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I

FOREWORD

The purpose of this report is to present a critical review )nd s,•nroary of the V/STOL tech-
nology involved in the development, component testing, g9'ound testing, and flight testing
of the X-19 aircraft. It is the final report of work accomplished by Curtist-Vright Corporation,
VTOL Systems Division, located at Caldwell, New Jersey, under Contract Number
AF 33(615)-3940. The contract was administered under the direction of Cor, toir R. M. Berg
and Mr. B. Lindenbaum, FDV, Air Force Flight Dynamics Laboratory, (RTDW %,`ri ght-Patterson
AFB, Ohio.

The following Curtiss-Wright Corporation personnel made the principal contr;butions to this
report:

H. V. Borst, Chief Engineer - Technical Services
W. F. Meyer, Chief of Structures
W. Amatt, Mechanical Systems Group Leader - Structures
H. Fluk, Flight Loads Group Leader - Aerodynamics
J. H. Barker, Stability and Control Group Leader - Aerodynamics
E. L. Hassell, X-19 Performance Group Leader - Aerodynamics
E. J. Tursich, Project Engineer, P.D. - Aerodynamics

Because of the breadth of material required to be treated by the contract statement of work,
each of the thirteen sections has been treated as an entity. Thus, each section has its own
nomenclature, text, figures, and references. In some instances, nomenclature has been
written into the text for convenience. Otherwise, it appears on the reverse side of the section
divider page. The separation of nomenclature by section is intended to prevent confusion over
the duplicity of meanings attached to given symbols by the different disciplines treated in the
report.

It is to be noted that some of the material contained in this report is proprietary to Curtiss-
Wright and is so stamped. The report is releasable only to agencies of te United States
Government. Release of the report to any other organizations or individuals must have the
approval of Curtiss-Wright.

iiJ



Information in thlis report is embargoed under the Department of State International Traffic In
Arms Regulations. This report, or informatior extracted from it, may be released to foreign
governments by departmenit or agencies of the U. S. Government subject to approv'U of The
Ai Force Flight Dynamics Laboratory, or higher authority within the Department of the A'r
Force. Private individuals or fimis require a Department of State export license.

Publication of t.is report does not constitute Air Force approvayo-f the reports findings or con-
clusions. It is published only for tle exchange and stimulatic 6 oideas.

-"WILLIAM E. LAMAR
Deputy Director
Air Force Flight Dynamics Laboratory
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AS r RACT

This report cý)ntains a condensed description of the X-19 ViSTOL TechnolL
The broad categories discussed, include in Section I, a review of the de-
velopments leading up to the X-19 program, Sections II through VI are de-
voted entirely to the propellers, and the considerations involved in de-.
sign. The Radial Force principle is postulated in Section IT, Interfer-
ence effects on the wings due to the propellers are discussed in Section
III, The propeller aerodynamic design in hover and cruise is presented in
Section IV. Section V is devoted to the structure and control mechanisms
of the propeller. Section VI relates to the use of propellers as an air-
plane control device, The tandem wing principle is discussed in Section
VII covering stability, control, and drag. Section VII is devoted solely
to Ground Effects, The sizable wind tunnel research activity leading up
to the X-19 is presented in Section IX. The structural loads in hover,
transition an, cruise are discussed in Section X. Section XI presents in-
formation pertinent to landing procedures in hover or cruise in the event
of power failure. A sumnmary of the flight test program is givcn in Section
XII, including aircraft and hardware performance characteristics, Finally,
Section XIII is devoted to a general discussion and assessment of the air-
craft's unorthodox features.
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SECTION I

REVIEW OF DEVELOPMENTS LEADING TO THE X-19 PROGRAM

1.. REPORT OBJECTIVE

During the time period of 1957 to 1966 the Curtiss-WrighL Corporation
was engaged in a major effort in the development of tilt propeller VTOL
Aircraft. This work ceased after termination of the flight test con-
tract for the X-19 Aircraft. To assess the program and make available
the important technical results, an Air Foice Ccntract AF33(651)-3940
was negotiated with Curtiss-Wright, to prepare a report covering the
major achievements of the effort. It is the objective of this report to
conduct a thorough assessment and to critically review the positive as
well as the negative results of the X-19 technology effort.

2. BACKGROUND HISTORY

The conventional propeller and turbine engine appeared to be a very prom-
iiing way to obtain hover lift and high thrust performance in the cruise

flight condition. As propeller manufacturers, we had the opportunity to
observe the difficulty in meeting the requ.ired take-off performance and
gooj cruise efficiency requirements of VTOL aircraft. This problem was
particularly ar,.rent with those companies developing the tilt-wing and
deflected slipstream types of VTOL aircraft. The propeller manufacturer
was consulted for design information and data long after those aircraft
configurations were frozen, wiLh the result that propeller diameters were
too small and disk loadings too high. At that time, disk loading was
chosen for reasons other than wing stall, such as propeller spacing,
weight, etc.

Because A VTOL aircraft depends on the propeller for lift and control
during c ,major portion of the early low-speed flight, it appeared that
a better solution to the problem of vertical take-off and landing could
be obtained by designing the aircraft from the propeller designer's

point of view, This idea led to examination of the propeller operating
at the full range of shaft angles and the associated effects on the
over-all airplane. When the propeller was sized to produce the required
level of take-off or hover thrust, it became apparent that a secondary
in-plane force would produce sufficient lift to be of real significance.
This in-plane force is known as side force, or radial force and as shown
in Chapter II is a function of propeller diameter and blade area. Since
the propeller radial force is large, it was found that an aircraft could
be designed to fly without wings using propeller radial force and thrust

in all flight modes. Flight without wings was a stimulating idea to man-
agement; it was decided to pursue this notion further.

However, the lift-drag ratio of a lifting propeller is poor unless the
angle of attack of the propeller is small. ThiF is apparent, since
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L/D = 1 = 57.3 at A = 1 degree
tan A

where L = the lift component of radial force
D = the drag component

A = the shaft angle

Although the lift-drag ratio is high at small angles, the actual level of
radial force is low. Thus the initial studies indicated that some wing
area would be required. Instead of a wingless aircraft, area was added
to obtain maximum lift-drag ratio at the cruise flight condition. It
was found that the wing could be sized for maximum efficiency in cruise,
since the radial force, thrust and wing lift, were adequate to meet the
other flight conditions. At the transition flight conditions, lift-drag
ratio of the airplane is low; this was considered to be unimportant. The
idea began to gel. An efficient cruise aircraft with good lift in hover
appeared to be possible.

3. X-100 AIRPLANE

The ground work had been laid. It was decided to build an aircraft to
investigate and demonstrate the radial force principle. This effort is
documented in references (I) through (4).

The X-100 airplane is a two-place, 3,500 pound, single-engine aircraft.
-he general characteristics are shown on Table I and Figures 1 and 2.
The aircraft was completed late in 1958, and ground/flight tested during
1959 and 1960. A total time of 220 hours on the ground and 10 flight
hours was accumulated. In addition, the X-100 airplane was used for
ground erosion tests at Langley Field;and further, was tested in the 40
by 80 ft, NASA Ames wind tunnel. The purpose of the wind tunnel
test was twofold: to confirm the results obtained in flight, and to
obtain data on propeller loading when operating at high angles of tilt.

The flight tests of the X-100 airplane proved that radial force tilt
propellers could be flown from hover to cruise without encountering
adverse effects. Furthermore, the stability, control and performance of
the X-100 were equal to or better than that predicted. The success of
the X-100 tests was encouraging enough to initiate the next effort.
Design of the Model 200 was begun.
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Table 1. X-100 VTOL airplane characteristics.

Airplane Type: 2 place VTOL

No. of Engines and Type: I Lycoming YT-53

Engine Rating Military: 825 HP

No. of Propellers and Type: 2 three-blade 10' 0" diameter propellers

Gross Weight: 3500 pounds plus

Polar Moments of Inertia: I = 1300 slug feet2 - - roll

I = 2151 slug feet2 - - pitch

I = 3200 slug feet2 - - yaw
z

Wing Area = 22.5 square feet

Horizontal Tail Area = 23 square feet

Vertical Tail Area = 18.75 square feet

Length = 28.3 feet

Overall Width = 25 feet

Height = 10.75 feet

3



Figure 1. X-100 in the hover and cruise nacelle position.
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4. M-200 OPERATIONAL AIRCRAFT

a. Initial Design Objectives

The X-19 airplane is based on the Curtiss-Wright model M-200.
It was originally designed to be a corporate executive transport
incorporating the W.A.D. rotating combustion engine. The M-200
aircraft wai to be a six-place machine with four rotating-com-
bustion (R/C) engines each rated at 580 HP at 5,000 ft. and 100*F.
It was intended to provide vertical take-off and landing on a
hot day with the aircraft capable of remaining airborne in ease
of the failure of one engine. The aircraft was to have a range
of 900 to 1150 miles with a maximum level speed of 400 mph at
16,000 feet. Further, the design was to conform to FAA regula-
tions, have all-weather flying capability, and be quiet as a
result of the use of lightly loaded propellers operating at low
tip speed and free from vibration. The gross weight projected
for this aircraft was iO,000 pounds.

With the Curtiss-Wright management change, it was decided that
the aircraft designed around the R/C (rotating combustion) engine
had little hope for success. A new airplane with new-type en-
gines, both untried, could not hope to be successful. While the
aircraft with the R/C engines was being designed, studies were
conducted to determine the possibility of using two turbine en-
gines. This effort resulted in the turbine version of the aircraft.

The Curtiss-Wright Model 200 was then redesigned to use two T-55
engines instead ot the four rotating combustion engines. This
reduced the problems considerably, as engine cooling was no
longer necessary. ThL same design performance objectives were
retained; however, instead of designing for the commercial
market, the machina was pointed toward military applications.
The major objective of hovering out-of-ground effect was re-
tained, but with much reduced altitude and temperature account-
ability. This reduction of one engine out performance could not
be avoided when gcing from the four to two cngine ccnfiguration;
the fact that turbine engines are more sensitive in power to
outside air temperature than the rotating combustion engine was
another reason.

The design objectives of the Model 200 airplane were developed
mainly by Curtiss, as no military specification or requirement
was available. Performance-wise the idea was to carry as much
payload as possible, as far as possible, and still retain the
engine-out feature. This was to be done with gear box oper-
ational-limit envelopes, the same as were originally set up for
the 10,000 pound aircraft.

(I) Tandem-Wing Design Considerations

During the flight testing of the X-100 aircraft, it was
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observed that the aircraft had the following undesirable
characteristics:

(a) Insufficient hover control power
(b) Roll yaw coupling at hover
(c) High pitch-up moments as a function of forward speed

All these factors made the low-speed flight characteristics
unsatisfactory, especially in gusty air. An increase in con-
trol power, especially in pitch, was deemed necessary to solve
the problem. To obtain the required control power and tilt
moments for the pitch control of a tilt propeller a large

pitching moment is required. The thrust at the tail of the
airplane required to produce this moment can be generated by
the use of propellers, ducted fans or jets. The power neces-
sary to generate the thrust is of course dependent on disk
loading of the device used. The solution ultimately devised
for the X-100 aircraft was a controllable air-deflection cas-
cade system mounted in the tail section and powered by engine
exhaust which provided pitch and yaw thrust as needed. It
was considered to be undesirable to use a separate device for
the generation of a moment for pitch control which is neces-
sary at hover and low forward speeds as additional drives,
clutches and controls would be required which added to the
overall weight and complexity of the aircraft.

One of the main difficulties encountered with the two
propeller VTOL aircraft is the roll yaw coupling problem.
To overcome this problem large amounts of control power
are needed to counteract the torque change induced due to
a roll input. When the airplane is holding in a side wind,
tor instance, the lee prop is absorbing more power than
the upwind prop. If the props are rotating up past the
wing, necessary in the case of the fixed wing configuration,
the power difference tends to turn the machine so the tail
weathervanes into the wind. This must be prevented to
provide the control characteristics necessary for a
hovering aircraft. As the aircraft design evolved to
larger proportions the propeller size appeared to be a
limiting factor. Propellers in excess of 20 feet diameter,
were envisioned;but sooner or later as the aircraft grew
in size at least four propellers would be required. In
arranging these on such an aircraft it was thought that
the control problems at hover could be solved and the wing
size could be kept to a minimum if the tandem configuration
was adopted. Also the tandem arrangement appeared to offer
the possibility of higher wing loading with the desired low
disk loading for hover. If, however, the propellers are
disposed along a single wing the download losses of the two
inboard units would be higher than if they were placed at
the wing tip. Furthermore, with the single wing con-
figuration a tail fan or a Jetavator-type system must be
used to provide pitch control in hover and low speed flight
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conditions. As a result,on a single-wing design five
propellers are needed together with the necessary equip-
ment for starting and stopping the tail propeller. A tail
propeller could also be used to obtain yaw control but
probably differential tilting of the outboard props would
be preferrable to the complication of the fifth propeller.
For these reasons,and the need for uncoupled flight con-
trols in hover and low speed flight,the four-propeller
tandem configuration was chosen for the X-19 configuration.

(2) Turboprop System

The turboprop system was selected to provide the following:

(a) Objective was to cover approximately 0-400 MPH
(M 0.65) speed range, and have up to 25,00 ft.
altitude capability.

(b) Superior propulsion system efficiencies of turboprop
in calected speed-altitude regime.

(c) Excellent performance flexibility of conventional
propeller between static and selected high speea
conditions.

(d) Capability of the propeller to provide needed radial
force for smooth transition flight characteristics.

(3) Selection of Hover Disk Loading

Disk loading was selected from the following point of view:

(a) Good from ground disturbance point of view.

(b) Near lowest possible disk loading with conventional
aircraft propellers considering combined aerodynamic/
structural aspects. At lower disk loadings difficulty
with blade dynamics was a concern.

(c) High static thrust performance (about 6.0 lbs/HP at
SLSD and 25 lb/ft 2 disk loading) to minimize installed
power requirements.

(d) Peak static thrust performance from propeller obtained
at reasonable tip speeds of approximately 820 feet per
second at this disk loading, giving low noise charac-
teristics.

(e) Light weight blade construction methods available - a
fundamental keystone as conventional blade methods of
construction result in propeller weights unacceptabil-
ity high.

(f) Confidence in the design feasibility of large diameter
conventional propellers for large aircraft.
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(g) Ability to hold high propeller cruise flight efficien-
cies approximately 80% using the speed variation capabil-
ity of gas-coupled shaft turbine engines.

(4) Selection of Non Tilting Wing System

The airframe geometry was based on the following:

(a) Selection of the non tilting wing system was fundamentally
hinged on the moderate hover disk loading selection, i.e.,
15 to 30 lbs per square foot.

(b) Recognition that if a tilting wing were used, the wing
would have to be carefully slatted and flapped to avoid
stall at high transition angle of attack conditions.
Also, there was great concern that the slipstream dynauiic
pressures associated with the selected low disk loading
propellers would be inadequate to cope with the problem,
even with efficient slats and flaps incorporated. The
above-noted advantages of low disk loading should not be
sacrificed by increasing disk loading merely to make the
tilting wing feasible.

(5) Selecticn of Tandem-Wing Four Propeller Configuration

(a) The tandem wing arrangement allowed the use of low or
moderate propeller disk loadings and high wing loadings
without resorting to the use of long narrow wings or in-
ternnshing 'rcpellers. In the case of a four propeller
tandem wing airplane the propellers mounted at the wing
tips would have a lower download than is possible with a
single wing airplane.

(b) Tandem wings with tip-mounted propellers kept a large
part of the wings from beneath the propeller, thus mini-
mizing thrust losses due to slipstream blowdown.

(c) Tanden w1ags allowed use of four propellers, thus mini-
miziig size of individual propellers for the selected
disk loading and aircraft weight.

(d) The cor.fguratiin allows full exploitation of the concept
of a coi'tinuois~y running propulsion system. An auxiliary
systen to provide a control force at iover and low for-
ward soeeds is not required.

(e) A tandem aircraft configuration is easily controlled at
hover and at the low speed flight conditions as large
control moments can be generated by the use of propeller
collective pitch cortrols.

9



5. TRI-SERVICE X-19 (CW MODEL 200) DIMENSIONS AND GENERAL DATA
(Refer to Figure 3 for general arrangement)

Wings:
Span: (to nacelle centerlines) . Fwd. wing 19.5 ft.

i ...... Aft. wing 21.5 ft.
Areas:..............................Fwd. wing 56.1

Aft. wing 98.5 sq. ft.

Chord: (constant along span)

Fwd. wing ...................... 34.5 inches

Aft. wing ...................... 55.0 inches
Lift chord .................... 274.0 inches

Airfoil section designation and thickness (percent chord)
constant along span ....... fwd. wing NACA 2421 Modified-21%

aft. wing NACA 64 3-418 Modified-18%

Incidence (degrees):
FWD WING AFT WING

At root ................... 0 0
At construction tip ....... 0 0

Sweepback, degrees ........ 0 0
Dihedral, degrees ......... 0 0
Aspect Ratio .............. 6.8 4.7

Ailerons: Outboard on Aft wing only
Area (both) 14.44 sq. ft.
Span .................................... 54 iaches

Chord (average percent aft wing chord,
aft of hinge ...................... 35%

Distance from plane of symmetry to centroid
of aileron area ......................... 93.5 inches
Tab -- NONE

Flaps: On Forward wing only

Area (both) ......................... 15.16 sq. ft.
Typ.ý - Plain
Span, exclusive of cutouts ......... 78.05 inches
Chord, (average percent front wing

chord, aft of hinge) ........ 40.5%

Elevatorsf On Aft wing only

Area (both) ............................. 12.85 sq. ft.
Span (each) ............................. 48.0 inches
Chord (average percent aft wing chord,

aft of hinge ..................... 35.0%
Tab -- NONE
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Horizontal Tail: See aft wing

Vertical Tail:

Atea (Excl. Dorsal) ...................... 46.18 sq. ft.
Span .................................... 117.0 inches

Chord .............................. Root 74.32 inches
Tip 39.42 inches

Airfoil section dessignation
and thickness ..................... NACA 0012 W L. 136.75 12%

NACA 0010 W.L. 250.75 10%

Tab dimensions ............. Length = 28.18 inches
Chord:

Top 4.195 inches
Bottom 4.70 inches

Tab Location .............. W.L. 167.00 to W.L. 195.18

Incidence, normal .................... 00

Sweep of leading edge, degrees ....... 320 6 minutes

Dihedral, degrees .................... 00

Adjustment each side of neutral ...... 00

Aspect ratio ......................... 2.05

Fuselage:

Length of fuselage .................. 42.08 ft.

Net wetted area of fuselage ......... 631.8 sq. ft.

Maximum cross-sectional area ....... 26.6 sq. ft.

Area of engine air inlet: 1.67 sa. ft.

Cabin length ......................... 14.8 ft.

Cabin width ........................... 4.33 ft.

Propeller Nacelles:

Length of front nacelles ............. 6.41 ft.

Maximum diameter of front nacelles .. 1.375 ft.

Net wetted area of two front nacelles 45.7 sq. ft.

Cruise inclination of front nacelles

relative to fuselage datum ..... -3.00

Length of rear nacelles ............. 7.50 ft.

Diameter of rear nacelles .......... 1.375 ft.

Tilt Angles Front .................. 970 to -30

Rear .................. 810 to -30
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Net wetted area of two rear nacelles ... 47.6 sq. ft.

Cruise inclination of rear nacelles
relative to fuselage datum ........ -2.54*

Total aircraft:

Total aircraft wetted area ............. 1090.5 sq. ft.

Height over highest fixed part of aircraft
(Vertical Tail)

Referenze line level (reference is to
ground level) ..................... 17' 1/4"

Height )ver highest part of tail,
reference line level .................... 17' 1/4"

Length, maximum:
Reference line level .............. W4' 5"

Distance from fwd. wing quarter chord
point to aft wing quarter chord point 23' 4-1/8"

Distance from aft wing quarter chord point
to a'ertical tail MAC quarter chord
point ............................... 28.58 inches

Angle between fuselage reference line and
wing zero-lift line Fwd. -2.3° as

installed

Aft -0.90
Ground angle, degrees .................... 0

Propeller:

Propeller diameter ...................... 13.0 ft.

Blade Area .............................. 8.4 sq. ft.

No. of propellers per aircraft .......... 4

No. of blades per propeller ............. 3

Blade designation ........................ 13168A10P3(Modified)

Activity Factor ......................... 168

Integrated Design CL ................... 0.057

Blade Cnaracteristics ................... (See Figure 74)

Airfoil Section Type .................... NACA 64
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Alighting gear:

Wheel size:

Main wheels ....................... 24 x 7.7

Nose wheel ........................ 6.00 x 6.0

Tire size:

Main wheels ....................... 24 x 7.7

Nose wheel ........................ 6.00 x 6.0

Tread of main wheels ................... 6.0 feet 8.0 inches

Wheel base ............................. 22.0 feet

Vertical travel of axle from extended to
fully compressed position:

Main wheels ....................... 8.0 inches

Nose wheel ........................ 6.0 inches

Distance from main wheel contact point to
center of gravity:

Horizontal Distance:

At most forward permissible cruise c.g. 45.4 inches

At most aft permissible cruise c.g. 35.4 inches

Vertical Distance-

At most forward c.g. 59.4 inches at 13,660 pounds
gross weight

At most aft c.g. :9.2 inches at 13,660 pounds
gr-'3s wziý6:

Engines:

2 Lycoming T55-L-5

Direct Drive
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CONTROL MOVEMENT AND CORRESPONDING CONTROL SURFACE MOVEMENTS

Control and control surface movements on each side of neutral position
for full movement, as limited by stops.

Rudder 33 degrees right, 33 degrees left.

Rudder pedals 3 inches forward, 3 inches aft.

Rudder tab 8 degrees right, 8 degrees left.

Rudder tab control actuated by electrical switch.

Elevator 20 degrees above, 15 degrees below.

Elevator control stick 5.42 inches aft, 4.06 inches forward.

Ailerons 15 degrees above, 11 degrees below.

Aileron control stick 4 inches right, 4 inches left.

Aileron droop (maximum) 60 degrees.

Forward wing flap (maximum) 60 degrees nominal movement.

Flap and aileron droop positions are mechanically coordinated
with nacelle position.

GENERAL FEATURES OF DESIGN AND CONSTRUCTION

The aircraft is a tandem high wing airplane with propellers mounted on
nacelles at each wing tip, as shown in Figure 3. The nacelles tilt
from horizontal to vertical approximately 100 degrees. Power is pro-
vided by two turbo-shaft engines contained within the fuselage. Con-
ventional aircraft construction techniques and materials are used
throughout.

GENERAL INTERIOR ARRANGEMENT

The interior arrangement consists of a cockpit and a passenger/cargo
compartment.

The pilot's compartment contains two crew seats, all the controls,
switches, instruments and other equipment required to operate the
airplane from either the left or right seat.

The passeager/cargo compartment has provisions for 4 passenger seats,
but can be re-arranged for caigo carriage as well.
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SECTION II

RADIAL FORCE PRINCIPLE

i. INTRODUCTION

It is well knowni that the conventional propeller is an highly efficient
device for converting shaft power to thrust. Propellers have demonstrated
a figure of merit of the order of 80 to 82 percent at the static or hover
condition, and well designed propellers have demonstrated efficiencies as
high as 90 percent at the cruise speeds of 200 to 400 knots. For instance,
the propeller designed for the Lockheee 1049C using three number 109652
blades operated at a cruising efficienc'v of 89% and demonstrated a Figure
of Merit of 80% at the static condition or zero velocity condition, refer-
ence 9.1. The Figure of Merit of 80% was obtained at a power coefficient
of 0.05 well below the normal take-off power coefficient of the 1049C air-
plane, which is approximately 0.1. Thus, the propeller is a suitable
device for providing lift at the hover condition as well as propelling an
airplane at the cruise condition. To accomplish this dual purpose it is
necessary that the propeller be tilted through 90 degrees between the hover
condition and the cruise condition. During this conversion portion of the
flight the propeller will be operating with its shaft at a high angle of
attack. At an angle of attacP .ne force along the shaft of the propeller,
generally defined as thrust, can be broken down into two forces, a lift
force and a force in the direction of flight (Figure 4).

When the propeller is operating with its shaft at an angle of tilt there
is, in addition to the thrust force, a secondary force produced which acts
in the plane of the disk of the propeller. This force is known as propel-
ler normal or radial force and is a function of the propeller size, the
shaft angle of attack of the propeller, and the operating speed of the
propeller. The propeller normal force, known as side force to those doing
stability and control calculations, is also illustrated in Figure 4. It
will be noted that this force, like the normal force produced by a wing,
can be broken into two components --- lift and drag. In the case of con-
ventional aircraft, the normal force produced by the propeller is small
compared with the overall forces produced. In the case of propellers used
on VTOL aircraft, the diameter and blade area necessary are larger than
would be used for conventional airplanes as the blade sections must operate
below stall at the static or hover flight conditions to obtain high values
of figure of merit. The propellers will also operate through a high angle
of attack range during conversion. Since the propeller normal force is
directly dependent on the shaft angle with respect to the airflow, the
blade area, and the propeller diameter squared, the normal force has been
observed to be a very significant parametel affecting thk, overall charac-
teristics of the VTOL propeller airplane.

2. THEORY AND METHOD FOR COMPUTING PROPELLER FORCES

a. General

To show how a propeller produces the radial fcrce ara the associ-
ated moment, indicated in Figure 4, it is rveceosaryr to examine the
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detaileG forces on each olade section as a blade rotates through a
full revolution. Consider a three-blade propeller operating at a
forward velocity Vo at a shaft angle of attack equal to A. Let
equal The azimuth angle of the blade measured in the counterclock-
wise direction from the vertical position, as viewed from in front
of the propeller. Thus, when the blade is on the down stroke and
is horizontal, 8 will be equal to 90'. On Figure 5 the velocity
components are shown for the propeller at angles of S equal to
0, 90, 2700.

The blade section rotation velocity is mnDx, where x is the frac-
tional radius. This rotational velocity adds vectorially to the
forward velocity component, gi-ing a resultant velocity W as
shown on Figure 5. At the 900 and 2;0° blade position the section
experiences the full value of forward velocity Vo. Whereas at 0
and 1800 the section is influenced by Vo cos A velocity component
plus the rotational velocity 7rnDx. At any azimuth position the
component of forward velocity affecting the section will be:

V/(sir2 A) sin2 8 + cos2 A

The lift forces produced by a typical blade section of a propeller
operating at a shaft angle of attack are ýhown on Figure 6 as a

function of azimuth angle.

Each blade section will also be affected by a change in apparent
angle of attack as it rotates, in addition to the change of the
sectional velocity as determined by the above equation. The change
in velocity and section angle of attack will cause a variation of
lift produced as the blade rotates. When the propeller is operat-
ing at low shaft angles of attack, A, and the blade section is
properly loaded so that positive or negative section stall is not
encountered, the lift will vary approximately "sinusoidally" as
the blade rotates through a complete revolution, see Figure 7.
The drag of the propeller blade section will also vary. The man-
ner in which the drag varies depends on the portion of the drag
curve at which the section is operating. If the section angle of
attack is high, variation of drag approaches a "sinusoidal" shape
above and below the initial value; whereas, if the drag varies
from the minimum value, the variation is sinusoidal shape, but will
never go below the initial value.

The change in lift such as showr on Figure 7 resolved in the pro-
peller plane adds vectorially and gives the in-plane force known
as both "Radial force" or "Side force." The variation in blade
section lift force such as shown on Figure 6, when resolved in the
propeller thrust direction, results in a couple. If the propeller
shaft angle is at a positive angle of attack, this couple is a
yawing moment, its sign depending on the direction of rotation.
A propeller rotating clockwise, i.e., viewed from the rear, a
right hand propeller, will produce a yawing moment to the left
when the shaft is at a positive angle of attack, see Figure 7.
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Figure 7. Incremental force variation due to propeller angle of attack,
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A left hand propeller will produce a yawing moment to the right
when the shaft is at a positive angle of attack.

If the advance ratio and forward velocity are determined based on
the velocity normal to the propeller disc, Vn, the power absorbed
is nearly independent of the shaft angle. This is true as long
as the propeller is operating near peak efficiency, blade sections
do not stall, and the shaft angle of attack is less than approxi-
mately 5 degrees. Even if the mean drag is above the initial
value when the propeller is operating at an angle of attack less
than five degrees the overall efficiency is only sl' 1'tly influ-
enced as the power required for drag is only 5 to 15% of the total
pawer used. As the shaft angle of a-tack is increased the drag
variation a• the blade rotates starts to become significant and
the Dower increases with a corresponding drop of efficiency. The
propeller data of reference 9 indicates that the thrust and power
coefficunt• as measured along the shaft axis do not change in
the range of shaft angle between 0 and 15'. Thus the loss of
propeller efficiency at the shaft angle of 15 degrees is equal
to the one minus cosine of the angle or 3.4%. This is considered
of great importance as when the propeller is used to produce lift
for cruise flight using radial force, it would be operating at a
shaft angle of 3 to 4' with a corresponding loss of efficiency
due to non-linear effects of less than 1%.

b. Theory of Normal Force and Yawing Moment

The radial force and yawing moment of an inclined propeller can be
calculated by the method of strip analysis in the same manner as
determining the thrust and torque of uninclined propellers. The
main difficultv in analyzing the forces and moments produced by
the inclined propeller is determining tbc inflow velocity at each
azimuth position. Unlike a propeller cperating with a zero shaft
angle of attack where the wake is uniform, the inclined propeller
has a wake that is varying in strength. This non-uniform wake is
caused by the variation of circulation of lift produced as the
propeller rotates in the inclined flow position. For this reason,
when determining the inflow velocity at each position the local
conditions cannot be used with conventional inflow calculations as
this assumes that the wake is uniform and at a strength equal to
that of the local conditions.

