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3 THE RESPONSE CF
NITROGUANIDINE TO A STRONG SHOCK

By

Donna Price and A, R. Clairmont, Jr.

ABSTRACT: 1In its range of detonability, nitroguanidine (NQ) behaves
as & Group 1 explosive, In addition, it exhibits faillure at the
high TMD (2 94%pat 5.08 cm diam) as well as the more common failure
at a lower critical density. The high bulk density (HBD) form of
NQ exhibits a critical diameter about three times that of the low
bulk density form. This fact aided in studying the suberitical
region of NQ (HBD) where a strong shock produces a subdetonation,
supersonlc, constant velocity front. This pseudo-detonation or

IVD had fallure characteristics similar to the detonability limits
of Group 2 materials. That trend, the power of the LVD reactions,
and the dimensions of the various gap tests can be combined to
explain (1) a hump in the curve 50% pressure vs % TMD obtained for
NQ(HBD) in the gap test and (2) a reversal in apparent shock
sensitivity rating of NQ(HBD) and NO(LBD) when Eesfea on the large-
and small-scale gap tests.

Approved by: Carl Boyars —
ADVANCED CHEMISTRY DIVISION

CHEMISTRY RESEARCH DEPARTMENT
U.S. NAVAL ORDNANCE LABORATORY
White Oak, Silver Spring, Maryland
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This work was carried out under ORDTASK 033 102 FO09 06 01 Prob 001
and MAT O3L 000 RO1ll 01 01, Its results are particularly useful

in the interpretation of gap test results as shock sensitivity of
the test exploslve, and in providing information about pseudo-
detonation (ILVD) in granular charges.

E. F, SCHREl(ER
Captain, USN
Commander
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THE RESPONSE OF
NITROGUANIDINE TO A STRONG SHOCK

Donna Price and A, R, Clairmont, Jr.

INTRODUCTION

In the course of comparing the shock sensitivity to detonation
of a number of explosives, 1t was found that the high bulk density
(HBD) form of nitroguanidine (NQ) failed to detonate in the small
scale gap test.! Moreover, its apparent power in that test
decreased with increasing loading density, This suggested the
possibility that NQ might belong to Group 2 explosives typified
by ammonium perchlorate.?® Members of this group differ from
TNT-1ike explosives (Group 1) in exhibiting a limit curve of
increasing critical diameter with increasing critical density.

As a result of this limit behavior, the typical detonation
velocity (D) vs loading density(p,) curve also differs from that
of TNT-like materials in being non-linear and in exhibiting a
maximum in D,

The purpose of the present study was to determine whether
NQ is a Group 2 explosive. The study showed clearly that it is
not, and also produced interesting new information about differ-
ences in behavior (detonation, detonability, and sensitivity)
between the low bulk density (LBD) NQ and NQ (HED), In particular,
it provided a much more detailed picture of pseudo-detonation
(or "low velocity detonation") in granular explosives than is
avallable 1in the literature.
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EXPERIMENTAL
Nitroguanidine

All samples of NQ, HyN<C(NNO; )*NH, were supplied by NOS,

Indian Head, Md, The NQ (LBED) was manufactured by North American
Cyanamid, Niagara Falls, Ontarlo and satisfies the military speci-
fication MIL~-N-4QU4A; its nitroguanidine content is 99,5% or greater.
This material is in the form of needle-like, and frequently hollow,
crystals with diameter of 5 to 10u and length of 60-100n, Only one
lot of NQ (IBD) was used and that was designated X547.

The NQ (HBD) was prepared at NCS from NQ (LBD). The preparation
involves precipitation under controlled conditions and in the presence
of a small amount of colloidally active material.® The particles
are chunky cylinders of ¢/d of about 4, The average length is reported
as about 20y although particles of up to 200 have been observed in
the present work, The pour-density is about 0,7 g/cc as contrasted
to less than 0.2 g/cc for NQ (LBD)., Two lots of NQ (HED) were used;
they were designated X530 and X589 and their sieve analyses are
given in Appendix A,

The presence of the colloiding agent makes it difficult to
grind the NQ (HBED). Nevertheless, NOS was successful in grinding
X589 to obtain a material in which 50-60% (by number) of the particles
are under 10u in dimensions, This lot was designated X588 and its
sieve analysis and photomicrographs are also given in Appendix A,

Charge Preparation

For charge preparation, the NQ was dried at 50°C for 4 or more
hours and then pressed to the required density, as shown in the
tables, The lowest density charges were hand packed in eellulose
acetate envelopes, The highest charge density for NQ (LBD) was
1.627 g/cc obtained in the isostatic press. NQ (HED) can be pressed
to at least 1,70 g/cc. The erystal density 1s 1.78 g/ce.

e e
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Cylindrical granular charges, 20,32 cm long, were prepared over
the range of 1,27 to 7.62 cm in diameter, Preparation and procedures
were comparable to those used in the ammonium perchlorate study.4

Set-up and Instrumentation

The experimental set-up of the previous work* was also used here,
Two inch long boosters (pentolite or tetryl) of the same diameter as
the test charge were used for initlation, and a one-inch pellet of
the same explosive was frequently placed as a witness at the end of
the charge.

A 70 mm smear camera was used at a writing speed of 1 to 3
mm/psec to follow the luminosity (or flasher enhanced luminosity) of
the shock induced reaction, Film, flasher, length of charge observed,
and writing speed for the photographs of each shot are tabulated in
Appendix B.

Records

The records were reduced and interpreted by the methods described
previously.* The maximum error estimated for reading records of the
lowest resolution 1s 1.5% in the detonation velocity. In the 14 sets
of data which include replications, the average precision is 0,8%,
but this value includes seven sets of low density charges (hand
packed or hydrostatically pressed) for which the larger deviations
(1.0 to 1.7%) most probable reflect non-uniformity of the charge,
i.e., error in the effective value of p,.

The photographic records were of excellent quality and are
illustrated by Figs., 1 and 2 typical of high and low velocities,
respectively.

It should be mentioned that all veloclty measurements will be
somewhat high because a non-planar shock wave was used in the
initiation, For D values comparable to that of the booster
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(7.2 mm/usec), this error varies from less than 0.2% at d = 2.5 em
to 1,54 at 4 = 7.6 em,® For lower D values, the error is less, No
correction has been made for this effect, but 1t can be estimated
whenever the size of the correction seems significant.

