracies -
The usual reason for problems to arise because of computation in-
accuracies is that dependent variables have large variations on the
scale of a mesh size or less. For instance, if one has an expansion
corner, the pressure, density and streamline orientation are dis-
continuous at the corner. Hence, we make provisions to compute the
flow near the corner in special ways in order to retain the desired
accuracy. If we did not make such provision, we not only woull lose
accuracy, but we would usually find that the errors made would be so
large that the computation would soon fail to converge in one of the
many subsequent iterations.

Suppose that in some region one of the boundaries changes
so rapidly, relative to the local mesh scale, that there are large
changes in the pressure, density, and streamline orientation during one
mesh interval on the body. Then, even though things are smooth, because
of the rapid changes it is not unlikely that, in addition to inaccuracies,
there will be difficulties and/or failures in attempting to converge in
some iteration.

One obvious solution is to decrease the mesh size by de-
creasing the initial mesh size. This can be done within limits (the
computer has limited storage capacity), though a price is paid in in-
creased computer time. If it is impossible to refine the mesh enough,
an alternative is to replace the rapid smooth turning with a sharp
corner strategically placed and oriented. Then, locally, near the
corner, the solution will not describe well the flow over the origintal
body, but the engineer can usually correct the computed flow to give
him the required information.

In certain cases the user is justified in relaxing certain
tolerances in order to allow an iteration to converge. Such action must
be done with an appreciation for the effect that this will have on the
computation. Some tolerances can be relaxed by an order of magnitude
under certain conditions without having a marked effect on the accuracy
of the computation. Others should not be relaxed by even a factor of
two. Such decisions require a quite intimate knowledge of the program
and should not usually be attempted by infrequent users.
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I
9) Loaicrl problems r.sult-ing from ext-reme]y romnpricM-Pri

flow field patterns - For such problems all of the prescriptions
applicable to inaccuracy problems also apply, in addition to a few
others. The problems we are now discussing result from very complicated
flow field patterns. For example, if three down running shocks con-
verge near the lower wall (perhaps they converge just before, or the
reflected shocks converge just after, or some combination happens) near
a sharp corner, it would not be too surprising to find that the program
gets a little confused trying to keep track of what happened, what
is happening, and what might happen. Scmetimes the program will fail
to work perfectly for such reasons. This does not mean that iL is
useless or that the user is lost. There are many alternatives avail-
able, including those already discussed under a), above.

Another "corrective" measure is best explained by an
illustrative example. Suppose that for a given geometry and Mach
number, such a complicated pattern develops in a particular region and
the program gets confused and stops. Very often a change in Mach
number (in both directions) will spread things out so that they are
not quite so concentrated. One can use this to infer his desired
results.

j. Special control cards; Tape Pssignments

The program is written in FORTRAN IV for use on the IBM
7094 or CDC 6600 computer.

"Approximately 72,000 octal locations are needed on the
CDC 6600. No special control cardz are needed other than specifi-
cations of the use of logical tape 5 for input, 6 for output, and
3 and 4 as scratch tapes.

On the IBM 7094, the same tape assignments are used. Be-
cause of storage requirements, it is necessary to use the alternate

F input- output option, the ALTIO routines. This is done by specifying
ALTIO as one of the optionson !le $IBJOB control card.

[-I
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2. input

Input are read on logical tape 5 and the results written on
logical tape 6. In addition, the results are stored on logical
tape 4 for use during the computation. But that tape can be used
later also. Logical tape 3 is also used as a scratch tape.

The data for severaL cases can be stacked.

11
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INPUT DATA

All Integers Must Be Right Adjusted

Card Columns Datvm- Format Must be Recom- Description
No. Fortran Right mended

"Symbols Adjusted Value

1-5 NRUN 15 Yes Run number

6-10 MONTH Number of the month

11-15 MDAY Number of the day

16-20 MYEAR Last two digits
of the year

"21-25 IUNFLO Must be 0-If initial data is

- 0 uniform and to be
computed from
given Mach number
and v. In this
case the initial
data line is the
line x--XBEG (see
card #2). If the
initial data is to
"be read for each
mesh point, then
IUNFLO equals the
number of such
points.

26-30 JA Mist be 0 for two-dimen-

0 or 1 sional flow, 1 for
axisymmetric flow.

f' 31-35 ILWFTS <9 Number of quadratic
L. fits on the lower

wall
[y(x)=ai +b (x-xi)+

c.(x-xi)

36-40 IUPFTS <9 Number of quad-
"ratic fits on the
upper wall
[y(x)=ai+b. (x-xi )+S11 12
c (x-x :i)
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Card Columrns Datum- Format Must be Recom- Description
No. Fortran Right mended

Symbols Adjusted Value

1 41-45 INPT 15 Yes +1 INPT=+l if IUNFLO 0 0
and p a:.d T are to be
specified.
INPT=-l if IUNFLO $0
and PT and H are to
be specified.

46-50 ICORNL <6 Number of corners on
lower wall (not count-
ing lower leading
edge)

51-55 ICORNU 6 Number of corners on
upper wall (not count-
ing upper leading edge

2 1-10 MACH El.8 Optional v=c /c , the ratio of

11-20 GAMMA spegific heats. Angle
of attack of free

21-30 ALPHA stream with respect
to x axis, positive
counter-clockwise

31-40 DY Ay interval for

41-50 XAU initial line x co-
ordinate of the lead-
ing edge of the upper
wall

"1-60 XEND Maximum abscissa of
the upper wall. The
computation will be
otopped when this
value is reached and
the next case will be
begun.

61-70 XBEG Abscissa of the lead-
ing edge of the lower
wall.
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Card Columns Datum- Format Must be Recom- Description
No. Fortran Right mended

•* - C.7%A J A4- -. Tya1 .U

3 1-10 XFLAGL(1) El0.8 Optional x coordinate of
11-20 (2) the sharp corners

21-30 (3) on the lower wall.

51-60 (6) There are a maxi-

mum of 6 such
corners. They
must be in order
beginning at the

first sharp corner
after the leading
edge. There are
ICORNL corners
(See card #1) *

4 1-10 TFLAGL(1,1) T=dy/dx on the

11-20 (1.,2) upstream edge of
the sharp corners
on the lower wall,

51-60 (1.6) in order. *

5 1-10 TFLAGL(2,1 r=dy/dx on the
11-20 (2,2) downstream side
4 of the sharp
$ corners on the

lower wall, in
51-60 (2,6) order, .*

6 1-10 XFLAGU(1) x coordinate of
11-20 (2) the sharp corners

on the upper wall
(maximum of 6).
They must be in

51-60 (6) order beginning
with the ist corner

- after the leading
upper edge. There
are ICORNU corners
(See card #1) *

"L. * If there are no corners, insert blank data cards.
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Card Columns Datum- Format Must be Recom- Description
No. Fortran Right mended

Symbols Adjusted Value

7 1-10 TFLAGU(,I) El0.8 Optional r=dy/dx on the up-
11-20 (1,2) stream side of the

sharp corners on
the upper wall, in
order. *

51-60 (1,6)

8 1-10 TFLAGU(2,1) T=dy/dx on the
l2-Ž0 (9,2) downstream side of

the sharp corners
on the upper wall,
in order. *

51-6C (2,6,

9 1-10 YLBC(1,l) Coefficients in the
11-20 (1,2) first of the second
21-30 (1,3) order polynomial
31-40 (1,4) fits for y(x) on

the lower wall.
y (x) =al+bI (X-X1 ) +

c1 (X-X 1 ) 2 X1 <xgX 2

where a is in

columns 1-10, bI is

in columns 11-20,
c is in columns

21-30, x is in

columns 31-40.
There are a maximum
of 9 such fits.
The actual number
of such fits is
ILWFTS which is a
datum on the first
card.
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Card CalUmnrs Daum.- FOti.cdL MusL be Recuzn- Description
No. Fortran Rightý mended

Symbols Adjusted Value

10 1-10 YLBC(2,1) El0.8 Optional Coefficients of the
11-20 (2,2) second of the second
21-30 (2,3) order polynomial fits
31-40 (2,4) for y(x) on the lower

wall. y(x)=a 2+bl

(x-x2 )+c2 (x-x 2 )2,

x 2 xgx 3 where a2 is

in columns 1-10,
b2 is in columns

11-20,c 2 is in columns

2i-30,x 2 is incolumns
31-40 .,

9+ILWFTS-1 1-10 YLBC ((ILWFTS, 1) Coefficients of the
ie last of the second

(ILWFTS9) .order fits for y(x)
on the lower wall.