To calculate the inflow velocity and angle of an inclined propel-
ler axis at the various blade azimuth positions, it was assumed
that the strength of wake varied directly as the change in section
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lift as shown on Figure 6. The load distribution at each azi-'vth
position and radial station was approximated by assuming steady
state condition. Analysis could then be made by strip calcula-
tions, (5) and (6). to determine the load disttib,',Lton and thus
the strength of the wake at each azimuth positic, and downstream
position from the propeller. Thus, knowing the characteristics of
the wake behind the propeller, it is possible to find the inflow
velocity at each position using the solution of the Biot Savart
law given in (7). The procedure for calculating the inflow veloc-
ity is given as follows:

From Figure 8,

Vn = Vo cos A

Vt = VO sin A

tan 0 = V° cos A Vn
0 rnDx + (Vo sin A) sin8 VnDx + Vt sinS

JLocal - Trx tan 00

8 = referenue angle on the propeller rlisk 1

V0  = forward velocity

The strength of circulation, f , is found for various values of

000 where

b CL V°

2 sin 0

It is desired to obtain the axial inflow-velocity, u, from (7)
thus:

u = - 1 Idx( ;V
4wR fo dx xJ0 p=0 0 d

where p = blade number, from 0 to (B-I), and
where 8 increments of 450 were taken.

1

Note that (7) refers to 8 as 0
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Figure 8. Propeller blade velocity components.
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and is read at 8 of 22.5' or 67.5" . . .
dx

For a complete analysis this procedure for calculating u must be
carried ouc for each station along the blade for varying 5 and
blade position,

A convenient way of comparing 'he results obtained as a propeller
rotates is to evaluate w , the ratio of the disp',cetzent velocity
of the vortex sheet at infinity to the forward velocity of the
airplane. For the case of the inclined propeller, the forward
velocity is taken as the normal velocity V. = V. cos A.
Calculations were made for the 0.7 radius where the propeller was
at tne reference angle of 0 and 90'. The following is the method
used to calculate U once u has been determined. (See Figure 8.)

ornDx + Vt sinB 2 + V 2

a 2

b +Vn
2

sin-1 b/a + 0
0- 2

2U
2

V cos
A

The following shows the r'esults calculated at 0.7 radius for a
three-blade propeller using blades with a 132 Activity Factor
and ICLi of 0.239. The propeller is inclined at an anyle of 10'
and operating at J - 2.3, HO = 0.263 and 00.7k = 50c'4:

For a Varying Wake Foz a Uniform
5(Actual Corditions) Wake

0 .236
90 .228 *28•
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iI
The displacement velocity, ' is very nearly constant ir 80 - 00

and 900 for the actual wake conditions, indicating P constant
value over the entire disk. For the cas. where the wake ia as-

sumed uniform, based on the loadings at C-'e azimuth angle under

consideration, large differences in the displacement velocity retio
are observed for the 8o= 0 and 90*, Because the wake is changiig
as a function of time, this assumption is believed co De wrong and

is therefore discarded. It was investigated, as early theories
made the assumption of the loading only influencing the wake and

thus the inflow velocity.

These assumptions are:

(I) The change in induced angle at various azimuth positions is

negligible..

(2', The slope of the lift curve is constant and has the value for
the mean value of C, (obtained from ordinary strip calcula-
tion).

(3) Sin 0 = sin 00 Light loading assumption

(4) Tbe radial f --e contribution of blade section drag is

negligible.

The local lift contribution for a station is

dL = I/2pWo 2 b CL dr (1)

The iccal incremental lift contribution for a station is then

Adl. - pb (W0 +AW) 2 (CL +ACL) - W2P L dr (2)

AdL = 2W AWC + 2W AW ACA AWa +

Ld 0+

"22 s . •W a~a 1 d (3)
0 J

= ½pb-AW C(- + 1)- ancr(-- L dr 24)
L L LW T Id

From Figure 9(c) the rollowing relo 3re fot,:

c o t •O I ¢ of A

7nDx + Vo s1n A sin2
Cot V0cosA ot 0o 0 tan A sin

WC "1  VCo ccsA csc 0
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Figures 9. Three dimensional distribution of velocity components.
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W - V0 cosA csc 0
0

6w - W - W

6w V0 cosA (cscO' - csc 0)
0 0 0

2W cscO , + caco

+ csc0', - csc0o

o 0

o 0

Ad = 0 - 0'
o o

Substituting these values into equation (4) gives

6dL ½pb {V Cos A CG0,- CBC 001}2 {C csc ' + csc0o
0 -4 L cscoo csc0

00 0

+a(0~$))- ~so 0 )dr

&dL =qb ccs 2A [CL(sc2oo - c~c 2 0 + a(00 - 0')(Csc 2 0 )]dr
[C' 0'

Cs2 A [ in20
Ad b 20 ')1-- -)+ (0dr(5

sin 0'sin 000 O

0'0

0,

0-

Ad___sin_00- of

From Figure 9, the radial force componect in the propeller plane
is seen to be AdL sin0,'. And From Figure 9(b), the incremental
normal farce is seea as 6dL sin 00 sin 8. By substitution in
Equation (5),

2 si2o
AF qbcos A si sl nO0'Id 6

sini 1-
0
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B +

N~ AV+ d

This section wili. consist of a simplification -i~f the method f.ormez!
in the previous section. From thiis section a plot of dL vcrsus
"B" showee that tnie variration was approxim~ately sinuso4.dal, By
mak'ing the following assumptions, a shorter, bat still accurate
iaethod for finding radial force will, be d~eveoped.

Assumptior~sz

(,-) &dL varies einua~idally during a revolut~on.

P~b) All of the lift zune slopes Tay be represented ýVy a

airle value.

(e) Smiall angles may be approximaated by their tangents.

(~d) Products or .jifferemzcidis are t.cgliglbls.

By remsovingl higher order differentiale Erom Equati.:r (3), the
equatior' becameq

A dL -1/ 'ob 2;-' 6C L dr (7) 2d

From Figure 9c the following is ootained:

sin 00

W -M Vsin Acos Y

ran~cr Vsin A sin 0,-

i hP follcving arý- obtained b'y combining terms.

WV sin A sin 00 W r,2  V 2  (Sin 22A

+ V sn A -OS ~anA sin 2 00

ZýNote t--at sin B is owitred frcrui these equatin'.s; this Is so because only
the peak velue at 9Q0 is useO ~nd sin 9iJ0'
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'ni W = V cos A V sinA cos)_ V2(sin 2 A) cos y

o sin 00 sin

By substituting these quantities into Equation (7), dIl is
obtained

= (cosY)a

6dLoo qb sin 2A 2C (-o A sir. 20- dr

902 L sinO 01+ tan( ASr 0)d
2

From Assutmption 1, AdL =AdL9 0 0 sin. , and

from Figure 9(b), AN = (AdL 90 sing) sin 0 sine
f21r 2 dL9 00 sin0

6N = AdLf90 sin sin2 8d A

av. fo i
0

dN qBý at sir 2A 2 C L sin 0 cosy
2 sin 0

0

+ - a sin, 0
_________________ dr

tan A sin 20o) (8)

1 + ( - 2 (8

The •inal equation has a factor of 0.95 to insure conservative
values

N sin 2A x=l b 2CL sin 0 cos

2 o
0.5~R 0 { sin 0

+ a sin 0
+ tan A sin 20 )

2Note that although the blade chord is a function of x for a

given blade tie value of N is constant as long as bAx

remain- constant.

The above equation has been programmed on IBM equipment.

In a similar manner the shaft moment (yawing) generated by the
propeller operating at an angle of attack can be derived.

The equation is" 1 2C Cos 0

M . sin 2A • br L
M =.95 qR 2 x=0 sin0

+ a cos ,
tan A sin 200 (10)

1+ 2
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It can be shown tha, for small values of A, Equations
(9) and (10) can be reduced to

SKIBA9(AF)D0.7 (a0.7 + 2 CL cot 00 7 ) (11)
n K " 07 0.7

M KC0Aq(AF)D c 0 7 (a0  +2cL0 cot80. 7 ) (12)

where

K

AF = activity factor
D M propeller diameter
80.7 - blade angle measured at the 0.7 blade radius

CL - operating lift coefficient
K1  - 450,000

The torque and thrust of propellers operating at an angle of
attack can be calculated by the method and data given in (5)
and (6). The induced effects are determined by the advance
ratio, normal to the propelle"- disk and the given power co-
efficient or

J = J cos A
n

The theory developed on the preceeding pages assumes that all
sections of the propeller are operating on the straight
portion of the lift curve and below Lhe positive and negative
stall angle. Further the theory assumes that the drag is
small in comparison to the lift and can be neglected. For
these reasons the theory outlined is considered to be accurate
only up to a shaft angle of approximately 30 to 45 degrees;
at higher angies it is necessary t3 use test data, and this
is what was done in determining the performance, loads, and
stability of X-100 and X-19 aircraft. It is recognized that
this situation is unsatisfactory, but satisfactory theories
and section test data were not available.

Although it was necessary to make several assumptions in the
courje of the develcpment of a thecry for caiculating pzopei-
ler radiat force and some of these assumptions may appear to
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be crude, the results of the calculations in general agree
very closely with test data, see Figures 13 to 18 and Table
II, The largest difference between the calculated and test
data occurs at a 15 degrees where the calculated level of
radial force coefficient is 10 to 15% above the measured
level. At the higner shaft angle of attack better agreement
is obtained. It is believed that since good agreement was
obtained with other test data at the lower angles, Table II,
that the test data at the 150 angle for the X-100 propeller
is in error.

At the time of the development of the X-19 and X-!00 airplanes91i methods were not available for calculating propeller radial
force at shaft angles above 450 as the position and shape of
the vortex shed in the wake could not be found. Since the
shed vortices and their strength determine the inflow velocity
and thus, the angle of attack of the blade section, it is
apparent that the radial force could not be calculated at these
high angles. This difficulty has been one of the major prob..
lems with propellers and rotary wing aircraft, and the prob-
lem is now in process of solution.

3. APPLICATION OF PROPELLER RADIAL LIFT TO V/STOL AIRCRAFT

a. General

The radial lift developed by propellers must be properly accounted
for in the early design phase of any aircraft, and especially an
airplane where the propellers operate through a high range of tilt
angles. By the proper application of propeller radial lift a VTOL
aircraft can be improvea whether it be a tilt propeller single
wing, a tilt wing, a tandem tilt propeller or a deflected propeller
slipstream type. An improvement in performance will be obtained
as the propeller supplies lift due to radial force which reduces
wing stall tendencies. The advantages of radial force have been
studied only for the tilt propeller fixed wing type. Therefore
the application of radial force and the methods of optimization
apply only to this type aircraft.

When an dirplane Ls configured as a VTOL vehicle the wing is no
longer primarily needed for lift at the take-off and landing con-
ditions. Thus it can be optimized only for the other critical
flight ccnditicns.

If the aircraft is of the transport category the wing would ncrm-
ally be optimizcd for operation at the primary dcgn cruise con-
dition in accordznce with classica] aerodvnamic techniques. Items
such as weight, aspect ratio and wing a-ea would be considered inl
stch ai, optimizatior procedure.
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To generate the required thrust at hover even with high levels of
Figure of Merit, the propellers used on tilt wing and tilt pro-
peller V/STOL aircraft will be larger than for the same weight
conventional airplane. The propellers of V/STOL aircraft will
operate at section lift coefficients near the optimum (and have
large blade areas) whereas the propellers of conventional air-
craft operate at overloaded conditions and high section lift
coefficients. Since the propeller can be used to generate lift
at the cruise flight condition, some of the wing area of the air-
plane normally chosen for peak cruise performance can be elimin-
ated. With a fixed propeller geometry the lift produced is a
function of the flight dynamic pressure, "q", and the propeller
shaft angle of tilt A. The propeller blade stress is also pro-
portional to "Aq" and as a result this has been an important
design parameter for conventional propellers. At any flight con-
dition che lift and drag developed by the propeller operating at
a positive angle of attack is found from the equations:

L = N Cis A 4 A T Sin A (13)
n

D = N SLn T (1-Cos A) (14)n

where

N = the ra force - the actual in plane force

T = the p _r thrust normal to the propeller disk.n

Equation 13 and iume that the loss of thrust due to the shaft
angle inclinatiot. well nw the inclination of the normal force
in the direction c ,ae dra" is charged to drag. Propeller thrust
must be used to oi- t ome th.- drag. The lift drag ratio of the
propeller opera! n, aL an an0le ,-f attack is then from equations
13 and 14

L- N co-, A + T SinA (15)
D N SN A + r (1-Cos A)n

At low shaft angle !i-s eouation shows that the L/D becomes very
high and even ;pproachcs infinity as a limit as A approaches 0.
Of course N apptoache, 0 as A approaches 0 so this is of importance
only at finite valheo of N. Thus by choosing the proper shaft
angle, the ptopetler can be made to operate at any desired value
of lift-drag ratio desr~o. ilowever, as the shaft angle is re-
duced the radial fo:ce becomes smaller since, by Equation (11) N
is a direct function of A.
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b. Application In Cruise

To obtain the maximum lift-drag ratio with minimum wing area, the
propellers on the tilt-prop fixed-wing type V/STOL aircraft should
operate at a shaft angle that gives a L/D equal to that of the
wing When the wing area is reduced by the use of radial lift
the propellers serve two purposes which help keep the weight empty
of the aircraft low. Also, improved vertical take-off performance
is obtained as the download losses are reduced due to the reduc-
tion of area under the propeller.

In determining the proper wing area and aspect ratio to be used
with propellers producing radial lift many other factors must be
considered and all the important flight conditions must be analyzed
where high lift-drag ratio must be obtained.

For instance when reducing the wing area to a minimum the wing
structure can become a problem as the spar box depth becomes
limited by the wing thickness ratio necessary to obtain low drag
and high values of critical Mach number. In the case of the X-19
the thickness ratios of the front and rear wings were 21 and 18%,
respectively, and obtaining a good structure became a major problem.
On the front wing it was necessary to use 1/4 inch skins of alum-
inum alloy to obtain the required characteristics.

With small wings, problems are also encountered in providing the
necessary area or lift coefficient range for the flight control
surfaces. In the case of the X-19 the area available for the
elevators and ailerons was marginal and still have an adequate
structure. If it had been necessary to increase the control
power on this airplane, considerable difficulty would have been
encountered. The wings of the X-19 were designed with a high
loading as the airplane was originally intended to operate at
high speeds and fairly low altitude.

The X-19 wing loading based on a weight of 13,660 lb. was approxi-
mately 85 psf considering the area of both the front and rear wings.
At the design cruise condition of 271 knots EAS the front propel-
lers are designed to operate at a shaft angle of 2.80 which gives
an L/D of 29 for the propellers, Even at a speed of 230 knots EAS
the propellers operate at a lift drag ratio of 12 which is above
the maximum of the entire aircraft, Note that at the 230 knot
condition a reduction of the propeller tilt angle would reduce the
propeller lift slightly and improve the overall L/D. It would there-
fore appear that it should be possible to select the propeller
shaft angle at any flight condition to obtain the maximum perform-
ance.
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c. Application in Transition

The wing configuration chosen for high performance at the cruise

flight conditions must be adequate to handle the lift requirements
at the other flight conditions. One criteria that may affect the
wing area requirements is the speed at which the propeller must be
tilted down and locked. No specification has been establiched
to define such a speed and there does not appear to be any factor
other than mechanical that should establish such a limitation. In
the case of the X-19 the speed for conversion was 160 k:iots, and
at a gross weight of 13,660 lb. the angle of attack reqtired was
13.50. It is believed that the speed for conversion shculd have
been higher with a corresponding !jwer angle of attack.

V Unlike a conventional airplane where the wings supply all the nec-
essary lift for flight, a VTOL airplane must have direct lift pro-
duced from the expenditure of power to supplement the wing lift.
This lift must be supplied in ever in- :easing amounts as the speed
is reduced toward zero until at hover all the lift is supplied by

i a direct conversion of power and thrust.

When the propeller is tilted up the required lift, over and above
that supplemented by the wing, is obtained from the thrust and the
radial force vector. The variation with speed of the wing lift,
thrust and radial force is shown on Figure 10 for the X-100, a
VTOL aircraft with a wing loading of 160 psf. At the low
flight speeds, high tilt angles nwust be maintained so that the
required lift can be generated by the propeller thrust. As the
wings pick up lift from forward motion of the aircraft, the tilt
angle can be reduced so that the propellers start to generate lift
through radial force. This builds up to a peak of approximately
26% of the required lift at 160 MPH.

The variation of lift between the front and rear propellers and
wings is shown tor an equilibrium transition of the X-19 on Figure
11. As in the case of the X-100 the propellers are supplying a
large portion of the lift requirement from radial force at speeds
of 100 to 160 knots.,

For lifting-propeller VTOL aircraft the tilt angle necessary at
any given speed will be dependent on the following: -

(I) Wing loading
(2) Propeller disk loading
(3) Radial propeller force
(4) Power

(5) Aircraft angle of attack
(6) Acceleration

At a given speed and tilt angle, an increase in propeller radial
lift will reduce the wing area required, or the aircraft angle of
attack, or the propeller tilt angle while increasing the power.
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Figure 10. Curtiss-Wright X-100 distribution of propeller and airplane
component lift distributions through equilibrium transition;
G.W. 3500 lbs., 1240 RPM, afus = 5. Determined from
model wing tunnel test data.
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S~c the power r,. -iired 4ýI~s thse- th n2 :esse-v fat hover-ing,
teicr,,aied radisi llif, is maore ',"Min ne~edp~j. By increasing the

dra?- vec-or Lhe pcwer cdn oe adiied t,' _,`Crea-;2E c:tu nid there-
fotýe 1i't and so i- a s•navwas' the radial force dr~g comn-

is itmnortant in !uv:gif,,: tc tlhe evto_-ali cionf'_luratiý'n.

It shruIc be realizt-d t2t~ ysptcis, when t~hc propeiler is
?rc 'c, ag hig I f r ce -: a i~ n nglIe .fat:tacv, the 1-. of
The p-cpeller is poor. -3-, ir.-7,ance it 1,5ý the L'./D -,f the prop~el-
ier radtal force is -i~lv cnel Howe-.ozr, during th; c oiv ers io-r
c:-n4Evpr the lift ~tca. ýe r- much mnore 4mpurtanc 'h-en

i sn ce 1 1t tlIe m ~n te r ýf-3r e fujel. i s rnequ ired.

_t isz apprent t½ ~f the :ý-_hed-ule of shafL a-iigle of attack aonc
a were 1--orperly. c h-csen, thie con- rsi-cn could be R~coraplish'kd with-

cyt te wirc.ý 111E *-nec at w',.ich convorsiofl would 'oe completEd
boil- b-,bth: ot c..urse ti moments st1l havc t,- be providets4

The wing lhfzt does nor- have to bi- chosen to provideý lift:, if lthe
proneiier'c can L.- overitted at at-v Aq. Th is f6 the probiý_n., as tn

steFs 4,n tie toiades are a 'itect function of the Ac1  rcountered

ir is * ereýýoo-e necý!sssr i t_., 4ecamrrden thn wil6 ar-a and o~ropaýlier
Aq in _o-nbination tc ' L2 sure i!-i: c.ie tot&L wing 'Lift :s adequate
to kz~cthe_ propeller llift ond stress rprjuire-ents witnir bounds.

The pronel er forces produced ducinp, tile co,ýnversion conditions can
'be reduced :or coefficients similar to lift stcd drag instead of
the :sulpropeller t-hrust and ncr-mai force coefiicients as fo'-

CLTsin A Ni'1 cos A
qS p

and T cos A - N sin A

i~eoT = sharft tlhrust; N =normal forccý-- q d-ynanic pressure,
l/2poV) ;.2 prop disk aera; and A shaft ans~le of nt!tack.

All a given propeller advance ratioý, CL an x can b~plotted

against shaft ang.le of attBck it- a manne-r clrnilar to that of a
wing (Figure 12),. Unlike a wing, h4o;evtr, the variationt of the
propeller lift and total thrust forces havje no sudden force breaks.
For this reason it is belie-ved that with a properly des.fgned 3VTOL
aircraft the propellers will not cauze any sudden breaks in the
lift at any flight conditions, As a result the conversion char-
acteristics should be smooth for the tilt propeller 'J/STOL
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Figure 12. Propeller lift and accelerating thrust variation with "A"
angle; wind axis coordinates.

6,-4 42

p•Nrtmn UNDER Ut•TW• STATKS GDVRO4ENT COwpTIkCT No A?)3#41-)i4C SNALL NOT BE EITHER RKELAS OVTS•ED TH] OovExpowrr. OI USED
DVJPU'AT=. OR DO WL M vmo.ý- OR IN PART TO, MANIJYACTURZ OR PROCUREMENT, WITHOUT THE WRITTEN PEZRXS&ON OF CURTI%&-ICPGHT COX-
PORATION. EXCEP•T CR !) EMERGECYT REPAZR OR OVERHAUL WORK BY OR FOR THE COV2NMAZENT. WHERE THK ITESM OR PAOC.50 IS NOT OT14TAWISX RE-0N"AILI A'VALASLE TC ENADLE TIMELY PrAtOraANCc OF THE WORK OR (Ut RELEASE TO A -RKOHOOM V WT., AS THY INTERESTS OF THE UNITES)
STATES MAY R.EOU). PROYWD• THAT IN EM ER CASE THE RELEASE, USX, DUPLICATION OR D•ICLOSRE HERAOF SXA-.L BE SUBJECT TO THE TORE&OIz N
LnqRTIOIUL THIS LMEGI SHALL BE MARKED ON AMY REPRODUCTION HEREOF IN WHOLE OR IN PART.-



aircraft. This was demonstrated with the X-100 aircraft.

d. Summary

In summary the propeller operating with radial force makes it pos-
sible to design a VTOL airplane incorporating the 4ing area neces-
sary for optimum cruise flight at any condition or series of con-
ditions. This, coupled with the stall free characteristics with
changes in shaft angle, make the high radial lift propeller a
useful c.nd efficient device for V/STOL airplanes.

4. CORRELATION OF CALCULATED AND TEST RESULTS

Using the theory given in (6) the radial force was calculated for a num-
ber of points as shown in Table II and cca.pared to the test data of (8)
and (9). As noted from Table II fair agreement between the test and cal-
culated points are obtained for shaft angles up to 200. Further compari-
sons between the data obtained with the X-100 propeller, (9), are shown
on Figures 13 to 18. From these comparisons it appears that fairly good
accuracy is obtained by calculation up to angles of 450, At angles above
450 the tests indicate higher levels of radial force than calculated.

Although good success was obtained in the calculation of radial force, it
was still not possible to calculate the level of force at angles above 450
with any degree of accuracy. For this reason when determining :he perfor-
mance of the X-19, propeller test data were used.

43

FURSHEo UNDER UNITED STATES OOvEXRNAN, -ONTILACT H.. AF))(IJ41-.940 SHALL 10T BE TmE RELEASED OUTZDZ THE GOVERNMENT. OR USED.
04UPUCAT•O. OR DISCLOSED IN W1OLE OR IN PART FOR MA1NUFACTURE OR fROCurEIxT, WiTHOUT THE WRITTEN PErza mom OF CURTI.21-WRUIT COR-
PORATION. ETXCEPT FOR (t) mxcRC;cY REPAIR OR OVERItHAUL WORK B f OR FOR THE GOVERXMNS `T. WHERE THE ITEM OR RCE IS NOT OT) 1W1R RE-

t SONABLT AVAILABLEJ TO ENABLE TIMELY PErOPANICx OF THE WORK. OR (0) RELEASE TO A FORXIGN GOVERI••E•T. AS THE •TE•RZSTS OF THE u)CTED
STATES MAT RQUIRE. PROVIED THAT IN EITHER CASE THE RELEASE. USE., UPUCATION OR DLCLOSURE HEREO SMALL Ir SUIrIECT TO THE FOftX 1INC
IMITATIONS TiWS LEGEND SHALL E MARKRED ON ANT RE PRODUCTION HXREOr IN WHOLE OR IN PART. -



Table II. Comparison between calculated and test values
of radial force, N.

10-(3) (062)-045 Blade B - 3 D 1 10'0"

400 wnD

J Cp A0 N, IBM N, Test

2.3 .248 10° 403 410

i.15 .129 100 82.2 88

1.15 .129 200 161 193

1.15 .247 100 97.5 102

1.15 .24, 200 193 224

2.3 .210 100 396 444

2.3 .210 200 767 975

2.3 .248 100 403 453

2.3 .248 200 783 995

3.46 .248 100 964 1090

3.46 .248 200 1881 2395

3.46 .438 100 997 1125

3.46 .438 200 1957 2455
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Figure 13. Normal force coefficient as a function of advance ratio
perpendicular to the propeller disk;3(X100188) blade, dia. -

10 ft. AF - 188, ICLi = 0.068; A - 150.
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Figure 14. Normal force coefficient as a function of advance ratio
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SECTION III

WING-PROPELLER INTERFERENCE EFFECTS



SECTION III NO!ENCLAFURE

A propeller thrust line angle of attach = O + a f, degrees
C wing Chord ft
CD drag coefficient in wind axes = D/qSw
Cdo wing drag coefficient
CL lift coefficient in wind axes = L/qSw
Cm pitching moment coefficient
Cma slope of pitching moment coefficient versus (If
Cp power coefficient 550HP/pn 3 lD
CT1. thrust coefficient = T/p n 2 D14

P
CX =-CD force coefficient in wind axes equal to CD but with

positive orientation opposite to CD
D drag of airplane or wing in presence of propeller, lb
De effective wing drag, lb
Dp propeller diameter, ft
"w slipstream diameter in final wake, ft
hiDp height above ground in propeller diameters
HP horsepower
Jo propeller advance ratio in the wind axes = V/nDp
KI Dw/DP
K2  To/T
L lift, lb
n propeller speed, rps
q dynamic pressure = 3pv 2 , Ib/ft 2

Re Reynold's Number
Sp propeller disk area, ft 2

Sw wing area washed by propeller, ft 2

Sw wing area, ft 2

Tc thrust coefficiert in propeller axes = T/qSp
T propeller axial thrust, lb
TI propeller axial thrust in influence of Wing
"v average axial velocity through propeller, ft/sec
Sv average axial velocity in fully developed wake ft/sec
V velocity, ft/sec
X' average axial velocity on final wake, ft/sec
Of fuselage angle of attack (Referenced to WL 100), degrees

propeller blade angle of attack at .691 propeller
radius, degrees

7 • propeller efficiency
9 p air density, ib-sec 2 /ft 4

0 propeller zilt angle (Referenced to WL 100), degrees

St f!ap angle degrees
Z distance from propeller disk to wing surface inches

Subscripts
F front Propeller
R rear Propeller
0 free Air

in presence of wing



SECTION III

WING-PROPELLER INTERFERENCE EFFECTS

I. INTRODUCTION

One of the most serious hover problems encountered with fixed wing tilt
propeller VTOL Aircraft is the lift loss due to the high slipstream ve-
locity of the propeller impinging on the wing. This causes a high wing
drag which reduces the overall lift generated by the propeller. Since the
lift loss is caused by drag, it is a function of the slipstream velocity
(and thus the propeller loading), the projected wing area in the slip-
stream, drag coefficient of the wing and the distance of the wing aft of
the propeller disk. In addition since the wing produces blockage of the
propeller slipstream it can also affect the overall propeller thrust which
is an important factor when determining the download by test.

2. LIFT LOSS IN HOVER

a. Theoty

Consider a propeller mounted above a wing as shown in Figure 19.

By the simple momentum theory

T =PSp v' ; since v' = 2v (1)

p )2 = T (2)
2

Now the drag on the section in the prop whce is assuming
a rectangular wing.

D = CD q Sw (3)

T Dw(4)
CD= SP 2

D C Dp

T = CDo Sp " K3 (5)
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For the X-19, 4.m

D/T1 = .18 CDo (rear wing-X-19)

D/T1 = .112 CDo (front wing-X-19) (6)

D/ = .102 C (front wing-X-100)
T1  Do

The drag coefficient used in Equation (5) and (6) is a function of
the following parameterf

a) Aspect ratio of inunersed body (prop radius to chord ratio).

b) The flap deflection angle 8f.

The wing can cause considerable blockage of the propeller wake
which influences the performance. Therefore when calculating the
effective download D/To the change in the propeller performance
due to the presence of the wing must be considered.

Tests at the static condition by the NACA reference 13.b have
indicated that the blockage causes an increase of thrust which
helps reduce the overall download. If K2 is the ratio of the in-
Increase of thrust then the effective loss due to download is ex-
pressed by the equation

K2 / r

D =T ID - (K -1I (7)
e oT 1 \K 2  2

The factor K2 is dependent on the area aLnd distaiuce of the blockage
from the propeller disk.

b. Download Test Data

The drag coefficient of the wing and blockage effect on the pro-
peller performance must be determined from test data, so that the
effective download performance can be calculated. The only data
available is that given in (10) and (11). These data were used
to estimate the download loss for the X-100 airplane. Download
data were determined from tests of the 15% scale model and full
scale airplane and are obtained from a combination of unpublished
information and data appearing in (12). These test data are sum-
marized on Figure 20 and indicate the download was higher than the
predicted value. The data measured on the full scale X-100 air-
plane were obtained by measuring the total thrust with the wing
chord parallel and normal to the direction of the slipstream
velocity vector. When the wing 4as perpendicular to the stream
vector the flap was deflected 450 to determine the effects of flap
angle on the download loss;
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The result of these tests are shown on Figure 20 as De/TI. The
actual magnitude of the drag is not known as the value of K2 was
not determined. The data fror the model tests appear to agree
quite well with the full scale results in spite of the large
change in Reynolds Number and disk loading between the two tests.
In the range of disk loading of 16 to 22 psf. the download ratio
appears to be nearly constant. Also deflection of the flap has a
large affect on the magnitude of the download as was indicated in
the XV-3 testing (11).

