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FOREWORD

The work described in this report was authorized under
Task 1B522301A08101, Disseminotion Investigations of Liquid
and Solid Agents (U). The work was started in July 1966 and
completed in January 1967.

Reproduction of this document in whole or in part is pro-
hibited except with permission of the CO, Edgewood Arsenal,
ATTN: SMUEA-RPR, Edgewood Arsenal, Maryland 21010; how-
ever, Defense Documentation Center is authorized to reproduce
the document for US Government purposes.

The information in this document has not been cleared
for release to the general public.



DIGEST

The conditions required for the spontaneous ignition of

a volatile fuel drop suddenly exposed to a hot oxidizing en-

vironment have been investigated theoretically using a simpli-

fied model of the physical situation. Analysis of the model,

a reactive spherical shell with unequal boundary temperatures,

defined the conditions (Jnni istent with thermal stability of

the shell. Two types of reaction rate were used, one with a

simple Arrhenius form, and a second explicitly involving

radial distance as well as a temperature dependence in

Arrhenius form.
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I INTRODUCTION

Many physical and chemical processes are involved in the ignition

of a volatile fuel droplet suddenly exposed to a hot oxidizing environ-

ment. A complete mathematical description of these processes and their

interactions can be formulated but is so complex that even computer

solutions are impractical. Consequently, simplification is desirable.

A simplifying approach to the problem is suggested by an experimental

study of droplet ignition.7 That study revealed that igniti-n only

occurs if the initial droplet diameter, d, exceeds a critical diameter,

der, dependent on the nature of the fuel and on the oxidizer temperature.

In the case of hexadecane droplets, dcr decreases with increasing oxidizer

ti'mperatilre but is insensitive to oxidizer concentration for conc'ntra-

tions greater than the minimum required for flammability. These obser-

vations, in particular the existence of a critical initial diameter,

suggest a similarity between drop ignition and smmpler steady-state

problems involving attainment of a critical state-in which heat released

by chemical reaction cannot be dissipated to the environment.

Analyses of the thermal stability of reactive materials in the form

of slabs, 2 cylinders, and spheres 3 involved a criticality parameter 8

related to the problem parameters by Eq. 1:

whie re

E = an overall activation energy

R = universal gas constant

To = boundary temperature

q 0 = rate of heat release per unit volume at To

(in Arrhenius form)

I = a characteristic dimension of the sample

= sample thermal conductivity.



If S exceeds a certain critical value, 6,,, dependent on sample geometry,

the material will ignite or explode in a time that is related to q0. For

a slab with boundaries at different temperatures, q 0 refers to the reaction

rate at the hot boundary and 'cr depends on tile temperature difference be-

tween the two boundaries. 4

By analogy to the cited cases the critical state for droplet ignition

will involve at the least: (1) the surface temperature of the droplet,

(2) the ambient temperature, (3) the size of the droplet, and (4) the

kinetics of the reaction between evaporated fuel and gaseous oxidizer.

Because the rate of reaction will be affected by the concentration gra-

dients associated with the movement of evaporated fuel away from the

drop, the evaporation rate will also be involved if only indirectiv. A

characteristic dimension analogous to the term I in Eq. 1 is not well

defined for a process involving diffusion from a finite source into an

infinite medium. An artificial outer boundary must be imposed in order

to prescribe definite boundary conditions.

This theoretical study is concerned with two simplified models of
droplet ignition. Both models involve a steady-state approach (in which

time does not appear as a variable) to the determination of the thermal

stability of a reactive spherical shell with an outer boundary temperature
greater than that of the inner boundary. The first model, the simpler

case, involves a reaction rate in Arrhenius form that varies explicitly

with temperature but not with position except as temperature varies with
position. The second model, a more realistic and more complicated one,

includes a reaction rate that varies explicitly with both position and

temperature. The form of the dependence on position was chosen to simu-
late the variation of fuel concentration with distance from an evaporating

drop. In both cases, the intention was to determine 6 as a function of
c r

the various parameters which enter the problem.
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II DISCUSSION

A. Model I: Reaction Rate, a Function of Temperature

For a steady-state temperature distribution to exist in the situatio.]!