YL1C (ILWFTS,4)
9+ILWFTS 1-10 YUBC(l,l) Coefficients of the

"11-20 (1,2) 1st of the 2nd order
21-30 (1,3) polynomial fits for
31-40 (1,4) y(x) on the upper

wall.
y (x) =a 1 +b1 (X-X1 )+

c 1 (x-x 1)2

Xl<X!X2 where a is
1 2 1

in columns 1-10,
bi is in columns 11-20,

S I is in columns 11-30,

x is in columns 31-40,
9+ILWFTS+ 1-10 YUBC(IUPFTS,l) Coefficients of the
IUPFTS-l 11-2- last of the 2nd order

21-30 - polynomial fits for
31-40 • (IUPFTS,4) y(x) on the upper

4 wall.

1
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3 If the specified initial data is uniform with given Mach number, there
are no more data cards. Tf the initia] dnt- is nnn-iinifnrm i+- i r-• a
on the following cards. The first point is the point corresponding to
the minimum value of y and will usually correspond to the leading edge
of the lower wall (the axis point, for axially symmetric flow). Recall
that the coordinate system is right handed, with %, the abscissa,
positive in the general direction of the flow. The characteristicsissuing from the data line must point downstream of the initial line.

Card Columns Datum Format Must be Recom- Description
No. Fortran Right mended

Symbols Adjusted value

9+ILWFTS+ 1-10 X (1,1) El0.8 Optional x, abscissa of the
IUPFTS ist data point

(must equal XBEG,
card number 2).

11-20 Y(lI) y, ordinate of the
fiist data point.

21-30 TAU(l,l) Angle (in degrees)
made by the stream-
line through the
first data point.

31-40 SM(lI) Mach number of the

first data point.
41-50 P (1,i) Static pressure

(INPT=+l) or total
pressure (INPT=-l
of the first data
point (non-dimen-
sionalized).

51-60 H(l,l) Static temperature
(INPT=+l) or total
enthalpy (INPT=-l)
of the first data
point (non-dimen--'
sionalized) .

9+ILWFTS+ Second data card
IUPFTS+l for initial data

line.

9+ILW-TS+ Last- data card
IUPFTS+IUNFLO for initial data
-l line.
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3, Output

The output is done by writing on logical tape 6 as the com-
putation proceeds. After each down running characteristic has been
computed, the data along that characteristic is output. The data
is nondimensionalized as indicated in Part C-a.

Sample output sheets are given in Appendix II (pp. 126-129).

At the beginning of the computation, the pertinent input data
are output and identified.

At the top of the data of each down characteristic, the strip
number and the number of the characteristic in that shrip are
printed out. These are foli-,,,d by a block with important data
concerning the location of c,..tact discontinuities and up running
shocks. (See page 127, Appei dix II.) The contact discontinuities and
the shocks are numbered from one (1) to ten (10) beginning with those
nearest the upper wall as one proceeds along the characteristic.
Thus, on Page128, Appendix JI, one sees that there is a contact dis-
continuity at the 20th mesh point on the 18th characteristic of the
3rd strip. The data on the 'upper' side of the discontinuity is
at mesh point 20 , while the data at the 'lower' side of the dis-
continuity is at mesh point 21 . Similarly, there are up-running
shocks at mesh points 16 and 25 , the data behind the shocks
being stored in points 17 and 26 respectively. The column under

SIGMA givesthe local slope of the shock (dy/dx of the shock) while
l/SIGMA Is the inverse of the slope.

Following is the data along the characteristic, beginning at
the upper wall and continuing to either the lower wall or a down
running shock, as the case may be. The column of integers on the
extreme left and right identify the mesh point number on that character-
istic. The various quantities output are the mesh point coordinates,
the non-dimensional pressure and temperature, the angle (in degrees)
the streamline makes with the x axis, the Mach number, and the non-
dimensional entropy, enthalpy, mass flow (between the lower wall and
that mesh point), and total pressure.

v• The only thing to be cleared up is how to be able to distinguish
whether the down characteristic ends at a down running shock or bottom
wall. But this is really very easy because the initiation of a down
running shock is always indicated by one of the following three
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messages:

1) SHOCK ON UPPER WALL AT X = ,y=

2) REFLECTION ON UPPER WALI, AT X= ,Y=

3) DOWN SHOCK FORMED BY COALESENCE OF SMOOTH
COMPRESSION WAVES

The first message is written when a down shock is formed
by a sharp compression corner on the upper wall.

The second message is written when a down shock is formed
by the reflection of an up running shock on the upper wall.

The third message is written when smooth compression waves
coalesce to form an 'envelope shock'.

So, after any one of the three messages, the last point on
the down running characteristics will be on the downstream side
of the down running shock, until that shock reflects at the lower
wall. This is indicated by the message

4) REFLECTION ON LOWER WALL AT X = Y=
indicating that a down running shock has reflected off the lower
wall, the reflected shock being an up running shock. All the
down characteristics printed after message 4), will terminate on
the lower wall until one of the messages 1) - 3) is again printed.

Sample output are shown in Appendix II.
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APPENDIX II

SAMPLE INPUT AND OUTPUT

1. Sample Input

Sample input cards for a case with the simplified input
(uniform incident flow) are given on the following pages.
The data for this case are:

Two-dimensional
v = 1.4
M = 12.30

Uniform incident flow
Zero degrees angle of attack
ay - 0.1 on the initial data line
lower wall leading edge at x = 0.0, y = 0.0
upper wall leading edge at x = 2.ý75, y = 2_.75
maximum upper wall abscissa at x = 9.5

The geometry of the lower wall is:
y = 0.17633x ; 0:x<5.5
y = 0.96962 + 0.23087 (x-5.5) 5.5<xi8.1122 2
y = 1.5729+0.23087 (x-8.1122)-0.097186 (x-<7.1122) 8.1122<x-9.3
y = 1.71 x>9.3

The geometry of the upper wall is:
y = 2.75 - 0.08749 (x-2.75) 2.75exr5.0
y = 2.5527 - 0.17633 (x-5.0) 5.0<x!8.782 2
y = 1.8907 - 0.17633 (x-8.782)+0.17021 (x-8.782) 8.782<x99.3
y = 1.845 9.3<x
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2. Sample Output

Sample output sheets for the case of the preceding pages
is given on the following pages (ip. 126-129).

The first page, Table I, gives the input data. If the
simplified input is not used, just disregard those parameters
which are used only for the simplified input. They are:

MACH MW
ANGLE OF ATTACK
DY Ay on initial lines

For completeness, a review of the meaning of Table I follows:

The first two lines of output are self-explanatory.