To determine the download losses, full scale pressure measurements
were taken on the port rear wing of the No. I X-19 aircraft during
Ground Run No. 244. The pressure pick-up system consisted of
multitube straps adhered, chordwise, to the wing surface at five
spanwise locations.

Figure 21 shows these locations and their positions in terms of
propeller radius, R, and Figure 22 shows Lhe corresponding choid-
wise location of the pressure holes. The tests werc conducted
with the propeller operating at approximately a diameter off the
ground, Figure 23.

Atmospheric conditions were recorded manually and transverse shaft
torque, net thrust component, propeller speed, blade angle, rear
nacelle tilt angle and control surface deflections were recorded
on the aircraft oscilographs.

All the testing was done with only the rear propellers operating;
but the test did cover a range of tilt angles and disk loadings.
See Table III. At a disk loading of 18.72 the propeller is pro-
ducing the required thrust for hover at a 40% C.G. location and
12,300 lbs gross weight.

The test indicated that the lower surface pressure distribution is
basically rectangular in shape throughout, with the wing pressure
coefficient never exceeding approximately 0.40. These results are
in agreement, with a uniform, flow field around a two-dimensional
airfoil section over a range of angles of attack from 00 to 1800.

The upper surface pressure distribution over the undeflected por-
tio-i of the wing has a characteristic shape whose magnitude
ch.inges with the distance from the propeller shaft. Within the
propeller sweep these surface pressures are greater than ambient
and reflect the propeller slipstream dynamic pressure.

The distributions outside of the propeller sweep are probably
generated by a combination of spanwise and chordwise flows, a
detailed examination of which, at this stage, appears unnecessary.
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Figure 21. X-19, rear wing download test; locations of
spanwise pressure stations.
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Figure 23. X-19, ground clearances on the "tie-down" rig.
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Table III. X-19, rear wing download test conditions.

Test Nacelle Aileron Blade Disk
Condition Angle Angle Angle Cp CT Loading(deg) (deg) (de=,;) T/Sp - ib/ft2

1 81.5 57.0 3.1 0.0181 0.0411 4.55

2 81.5 57.0 13.1 0.0682 0.1503 18.72

3 75.0 53.9 11.0 0.0544 0.1241 15.90

4 70.0 51.9 10.4 0.0515 0.1195 15.23

5 81.5 57.0 10.8 0.0518 0,1208 15.05
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However, some thought may be given to the distribution around the
50% chord, Figure 24 for the inboard station. At that station the
upper and lower surface pressures try to balance out through the
gap between elevator and wing, whereas at station 4 (per Figure 21)
there is an additional effect, due probably to a carry-over of the
suction peaks from the deflected aileron.

Figure 25 shows typical spanwise load distribution obtained from
integration of the pressures.

For comparison with propeller wake dynamic pressure predictions,
Figure 26 presents the wing upper surface pressure along the span-
wise line through the propeller axis. This shows that although
the correlation achieved is not absolute, it is sufficient to show
that the propeller wake dynamic pressure properties are the major
factors affecting both the distribution and magnitude of the down-
load on this surface.

Ground effects on the download are not yet fully understood, but
it is most likely that the under surface of the aircraft (and hence
wings) will be subjected to the most influence. This influence
depends upon the aircraft height above the ground; for these tests
height is shown in Figure 23.

The download on the X-19 is composed of contributions from the
fuselage and wings. Because the download is a result of propeller
wash and related aircraft interferences, the major contribution to
this download comes from the wings, and in particular from those
portions of the wings swept by the propellers.

To obtain an indication of the download generated by the wings the
spanwise loadings were integrated from wing tip to wing root and
the results plotted in Figure 27 as a percentage of actual thrust
measured along the propeller axis. It must be emphasized that
these values are in ground effect and represent exposed wing con-
tributions only. The total download must be obtained by integrat-
ing rrom wing tip to fuselage centerline.

The download values, given in Figure 27 for upper and lower sur-
faces, diminis6 for disk loadings greater than approximately 14
lb./sq.ft. As escribed elsewhere herein, this is of doubtful
validity since it represents the sum of two conflicting itens (i.e.
ground effect and download) which at this stage cannot be investi-
gated separately. As a partial step toward this separation of
effects, the upper surface pressures only were integrated tD find
that surface's contribution to the download. This is becauie it
comes primarily from direct propeller wash impingement and i:hus
would be less affected by the ground effects.
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Figure 25. X-19, effect of nacelle tilt angle on the spanwise
loading, rear w'ing, static propeller.
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The dowr'oad on the upper surface is seen from Figure 27 to repre-
sent approximately half of the measured total. The trends of
download losses with variations of disk loading should not be taken
as absolute; further work is necessary to check this. The varia-
tion of jownload with propeller tilt at small angles is slight but
possesses the expected trend of reduction with dim-nishing pro-
peller tilt angle.

Since the download is generated mainly within the propeller swept
area, it was considered possible that alleviating devices might
produce noticeable reductions in wing downloads. These devices
are employed to equalize the upper and lower surface pressures by
channelling the upper surface air of high pressure to the sub-
ambient lower surface.

To measure the download losses over a greater range of conditions
and out of the influences of the ground, rests were conducted on
the Curtiss static thrust test rig described in (13). The rig was
modified so that the thrust of the propeller could be measured in
the presence of the wing. The total '.i-g forces produced by the
propeller slipstream were also measured.

Tests were run to investigate if various combinations of flaps and
slots could be used to reduce the download losses. The planned
tests were not completed but enough testing was done simulating
the rear wing and propeller to provide useful data; see Figures 28
through 32.

The effect of disk loading, tilt angle, and aileron angle are shown
in Figures 28 and 29 for nacelle angles of 800 and 900. The re-
sults indicate that the gross download ratio, the actual measuzed
drag over the actual measured thrust is nearly independent of the
disk loading for the range of T/Sp of 10 to 25 psf. As might be
expected the difference in download due to changes of nacelle tilt
angle are small. The download loss is reduced considerably by
deflection of the flap, Figures 28 to 30. This would be expected
due to the reduction of wing area normal to the propeller wake.
The peak download reduction occurs at a bf of 900 although the
difference between 60 and 900 is very small.

A comparison of the performance of the propeller operating with
and without the blockage produced by the rear wing of the X-19
is shown on Figure 31. Sufficient data were not obtained to
fully define the trend. A relatively large increase in thrust
due to blockage is evident. The trend shown for changes in flap
angle and disk loading are not necessarily conclu, 've, as the
data are too meager to fully substantiate such a tr-nd. Pre-
sumably the blockage does increase the thrust at a given power
in a manner similar to that in which ground effect increases
thrust. This effect results in a thrust 3 or 4% higher than
would be measured without blockage. This increase in thrust
has been observed in the static testing of propellers and is
discussed in (13). Further testing is required to more fully

67

' rUAWIZD UNDER UNITED STAES GOVEKNMENT CONTRACT No. A7T33)|6)--l 0- OSALL NOT BE TYH=r RELE&AVED OUTSID THE GOVERNMEINT. OR USED.

DUPUCATED. OR DSLO=D IN WHOLE OR IN PART TOR OMANUFACTURE O OU . THUT THO WRRTTEN P.OH O CUISNOTW I C• -

VOR ,ATV). SkCEPT FOR (i) EMERGENCY REPAIR OR - 'ERHAUL WORX BY OR FOR THE GOVERNMENT, WHERE THE ITE OR P C S HOT OTHEWISE R -

OABLt AV AILASBX TO ENA15L TIl L - PERIORMANCE OF THE WORIL OR 1") RELEASE TO A O REVGN GOVERNSMENT, AS THE CNr &A ESTS OF THE UNITED

9T0E VA REDIE PRVC11TA N...YC H EES. USE. DUpLICATION OR DISCLOSURE HEREOFI s"ALL BE 5UBJECT TO THE FOREGOING

LIMITATIONS. THIS LEGEND SHAKLL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."



0

-4-

/

-9-j
1 o5

a 0

o1-

00

r/

0! / .,4 -o

C14

UN

I

-4 68
00/1 ~0o

-4 1

-44

" _D TITAEOI COTRC _r_3{-0 _ H_ DOTiTr R D

T, U,

F io
o ~ 0

(IN

67-2032 68

-FU HLWSH UMOER UNIT ED STATES GOVERNM.ENT CONTKACT 4. AFISI61SI.1R45 SHALL NR1 ]BE 13THER RELEASrD OUTSIDE THE G.OVERNMENT, OR USED.4

DUPLIGArtD. OR r.ISCLOED IN W34OLE: OR IN PART FOR MANLFACTURE ORt PROCUREMENT, WITHOUT TPE WRITTEN PERMISSION OF CURTISS-WRSGHT LOR.

pORATIO" , EXCEPT FOR (I) EMER,,EHCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHtERR THE ITEMA OR PROCESS IS NOT OTHERWISE RE-

SONABLY AVAILABLE TU ENABLE TIMELY PYEkrCRMANCE Or THE WORK. OR 01) RELEASE ?0 A FOREIGN GOVERNMENT, AS INE INTERESTS OF THE UN'I ED

ST ATEX3 MAY RItEUIRE PROVIDED TH' ' IN ZITHEL CASE THI RELEAS.. USE. VLUPUCATION OR DISCLOSURE HERXOF SHALL BE SUB:ZCT TO TIHE FOREGOING

LIITATIONS THIN IEGXEND SHALL P.-. MARKED ON ANY REPRODUCTION HEREOF IN WHOx OR IN PART.



0 c

0 0

00
co

*0 >l

0C
o /o

ca: 000
0 0

44.

4.4
44 0

a I r.l

II I U

0 I

4--I O-

o/ /

S-I4

0o 

a:

00
-44

C14 1.4 (N

1/a( %

61-0109 69

FURNISHED UNDER UNITED STATES GOVEIRNMENT CONTRACT No. A`3S3(6I5).)-0 SHALL NOT BE EITHER RELEASED OUT.DE THE GOVExRNMrNT, OR USED,
DUPIJCA'.Et. OK DISCLOSZE IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT. WITHOUT THE WRITTEN PERM•smON Or CURTISS.-WRi(.T COR-
PORA'ION. EXCEPT FOR (i) EMERGEnCT REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERL THE ITEM OR PROCESS IS tT OTHNE WISE RE-
SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (4i RELASE TO A FOREIGN GOVERNMENT, AS THE INTEAESTS OF TN'. UNTED
STATES MAY REOI'IRE PROVIDEI) THAT IN EITHER CASE THE RELEASE. USE. DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE 1OrEGOING
LIMITATIONS THIS LEGEND SHALL BE MARKRED ON ANT RFPRODUCTION HEREOF IN WHOLE OR IN PART.-



00

m 0

"14I0 0

60

-,4

0

I UOJ
u to

0 40

ý4 14 4--4 C

* ~4-

w. F4 0n
0

.- 4 (' 0 C .- 4

W 00

wE4r-

07

M[S_______ _____________ STC)GVR(XTC)%1LL: 4, y)6S-9QSALO XM EEAE USD H OENET l SD

I ,S HX u4DEJ UýTE ToE AOZ H4 V FO~~A ~ * ) I~~ S S4~ L ? T RE IG GOV ERNRELEASE AS~ THE I OTER NESTS OF TH UNIED.

RATON EXCEI't PROV(IDE THARDT P.EPAZR OR OY-UTE CHALAS~UTI! RIwX O UPLOCATION OAR DpfL4ErUHRE THEA~ 3M BaPOES ISUJC TOTil FOTRIERE-ON

UWAMCIYRTHIS LEGEND SHALL BE M&RKEZtI 0" AVY ftEPRc!)IJCION HEREOF IN4 WHOLE OR ým .
1
Afl.-,



I/
%$oI ,

i14

0 0
$4

-4

"4 -'4

( '114 
44 u

tw0

0.______ 00

d.44

-4 1.4

67-2042 71

F ).RWHECD UNIDER UNITED STATES GOVERNUME•NT CONTRACT No AF3)(4II)-3%•0, SHAL ,NOT BEl EITHER• RELESE OUTSJIDE THE£ GOVIkmd.N, Olt USECD.

DUPLIC.ATErD, OR DISCLOSEDIr, N WHOL1L OR IN PART )FOR M.ANUF')ACTURE Olt PROCUREMENT.•1" W.7'l f)UT THE" WRITTEN• PZAMSM 0r Ct T't33-W.IIlCHT COR-

PORATION, ExKCEPT r'OR (I) 1E)]ZRGENCY REPAUIR OR OVECRHAUL WORK BY OR FOR THE• GOVr-%?7M]LNT. WHECRE THE ITEM OR PROCESSIrS NOT OTHRISE3•T RTr•

SO•NABLT AVAILABLE; TO Z;KABLXE TIME•LY PIERFORMANCEI OF' THEC WOIIJ• OR Wt) RECLEASE TO A FPOREIGN GOVZRICrR . AS THE£ INTEIRESTS Otr THE UNqITE;D

STAYT-5 MAYT REOLIKE P'ROVIDEDJ THAT IN EITHER, CAS3E THEr RELZCASE.I USX. DUPLIC.ATION OR =LýOSUX• HEJREOF S-HALL. Z SUBJECT TO THEC rOk•(NC;

LIMITATIONS THIS L.XGEND SHALL F•IE M.AA, ED ON ANY RE'PRODUJCTION HERI•or IN wHOLIE OR, IN PART.-



20

Effect of Lending Edge Undersurface Slat

D/T

10

8a oll =3008 00
a , I

5 10 15 20 25 Y

T/Sp

20 - I

Effect of Leading Edge Slat and Aileron Nose Piece

15

D/T

a 1 = 600 8e = 008aColl 610 e 0

5 10 5 20 25 30

Figure 32. X-19, effect of slats and aileron nose piece on
measured download.
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understand its meaning and effects on the download prcblem

The increased thrust caused by blockage helps to reduce the d:"-
load losses. For example, let us say that the thrust incre.ase is
4%. Therefore, K2 = 1.04, and the effective download for the rear

wing of the X-19 becomes approximately 10.5% at a flap angle of
600 rather than 15% as indicated by the direct measurements.

c. Predicted Download

The method used and the download losses predicted for the X-100
airplane are given in (10) and (11). An adjustment was made in
the data to agree with published XV-3 test data. The effects of
propeller blockage are not considered in these data. Based on the
test data run full scale with the X-100 airplane and shown on
Figure 20, the original predicted download losses appeared much too
low. The test data indicate a loss of 11% with no flap deflec-
tion compared with the predicted value of 7.7%. With the flap
deflected 45 the test shows a loss of 6% in contrast with a pre-
dicted loss of 3.4% with a flap setting of 600.

The predicted download loss on the X-19 airplane was based on the
data given in Figure 20. It was assumed that the ratio of thrust
increase due to blockage is the same for both front and rear wings.
The predicted download loss for the front is 6.5% and the rear

0
wing 9.5%, both with the flaps deflected to 60 . This gives an
average loss due to download of 8.8% for the average take-off C.G.
of 42.8%. The drag coefficient based on equation 5 for the rear
wing was 0.58 and the corresponding coefficient for the front wing
is 0.53. The difference in drag coefficient is due to the size of
the flap on the front wing which results in less area for blockage,
and consequently reduces the download.

3. PERIODIC FORCES ON WINGS AND PROPELLERS IN HOVER

The wing operating in the slipstream of the propeller will experience
periodic forces due to the unsteady nature of the flow. When the airplane
is hovering it is expected the forces would peak. The periodic forces are
a function of the variation of velocity due to the presence of the propel-
ler blades, as contrasted with a true disk. The frequency of the variation
of force would be three times propeller rotational speed for the three-
blade propeller used on the X-19. The variation of velocity from the mean
was measured with a hot film anemometer as reported in (13). These meas-
urements indicated the velocity peaks were approximately 10% above the
minimum level and are quite abrupt in character. The measurements with
pressure tubes on the rear wing showed little variation of pressure, which
tends to confirm the hot film data.

From the test results it is expected the periodic forcing function would
be small and be important only in creating a resonance condition in the
structure of the movable control surfaces. This situation was encountered
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with the X-19 aircraft where trouble was experienced with a bracket holding
the aileron. The difficulty was fixed by detuning the bracket from the
3XP periodic force. In the investigation of this problem, measurements of
the frequency were made at the supporting bracket, confirming the 3XP fre-
quency of periodic force.

The effect of the wing on the propeller when the aircraft is hovering was
found to be small, from analysis of fl ght test records. Outboard on the

blade a UXP blade stress was measured of + 600 psi, whereas the allowable
is over 4,000 psi. A shank IXP stress of 3,000 psi was measured whereas

the allowable is 20,000 psi.

From the results of the download tests it will be noted that the propeller
indicates an increase of thrust due to the wing blockage, as on Figure 31.
For this reason it appears reasonable that the wing could induce a 1XP
stress in the blades while the airplane is hovering. This stress is of
little importance to the design of the propeller.

44. SUMMARY OF FORCES - WINGS AND PROPELLERS

a. Wings and Propellers - Out of Ground Effect

A reasonable determination of wing, propeller and fuselage inter-
ference effects for the X-19 has been obtained from (14). The
wind tunnel data proved difficult to analyze for power effects;
therefore, a suitable parameter was employed to linearize all data
at a given "A" angle.

The propeller thrust coefficient (T c) proved to be the device for

providing a single effective function with reagonable data scatter.
The data were collected at "A-" angles from 16 to 900 for the

lift coefficient (C L) of the front and rear wing plus the propel-

lers. These are plotted vs. T . In addition, CL of the props was

plotted for corresponding "A" angles.

The drag coefficient was handled in a similar manner. A consistent
grouping of data was obtained to facilitate fairing slopes or
curves. Where noted, data were taken at two velocities. In these
instances, a R effect could be expected. The shaded points of thee

higher velocity appear higher at AF = 760.; however, there aren't

enough corroborating facts at other "A" angles to support a
definite R effect. Figures 33 through 36 are selected cur..z5e

from which one can see the nature of these effects.
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Figure 33. X-19, lift coefficient of front propellers and front wing
plus propellers as a function of thrust coefficient.
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To provide a more common device for comparison, derivation of a
suitable power parameter was accomplished as follows.

TV_T-- = HP (Horse Power)

T (½P V 2 ) Sp V C P P n 3 _ I

55077 550

Tc K7?(Cp/J)

Where K = 8/7

This rel.tionship of T and (C / J 3) was used to parameterizec p

the thrust and power data. Figures 37 and 38 contain plots of
these parameters at constant "A" angles, and show relatively small
data scatter. Therefore a relationship is apparent for the tilted

propeller which ties the estimation of lift and drag power effects
to these parameters. Figure 39 is 4 c-oss plot of the two pre-
vious curves. This form is of considerable interest, in that it
describes a simple picture of tne front wash 3 effect upon the rear
propeller. Note that the parameter, (C / J ), is proportional to

3 p
HP /V . Thus for a fixed horsepower and velocity, one can see how
the thrust (proportional to T C) varies with "A" angle. On the

front propeller, thru. increases rapidly at "A" angles above 450

while on the rear, only small changer occur. From the stability

consideration, this is undesirable; however, it is common to all
tandem lifting bodies and cannot be completely avoided. It is
this characteristic which has been found to be responsible for the

unstable C (per wind tunnel results) of the X-19 at the highma

tilt angles and low advance ratios.

During flight test, there was little indication of static insta-
bility in the region indicated by tunnel tests (OF 0  82.50,

V = 50 knots). However, specific tests to determine this were not
performed. Consequently, a correlation between model and full
scale characteristics was never established.

Later data of (15) indicated that curves of T vs (C,/ 3) are not

independent of 9coll at a given 0 , a f . This would suggest
that some of the single line curves which appear to have scatter
in the points should be several curves which are nearly colinear.

(See Figures 37 and 38). It is also known that propeiler lift
efficiency varies widely with 7rnD at the higher "A" angles. YetP
if a single curve is drawn for CL vs. (C p/ J3) (at a given A angle)
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the lift will be independent of TrnD . Therefore, the single lineP

can only be an approximation. (16) describes the most recent
analysis of an isolated propeller plotted in the C p/ J3 parameter.

Figures 40 and 41 are taken from this report to illustrate the
non-colinear characteristics. For practical considerations, in
selecting the operating conditions of the propeller, one achieves
a near optimum setting throughout the flight regime. Consequently,
as one moves along the C p/ J3 curve, Tc will fall close to the

envelope curve (a single line). For this reason, the single line
presentations shown in Figures 37 to 39 are quite indicative of
the "trends" and general efficiency levels at which the propellers
are operating.

Note further that this approximating technique has represented
the entire T , A, J and C interrelationship regime on one sheetc p

of curves (Figure 39).

Of more value, however, are the CL and CD (or -Cx ) of the propel-

lers. That information is given in Figures 42 and 43, where:

C L I ITc sin(O + a f) + N Cos (0 + a f)] ir4SDp2
CL cf c co

CX= -C D [Tc cos(0 + af) - Nc sin(0 + f) S

The term, N , is the propeller normal force coefficient defined inc

the same manner as T • These data represent some of the earlierc

information obtaired for the X-19 front and rear propellers. Some
later propeller data have been obtained from recent wind *unnel
tests, unfortunately, time did not permit correlation of these
data with that shown here. In simple spot checks, it was found
that the trends shown in Figure 39 are still valid. However, the
absolute level of thrust (at fixed power) appears to be higher.

The wing forces are the next phase of this discussion. This is
separately treated as the lift and drag of the wings without
propellers, and the power effects ot the propellers upon the wings.

The pripeller-off wing forces are normally represented by a CL and

CD vs af curve. However, the small size of the wings (lift

struts) maKes them sensitive to the presence of nearby bodies.
The nacelles for one, a e sufficiently large to cause considerable
interference. Thus, curves of "' and CD are given as a function
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of nacelle tilt angle and angle of attack in Figures 44 through
47. Note the diminished lift and increased drag at the high tilt
angles. This is attributed to wing tip stall induced by the
nacelle, as reported in (17) and (18), and shows that maximum CL
occurs in the vicinity of 10 < 0 < 200. Both wings are a

referenced to the airplane area rather than individual wing areas.
Furthermore, both wings generate approximately the same lift; yet
the rear wing is twice the size of the front. This merely reflects
the large downwash to which the rear wing is subjected by the

front wing and propeller when installed on the aircraft,

Included in these results is the fuselage-induced wash. --is
manifests itself as an upwash field on the front wing and a down-
wash field on the rear wing. A more comprehensive discuss~on of
fuselage induced wash is given in Section X.2.k. Aileron and flap
angles are zero throughout.

The effects of propeller wash upon the wings is highly pronounced
t and is clearly a function of propeller tilt angle (with respect to

wing) and disk loading coefficient (Tc). The results are given in

Figures 48 through 51. A look at Figure 48 presents some inter-
esting perspective. A positive lift is shown acting on the wing
which is equal to or greater than that of the wing, power off.
The T was computed using tunnel data run at 40 mph with .3< J <.6c

For zero velocity, T would be infinite; however, the wing

lift would be negative. Obviously somewhere between 0 < J < .3
the prop wash shifts aft and the wing's lift goes from a download
(negative) to a positive lift, and even a positive lift increment
above the established C relationship. Therefore, these curves

cannot be used in the immediate vicinity of the hover.

The rear wing experiences both a posftive and negative lift in-
crement depending on the tilt angle. Referring to Figure 49,
note a large download at the high "A" angles. Investigation has
shown that the incremental lifts, positive on the front wing and
negative on the rear wing, contribute strongly to the aircraft's
pitch-up moment (trim) progressing from hover to a finite forward
velocity.

Both the front and rear wing (Figures 50 and 51) appear to exper-
ience a drag-power effect at the high tilt angles and a thrust at
the low tilt angles. This would seem to imply high suctions on
the leading edge. For practical purposes, this thrust is of small
consequence because cruise values of T approach zero for speedsc

not much in excess of 160 knots. Also, at low tilt angles, the
parameter (0 +aP does not clearly define the wash, as the power
effects will vary both with (0 +Of) and 0. However, the test
data did not provide for botr of these p~rameters to be varied.
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The additional Figures 52 througn 65 display both C vs af and

spaniis2 lift distributions o.a the rear wing as functions of tilt

anlgle and acv'aice ratio. These curves have been prepared from
pressire data extracted trom (15). Figure 57 provides a check

3Cpoint against Figure 49. For Lxample? at 0R = 16.9°' f = 0e

(Figure 57) the A, 1- - -0.06 due to power effects. Figure 49

would show a - -0.07 at kR +f ) 170.

b. Wings and Propellers in Ground Effe-ct

Fi,;ures 66 through 69 have been include2d to demonstrate the in-
fluence of the ground on the propellers, As the propeller blade
angles are constant throughout this range of tests one finds that
power absorption is influenced by the ground presence. At
J's of 0.12 and 0,325, the front and rear propellers absorb ?ess
power as the ground is approached. At J = 0.54 however, a re-

versal occurs and the propellers absorb more power in the ground
presence. A study of this phenomenon has not been pursued. How-
aver, it is believed to be related to fhe general inclination of
the wake.

The general loading of the front propellers and unloadiag of the
rear propellers with increasing angle of attack sh-uld be noted.
This effect has been observed as well at tilt angles lower than
the hover values for which these curves are plotted. Additionally
a sharp increase in thrust and power on the rear propellers above
angles of attack of twelve degrees was evidenced. Again, it is
hypothesized that the rear propellers are passing beneath the main
core of the front wake. The aircraft stability is expected to
increase in this vicinity. This, in fact, is the case. Ground
presence does not appear to alter the trend.

As the blade angles aie held constant throughout the range of

a fus and J, a condition prevails which is equivalent to fixed

collective pitch as well as stick position. It is obvious that
total power, and its distribution, do not remain constant through-
out even the afus range. To fully define the picture it would be

necessary to run a range of collective and differential blade
angles so that lines -,f constant pcwer and stick deflection couJd
be defined. Unfortunately, thlis was not within the scope of the
test data. One additional corrxent is made concerning the thrust
data,: it does not always appear consistent with the power data.
The tendency has been to favor the power data and to regard the
thrust intercepts with suspicion. This problem has consistently
xeared itself throughout the teating, and serves to illustrate the
.aution required in data interpretation.

No data have been accumulated to determaie the influence of ground
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Figure 52. X-19, installed rear wing lift curve.
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Figure 57. x-19, installed rear wing lift curve.
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Figure 62. X-19, installed rear wing lift curve.
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Figure 66. X-19 front propeller thrust coefficient.
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Figure 68. X-19, front prop.'ller power coefficient.
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Figure 69. X-19, rear propeller powei coefficient.
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presence on the wings. A reasonable assumption would be to
suggest that it resembles the trends exhibited by the propellers,

at least with respect to the intercepts.

c. Net Forces and Moments In and Out of Ground Effect

The source of transiticn ground effect data accumulated on the
X-19 is given in (19). The information is based on 12% model
scale and is quite limited in nature. For example, only one
collective blade aLigle was run (/o = 10.450) for a range of

fuselage attitudes and advance ratio (see Figures 70, 71 and 72).
At first glance, one notes that CL' CD and C. are strongly affected

by the ground effect. A closer scrutiny indicates that power ab-
sorption has also changed, so that a collective change would be
required to maintain constant power. As this is not available, the
ratio of C L/CP has been formed; it is given in the following table:

h/D J - 0.12 0.32 0.54

1.0 $370 61.3 23.8 [CL/Cp

5.34 1 361 54.6 23.6 L fus

Lift ground effect is thus shown to be about 12% at J = 0.3? and
1% at J - 0.541. The value at J - 0.12 is not quite correct as
the IGE and OGE runs were made at slightly different J's. Small

as the difference is, the slope CL vs J is sufficiently large to

cloud ýhe comparison at this J. The predicted ground effect at
h/Dp - 1, for static operation (J - 0) is 3.5%. By definition

h/Dp 1 I means that wheel height is equal to one propeller diam-

eter above the ground.

Another consideration in establishing the resultant ground effect
upon power is the effect of h/D on the drag and consequent

fuselage attitude. Thus, ground effect would result in a slight
attitude change as well as a throttle change. Figure 71 shows a
positive drag for the entire range of afus plotted. This can be

corrected by nosing the fuselage to negative attitudes at J - 0.12,
and by tilting to lower nacelle angles for the higher values of
J. At negative values of afus the ground effect tends to decrease

the drag. As it also increases the lift it may be concluded that
for acceleration in ground effect (negative a fus) both the lift

and drag contributions are beneficial in helping to reduce power.

Unfortunately, the data have insufficient depth to fully define
the resultant ground effects. "
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Figure 70. X-19, airplne lift characteristics, ground effects.
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Figure 71. X-19, airplane drag characteristics, ground effects.
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Figure 72. X-19, airplane moment characteristics, ground effects;
c.g. at 42.87. lift chord and W.L. 123.8 inches.
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5. FLAP DEFLECTION INTERFERENCE EFFECTS IN TRANSITION

The bulk of the testing performed in the transition area concerns itself
with propeller and modei force readouts. There were no tests performed to
establish interference effects of a flap or aileron upon its own propeller
front or rear wing. The only testing done to determine effects of flap
deflection was at the hover ý:oodition and was discussed previously.
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SECTION IV NOMENCLATURE

A = disk area = yR 2

1000 1.03
AF activity Factor =- 1l6 1.2 3

b blade chord ft

CLi section design lift coefficient

T
CT = thrust coefficient =- pn2 D2

n D

PSCp = power coefficient 3
Pn D

CL = lift coefficient = L/qs

CD = drag coefficient = D/qs

D = drag

FM = Figure of Merit = .798 T

CP

H.P, = horsepower

h = section maximum thickness

1.0

ICiL = blade integrated design CL = C () d(r)

J = advance Ratio = V/nD

L = lift

n = RPS

N = RPM

Q = torque

r = blade radius along blade

R = propeller total radius

B 75 = blade angle at .75 radius

342" = blade angle at 42 inch station

01 = density ratio = P/P

P = air density

Po = air density at sea level



SECTION IV

PROPELLER AERODYNAMIC DESIGN

i. BLADE GEOMETRIC CHARACTERISTICS

The propellers for the X-1O0 and X-19 airplanes feature wide chord blades
that were configured to generate high values of radial force while main-
taining high levels of operating efficiencv at the take-off and cruise
flight conditions. The detailed geometrit characteristics of the blades
are shown on Figures 73 and 74, In determining the detailed Lnaracteris-
tics of the propeller blades the diameter was established by the disk
loading requirements whereas the other aspccts of the design were dictated
by a compromise ,mong cruise, take-off and radial lift performance re-
quirements. Three-blade propelle, r were selected to obtain a wide chord
blade which could be thick inboard and still maintain a thickness ratio of

less than 30% at any blade station.