RESULTS AND DISCUSSION
Ideal Detonatlion Velocity

It 1s not necessary for the objectives of this work to investi-
gate the validity of the currently accepted infinite dlameter curve,
Dy v8 p,, for NQ. Nevertheless, we must use the curve for reference
and it seems wathwhile to see how well it fits recent data at rela-
tively high and relatively low Py e

NQ (LBD) cannot be easily compressed to very low porosities.
However, NQ (HBD), which has been available in commercial quantities
for more than ten years®, can be compressed to at least 95,5% TMD and
probably higher, Materlials like RDX and PETN can be detonated as
single crystals, 1.e., at 1004 TMD, but NQ at 1.70 g/cc (95.5% TMD)
cannot be detonated as a 5.08 cm diameter core in a 1,27 em thick
steel tube.® There are consequently no data in the older literature
for D measurements at high p,.

It 1s not porosity alone which accounts for this detonability
phenomenon because 90/10 mixtures of NQ/RDX are detonable at 95% TMD
in 5,08 c¢.1 diameter, unconfined charges.®* From the known ideal
curve for RDX” and the simple additivity principle, the D value for
pure NQ at this porosity can be calculated from that measured for
the mixture. The two highest density data points of Table 1 and
Fig. 3 were obtalned in this manner,

* It 1s not necessary that the material added be a more shock
sensitive material. Ref, (6) 2lso reports detonation of
unconfined, 5,08 cm diameter NQ/AP, 69/31, at 96,8% TMD, a
porosity at which neither component can be detonated alone.
It is quite possible that an inert solid diluent would also
increase detonablility at low porosities,
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Two sets of data in the present work were appropriate for
extrapolation to D, (or for averaging at the higher density of 1.62
g/cc where the diameter effect cannot be detected). One point was
obtained with NQ (HBD); the second, with NQ (LBD). Both fall on
the ideal curve of Fig., 3. The other high density data are from
the Army Manmual as indicated in Table 1.

Table 1 and Fig. 3 also contain data for the very low density
range (0.12-0.50 g/cc) which can be attained because of the needle
like crystals of NQ (LBD). There has been a recent interest in
taking advantage of the low bulk density of this material to Frepare
charges exhibiting a correspondingly low detonation pressure, New
low density data are availlable as a result.

Although the data from the very porous charges do not fall as
close to the ideal curve as those at the higher densities, they lie
as close to it as might be expected in view of the difficulty of
controlling the uniformity of the very porous charges. However,
the actual curve must diverge somewhat from the linear curve at low
densities if the experimental data are to Join smoothly with the
value computed for P, = 0.01 g/cc. [The detonation parameters for
po = O were computed by H. Hurwitz on the Ruby code with the ideal
gas law used as the equation of state for the detonation products,
Results are shown in Table 2. At P, = 0.01 g/ce, PJ = 187 bars and
TJ = 2602°K., The low pressure and high temperature indicate that
the 1deal gas law is applicable,] Divergence of the curve is shown
as the dashed line in Fig. 3. According to this, the currently
accepted Dy vs p, curve for NQ°

Dy (mm/psec) = 1.44 + 4,015p, (1)

holds down to P ~ 0.3 g/ce. At lower densities, it diverges to a
value of Dy (p, = 0.01 g/cc) = 2.05 mm/psec.

Stesik and Shvedova*® first made use of such a computation
(pg~0.01 g/ce) in studying nitrocelluolose (NC), another explosive in
a physical form sultable for preparing charges of very low density,

FRCEEARIES TEE SRS
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TABLE 2

St o e o

COMPUTED* VALUES FOR NQ AT ,, = 0.01 g/cc

C=J Values

Velocity

Pressure

Temperature 2602°K
0.01795 g/ce

Density

Gamma, 1,258

Total gas

2.048 mm/psec
186.7 bars

Detonation Products
_(moles/1000g H.E.)

co

OH
¢ (s)

Negligible (< 0.003 moles/1000
)s CHy, N, N,0, NO, 0, and

*Ruby code with ideal gas law as equation of state for products,

g H.E.) concentration found for

0

2.

8. 604
1.005
0.006
10.585
8.591
19.215
0.004
0.012
0

48.08 moles/1000¢ H.E.
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Their most porous charge of NC was 0,13 g/cc and their D vs p, curve
for NC is very similar to that obtalned here for NQ., Moreover, they
computed low density values for TNT, tetryl, pilcric acid, RDX, and
PETN, all materials difficult to prepare at densities less than

0.5 g/eec., The computed detonation velocity values were either close
to the intercept (po = 0) values or well above them, as is the case
for NQ. E.g., computed values for TNT, RDX, and PETN were 1,996,
2,371, and 2,194 mm/psec, respectively, whereas intercept values are”
1,873, 2,532, and 1,550 mm/usec.

NQ {LED

Table 3 contalns the detonation velocilty meésurements made on
the low bulk density NQ as a function of dlameter and loading density,
These values (or thelr averages, when given in Table 3) are plotted
in Fig. 4. It 1s evident that the dlameter effect 1s small for this
material, but that it 1s larger at low po than at high., In other
words the higher density data are practically on the Eq(l) curve; the
lower density data, below it, Since this is the case, 1t 1s reason-
able to use the slope of the ideal curve to make small corrections
in the hlgh po data for small variatlons in pe. Table 4 contains the
D vs d data, at po = 1,514 to 1,524 g/cc of Table 3, so corrected to
po = 1.514 g/cc; the corrected data are plotted in Fig. 5.

(page 10a follows)
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TABLE 4
DIAMETER EFFECT AT po = 1.514 g/cc for NQ (LBD) X547

d D* 10a~1

cm mn/iLsec em™t

® 7 . 5U*% 0
2,540 7.485 3.937
1.905 7440 5.249
1,588 7 440 6,297
1.429 7.363 6.998
1.270 F 7.874

*¥Data from previous table corrected to present density
by Eq (1)
*¥By extrapolation

Fig. 5 shows that the dlameter effect at this density (85% TMD)
is very small., The velocity at d = 2,54 em is only 0.0¢ mm/psec
lower than that at d = =. The extrapolated value, D, = 7.54 mm/usec,
compares well with the Eq(l) value of 7.52 mm/usec.