IUNFLO = 0 means the incident flow is uniform and the
simplified input is being used

MACH - 12.3 m- 12.3

GA14A - 1.4 Y = 1.4

ANGLE OF ATTACK- 0 is self-explanatory

DY - 0.1 Ay - 0.1 on the initial data line which is
computed internally

JA 1 I means the flow is axisymmetric

ILWFTS - 4 means there are four geometry fits on the
lower wall

ZUPFTS - 4 means there are four geometry fits on the
upper wall

INPT - 0 means the flow is uniform and the simplified
input is being used

ICORNL = 1 means there is one sharp corner on the lower
wall after the leading edge
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IC5RNU = 1 means there is one sharp corner on the
upper wall after the leading edge

X UPPER = 2.75 is the abscissa of the leading edge of the
upper wall (cowl)

X FINAL = 9.5 is the maximum abscissa to be computed on the
upper wall

X LOWER = 0.0 is the abscissa of the leading edge of the
lower wall

Following are the abscissae and slopes (dy/dx) of each of the
corners on the upper and lower walls. TAU LEFT is dy/dx on the
"upstream side of the corner. TAU RIGHT is dy/dx on the downstream
side, Remember, the leading edges are not counted as corners in
this part of the input. . .

Following are the coefficients of the polynomial fits for
the walls. This data is self-explanatory.

Table II shows the data on the eleventh down running character-
istic of the first strip. Note that the leading edge of the upper
cowl has not yet been intersected. Also note that since the data
at x = 0, y = 0, is on the first characteristic, one would expect
to have the eleventn characteristic having an ordinate of y = 1.0
since Ay = 0.1 was input. The fact that y = 0.9 here indicates
that twice a failure has occurred in an iteration and the initial
Ay was temporarily halved. In this example this happened at the
very beginning near the symmetry axis of the conical centerbody.
The lower waJl has a leading edge of 100 yielding a conical shock
of 11.90. For a more extensive discussion of how to read this table,
see Appendix I, Part c.

Table III gives the datz. along a down running characteristic
further downstream.

The shock wave pattern for this example is given in Appendix
III along with some comments about the computation.

I"
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APPENDIX IIIIp
RJ CTTJ.T

The shock wave pattern for the example case given in Appendix
I1 is shown in Figure 41. The strip numbers are shown in the
Figure in order to illustrate once again that feature of the program,

Another sample case is shown in Figure 42. This is an in-
ternal flow problem with many sharp compressions and expansions and
illustrates very well the interaction of the various wave patterns.
The flow is two-dimensional and at an incident Mach number of 3,
Sis the ratio of the local pressure to free stream pressure and M
is the local Mach number. The values of P and M are indicated for
various points in the flow field. Thus, at pbint D we have
S= 0.109 and M = 4.63, Point D is just in front of the intersection
of the two shocks. Do not interpret the letters as indicating that
an entire area has the specified properties. For instance, the
properties of F are at a point at the wall slightly in front of the
eypansion corner. The properties vary along the wall between E and
F.
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APPENDIX IV

DISCUSSION ON THE GEOMETRY SPECIFICATION AND
SUGGESTIONS ON HOW TO ACHIEVE GREATER FLEXIBILITY

It has already been stated that the geometry of the upper and
lower walls is specified through a number of second order polynomial
fits for y as a function of x. Presently, this number is nine, but
it can be increased by simply increasing the dimension of the
appropriate variables. In addition, there is provision for six
corners on each wall. That number can also be increased. The
dimension of the appropriate variables must be one more than
the number of fits or corners, respectively.

It would not be difficult to increase the order of the poly-
nomials. The limitations are primarily machine storage space and
convenience in input. However, the polynomials could be increased
to sixth order while still retaining the pattern of one data card
per polynomial. It is only necessary to modify the dimension state-
meits for YLBC and YUBC from (10, 4) to (10, 7), to change the cor-
responding input and output statements, and to modify the coding
in functions YU'B, YLB, TUB, TLB, which compute y(x) and dy/dx on
the upper and lower boundaries.

These functions can be made as versatile as desired, the only
penalty being that a certain amount of programming needs to be per-
formed. Each of these functions has an argument, XIN, which is the
value of the abscissa at which one would like either y or dy/dx.
That is,

FUNCTION YLB (XIN) computes y(XIN) on the lower boundary,

FUNCTION TLB (XIN) computes T=dy/dx at x=XIN on the lower boundary.

FUNCTION YUB (XIN) computes y (XIN) on the upper boundary,

FUNCTION TUB (XIN) computes T~dy/dx at X=XIN on the upper boundary.

An example can best illustrate the method for changing the geometry
routines. Suppose that the second order fits are satisfactory on the
upper wall but not on the lower wall where it is desired to specify
y(x) as:

y(x) = 0 0gxgl

y (x) =tanh (x-1) l<x•2

y(x)=0.76159 x>2
132 1,



then y x~ ~~

y (x) =sech2 (x-1) L<x<2

Y' (x=0 x>2

The procedure is to recompile FUNCTION YLB(X~I1Z and
FUNCTION TLB(XIN) as follows:

$1BlFTC YL

FUNCTION YLB (XIN)

IF(XIN.LE.l.) )YLB=O.O

IF(XIN.GT.l.) .AND.XIN.LE.2.O)YLB=TANH(XIN-l.Q-)

IF (XI11GT,2.O)YLB=o.76159

RE TURN

END

$IBFTC TL

FUNCTION TLB(XIM)

IF (XIN.LE.1 .O)TLB=O .j

r ~IF(XX-N.GT.1.O.AND.XIN.LE.2.O)TLBl1,/COSH(XIN-l.O) )**2

ID (XIN.GT.2 .O)TLB=O.O

r RETURN

END

Do not forget that it is necessary to input the proper data

F indicating that there is a compressive corner at x=1.0 and an ex-
pansion corner at x=2.0.
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APPENDIX V
PPOGRAM OPERATION (THREE-DIMENSIONAL)

These programs are coded in the IBM Fortran IV
language. It is designed for use with the IBSYS Monitor
system for the IBM 7090/94 digital computer. The only
tapes utilized aro the system input tape mounted on unit
BE (logical tape 5), and the system BCD output tape
mounted on unit B2 (logical tape 6).

No sense switch settings are inteirogated, nor any
program stopsanticipated. This program may be "backed"
with other runs and may be pre-processed via the IBM1401,
say, in the usual manner.

Execution time for the longer programs is approxi-
mately 1 minute per case.

Li
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1. Wedge Program

The wedge program computes the shock and inviscid
flw i•d about a swept wedge with supe1so ic leading

edges including the effects of an angle of attack. The
conditions behind the reflection of this shock from a
plane surface parallel to the base of the wedge as well
as the reflected shock geometry are also computed. In
its present form the program uses a ratio of specific
heats, y, equal to 1.4.

Input

The card input to the program is on a single card
and is read as follows:

SX, Moos X, &, Az, r

FORMAT (6E10.4)

The symbols in the input statement have the follow-
ing meanings:

CHI (x): Weldge sweep angle (deg.)
M-INF(M ):Free stream Mach number
LAMBDA CX)tWedge angle in y-z plane (deg.)
ALPHA (&):Angle of attack with respect to wedge base

plane (deg.)
DELTAZ(Az)Step size in z for determining intersection

curve. A typical value is 0.05r.
SR(r): Distance between reflection- plane and the base

plane of the wedge (normalized in any convenient
manner).

Output

The output consists of the conditions in the two-
dimensional region and the constants that define the
shock shape, followed by tables of conditions in the
conical region for each computed point on the shock re-
flection curve. It should be noted that the conditipns
corresponding to the last point in these tables represent
the two-dimensional shock reflection.