If two-blade propellers had been chosen, very high vibration loLces would
be generated when operating at high shaft angles which could only be eli-
minated by hinging the blades. The weight of three- and four-blade pro-
pellers was found to be nearly equal when designed to have the same total
solidity. Since the performance difference at both the hover and cruise
conditions was found to be small, the three-blade design was chosen fir
the improved structure possible with the wider chord desig.t. It should be
realized that with lightly loaded propellers the induced efficiency is
already high so that a larger number of blades can not improve the
efficiency le;el significantly. See reference 9.1.

For the X-1O0 airp'ane the required thrust to power level was established
by the power available and t'ie estimated weight. It was determined on
this basis that a thrust to horsepower ratio of approximately 6.0 would be
required. The disk loading necessary to obtain the required thrust to
horsepower, at hover, is also dependent on the Figure of Merit. When the
X-100 was designed, it was believed that Figure of Merit of 80% or over
could be obtained. The theory of propellers operating at the static con-
dition was presumed to be satisfactory and that a propeller could be de-
signed to have this high level of performance. At a sea level standard
day FM of 80% and a thrust to horsepower ratio of 6.0 resulted in a disk
loading of 25 lb/ft 2 (Figure 75). For the X-100 airplane a disk loading
of 25 resulted in an installed diameter of 10 feet and gave a level of
thrust necessary for hover. Since the hover and operational character-
istic of the X-1O0 airplane were satisfactory with this disk loading, this
level was retained for the X-19. This resulted in a diameter of 13' 0"
for the latter aircraft.

Results of single point calculations in (22) and (23) indicated that at a
low value of integrated design CL with 150 activity-factor blades would
give the requ.red perfirmance at both the cruise and take-off operating
conditions, By increasing the integrated design CL the solidity could be
reduced. The Figure of Merit at hover would be increased slightly, less
than 2% 22 but the cruise efficiency would be decreased as the result of
operating high integrated design lift blade at low values of operating lift
coefficients However, this was considered to be undesirable, as it was
shown by Equation (9) of Section II that the blade area must be large to
obtain high values of radial force.
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Figure 75. Power loading as a function of disk loading on a. static
isolated propeller, density ratio of= 1.0.
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From Equation (9) it is seen that the blade area can be placed at any
station along the blade and still be effective for producing radial force.
By distributing the blade chord to minimize the power requirement it is
p~ssible to maximize radial force and still obtain high values of effi-
ciency. The resulting blade planform is wide inboard and tapers to a
narrow tip.

In the case of the X-100 airplane the blade area, if made rectangular,
would have an activity factor of approximately 240 instead of the 188
value obtained with the tapered blade.

As is usual, in the practical design of a propeller, the solidity or acti-
vity factor and blade number are established by single point methods of
calculation. The distribution of solidity in the case of the X-19 and
X-100 aircraft are determined by the radial force lift requirements as
well as manufacturing considerations. After the blade planform shape has
been determined, the blade thickness ratio is found based on a structural
load and weight analysis. The final design characteristics of the blade
are thei established by an optimization study which determines the best
distribution of blade angle and design CL. This optimization study is
generally performed for each operating condition, and then the design CL
and blade angle adjusted so that the best overall propeller characteristics
are found for the entire series of flight conditions.

The analysis of optimization for finding the best blade is done using the
method of the Calculus of Variations (30). This method determines the best
balance of the profile and induced losses to give peak overall performance.
At each blade station the characteristics of list versus drag are deter-
mined fnr a range of design CL, and the locus of the curve represents the
best airfoil at any given operating CL, see Figure 76. With this informa-
tion available for each station, the distribution of induced losses is
found by the method of (30) which gives the best overall performance availa-
ble. This distribution is different than that which would be found for a
frictionless propeller as represented by the well known Betz loading cri-
teria, which gives the best load distribution for the blade operating at
zero drag.

It will be noted from Figure 76 that once the operating CL is obtained for
peak performance, the resulting design CL must be found, and at a given
statio7' there are more than one value of design CL'S that can be used and
still obtait, peak performance. For instance, at the cruise operating CL,
a design CL of either 0.2 or 0.3 could be used and still obtain the same
CD and L/D, Consideration is therefore given when balancing the blade for
all the flight conditions, to choosing the design CL that is best for all
the flight ccnditions.

If a large difference in design CL requirements for peak efficiency is en-
countered between two flight conditions, the design CL is chosen based on
the value required for the most important flight condition. These proce-
dures will give the characteristics required for the best overall pro-
peller. With the X-100 and X-19 airplanes, a fixed design CL at each
station was found to be nearly optimum for all flight conditions.
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Figure 76. Typical drag polar as a function of design CL.
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The blades for both the X-1O0 and X-19 aircraft were designed to use NACA
64 series airfoil sections. These sections were chosen as test results
indicated slightly higher levels of static thrust are obtained with these
blade sections than with the conventional NACA 16 series propeller
section. The reason for this improvement is the increased lift drag ratio
obtained with the 64 series sections. The blades with 64 series sections
operate at better efficiency than equivalent blades with 16 series
sections when the power is above the design value as during a control
input in hover because of the higher level of maximum lift coefficient

available with the "64" series sections.

The blades for the X-19 propeller are very nearly the same as the X-lO0
propeller blades. The planform of the two blades would be geometrically
similar, if the 130166 (X-19) blade were cut back to 12'6" diameter. The
extension was made on the blade when it became apparent that the weight
of the aircraft had increased 8%. The thickness ratio of the 130166 blade
was less outboard, as higher tip section Mach numbers were expected with
the X-19, when operating at its design 400 mph cruise condition. With the
tip thickness ratio of 7%, the losses due to compressibility are reduced.

In choosing the geometric charazteristics of the X-19 blade it was desired
to maintain the configuration as near to the X-100 as possible. This was
done since the front wing of the X-19 was geometrically similar to that of
the X-100. It was preferable to stay close to the experience gained with
the X-100 test aircraft.
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2. AERODYNAMIC DESIGN

The methods and uata for the aerodynamic design of propellers were
established between 1948 and 1954. The methods for forward flight con-
ditions were developed using the theory of propellers described by
Theodorsen, (24), for calculating the induced velocity at each blade
station and thus determining proper section angle of attack and induced
efficiency. The strip analysis procedures used for single and dual rota-
tion propellers are completely described in (25) and (26) and are arranged

t to be used with any set of two dimensional airfoil data.

The airfoil data used in calculating the performance of a propeller is
given in (27). This airfoil data is a correlation of all the two dimen-
sional section data then available. Sections with thickness ratio's
from 4 to 21% and design lift coefficients from 0 to 0.7 are covered in
this report. The data covers a Mach number range from 0 to 1.6 and an
angle of attack range through the stall angle.

For sections having a thickness ratio exceeding 21% the data given in (28)
are used. The data given in this report covers the Reynolds Number range,
of major importance with thick airfoil sections as well as the range of
angle attack and Mach number.

The calculated propeller performance, using the methods and airfoil data
given in (25) to (27), checks wind tunnel test data closely for the range
of flight conditions of the X-100 and the X-19 airplanes. An accuracy of
+ 1% can be expected fo- the case where the propellers are operating at
small shaft angles and advance ratio's of 0.5 to 3.5. Only when the
propellers are operating at loadings below that for peak efficiency does
the calculated performance accuracy deviate more than 1%. In this case
errors up to 4% can be expected. Unfortunately, the error between the
tests and calculations have been quite inconsistent; therefore the
possibility exists that an error is in the test data. This problem has
been the subject of considerable investigation, but is yet to be resolved.

The strip analysis procedure used to calculate the performance of propel-
lers at the hover condition is given in (29). This procedure is an exten-
sion c- the flight strip analysis method, assuming that the inflow veloc-
ity deLermines the pitch of the wake helices. It was necessary to exLra-
polate the basic Theodorsen curves to determine the inflow velocity on the
basis of this assumption. A propeller operating at the hover condition
generally has some of the sections stalled. It was found necessary to
extend the basic airfoil data of (27) beyond the stall angle so that the
working data would be available. The procedure is given in (29). It was
noted that to obtain agreement between propeller test and calculations the
lift must be truch higher than would be measured in two dimensional airfoil
tests.

The procedure for determining the optimum design CL, blade angle or chord
distribution to obtain peak efficiency at any blade station is given in
(30). This procedure was developed using the Calculus of Variations for
balancing the profile and induced losses. It provides the designer with
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a tool for evaluating the performance with respect to the peak and has
been an effective procedure for designing blades.

For initial propeller performance calculations the methods and data of (22)

or (23) may be used. These are single point methods of analysis and are
useful for sizing the propeller and determining the proper efficiency

level. (22) is preferred for this use, as the effort required for the
calculations is considerably reduced.

3. HOVER PERFORMANCE AS MEASURED AND CALCULATED

The performance of the propellers used on the X-100 and X-19 VTOL airplanes

was measured on several test rigs and in various scale configurations in-
cluding full scale (See Section IX). The hover performance of the full
scale X-100 propeller as measured in the Ames 40 x 30 foot wind tunnel is
shown on Figure 77 along with calculated performance and the measured
performance of the 15% scale model propeller. The full scale data, (31),
was obtained by mounting the propeller in the hover position and measuring
the performance without the tunnel operating. The propeller was about
three diameters above the floor of the tunnel and therefore was considered
out of ground effects. The model data were obtained on a rig that had
zero blockage and were run under free air operating conditions. The per-
formance was calculated using the method and data of (29). The X-100
propeller was also tested on Rig No.2 at Wright Field and the results are
given on Figures 78 and 79.

The data given on Figure 77 indicates that calculated performance is much
higher than obtained from test. Also, the model results are of little

value for finding the overall performance at hover. The calculated per-
formance is high, probably due to the underestimation of the incuced
losses. It is believed that the induced losses are underestimated rather
than the profile losses as the airfoil data used to find the profile
losses is also used to find the profile losses in cruise and the calcu-
lated performance agrees closely with test data in cruise This has since
been the subject of study to determine a theory to correct this difficulty.
The model propeller test results do not represent full scale. performance
because of the low Reynolds Number involved. A comparison of the data
from Rig No. 2 and the Ames data, (31) indicate that fair agreement was ob-
tained although the data from the two rigs, when plotted, cross over.
Because of the blockage experienced by the propeller on Rig No. 2, it is
believed that the Ames data is more representative of the actual perform-
ance. It should be pointed out here that because of the difficulty en-
countered with calculations, only test data were relied -,,n for predict-
ing static performance of propellers for the X-100, X-19 and other V/STOL
aircraft of interest.

The take-off performance of the X-19 was originally determined on the basis
of performance measured in the Ames tunnel and shown on Figure 77. There-
fore reliable predictions of the hover performance was obtained on the
X-19.

Later hover performance characteristics of the X-19 propeller are shown on
Figures 80 to 82, as determined on Rig No. 2 at Wright Field. Comparison
of these results with the measurements taken from the X-100 propeller
indicates the performance of both propellers are nearly identical, The
Figure of Merit as determined by these tests peaks at approximately 73.57.
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This compares with a level of 80-plus percent observed rrom. tests of other
propellers.

Since the measured static thrust performance is far below the expected
level, a research program was undertaken to find ways and means of improv-
ing the efficiency. As part of this program a rig was built for measuring
the performance without blockage present.

The highlights of the program, including a description of the test rig,
are discussed in (32). The static performance of the X-19 propeller was
measured on this rig, the results of which are shown on Figures 83 and 84.
The data obtained from the Curtiss Rig is I to 2 percent lower in Figure
of Merit than from Wright Field Rig No. 2. This change is due to blockage
and interference from the Wright Field rig and was expected. See (32).

It was found that measurement of the full scale static thrust performance
with desired accuracy is extremely difficult. The reason for this is that
forces are large and therefore the interaction between thrust force and the
torque is difficult to isolate. Furthermore, the propellers must be tested
at nearly zero wind conditions to obtain consistent values. As a result,
considerable effort is required to obtain satisfactory propeller perform-
ance data. The test results presented are believed to accurately describe
the propeller hover performance.

4. CRUISE PERFORMANCE MAPS

Performance of the X-1O0 and X-19 propellers at zero to + 100 shaft angle
flight conditions, can be determined from the efficiency maps, Figures 85
to 91. These maps were calculated based on the methods and data of (25)
and (27). For the X-100 propeller, the data covers only operating condi-
tions when the helical tip Mach is less than 0.3. The maps for the X-19
propeller cover conditions up to a forward Mach number of 0.8. As the
methods and data given in (25) and (27) have been highly developed, and
checked, the data on the maps can be considered to be accurate within + 2%.

5. EFFECTS OF TIP SPEED AND BLADE TWIST IN ROVER AND CRUISE

In hover, the effect of changes in tip speed and pitch distribution must
be determined by test, as suitable methods and data are not yet available
for calculations. With the X-19 and X-1O0 blades, changes in hover per-
formance with changes in tip speed was not clearly established by the test
data, Figures 78, 80 and 83. At the lower loadings it appears that the
higher tip speeds result in improvements, whereas at high loadings the
reverse is true. The three blade propeller using 109652 blades shown on
Figure 92 shows a large improvement in performance with increases of tip
speed. The reason for this improvement is probably due to improved load
distribution as a result of changes in lift curve slope at the higher tip
Mach Number.

The 109652 blade was retwisted as shown on Figure 92. From Figure 94 note
that lower values of Figure of Merit are obtained with the retwisted blade,
at power coefficients near the peak, than with the original blade.
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Figure 92. Blade characteristics of the Curtiss-Wright 109652 propeller
blade; dia. =15 ft., AF = 115, . 3Ci .5, NACA 65 section
series.
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Experience with similar propellers would indicate that if the blade were
ret• isted in the opposite direction, the performance would also be reduced.
This proves the need for an accurate theory and data for predicting static
thrust performance.

At the cruise flight condition, peak performance was obtained when the X-19
propeller was operating at a tip speed of 625 to 650 feet per second. This
cruise tip speed combined with 820 feet per second for take-off resulted in
the best combination of loading at the two operating conditions for the
X-19 blading. Test data, using the blading for the X-200 aircraft con-
figuration, are presented in Figure 93 and show a similar cruise tip speed
but a higher take-off irnDpvalue for that earlier aircraft, At the cruise
condition 20% reduction in tip speed places the operating point at the
power coefficient and advance ratio for peak performance, a further de-
crease in tip 6peed has essentially no effect.

The retwisted blade shown on Figure 92 would show a reduction in perfcrm-
ance, at the cruise condition o! a typical VTOL aircraft as the tip would
become underloaded. At the conditions of the X-19 airplane it is esti-
mated that the underloading of the tip would reduce the efficiency more
than 5%.

There are many other blade design parameters that can be varied, to in-
fluence hover and cruise performance. For instance, instead of wide
blades with small values of design "L' more conventional narrow blades
which havL large design C•'s can be used. Strictly from propulsion and
hover lift considerations' such a blade would exhibit superior performance
at these conditions than that obtained from the X-19 propeller. This com-
parison is valid for propellers stressed to the same loading level. A
blade stressed for - lesser level would probably have lower thickness
ratio's throughout. This would give the highest performance and thus
invalidate the results.

6. HOVER POY, " HISTOGRAMS

Two hiqtograms are presented as obtained from flight tests (Figures 95 and

96). The first taken from Flight No. 31 records, damonstrates hover,
translation ind left turns; this can be considered a hover histogram. As
predicted, the front propellers are heavily loaded and are subjected to
considerable gear life erosion. The largest percentage of the hover time
i2 spent near 780 HP with very little time spent at the peak power of
ICO0 HP. The rear propellers are considerably less loaded than the front,
with the result that calculated nacelle gear 11"e is much higher.

The second histogram (Figure 96) renre~ev't: -iie early transition mode, at
which 40 MPH was attained at .. As expected, the front nacelle
gear life is greater. Now, the la,,.,--_ percentage of the time is spent at
approximately 620 HP. The tear propb:iers become more highly loaded with
the result that life diminishes from in excess of 1000 hours to about 60
hours.
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Figure 93. Figure of merit of the Curtiss-Wright 109652 propeller blade
as a function of power coefficienc, measured on Curtiss-Wright
test rig.
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Figure 94 Effect of blade retwist on the figure of merit; 3(10'0652)
blade, 900 mnD, three blades
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Flight G.W/C.G 12300/43.5, Duration 273 sec

-Flight Description-' Hover; Translation 15 MPH Foward; Stop; Turn Left 90*;
Translate; 10 mph;' Turn Left 900;. Translate; Hover.

[Propeller Transverse Propeller
: I ~~~HP/rpm IShaft Torque. No2 N.3 N.4

No. 1 No. 2_N.__N._
r m to ue A IB A B A B Ao B__

420/1204 7500 __ 99.6 3 6 95 .6 9 c. 26 7100 .01615 11,000 96.0 49 689 960.
21.3 46.2 671 169•720 74.7 37 7 0.7 0 .7 8 1 79 6

780 13,900 37.0 0 02. 9 -
890 15,8140 14.8 •2- -4 35

975 07.500
1025 18,250 0

,\-' Operating Time Above Q Level Indicated;' B-7 Operating Time At
Increment Of Q Tindicated.

60 'rop. No. 1 3

,-ife-Hrs, 14.5 125b 1000 15.7

KH-i-V- I -- ^

I Iii I

10 14L' 10 14 6 10 14 l
6 10 14 6 10 14 6 L 1! 6 L 1.

Q= lranverse Shaft Torque X 1000 in./lb

Figure 95 X-19, histogramu of transverse shaft loading, tlight no. 31,
12/23/64.
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Flight G.W/C.G 12300/42.8 Duration 137 sec

Flight Description: Hover; Tilt Nacelles To 880; Accelerate To Foward
Flight At 40 M4PH; Tilt Nacelles To VTOL Decelerate To Hover

IPropeller Transverse Propeller
HP/rpm Shaft Torque No 1 N.2 N.3 N.4

Q (in. lb)A IB A B A B

420/1204 1 7500 100.0 453100.0 299100.0 314100.0
620 11,000 54.7 7016865.94-
720 1 12,840 35.ý8 22 6 2 25.5 35.8
780 13,900 15.3 13.8 5-1- 5.8 1 3.1 16.8_________13.2
860 1530 07.7 0.8 4- 0.7 0 315
9001600 070*8 0 07 0. 021

950 16-,-900 0 0 0.

1000 17,800 0__ _______

A-'/. Operating Time Above Q Level Indicated; B-% Operating Time At
increment Of Q Indicated.

5 -Prop. No. 1 2 3 4

Life-Hrs 38 6658 35

40

30

20

1 0

10

6 10 14 IF 6 10 14 18 6 10 14 18 6 10 14 18

Q =Transverse Shaft Torque X 1000 in./lb

Figure 96 X-19, histogram of transverse shaft loading, flight no. 35,
1/7/65.
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This is the result of the variation of aircraft pitch-up moment with
velocity and the tilt actuated auto-trim schedule, which makes (1F - •R)

more negative. The physical reason for the speed pitch up moment is
given in Section III.3.a. under the discussions of wing power effects.
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SECTION V

PROPELLER STRUCTURE AND CONTROL MECHANISM
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SECTION V - NOMFNCLATURE

A propeller shaft angle of attack degrees

a slope of the lift curve

b blade section chord

CF centrifugal force

CL lift coefficient

C moment coefficient

C normal force coefficient

C side force coefficient

D propeller diameter

F modulus of elasticity

F force

g gravity constant

HP horsepower

h blade section thickness

I moment of inertia

J advance ratio

M moment

N normal force

q dynamic pressure

R propeller radius total

r blade radius

S area

S stress cycles
n

T thrust

V velocity

W resultant section velocity

X r/R

Y side force



SECTION V

PROPELLER STRUCTURE AND CONTROL MECHANISM

1. MECHANICAL DESIGN INCLUDING PHILOSOPHY, RELIABILITY, WEIGHT ANT
MAINTENANCE

a. General Description

The X-19 propellers are three-blade, thirteen foot diameter
propellers consisting of a hub, fiberglass blades, a hydro-
mechanical pitch-change power unit, a control valve assembly, a,.d
a propeller mounting bearing assembly.

The blades of the four propellers were designed to provide an
optimum combination of thrust and radial lift force, the latter
being a feature of the Curtiss-Wright V/STOL aircraft flight con-
cept. Blade angle is collectively controlled to achieve thrust
variations and differentially controlled for aircraft attitude
stability in V/STOL flight configurations. Redundant dual-piston
pitch-change actuating systems are employed to assure continual
control capability in the event of a single system failure.

The propellers are mounted on the nacelle housings which contain
the nacelle bevel gears and the propeller pitch-change mechanism.
Shafting, of the power transmission system, interconnects all four
propellers to two Lycoming T55-L-5 turbine engines. Either engine
is capable of supplying flight power to all four propellers. The
spinner and nacelle afterbody fairing complete the propeller/
nacelle assembly.

b. Component Descriptions

(1) Hubs

The hubs are made of single piece steel forgings. They are
designed to retain the blades by means of two-row, angular-
contact bearings and threaded blade nuts. The rear exten-
sion of the hub contains the propeller-mounting bearing
assembly and the hub drive splines. The power unit is
splined directly into the hub and contains the shaft drive
spline. The hub construction permits blade installation and
removal while the propeller is mounted on tle aircraft.

(2) Pitch-Change Mechanism (Figure 97)

The propeller pitch-change system is comprised of a hydraulic
power unit which contains two independent nacelle-oil
pressure systems. No pressure coinections to the aircraft
hydraulic systems are :equired. The power unit assembly in-
cludes two tandem pislzýns, two hydraulic pump assemblies,
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two oil reservoirs, a dual control valve assembly and suit-
able arms for attachment of the blade control levers.
Planning or adjustment of the blade angle is achieved
through a set of differential splines between the blade shank
and blade lever. These splines permit blade angle changes in
increments of 0.166 degrees. The pitch-change blade lever
has a moment arm of 2.60 inches.

Propeller pitch-chaage is accomplished by two mechanically-
coupled single-acting pistons having independent hydraulic
systems. Blade angle change results from a transfe- of the
piston assembly rotion, through a link assembly, to a lever
which is splined to the blade shank.

The pitch-change hydraulic system is basically a position
follow-up mechanism in which the pistons follow valve dis-
placement at approximately the same rate while delivering the
force required for pitch-change. Valve displacement corre-
sponds to desired blade angle, and piston displacement corre-
sponds to actual blade angle. The pistons move to balance
"hemselves across the valve ports for any given blade angle
until both blade loading and piston pressure are in equilib-
rium.

Both hydraulic systems operate in the same manner; i.e., at
a given control signal, oil flows into each piston from in-
dependent high-pressure pump assemblies at a constant rate
until Lie desired blade angle is achieved. Oil is exhausted
through Lhe dual control valves to each sump. The valves
monitor piston pressures by metering the orifices.

Isolation of the hydraulic systems is obtained in the follow-

ing manner:

(a) The front piston system functions as follows:

Oil is placed into the hub which acts as the sump for
the front piston system. This oil enters the cylinder
of the forward hydraulic system through one of the two
pump assemblies and is ported through one of the two
control valves back into the hub. After being cooled
in the hub the oil returns to the rotating sump pro-
vided in the pump housing, which feeds the oil back into
the pumps.

(b) The rear piston hydraulic system functions as follows:

Oil enters this cylinder from the other pump assembly
and is exhausted through its control valve into the
nacelle housing where it is cooled. A scavenge and
lubrication pump mounted in the nacelle housing delivers
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oil to the rear piston rotating sump assembly which
I2eeds the pitch-change pumps to complete the hydraulic
circuit.

Rotation of both sump assemblies actb to eliminate en-
trapped air in the oil while serving as a cencrifugal
pump to supply primed oil to the pitch-change pumps.

The scavenge pump also supplies lubrication to the pro-
peller mounting bearing, the bevel gear set, and reten-
tion bearings.

Each pitch-cl-ange pump assembly consists of three pumps
of vane typc which are mounted in a single housing.
This housing is mounted in the hub, so it rotates at
propeller speed. A pinion gear, which meshes with an
internal fixed ring gear, is attached to each pump
shaft. Each of the three pumps, in a system, is meshed
to one of two fixed ring gears. Power to drive the
pumps is obtained from propeller rotation since the
pumps and pinion gears revolve as a unit within their
respective fixed ring gears.

A pivoted torque-reaction bar, for the two fixed ring
gears, is installed in the nacelle together with two
micro-switches. A loss of hydraulic pressure in either
system will result in an unbalanced reaction-torque on
the ring gears causing movement of one gear relative to
the other. This gear movement will actuate one of the
micro-switches which will close an electrical circuit
to the "HYD. PRESS" indicator light.

(3) Controls

Mechanical pitch-change signals are fed from the cockpit to
a signal integrator referred to as the coordinator and are
received at the propeller as a push pull, blade angle
desired, signal (see Figure 157). This signal is transferred
through a series of bellcrank linkages and converted into a
linear fore-and-aft control rod and valve motion. Each of
the two pitch-change control valves is mounted on the end of
a differential beam. A mechanically operated relief valve is
located aft of each control valve, in the valve assembly.
Each relief valve is capable of relieving pressure from one
system when actuated by the control valve of the other
system. During normal propeller operations, with both pis-
tons and valves operating, there is insufficient movement of
either valve to trigger the poppet wbich actuates the
relief valves.
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In the event of a "stuck" control valve in one system, the
greater movement available to the other control valve duei to the differential beam arrangement, allows this valve to
actuate the relief valve of the "stuck" system. This results
in "dumping" the pressure of the inoperative system. A snap
ring type of detent spring on the relief poppet, once
actuated, maintains this "dumped" condition until such time
as the valve assembly is tamoved and the relief poppet detent
spring reset. This loss of pressure of a single system due
to a "stuck" valve is indicated by a tel-light through the
rea:tion-ring gear bar.

A ball-bearing coupling is installed between the non-rotating
coatrol rod and the rotating propeller and valve assembly.
Tw, compres3ion springs are installed between the piston and
each control valve to eliminate signal backlash and provide
a unidirectional signal input force.

Cor.nz ols that are external to the propeller but which feed
into the signal coordinator and then into the propeller
pitcl-change control rod are as follows:

(a) T-he governor speed set lever which selects propeller
RPM.

(b) The power lever which controls the fuel supply to the
engines.

(c) The pilots flight control stick which controls pitch
and roll.

(d) The rudder pedals which control yaw.

(e) The SAS system which feeds signals into the coordinator
to provide stabilization in pitch and roll.

(f) The tilt switch which controls tilt angles of the
nacelles.

(g) The manual propeller pitch-change switch which manually
sets collective propeller blade angle.

All th-se controls feed into the coordinator and result in
controlled pitch-change signals to each of the propellers.
The coordinator also phases out propeller control of atti-
tude in the transition flight regimes.
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(4) Blades

The propellers for the X-19 aircraft are three bladed and 13
feet in diameter, with a 166 Activity Factor. The shell of
the blades is of epoxy resin reinforced fiberglass.

The primary load carrying element of the blade is this
fiberglass structure which transfers the loads to the steel
blade shank on which the fiberglasz is molded, Fig. 98. The
lightweight rigid foam plastic filling constitutes a sand-
wich structure with the fiberglass shell to provide the nec-
essary stiffness and load carrying capacity. This type of
construction and material was selected to satisfy the
structural requirements and at the same time meet the aero-
dynamic and low blade weight requirements. Detailed de-
scription of the blade structural design is given in item 2
of this section.

The propeller spinner is a two-piece design consisting of a
fiberglass nose section and a fiberglass foam sandwich rear
section. he rear section is boltee to the front of the
propeller for support.

The external contour of the spinner is such as to provide
smooth airflow over '.he nacelle outline.

c. Blade Maintenance

(1) Introduction

The purpose of this sectiot is to define the possible types
of damage to FRP (fiherglass reinforced plastic) propeller
blades and to show methods for repairing such damage, where
applicable. In addition, preventive maintenance procedures
will be outlined.

(2) Damage

Handling damage is generally confined to the external edges
and surfaces including blade shank and fairing. Operational
damage could involve the same areas plus the blade and fair-
ing foam fillers.

(a) Fiberglass reinforced plastic (FRP) darage: -

Delamination cf the cloth plies; breaks or gouges in
the surface layers of cloth of the skins, edges or tip
without penetration of the full wall thic-kness or bond
line of the blade.

The above types of damage, but to a greater degree,
could extend into the interior of the blade.
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(b) Foam damage: - Where separation occurs between the foam

and the FRP or where the foam is crushed by a high im-
pact blow.

(c) Protective coating damage: - Whin damage occurs to the
FRP, frequently tie protective coating also is affected.
Damage to the coating only, is usually due to impinge-
ment of stones, sand or similar materials and in most
cases will occur at the leading edge and tip of the
blade.

(d) Steel shank damage: - Damage to the steel shank would
consist of nicks, scratches, abrasion, damaged plating,
corrosion, etc.

(3) Determination of Damage

Damage to the FRP portion of the blade is determined by
visual inspection except in the case of separation between
foam and fiberglass.

The latter is determined by rappiz.g the thrust and camber
plates with an item such as a half-dollar or metal washer.
Separation will be indicated by a hollow sound whereas a
good bond will be indicated by. a solid, metallic type of
sound. Pressure applied by thumb and knuckles, causing
plate deflection, can confirm such separation.