A few serles of Table 3 were carried to the fallure limit; those
that were are summarized in Table 5, and the fallure curve is illus-
trated in Fig, 6, This is typical Group 1 behavior for which the
eritical diameter increases with decreasing critical density. Fig. 7
compares the limit curve of NQ (LBD) with that of a coarse TNT,!*
Although the trends are the same, the critical diameter of the NQ is
2 to 3 times that of the coarse TNT at the same ¥TMD,

11
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TABLE 5
DETONABILITY LIMIT DATA FOR NQ (LBD) X547 ‘
dc(cm) ?
Qo(g/CC) o+ - %
) 1.00 2.54 - f
1.21 1.59 1.43 |
- 1052 1043 1027 ;
i

po(g/ce)

d(em) + -

1.43 1.52 1,21

NQ (HBD)

Table 6 contains the constant velocity measurements for high
bulk density NQ, X530, as a function of diameter and loading density.
The behaviors of this coarse particle sized explosive under shock are
detonation, pseudo-detonation, and failure,

a. Detonation. The detonation pattern of NQ (HBD) is illustrated
in Fig. 8. Like Group 1 explosives, the originating point for the
D vs p, curves of different dlameters 1s on the ideal curve at the
high density end. (Points above the ideal curve exceed D, only by
the order of magnitude of experimental error and also of that of the
correction, which has not been made, for a non-planar initiating
shock front.) From the originating point the curves fan out with
s8lopes that increase as the dlameter decreases, ]

The failure at highest densities (dead pressing) is not generally 1
observed with the commoner Group 1 materials, It has been described :
and discussed in a previous section. The failure at the low density
end of the 3,81 cm diameter curve was the usual one to be expected -?
with approach to critical density., Failure at the low density end
of the 5,08 cm curve is not as clear-cut. Of the four charges at
Py ~ 1.3 g/cc, two were prepared in the isostatic press; their data

13
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1.3
FIG. 6 SECTION OF LIMIT CURVE FOR NQ (LBD) X547
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NOLTR 67~169

appear at the lower end of the linear portion of the 5.08 cm dlameter
D vs p, curve, The other two, prepared in the hydraulic press, had
lower velocitles., However, the apparent difference might arise from
differences caused by different effective densities resulting from
the two different methods of compaction, The points at 1,20 and
1.25 g/cc are also measurements made on charges prepared in the
hydraulic press, Although the record for the lower density charge
shows the familiar curvature obtained in faillures, the record for the
charge of 1.25 g/cc showed constant velocity. In other words, the
D vs po curve for d = 5,08 cm instead of terminating abruptly at the
end of its linear portion, appears to fall rapidly as it approaches
Pee Thls may occur at other diameters and remain undetected because
the experimental charge denslitlies chosen were spaced too far apart.
The dlameter effect on D, although somewhat more obvious for
the NQ (HBD) data than for the NQ (LBD) data of Fig., 4, is still very
small, When the D vs 4 data of Table 6 at p, = 1.615 ~ 1.626 g/cc
are corrected to p, = 1.620 g/cc, they show no detectable trend (see
Table 7). This is, in part, because the dlameter effect at high p,
is no larger than experimental error; in part, because NQ (HBD) 1is a
coarse material with which it 1s hard to duplicate charges. The mean
value is 7.98 mm/usec (o = 0.030) and compares well tc the two point
average for NQ (LBD), at d = 3,65 cm and corrected to p, = 1.620 g/cc,

of 7.99 mm/usec, Both are slightly higher than the ideal value of
7.94 mm/usec from Eq(l).

TABLE T
LACK OF DIAMETER EFFECT ON D OF NQ (HED)

d(em) D(mm/jLsec)# %
5,08 7.963 ;
454 7,994
4,13 7.969 |
2.97 T.933
3,81 8.026
3,81 T.997

%0, = 1.629/cc Average 7.980 (o = 0,030) 1
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The limit data for detonation of NQ X530 are collected in
Table 8 and plotted in Fig. 9 which also shows the failure curve for
NQ (IBD) X547, It is evident that NQ (HBD), like NQ (LBD), shows
the Group 1 trend of increasing dC with decreasing Poe In view of
the difference in particle size and shape, it is not surprising that
the NQ (LBD) curve lies well below that for NQ (HBD) nor that the
"dead-pressing" phenomenon, 1if it exists in NQ (LBD), occurs at a
higher density than in NQ (HBD). The highest density we achieved
for the LBD material was 1.627 g/cc at d = 3,65 cm; it detonated at
these conditions whereas the NQ (HBD) falled at 1.617 g/cc.

TABLE 8
CRITICAL DATA FOR DETONATION OF NQ (HBD) X530

po (g/cc) d(cm)
+ - o+ -
1,63 1.67 3.81
1.62 3.81 3.65
1.40 1.36 3,81
1,25 1.20 5.08
1,00 7.62 -

b. Pseudo Detonation. In the lower density region, shocked
NQ (HBD) exhibits a dlameter and density dependent constant front
veloclity well below that of the ldeal curve., The behavior observed
1s 1llustrated in Filg. 10 which covers the reglon of what we shall
call pseudo detonation or LVD (for the term "low velocity detonation'
which frequently appears in the literature).

The phenomenon of LVD 1is well established for liquid explosives,
particularly for nitroglycerin which has been extensively studiled,
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For solld explosives, many reported instances of LVD are obviously ;
transient states encountered in the course of bulldup to detonation. j
There are. however, a few instances of sub-detonation but supersonic
constant velocltles persisting for great distances., 4

Patterson!® first noted that a 1.5 in. diameter cartridge of !
blasting gelatin (NG and NC) exhibited a constant velocity of about !
2.4 mm/usec without any sign of fading over a length of at least 17 ft.
He also found that at cartridge diameters of 7/8 to 2 in., elther
detonation {D ~ 8 mm/jLsec) or LVD could be initiated according to the
power of the booster used; that above d = 2 in., only detonation was
stable, l.e., a reaction front initially moving at lower veloclties
would accelerate to D If the cartridge were long enough. Other
workers noted that the blasting gelatin must have some aeration to
exhlbit LVD and that frequently some unburned exploslive can be re-
covered after LVD has traversed the cartrldge.