represented by Fig. 1, the temperature within the shell must sat isiy the

differential equation

T = -q (2

where ', is the thermal conductivity of the shell material and a is the

rate of heat release per unit volume within the shell. The prescribed

boundary conditions are T T at r = a, and T = Tb at r = b. If the

rate of heat release q is assumed t.o have the Arrhenius form q = A-E' R

a steady-statp temperature distribution is not possible for all values of

the parameters u, b, T , T6 , A, E, and /\. The task is to determine the

range of values that do permit a steady-state temperature distributions.

a Tb

....... Tb > aT

SHELL
Ira - 4EA I - Goo

FIG. 1 REACTIVE SPHERICAL SHELL
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Some mathematical difficulties associated with integration of Eq. 2.

are a consequence of the Arrhenius form of the reaction rate q. Although

simplification is not necessary, the approximation

E E (T ) - T()E E I- --_ b 3

RT RT b T'b

usually involves only a small error,5 simplifies the problem, and permits

comparison with other studies.2- In terms of the dimensionless variablees

0=- (T-T) (4)
RT2

r
1-- i-z 5)

b

Eq. 2 takes tire form

d20 2 dO bee (6)

dyr I - y dy

with the boundary conditions

O = 0 at y 0 (7)

0 00-< 0 at Y = = -z (8)

where z. a/b, 0o E(T. - Tb )I/RT2, and

bE b2 -F i r
S • Ae b (9)

Solutions of the system of Eqs. (6)-(8) are only possible for values of

I less than a critical value 3 that depends on the boundary conditions.

Because analytic solution of Eq. 6 is not possible, specific values of

bcr must be obtained by numerical methods. These values of Oc define

the possible ranges of variation of t>e parameters a, W, T., Tb, A, E,

and X.
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To determine the maximum value of •, = 3 (' F0) which permits Ser c - O 0•

the solution of differential Eq. (6), subject to the boundary conditions

(7) and (8), the following method was adopted:

Starting with a definite value of 3, Eq. (6) was integrated subject

to the boundary conditions

dO
0 0 and - m at y = 0 (10)

dy

where m is a parameter. The solution 0 = (y, 3 ,m) is a function of

the variable y and the parameters S and m. The value of 6 at y = yo is

o(y0,8,M). As m varies, this quantity has a maximum value 0 - (y 0 , )

i.e.,

- Y0 3) - max O(y 0 ,3 ,m) (11)

If 0 is less than e0, it is evident that Eq. (6), subject to the boundary

conditions (7) and (8), has no solution for the particular value of 3

chosen, i.e., S < $,r(60,z0). If 0 is greater than 00, there are two

solutions of the system of Eqs. (6)-(8) and 8 < ¾ r Finally, if P is

equal to 0., there is only one solution to the problem and the value of

6 is the critical value 3 corresponding to given values of 00 and yo

(or z 0 ).

As noted, the numerical procedure provides two solutions to Eq. 6

if 5 < S . Other studies 6
.7 have revealed multiple solutions in cases

involving spherical symmetry. In particular, a large number of solutions

(not necessarily stable) are possible for some values of 3. We are con-

cerned in this study with values of 3 in the vicinity of 8, for which

there are probably at most two solutions. Of these two solutions the one

corresponding to the smaller value of m is probably the significant one,

for in a physical problem the stable temperature distribution would be

approached from below and the eventual steady-state distribution would

be that corresponding to the lowest value of n.

A computer program based on the method described was carried oit to

determine 3, as a function of z 0 and 00. The results are shown in Table I.