(4) Repair of Damage

Experience in repairing of damage to FRP propeller blades is
very limited. Although repairs of extensive damage may
eventually be permissible, in this type of blade only rela-
tively minor repairs, as indicated below, were recommended
to be made in the field and all others were to be reviewed
by the factory. Damage such as shown in Figure 99 may be
made in the field:

(a) Provided that not more than 50% 3f the FRP thickness
is involved in making the repair. However, in the case
of the inboard fairing skins, gouging of the foam up to
one cubic inch, provided the basic blade is not pene-
trated, may be filled with the designated materials.

(b) Provided that repairs do not extend through the "bond"
line of edges or tip.

(c) Provided repair of separation between foam and FRP is
compensated for, in propeller balance.
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Figure 99. Fiberglass blade repair chart illustrating the type of repair
that can be performed in the field.
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Minor surface damage such as scratches up to 1 to 2 inches
long and .005" to .010" maximum depth and areas up to 1/16"I diameter and .005" to .010" maximum depth need not be re-
paired but should be periodically examined. If, however,
total area containing such damage exceeds 20 square inches,
repairs should be made to the FRP and/or coating.

Repairs to the above types of damage were made as described
in the X-19 Utility Maintenance Manual and include the
following:

(a) Repair of damage to edges or blade tip.

(b) Repair of damage to bl-de plate or fairing surface.

(c) Repair of loose or unbonded foam.

(d) Repair of protective coating.

(5) Propeller Balance

All new FRP propeller blades were balanced at the factory to
a blade master for a particular design, making such blades
interchangeable. Therefore, propeller balance has to be
considered when FRP blade repairs are made in the field.

In the case of minor repairs, the propeller balance had to

be checked and adjusted.

(6) Preventive Maintenance

The plastic materials used in fabricating the Curtiss-Wright
fiberglass propeller blades have been used for many years
under various conditions and have been proven to be tough,
corrosion resistant, fungus resistant and superior to metals
with respect to low notch sensitivity and strength-to-weight
ratio.

Howevev, certain preventive maintenance and handling care
should be exercised. Blades should be inspected before
flight for any external damage to t' FRP area and/or steel
shank.

Blades should also be checked for the condition of the foam
bond by "tap testing".

Any indication of d1.&mage should be reviewed and appropriate
action taken. Blades should be handled carefully. They
should not be lifted with slings or hooks.
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The steel shank of the blade should be protected from han-
dling damage and corrosion.

FRP blades should be stored in suitably padded racks when
not in use, and, since these blades are foam-filled, they
should not be stored in an excessively hot locaticn.

d. Reliability

The X-19 project involved the integration of many cotapnnents and
numerous subsystems into a complete airplane system, and althuugh
no numerical reliability requirements had been specified either
for the system or its components, it was obvious that the opera-
tional reliability goal for the system must be high.

This was dictated by the requirements of aircraft safety and per-
formance, as well as by the necessity of mission success, and
was implied in the specified design goal of 10,000 hour service
life and 1000 hours time between overhaul of dynamic components.

The project plans for this vehicles did not include reliability
demonstration testing as such. The X-19 test program revealed
that the proposed testing was primarily intended to assure the
functional adequacy of the first flight article. Pre-flight

verification is predicated on demonstration in these tests of
satisfactory performance of each component and subsystem, where
"satisfactory performance" is defined as freedom from failures
which would be hazardous in a preliminary flight test program.

The te'ting of hardware that was initiated during the development
phase of the project was essentially a program involving the
qualification of the design and quality assurance of the prcto-
type hardware.

In verifying the functional and structural adequacy of the proto-
type it served to demonstrate compliance with high quality
requirements - requirements which result in high reliabilities
for mechanical systems.

The experimental program scheduled for the airplane, its sub-
systems and components is outlined in Figure 100.

In recognition of the fact that the prototype X-19 airplane was
an experimental model devoted to extensive flight testing, and
that it was the fundamental policy to pursue flight safety and
functional adequacy of the system from the earliest possible
stage of system utilization, the approach to the problem was to:

(1) Defer formal demonstration of reliability as such until the
flight test phase of the program, where the complete system
could be tested under a truly operational environment.
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(2) Concentrate the reliability effort during the prototype
development phase on assuring the functional adequacy and
flight safety of the vehiclp, rather than on questions of
long term failure probabilities.

(a) Make failure analyses of vital subsystems of the air-
plane, to reveal and eliminate design deficiencies which
could result in catastrophic failure or inability to
perform expected flight test missions.

(b) Review all pre-flight test programs and results, to
detect any failure modes that may be revealed. Despite
the fact that reliability measurement during the pre-
flight phase is drastically limited by the scope of the
test program, where possible the testing was to be
directed so as to assure the most meaningful results
possible to be obtained from a reliability standpoint.

e. Propeller Weight

The total weight of the complete propeller-nacelle assembly of
the X-19 aircraft as assembled for flight testing on the #1 air-
craft was 585.9 lbs. The weight breakdown was as follows:

(1) Propeller Assembly

(a) Assembly less Blades 161.2

(b) Blades 212.4

(2) Nacelle Housing Assembly 31.4

(3) Housing Filling Actuator 162.8

(4) Spinner Afterbody 1.5

(5) Tube and Dam Assembly 8.7

(6) Spinner Assembly 5.4

(7) Miscellaneous Hardware 2.5

Total 585.9

Note: Propeller weight as usually quoted is 373.2 lbs.

2. BLADE STRUCTURAL DESIGN

a. General

The use of fiberglass reinforced plastic as a blade material has
been under consideration for many years, the first design studies
by Curtiss-Wright having been made in 1943. The main attraction
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of this material was the favorable strength-to-weight ratio, see
Figure 101. Several problem areas were recognized such as the
blade retention, adequate filler material, method cf fabrication,
etc. Serious studies of fiberglass blades were started in 1956
and active development initiated in early 1958 on blades for the
X-100 aircraft. The first blades were molded in August of 1958
and installed on the X-100 aircraft in January 1959. Since that
time 260 blades have been molded of five different designs in
diameters of 10', 13', 13'6" and 15'6" and extensive testing
carried out. Three different designs have passed standard mill-
tary whirl test endurance and overspeed tests at powers up to
4400 horsepower and tip speeds up to 1200 ft/sei. See Figure
102.

b. Blade Design

As finally evolved, the Curtiss fiberglass reinforced plastic
blade consists of a hollow monocoque shell molded on a steel
shank. The i-ternal cavity is filled with a plastic foam to pro-
vide the necessary support and rigidity to the fiberglass plates.
This structure is shown in Figure 103. In the establishment of
this design several structural characteristics had to be inves-
tigated, These were: material layup and properties, steel shank
design, and the foam filler requirements.

(I) Fiberglass Material Properties

Following extensive material evaluations, it was determined
that a combination of 43 and 181 cloth, in the ratio of 3
layers of 43 to one layer of 181, was best suited to provide
the necessary radial and chordwise strength requirements of
the blades. It should be noted however, that later full
scale testing proved that this combination was marginal with
respect to shear strength and shear rigidity.

In the more recent layups, this deficiency had been cor-
rected by adding a layer of 181 cloth at 450 to the principal
direction. With the basic layup established, extensive
testing was carried out to establish the pertinent material
characteristics, i.e. static strength and moduli, fatigue
strength, abrasion characteristics, etc. The results of
these evaluations are shown in Figures 104-112. From a
structural standpoint the most important of the material
properties is the Goodman Diagram, Figure 111. As shown,
this curve represents the basic material characteristics;
however, for design purposes this curve is modified to pro-
vide a safe working stress limit. The design curve as de-
rived for the fiberglass blade is given in Figure 112.
Other pertinent characteristics evaluated in the fiberglass
blade program are given in Figures 113 through 115.
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Figure 102. Fiberglass propeller blades which have been built and tested.
From 'Left to rig'-,: 10'-0" diameter used on X-100 aircraft,
13'-O" diameter u~sed on X-19 aircraft, 13'-6" diameter used
in static thruxst testing, 13'-6" designed for T-64 engine
tested to 4000 hp, 15'-6" designed for T-64 tested to 4400 hp.
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b

Figure 103. Sectioned fiberglass propeller blade si•owing the steel shank,
fiberglass shell and foam filler.
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Erosion
SCoating Thckness Specimen in./hr

SNeoprene .025 .0022

Uscothane .040 .0025

Eccocoat IC2 .014 .0027

Stainless Steel .012 .0036

Proprietary .019 .0042

Proprietary .011 .0042

Adiprene LD-315 .020 .0081

Conap .015 .0086

Adiprene LD-213 .023 .0091

Bostik 435 .007 .0602

Marshall Urethane .013 .0640

Dayglo 202-14 .005 .0840

Chemglaze Z051 .009 .1441

This chart shows a comparison test run on the Curtiss-Wright
erosion test machine. The specimens are listed in order of
their rates of erosion. The first two materials are relatively
impractical to cover an entire blade because of their weight
and need for cement bonding but are useful as leading edge
abrasion strips. The Eccocoat is not usable because of its high
cure temperature. The stainless steel, while it has a fairly
low erosion rate, is not as good as it might appear since it is
puckered and full of pinholes. This condition is virtually
eliminated when the stainless is coated. The two proprietary
coatings therefore are the most satisfactory in current use.

Figure 113. Comparative erosion resistance of various coating materials
on fiberglass.

184-



I0

-4,

.1 0

0-4)

-- 4

U0

rg 00-

'> ~ 4J~

00

-.4

to 0 0

0 '0 4
Ai 4

l~~u~~I~~S cc1'~ $nO J UaI

44h~ 185Aý



Type Use Shear Strengtb (psi)

-650F R.T. J165-F

Shank Double Wrip
Shell VI 2700 3800 1250

Cured FRP to Cured FRP

Angier Stainless to FRP 449 124
SWL 164 F Stainless to Neoprene

Peel Strength (ppi)

-65*F R.T. 165 0F

Angier Neoprene to FRP 19.8 7.1.SWL 164 ..........

Figure 115. The strength characteristics of the various adhesives selected
for use in the manufacture of fiberglass reinforced plastic
blades.
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(2) Foam Filler

On the basis of the theoretical wall thickness, the hollow
fiberglass shell would be completely inadequate as a pro-
peller blade. Because of the bigh flexibility of the plates,
extensive buckling would occur at very low loads. This could
obviously be remedied by designing the shell by elastic
buckling criteria. However, that approach would result in
wall thicknesses which would nullify the fundimental mater-
ial weight advantage. The other alternative is to support
the plates in such a manner as to prevent local plate in-
stability. The developments in foam plastics offered the
ideal material for a blade filler. An extensive development
program .as carried out to select a foam that would have the
required characteristics: low density, high strength, good
elongation, good bonding to the glass, etc. The foam de-
velopment extended over a considerable period. Typical
characteristics of the initial selections are given in
Figure 116. In full scale blade testing and flight testing
the foam proved to be the critical area in the design.

All blade failures apparently initiated with a foam separa-
tion or foam failure followed by a shell failure. Foam
development was a continuing program, and the final blades
for the X-19 included a considerably improved variation.

(3) Steel Shank

In the initial blade development studies, it was apparent
that the fiberglass material would not be adequate for a
conventional Curtiss flanged blade retention. An entirely
new system of blade retention would have to be developed for
an all fiberglass design. Therefore, in the initial devel-
opment it would be more expedient to adapt the fiberglas3
blade to the time proven flanged steel retention, and con-
tinue a fiberglass retention development as a separate
program.

In establishing the shank design the primary consideration
was to provide a fail-safe joint between the glass and
steel, ioe. a design which would continue to support the
propeller loads in the event of a bond failure.

Several designs were studied, but the final selection was
the relatively simple flaired or bell shaped tube, see
Figure 117. This design has proven to provide the necessary
mechanical interlock between the fiberglass and 3teel re-
quired to transmit the centrifugal, bending, and torsional
loads without bonding. In practice, kowever, the fiberglass
is carefully bonded to the steel, and the interlock feature
is only provided to prevent catastrophic failure in the
event of inadequate bonding.
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Ir X

Figure 117. Steel shank as designed for the 13166A10P3 blade. AMS 6415
vacuum melt steel, RC 42-46.
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(a) Material - In order to minimiz,' blade weight of the
X-19 propeller, the steel shank utilized high strength
steel. The material was AMS 6415, RC 42-46. It is
obvious that this hardness is bordering on the un-
desirable brittle range of the material. As a pre-
caution against structural problems, the Metallurgy
Department specified special heat-treat procedures for
the processing of these shanks. In the initial devel-
opment some cracking occurred due to hydrogen embrittle-
ment and during the fiberglass molding cycle, Figure
118. This problem was overcome with the improvement of
handling and processing techniques,

c. Design Details - 13166AIOP3

(1) General Design Data

The 13166A1OP3 design blade has a 13'0" installed diameter,
has a calculated activity factor of 166 and an integrated
design CL of 0.055. A flange type shank design, having a
bearing diameter of 4.4086/4.4078 inches is incorporated in
the 13166AIOP3 blade. The blade manufacturing centerline
distance is 2.193 inches as measured from the butt face of
the blade shank and the 2.35 degree blade forward tilt is
incorporated by a machining operation starting at the 7-inch
station. See Table IV for a complete tabulation of more
detailed General Design Data.

(2) External Data

This blade planform is parallel sided from approximately the
15 inch station through the 42 inch station with a chord
width of 25 inches. The planform tapers in a slight arc to
a chord of 7.95 inches at the tip station. The aerodynamic
design of the blade is discussed in Section 4.

The blade section profiles used from the 18 inch station
outboard to the tip are NACA series - 64 type. Inboard
of -he 18 inch station a mathematical fairing profile
was calculated to the last round station at 7.5 inch
blade radius. See Table V for a tabulation of the Blade
External Characteristics Data.

(3) Internal Data

Wall thickness of the steel blade root and the fiberglass
cloth lay-up in the 13166AIOP3 design blade has been deter-
mined to satisfy the structural requirements based on the
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Table IV, Blade design 13166A1OP3; general design data and summary•

Blade Hollow Fiberglass

Design 13166AIOP3

Diameter 13 feet

Accivity Factor 166

Integrated Design Lift Coefficient .055
h/b at .25 R .2400

at .50 R .1550
at .75 R .0947

R 78.0"

.75R 58.50"
3 42" sta. - 0 .75 R 8.500

b/D Max. .1603
b Max. 25.00"

Forward Tilt - Origin 7" Sta. 1 at 42" 2.350
station -30*

External Surface Area from 7.5" Station to tip 3066 sq. in.

Volume of Fiberglass 403 cu. in.

Volume of Foam Filler Blade 1916 cu. in.

Volume of Foam Filler Shank Fairing 590 cu. in.

Total Blade Weight 59.15 lbs.
Total Blade Monent 1457.15 in. lbs.

Blade Center of Gravity - Station 24.65 Station
Edge Unbalance (Leading Edge Heavy)

Vertical Balance Moment ( / 42" Sta.=00 ) -4.10 in. lbs.

Face Unbalance (Camber Face Heavy)
Vertical Balance Moment ( $ 42" Sta. =900) 30.47 in. lbs.

Polar Moment of Inertia 11.21 slug - ft 2

Centrifugal Force Total (1210 rpm) 57,369 ibs.

Centrifugal Stress Max. at 1210 rpm
Steel 15,000 lbs./in2
Fiberglass 4,250 lbs./in 2

Station at Max Centrifugal Stress
Steel 7.5" Station
Fiberglass 42" Station

Centrifugal Twisting Moment at 1210 RPM
without tilt 23,992 in. - lbs.

with tilt 23,540 in, - lbs.

S42" Sta. at Max. Centrifugal Twistir- M-men. -

without tilt 39.550

with tilt 38.130
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ellowable stresses for the fiberglass system and steel
selected. The steel blade root is fabricated from a bell-
shaped die forging which includes the blade forward tilt
requirement. Fabrication consists of a machine turning
followed by hot forming and final machining to produce the
desired shank shape and spline configuration. In the
13166A1OP3 shank configuration, the outboard fiberglass
blade is held to the steel shank mechanically without rely-
ing on the bonding properties of the fiberglass.

Any bonding realized is considered as an additional factor
of safety and is not included in the structural calcula-
tions, A lightweight, 8 lbs. per cu. ft. internal foam
plastic filler is used in the 13156A1OP3 blade for control
of plate diaphragming, blade distortion and vibratory
stresses. The internal foam also contributes to the stiff-
ness and load carrying capacity of the fiberglass structure.

A 5 lb. per cu. ft. foam is used as an internal filler of
the blade shank fairing which extends from the 7.5 to 27
inch station. This shank fairing has a 0.015 inch external
fiberglass cover sheet. The total weight of the foam is
apprcximately 10 lb. The shank weighed 18.5 lb. and the
fiberglass was approximately 41 lb.

(4) Section Properties

The section properties, for the basic fiberglass blade, foam
plastic blade filler, and the steel blade root, were calcu-
lated using digital computing equipment. For evaluation of
the composite structure, all values for materials other than

fiberglass were converted to their respective "fiberglass
equivalent" values. Density values for the materials used
are as follows:

Internal Foam 0.00463 lbs./cu. in.
Fairing Foam 0.00289 lbs./cu. in.
Fiberglass 0.070 lbs./cu. in.
Steel 0.284 lbs./cu. in.
Urethane Rubber 0.039 lbs./cu. in.

Table VI is a suninary of the blade sections properties.

(5) Blade Construction

The 13166AIOP3 design blade was fabricated by the following
method:

(a) Machine and hot form die forging 162848F to the steel
blaee root configuration, Dwg. 164206.
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(b) Assemble blade root 164206 with Teflon Bladder filled
with clay beads and shape to core mold. Form rigid
blade layup mandrel by drawing a vacuum on the bladder.

(c) Layup fiberglass cloth, cut to shape, over steel blade
root and bladder mandrel to the specified wall thick-
ness.

(d) Place "part c" assembly into blade mold and place in
press. Release vacuum and build up internal pressure
in bladder. Heat blade mold to required temperature
and cure at 300 0 -325 0 F.

(e) Remove blade mold from press and remove internal beads
and Teflon bladder. Foam fill blade internally with
8 lb./cu. ft. rigid foam and heat in press to cure
foam.

(f) A second wrap, consisting of a fiberglass filament
wound operation at a specified tension on a controlled
schedule was added and cured at this time for increased
hoop strength.

(g) Build up leading edge aerodynamic strip 60 in. station
to tip in accordance with WX dimension shown on fin-
ished section detail dwg. L-12953.

(h) Line 13166AIOP3 Blade Shank Fairing Mold with 0.015 in.
thick fiberglass cloth and assemble fairing mold on the
foam fiberglass blade. Fill fairing mold with
5 lb./cu. ft. foam and cure.

(i) Perform all necessary finishing and balance operations.

Propeller balancing of these blades will be accomplished by
adjustment of the radial location of the blades in the pro-
peller hub. The total range of radial adjustment possible
is 0.140 in.

This movement amounts to approximately 7.5 in. lbs. Blade
horizontal balance moment is controlled, during blade
fabrication, and is maintained within tolerance of a master
balance moment. Note that no balance provisions have been
provided for in the blade shank configuration Dwg. No.
164206. Therefore, blade balancing is accomplished by minor
variations in the number of layers of cloth or the foam
density.
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(6) Blade Material

(a) Blade Root

The steel blade root was fabricated from Dwg. No.
162848F die forging. The die forging steel is

AMS 6415, fully annealed, Brinell 229 max. After
machining, the steel shank is heat treated per
CPS 7011 to the desired hardness of Rockwell C 42 - 46.

(b) Fiberglass

Two types of fiberglass fabrics are specified for the
structural blade wall thickness. These fabrics are
impregnated per CPS 5033 by the Standard Insulation
Co. These materials are.

(aa) Stanpreg VET 181, per CPS 5037, bidirectional
fabric

(bb) Stanpreg VET 43, per CPS 5038, unidirectional
fabric

(cc) Roving 60 End., per CPS 5039, 204 Filaments

The following tabulation presents test values based on
repeated tests of the Stanpreg System. A ratio of one
layer of VET 181 material to three layers of VET 43
material was used in the fabrication of test specimens
to be consistent with the blade fabrication layup. The
60 end roving was used as a double wrap in the shank
region with the filament wound at a specified tension
on a controlled schedule.

Physical Properties 43:181-3:1

Ultimate Tensile

Longitudinal 79000 to 117000 psi Avg. 101,700 psi
Transverse 25700 to 31470 psi Avg. 28,700 psi

Ultimate Flexural

Longitudinal 108,600 to 147,230 psi Avg. 129,200 psi

Transverse 43,240 to 51,000 psi Avg. 46,400 psi

Tensile Modulus

Longitudinal

Primary (5.4 to 7.15)x 106 Avg. 6.2 x 106

Secondary (5.4 to 6.01)x 106 Avg. 5.66 x 106

197



Transverse

Primary (2.8 to 5.4) x 106 Avg. 3.77 x 106

Secondary (.85 to 1.3) x 106 Avg. 1.05 x 106

Flexural Modulus

Longitudinal

Primary (5.37 to 6.38) x 106 Avg. 5.7 x 106

Transverse

Primary (3.36 to 3.99) x 106 Avg. 3.8 x 106

Flexural Endurance Limit SN Curves

Longitudinal (Infinite Life) + 13000

Transverse (Infinite Life) + 7000

Flexural Endurance From Goodman Curves

Longitudinal (20 x 106) 8000 psi + 8500

(20 x 106) 18000 psi + 6000

The tested density of the fiberglass laminate, with a
30% approximate resin content, is 0.070 lb/cu. in.

(c) Fiberglass Roving

This material is a glass roving, per CPS 5039 im-
pregnated with an epoxy resin, per CPS 5033.

(d) Blade Internal Foam

The blade cavity was filled with an 8 lb./cu. ft.,
rigid, self bonding foam plastic filler.

(e) Fairing Internal Foam

The fairing cavity was filled with a 5 lb./cu. ft.
rigid, self bonding foam plastic filler.

(f) Urethane Rubber Coating

To protect the blade against erosion and abrasion
damage a coating of Elastomeric Urethane was applied
to the entire external fiberglass blade surface.

198



d. Design Details - 13166A12P3 Design

In the later phases of the X-19 program the 13166AIOP3 blade %,as
modified to incorporate an improved foam filler and the fiber-
glass layup wis modified to provide better nhear strength. fhis
revised design was designated the 13166A12P3 blade. This design
was phased into the airplane program in the sunmmr of 1965. The
design was adequately proven by testing Drior to acceptance for
flight. However, formal analyses of the design ;as not ini-
tiated prior to teinination of operations. The section details
are given in Table VII for coqpparison purposes.

e. Structural Analysis

A complete structural analysis has been made for the 13166AIOP3
design and pertinent factors, are presented in this report.

(1) Design Loads

The initial design loads for the 13166AIOP3 were established
from the early aerodynamic considerations (33) for 12,300
lbs gross weight aircraft. A total of six flight condi-
tions were selected to cover the load spectrum of the
blades. These conditions together with the resultant pro-
peller loads are shown in Table VIII.

Subsequently the X-19 flight loads were revised as the
state of the art advanced and a review of that data shows
that the maximum loads during transition were changed to
some extent. With the higher gross weight, the airplane
design load factors were reduced from 3.0 to 2.7 and there-
fore the high speed maneuver loads were essentially the
same. The revised loads are also shown in Table VIII.
Preliminary analysis indicated that with respect to the
blades the initial loads were slightly conservative and
these conditions were retained for detailed blade design
purposes.

(2) Stress Analysis

The detailed analysis of this blade has been made using the
methods of analysis developed over the years for metal
blades. Strictly speaking, these procedures are not com-
pletely applicable due to the anisotropic characteristics of
the fiberglass ,_terial. Huwever, during the FRP blade
development program, extensive static and fatigue testing
was carried out on specimens, panels, and full scale
blades. This testing proved that the directional charac-
teristics of the material were small and conventional
theory was generally applicable.
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The transition area of the fLiberglass to the steel shank,
i.e., from 7.5 in. to the 17.5 in. radii involves a complex
load transfer analysis which is not amenable to the simple
or conventional approach.

The structural adequacy of this section has been substan-
tiated by test and has included static and fatigue testing
in the laboratory plus full scale propeller testing on the
Curtiss gyroscopic test stand and on the ASD whirl rig.
This testing is discussed in more detail in Section V,2.f.

The exact manner of load transfer and precise stress dis-
tribution in this bi-material section is subject to further
investigation. Additional analytical study and experimental
verification is required to yield a precise theoretical
procedure for analyzing this blade area.

(d) Steady and First Order Loads and Stresses

Using the loads as previously defined, the resulting
blade stresses, retention loads, and shaft loads are

given in Table VIII, For reference purposes typical
blade stress distributions are plotted in Figures 119
and 120.

These data (blade stresses, retention and shaft loads)
as given in Table IX were based upon the computed
flight characte-istics of a 12,300 lb. design gross
weight airplane. They were considered to be the de-
sign values for the 13166AIOP3 blade and associated
propeller components. Note that the shaft loads of
Table IX give a vibratory component. This is based
upon the results of the Ames tunnel test of the X-100
airplane which indicated extraneous blade vibration of
2xP and 4xP frequency. These will be felt by the
propeller shaft as a 3xP vibration. It was further
observed in blade manufacturing that there was a varia-

tion in the tilt between blades. The tilt difference
between blades is due to the change in shank position
within the die during manufacturing. This effect pro-
duced a rotating couple or unbalance on the propeller
shaft which varied with blade angle setting and RPM.
Through selective blade assembly for the propeller,
this unbalance moment was held to a maximum of 4400
in.-lbs.

The blade stresses as given in Table IX are considered
satisfactory except for continued operation at high
speed maneuver condition (n = 3) where the stresses
exceed the fatigue strength on both the steel shank
and the outboard fiberglass.
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Table IX. Summary of structural analysis; 13166AIOP3 blade design,
design loads for 12,300 lb airplane gross weight.

Polar Moment ot Inertia, Ip - 11.2 slug ft
2

Centrifge, Tv4sting Mm.ent,. Qrmx - 23,400 in. lb at 1204 rpm, 042" - 41'

Ccntriffugal Fore., CF - 56,900 lb at 1204 rpm

Condition

____________ I Ugh Speed
Item- ... er ku. .tt.s. I Trans. + Gust han. Trans. Cliob Maneuver (n - 3)

H 1,200 (5U 650 927 470 475

rpm 1,204 1,065 1,065 1,065 955 955
V - knots 8'_ SC i 80 80 218 252

Blade Stress pst

S'ank - 5" Sta. 129,50 114,700 + lo,300 15,500 + 19,100 19,940 + 17,5VO 12,850 + 14,200 12,670 + 40,000
Outboard I 8,161 4660;- 3,830r 4,010 + '.,840 5,790 + 3,740 3,740 : 2,930 3,550 ± 7,050

Location - S-'.Sa. 4e! 48 - 5 48 42 42

Retention Loade I
C•F It l15]6,9001 -,4,500 1 4.,-'00 44,500 3.5,700 35,700

m, In. lb at '1lde butt i58,qo0 ,7 600 38,020 14,400 13,400
In- b at blace butt - 6.50o 74,000 + 1,800 + 54,600 + 142,500

HM . in. 15 at Oe~rlng stasck 56,02ni 13, 160 ""e,060 -31,90u -13,500 -12,300

v •In. lb at hearing 3ck I'30C + 66,000 + 52,800 + 139,000
RM, • degrees 13 1 29 24.6 - 21.0 29.4 - 26.6

Sdegrees 1--$ J,. 7.8 20.8 43.0 63.7
Shaf't 'LoadIs --- i

r. T h•Vrust - lb 5,40I 2,443 2,670 3,400 585 373
N -Normal Force - lb .. 510 187 672 923 3,120!y -Side Force - ID .t 84 I 113 56 246 795

Pitch M..t ...n. lb 56,400 74,100 53,400 18,000 38,000

- 'awing Moment - in. lb ....-- 42,000 46,400 53,400 46,800 70,300
- Shaft Vibratoxy .1oent - bin ---- - + 17,600 + 21,800 18,800 + 10,000 :16,000

* Tis momwnt iv based upon the prelimnary reduction of data taken on the full scale tests of the X-100 airplane in
tne Ames 40 80 tunnel. The frequency with respect to the propeller support will be 3XP. in addxtion, the propeller
will genera - rotating couple due to differential tilt between blades which will have a magnitude on the order of

4f^ Inch poanis.
N

Diet= f Trust Direction N

Retention Moment

My and Y change Direction
witý Propeller Rotation My
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The blade stress analysis further indicated that the
design vibratory stresses of the blade material would

be exceeded at load factors greater than 1.7. A life
of 6 hours was computed for a blade operating at loads
corresponding to a load factor of 3.0. In view of the
original design decision to regard operation at this
load factor as an emergency or demonstration condition
which is transient in occurrence a calculated blade
life of 6 hours was considered satisfactory.

Between the 1.5 and 17.5 in radii, the stresses as
shown in Figures 119 and 120 are nominal values com-
puted on the assumption that conventional beam theory
was applicable. For this bi-material region such an
assumption served only for qualitive comparison of the
resulting stresses. Since a rigorous theoretical
solution was not possible, the structural adequacy of
this area was verified by experimental means. Stress
magnitudes and distributions typical of the steel-
fiberglass junction area at test loads corresponding
to the maneuvering transition condition are given in
Figures 121 and 122.