An earlier reference and one more relevant to the present work
is that of Jones and Mitchell,!® They too used detonators of different
power on coarse granular charges of TNT. They report, "by using a
sufficiently narrow cartridge, or, alternatively, a sufficiently
coarse grist of explosive, the low-order detonation can be made to
travel throughout the length of the cartridge (at least a meter) at
a rate which 1s both uniform and repeatable,==~==~--~ On the other hand,
if a sufficlently powerful initlator is used, the same cartridge
propagates detonation at a greatly enhanced speed, the rate of deto-
nation being agaln uniform and repeatable," They too comment on the
presence of undecomposed explosive residue alfter LVD,

Recently, Parfenov and Apin!?, have studled coarse granular low
density charges of tetryl, TNT, and RDX. For each material, p, was
fixed ( ~ 1.0 g/cc) and the diameter varied in the range of 5 to
40 mm, The ratio 4/d was kept = 10, The particle sizes used were
1000-1600n, 630-1.000u, and 400-630. for tetryl; 400-630u for TNT, and
1000-1600u for RDX, As in the previous two references, initiators of
high and low power were used, In all three H,E.,, regions of detonation
and of LVD were reported, For TNT and RDX, these reglons showed
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overlap¥*, but for tetryl they were sharply divided at d = dc for
detonation., Consequently the division was also detectable when only
the high powered initiator was used. Gurton?®, on the other hand,
reports an apparent overlap for another coarse tetryl (pour density
of 0.9 g/cc, particle size not reported). At d = 1,11 cm (7/16 in.),
Gurton reported 1.5 and 4.6 mm/usec obtained respectively with weak

and strong initliation., The latter figure is quite close to the ideal

velocity for this density, and the former is in the range of LVD
measurements of Ref, 17, It 1s also possible that 11.1 mm was about
the critical diameter (it is near the d, values of Ref, 17); if so,
the two sets of data’’s'%are completely consistent.

It is our opinion that the pattern of Fig. 10 is caused b& a
simllar LVD phenomenon which 1s detected with our powerful initiator
only at dlameters below the critical value for detonation. It is
possible, of course, that a weaker initiator might extend the LVD
curves to higher p,, but the shock velocities in the failures (indi-
cated as F in Fig. 10) are generally lower than the constant value
of the LVD at d = 1,59-3.81 em., For that reason a weaker initiator
would not be expected to extend the LVD curves,

In detonation of a pure H.,E., the dlameter effect on D is found
experimentally to be

D =gqg +p8/d o B, po constant (2)
and 4 >> dc
If we let ULV = the constant but pseudo detonation velocities of
Fig. 10
Upy - 142 = (@* - 1) (3.29 - 1.08 po) (3)
where U, d, and p, are in mm/usec, cm, and g/cc, respectively, and

n ¥ 0,129 + 0,316 p, = 0,445 p, "7
The ranges for Eq(3) are 0.75 to 1.0 g/cc and 1.59 to 5.08 cm in
po and & respectively.

*The overlap was in the dlameter range of the velocity vs 4 curve,
i.e., for some d values either detonation or LVD occurred according
to the kind of initlation, It 1s interesting that the coarse TNT
exhibited d, = 24 mm at p, = 0.95 g/cc (about twice the dc for the
finer materlal of Fig,. 7? and that LVD was observed in the range 23-
30 mm,
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It is quite evident that the diameter dependence of ULV Eq(3)
is very different from that of D Eq(2). Similarly the dependence on
‘po differs because, experimentally, Group 1 explosives show

D = A'" + Blp,, A',B', and d constant
da>ad
or ¢ /
) D (d,po) = A + Bpy - 6(90)/d where A, B are constants

for the infinite diameter curve and B(p,) seems to be a linear
function of p,.

For these reasons as well as the termination of the detonation
curves shown in Figs. 8 and 10, the phenomena described by Eq(3) are
| considered pseudo~-detonation or LVD, We do not mean to suggest by
this term that the reactlon involved in LVD is necessarily very weak,
Even at 1ts lowest velocities (~ 2 mm/usec at d ~ 1.6 cm and Po ~
0.8 g/cc) 1t was able to initiate an explosive witness placed at the
end of the charge. At higher velocities it appears well able to
damage steel plates,

Fig. 10 shows a previously unreported area of failure (1.20 to
1,36 g/cc in extent) separating the region of LVD from the region of
detonation for the curves obtained with charges of d = 3,81 em. But
because previous investigators!®+17+18 pestricted themselves to a
constant charge density (and a low one) for granular charges, they
could not observe such a density dependent fallure phenomenon. In
view of our own difficulty in sharply dividing pseudo-detonation from
detonation behavior in the moderately sized charges (d = 5.08 cm), it
1s fortuitous that we happened to choose the charge size of @ = 3.81 cm
at which such a failure area seems clearly evident. The smaller
: charges (d = 1,59 to 2,54 ¢m) exhibited only LVD and were evidently
subcritical for detonation over the entire density range tested.

* The trends of Fig, 10 indicate that as the charge diameter is
increased, the LVD regilon approaches the detonation region. At
sufficlently large diameter, therefore, only detonation should be
observed., Thils trend 1s perhaps more evident when the data at fixed
charged density are plotted as front veloclty vs charge diameter,
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This has been done in Fig, 11 for NQ, X530 at p, = 0.85 g/cc where
it is compared with the Russian curvel!” for coarse tetryl at Po =
0.90 g/ce, Parfenov and Apin'7 found that the tetryl exhibited LVD
at d < dc’ detonation at d = dc’ Because the critical diameter for
detonation of NQ X530 at p, = 0.85 g/cc is much greater than that of
the tetryl (See Fig. 9), the entire ranse of diameters in Fig. 11 is
suberitical for NQ., At some large dlametc., NQ, like the tetryl,
would probably exhibit a discontinuous charge from LVD to detonation,
As Fig. 10 also shows, there exists a fallure or limit curve for
the LVD behavior. The critical data, collected in Table 9 and plotted
in Fig, 12, emphasize the interesting fact that the limlt curve for
LVD (Fig. 12) 1s exactly opposite in trend to the limit curve for
detonation (Fig. 9). Moreover the limit behavior for LVD (increasing
diameter with increasing density) parallels the Group 2 limit behavior
for detonation. It seems most likely, therefore, that it was an LVD
reaction which was responsible for an increasing output with
decreasing %TMD when NQ (HBD) was tested in the small scale gap test.!
It also seems highly probable from the dents produced that reactions
in at least a part of the LVD region will be qulte powerful enough
to exhibit a positlive result on the regular large scale gap test.