The meanings of the symbols in the first part of
the output are:

LAMBDA-'N(An): Wedge angle in a plane normal to the
eadngleleading edge (radians).

ALPHA-N (&): Sum of wedge angle and angle of attack in
plane normal to leading edge, i.e., flow
deflection across two-dimensional shock
(radians).
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II

MN-INF (m ): Component of free stream Mach number in a
plane normal to leading edge.

MT-INF (Mt ) Component of free stream Mach number
tangent to leading edge.

THETA (%): Two-dimensional shock angle with respect
to Mp. in a plane normal to leading edge

(radians).

Pl/P-fNl'qR1 .):Pressure jumnp across two-dimensional shock.

MTI(Mti): Component of Mach number behind two-
dimensional shock, tangent to leading edge.

THETA-N(I) : Shock angle with respect to base plane of
wedge in a plane normal to leading edge
(radians).

M-l (M1): Total Mach number on wedge surface.

CHI-STAR(X*): Angle between z'-axis and leading edge
(radians).

SIGMA- (a 1): Flow deviation on wedge surface with
respect to z' axes (radians).

THETA-S (Os): Two-dimensional shock angle with x.•r- ct
to the base plane of wedge in a plane
parallel to the x-y plane (radians).

BETA-STAR(S*): Two-dimensional shock angle with respect
to base plane of wedge in a plane parallel
to the y-z 'plane (radians).

THETA-CP( c): Two-dimensional shock angle with respect
C to base plane of wedge in a plane normal

to the z' axis (radians).

A : Constant in equation of parabolic sheet (35)

XJP (x_'): The x coordinate of the point of inter-
section of the two-dimensional shock and
the local Mach cone in the plane z' - cos

H(h): Constant in equation of parabolic sheet (36)
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THETA-SW (A sw) Angle betu-en the three dimensional shock
and the z° axes in the y-z plane (radians).

I'

The meanings of the symbols in the tables of conditions
on e,.ch conical ray i are:

I(i): Designates conical ray in central region.

SZ(zi): Normalized z coordinate of the intersection
point of conical ray i and the shock re-
flection curve on plane surface.

(X i): Normalized x coordinate of the intersectionpoint of conical ray i and the shock re-

flection curve on plane surface.

CHI (k' : Angle between the tangent to the inter-
section curve and the z-axes (radians).

SIGMA-I (y1): Flow deviation on conical ray i (radians).
1

M-I(M. Total Mach number on conical ray i.
1

MT(Mt ): Upstream Mach number component tangent
t. to intersection curve.

1

* MN(Ml ): Upstream Mach number component normal to
I n. intersection curve, on plane surface.

MKN (MN): Total Mach number component in a plane
i normal to intersection curve.

DELTA-I(6 1 ): Flow deflection acrc'ss reflncted shock
i (radians).'

M2T (M2 ): Component of Mach number behind reflected
ti shock, tangent to intersection curve.

P2/P-INF Pressure ratio behind reflected shock.
! ~~(P2i/%):

M2 (M2i): Total Mach number behind reflected shock.

SIGMA-2 ( 2i): Flow deviation with respect to z axes
behind reflected shock (radians).
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V

THETA-P Reflected shock angle with respect to the
4 2hi reflection plane in a plane normal to the -

intersection curve (radians).

The subroutine which contains the oblique shock
relations is equipped with four stops printed out as
follows:

1) M = 1: If the total Mach number becomes sonic.

2) Upstream normal Mach number < 1: If the Mach number V
component in a plane normal to the leadir. edge or
to the intersection curve becomes sonic. F

3) Mach Reflection: If the flow deflection used in the
shock relations exceeds the maximum value given by

.2 3/2

3 - i- ) MN 2

where M, is the Nach number component in a plane normal
to the eading edge or to the intersection curve, The
computation of the intersection curve is terminated but

the rest of the computation is continued for the points
already obtained.IF*

4) Imaginary roots: If a pair of roots of the cubic
equation for the shock angle are imaginary.

Ai
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2 Conical Shock-Plane Surface Program and Characteristic
Subroutine

This program starts with the shock and flow field
about a cone at zero angle of attack and computes the
reflection of this shock from a plane inclined at an
angle e1 to the cone axes. The characteristic subroutine
computes the flow field behind the reflection curve on
the plane surface by using two-dimensional characteristics
and may be applied to any of the programs of the report.
The ratio of specific heats, y, is an input quantity in
the program, while the characteristic subroutine auto-
matically uses the value which the main program has used.

Main Program

Input

The card input to the progran is on two cards and
is read as follows:

CARD 1: M , • y,•r, q, Az'

FORWMAT (7E 10.4)
CARD 2: Pc/PW' M*ic, bic, S2 /R

FORMAT (4E 10.4)

The symbols in the input statement have the follow-
ing meanings:

M-INF(M ): Free stream Mach number.

THETA-l(G ): Angle between plane surface and free
: 1 stream direction (deg.)

GAMMA-C (vc): Conical shock angle from Reference 15 (rad.)

R (r): y distance between origins 0 and 0' (Fig.31),
normalized in any convenient manner.

Q (q): Nondimensionalized z distance between-O
and 0', usually zero.

DELTA-Z(ml): Step size in z' for determining inter-
section curve. A typical value is 0.05 r.

-13I
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Pr/P-TNV PrARIrA r•-io acrosq Pnnit-al qhnok frnm

(p/p): Reference 15.

MI-STAR (M*): Critical Mach number behind conical shock,
c from Reference 15.

PSI : Angle of flow behind conical shock with
respect to the cone axes (rad.).

S2/R(S 2 /R): Entropy change across conical shock

normalized with respect to the gas constant.

Output

The output of the program consists of tables of con- "
ditions in front of and behind the reflected shock, near
the plane surface, for each point i on thereflection
curve.

The meanings of the symbols in the output are:

I(i): Designates point on reflection curve.

ZP(z'i): Normalized z' coordinate of point i onreflection curve.

XP (x'i): Normalized x' coordinate of point i on
reflection curve.

OMEGA (Qi): Angle between the tangent of the reflection
curve at point i and the z' axes. The
computation terminates whenQi <5 0 (rad.).

M2XP (M2 x, ): Mach number component behind conical shocki in x' direction. F
M2YP (M2 y, ): Mach number component behind conical shock

2 i in y' direction.

M2ZP (M2  ): Mach number component behind conical shock
zo. in z' direction. L

M2N (M2ni)- Mach number component in front of the re-
flected shock, normal to the reflection
curve, on the plane surface.

140
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MIT (M2 t): Mach number component in front of reflected
t. shock, tangent to thereflection curve.

M2KN (M ): Total Mach.number component in front of
2N.

1 the reflected shock, in a plane normal tothe reflection curve.

DELTA-2 (62) Flow deflection across the reflected shock
21 'in a plane normal to the reflection curve

(radians).

P4/P2 (p 4 /p 2 ) i.:Pressure jump across reflected shock.

A4/A2 (a 4 /a 2 )i: Speed of sound ratio across reflected
shock.

M4N (M4N): Mach number component behind reflected
1 shock in a plane normal to the reflection

curve.

THETA 4 (q4): Reflected shock angle, in a plane normal
4 to the reflection curve, with respect to

the direction of M2N., (radians).

M4T (M4 t ): Mach number component behind reflected
ti shock, tangent to reflection curve.

P4/P-INF
(p4./Pbo) Pressure ratio behind reflected shock.

1

SIGMA-4(a 4i): Flow deviation behind reflected shock,
with respect to z' axes (radians).

