UNCLASSIFIED

AD NUMBER

AD826319

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; MAY 1967. Other requests shall be referred to Air Force Flight Dynamics Lab., Research and Technology Div., Wright-Patterson AFB, OH 45433.

AUTHORITY

AFSC/DOOS[WPAFB]Ltr, dtd 30 Jul 1991

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED,

.

1) WAD: R: 005-7

67-050161 AFFDL-TR-66-195-Volume I

)82631

FOR OFFICIAL USE ONLY

THE X-19 V/STOL TECHNOLOGY -A CRITICAL REVIEW

Wright Aeronautical Division Curtiss-Wright Corporation Wood-Ridge, New Jersey 07075

TECHNICAL REPORT AFFDL-TR-66-195 May 1967

Air Force Flight Dynamics Laboratory Research and Technology Division Air Force Systems Command Wright-Patterson Air Force Base, Ohio

Each transmittal of this document outside the agencies of the U.S. Government must have prior approval of the Air Force Flight Dynamics Laboratory, V/STOL Technology Division (FDV), Wright-Patterson Air Force Base, Ohio 45433.

出得

When Government drawings, specifications, cr other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractural obligations or notice on a specific document. AFFDL-TR-66-195-Volume I

and the second state and the second state and the second state and

5

Copy 5 8 of 100

THE X-19 V/STOL TECHNOLOGY -A CRITICAL REVIEW

Harold Fluk "et al"

Each transmittal of this document outside the agencies of the U.S. Government must have price approval of the Air Force Flight Dynamics Laboratory, V/STOL Technology Division (FDV), Wright-Patterson Air Force Base, Ohio 45433.

FOREWORD

The purpose of this report is to present a critical review and summary of the V/STOL technology involved in the development, component testing, ground testing, and flight testing of the X-19 aircraft. It is the final report of work accomplished by Curtiss-Wright Corporation, VTOL Systems Division, located at Caldwell, New Jersey, under Contract Number AF 33(615)-3940. The contract was administered under the direction of Captain R. M. Berg and Mr. B. Lindenbaum, FDV, Air Force Flight Dynamics Laboratory, (RTD), Wright-Patterson AFB, Ohio.

The following Curtiss-Wright Corporation personnel made the principal contributions to this report:

- H. V. Borst, Chief Engineer Technical Services
- W. F. Meyer, Chief of Structures
- W. Amatt, Mechanical Systems Group Leader Structures
- H. Fluk, Flight Loads Group Leader Aerodynamics
- J. H. Barker, Stability and Control Group Leader Aerodynamics
- E. L. Hassell, X-19 Performance Group Leader Aerodynamics
- E. J. Tursich, Project Engineer, P.D. Aerodynamics

Because of the breadth of material required to be treated by the contract statement of work, each of the thirteen sections has been treated as an entity. Thus, each section has its own nomenclature, text, figures, and references. In some instances, nomenclature has been written into the text for convenience. Otherwise, it appears on the reverse side of the section divider page. The separation of nomenclature by section is intended to prevent confusion over the duplicity of meanings attached to given symbols by the different disciplines treated in the report.

It is to be noted that some of the material contained in this report is proprietary to Curtiss-Wright and is so stamped. The report is releasable only to agencies of the United States Government. Release of the report to any other organizations or individuals must have the approval of Curtiss-Wright. Information in this report is embargoed under the Department of State International Traffic In Arms Regulations. This report, or information extracted from it, may be released to foreign governments by departments or agencies of the U.S. Government subject to approval of The Air Force Flight Dynamics Laboratory, or higher authority within the Department of the Air Force. Private individuals or firms require a Department of State export license.

Publication of this report does not constitute Air Force approval of the reports findings or conclusions. It is published only for the exchange and stimulation of ideas.