TABLE 9O
LIMIT DATA FOR PSEUDO DETONATION OF NQ (HBD)

Diameter Density p,(g/cc)
d(cm) + -
1.59 0.85 1,00
2,54 1.00 1.10
3,81 1,10 1.20
5,08 1.10 1.20

The usual qualitative explanation for an LVD reaction 1s that it
is supported bythe explosive decomposition of only a fractlon of the
H.E, present. If as Ref, 16 suggests, LVD can be ovserved in sollds
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only when they are coarse granular materials, it is possible that its
propagation depends on a hot gas flow through a granular bed exhibi-
ting a particular porosity. But it is difficult to consider such a
mechanism applicable to blasting gelatin even when it contains some
aerated areas., The concepts of partial reaction and surface reaction
do seem applicable in both cases.

The mechanism of pseudo-detonation which seems most acceptable,
however, is that suggested in 1962 by Bowden.'® It consists of an
ignition wave coupled to a shock wave, e.g., a shock wave travelling
through crystal of explosive, which contains a numer of imperfections,
ignites the explosive at the site of each imperfection.'® The ignition
wave travels at the shcckwave velocity although the deflagration, that
continues at each lgnition site after the shockwave has passed, pro-
gresses at a much slower, subsonic rate,.

Imperfections in a single crystal serve as hetergeneous areas
where energy concentration and hence ignition can occur. In granular
explosives, there 1s probably a range in grain sizes and shapes which
favor hot spot formation on grain surfaces when the grain bed 1s
shocked. (Local concentration of energy could occur by reflection
and reinforcement of the initial shock and by spalling or jettlng of
the shocked grains,.,) If the physical characteristics of the granular
bed are such as to produce numerous, well distributed sites of igni-
tion, such shock-produced hot spots can result in the continuous
smear camera record of a pseudo-detonation. The grain size favoring
pseudo~detonation will depend on the material, Thus, for the relatively
sensitive tetryl (p, = 0,90 g/cc), it is reported at a grain size of
400-16001 and 4 < d, =12 mm,*” But for the less sensitive NQ, X530
(ps = 0.85 g/ce) it is found at a grain size of up to 200n (average
about 100n) and d = 16 - 50 mm, It has not been observed at all in the

low bulk density NQ¥ which has thin needle crystals of 50 - 100w length.

*\ttempts made to initiate IVD in NQ (LBD) with weak initiators were
unsuccessful, Gurton'® refers to LVD of a NQ (LED) at Py = 0.5 g/ce
and d = 1,1 to 1.9 cm, but he measured the same velocities for both
weak and strong initiation. Since the velocitles were also high

(80 - 90% ideal for p, = 0.5 g/cc), it is probable that the phenom-
enon he observed was detonation,
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The instantaneous reaction and energy release at the hot spots,
although amounting to oniy a small fraction of the total chemical
energy of the explosive, 1s sufficilent to contributeto the shock wave
energy to the extent of producing an essentially constant velocity
front. Moreover, in every case the energy release resulted in a
pressure at the surface of the pentolite witness sufficiently high
to inttiate almost immediate detonation of the pentolite (See Fig. 2).
Initiation of pentolite very near the shocked surface, l.e., a run-~ :
length of a few mm, requires shock pressures of about 40 kbar although
the minimum initiating pressure (run length of up to two diameters {
from the shocked surface) is perhaps 10 kbar. The pressure of about
40 xbar, indicated by the behavior of the pentolite witness, is of
the order of magnitude required to punch the steel witness plate in
the standard gap test of shock sensitivity. It is therefore to be
expected that some of the pseudo-detonation reactions will exhibit
positive results in the gap test.

c. Effect of Particle Size. We have assumed that the major
differences in behavior between NQ (IBD) and NQ (HBD) in the lower
po range arises from the difference in particle size. [In the higher
po range where both materials are detonable, they differ markedly
in detonability (Fig. 9) but not in detonation velocity after initi-
ation.] But because of the very different particle shapes in the
two forms of NQ, it seemed desirable to compare a sample of NQ (HED)
with the same material after 1t had been ground vo a smaller
particle size,

For this purpose, NQ (HBD) X589 was obtained; its screen analysis
was similar to that of X530 (See Appendix A). A sample of X589 was
then ground until it contained a large number (at least 50%) of fines; .
the ground material was designated X588. Table 10 contains the |
detonation velocity data obtained for comparision of these two mate-
rials,

X589 appears coarser than X530; it exhiblts failure at p, = 1.0
g/cc whereas X530 shows LVD here. Grinding X589 makes it effectively
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much finer than X530, For example, 5.08 e¢m charges of X588 exhibit
veloclities equal those of the 7.62 cm charges of X530. Moreover,
at 5.0C cm diameter, NQ X588 is detonating at D of 0,88, 0,93, and
0.99 Dy, respectively, for p, values of 1.0, 1.2, and 1,35 g/cc.
Hence, decreasing the particle size by grinding has eliminated the
LVD region of Fig, 10 at this diameter. Increasing the diameter can
also eliminate the LVD region., For any given material, the ratio of
i1ts particle size to its charge diameter and its shock sensitivity
probably determine whether LVD appears.