(b) Resonant Frequencies and Flutter

The computed fixed-root frequencies of the 13166AIOP3
blade are shown in Figure 123. These curves show both
a 3xP excited flapping and 4xP excited edgewise res-
onance close to the cruise RPM, and only slightly
removed from the transition speed. However, by virtue
of the material damping characteristics of the fiber-
glass propeller blades and for the anticipated magni-
tude of the excitation no serious blade stress problem
was anticipated as a result of these proximites to
resonances. In cruise flight, based on conventional
airplane experience, 3xP and 4xP excitations of suffi-
cient strength to produce excessive stress would not
be expected. In transition where these higher ordered
excitations may be more significant, a low blade
response is expected. This contention was based upon
experimental evidence obtained in laboratory testing,
on the gyroscopic whirl rig, and during WPAFB calibra-
tion testing which have all demonstrated high damping
characteristics of the laminated glass blade design
and a corresponding low response at resonant condi-
tions. However, these potential blade resonant prob-
lems were to be carefully investigated by analysis of
the strain gage data during the aircraft flight test
program.
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The calculated stall flutter characteristics of the
13166AIOP3 blade indicate a flutter-free design. This
was experimentally demonstrated by ASD of WPAFB up to
1400 horsepower which is well beyond the take-off
requirements of the X-19 aircraft. TI.e major factor
in evaluating stall flutter is the "reduced frequency".
The natural torsional frequency of these fiberglass
blades is considerably higher than with past metal
blades. For example, in hollow steel blades the
fundamental torsional frequency ranged from 50 to 80
cps, on solid dural blades the general range was from

90 to 120 cps. However, on the fiberglass test blades
the torsional frequency was measured at approximately
230 cps. This significantly higher frequency is
directly reflected in the reduced frequency parameter
which was sufficiently high that a stall flutter-free

condition was shown by calculation. It is to be fur-
ther noted that theoretical stall flutter studies have
shiown that high camber and tapered planform are flutter
deterents, and both of these features have been in-

cluded in these fiberglass blades. High camber is a
stall flutter deterent only because the maximum lift
coefficient is higher than a low camber design and if
the solidities of blades compared are identical.

f. Full Scale Blade Testing

This section presents the details and surmary of the results of
full scale testing on the propeller blades as component items.
Other full scale testing pertinent to the blade development and

qualifications, but which included the testing of the entire

propeller assembly, are discussed in Section V,7.

(1) Free-free Testing

The purpose of this test was to establish the eidurance
limit of the outboard portion of the full scale, as
manufactured, blade. For this test the blade, instru-
mented to measure longitudinal vibratory strains, was

suspended vertically by a clamp at the shank end, Figure
124. The blade was excited in its fundamental flapping
mode and a vibratory stress survey made. Endurance testing
was then continued while monitoring the maximum flexural
stress. The actual endurance running was made in steps of
increasing stress, and running each value for ten million
cycles or until failure. A summary of test results per-
tinent to the X-19 blades is given in Table X.

A typical blade failure is shown in Figure 125. Testing of
this type has established as flexural endurance limit for
the 13166A1OP3 blade of + 9900 psi.
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Figure 124. Laboratory test set-up for endurance testing propeller blades
in the free-free mode.
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Figure 125. Typical blade failure obtained in free-free endurance testing.
rhis blade completed 10 x 106 cycles at each of +8000, t9000,
*10 ,000 and ±11,000 psi. Failure occured at 1.2 x 106 cycles
at the t'j2,000 psi level.
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(2) Fixed - Root Testing

This particular type of blade testin6 was designed to estab-
lish the fatigue strength of the inboard end of the b'ad.-
For this testing the blade was clamped at the shank and an
exciting force ws applied outboard and in the chordwise di-
rection, see Figu're 126. As was customary in this type ,f
testing, strain gages were installed and the areas of maxi-
mum siess were located and monitored throughout the endir-
ance test 4 ng. In the X-19 program, test blade Serial No.
P-68-2, completed vibratory stress surveys at + 4,000 and
+ 6,000 psi levels. Endurance testing was initiated at

S6,000 psi vibratory stress level and run for 20 x 106

cycles. Following this, the stress level was increased in

+ 1,000 psi increments and run for 10 x 106 cycles at each
level until failure.

Stress Level Cycles at Level Total Cycles

+ 6,000 20 x 106 20 x 106

+ 7,000 10 x 10 6  30 x 10 6

+ 8,000 10 x 10 6  40 x 10 6

+ 9,000 0.2 x 106 40.2 x 106

After 0.2 x 106 cycles were completed at + 9,000 psi level,
the test was terminated due tc failure. Typical failures

obtained from this type of testing is shown in Figure 127.

The results obtained in this test deronstrated a blade
endurance limit (based on 50 x 106 cycles) in the edgewise
direction of + 7,900 psi. This is significantly above the
established design stress of + 6,000 psi, thus substantiating
the use of that value for design purposes.

(3) Blade Torsion

The blade torsion test qs essentially the same basic set-up
as the free-f-ee test previously discussed except that the
blade was excited in the fundamental torsion mode by two ex-

citers 1800 out of phase. This cest set-up is shown in
Figure 128.

For the X-19 program two blades were run as follows:
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F'gure 126. Laboratory test set-up fcr fixed toot endurance testing of
propeller blades.
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Figure 127. Typical blade fa igue failure obtained during fixed rcot
endurance testing of the X-19 propeller blade.
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Blades P-41 (-4)

Total Cycles
Shear Stress Cycles at at or above
Level - PSI Level Design Level

+ 445 20 x 106

+ 582 10 x 106

+ 730 10 x 106

+ 845 10 x 106  10 x 106

+ 935 2 x 106  12 x 106

+ 1,000 .6 x 106 12.6 x 106

+ 1,000 .3 x 106 12.9 x 106

The test was terminated at this point due to increasing tem-
perature and inability of the vibrator drive system to supply
the required power to continue the test.

Blade P-42 (-6)
Total Cycles

Shear Stress Cycles at at or above
Level - PSI Level Design Level

+1,000 20 x 10 6  20 x 10 6

+1,300 1 x 10 6  21 x 10 6

After 1 x 106 cycles at - 1,300 psi level, a rupture in the
fiberglass appeared at the 32.5 inch radius, 12.25 inches
from the lead edge on the thrust face, see Figure 129.

The results of these tests would indicate a torsional endur-
ance limit between + 1,000 and + 1,300 psi shear stress.
Since this was well above the maximum anticipated flight
value of + 300 to + f00 psi, it was considered that an ad-
equate margin had been demonstrated.

(4) Retention Testing

Two types of retention testing were conducted on the X-19
blade retentions; a static teot to failure and the retention
fatigue test.
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Figure 129. Fatigue failure on blade P42-6 after 1.0 x 106 cycles of
torsional endurance testing.
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(a) Static Test

The purpose of this test was to demonstrate the ultimate
centrifugal load capacity of the 13166A1OP3 blade with-
out bonding between the steel shank and fiberglass.

For this purpose a special inboard portion of the blade
was fabricated using the standard steel shank and fiber-
glass !ayups outboard to about the 30" radius. Modifi-
cations were then made to adapt the part to the test
machine, In makiT~g this piece, the steel shell was

carefully waxed to prevent bonding of the fiberglass to
tnh steel. This shank portion was placed in the tension
test nmcliine, see Figure 130, and subjected to a pure
tension load simulating propeller centrifugal force.
Failure occurred -t 128,000 lbs. as compared with the
maximum operating blade CF of 56,900 lbs. The resultant
failure is sbo•-ri in Figure 131.

(b) Retention Fatigue Tests

It wa6 the purpose of this testing to establish the
fatigue strength of the blade retention. For this pur-
pose the blade retention including the blade nut, the
blade bearing, blade shank and special collet, which
simulates the hub barrel, were installed in a test rig
which was capable of imposing centrifugal force and both
steady and vibratory bending loads along with bearing
oscillation to simulate pitch change on the complete
blade retention system, see Figure 132. The test blade
shank was a full scale blade inboard section consisting
of the steel shank and fiberglass lay-up. The actual
blade profile and lay-up was maintained to the 21" sta.
with modifications outboard, 21" - 31.5", to adapt the
piece to the test machine such that the test loads were
applied to the siLulated fiberglass blades. Endurance
testing was conducted monitoring all loads by means of
wire strain gages mounted on the steel shank and test
rig components.

The two steel blade shanks were run as follows:
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Figure 130. Laboratory test set-up for static tension test of the X-19
propeller unbonded blade shank.
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Figure 131. X-19, propeller unbonded blade shank failu~re. Ultimate load
was 128,000 pounds.
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(aa) Shank P-69 (p/n 164206)

Vibratory Total Cycles
Bending Centrifugal Steady Bending Cycles at at or above

Load-lb. in. Load-lbs. Load-lb. in. Level Design Level

± 66000 46000 24000 10 x 106 10 x 106
± 77000 52800 27600 6.4 x 106 16,4 x 106

The test was terminated after 16.4 x 106 cycles
when a shank failure occurred. The failure was a
spiral type crack in the steel shank originating
at approximately the 5.5" station, camber side.
The failure was analyzed and found to originate in
a rust pit, a direct result of internal corrosion.
This was caused by the presence of water which
leaked from the test rig cooling system and the
lack of the plating which was inadvertently
omitted from the test part but which was speci-
fied in the flight component. Because of the
lack of protective plating on the test piece and
the vulnerability of the part to corrosion, the
failure was not representative of the flight
component.

One retention bearing, P/N 162563 S/N 96, was used
for the complete test of 16.4 x 106 stress
reversal cycles and was in perfect concdition when
removed except for two small spall marks on one
inner race,

(bb) Shank P-171 (P/N 164206)

Vibratory Total Cycles
Bending Centrifugal Steady Bending Cycles at at or above

Load-lb. in. Load-lbs. Load-lb. in. Level Design Level

S72300 44500 21400 4.9 x 106 4.9 x 106
±72300 69000 29400 5.1 x 106 10.0 x 106
+ 70000 81000 18000 10.0 x 106 20.0 x 106

+ 83200 51200 21000 5.01 x 106 25.31 x 106

+ 90500 86300 36800 0.19 x 106 25.2 x 106

* 90500 55600 22900 2.96 x 106 28.16 x 106

* 90500 55600 22900 0.45 x 106 28.61 x 106

* Transition design loads corresponding to V = 80 KTS, HP = 927,
RPM = 1065, for the 12,300 lb. aircraft gross weight.
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The test was terminated after 28.61 x 106 cycles
when a shank failure occurred. The crack extended
approximately 3000 around the steel shank in the
flange radius. The failure was fatigue in narjre
with the origin in the flange fillet radius at the
location of maximum applied loading. (Figure 133).

A fatigue life analysis was made of the above test data
and the minimum demonstrated fatigue strength of the
retention was shown to be + 91,500 in-lbs. vibratory
bending moment for the 12,300 lb. design G.W. steady
loads of transition flight which are CF = 44,500 lbs.
and M = 16,060 in-lbs. An ample margin of safety was
thereDy shown to exist with respect to the anticipated
vibratory bending moment of + 72,300 in-lbs. for the
12,300 lb. aircraft.

(5) Additional Full Scale Blade and Sample Testing

Considerable additional testing of blades and blade material
were accomplished in the course of the blade development
program which was pertinent to the qualification of the
strength or life of the structure. These tests are simply
listed for completeness-,

(a) Water spray (Full scale)

(b) Sand and gravel abrasion (Full scale and samples)

(c) Fungus (Samples)

(d) Impact, Bird and bullet (Full scale)

(e) Weathering (Samples)

(f) Lighitning (Full scale)
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Figure 133. Typical fatigue failure of the X-19 blade shank.
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3. PROPELLER DESIGN LOADING THEORY AND TEST
Sa. General

With respect to the airframe, the rotating propeller generates six
basic load components. These are shown in Figure 134. These forces
and moments represent the summation at the propeller shaft of the
aerodynamic lift and drag components developed by each of the
rotating blades. From the viewpoint of the air-frame designer, it
is only these resultant loads which are of concern and these are
readily obtained by wind tunnel testing and generally presented in
coefficient form (33). The propeller designer, however, also
required the loading oy -he individual blade, and for this theoreti-
cal developments are generally used.

b. Theoretical Propeller Loading

The flow through the disk of an aircraft propeller is generally
quite complex. In simplest form, it might be considered as though
the propellers were operating at some angle of attack, A, with re-
spect to the flow field, Figure 134. The angle of attack results
from several factors, e.g., the attitude of the aircraft, geometry
of the aircraft, wing circulation, influence of the fuselage and
other surfaces, etc.

For analysis purposes, this flow can be considered in the two com-
ponents, normal and parallel to the disk. It is quite obvious that
with these velocities, any given blade section, as it passes through
one revolution, will experience a uniform velocity on which is
superimposed a sinusoidal harmonic having a frequency equal to the
rotational speed or the commonly called UXP frequency. The aero-
dynamic forces will also reflect this uniform plus sinusoidal varia-
tion. The uniform or steady components produce the propeller thrust
and torque. The IXP vibratory blade loads produce the shaft moments
and normal forces.

The thrust and torque forces are readily determined. The so called
strip analysis methods are well established within the propeller
industry, and were developed from a background of many years of
propeller testing. The first order or lXP, blade loads are not so
well defined:

(1) First Orderor UXP Blade Loading

For the conventional aircraft, the UXP propeller blade loading
is accurately predictable.

Because of the very low propeller angle-of-attack (00 to 200),
a relatively simple development gives the lXP lift force at a
given blade station as:

AL xP = q/2 sin 2A [ab + 2bCLCot 0.] r sin wt (1)
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Figure 134. Basic velocity components at the disk of a tilted propeller.
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which for small angles becomes

AL xF " Aq [ab + 2bC LCot 0.] r sin Wt (2)

where: A = propeller angles of attack

q = free stream dynamic pressures, lb/ft 2

a = slope of the lift curve

b = section chord, ft

CL = operating lift coefficient
0 = apparent wind angle at the given station

Ar = incremental radius, ft
wt = propeller rotational angle, radians

This development is well known and the propeller forces
obtained from this simple eyprsjssion have been substantiatedby considerable flight testing. However, the above expressionbecomes quite inaccurate as A becomes greater than 20', and stherefore not applicable to the tilt nacelle or tilt witL3
propeller driven VTOL airplane.
Recognizing this fact, a more generalized development (,+ e4undertaken in order to more accurately predict propeller t,. is
fýr the higiL angle region. From this development the basic
IXP blade force at a given station was shown to be:

AL/Ar)IXP m q/2 sin2AlbCLCot 0(2 - cos 0) + ba

+ 3/4 ab-V cos 3A sin 0 sin wt (3)

- qab sin A[ -- (Cot 0 - 2)] cos wt

where, in addition to terms previously defined,
Vo and VI, are components of induced velocity, ft/sec
W = resultant velocity at a given section, ft/sec

V - free stream velocity, ft/sec
S= propeller section angle of attack, radians

r = radius to a given station, ft

R - tip radius, ft
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If a propeller is cnnsidered to be operating at an angle-of-
attack that is in a pure pitch-up direction, referring to
Figure 189, it can be shown that the summation of the blade
IXP loads will produce the following forces and moments:

Force Component Force Moment
Eq (3) See Figure 189

Sin w t N Y
C8s wt S M

Equation(3) was generally used to evaluate blade loadings in
the X-19 program. The major problem in its application was
the evaluation of the induced velocities, and fcr this pur-
pose considerable use of helicopter rotor data was used (35),
(36), (37) and (38). It became apparent quite early in the
X-19 program that the propeller forces generated by Equation
(3) did not agree satisfactorily with data derived by the
Aerodynamics Department from wind tunnel testing. The expe-
dient solution was therefore taken for design purposes. The
blade load distribution as computed by Equation (3) was
retained but the load magnitude was modified as necessary to
agree with the wind tunnel derived data.

(2) Higher Order Load Components.

The previous section has been concerned only with the first
order of IXP component of the propeller blade load which is
a major factor. However, as previously stated the actual
flow through the propeller disk is nonuniform which gives
rise to higher harmonics.

On the conventional aircraft these harmonics were of no
concern except at those rotational speeds where they coin-
cide with a resonant propeller frequenty. In those cases it
was only necessary to keep the operating speeds sufficiently
removed from the natural frequencies of the system. In the
VTOL aircraft there may be certain propeller attitudes where
these higher harmonics may be significant. At termination of
the Curtiss VTOL activity this was under theoretical study,
but no definite conclusions had been reached. Allowance for
the effects of these higher harmonics was generally made in
propeller analysis and was based on past flight test or pro-
peller test 1'istory.

(3) Continued Theoretical Blade Loading

In recognition of the short comings of the available theore-
tical methods for predicting propeller loads and blade load-
ings, a more detailed study of propeller load analysis was
undertaken as an R & D effort by the VTOL Division, and this
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work was zontinuing at the time of termination. In
principle the approach consisted basically of defining the
propeller flow field as a mathematical function of radius
and rotational angle.

Then with the known airfoil characteristics the force on any
given blade element could be determined as a function of the
rotational angle. A Fourier Analysis was then 3pplied to

this function to separate the various harmonic components.
Obviously the major problem was the definition of the flow
field to include the many influencing factors.

The induced velocity distribution during the high angle-of-
attack operation of a propeller has a large effect ,n the

r loadingE. Unfortunately, this velocity distribution is
known only approximately at this time. It is possible, in
principle, to calculate this distribution, as has been done
for flapping rotor helicopters, (39). Such a calculation

t has not been carried out as yet for a rigid propeller.
Another possible source for such data is a rather elaborate
experimentation, to give the velocity close to the propel-
ler at a large number of points. This experimental data
could then be converted to a double Fourier series.

The present source of the inflow velocity distribution is a
combination of theoretical and test data. The method that
has been used previously to estimate the inflow velocity
distribution for an isolated propeller is given below:

Simple momentum considerations give:

vI -V/2- 2 (4)
nom

where V1 is the forwara velocity component of the propeller
parallel to the shaft, T is thrust, R is the propeller
radius, end P is the air density. The radial distribution
of VI has been based on some static test data taken on the
X-1O0 propeller, which has been subject to a Fourier
analyses.

It has been found, however, that the interference of a
nearby wing, fuselage, or other propeller can have major
effects on the propeller loading. The rear propellers of
the X-19 aircraft are subject to this effect, as demon-
strated by wind tunnel model testing. No simple method of
estimating the interierence velocities exists at present,
however, there is no basic obstacle to a reasonable estimate
which can be had by superimposing certain know- classical
solutions for flow about simple bodies. A discussion of
this is given in section III where fuselage flow effects
upon te rear wing are defined.
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The program therefore was developed in terms of symmetrical
flow about an aircraft configuration with two horizontal
lifting surfaces and two nacelles per side, with a central
fuselage. Ths positions of the above compcnents are other-
wise arbitrary. Provision was made for variable nacelle
angle in pitch with respect to the wing and variable
aircraft angle-of-attack with respect to the remote
velocity. The wings were simulated by a large number of the
usual bound and trailing vortex segments. The strengths of
these segments were in accordance with a given spanwise lift
distribution and an assumed chordwise distribution. The
fuselage and nacelles were simulated by a combination of
sources and doublets on their centerlines. The strengths of
the sources and doublets were defined in terms of simplified
boundary conditions for the isolated bodies, with provision
made for variations in wing upwash or downwash along their
lengths, The velocity distributions for all vortices,
sources, and doublets were superimposed without attempting
to satisfy flow boundary conditions strictly for the whole
configuration.

The accuracy of the total distribution found in this way was
expect, to be acceptable. The velocity components in
three dimensions are calculated at a large number of points
in each propeller, with special provision made for points
close to a trailing vortex sheet. Certain refinements were
contemplated. The most important of these would be pro-
peller blade trailing and shed vortex sheets, with trajec-
tories given by the velocity distribution of the present
program, superimposed on the remote velocity and estimated
propeller induced velocity. Another provision could be
variable chordwise lift distribution, given by the local
angle of attack. Finally, the resulting velocity distribu-
tion could be used to compute new values of local angles of
attack and vortex sheet trajectories. This information
could be used in a new cycle of computations with tMe
expectation that the results would be of greater accuracy.

c. Propeller Test Loads

As stated in the previous section, the design propeller loads
were established on the >asis of wind tunnei testing.

In the case of the blades, theoretical distribution of loading
were used but modified in magnitude to agree with the test data.
It was tne intent that during the X-19 ftight test program, suf-
ficient propeller instrumentation would be installed to permit a
correlation between design loads and flight loads.
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(1) Wind tunnel tests

The basic propeller loads used for design were determined
from wind tunnel testing of free-propellers, models, and theX-100 aircraft. This testing is fully discussed in Section

IX. In the course of the blade loading development, cor-
relation was made between theoretical and test data.
Typical comparisons are shown in Figures 135 aad 136.

(2) Flight Test

The limited preliminary flight testing of the X-19 did not
provide the opportunity to verify the accuracy of the lXP
propeller design loads. However, calculations were made
for an equilibrium transition flight and it was possible tocompare the calculated blade stresses measured during
flight. A typical comparison is given in Figure 137. The
correlation is considered good and this very limited data
would imply that the UXP propeller loads as used were
realistic for the airplane.

2
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ii

4. WEIGHT COMPARISON OF 19 FIBERGLASS PROPELLER

Early in the concept studies of VTOL aircraft, it was recognized that

the propulsion system would be a significant portion of the total

aircraft weigh" and a considerable effort went into weight reduction
studies of this system. Accordingly, the propeller blade received
early design emphasis since a reduction in blade weight would be

multiplied by 12, the total number of blades, and would reflect to

some extent a comparable saving in the weight of hub and other com-
ponents. A summiary of this work is as follows:

a. Blade Weight Studies

SGeneral studies were made in the selection of a lightweight pro-

peller blade design considering both fiberglass and the light-
weight metals (40). The results of these studies showed a
definite advantage in favor of the fiberglass design and these

studies considered both VTOL/STOL and conventional turbo-prop
installations. Typical results of these studies are shown in
Figures 138 and 139 which show a blade weight comparison of
several types of blade construction for a specific airplane
installation. In these charts, reference is made to the composite
blade.

This type of design consisted of a metal structural center spar
which was generally elliptical in cross section and was formed as
closely as possible to the required airfoil shape. The airfoil
section was then completed by bonding e preformed leading and
trailing edge strip to the srir. Abrasion resistance was provided
by a thin stainless steel sheath.

It is well known that the major factor in the structural design of
a propeller is the IXP vibratory blade load. Referring to Equa-
tion (2), page 226, it is seen that this loading is proportional
to the Aq factor. A review of several operational propellers hav-
ing hollow steel blades, resulted in an average weight vs. Aq
curve as shown in Figure 140. For a more generalized fiberglass
weight comparison, typical turbo-prop installations were selected
and an equivalent fiberglass blade was designed. The weight ad-
vantage in fiberglass is clearly shown in Figure 140. The final
weight of the 13166A12P3 blade is 70.6 lbs. No direct comparison
has been made between the X-19 blade and comparable blades in

other materials. It is estimated, however, that an aerodynami-
cally equivalent hollow steel version would have a weight of ap-
proximately 132 lbs.

b. Hub Weight Studies

The propeller hub design is governed by the blade loads; and, a
reduced weight blade therefore offers hub weight advantages.
Hov-ver, this contribution was not a major one in the conventional
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hub design and the desirability of a more efficient hub structure
was recognized. For this reason considerible d'.s=gn effort went
into the redesign of the hub assembly for the X-100 aircraft. As
finally evolved for the X-19 aircraft, the 162595 hub is, in
general, a scaled-up version of the 138034 hub used for the X-100
vehicle. Although there is an external resemblance to the con-
ventional Curtiss Electric Propeller hub, the internal differences
are many, including the absence of an integral inner structure.
The conventional nut-and-cone shaft mounting was replaced by a
large, 2-row nose-mount bearing on the rear extension., The self-
contained pitch-change mechanism consisted of a hydraulic piston
operating inside the rear extension and connected by linkages to
cranks on the blade butts. The torque drive was through short
internal splines at the extreme aft end of the rear extension.
The design differences resulted in an unusual geometry which
combines, in one hub, a shank size less than ý2 (115 mm) with a
rear extension larger than that for a standard S.A.E. #60 splined
shaft.

The resulting total propeller, iess blades weight, for the X-19
was 161.2 lbs., Again there is ao direct comparison with a con-
ventional propeller hub assembly designed for the X-19 instal-
lation, However, a similar sized Curtiss Electric Propeller would
have a propeller (less blades) weight of approximately 200 lbs.

5. PROPELLER STRUCTURAL PROBLEMS

Through the development and testing of the X-19, a number of
structural problems were encountered in the propeller system. These
problems varied in importance and are described as follows:

a. Blades

There were two basic problems with the propeller blades; one was
associated with the foam filler and the second was with the steel
shank.

(1) Foam Filler

In the course of operating the Nc, I X-19 for a total of 114
hours, foam separations were encountered in five blades.
Three of the separations were repaired and the blades were
returned to aircraft testing and separations occurred a
second time, thus accounting for eight cases of separation,
Upon subsequent X-ray inspection, it was found that four of
these five blades also showed cracks in the foam. On 31
January 1965, during a maintenance ground run, a sixth blade
experienced foam shifting and resultant tip bulging as a
result of foam bond failure or foam separation, Detailed
inspection of these six blades disclosed a cGnsistent pattern
of sound foam and fiberglass but poor bonding between the two
elements.
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A review of the foam bonding technique employed in these
blades, in the light of the current state-of-the-art, dib-
closed several factors which could potentially contribute to
the lack of bond including-

(a) The use of a cleaner containing retlLylene chloride to
clean the fibeeglass blade shell prior to foaming may
result in deterioration of the foam bond.

(b) The use of an epoxy primer (Rexton) may result in lower
bond strengths than obtainable with a urerhane primer.

(c) Storage of the '"T" component of the Nopco H-106 foam at
temperatures below 6G*F before use in the blades may
have caused separation of its TDI constituent.

(d) Temperature and humidity control was not optimized
during the priming and foaming operations.

An extensive investigation was initiated to review and/or
modify the Curtiss Process Spec'fications CPS 6266 (Molded
Fiberglass Reinforced Plastic Blades) and CPS 5065 (Foam
Plastic-Rigid-Freon-Blown, Low Density). This analysis and
specimen testing was performed at the Curtiss Division and
Redel, Inc. California.

This investigation program was extensive and involved studies
of surface preparation, types of foam, chemistry variations,
curing cycles, and evaluation of the foam material
properties. A total of 27 full scale blades were built and

fatigue tested using the more promising developments. Based
upon these tests the fcam system developed was a considerable
improvement and the 13166A12 blades which incorporated this
new foam were considered structurally satisfactory for the
flight test program.

However, the foam problem was not considered completely
solved to satisfy high service life, and this still remains
an area which needs further development in the light-weight
blade program.

b. Blade Shank

As previously mentioned the X-19 shanks were made of AMS 6415
steel heat treated to RC 42-46. This is bordering on the brittle
range. Although the metallurgy department had set up special
procedures (double bake immediately after plating) for processing
these shanks, certain problems developed in the initial develop-
ment.
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(1) Longitudir.al Cracks in Outboard End of Sl'ank

There were thren instances cf cracking in the outboard end of
the shank (Fig. 118) prior to blade fabrication, and there-
fore before an, application of operational or test: loads.
In addition, a similar crack found during examiaation of a
blade which failed on a fixed-root test cotuld not defirnitely
be attributed to fatigue and may have originated as a static
crack.

It was theorized that cracking of this type, during or soon
after manufacture, may have been associated with residual
stress from the forming process, and/or with hydrogen
embrittlement of the steel. In either case, a time factor
appeared to have been operating, which may have resulted in
deferred failures.

(a) At Shank Fabrication

Two completed shanks, which had been approved after
magnaflux, were found at final inspection to be cracked.
The normal time interval between magnaflux and final
inspection was reportedly less than two weeks; that
between plating and baking was variable, a critical
factor where hydrogen embrittlement is involved.

(b) At Blade Fabrication

Blade P-120 had unsatisfactory fiberglass during initial
blade fabrication. The fiberglass was therefore
stripped, at which time examination disclosed similar
cracks in the shank outboard end.

(c) During Test

Blade P-68(-2) failed after 42 x 106 cycles of fixed-
root testing. Examination of the blade after failure
showed branching cracks at the shank outboard end. As
previously mentioned; these may well have originated as
static failures. As a result of these failures, the
Metallurgy and Blade Design Departments set-up rigid
processing controls. Further incidences were not found
and this problem appeared to have been solved.

(2) Fatigue Failures in Inboard Portion of Shank

Two retention tests of the X-19 type shank failed at low
total cycles by reason of fatigue failures originating at
areas of internal shank corrosion. As a result of the first
failure, precautions were taken to prevent rust formation
during testing of the second shank. Inasmuch as failure of
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the second shank was subsequently attributed to a corrosion
origin, it was concluded that the blade shank was insuffi-
ciently cleaned prior to application of the protective
coatings. These fatigue failures indicated the possibility
of a high notch sensitivity such as would be expected with a
material of low ductility.

Following discussions among Metallurgy, Blade Design, and
Structures, Lhe internal surface all steel shanks were care-
fully cleaned, the bore was shot-peened and a suitable pro-
tective coating was applied. No further incidences of shank
corrosion were found.

c. Hubs

There were no structural deficiencies of the propeller hub itself.
However, in the hub assembly, it was found that under load there
was a hariocinic drive type of action which tended to rotate the
inner race of the nose mount bearing with respect to the hub.
This tendency to turn would also tend to tighten the bearing
preload nut, P/N 169564. In the original design, the lug which
was provided to lock the bearing preload nut was inadequate to
restrain this motion. Lug failures were experienced after reia-
tively short periods of operation which in turn permitted the nut
to tighten. This action resulted in failure of the hub rear
extension in one of the early endurance test runs. A spline type
lock was designed which proved adequate. It was noted, however,
in subsequent testing under high vibratory load that considerable
galling and wear was produced between the nose mount bearing race
and the hub shoulder and between the bearing race and the nut
face,

Since galling is a potential origin for fatigue failure, redesign
of the hub rear extension was recommended, and preliminary studies
of this problem had been initiated at the time of termination of
the project.

d. Blade Pitch Control

Early in the functional testing of the propeller, it became
apparent that the blade link, P/N 168267, which transmits the
pitch change force from the hydraulic piston to the blade butt,
was margi'al with respect to the anticipated loads. This was
corrected by a simple strengthening of the part.