THETA-P-4(.) : Reflected shock angle with respect
i to plane body (radians).

S ($4.) : Change in entropy from the free stream
4 vadle, nondimensionalized by twice the

specific heat at constant pressure (2 C ).

JP
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The Characteristic Subroutine

The Characteristic Subroutine is an integral part
of the program of this section, Conical-Shock-Plane Body,
and the program of Section V, Plane Shock-Conical Body.
In these cases no additional input is needed. The sub-
routine also exists as a separate program for which the
input is given below. The output of the subroutine is
the same for all cases and is also given below.

Input

When used as a separate program, the input is on
N+1 cards and is read as follows:

CARD 1: Y F p I, N

FORMAT(2E10.4, I10) F

CARD 2: MN' ON' 'Na ,eN' SN (Data at last point of
main program)

(One card for each data point)

CARD N+I- M1' 1' ji' all S1  (Data at first
point of main program)

The symbols in the input statement have the follow-
ing meanings:

GAMMA (y): Ratio of specific heats

P/P (PN,N/Po):Pressure ratio at point N,N (Fig.32).

N: Number of data points.

M (M. j): Total Mach number at data point, i=j. I-

RHO (10 j): Nondimensionalized coordinate of data-i..J {point (Fig.32).

PSI (i. j): Nondimensionalized coordinate of datapoint (Fig.32.)

f 14
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THETA (8i .): Flow deviation with respect to p axes,
at data point (radiansl)

S (Si j): Entropy change from free stream at data
'i point, normalized with respect to twice

the specific heat at constant pressure.

Output

The output consists of the Mach angle and velocity
at the data points, which is printed next to the data,
and a page of output for each second family characteristic
line, i=constant, which gives the flow conditions at each
point along the line.

The output symbols, not defined under input, have
the following meanings:

MU (Ai.j): Mach angle (radians).

W (W. j): Flow velocity, normalized with respect to
2, the limiting velocity.

I (i): Second family characteristic line. The
computation starts at I=N, Fig. 32.

P/P-IUF(pi,j/pm): Pressure ratio at the wall points,i.e., last point on each i line.

J (j): First family charucteristic line, Fig.32.
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3. • Conira! Shnok prngram

The double conical shock program computes the flow I

field behind the intersection of two conical shocks of
different strength when given the flow conditions behind I
the shocks. An option is included which allows one of|
the cones to be oriented by an angle attack, e, with re-
spect to the free stream direction. The properties I
immediately behind the upper and lower shocks behind the
intersection are found, along with the new shock angles.
This data can be used in the characteristic subroutine,
(Section C), to find the flow field on a plane passing|1
through the shock intersection.

Input

The card input consists of three cards if both cones
are at zero angle of attack and four cards if one cone
is at an angle of attack, and is read as follows:

CARD 1: MS1 *' 01*1 'Y1 pl/p' SI/R S -/

FORMAT (5E10.4)

CARD 2: M* p/P S,/R
l2; 1,2 2' 2Y 1,2

FORMAT (5E10.4) F

CARD 3: r,q,Ao,y, S2 /R,KALF

FORMAT (5E10.4, I10)

CARD 4: t7/0 1, M4*, M* 2 'CAD •'•/ 2* w , •2" 2

FORMAT (5lQ.4) t
(only required if the angle of attack o t 0)

The symbols in the input have the following mean-
ings:

M1* (MI*): Critical Mach number behind the shock of
the first cone, ("base cone"), which has
zero angle of attack.

PSIi* (0i*) Flow direction angle behind the shock of
the base cone, (radians). V

144'
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GAMMA 1 (y ): Base cone shock angle, (radians).

PI/P-INF (p l/p ) Pressure jump across base cone shock.

S!/'R (S jR): Entropy increae ac.rs ase co.-;e sh&OCkJ
normalized with respect to the universal
gas constant, Reference 15.

M12*(M* 2 ): Critical Mach number behind the shock of
the second cone, for zero angle of attack.

PS12 (4,2): Flow direction angle behind the shock of
the second cone, for zero angle of attack,
(radians).

GAMMA 2 (y,2 ) Shock angle of second cone at zero anqle
of attack, (radians).

P2/P-INF(p 2/po): Pressure ratic across the second cone
shock, for zero angle of attack.

S12/R(S 1 ,2/R): Entropy increase across second cone shock,
for zero angle of attack.

R(r): Vertical, (y), distance between cone
verticies, normalized in any convenient
manner:.

Q (q): Normalized z distance between cone verticies.

DELTA-PSI (Ab): Step size in k for determining the inter-
section curve. A typical value is 5 deg.(deg.).

GAMMA-BAR (y): Ratio of specific heats.

S2/R (S /R): Entropy perturbation, due to angle of
*2 attack of second cone 1 6 .

KALF: Index for including angle of attack of

second cone; =0, zero angle of attack; 3 0,
nonzero angle of attack.

ALPHA (&): Angle of attack of second cone, (deg.).

ETA/ALPHA( r/&): Ratio of tilt angle of second cone shock
- to angle of attack 16.

"M2* (M : Critical Mach number perturbation, due toS( 2*
angle of attack, behind second cone shock.
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MW2*(M*w Critical Mach number normal to meridian
plane, behind second cone

PSI2* 02*)'" : Flow direction angle perturbation, due to
angle of attack, behind second cone shock,
(radians).

Output V

The output consists of the maximum value of 0, three
quantities which are invariant along the intersection curve "
and tables which describe the intersection curve, the base
and second cone flows and the flows in the upper and lower
intersection regions, for each point i on the intersection
curve.

The meanings of the symbols in the output are:

PSI-MAX(Omax.): Maximum value of intersection curve
coordinate, 0, before reaching double
values of p, (degrees).

THETA-I (8): Angle between second cone shock axis and
free stream direction, (radians).

COS(BZ) (cos(bz)): Direction cosine of binormal to intersection
curve and z axes.

MZI(Mz): Mach number compronent in z direction, behind
1 lower cone shock.

PSI (4i): Meridian coordinate of point on intersection
curve, (radians). -

COS(TX) (cos(tx).):Direction cosine of tangent to intersection
curve and x axes.

COS(TY)(dos(tyl):Direction cosine of tangent to intersection
curve and y axes.

COS(TZ)(cos(tz).):Direction cosine of tangent to intersection "
curve and z axes.

COS(BX) cos(bx). :Direction cosine of binormal to Intersection F
curve and x axes.
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COS(BY) (cos(by).) :Direction cosine of binormal to intersection
curve and y axes.

COS(NX) (cos(nx).):Direction cosine of normal to intersection
curve and x axes.

COS(NY) (cos(nyl) :Direction cosine of normal to intersection
curve and y axes.

COS(NZ) (cos(nz).) :Direction cosine of normal to intersection
curve and z axes.

RHO (p.): Nondimensionalized radial coordinate ofpoint on intersection curve.

GAMMA Cr.): Angle between the normal to the intersection
curve and the free stream direction, (radians).

MYl (My ): Mach number component in y direction behind
1. base cone shock.
1

MXl (M ): Mach number component in z direction behind
li base cone shock.

MT-BAR 1 )(Mt : Mach number component tangent to the inter-
1i section curve, behind the base cone shock.

MN-BAR (M- ): Mach number component &long the normal to
ni.i the intersection curve, behind the basecone shock.

MB-BAR 1 (Ms ) Mach number component along the binormal to
i the intersection curve, behind the base

cone shock.

MN1 ): Total Mach number component in a plane normal
1i to intersection curve, behind the base cone

shock upstream of the intersection.