WILLIAM E. LAMAR

Deputy Director Air Force Flight Dynamics Laboratory

ABSTRACT

This report contains a condensed description of the X-19 V/STOL Technole The broad categories discussed, include in Section I, a review of the developments leading up to the X-19 program. Sections II through VI are devoted entirely to the propellers, and the considerations involved in design. The Radial Force principle is postulated in Section II. Interference effects on the wings due to the propellers are discussed in Section III. The propeller aerodynamic design in hover and cruise is presented in Section IV. Section V is devoted to the structure and control mechanisms of the propeller. Section VI relates to the use of propellers as an airplane control device. The tandem wing principle is discussed in Section VII covering stability, control, and drag. Section VIII is devoted solely to Ground Effects. The sizable wind tunnel research activity leading up to the X-19 is presented in Section IX. The structural loads in hover, transition and cruise are discussed in Section X. Section XI presents information pertinent to landing procedures in hover or cruise in the event of power failure. A summary of the flight test program is given in Section XII, including aircraft and hardware performance characteristics. Finally, Section XIII is devoted to a general discussion and assessment of the aircraft's unorthodox features.

TABLE OF CONTENTS

.

SECTION		PAGE
I	REVIEW OF DEVELOPMENTS LEADING TO THE X-19 PROGRAM 1. REPORT OBJECTIVE 2. BACKGROUND HISTORY 3. X-100 AIRPLANE 4. M-200 OPERATIONAL AIRCRAFT a. Initial Design Objectives (1) Tandem Wing Design Considerations (2) Turbo-Frop System (3) Selection of Hover Disk Loading (4) Selection of Fixed Wing System (5) Selection of Tandem Wing Four Propeller Configuration 5. TRI-SERVICE X-19 (CM NODEL 200 LIMENSIONS	1 1 2 6 6 8 8 9 9
	AND GENERAL DATA)	17
	REFERENCES	17
II	RADIAL FORCE PRINCIPLE	19
	1. INTRODUCTION 2. THEORY AND METHOD FOR COMPUTING PROPERTIES	19
	FORCES	19
	a. General	19
	 b. Theory of Normal Force and Yawing Moment 3. APPLICATION OF PROPELLER RADIAL LIFT TO V/STOL AIRCRAFT 	25 35
	a. General	35
	b. Application in Cruise	37
	c. Application in Transition	38
	d. Summary A CORDELATION OF CALCULATED AND TEST DESULTS	43
	REFERENCES	43 51
III	WING-PROPELLER INTERFERENCE EFFECTS	53
	1. INTRODUCTION	53
	2. LIFT LOSS IN HOVER	53
	a. Theory	53
	b. Download Test Data	54
	3. PERIODIC FORCES ON WINGS AND PROPELLERS IN HOVER	73
	4. SUMMARY OF FORCES ON WINGS AND PROPELLERS	74
	a. Wings and Propellers out of Ground Effect	74
	b. Wings and Propellers in Ground Effect	97
	c. Net Forces in and out of Ground Effect	116
	5. FLAP DEFLECTION INTERFERENCE EFFECTS IN TRANSITION	120
	REFERENCES	121

,

TABLE OF CONTENTS (CONT'D)

)

SECTION		PAGE
IV	PROPELLER AERODYNAMIC DESIGN	123
	1. BLADE GEOMETRIC CHARACTERISTICS	123
	2. AERODYNAMIC DESIGN	130
	3. HOVER PERFORMANCE AS MEASURED AND CALCULATED	131
	4. CRUISE PERFORMANCE MAPS	138
	5. EFFECTS OF TIP SPEED AND BLADE TWIST IN HOVER	138
	AND CRUISE	150
	6. HOVER POWER HISTOGRAMS	149
	REFERENCES	155
v	PROPELLER STRUCTURE AND CONTROL MECHANISM	157
	1. MECHANICAL DESIGN INCLUDING PHILOSOPHY,	157
	RELIABILITY, WEIGHT AND MAINTENANCE	
	a. General Description	157
	b. Component Descriptions	157
	c. Blade Maintenance	162
	d. Reliability	167
	e. Propeller Weight	168
	2. BLADE STRUCTURAL DESIGN	168
	a. General	168
	b. Blade Design	171
	c. Design Details - 13166A10P3	190
	d. Design Details - 13166A12P3 Design	199
	e. Structural Analysis	199
	f. Full Scale Blade Testing	210
	3. PROPELLER DESIGN LOADING THEORY AND TEST	228
	a. General	228
	D. Theoretical Propeller Loading	228
	c. Propeller lest Loads	233
	4. WEIGHI COMPARISON OF X-19 FIBERGLASS PROPELLER	238
	a. Blade weight Studies	238
	5 PROPERT ED CERTICAL PROPERTYC	238
	J. PROFELLER SIRUCIURAL PROBLEMS	242
	a. Diades	242
	b. blade Shank	243
	d. Blade Bitch Control	245
	a. Braneller Veusing	245
	6 PROPELLER INDUCED LOADS	246
	a Theoretical Lorda	247
	a. Incolectical Loads b. Airframe Test Regults	247
	7. PROPELLER TESTING	248
	a. Propeller Hub Staric Test	254
	b. Laboratory Whirl Test	204
	c. Electric Motor Whirl Test of X-19 Propellar	23/
	d. 1 X P Gyroscopic Endurance	20)
	e. Half Systems Rig Testing	212
	REFERENCES	2/0 020
		202