Shock Sensitivity

The regular gap test?° has been used to investigate the shock-
to-detonation sensitivity of various lots of NQ in the past. These
earlier test results are collected in Table 11 and plotted in Fig, 13,
Three production lots of NQ (HBD) from NOS fell on the same Pg VS pq
curve despite average particle size variation of 38-100n. Moreover,
all three lots confirmed the existence of the unusual hump in the
curve between 75 and 85% TMD, Heretofor we have had no suggested
explanations for this peculiarity. In view of the present work we
can surmise that 1t might be caused when the induced reaction s an
LVD rather than detonation,

Aside from the small hump on the lower curve, the trends of
Fig. 13 seem normal. NQ (HBD) approaches its "dead-pressed" density
in the gap test configuration at about 92% TMD (1.64 g/cc); this
compares well to slightly above 1,626 g/cc, the value found in the
work on unconfined charges of d = 5,08 ecm, At this high density, the
diameter effect is negligibly small; hence the unconfined and con-
fined charges should exhibit the same critical density for detonation,
The sensitivity curve for NQ (LBD) lies slightly above that for the
high density material and approaches the lower curve at the greatest
compaction, It, however, shows no hump and is very like P_ vs TMD
curves of other H.E. (See, for example, Ref 1) The difference, NQ
(LBD) less shock sensitive than NQ (HBD), is that expected when the
chief difference between lots 1is a difference in particle size.
Generally the finer material, if 1t differs at all from the coarser,
shows lower shock sensitivity in a granular charge!,
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TABLE 10 g
|
DATA FROM NQ'S X530, X588, AND X589 |
Front :
Po Velocity Shot
NQ g/ce mm/usec No.
d =5,08 em; (£/d) = 4.0
X589  1.001h F(3.54)2 397 ;
1.201H F(4.14) 396 |
1.4271 7.067 395 |
1.4331 7.169 399 |
s
x588° 1.001n 4,803 411 |
1.202H 5.805 410
1.3511 6.797 409

Effect of Particle Size

Front Velocity Relative Particle
NQ d Po: 1.00 1,20 1.43 Size
X589 5,08 F F 7.12 Coarse
X530 5.08 3,76 F 7.10° Less coarse
X588 5.08 4,80 5.80 -- Least coarse

Front Velocity

NQ 4 pyr 100 1,20 1.3
X588 5.08 T80 5.80 6.80 Fine
X530 7.62 4,83 5.68 6.74° Coarse |

4 F means failed. Number in parentheses 1s velocity of failing
shock.

b X589 ground, See Appendix A
¢ Read from Fig. 8
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The hump in the NQ (HBD) curve of Fig. 13 is at about 79% TMD
or 1.41 g/ecec. This 18 about the critical density for 3.81 cm diam-
eter unconfined charges of NQ, X530 (See Figs. 8 and 9). The explosive
core diameter in the gap test is 3.65 cm, but since the diameter
effect 1s still small* at 1.41 g/cc, the effective diameter for deto-
nation in the gap test should be close to 3.81 em. Hence it is very
near po ~ 1l.41 g/cc that detonation of this NQ would fall in the gap
test. The confinement, by providing local shock enhancement by
reflection from the steel walls, might well extend the density range
of LVD up to the critical density for detonation. In other words,
the containing steel tube which would have little effect on deto-
nabllity at this density might so enhance the possibility of LVD that
the pseudo-detonation can occur at p, < P If at charge densities
lower than p, ~ 1.41 g/cc LVD does occur, its reaction would be
sufficiently powerful to punch the steel witness plate, 1l.e., to pro-
duce a positive result in the gap test.

In accord with the above Iinterpretation, the hump in the P8 Vs
% TMD curve of Fig. 13 results from a combination of detonability and
shock sensitivity behavior near the critical density Po for detonation.
At po > p,s NQ (HBD) detonates and Ps measures its shock sensitivity
to detonation; at po < p, this NQ exhlbits LVD and P8 measures its
shock sensitivity to LVD.

If this explanation is correct, other samples of NQ (HBD) which
exhibit p, ~ 1.41 g/cc should also exhibit a hump in the Pg vs $TMD
curve. If such a NQ is ground until it is detonable at lower charge
densities, then its shock sensitivity curve should resemble that for
other H,E, and be concave upward over the #TMD test range with no
hump present.

Table 12 contains the gap test data for X589, a recent production
lot of NQ (HBD) and for X588, a sample from the same lot after
grinding. Detonation velocity measurements (Table 10) showed that

*For 3.81 cm diameter charges, the D values at 1.5. and 1.41 g/cc
are, respectively, 0.98 and O.96D1.
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X589 is apparently a coarser material than X530. It was therefore
expected to exhibit a fallure to detonate in the gap test and produce
a hump in the Pg vs #TMD curve near the location of the hump in

Fig. 13, The data taken in that location (range of 78 - 85% TMD)

are plotted in Fig. 14 and show the expected hump. The ground mater-
i1al X588 was shown by detonation velocity measurements to be detonable
in thils range and should exhiblit no hump in its sensitivity curve.

As Fig., 14 shows, this is the case and the Pg vs ¥TMD curve for X588
in this region is concave upward and approximately parallel to that
for NQ (LBD) which is also shown for comparison. The difference
between NQ (LBD) and X588 (the latter is more sensitive) is that
expected in comparing relatively fine with relatively coarse material.
The difference between X588 and X589 is in the opposite direction.

An apparent reversal in the usual particle size effect on shock
sensitivity could occur 1f the witness damage 1is cause by detonation
in the one case and LVD in the second.

Two additional aspects of gap testing are worth emphasizing.
First, to judge by the velocity pattern of Fig. 10, there 1s a large
range of conditions in which a single shot could not be adequately
classified as detonation or LVD., This wouid be 8o even for an
instrumented gap test (in which detonation velocity or pressure
might be measured) because classification requires knowledge of the
complete pattern of Fig. 10,

The second point is that the peculiarity in the measured shock
sensitivity curve, which is, of course, caused by the test conditions
and is not a peculiarity of the true sensitivity, could conceivably
occur in any H,E, It is certainly not restricted to NQ although it
may be restricted to H.E., which can exhibit LVD., It is not certaln
that all solid explosives can do this, but it does seem clear that
a large grain silze and a small charge dlameter favor the appearance
of LVD.

There 1s an example in the recent literature!s,21 in which the
gap test results on a coarse (400 p tetryl) closely paralleled these
on NQ {HBED), In a small scale test (d = 12.7 mm, charge unconfined),
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TABLE 12

MOST RECENT SHOCK SENSITIVITY TESTS ON NQ

50% Foint
oy TMD No. Py
NQ g/ce % Cards (kbar)
X589 1.4371 80.7 80 58
. 1.4391 80.8 79 58.5
E 1.5161 85.1 68 65 3
§ 1.3884 78.0 97.5 50 fi
§
| X588 1.3871 78.0 109 46 ;
14401 81.0 98 50  }
1.5041 84.5 81 57.5 (]

A1 it g = s o el e ety ot o en e+ e
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there was a decided peculiarity in the shock sensitivity curve (same
qualitative direction as that of Fig, 13), and there was an apparent
reversal in sensitivity ratings of the fine and coarse tetryl when
the small rather than the large scale test results were used. The
close parallelism with the behavior of NQ* coupled with the Ref, 17
results: (a) that tetryl (400 - 630 u) exhibits LVD and (b) that
at po = 0.9 g/ce, its dc value is about 12 mm, i.e., approximately
the gap test dlameter used in Ref, 21, make it possible to explain
these tetryl results in the same way as those for NQ,

SUMMARY

Recent detonation veloclty data for NQ at high (1.7 g/cc) and
low po lie on the currently used ideal curve down to p, ~ 0.3 g/cec,
Below this denslity the velocitlies lie above the straight line and
appear to vary slowly wlth density to the terminal valuve of 2,05
mm/psec computed for p, = 0,01 g/cc.