DELTA 1 (I): Strength of the base cone shock in a plane

1 normal to the intersection curve, and which

is assumed to be constant through the inter-
section, (radians) .
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X (xW: Nondimensionalized x' coordinate of inter-
section curve point i.

Y (y'): nondimensionalized y' coordinate of inter-
section curve point i.

Z (z'): nondimensionalized z' coordinate of inter-
section curve point i.

PHI ( Meridian angle of intersection curve point,
(second cone coordinates), (radians).

U-BAR (u) : Velocity component behind the second cone
shock along the z axes, normalized with

respect to limiting velocity.

V-BAR (v) : Normalized velocity component behind thesecond cone shock along the r axes.

W-BAR (w) : Normalized velocity corlponent behind the
second cone shock, normal to the meridianplane.

M*(M*) : Total critical Mach number behind the second
cone shock.

A2 (a2.): Speed of sound behind the second cone shock,
1 normalized by the limiting velocity. {

MX2 CM ): Mach number component in x direction, behind
2. second cone shock

MY2 (M ): Mach number component in y direction, behind
2. second cone shock.

MZ2 (M ) Mach number component in z direction behind
2  second cone shock.

MT-BAR 2 (M-2): Mach number component tangent to the inter-" 2.section curve, behind the second cone shock.

MN-BAR 2 (M-n): Mach number component normal to the inter-
2 section curve, behind the second cone shock.
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MB-BAR 2 (Ms Mach number component along the binormal
2 to the intersection curve, behind the

second cone shock.

MN2 (MN Total Mach number component in a plane
2 normal to the intersection curve, behind

the second cone shock.

DELTA 2 2 Strength of the second cone shock in a
plane normal to the intersection curve,
and which is assumed constant through the
intersection, (radians)

MBi (M Mach number component'behind lower portion
Bi of intersection, in a plane nori,,al to the

intersection curve.

THETA (A 3 Second cone shock angle with respect to 61.

in a plane normal to intersection curve, be-
hind the intersection,(radians).

M3T (M Mach number component behind lower portion of
intersection, tangent to the intersection
curve.

M3 (M 3. Total Mach number behind lower portion of
1 inter sect ion.

P3/P-INF(p 3 /p Pressure ratio immediately behind lower
i portion of intersection.

S3 (S Entropy change from free stream, behind
3.

lower portion of intersection, normalized
by twice the specific heat at constant
pressure.

MB2 (MB Mach number component behind upper portion
2. of intersection, in a plane normal to the

intersection curve.

THETA (A Base cone shock anglewith respect to
4. 2.'

1
in a plane normal to the intersection
curve, behind the intersection, (radians).
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150

M4T (Mt): Mach number component behind upper portion
4. of intersection, tangent to the inter-

section curve.

M4 (14.): Total Mach number behind upper portion of
intersection.

P4/P-INF (p 4 /p):Pressure ratio behind upper portion of
i intersection.

S4 (S 4 ).: Entropy change from free stream behind upper
- portion of intersection, normalized by twice

the specific heat at constant pressure.

i 1-

tt
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UV
4. Plane Shock - Conical Body

When given a conical flow field and a free stream Mach
number, thic program computes the flow behind the shock
from a two-dimensional wedge, both before and after its
intersection with the conical shock. The reflection
curve of the modified plane shock on the conical body is
then determined, together with the flow field behind
the reflected shock on the cone surface. The characteristic
subroutine, described in Section C, is incorporated in the
program to compute the rest of the flow field on the
conical body.

Input

The card input to the program consists of four cards
and it is read as follows:

CARD 1: M , 81, r, q, Az, I/

FORMAT (6EI0.4)

CARD 2: pc/p. , I Tc/T , S2 /R

FORMAT (4El0.4)

CARD 3: Yco M*lc' 01 c

FORMAT (3EI0.4)

CARD 4- 7b' M*lb, 61b

FORMAT (3E10.4)

The meanings of the symbols in the input statemcnt are:

M-INF (M): Free stream Mach number.

DELTA-I (61): Two-dimensional wedge angle, (deg.)

R (r): y distance of the wedge vertex from the cone
vertex, normalized in any convenient manner,
(Figure 38).

Q (q): Normalized z distance of the wedge vertex
from the cone vertex.
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DELTA-Z (Az'): Step size in z' for determining inter-

section curve.

GAMMA (y): Ratio of specific heats.

PC/P-INF (pc,):Pressure ratio behind conical shock.

PB/P-INF (p/p) :Pressure ratio at cone surface.

TC/T-INF (T/) :Temperature ratio behind conical shock.

S2/R (S 2 /R): Entropy increase across conical shock,
normalized with respect to the universal
gas constant.

GAMMA (7c' Yb): Conical shock and cone angles, respec-
tively, (radians).

Ml-STAR(M*cM*ýj :Critical Mach numbers behind conical shock
and on cone, respectively.

PSI-I (0 03b). Flow deviation behind conical shock and
on cone, respectively, (radians).

Output

The output consists of many parts. The first includes
some quantities in the two-dimensional and conical fields,
which are independent of the shock intersection. Second,
are tables describing the intersection curve of the plane
and conical shocks, and the flow conditions ahead and
behind the modified plane shock near the intersection. Next,
the reflection curve of the modified plane shock on the cone
surface is described, along with the flow conditions in
front and behind this shock near the body. Finally, the
conditions behind the reflected shock on the cone surface
are given. The characteristic subroutine is included in
the program and its output is described in Appendix V-2.

The meanings of the symbols in the output are:

GAMMA-C (yc): Cone shock angle, (radians).
c

MR (Mr)- Mach number component behind the conicalr •shock, parallel to the shock.
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shock, normal to the shock.

M-1 (M) Mach number behind the two-dimensional shock.

THETA-i (Ri)z Two-dimensional shock angle, with respect
to the free stream direction, (radians).

P1/P-INF(Pl/p )Pressure jump across two-dimensional shock.

Al/A-INF(al/a): Speed of sound increase across two-dimen-
1 sional shock.

ZP (z') : Normalized z' coordinate of point on two-
dimensional and conical shock intersection,
on plane of two-dimensional shock.

xP (x'i): Normalized x' coordinate of point on shock
1- intersection curve.

OMEGA (Q.): Angle between the tangent to the inter-.. section curve and the z' axes. The com-

putation of the curve terminates dhen
Qi<5 0 , (radians).

M2XP (M ): Mach number component in x' direction,
2,x. behind conical shock.

M2YP (M2 ): Mach number component in y' direction,
2 y Ibehind conical shock.

M2ZP(M 2  ): Mach number component in z' direction,
z . behind conical shock.1

M2NP (M2  ): Mach number component normal to the
n. intersection curve in the plane of the

1 two-dimensional shock, behind the conical

shock.

M2TP (Mt): Mach number component tangent to the inter-
t. section curve, behind the conical shock.

1
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M2KN (M2  ): Total Mach number component in a plane
N normal to the intersection curve, behind

the conical shock.

DELTA (2): Flow deviation behind conical shock withrespect
to plane of two-dimensional shock, in a
plane normal to the intersection. (First

term of Eq. 138 ) (radians).

OMEGA-STAR: •/2-0i, (radians) .

GAMMA: Free stream flow deviation with respect to
the plane of the two-dimensional shock, in
a plane n3rmal to the intersection curve.
(Second term of equation 138) , (radians).

DELTA (2) STAR (6*",):Strength of the conical shock in a plane
normal to the intersection curve, (radians).

DELTA (1): Flow deviation behind two-dimensional shock
with respect to two-dimensional shock plane,
in a plane normal to the intersection curve.
(Second term of equation 135 ') (radians).