TABLE OF CONTENTS (CONT'D)

SECTION		PAGE
VI	AIRCRAFT CONTROL BY PROPELLER THRUST MODULATION	283
	1. INTRODUCTION	283
	2. CONTROL POWERS	300
	3. TIME CONSTANT FOR PROPELLEY. FORCES	296
	4. PROPELLER POWER INCREMENTS DUE TO CONTROL APPLICATION	299
	5. CONTROL COUPLING AND RESPONSE	299
	6. PROPELLER CONTRIBUTION TO CENTER OF GRAVITY MOMENTS - TRANSITION	301
	7. CONTROL DEFICIENCIES AND ACTIONS	310
	8. PROPELLER POWER PENALTIES DUE TO CONTROL INPUT DEVIATIONS	313
	REFERENCES	318
VII	TANDEM WING AIRPLANE	319
	1. FLIGHT CONTROL OF TANDEM WING AIRCRAFT	319
	a. Transition Flight Regime	319
	(1) Introduction	319
	(2) Assumptions	319
	(3) Stability	319
	(4) Control and Control Systems	321
	b. Uruise Flight Regime	335
	(1) Introduction	335
	(2) Assumptions	335
	(3) Stability	335
	(4) Controls and Control Systems	34.9
	(5) Maneuvering Flight	351
	2. AERODYNAMIC CHARACTERISTICS (DRAG) OF TANDEM- WING SYSTEM	360
	a. Basic Data	360
	b. Drag Estimate	361
	c. Propellers off - Incompressible Profile Drag	361
	d. Effects of Lift, Power, and Compressibility	361
	e. Lift/Drag Ratio	366
	3. TEST AND THEORY COMPARISON OF AERODYNAMIC AND FLIGHT CONTROL CHARACTERISTICS	366
	a. Aerodynamic	366
	b. Flight Control	370
	4. AIRCRAFT BEPAVIOR IN GROUND EFFECT	370
	5. FLIGHT CONTROL DEFICIENCIES	370
	a. Transition Flight Regime	370
	(1) Introduction	370
	(2) Stability	371
	(3) Control	372
	D. Cruise Flight Regime	372
	(1) Introduction	372

.

and the second second

SECTION		PAGE
	(2) Stability	373
	(3) Control	375
	6. AVAILABLE C.G. RANGE	376
	7. TILT, FLAP AND BLADE ANGLE PHASING	378
	a. Nacelle Tilt Phasing	378
	b. Flap and Collective Aileron Phasing	379
	c. Propeller Blade Angle Phasing	381
	(1) Auto Trim Schedule	381
	2) Pitcl. Gain Schedule	381
	(ό) Roll Gain Schedule	386
	(4) Yaw Gain Schedule	386
	8. CONTROL MIXING	386
	REFERENCES	389
VIII	GROUND EFFECTS	391
	1. INTRODUCTION	391
	2. GROUND EFFECTS UPON STABILITY AND CONTROL	391
	3. FLOW FIELD RECIRCULATION - ENGINE INLET	393
	4. HOVER POWER REQUIREMENT WITH GROUND HEIGHT	394
	REFERENCES	398
IX	WIND TUNNEL TESTS	399
	1. INTRODUCTION	399
	2. TESTS IN SUPPORT OF X-19 AND X-100 AIRCRAFT	399
	a. General	399
	b. Test Models	400
	c. Test Uses of Models	400
	d. Model Variations	401
	e. Wind Tunnel Test Facilities Used	402
	f. Other Applicable Test Programs	427
	3. TESTS IN SUPPORT OF ADVANCED TANDEM WING CONCEPTS	431
	4. TRANSITION WIND TUNNEL WALL CORRECTIONS	432
	5. CORRECTIONS OF MODEL PROPELLERS TO FULL	433
	SCALE RESULTS	
	REFERENCES	444
х	STRUCTURAL LOADS	447
	1. INTRODUCTION	447
	2. CRUISE LOADS	447
	a. General	447
	b. Propeller-off Distributions	447
	c. Effects of Power	448
	d. Effects of Mach Number	448
	e. Effects of Reynolds Number	463
	f. Effects of Aeroelastic Twist	463
	g. Drag Distribution	464
	h. Flight Envelope	465