During airplane ground testing, it was found that the propeller
control push-rods inside the wing were being subjected to a
significant vibration. This caused a fatigue type failure of
some of the rod ends and certain cast aluminum hangers,

In order to determine the magnitude of the vibratory forces,
strain gages were installed in the system. On the basis of the
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measured data, the rod end size was increased and redesigned
hangers were machined :rom aluminum bar stock.

After considerable development testing on the half system rig, a
failure waa found in one of the pitch change pistons. Examination
indicated that this was a fatigue type failure; however, the cause
of this failure was never satisfactorily explained. As a
precaution, the part was redesigned to provide a heavier section
and more generous fillet radii.

e. Propeller Housing

This housing, P/N 166464, provided the support or mounting of the
propeller to the nacelle gear box housing which was attached to
t6e wing structure through the trunnion of the tilt mechanism. It
consisted of a cast magnesium shell (AMS 4434 commonly designated
AZ92A-T6) reinforced for stiffness by internal longitud!nal ribs.
The forward portion was a conical section which faired into a
cylindrical shell about 9 inches aft of the propeller. This
structure was not adequate to transmit the encountered magnitude
of 2xP vibratory propeller loads for the period of aircraft flight
testing and the failure of this housing in flight resulted in the
loss of the No. 1 X-19 aircraft.

The investigation which followed the crash of the aircraft
revealed that the failure was the result of a combination of
factors.

(1) The vibratory lord level reacted on the nacelle housings
during later airplane operation was considerably higher than
had been anticipated in the establishment of the original
design criteria. More specifically, the strain gage data
that was evaluated from flights Nos. 32 to 50, most of which
were accomplished at NAFEC, indicated that the 2xP component
(vibratory on the nacelle) during conversion (tilt trans-
lation) flying was of the same magnitude as the ixP component
which is a steady load on the nacelle.

S(2) Just prior to ultimate failure, an emergency maneuver was
executed which produced steady loads significantly higher
than design values.

(3) A strain gage survey showed that the actual stress gradient
in the rib/transition area was twice the value used in the
theoretical analysis based on a limited Stresscoat survey.
Also, sand pits in the rib tips added to the stress concen-
tration and the intolerance of the area to fatigue, loading.

As a result of the above described investigation, the housing was
completely redesigned, P/N 174988. At the termination of the
contract, this housing had been completely static tested. Plans
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for fatigue testing the entire nacelle assembly under simulated
propeller steady and vibratory loading were being made. A
laboratory test facility was designed to accot:ncdate the entire
nacelle gear box and attaching propeller housin_ with all sub-
systems intact with the exception of the blades and tilt
mechanism,

6. PROPELLER INDUCED LOADS

The loads on the airframe induced by the propeller, can be of both a
steady and vibratory nature. The six basic steady load components
consisting of thrust, torque moments and normal forces have been
discussed under Sub-part 3 of this Section. It is the purp..ae of this
part to briefly discuss the other theoretical loads and also to
present those airframe loadings which were observed during testing of
the X-19 airplane.

a. Theoretical Loads

As previously noted in Sectien V, 3., the flow through the pro-
peller may be considered as being made up of a uniform flow upon
which are superimposed many harmonic components IXP, 2XP, 3XP etc.
Each of these velocity components will generate a corresponding
load component, and it is the siumation of the blade load
harmonics at the propeller centerline that is reflected on the
airframe. The nature of the reaction on the airzraft depends upon
the number of blades, and the order of vibrations.

By a relatively simple mathematical procedure it can be shown that
the shaft thrust and moment due to a blade harmonic force are:

T Fn Cos (nwt), n= mB

T = 0, n mB

M R f Cos (n+ l) wt , ---. n+ = integer

u2 B

where: -

T = total shaft thrust due to a given harmonic blade force,
lb.

M - total shaft moment due to a given harmonic blade force,
in.-lb.

F = Maximum value of the blade harmonic thrust force, lb.n

M = Maximum value of the blade moment at the shaft centerline
n due to the harmonic force, in.-lb.
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B - nunber of blades

n U order of vibration

m M integer

t - time, sec.

w - blade rotational frequency, rad./sec.

fDnw - harmonic frequency, rad./sec.

Considering these equations with respect to a 3-way propeller,
such as was used on the X-19 airplane, the following shaft
reactions are obtained:

(1) A UXP blade harmonic is thrust reactionless but produces a
steady shaft moment.

(2) A 2XP blade excitation is thrust reactionless but produces a
vibratory shaft moment having a frequency of 3XP.

7 (3) The 3XP blade harmonic, will produce a 3XP thrust component
and will be moment reactionless.

(4) The 4XP blade load will be thrust reactionless, but it will
produce a vibratory shaft moment at 3XP frequency.

The UXP load component has been more fully discuss-ed in Sub-part 3
of this section. The forcing function of the higher harmonics,
2XP, 3XP etc., cannot by the present state-of-the-art be calcu-
lated with any reliable degree of accuracy. Flight test was
generally relied upon to evaluate the severity of these components
Pnd to establish rpm restrictions. Generally these excitations
have been sufficiently low that they were of little concern in
conventional aircraft except at resonant speeds. Care was
therefore exercised in the propeller design to be certain that
the propeller natural frequencies did not coincide with the higher
harmonic frequencies at operating spceds.

There is evidence in theoretical work and the limited flight test
data which indicated that both the 2XP and 3XP blade harmonics
may become significant in certain portions of the transition
flight on the VTOL-type aircraft. It must be noted that any pro-
peller blade harmonic which produces a shaft reaction dynamically
couples the propeller to the airframe. The propeller and pro-
peller forces must be considered in any airframe dynamic study.
These are controlling loading criteria in the design of the pro-
peller, nacelle housings, tilt mechanism and possibly the wing
structure in a V/STOL aircraft.

b. Airframe Test Results

In the limited testing of the X-19 aircraft, certain vibrations
were obtained in the aircraft which were attributed to the pro-
peller. These occurred both on the grourd and in flight.
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"(1) Ground test

The initial ground testing of the X-19 aircraft was conducted
on a tie down rig. Essentially, this consisted of restrain-
ing the aircraft against vertical motion by rigid supports or
columns at each of the four wing tips. Fore-aft motion was
prevented by stops at the main landing gear. Running on this
rig produced a strong vibration throughout the airframe at
IXP frequency and 3XP frequency. The lXP component was
found to be due to propeller unbalance, and was eliminated by
a careful matching of both the horizontal and vertical
balance between blades. Previously, only horizontal balance
had been carefully controlled. The 3XP component was found
to vary with nacelle attitude, being more severe in the hover
position and decreasing in severity as the nacelle tilted
down to the cruise position. This vibration was believed to
be due to blade passag- over the wing. It was also found
that this vibration was sensitive to the manner of aircraft
support. with the aircraft on the tie down rig, where the
main support was at the wing tips, the response was quite
strong. With the aircraft supported on the ground through.
the landing gears in a normal manner, the 3XP vibration was
considerably less, and once the aircraft became airborne this
response was significantly reduced. In other words, the
natural modes of the airframe structure changed as the manner
of support was changed and the response to the 3XP blade
paeeTige excitation reflected this change in the natural
modes.

(2) Flight Test

Propeller blade strain data recorded during flight testing of
No. 1 X-19 showed an unexpectedly high percentage of 2XP
stress, which was reflected as 3XP on the nacelle and its
supporting structure. When blade vibratory stress was
plotted with respect to rpm, a magnification similar to a
resonant condition was observed, see Figure 141.

In an attempt to substantiate the apparent resonant trend, a
stress-rpm survey was made in conjunction with the green
running on the second X-O9 aircraft. A good harmonic
analysis of the records had been made, and the analysis
showed that for the conditions of the test there was a
noticeable 2XP stress amplification between 950 and 1150 rpm.

rhe data, however, did not show a well defined resonant
speed. This is shown in Figure 142. Further, a qualitative
analysis of this test data indicated that the stresses on the
nacelle and trunnion were being significantly influenced by
a 3XP thrust component. A review was then made of the
13166A12P3 blade frequency calculations. Although correct
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for the input used, it was found that the blade mass distri-
bution calculated from the preliminary properties was 18%7
lower than the "as manufactured" blade weight. This would
reduce the calculated frequency from 1480 to 1350 rpm. On
this basis, a lower installed propeller resonance would be
expected since the 2XP excitation on a 3-way propeller is not
moment reactionless on the shaft which would produce a
coupling with a nacelle structure. However, this would
normally not be expected to reduce the resonant rpm to the
1150 shown in Figure 142.

These factors tended to weaken the resonance theory and
promote the possibility of a stronger than anticipated 2XP
aerodynamic excitation during the transition flight. An
elementary analysis had shown that the 2XP excitation would
be a function of:

(V Sin A )2 Sin

where V = aircraft forward velocity

A = the propeller angle of attack

0 = propeller blade angle setting.

In order to determine the degree of correlation, the velocity,
blade angle and tilt angle were obtained from the flight
records for further analysis. The tilt angle was used as a
first approximation of propeller angle of attack and the
above expression was evaluated for several flight conditions.
The corresponding 2XP vibratory stress as measured on the
blade was then plotted against this parameter. This plot and
an apparent correlation is shown in Figure 143. At the time
of termination, this problem of 2XP blade resonance or high
2XP propeller aerodynamic loading had not been completely
resolved.

The reasons for the high loadings encountered on the nacelle
of the X-19 during conversion that led to its failure must
be found so that proper design loads can be determined, as
these loads could have a major influence on the nacellk
structure of any new tilt rotor or tilt wing airplane. There
are many reasons for the high loads, for instance they cotld
have been developed as a result of flow conditions from the
front wing, influencing high loading on the aft propeller, or
by the start of nacelle whirl, or could be just a function of
an airframe resonance condition. The question can be an-
swered by testing an isolated X-19 propeller at the same con-
ditions encountered prior to the loss of the propeller to
find if excessive 2 x P stresses are induced on the blade.
If not, the high stress levels were induced by conditions
peculiar to the X-19 in which case the question is adequately
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answered. Otherwise, if the high stresses were generated
by isolated propeller, further theoretical and experimen-
tal work will be required to develop the necessary solu-
tion.

7. PROPELLER TESTING

Except for the developmert testing of the fiberglass blades which is
presented in Section V, 2., this section covers the details of the
testing accomplished to qualify the X-19 propriler for flight.

a. Propeller Hub Static Test

The 162595 hub employed in the propeller of the X-19 airc:nft, al-
though utilizing well-proven design principles, differs in nutaer-
ous ways from chose heretofcre built by tnis company. The abl'euce
of an integral inner structure, the repiacement of i conventional
nuL-and-cone shaft tounting by a large, 2-row nose-mount bearing
on the rea- extersion, tha self-contained pitch-change mechanism
consisting of a hydraulic piston operating inside the rear exten-
sion and connected by liniages to cranks on the blade butts, and
the torque drive through short internal splines at the extreme
aft end of the rear extetip'or are all design differences which
differentiate this propeller from its predecessorE.

() lDesign Lcads

Propeller components are 'o-mnorly stress-analyzed for the
maximum propeller Ibad; predicted for service cperatio.-, on
the aspumption that during the life of the airplane the ac-
cumulated stress cycles at the higher loads will be suffi-
cient to constitute an endurance condition. Because of the
complex flight maneuvers possible with this vehicle, normal
operating loads cover a wide range of centrifugal force as
well as symmetrical and unsymmetrical bendirg moments. Loads
given in Table IX for the transition plus gust, maneuver
; ran;ition, and high speed conditions were selected as repre-
senting the heaviest loading on the hub and were utilized as
"major design criteria.

(21 Test Proced-ire

The propeller hub was mounted on a specially dezigned cansion
machine, Figure 144, in such 3aa,,nner as to'siumulate the air-

craft mounting. The blades weie replaceu by special test
shanks which were retained in the hub by means of the design
blade retention.

1he centrifugal and bending loads were applied simultan'ously
to each barral by taans of hyd:aulic jacks, and a static sim-
ulation of the vibratory loads were superiuposed in the cor-
rect phasing. Becausc of the highly radurdant nature of ghe
hub structure, the testing was done in two pl-ases;

(a) Stresgnat Tbat

The initial effsrt cnsisted of a ,ualitaýive stress
survv %.4.rh bricle lacquex to detzrmine the ]caatifns
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of stress concentrations and directions of principal
tensile strain, see Figure 145. Results of this test
phase were used to assist in properly orienting re-
sistance wire strain gages for the definitive phases
of the test program.

(b) Wire Strain Gage Test

In view of the limitations of Stresscoat for quantita-
tively exact work, the definitive stress evaluation
was based upon the use of a wire strain gage survey.
During the second phase of the investigation, there-
fore, quantitative measurement of apparent stress was
accomplished by means of these gages and conventioral
strain gage instrumentation.

On the X-19 hub a total of 129 strain gages were .n-
stalled. The pertinent locations are illustrated in
Figures 146, 147, 148 and 149.

(3) Results

An extensive analysis of the data from 129 strain gages and
three loading conditions was made, and the pertinent results
indicating the locations and stress magnitudes of the more
highly stressed areas are given in table XI. it is seen
that for the design loads the minimum factor of safety is
1.28, and for the most part the factors were well in excess
of 2.0. The testing therefore indicated that the 162595 hub
was adequate for the anticipated flight loads of the X-19
aircraft.

b. Laboratory Whirl Test

This is a standard propeller test used in the development and
qualification testing of the functional aspect of the propeller-
nacelle assembly.

(I) Description

This test was performed in the C-W, Curtise Division lab-
oratory to demonstrate operation of the complete propeller-
nacelle assembly. This assembly was whirled on an electri-
cally driven whirl stand utilizing test shanks and counter-
weights to simulate the blade loads, Figure 150. Testing
was performed at speeds, blade angles, rate of pitch change,
and net twisting moments (centrifugal and aerodynamic twist-
ing moments), that were predicted for normal operation of
the aircraft. In addition, simulated governing and power
transients which would require propeller pitch change excur-
sions during the various phases of aircraft operation were
demonstrated.

(2) Test Program

The endurance qualification and assurance testing of the X-19
was initially performed to the 50 hour level. Upon comple-
tion of the 50 hour qualification test and subsequent
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Table XI. Maximum composite stresses in X-19 propeller hub 162595.

I IFactr I
Structural I I of Gage Gage Location

Element Load, Stress psi Safety No. (See Figs. 139-142)

Barrel III 5733 + 21826 2.32 35 Bbl. outer surface

@ base; radial

IV 21467 + 19033 2.61 34 Ditto

VI 12357 + 28607 1.85 34 Ditto

Front Ring I III 6364 + 22189 2.47 69 Front ring inner sur-
face; circumferential

IV 1589 + 20026 2.82 69 Ditto

VI 2785 + 43948 1.28 63 Ditto

Rear Extension III 103 + 10864 5.24 43 Extension inner surface,
I a bbl; longitudinal

IV 101 + 9715 5.86 43 Ditto

VI 135 + 8155 6.98 41 ," outer It

Hub Shell ii1 -5144 + 9400 6.06 126 Shell outer surface;
Between Barrels fore-aft

IV 8535 + 11871 4.56 123 Shell outer surface;V itorquewise

VI 7139 + 38436 1.62 123 Shell outer surface;
torquewise

Summary; III 6364 + 22189 2.47 69 Front ring inner sur-minimum F..S., face; circumferential

entire
structure IV 21467 + 19033 2.61 34 Bbl. outer surface

@ base; radial

VI 2785 + 43948 2.15 63 Front ring inner sur-
I _face; circumferential
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I

Figure 150. Laboratory whirl test facility for qualifying the propeller-
nacelle assembly under simulated loading.
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inspection, the components were reassembled on the test stand

and assurance testing continued to a total of 150 hours.
Test cycles, of one hour duration each, were conducted. Each
cycle was performed according to the following schedule:

(a) Take-off and hover Condition - 8 minutes per cycle

With the nacelles at the hover tilt stop position and
the propeller at 1204 rpm, the pitch change system was
operated to cycle the blade angle as follows: The
counterweight angle was set equivalent to the take-off

=ondition (approx "ately 9' at 0,75R) and the pitch

change was oscillated + I at a frequency of 1.5 cycles
per second.

(b) Climb and Transitiorn Condition - 12 minutes per cycle

While tilting the nacelle down to the cruise stop posi-
tion, at a rate of 2.5 to 3 degrees per second, in steps

of approximately 15 to 20 degrees of tilt, the propeller
speed was gradually decreased to 957 cruise rpm. The
pitcn change system was operated so as to cycle the
blade angle at varying pitch change cycling rates, i.e.,
1.2, 0.9, 0.6, 0.3 cycles per second with the amplitude
of blade angle change compatible with the nacelle tilt

gain change schedule.

(c) Cruise Conditior. - 21 minutes per cycle

With the nacelle at the cruise stop position and the
propeller speed at 957 rpm, the pitch change system was
operated such as to cycle the blade angle at 0.33 cycles

per second with a blade angle change amplitude of
approximately ± 3',

(d) Descent and Transition Condition - 12 minutes per cycle

While tilting the nacelle up to the hover stop position,
at a rate of 2.5 to 3 degrees per second, in steps of

approximately 15 to 20 degrees of tilt, propeller rpm
was gradually increased from 957 to 1204 and the pitch
change system was operated to cycle blade angle in
reverse order of that defined in Section (c) above.

(e) High Speed Descent and Shutdown - 7 minutes per cycle

With the nacelle at the hover stop position and the

propeller speed at 1204 rpm, the pitch change system was
operated to cycle the blade angle as described in Sub

section (a) above.

264



(f) Single Piston Operation

During the course of the test, two one-hour cycles were
accomplished per 50 hour of endurance using single
piston operation; one hour using the front piston and
one hour using the rear piston.

(g) Data recorded

The following data were monitored and recorded -t the
start, twice during, and again at the end of, each 50
hour endurance period:

(1) Lube pump pressure.

(2) Lube oil temperature.

(3) Rate of pitch change.

(4) Control Response - (Blade angle input signal vs
actual blade angle vs time).

(5) Input control forces required to obtain pitch
change for each of the five conditions defined in
the test program.

(3) Results

Following completion of the initial fifty hours of qualifi-
cation testing, the propeller nacelle assembly was re-

assembled for continued testing under the "assurance" phase
of the program. This one hundred hours of assurance testing
was successfully completed, which concluded the total one
hundred and fifty hours of qualification and assurance
testing.

Satisfactory single piston operation after 50 hours and again
at the conclusion of 100 hours of assurance testing proved
the integrity of the dual piston system together with the
dual piston monitoring system.

At the completion of the test program all parts were visually
inspected, magnetic particle and/or Zyglo inspected, as
applicable, with no discrepancies reported.

c. Electric Motor Whirl Test of X-19 Propeller

The objective of this test was to obtain basic aerodynamic data and
to fulfill the propeller qualification requirements of specifi-
cation MIL-P-26366, on the Wright Field Electric Motor Whirl Test
Rig at Dayton, Ohio.
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The program covered aerodynamic thrust and horsepower calibration,
a flutter boundary test, and one hour over speed test and the 20
hour endurance test.

(1) Test Program

The test program run on the ASD-WPAFB whirl stand was as
follows:

(a) Thrust and horsepower calibration

Aerodynamic calibration of thrust and horsepower was
obtained at speeds of 600, 800, 1000, 1200, 1400 rpm to
a limit of 1400 horsepower, at the following blade
angles +80, +100, +120, +140, +160, +180, +200, +220,

+240. +27°, +300, as measured at the 0.75 radius.

(b) Flutter boundary survey

Although the propeller blades had been designed to be
flutter-free on the X-19 installation, a flutter
boundary survey was made to verify the design.

(c) Overspeed run and endurance

The original intention of this test was to meet the re-
quirements of the Curtiss Division X-19 Model Specifi-
cation which called for a one hour overspeed run at a
blade angle at which 730 horsepower would be absorbed
at a speed of 1491 rpm. This speed is 140% of maximum
continuous (transition) speed. However, at the recom-
mendation of ASD, the program was changed to meet the
interpretation of the requirements of MIL-P-26366 for
propeller qualification as follows:

Blade Angle
Horsepower RPM @ 42 in. Radius

One Hour Overspeed 1075 1491 19.50
20 Hour Endurance 1612 1230-1245 26.40

The rating for the onie hour overspeed was based on the
propeller absorbing normal rated propeller power (2153 x
0.5) at 120 percent of the maximum rated propeller rpm
(1204 x 1.20).

The rating for the endurance condition was based on
absorbing 150 percent of normal rated power possible
from the two X-19 engines (2150 x 2 x 1.5)/4 divided
among the four propellers at a blade angle setting at
which the propeller absorbs normal rated propeller power
at normal rated rpm (2150 x 0.5 @ 1204 rpm).
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For comparison, the operational ratings of the X-19
propellers are given below for the 13,660 lb gw A/C.

Take-off and Hover 860 HP @ 1204 rpm
Cruise 563 UP @ 957 rpm

(d) Instrumentation and Limitations

In order to define and monitor the magnitude of blade
stresses during the whirl testing, the propeller blades
were completely instrumented and this gaging is shown in
Table XII. The output of these gageE was recorded or
monitored throughout the major portion of the testing.
At the conclusion of the basic test program, the gages
were stripped and a short calibration run was made to
determine the aerodynamic interference effect, if any,
of the gage installation on the static thrust. No
change was noted. In order to assure safe operation of
the propeller, the following limitations were
established-

(1) Flexural Stress

(aa) Steel + 18,000 psi

(bb) Fiberglass + 4,000 psi

(2) Shear Stress

(aa) Steel + 6,000 psi

(bb) Fiberglass + 1,000 psi

(3) Propeller rpm not to exceed 1491.

(e) Blade stresses

Blade vibratory stresses were recorded during the aero-
dynamic calibration and endurance runs. A series of
stress surveys was conducted utilizing these gages and
typical maximum composite blade stress curves of the
results as shown in Figures 151, 152. From the results
of these surveys, a group of gages was selected and
monitored throughout the calibration and endura*e runs.

Maximum stresses encountere dere as follows:
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Table XII. Gage layout.

Location Blade
1 2 3

Gages radially mounted 0.5 chord,
Camber Plate

12" Sta. X -

18" Sta. X --

24" Sta. X --

30" Sta. (rectangular rosette)* X - X
36" Sta. X --

42" Sta. X X X
48" Sta. (rectangular rosette)* X - -

54" Sta. X X X
60" Sta. (rectangular rosette)* X - -

66" Sta. X - -

Gages radially mounted, Camber Plate
15" Sta. (2" from L.E.) - - X
15" Sta. (1" from T.E.) - - X
48" Sta. (2" from L.E.) - - X
54" Sta. (2" from L.E.) X X -

Shank gages mounted radially, 6.25" Sta.

00 (rectangular rosette)* X X X
220 (flexural gage) X -

450 (rectangular rosette)* X X X

670 (flexural gage) X -

900 (rectangular rosette)* X X X
1120 (flexural gage) X -

Gages transversely mounted 0.5 chord,
Thrust Plate

'8" Sta. X -
4" Sta. X X

30" Sta. - X
36" Sta. - - x
42" Sta. - - x

* The rectangular rosette gages were oriented such as to have the
center leg in the radial direction. The two remaining legs were
used as a shear bridge.
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Vibratory Blade Angle
Stress (Deg. at

± psi RPM 42" sta.)

Steel Shank

Radiai 7100 1300 5
Shear 1300 1290 24.4

Fiberglass

Radial 1900 1300 5
Transvcrse 800 840 40.2
Shear 300 1300 5

In summary, the blade vibratory stresses encountered
during the aerodynamic calibration and endurance running
were low with no indication of blade flutter or
resonance.

On the basis of theoretical analysis, indications of
resonance would have been expected at about 800 and 1350
RPM, see Figure 123, but these points were obscured by
the high damping of the system. Laboratory testing had
shown that thie internal material damping of these
fiberglass blades is ielatively high as compared with
the former metal blades. This has been evident in the
power requirements necessary to obtain adequate stress
levels in endurance testing and in preliminary logarithmic
decrement evaluation. Therefore, it had been contended
that these fiberglass blades would show significantly
lower response characteristics than had been experienced
in the past. However, examination of the stress curves,
Figures 151 and 152, could indicate that a resonance is
being approacheG at about 1200 - 1300 rpm.

It is to be noted that the plots represent a maximum
value, and a study of the stress records indicate that
the increase in stress at this speed is due to a beat
frequency which appears to be power sensitive. Further,
stress records taken in the 1300 to 1400 rpm range were
not speed sensitive as would be expected with a well
definrd resonance.

The X-19 Propeller with 13166AIOP3 design fiberglass
foam filled blades has successfully completed a whirl
test required in the X-19 Model Specification and the
overload requirements of MIL-P-26366. Structural
strength of the blade design was proven.
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(f) Propeller Inspection

Following the testing the propellers were shipped back
to the Curtiss Division where a detailed inspection was
made.

All steel and aluminum parts were magnafluxed and
zygloed. All parts passed Magnaflux and Zyglo inspec-
tion.

Visual examination showed all parts to be in excellent
condition except for the P/N 162563 blade bearings which
had false Brinell marks. The P/N 162843 block ý,ad
spline tooth markings on it from contact with che
piston. The P/N 13166AIOP3 design blaoes S/N P-50,
P-63, and P-91 were in ve-y good condition except for a
foam separation on blade S/N P-91. X-Ray examination
and visual Inspection showed no internal cracks in any
of the blades.

The bearings were inspected metallurgically, and found
to be within drawing specifications with a hardness o:
RC 62 and correct microstructure. The race curvatures
were measured and found to be within specifications.

The false Brinelling of the bearing races noted was the
result of subjecting the bearings to abnormal loads due
to high centrifugal loading and poor lubrication condi-
tions resulting from fixed pitch (no blade oscillation).
This condition is conducive to fretting corrosion of the
races as the contact area becomes dry.

d. IXP Gyroscopic Endurance

The gyroscopic rig was developed to provide a relatively simple
means of endurance-testing a full sized propeller at its design
vibratory and steady loads. In this testing the blade first order
aerodynamic loading is simulated by the lXP gyroscopic or inertia
loading of the precessing propeller.

(1) Rig Description

The gyroscopic test rig, Figure 153, is an assembly of an
R-2800 propeller driven engine, a special propeller mounting
provision and an electric motor/Reeves precessional drive
system, all of which is mounted on a circular track turn-
table. The turntable can be rotated at speed from 0 to
25 rpm. Adaptations have been made to the R-2800 nose sect-
ion to permit a direct or geared propeller drive depending
upon the rpm and horsepower requirements of the test prop-
eller. The entire propeller-engine assembly is enclosed in
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If

Figure 153. Curtiss gyroscopic test facility for qualifying full scale

propellers under simulated steady and vibratory loading.
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protective shroud, and a baffle ring is provided -i pro-
vide a somewhat better airflow through the propeller disk.

(2) Test Program

As previously stated the gyroscopic test is de'igned to
provide endurance testing of the assembled propeller;
(blades, hub, and propeller mounting), at the combined steady

and IXP vibrator, design loads. The centrifugal loads are
exactly simulated by driving the pr 2eller at its design rpm,
The steady static aerodynamic bending loads are simulated b;
adjusting blade angles, 4.e. power and thrust until the
desired blade stress level is obtained. The lXP vibratory

loading is generated by the inertia forces resulting from
the precession of rotation of the rig and the desired magni-
tude established by the vaiiation of rig speed. In the
course of the development of the X-19 blade design, several
propellers were run on the gyroscopic facility. With the
design lo..ds thus simulated the testing is continued for e

specified number of hours. The final test on us2.ng the
13166AI2P3 blades, is generally typical and is presented in
detail.

(a) X-19 Propeller Gyroscopic test

The 13166AI2P3 blades (S/N P154-6, P190-4 and P193-4),

were strain gaged similar to the layout shown in Table
XV, The propeller was then mounted on the test rig
which had been modified to incorporate the nacelle
housing so that the propeller mounting and drive would
duplicate the aircraft installation. Stress surveys

were then made at 300, 900, 1,000, 1100 ond 1204 pro-

peller rpm without rig precession, arid a 10, ii, and 12

rig rpm and 1204 propeller rpm. For this propeller,
the endurance condition was set up to duplicate the 30
ft/sec gust at a 50 knots transition for the 13,660 lbs.
a rcraft, see Table VIII, For this condition the mazi-
mum blade stresses were computed to be 4500 + 2900 psi.

The stress surveys s'owed that at the desired propeller
speed of 120L rpm, operational limitations of the

R-2800 direct drive engine caused abnormally low blade
engine angie operation which resulted i,• a blade steady
stress of approximatrly 10,000 psi. This war con-
siderably above the desired value, and an equivalent

condition was selected.

This is illustrated in Figuie 134 which shows the
desired point with respect to the material G-sign

Goodman curve, To maintain the same relationship to

this curve at i0,000 psi steady stress requires a
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I
1 = 50 knot - 30 ft/sec Gust.

Transition, 527 HP at 1065 RPM

2 = Accelerated Transition at
102 knots, 778 HP at 1065 RP21

3 = Pitch-up Transition at
50 knots, 550 HP at 1065 RPM

4 = Pitch-up Transition at

S- , - I ..

3o

3 O -Gyro-Test - initial - I
S3, \Camber, 200 HP at 1204 RPM

i Revised Gy-o

S --Thrust 1180 Hp at
,---Camber 1204 RPM

II

04 8 12 16 20

Steady Stress - 1000 psi

i Figure 154. "ý-19 blade modified Goodman diagram showing design and

S~gyroscopic test points.
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vibratory stress of + 2200 psi. Endurance was there-

fore set up for blade stress levels of 10,000 + 2200 psi,
psi, or 1204 propeller rpm, 12.4 rig rpm, and B4 2 =

120. Later analysis of the stress records indicated

actual stress levels were 10,000 + 2300 psi. See
Table XVI.