DELTA(1)STAR(6.):Strength of the plane shock in a plane normal
i to the intersection curve, (radians).

P4/P2(p 4 /P 2 )i: Pressure jump across modified plane shock.

A4/A2(a 4 /a 2 )i: Speed of sound increases across modified
plane shock.

M4N (M ): Mach number component in a plane normal to
SN. the intersection curve, in the lower inter-

1 section region.

THETA(4) (A4i): Modified plane shock angle behind inter-
section, with respect to upstream conical
flow direction, in a plane normal to the
intersection curve, (radians).

M4T (4): Mach number component tanget to the inter-
t. section curve, in the lower intersection

region.
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M4 (M.): Total Mach number in the lower intersection
3. region.

P4/P-INF(P 4 /PCO)i :Pressure ratio in the lower intersection
region.

A4/A-INF(a /a ): Speed of sound ratio in the lower inter-
S1 section region.

SIGMA(4)(cy4.): Flow deviation in the lower intersection
I region with respect to the z'-axes, (radians).

THETAP(4) (,q4 ): Lower shock angle with respect to the C axes,
i Figure 39, (radians).

S4 (S4.): Entropy increase from free stream, in the lower
i intersection region, normalized by twice the

specific heat at constant pressure.

GAMMA(K) (yb): Conical body half angle, (radians).

I (i): Shock - conical body intersection points.

ETA (i) : Normalized coordinate, normal-to plane of
the two-dimensional shock, of intersection
point of modified plane shock and conical
body, (Figure 39).

ZETA iNormalized coordinate of intersection point,
1 in plane of two-dimensional shock normal to

intersection curve.

X (x. ): Normalized x coordinate of intersection
1I point.

Y (Y ): Normalized y coordinate of intersection
point.

¶ Z (Zil): Normalized z coordinate of intersection
point.

RHO (pi): Normalized radial, conical coordinate of
intersection point, (Figure 40).
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PHI (•i): Meridian, conical coordinate of inter-
section point, (radians).

CHECK: Checks if x. 'Yi , z. ,lie on the

conical body 121 21 2 2
conca bdy(Xjil+ y il -(tan .vb)2 zi2 =0O)

THREE POINT I=a, I=b , I=c Intersection points
SELECTION: chosen for determining reflection curve.

(The program presently uses I=l, I=4
I=10).

RHO-O,RHO-1,RHO-2, Normalized coordinates of the three sel-

(PO' 1' *2 ected points.

PHI-1,PHI-2, Cooordinates of last two selected points.
(l' '•2) : The coordinate mo = 0, (radians).

COS(TX) (cos(&x)i):Direction cosine of tangent to reflec-
tion curve and x axes.

ACOS(TY) (cos(ty)i):Direction cosine of tangent to reflec-
tion curve and y axes. -

COS(TZ)(cos(&z)i):Direction cosine of tangent to reflec-
tion curve and z axes.

A
COS(BY) (cos (by)i):Directioncosine of binormal to reflec-

tion curve and y axes.

COS (BZ) (cos(bz)i):Direction cosine of binormal to reflec-

tion curve and z axes.

A!
COS(BZ)(cos(bz)i):Direction cosine of normal to reflec-

tion curve and x axes.
A

COS(NY)(cos(ny).).Direction cosine of normal to reflec-

tion curve and y axes.
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A
COS (NZ) (cos (nz)): Direction cosine of normal to reflection

curve and z axes.

M2XP(M 2  ): Mach number component, in x' direction, on
x 'bi conical surface.

M2YP(M 2  ): "ach number component, in y' direction, on

Y bi nical surface.

M2ZP(M 2  Mach number component, in z' direction, on
z' conical surface.bi

M2T(M 2  ): Mach number component tangent to intersection
tbi curve, on conical surface.

M2N(M 2  ): Mach number component normal to intersection
nbi curve, on conical surface.

M2KN(M ): Total Mach number component in a plane normal
Ni to the intersection curve, on the conical
bi body.

P4 /P2(p4/P2)bi: Pressure jump across the modified plane shock
near the cone.

A4/A2(a 4 /a 2 )bi: Speed of sound inciiase across the modified
plane shock near the cone.

M4CN(M 4 4" Total Mach number component in a plane
b i normal to the intersection curve, in front

of the reflected shock, near the cone.

THETA(4) (64b): Modified plane shock angle near the cone,
b. with respect to the direction of M21 (radians). N

bi

S4(S ): Total entropy change behind the modified
b plane shock near the cone, normalized by

1l twice the specific heat at constant

pressure.

M4T(M 4  ): Mach number component tangent to the inter-

tbi section curve, in front of the reflected

shock, near the cone.
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M4N(M 4  ) Mach number component along normal torn
bi t crf.

ted sho6k, near the cone.

M4B(M 4  ) Mach number component along binormal to
bbi intersection curve, in front of reflec-

ted shock, near the cone.

M4TB(M 4 )4 : Mach number component tangent to the
t. reflection curve, in front of the reflec-

tod shock, near the cone.

M4?'B(M 4 -) Mach number component along the normal
n. to the reflection curve, in front of the

1 reflected shock,near the cone.

4)- Mach number component along the binormal
b. to the reflection curve, in front of the

1 reflected shock near the cone.

DELTA-4(6 4 ). Flow deflection across the reflected shock
4i in a plane normal to the reflection curve,

(radians).

M4KN(M 4  ): Total Mach number component in a plane
N. normal to the reflection curve, in front

1 of the reflected shock.

THETAP-6(@ý )s Reflected shock angle with respect to the
i cone surface, in a plane normal to the re-

flection curve (radians).

Pressure jump across reflected shock on cone
surface.

A6/A4(a 6 /a 4 )': Speed of sound increase across the reflected
41 shock on cone surface.

M6N(M )6 Total surface Mach number component in a
N plane normal to the reflection curve behind

1 the reflected shock.
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M6T(M 6  ): Surface Mach number component tangent to
t. the reflection curve, behind the reflec-

ted shock.

P6/P-INF(p 6/p ):Pressure ratio on cone surface behind re-
6 f flected shock.

SIGMA-6(a 6 ): Surface flow deviation behind the reflected
6. shock, with respect to the p axes.

$6(S6 ): Total surface entropy change behind the re-
i flected shock, normalized by twice the

specific heat at constant pressure.

1.
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APPENDIX VI

(SAMPLE PROBLEMS - THREE-DIMENSIONAL)

1. Wedge Program Example

To illustrate the use of the wedge program a particular
example was carried out for the following input data:

X = 55 deg.

M = 4.23

X = 8 deg.

S!0

Az= 0.05

All lengths have been normalized with respect to r by in-
putting r=l. The program output is included in this appendix
and the symbols are defined in Appendix V-1.

Each set of non-dimensionalized coordinates x and z
represent a point on the intersection curve of the shock on
the plane surface. However, if the ratio x/z is considered
the variation of flow conditions on the wedge surface is
determined. Each set of conditions, i, corresponds to the
flow on a ray on the base plane of the wedge passing through
the wedge vertex and making a angle tan-I(x/z)i with the z
axes,. Due to the assumption of linear theory the flow on the
wedge surface is the same as that on the base plane of the
wedge. The last set of conditions (i = 22) corresponds to those
on the edge of the local Mach cone and therefore also to the
constant conditions in the two-dimensional region. Note that
the step size has been reduced by a factor of 5 for the last
set of points in order to approach the two-dimensional values
more closely. Figure 43 presencs the variation of Mach
number, pressure ratio and flow deviation across the wedge
surface. Only half the wedge is shown due to its s'rrmetry.