Work with NQ (LBD) showed that the diameter effect on D is
small for this material, particularly at high densitles, 1Its
fallure curve and detonatlon veloclty pattern were typical of Group 1
explosives,

The high bulk density NQ also showed Group 1 behavior in the
density range of 1.3 to 1.6 g/ce (d = 5,08 em), coupled with fallures
to initiate at p, > 1.62 g/cc (dead pressing). However, NQ (HED)
exhibited diameter- and density-dependent pseudo-detonations (LVD)
in the density range of 0,7 to 1,1 g/cc, The functional rel:stion
between LVD, p,, and d differs markedly from that of D, p,, znd d.

In addition, the limit curve for d and p, in LVD shows the opposite
trend to that of the faillure curve in detonation, i.e., it shows
that the critical density for IVD increases with increasing diameter,

It 1s to the existence of this LVD region that a previously
unexplained hump in the shock sensitivity curve of NQ (HBD) is now
attributed, [Although the LVD is of lower velocity than detonation,
its driving reaction is frequently sufficiently powerful to damage
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the steel witness used in the gap test,.] Grinding NQ (HBD) to a
finer material (and hence decreasing its critical diameter for deto-
nation) resulted in a shock sensitivity curve showing no hump (Fig.14).

PROSREI U T————

ACKNOWLEDGEMENT

I The authors wish to thank many colleagues who assisted in this :
1. work., In particular, G. Roberson, I. Jaffe, D, Edwards, and

‘ J. O. Erkman have each contributed to various parts of the study.,

C. Lyttle of the Chemical Engineering Divislon cooperated closely b
with us in preparing the charges; and the personnel of NOS, in E
preparing NQ Batch X588, ;

P U

2o it el i

o o o T
b
1
H




NOLTR 67-169

REFERENCES

1. D, Price and T, P Liddiard, Jr., "The Small Scale Gap Test:
Calibration and Comparison with the Large Scale Gap Test",
NOLTR 66-87 (7 July 1966).

2. D. Price, "Contrasting Patterns in the Behavior of High
Explosives", Eleventh Symposium (International) on Combustion,
The Combustion Institute, Pittsburgh (1967), pp 693~702.

3. V. Milani, R. Evans, S. Skolnik, and F. C. Thames, "The Prepar-
ation of High Bulk Density Nitroguanidinc", NAVORD Report 3037
(Dec, 1953)

4, A, R, Clairmont, Jr., I. Jaffe, and D. Price, "The Detonation
Behavior of Ammonium Perchlorate as a Function of Charge
Density and Diameter"”, NOLIR 67-71, (20 Jun 1967)

I,
PR

5. A, R, Clairmont, Jr, and I, Jaffe, "Anélysis of Optical Deter-
mination of Detonation Velocity in Short Charges", S.P.I.E.
Journal 5, 18-21 (1966). See also NOLTR 64-23,

‘ 6. H. Heller, 0. H. Johnson, and J. M. Rosen, NAVORD 6688 (1959).
i Confidential

; 7. "Properties of Chemical Explosives", UCRL-14592, Univ, of
' California, Lawrence Radiation Lab,, Livermore, Calif, (1965).

F' 8. M. D, Hurwitz, OSRD 5611 (1945).

ﬁ 9. "Military Explosives", TM 9-1910 and TO 11A-1-34, Depts. of
the Army and the Air Force (1955).

L oS

10, W. B, Benedick, Rev, Sci. Instru., 36, 1309-15 (1965). See also
Sandia Research Report, SC-49G7(RR), (1963).

R

Gl W~ o 3 T
e e . s 0 o B, WA, S A

T

39

T T Ty
L e~
™

ey i = S o s

T

>

s B
‘
\
.
t
.
i
H
t
1.




B g smear;

11.

20,

2l.

NOLTR 67-169

J. Savitt, "New Explosives Evaluation Tecnnigues®, Teeh. Dse.
Rept. ATL~TDR-64-1b, Eglin AR Base (1304). Confridential

W. B. Benedick, private communication.

L. . Stesil and H. 3. Shvedova, PHTF (i9€4) pp 1i2k-1i25,
Translatz¢é by LCDR W, W, Bannistsr. OKI Translation MNo. 21il.

V. K. Bobolev, Doki. Akad. Hauk SSSR 57, 789 (1947). Translated
by U. S. Joint Publications Res. Service, JPRS: 4026.

S. Patzrson cited in J. Taylor, "Detonation in Condensed Explo-
sives”, Clarenden Prass, Oxfoxrd (1952) o 163 et seq.

E, Jones and D. Mitch=1l, "Sprcad of Detonation in High Zxplo-
sives", Nzture 161, ¢6-i¢ (1943).

A, K. Parfenov and A, Ya. Apin, “Low Velocity Detonation in
Pulvcrized Txplosives”, Seientific and Technical Problems of
Combustion and Explosion (Mo. 1, 1%65), pp 151-55, U. S. Dept.
of Commerce JPRS 32,52¢, TT 65-3300S.

0. A. J. Gurton, "The Role of Gas Pockets in the Propagation of
Low Velocity Detonation”, Preprints Second ONR Symposium on
Detonation (1955).

F. P. Bowden, "The Initiation and Growth of Explosion in the
Condensa2d Paase”, Hinth Symposium (International) on Combustion,
Academlc Press, New York (1963) pp U499-516,

I. Jaffe, G. E. Roberson, A. R. Clairmmont, Jr., and D. Price,
"The NOL Large Scale Gap Test. Compilation of Data for
Propellants and Explosives II", NOLTR 65-177, (15 liov 1965)
Conf'idential

L. B. Seely, "A Proposced Mechanism for Shock Initiation of Low
Density Granular Explosives”, Proceedings of' Fourth Electric
Initiator Symposium at Franklin Institute, Phila, 1963

Paper 27 of Rept. EIS-A2357.