At the end of 3 hours running under these loads, a
small area of foam separation was suspected on blade
P-190, and at the completion of 4 hours this separation
was definitely confirmed and the testing was stopped
for blade repair. During this interim, it was

suggested that the propeller drive be changed from
direct drive to an 0.45 gear ratio which would improve

the operation of the R-2800 drive engine and permit a
better simulation of operating blade angle and steady

blade loading. These changes were made and the testing

resumed. Stress surveys were retaken and it was found
that the steady stress could be reduced to 7000 psi.

From the Goodman curves this required increasing the

vibratory stress level to + 2500 psi, Figure 154.
Endurance was continued at this load level for an addi-

tional 36.5 hours at which time the test was terminated

due to a separation of the foani in blade P-190.

(b) Results X-19 Gyro Test

The stresses measured on the X-19 propeller blade
during gyroscopic testing are given in Table XIII and

Figure 155. Following the testing the propeller was
completely disassembled and inspected. This inspection
showed that except for the foam separation on blade
P-190 and brinelling of the blade retention bearings

all parts were in good condition. The brinelling of

the bearing races is common in fixed pitch operation.
Based upon the 40.5 hours endurance, the propellers

were considered satisfactory for flight test purposes

provided that a blade inspection for foam separation
was made after each flight.

e. Half Systems Rig Testing

The half systems rig was designed and built primarily for devel-
opment and qualification testing of the X-19 power transmission

system., This test facility, Figure 156, duplicated the forward
half of the X-19 transmission system; engines, gearboxes,

shafting, and propeller-., The power which would normally be
delivered to the cear propcllers was absorbed by a water brake.

Although ri,,t Li'-endee az a propeliec test, per se, it did provid
exteasi'0e Pert.,-,ona experience under a wide range of horsepower,
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rpm, and propeller tilt angle which s~mulated aircraft operation.
Further, the half systems rig was in the open and was operated

year round under all normal weather conditions, and thus provided
a limited degree of environmental testing.

A typical load spectrum used during half system running is given
in Table XIV. Throughout the half systems testing the same set
of propellers was used, and they accumulated over 400 hours of
total running time, TI only blade repair necessary during that
operation was repair of leading edge erosion following a run made
during a heavy rain. A heavy urethane protection strip was

installed which prevented recurrence of that problem.

280



Table XIV. X-19 PFVT, 13,660 lb gross weight flight cycle.

Fifteen cycles of ten hours duration were concucted.
Each test cycle was pertc~rmed according to the

following schedule:

i I-Total Horsepower in
Time Prop Pro HP Water Brake Engine Tilt Transverse and Rear

min isec rpm N jNo.4 HPI rpm rpm IAngle Longitudinal Shafts

Take-Off Hover and Differential Pitch

R 16 0 1204 860 860 1280 4950 15,100 96.5° 3000 **
1 0 1204 1100 1100 1280 4953 15,100 96.50 3430

R* 3 0 1204 604 1100 1280 4950 15,100 96.50 2984
R* 3 0 1204 1100 604 1280 4950 15,100 96.5' 2984

5 0 1204 890 719 1280 4950 15,100 96.50 2889
5 0 1204 719 890, 1280[ 4950 15,1001 9b.50 2889

Up and Down Transition - Climb and Descent

3 0 1066 825 825 790 4400 13,400 73.00 2440
12 0 1066 767 767 786 4400113,400 50.0° 2320
15 0 1066 652 6521 1356 4400[13,400 3.00 2660

Maximum Speed Cruise

115041 01 9571 5631 5631 1126' 3940112 ,0001 3.00 1 2252

% Landing

301 0112041 8601 8601 1280i 4950115,100196.50 1 3000

Emergency - 1 Engine Out

1 31 0112041 7301 7301 7401 4950115,100196.5° b 2200
6001 0= 10 Hours

*Twice during each ten hour cycle, this point was set by holding 1250 HP

for 15 seconds on the right propeller and 863 HP on the left propeller
and vice versa.

Inspecticns were made as required during this qualification testing.

Since the engine torquemeter has an accuracy of + 4% of normal rated
power, (.04 x 1850 = 74 HP) it was almost impossible to guarantee the
input horsepower using the engine torquemeter. Therefore, the power
supplied to the E.C.G.B. was the total HF in the shafts plus the losses
due to Tee Box and E.C.G.B. efficiency.
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SECTION VI - NOMENCLATURE

A propeller angle of attack (*+a) degrees

b wing span ft

CD D
qS

C ~L
L qS

el~a. (L/qSb F)V68,

C airplane pitching moc.ent coefficient about (.g. - ?iqSf

C n - 6(1./qSbF)/()a"

C.P. control power
5OHP

Cp total power coefficient,, On3 D5

D propeller diameter, ftP

D drag, lb
V

J propeller advance ratio, Y

K neight control anticipator gain, rpm (prop)/deg

L rolling moment - qSCjb ft-lb

L lift - qSCL lb

L rolling moment due to lateral velocity, ft-lb/ft/secV

M pitching moment ft-lb

N yawing moment, ft-lb

height control anticipatcr signal

N rate ot change of yawing moment with lateral velocity,
v ft-lb/ft/sen

Q 2vn (550 HP) torque it-lb

- I pv 2 dynamic pressure lb/ft
2

S wing area ft
2

SAS stability augmentation system

STOL short take-off and landing

T thrust lb

V forward velocity, ftisec

W aircraft weight, lb

X moment arm ft

Y propeller yawing momert ft-lb

8 propeller blade angle degrees

aileron detlection (g5R al .) degrees

r rudder deflection degrees

9 power lever rotation degrees

*F front propeller tilt angle degrees

P density slug/ft
3

r height control anticipator wash-out time conatant, sec

Subscripts Propeller Numbering

F Front propeller System

R Rear propeller , Forward

1,2,3,4 Propeller number

W Wing



SECTION VI

AIRCRAFT CONTROL BY PROPELLER THRUST MODULATION

1. INTRODUCTION

The statement of work does not specifically cat' ior a discussion of the
thrust modulation technique. However it is felt this section would be in-
complete without such a description. For this reason, the introduction
will be devoted to an understanding of the contrAl mechanism as it relates
control inputs to propeller blade angle..

A block diagram of the control 3ystem is given in Figure 157. The system
behaves in the following manner, The pilot inserts various signals into
the coordinator by moving the control stick, tilting the nacelles and
changing throttle or the pilot manual trim. The aircraft reacts and sets

up various motions. The pitch and roll SAS sense respective angular rates
thereby adding new inputs to the coordinator. In general, the stick or
SAS m-tion feed additively into the coordinator; i.e., either stick cr SAS
are governed by Figures 158 or 160 with the following restrictions.
(1) SAS has 30% authority of the stick, (2) Sum of SAS and stick do not
exceed maximum y(i) shown in curves 158 and I`0. Changes in throttle or
power will be sensed as RPM changes in the govern-r system which in turn

alters the output of the coordinator collectively.

The output of the coordinator in response to pilot, SAS, or governor
action, is gi'7en by the following expression:

("pitch))1 ~( 2 ) (~R) [(3)(Soi= + rI (V (]p+tch ++ ( + +(S

+ Y( 3) (Vrol) + G (y)"y(4) +yI(5)+y (6)

1 "rolli 1 1 1 1

where-,

Spitch = stick position From FiK. 158 readout:- ' (l)., ,()
1 4

15pitch = pilot pitch trim From Fig. 159 readout: y2) .. (.. /2)

1 4
"Ypitch = SAS position From Fig. 158 readout: 01).," r(1)

1 4
SijI! = stick position From Fig. 160 readout: (3)... y.(3)

4 '4

"Vroll = SAS position From Fig., 160 rfadout: (3) (3)

Syaw = pedal position From Fig., 61 readout: ,( 4 ) .... (4)

1 4

OF = front tilt angle From Fig. 162 readout: y(5).... /(5)

1 4
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OF - front tilt angle From Fig. 163 readout: G(P)** . G(P)

OF - front tilt angle From Fig. 164 readout,: G(R) (R)
0 1 4

F - front tilt angle From Fig. 165 readout: G(y) .... G(Y)
1 4

A - collective shaft From Fig. 166 readout:. ( 6 ). )(6)
position 1 4

and

S - stick position percent

- pilot pitch trim position inches

w - SAS position percent

S- Collective shaft position inches

- Coordinator output position + "-" + y, 6 ) inches

xi - nacelle input position degrees

•ý75R - propeil•r biade angle (pitch) degrees

OF - front tilt angle degrees

Subscripts F

i l12,3,4 - relate to propeiler uno. a- f t-----03

Super'rripts -

M .... zdiit•n - ou.pue due to stick or SAS (pitch plane-

coordinator ozit•ut due to pilot manual trim buttonI> •ordin3r nutpuc due to stick or SAS - (roll olarine

y"( : zoordinator o,-uput uhe Lo --redalE - (yaw plane)

)r%'- coordi.rator outpuL due tc aito-trim scheduleI ) coirdinato:r ,.utput due to governor cnilscrzve motion

The Dut•,ut of the coordfnator is transmitted 1,y a push-pul linkage
through the fue'lage and wing to the nacelle input aru,, The gparitg of
this iigo is given in Figure 167. The nacelle c-.ntains a gain changer
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Figure 163. X-19, propeller pitch control gain as a function of tilt
angle (pitch-gain schedule).
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Figure 165. X-19, propeller yaw control gain as a function of tilt angle
(yaw-gain schedule).
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which is sensitive to tilt angle and the input ar; position. The output
of the nacelle is fed into the propeller servo control, from which a pro-
peller blade angle is generated.

The relationship between nacelle input arm, tilt angle and lade angle is
given in Figure 168. At a given flight condition, the propeller blade
an.e determines the torque absorption for a horsepower input.
Obviously, as the four propeller blade angles change, the aerodynamic
torque is altered and the system changes RPM. The governor senses this
change and automatically at1 justs the collective shaft position, /A , to
maintain fixed RPM. This alters the output of the coordinator sending an
equal stroke to each of the four propellers.

2. CONTROL POWERS.

The following are the design hover control powers.

The max:.mum angular accelerations quoted are for a W = 12,300 lb,

airplane:

Max. Control Power Max. Angular
Axis ft. lb. Acceleration, rad/sec2

Pitch + 27,000 + 0.68

Roll + 20,000 + 1.75

Yaw + 5,600 + 0.12

3. TIME CONSTANT FOR PROPELLER FORCES

Time response of hover pitch, roll or yaw control moments to pilot
commanded step control inputs are shown in Figure 169. Common factors
in pitch, roll and yaw systems are, (1) an assumed dead time due to
system linkage "slop", etc., of 0.2 seconds following control application,
and (2) the propeller blade angle actuator with a time constant of 0.085
seconds. The pitch and roll systems both include hydraulic boosters
which introduce a further system lag. It was not possible to determine
the boosters' time constant at the time of writing, so a representative
time constant of 0.1 seconds was assumed for both. There is no boost
in the yaw control Eystem.

Thrust growth or decay time following a propeller blade angle change was

computed to be 0.0065 seconds. This is based on the following: (1) hover
propeller speed of 819?nD; (2) 0.7R blade station; and (3) the lift
change is developed in two chord lengths of passage. This lag was
considered negligibly small and hence omitted. No SAS effects are
included in data given on Figure 169.
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Figure 168. X-19, propeller blace angle 13 .75R as a function of nacelle input
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4. PROPELLER POWER INCREMENTS DUE TO CONTROL APPLICATION

The power increrne,::s due to control deflections depends oi the coordina-
tor gal' i •e-ules. One can obtain this information from the introduc-
tion of -hs section. However a more convenient form is plotted in the
Figure r Section VII, 7.c. These figures show directly the stick-im-
posed p.o '*" 'lade angle increments (maximum) as a function of tilt
angl, I;in , .-,e curves, and specifying the recommended tilt-velocity
sche'l 2 .:e! i, sý.ady state conditions, density, RPM and center of
gravi:y ont ,t obtain the poyer increments due to control applications.

5. PONTR .OVPLING AND RESPONSE

Ae-oaynar.-- characte; .. i. s of the propeller control system are described
he.'e'n. The blade ang e t1 each of the four propellers as a function of
-of-: ol stick input is given on Figure 170. The blade angle change will
vI~ )rce compe:.ntsý ,er:ending on the operating J, A and wash conditions.

,ceps add ietori.:iy about the center of gravity, to obtain result-
ant c\ntrol momencs. In additicn, the aeredynamic control surfaces which
fu'nct ion in parallu with the propellers blade angle changes contribute
theiz ihare to the moments. Lzstly, the propeller power effects upon the
wings are added into the moments. The equations governing the forces are
given below for a wind axis system.

Roll XL= [(CLC %X + (CL C qS+ Q - )cosA+

(Q3 Q2 )cos AR + (YI - Y4 ) sin AF + (Y3 - Y2 )sin AR +

%t SbFq~r + C1 SbFq a + [(CsLW CL )XF +
a a I Cw4 F

(C LW2- C Lw )XR]j qS

2

Yaw IN = [(CD 4-CD)XF + (CD 3- CD2)XRIqS + (Q4 - Q1) sin AF +

(Q2 - Q3 )sin AR + (YI- Y4 )cos AF + (Y3 - Y2 )cos AR +

C SbFqa + Cn SbFq 8 r8a 8r

The pitching moment equation is omitted because of the symmetry in the
'ateral plane.

The means of eliminating the lateral coupling was as follows. Assume
that a roll signal is applied. Select some front blade angles according
to the relationships set forth in Figure 170. Then select a set of rear
blade angles in similar manner. Obtain the propeller forces which result
from the blade increments and solve in the yaw equation, by reiterating
on the rear propeller blade angle increments until yaw moncnt is zero.
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Then knowing the fore and aft blase angles which give zer', yaw, substitute

into the roll equation to determine the magnitudc of the roll moment.
Then select neo font blade angles ar.d repeat the process ,mtil the de-
sired range of tolling moment for zero yaw coupling is established. A

similar procedure is used to obtain the uncoupled yiw input. This proce-

dure wa- performed on a digital coriputer, where incoupled lateral-
directioial moments resulted, at the full slick defleLction. For partial

stick deflections a small coupling was permitted. The results are shown
in Figure 171 for the case of thk± yawing input. The. coupling at

0 = 200 and 400 is entirely due to the rudder induced roll, as the pro-

pellers are phased out. Yaw induccd by the roll control was insignifi-
cant.

The pitch coupling created by a roll or yaw signal i, the hover regime is

shown in Figure 172. For a full roll cr yaw signal, a negative pit,+

coupling of 2100 ft-lbs. is induce:-. This is less than ten percent of

the pitch control capability, it was teasoaed tha if a full roll signal

was inserted, the pilot might easily generate an inadvertent ten percent
pitch signal (one half inch of the stick motion) without realizing it.,

Consequently, this degree of pitch coupling was permitted.

Experience, in flying the X-'9, apparently has justified this philosophy.

No complaints were registered, concerning the control systems coLupling

characteristics. Further, it should be borne in mind that this discussion

relates to pure aerodynamic coupling. Any small alignment problems

existing in the region of flight experience could only have compounded
the problem.

Figures 173 and 174 have been included to illustrate the various forces

contributing to the uncoupled control inputs, The front propeller
has been held constant throughout the range of tilt angles as a matter of

convenience. Therefore these buildups do not conform direciy with the

system roll and yaw gains. However, thEv point up the unusual inter-

change of the forces as ý-iey contribute to a control moment while nulli-
fying the coupling moment.

6. PROPELLER CONTIBUTION TO STEI)Y STAI"E AIRCRAFT MOMENTS DURING

TRANS ITI ON

Figures 175, 176, 177, 178 show the aircraft :-,4tching moment characteris-
tics at pour popeiler tilt e'.,gles in tra.svi-on. Shown in these Figures

are the propeller and airframie contributions cc the total. These data

have been extracted fi, m the wind tunnel data of (41)

At each ti it angic shc,• l ti:e propellers are opcrating at fixed dxdvance
rtio a,, ctal ';•wer cc icient as given below:
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2.4
o =Pitch Coupling With Roll

o =Pitch Coupling With Yaw
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Figure 172. X-19, pitch coupling generated by roll or yaw control input;
V =0 fps.
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Figure 173. X-19, distribution of forces due to a roll control input
(maximum aileron).
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F° J Total Cp

20 .879 .199
40 .747 .202
60 .619 .236
80 .358 .236

The above C values are those required for equilibrium flight with an air-
craft weight of 12,300 lbs. It should be noted that the propeller contri-
butions to C were obtained merely by subtracting the "propellers off"
curves from mthe "power on" curves so that any propeller interfere-ice
effects on the airframe are included.

The effect of c.g. location is conventional, namely, the further forward
the c.g. the more stable the value of Cm. The effect of increasing power
at OF = 20°, 40', 60' is slightly destabilizing; at OF = 82.5": increas-
ing power is slightly stabilizing. No strictly theoretical estimates of
propeller contributions to pitching moments in transition were made.

7. CONTROL DEFICIENCIES AND ACTIONS

a. Increased Low Speed Roll Control

Flight test experience with a number of jet-lift VTOL types had
indicated a need for higher roll power, than was predicted by many
of the published low speed handling qualities criteria. Results
with these aircraft showed the need for providing an available
roll acceleration of approximately i.5 to 1.8 rad/sec2 . This

corresponds to maximum rolling moments of 17,100 and 20,600 ft-lb,
respectively, when referred to the X-19 airplane. The original
design roll control moment for the X-19 was specified at 13,000
ft-lb, yielding an available roll acceleration of 1.14 rad/sec 2 .

The need for higher roll power has been evidenced with jet-lift
VTOL's during lateral maneuvering at low airspeeds, and appears to
be a function of the airplane's roll response to lateral velocity
at large sideslip angles.

Data obtained by NASA Ames with the X-14A vehicle maneuvering in
the speed range from zero to 40 knots resulted in their recommend-
ing maxiumu roll acceleration capability of 1.8 rad/sec 2 for nor-
mal operation of fighter type aircraft. This Ames proposal seems
to have merit considering recent incidents with several of the
jet-lift vehicles which many investigators attribute, in part, to
their low roll control powers.
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Although the X-19 differs from most jet-lift VIOL types by vircue
of having positive dihedral effect, it appeared desirable to
provide X-19 with a roll acceleration capability of about 1,8
rad/sec 2 at low speeds pending sufficient operational flight ex-
perience. In addition, the aircraft would be capable of hovering
in 90 degree cross winds of 35 knots.

On the above basis it was decided to specify a maxiMum rc,1 con-
trol power of 20,000 ft. lb., yielding a maximum rol'l accleration
of 1.75 rad/sec2 for a 12,300 lb. airplane.

The lateral translational speed capability, based on the ,alue Cf
the derivative Lv obtained from early flight test data, wao,

estimated to be accomplished with approximately 75% :,f full roll
control. Later flight test data revealed however that L. was
somewhat higher than the earlier results had indicated, with the
result that full roll control was required to reach 35 knots
lateral velocity (with the roll SAS off), With the roll SAS on.
the lateral velocity capability is further reduced.

b. Yaw Control

The X-19's low hover yaw control power of 0.12 radiansisec2 has
been the subject of discussion since the design was first con-
ceived. The argument that the aircraft is unresponsive in yaw to
external disturbances (i.e. Nv a o) and thus requires little
control power to maintain a particular heading does have merit;
but nevertheless, precise pilot commanded heading changes are
difficult to effect. This is due to the low yaw dampl!Lg as well
as the low control power, The time constant in yaw (inertia/
damping) is on the order of 14 seconds, thus giving an accelera-
tion control rather than the preferred rate control. No
problems arose during flight testing that could be attributed
to the above deficiencies. It is recognized, however, that

most of the flight testing was conducted under favorable calm
air weather conditions.

While retaining the same tandem configuration there are a number
of ways in which to improve the yaw control system. However,
Pone of these measures had been enacted at the time of the pro'-
ect termination. They are-

(1) Increase propeller blade angle excursions at the expense
of running high powers on the nacelle gear-boxes. (Very
limited improvement)

(2) Increase forward and aft nacelle "toe-in" at the expense
of some lift loss and the necessity for a new transition
tilt schedule. (Very limited improvement).
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(3) Provide eifferontial f~re .,-d aft tilting of Zhc port a'd,

starbcard propellers. This ctloýo seems premising "od the
numerous analyses condu'ted confvr,,,ed that it is a icastibe
solution. It is indeed the onty on, wh"ch would comply
with the yaw angular displacement requirc-ient of AwIRD 408
and possibly that of MIL-H-8501A,

(4) Install a yaw damper. Thsi would result in: a lower tinme
constant in yaw (the desirable rate control system) as well

as compliance with the yaw damping requirement cf
AGARD 408 and MIL-H-8501'. The additioz; -, some fc:m of
yaw damper to the existi g system (C.P. = ..2 tad/sec2 )
would afford some improvement but a control power increase
as well is highly desirable.

c. Height Control

With the original X-19 height control system, propeller thrust
response to power lever commands was quite slow. This resulted
in pilot induced aircraft height oscillations during one partic-
ular flight, However, it never did produce overly adverse pilot
criticism. The slow response was a result of the thrust being
developed downstream of the significant time lag caused by the
engine propeller dynamics, Specifically, a pcwer lever conunand
resulted in the following sequence of events:

(i) 4 change in gas producer speed,

(2) A change in engine torque,

(3) A charge in propeller speed,

(4) A change in propeller blade angle (and hence thrust) through
the propeller speed governor.

The objective of the modified system was to provide faster thrust
response with a minimum of modification. This was achieved by
introducing aqn appropriate power lever signal downstream of the
engine-propeller lag, namely az the input to the propeller speed
govern•vr. This signal is in addition to the already existing

command to the engine. This addition to the system was called
an "antncipator".

A comprchensive fixed base analog simulation was performed, both
open and closed loop, to determine the optimuan characteristics
of the anticipator and hence the whole height control system.

The optimum anticipator transfer function was determined as:

R(S) K K S

Q(S) S + "/r
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w TI re ý t he antic ipato~r s i g n L

9 is the powor !e-ver -, os 4t i cn

K0 is the anticipat'r- gain w:iLh 1t'rw nt of

leg 'p c,.er ?\e r)

i s. tie a.L~cio~ator wash-out Li-'e con,-.tant,. The value ýýf
gover~isý r~ne -at-e ac w'oý.¾r the anLicipa*.or sign,,al is "wa-,hej-cut`
as a ~cfnof IiMQe

Th ,le o tn::s ;,ararzneters wrefound be:
35 r ),- ,'de,, nrl se i g, ý -,- 17 show, a co~i-

e mo-ifed v~t~n ithCiiý-ilov -vlue of K r ar 1 for
;Žinal "'ste-, """Or, Qbervat~on of the thrusr response

ww4, thc.ce aznticipa,'tr S Ct'in.zS, cn? :vqerthe~ reason for the
:-!-7ze o~erzihoot and! tn. r,ýýatiVely PC':r C1ZxmpiThg. It is etnpha-Isizd~ hac ý`;j5 sysitem ,gas described as "~optimum" by three

e:e~n~devaluation pilots on the f_`ight Cimulatoir, The hard-

16are :.zr'l nowcer -included the provi!.ion for independent adjust-

"U.oitunateiy, ks not known how precisely the flight hardware

ILE±',. dluplira:,zij t'he des-red characteristics.

The available Jata indicated that the modified system had the
desired charactEriiric, see flight test results section 12.

d. Miscellaneous

It is mentioned briefly that during the course of flight testing
the control stic-k break~out forces were changed on a number of
occasions at the pilot's request. These changes were felt to he
a part of the pilot's learning processes in the airplane and not
necessarily because of initial deficiencies.

8. PROPELLER POWER PENALTIES DUE TO CONTROL INPUT DEVIATION'S

A considerable effort was expended in the area of propeller controls and
alignment. Several tests were run in the tic-downr rig to establish
rigging and alignment procedures. The final technique which evolved re-
sulted in alignments between the coordinator, nacelle gain changer, and
propeller, to be accomplished at the cruise tilt angle. The reason for
this was that nacelle gain is large at the cruise tilt angle, see Figure
168. Therefore any alignment error introduced at this point would be
diminished at the higher tilt angles,
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Alignment tests; fell into two crtegories. Those involving control deflec-
tions, and those irivolv.iri, linkage at neutral control position. In gen-
eral, thle tests invelvir, c 'atrol deflections indicated few problems.
The oropeller-to~-stick gea-ring was relatively close to that required, at

all of the tilt angles tested. In cruise, it was found that control de-Iflections inducel no propeller blade angle -changes, thus indi'-ating t'-e
proper phaseout of the propeller. There were indications of small amounts
of sticking which appeared as scatter in the results, H.Dwever, the normal
vibrations of the aircraft in cperation presumably eliminated this char-
acteristic, as the pilot always had response to small stickP- deflections.

The second part of the testing appeared to yield less satisfactory results.
This testing consisted of determining the absolute blade angle on each pro-
peller for neutral stick position as a function of tilt angle. The require-
ments are that the two front and tile two rear blade angles of the propeller
aliways be equal in magnitude. However, the difference between the front
and rear propeller blade angles must equal the auto-trim schedule shown
in Figulre 214, It was found that the auto-trim schedule was reasonably
close at the hizh tilt angles, and was generally too negative at tilt
angles below 4 400. It was shown that this was the result of the
nacelle gain change linkage deviating from the design schedule shown in
Figure 168. This would have introduced some nose down moment. However,
it would not have been a control problem as the moment would have been
small. Also, this was correctable through the use of the pilot manual
trim button. it would however have represented a torque imbalance in the
cruise mode, requiring corrective action~ by the pilot, again through use
o~f the pilot manual trim button.

This test also indicated that left and right side propeller blade
angles were not symmetrical. At the high tilt angles this was a small
effect. However the lateral deviation of blade angle grew as cruise tilt
angle was approached. There was always a question as to how large this
deviation was. The test was accomplished without the benefit of normal
aircraft vibration. It was felt that some of the rough points would be
washed out under flight conditions. However, the general trend could
not be overlooked. For this reason, the lateral trim devices were
installed. These permitted the pilot to adjust lateral blade angle de-
viations by monitoring a differential torque indicator. once again, it
appeared that the nacelle gain changer might be at fault. Some studies
had been initiated to establish the alignment restrictions upon the gain
linkage. It was felt that a large portion of this problem could be
eliminated through more careful alignment procedures in this mechanism.

The significance of these problems can be reasonably demonstrated. First
of all there appEared to be few problerms associated with the control
deflections. As the te,,ted excursions were close to the design schedule,
one did not anticipate unusual deviations from the control power or the
loads throughout the system.
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The lateral deviation does not represent much of a problem at the high
tilt angles either, for the following reason. Any lateral deviation

which might exist would have been 'ensed by the pilot as a moment about
the center of gravity. Consequei. y, he would correct the motion through

a stick deviation. Thus the effect of either a lateral or longitudinal

'auto-trim) deviation is to shift the stick and pedals from their pre-
dv-termine pstion. The loads throughout would then be consistent with

th.' pr~di.;t•' .u: Tf for some reason the pilot requires a full stick
or pedal deflek t...,, it is possible the control moment would differ from
the piessc:..*bed value by the initial stick deviation. It is conceivable

that oeviations in the loads could result from this. However, in the
flyitg accomplished throughout the program, it was found that little
stick or pedal deviation actually occurred about an equilibrium position.

As this was the case, from hover to about OF = 600, it can be concluded
that alignment problems in this regime were of small proportions.

The region from about OF = 500 down to cruise was the one which generated
the most concern with respect to the control system deviation. As the

aircraft did not fly in this regime one cannot discuss "actual problems."
Instead some c)mments will be made concerning what the problems might
have been. It was pointed out that lateral and longitudinal deviations

in blade angle grew as the tilt angle approached cruise. It was further
pointed out that the pilot had available a lateral ;Lnd longitudinal trim
device for use in eliminating the uncalled for mon.ents. The policy for-
mulated for flight in this regime was to approach cautiously, so as not

to be caught unaware by an upsetting moment. This was a conservative
approach, inasmuch as the upsetting moments at the low tilt angles are

small. In crLise the pitch and roll moments are essentially zero.

Of greater concern was the torque distribution. It was recognized that
the pilut would concentrate on controlling his flight path. The torque

distribution would fall out as required, in order to meet this require-

ment. As the tilt angle approaches cruise, it was found that blade
angle deviations on the order of two degrees might be expected. This
was found from tie-down rig tests.

What this means in torque is as follows: Assume that one of the propel-
lers is two degrees higher in blade angle than the others. At interme-
diate cruise speeds, a propeller absorbs about 300 horsepower per degree

of blade angle. Assume further that th.2 cruise condition requires a
total of 1600 shaft horsepower. If properly alignedeach propeller would

absorb 400 horsepower. In this case however, the off propeller would

want to absorb 1000 horsepower. This cannot exist as the aerodynamic
torque would be greater than the engine torque. The system would slow
down, triggering the governor circuit, and the collective blade angle

would be decreased sufficiently to make the aerodynamic torque equal to

1600 horsepower at the governed R.P.M, In this case the final distribu-
tion of torque would consist of three propellers at 250 horsepower and

the overloade. propeller at 850 horsepower. For this particular align-
ment, the governor assures that the overloadod propeller absorbs three-

fourths, rather than all of the blade angle Dverload.
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It is for numbet., of this order that the longitudinal and latt-ral trim
switches were iistalled. The pilot is required to monitor his torque
distribution instruments. By proper manipulation of the trim switches he
can equalize the torque distribution and preserve the life of the trans-
mission components.

The major problem therefore, was that of torque distribution. The con-
tinued efforts to solve the nacelle gain change alignments would have
eliminated any concern for the control problem. Until that solution was
obtained however, the pilot would have been obligated to closely monitor
his instruments for torque equalization.
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