These conditions are also valid in front of the reflected
shock. The strength of the reflected shock at any point i on
the intersection curve depends on the upstream Mach number in a
plane normal to the intersection curve at that point and on the

1
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deflection of the flow necessary to turn the flow parallel

to the plane surface. These quantities are plotted for each
pooint on the intersection curve i.. Figure 43. At first.
one would expect that the shock strength would decrease as
points further and further from the z axes are considered
since the normal Mach number decreases. However, it is also
necessary to consider the fact that the flow deflection in-
creases as the two-dimensional region is approached. There-
fore, the shock strength may increase or decrease dependincj
on the relative effects of these two quantities. It is also
possible that as-the two-dimensional region is approached the
required deflection will become too large for the corresponding

normal Mach number, resulting in a Mach reflection. This did
not occur in this example but would result in a program stop as
described in Appendix V.

The conditions immediately behind the intersectiorn curve
on the plane surface are plotted in Figure 45. Figures 44
and 45 do not represent a cross section, but points on the
intersection curve (Figure 3u of the main text). It can be
seen that the shock strength decreases a little and then in-
creases as the intersection curve is traversed from the z axes
to the two-dimensional region. It should be noted that the
values of e2ni can be used to construct the reflected shock.

In particular A 2n is the angle between the reflected shock

and the z axes in the y-z plane.
3
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[2. Conical Shock-Plane surface Program Example
rThis p~rogram was run together wit--h 1-hp c-haranteristin

subroutine program for the following input data.

M = 4.0

Rl =10deg.

YC= 0.30918 rad. (10 deg. cone)

y = 1.4

r = 2.5

q = 2.0

AZ = 0.01

=1.562

M* = 2.09123lc

Oc= 0.0803353 rad.

S 2/R= 0.089929

This program output is included in the appendix and the
,symbols are defined in Appendix V.2.

Corresponding to each value of i, the set of coordinates
x' and z' represent a point on the reflection curve of theL
conical shock from the plane surface. This curve also represents
the data line for the characteristic subroutine and is shown in
Figure 46. . The curve is terminated after computing a maximumt
number of 25 points. If it is necessary to find the flow
further out on the curve the step size, Az, would have to be in-
creased. If a large enough step size were used the reflection
curve computation would terminate either at a Mach reflection or
when the slope of the curve with raipect to the z' axes becomes
50 or less.

The variation of the reflected shock strength can be
determined from Figure 47 where the total upstream Mach number
component in a plane normal to the reflection curve (M 2 and

2N.
and the flow deflection necessary to turn the flow parallel to
the plane surface (62) are plotted vs. the slope
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FIGURE 47 - CONDITIONS AFFECTING STRENGTH OF
REFLECTED CONICAL SHOCK
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of the reflection curve i The effect of these parameters

is described in Appendix VI.1 where it is also pointed out
that this figure does not represent a cross-section but points
along the reflection curve.

The conditions on the plane surface behind the reflection
are given in Figure 48. The first part of the figure shows
the pressure and Mach number variations immediately beiind the
reflection curve. It can be seen that a Mach relection must
occur quite soon since the pressure is increasing so rapidly.
The second part of the figure shows the variation of the pres-
sure along the line of symmetry (p or z' axes) on the plane
surface as obtained from the characteristic subroutine program.

Something should be said here about the output of the
characteristic subroutine. The first page gives the value of
the pressure behind the reflection curve on the centerline and
"the flow conditions along the reflection curve, which is now
called the data line. The data is given in reverse order, i.e.,
the point furthest out on the curve is listed first and the
centerline point is given last. The next page gives the condi-

* tions along the second family characteristic line closest to
the centerline data point. This line is designated by the
value of i, and the value of p/pm given at the top is the
pressure ratio at the Intersection of this second family

characteristic line and the centerline (wall). The procedure

continues until the second family line from the data point

furtherst out on the reflection curve has been considered.
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3. Double Conical Shock Program Example

[ This. p-rogram t.~c f,=vv-d out4 fo-r t-hoe-cas w'here one
cone is at an angle of attack for the following input data:

M* = 2.03183 (M. = 4.0, 15 deg. cone).

1

= 0.165935 rad.

,y1 = 0.38032 rad.

p 1 /p = 2.4056

S 1 /R = 0.067733

M* 2.06346
1,2

*i,2= 0.12262 rad.

Y2 = 0.342957 rad. (M1 = 4.0, 12.5 deg. c•"

p 2 /p = 1.9441

S1,2/R = 0.029667

r = 2.0

q= 1.0

= 5.0 deg.

y = 1.4
(-

s 2 /R = 0.52932

KAILF = 1

2.0 deg.

= 0.654926

M2* = -0.408226
2

4w, 2 = 1.86308

02 =-0.505885 rad.

198

4'



The program output is included in this appendix and the
symbols are defined in Appendix V.3.

The intersection curve of the two conical shocks is
described in terms of conical coordinates p and 0, which
lie on the base cone surface. The computation of this
curve is terminated when the value of Omax , which repre-
sents the point where the intersection curve starts to
bend back in, is reached.

The pressure, Mach number and entropy immediately
behind the intersection curve in the lower and upper regions
are given by Figures 49 and 50. These quantities are
plotted versus the meridian angle 0 and therefore are at

points along the intersection curve. As shown in the out-
put these computations are terminated when a so-called Mach
reflection is reached. This means that the normal Mach
number components are too small for the necessary deflections
and a cusped intersection with a normal shock region occurs.
"Comparison of Figures 49 and 50, shows that the pressure
ratios in the lower and upper regions, at each point on the
intersection curve, differ by less than 2% even though the
assumption of constant shock strengths has been used instead
of an iter~ation procedure.

I-
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4. Plane Shock-Conical Body Program Example

The following input data has been used as an exampleI

of the operation of this program:

M1 = 4.0

61 = 10 deg.

r = 2.5

q = 2.0

Az = 0.05

= 1.4

pc/pC = 2.405 (15 deg. cone)

Sp/p. = 2.80

T/T = 1.31

S2 /R = 0.067733

Yc = 0.3803 rad.

M* = 2.03183

Oic = 0.165935 rad.

Yb = 0.261799 (15 deg.)

M* = 2.01128
lb

Oib = 0.261799 rad.

The program output with the characteristic subroutine is
included in this appendix and the symbols are defined in
Appendix V-4.
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The ini-ersertion curve of the plane and conical shocks

in coordinates on the plane surface is given in Figure
51. As noted on the first page of the output, this com-
putation terminates when a so-called Mach reflection is

reached, which means a cusped-normal shock intersection
exists in the plane normal to the intersection curve.
Figure 52 shows the variation of Mach number, pressure
ratio and entropy in the lower intersection region, immedi-
ately behind the intersection curve (conditions 4) versus
the slope of the curve with respect to the z' axes (Q.i).

The program next computes the intersection curve of the
modified plane shock and the cone surface. To do this it
is necessary to pick three points through which to construct
the second order curve (Section E ). The points chosen in
this case are i = 1,4, and 10. This curve is terminated due
to a Mach reflection. The flow properties M4  , p4 b/P

bi

and S immediately behind the modified plane shock near

the cone surface are shown in Figure 53 and differ some-
what from those in Figure 52 since the flow upstream of
the modified plane shock is conical. The flow properties
immediately behind the reflected shock on the cone surface
are plotted versus the slope of the reflection curve on the
conical surface, 0, given by {

t n 
Ni

6 

.
P a 66+ ta

1

in Figure 54. The pressure variation along the centerline f
on the cone surface obtained from the characteristic subroutine
is given in Figure 55. The output of the characteristic sub-
routine is described in Appendix VI-2.
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