Lo




NOLTR 67-169
APPENDIX A

ADDITIONAL INFORMATION ON THE LOTS OF NQ USED

Sieve analysis is inappropriate for fine materials of high g/d
such as the R (IBD). As remarked in the text, X547 was in the form

of hollow needle-like crystals. A typical photomicrograph appears
in Ref 10.

The Ro-Tap Sieve Analyser was used for the NQ (HBD) although,
as the resilts show, this is not an ideal method of gaging grain
size. Table Al contains the data which show 50% weight median
values of 106, 95, and 117u for lots X530, 589. and 588, respec-
tively. It seems highly unlikely that X538 (ground X589) is actually
coarser than X589. Figs Al-3 are photomicrographs of X588 showing
the large amount of fine material (< 10 p); the coarse material is
comparable to that of the original, unground NQ. Moreover, X588
detonates as a finer material thar either X589 or X530 s and X530 as
finer than X589, but in both cases screen analysis indicated the
reverse in relative fineness. Factors such as an unfavorable g/d
and electrostatic retention of fines are evidently distorting the
mean size as determined by the Ro-Tap. Under these circumstances,
there seemed little point in running additional sieve analyses.
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FIG. A-2 PHOTOMICROGRAPHS OF NQ (X588)
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FIG. A-3 PHOTOMICROGRAPHS OF NQ {X588)
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APPENDIX B
SUPPLEMENTARY DATA

Table Bl contains the optical detalls for each of the 70 mm
smear camera records obtained. Table B2 contalns the velocities
obtained by fitting the position-time (x-t) data to the various
functions:

a) linear

b) hyperbolic (contains cross product xt)

¢) quadratic

d) Spline fit(qeqnential cubic segments, continuous first

and second derivatives.)

Whenever such a fit is made, the overall velocity for the inter-
val can be found. The linear fit (a) has been used for all ve-
locitles reported in the tables of the text of this report. As
Table B2 shows, from the sampling so far made, the overall ve-
locity from the spline fits agrees very well with the veloclty
from (a) although there is no question that the spline treatment
seems to gilve the best fit of the four to the actual x-t data.

In deciding whether the measured velocity is constant over
the 63,5mm interval chosen near the end of the charge, we need
some way of estimating the departure of the smear trace from a
straight line. We have found by working with straight edges that
variables in the record reading and reducing procedures can in
troduce as much as 2% change in the velocity. We can compute
that our use of a curved initiating shock will introduce up to
1% velocity change a% the largest diameter (7.62 cm), Various
other factors such as roughness and heterogencity of the charge
surface, over- or underexposure of the film, and stability of
the front 1tself have e*fects that we have not yet been able
to assess, It should be noted that for most of the shots in
Table B2, the camera viewed the last six inches of the charge
because the response (constant or attenuating velocity) was un-
known. Consequently the time resolution 1s only about half -
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that attainable when a length only 2.5 in, of charge is vlewed;
2.5 in. 1s used whenever a constant velocity front 1s expected.
The poorer time resolution (6 in, view) very probably contri- :
butes something to the larger percentage changes observed. The g
absolute value of the change as well as its percentage value
must also be kept in mind; random errors would be expected to
show larger percentage effects at the lower velocities,

; Again from the sampling, methods (b) and (c¢) generally mea-
| sure about the same percentage change. The decision as to whether
i this indicates constancy or failure 1s still subjective . Up to
: 3% variation can be accounted for. Thus shot 305 (14%) is un- 3
X doubtedly failing, shots 310 and 318 {2,.7-3.2%) probably detonating, ;
|

i

:

!

}

|

and shot 279 (6%) is also considered a detonation because of its
location in the D vs po family of curves in Fig. 8. It 1s possible
that the factor of 2 difference in the velocity change for shot 279 as
compared to shots 310 and 318 could arise because the latter two

_ charges were prepared hydrostatically and consisted of four two-

i inch long pellets whose camera smear records are consequently

made up of four arcs instead of the single one from the isostatically
pressed charge No. 279, Moreover, the longltudinal density varia- i
tion and hence detonation velocity would differ within the charges

prepared in the different presses, Finally, any charge near 1its

fallure 1limit would be expected to show more instability of 1its

front than adefinitely super-critical charge,

In the low velocity regime, we are faced with both the lower %
absolute values of Upy and the metastability of the disturbance. f #
The latter fact means that propagation of the low veloclty front ! %
will be much more sensitive to charge heterogeneity than would a ' ;
detonation, Agaln our decision of constancy or fallure has to be
made, in part, from the Upy pattern of Fig., 10. Thus because of
the respective locations, Shot 288 (7.2%) is more apt to be a P
constant velocity than Shot 289 (4.4%). It is evident from the L
velocity changes shown in Table B2 that low p» and low d both

—— o e L " - o
s - A Y 7 W AR o ot i S

b7

5 20 ona i e s s Ay oot
- e o " e e b




.
N o e 45

x
S e ki r——— b

B s i 1 e i St e S &

(s \w

[ e L

. s

NOLTR 67-169

enhance the possibility of Upy. The exact point at which .ps and
d have increased to the extent that this particular NQ(HBD) no
longer exhibits a metastable reaction, but an unquestionably

unstable one, cannot be selected without doing much more work on

longer charges. The large values of some of the velocity changes
(Table B2) suggest that some of the Upy shown at higher o, and d

in Fig. 10 are in fact attenuating shocks; if so, the limit curve
of Fig. 12 should be shifted to the left. On the other hand, the
change in velocity found for the more dublous cases 1s comparable
to that.found in detonation near the citical density (Shot 279);

this suggests that the figures as now shown are correct.

The important result of the present work is the demonstration
of the exlstence of an extensive low velocity region, not the
exact boundaries of this reglon in the d~py plane. For reasons
discussed .above, these boundaries would be very difficult to es-
tablish, would be of no theoretical interest, and would be almost
impossible to verify (reproduction of a failure limit of a
metastable phenomenon). Consequently, no further work on this
topic 1s planned.
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