The range of values chosen for 0 0 (0 to -14) corresponds to the range of

values for T , Tb , and E that might be encountered in an experimental study

of drop ignition. Graphical interpolation may be used to obtain other

9



Table I

CRITICAL VALUES OF 6: MODEL I

90 = 0 00 -2.0 90 = -4.0 go = -6.0 00 = -8.0 On = -10.0 60 -14.0

Z0 = 0. Js 3.74 4.21 4.69 5.16 5.64 6.13 7.13

Z0 = 0.125 4.47 5.72 7.04 8.43 9.90 11.45 14.79

Zo = 0.25 6.16 9.21 12.75 16.75 21.21 26.12 37.30

z0 = 0.5 14.00 26.01 12.30 62.75 87.31 115.92 185.25

zo = 0.75 56.18 121.78 222.66 360.04 534.00 744.20 1273.2

z0 = 0.90 351.34 820.45 1591.2 2685.5 4107.1 5855.3 10328.5

values of 3cr for eo from 0 to -14 and for z 0 from 0.05 to 0.90. Ex-

trapolation of the tabulated results to values of z, in the range

0 < z0 < 0.05 is elso readily accomplished. As suggested by the daLa in

Tables I and I1, for all 00' as zo - 0, 8¾r appears Lo approach 3.32, the

value for a solid sphere. 3 The convergence was not investigated analyt-

ically. Extrapolation of the data to values of zo > 0.9 is not feasible.

However, for 1 > z, > 0.9, the reactive shell of Fig. 1 may be approxi-

mated by a thin slab and the solution to the thin slab problem4 used to

estimate values of 5 for the shell. To utilize the slab solution it

must be noted that 8 for a slab is defined in terms of the characteristic

dimension (b - /2.

Table II

CRITICAL VALUES OF 3: MODEL I

6o = 0 0 =-1 0 =- 2

z0 = 0.001 3.330 3.335 3.340

z0 = 0.01 3.403 3.500

Z0 = 0.02 3.485 3.677
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B. Model I: Drop Ignition

In order to apply Model I criticality data to drop ignition it is

necessary to consider the variation of a, the drop radius, and of b, the

radius of the effective outer boundary, with time. The surface tempera-

tureofa drop suddenly exposed to a hot oxidizing atmosphere will quickly

approach a value Ta corresponding to a balance between heat transfer in-

ward and diffusion of evaporated fuel outward. Thereafter, the surface

temperature Ta will remain nearly constant as evaporation proceeds and the

radius of the drop decreases. Initially, the radius b of the effective

outer boundary equals a and then increases as a decreases and evaporated

fuel diffuses into the surrounding atmosphere. The outer radius b, although

poorly defined, must eventually approach a maximum value corresponding to

completr evaporation. As shown schematically in Fig. 2, during this time,

Swill approach a maximum value as a approaches zero. If this maximum

12 I I I

IOI
10I

GO

a:
w

2

4

la.

6
I-

-J

4

DROP TRAJECTORY _ 46T di > dc,

di < dcr0 II I
0 0.2 0.4 0.6 0.8 1.0

Zu
TA - 4900- 801

FIG. 2 DROP TRAJECTORY IN 5 - Zo PLANE: MODEL I
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value exceeds 3.32, the apparent limit of 8 as z0 - 0 for all 60, the

drop can ignite. For fixed Tb, the above qualitative description implies

the existence of a dcr such that a drop with an initial diameter dL < dcr

will not ignite.

As noted, all 6cr as a function of 00 appear to approach the value

of 30 = 3.32 as zo-" 0. If the final value of b corresponding to complete

evaporation of a drop is proportional to the initial drop diameter d,, then
the definition of 3 implies that d will decrease as Tb increases with an

apparent activation energy that can be deduced from the definition of 3

(Eq. 9). That definition results in the proportionality:

2 b 1 e/RTb (12)d2 -Se
Cr 0 E A

The pre-exponential term A is not strictly independent of temperature be-

cause it includes an average reactant concentration that varies ":ith T a

If Tb >> T, the dependence of A on Tb is slight and can be ignored with

the result that

d In d cr E
R = IQ - RTb

d(1/Tb) 2 b(3

where Tb is a mean oxidizer temperature in the temperature range of in-

terest and Q is an apparent activation energy. The measured value of Q

for ignition of hexadecane drops in hot air is 7 kcal/mole, 7 corresponding

to a value for E of 15 kcal/mole.

C. Model II: Reaction Rate, a Function of Position and Temperature

Analysis of Model I revealed the dependence of 3 cr on the dimension-

less temperature difference between the hot and cold boundaries of the

reactive spherical shell. The study also revealed that the 5 of impor-

tance in determ-ining the drop critical initial size was that corresponding

to a solid sphere, 3 = 3.32. The model, however, is unreal because itc r

does not include the effect of concentration gradients associated with the

diffusion of fuel away from an evaporating drop. If the reaction raite- .

varies explicitly with fuel concentration Cf, with oxidizer concentration

COX, as well as with temperature T, the concentration gradients will affect

the conditions required for criticality.

12



The effect of variable reactant concentration can be simulated by

including in the model a rate of heat release given by

S= ACfCoxe-E/ RT ( 4)

In the physical situations of interest the dimensionless boundary temp:---a-

ture «0 0. By analogy to the slab problem, 4 for 00 << 0, the maximum

reaction rate occurs in the vi'inity of the hot boundary. In that region

the concentration of oxidizer is approximately equal to the value in the

ambient atmosphere and can be absorbed into tie pre-exponential term A,

giving

q = A 1C e-EiRT (15)

where

A' = ACox

The reaction rate in Model II is assumed to bc of the form given in
Eq. (15). The boundary conditions are T = T at r = a and T = Tb at r = b.

The element that differentiates Model II from Model I is the dependence of

the reacticn rate on position through the fuel concentration C Because

the variation of Cf with position is intended to simulate the results of

diffusion, the concentration C f is required to satisfy the equation
2C/ f= 0 with the boundary co'nditions Cf CO at r a and Cf 0 at

r = b. That is,

C--- = 0(16)

In terms of the variable y, Eq. 16 becomes

C1  _ y('1 - y0 ) (7
-- = - 17)

CO y • (1 - y)

where y 1 - (a/b) 1 - zo. Now let

Eb 2 ACoe-/Rrb

3 (18)
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Then Eq. 2 becomes

d 2 a 2 dO y(1 - y0 )
- r y - (19)

dy 2  - y dy y(l - y)

with boundary conditions

6 0 at y 0

O - < 0 at Y (20)

As before, the problem is to determine as a function of 60 and z the

maximum value of 5, 8,, that permits solution of Eq. 19. The range of

variation of 60 and z 0 is the same as in the analysis of Model I.

Determination of specific values of 5cr was done in the same manner

as in the analysis of Model I with the results shown in Table Ill.. Com-

parison of the data in Tables I and III reveals that the inclusion of a

concentration gradient has resulted in: (1) a marked increase in ¾cr for

fixed 60 and zo, (2) a minimum in 5cr as a function of z. for fixed 60,

and (3) a rapid increase in 8 as z0 decreases towards zero from the valueC r

corresponding to the minimum in 5cr. The cited minimum value is quite

evident for small values of 60. However, it occurs at a value of z0 that

decreases with decreasing 6,, and therefore it is not apparent in Table III

for large 1901. The rapid increase in 8cr with decreasing z0 for z0 less
than the value corresponding. to the minimum in 5cr was not investigated

in detai 1.

Table 1II

CRITICAL VALUES OF 6: Model II

go= 0 60=-2 6 -'4 00=-6 60= -8 1 0= -10 I 9 =-14
0 ~ 0 0

z0 = 0.05 50.48 66.29 83.01 100.80 119.76 139.96 184.32

z0 = 0.125 29.09 46.06 66.83 91,52 120.33 153.46 233.65

= 0.25 24.73 47.27 79.77 123.40 179.35 248.87 433.60z0

z.0 = 650 37.35 89.26 181.88 327.61 538.19 825.10 1673.72

z0 = 0.75 122.62 337.63 781.56 1562.96 2788.89 4563.9 10174.7

z0 = 0.90 707.39 2078.43 5114.69 10764.0 19992.4 33746.3 78559.5
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D. Model II: Drop Ignition

The existence of a minimum 6 for fixed 00 affects the initial drop-

let size required for ignition. A drop trajectory in the 3 -z 0 plane must

intercept the 3 -z0 curve for ignition to occur. As shown in Fig. 3,

the critical initial droplet size is that size corresponding to the tra-

jectory tangent to the 8c -zo curve. Because, in practical cases 90<< 0,

the point of tangency will occur at values of z only slightly greater than

zero. Unlike the situation represented by Model I, the 3 of interest

is greater than 3.32 and increases with decreasing 00.

Because the'S r that determines drop critical size varies with 00

and occurs at values of z0 > 0, deduction of the temperature variation
of d is more difficult than it was in the case of Model I. However,

cr

in the cases of interest, 00 << 0 and the critical droplet trajectory is

tangent to the criticality curve at a value of zo very close to zero.

Consequently, it may be assumed that the value of b at the point of tan-

gency is proportional to d . The definition of 3, Eq. 9. then leads to

d / .• E/2RTb (1cr~ ~ 2 bdB cc XRý' /2 T e 2RTb(21)

where 3 t' the value of 3
cr at the point of tangency, will be very close

to the minimum value of 3 for a given 80. If T Co and CO are held

constant, then the apparent activation energy Q is given by

d In dcr E - R d In 6T

R =Q --- RTb +- (22)

d 2 d(T)

a relation differing from Eq. 13 in the third term on the right. That

term can be re-expressed in the form

R "d In 8T R d In 6. dO(
2 -- (- - (23)

2 /I\ deo1/



140

bcr (8o -6)

120

Stoo 00

S~CRITICAL "

STATEI--460 N

I- 60
r 40 - DROP TRAJECTORY

di = der

20
20 X I ~dld <dcr>dc

0 0.2 0.4 0.6 0.8 1.0
Zo

TA-- 4900 - 002

FIG. 3 DROP TRAJECTORY IN 8- Z. PLANE: MODEL II, 0 =-6

The derivative of 00, with T constant, gives

=~ E (2 1(24)

16'•) R T6dO

and may be either positive or negative depending on the specific values
of T and Tb. From the data in Table III for values of O0 that show a

minimum in the -z o curve a value for the term d in 3
5Td~o can be esti-

mated as about 5 >x 10-2. Consequently. the contribution of the third

right-hand term in Eq. 22 to the overall activation energy is approximately

E 2 1 x 5 x 10- 2  
Q, (25)

21T
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In many cases of interest, (T 6  T.)/T6 1 and

Q1 -5 x 10-2 E (26)
2

In such cases Q' makes only a small contribution to Q and can be ignored.

In other cases, the absolute value of I2(TQ/Tb) - 11 may be substantially

less than one and the contribution to Q will be even less important. The

result is that both Models I and II lead to a value

E
Q - RTb (27)

17



III SUMMARY

The results of the analyses of both Models I and II, when applied to

drop ignition, predict the existence of a critical initial diameter, dc,,

such that a drop with an initial diameter d > d will ignite prior to

complete evaporation, whereas a drop with d, < dcr will merely evaporate.

For equivalent conditions, d, for Model I will be substantially less tihan

dcr for Model II. Both models predict that dc, will decrease with increas-

ing Tb with an overall activation energy Q approximately equal to

E -
Q -2 -PT6 (28)

Model I, while formally interesting, does not include the concentration

gradients that are an inherent part of the physical problem. Consequently,

the usefulness of the Model I analysis lies primarily in determination of

the dependence of 5, on 60 and Z0 . Model I includes a variation of fuel

concentration with distance from the source and therefore more closely

resembles the physical situation. The analysis, however, is not general

because of the form assumed for the reaction rate. Inclusion of a fuel

concentration variation has two effects. The criticality parameter 8, as

defined in Eq. 18, now explicitly depends on C0 , and Co. Because C0o and

C0 appear in the pre-exponential factor, the effect is minor and similar

for both fuel and oxidizer. A variation in either CO. or C0 can be nul-

lified by a much smaller variation in T'b.. The second effect is more im-

portant. The pronounced increase in 3 cr resulting from the variation of

Cf with distance from the drop is an indirect consequence of using a reac-

tion rate proportional to Cf. A reaction rate proportional to a power of

Cf > 1 would presumably enhance the effect. Consequently, the reaction

order with respect to fuel is probably an important parameter in deter-

mining critical drop size. The importance of the reaction order with

respect to oxidizer is much less because the maximum reaction rate occurs

near the hot boundary where the concentration of oxidizer is nearly the

same as that in the ambient atmosphere and is not sensitive to diffusion.
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