TABLE OF CONTENTS (CONT'D)

SECTION			PAGE
	i	i. Symmetrical Gust Envelopes	465
		j. Balance Equations	467
	1	k. Load Breakdowns	471
	1	1. Spanwise Lift Distribution	471
	3. H	HOVER LOADS	481
	ć	a. General	481
	ł	b. Symmetrical Trimmed Thrusts	481
	Ċ	c. Trim Button	483
	c	d. Throttle and Control Excursions	488
	e	e. Design Criteria	488
	4. 1	TRANSITION LOADS	489
	ź	a. General	489
	ł	b. Airplane Characteristics	489
	C	c. Design Control Loads Criteria	495
	C	d. Design Maneuvers and Flight Envelopes	505
		e. Design Gust Loads Criteria	505
	5. 1	DESIGN GROUND LOADS CRITERIA	514
	REFE	RENCES	212
XI	POWER	R-OFF CONSIDERATIONS	517
	1. 5	SAFE OPERATING ENVELOPE	517
	2. H	ENGINE FAILURE CONSIDERATIONS	517
	3. I	POWER-OFF CHARACTERISTICS VS SPEED AND ALTITUDE (WIND MILLING)	519
	4. <i>I</i>	AUTOROTATIVE CHARACTERISTICS	529
XII	FLIG	HT TEST SUMMARY	535
	1. 1	INTRODUCTION	535
	2. H	HISTORY OF X-19 TEST FLIGHTS	536
	á	a. Historical Progression	536
	ł	b. Simplified Flight Test Schedule at Curtiss Wright	536
	c	c. Flight Test Schedule at NAFEC	545
	c	d. Aircraft used in Flight Tests	548
	3. /	AIRCRAFT CONFIGURATION VS TIME	564
	2	a. Aircraft at Beginning of Flight No. 8	564
	ł	b. Configuration Changes During Test Program	565
	c	c. Configuration at Flight No. 50	571
	Ċ	d. Flight Test Instrumentation Thru Flight No. 37	571
	e	e. Flight Test Instrumentation at NAFEC	571
	4. 4	AIRCRAFT PERFORMANCE RESULTS USING STEADY	575
	5	STATE DATA	
	é	a. Overall Airplane Performance From Flight Tests	575
	ł	b. Hovering Performance	575
		c. Conversion/Reconversion Flight Maneuvers	575
		d. Power Required	575
		•	_

5

and the second second

TABLE OF CONTENTS (CONT'D)

SECTION	
---------	--

		e. Thrust-Power Download	582	
		f. Ground Effect	583	
		g. System Thrust Response to Power Excursions	587	
		h. Fuel Consumption	587	
	5.	AIRCRAFT STABILITY AND CONTROL	592	
		a. Initial Hover Stability and Control Results	592	
		b. Pilot Operation Rating	592	
		c. Flight Tests With S.A.S. Inoperative	592	
		d. STOL Operations	602	
	REF	ERENCES	603	
XIII	ASSESSMENT OF RESULTS AND CONCLUSIONS			
	1.	INTRODUCTION	605	
	2.	OVERALL X-19 CONCEPT AND ITS DERIVATION	605	
		a. Radial Lift Propellers	605	
		b. Tilt Propeller, Fixed Wing Configuration	606	
		c. Tandem Wing Configuration	608	
		d. Control Power	612	
		e. Transmission Design Philosophy	613	
		f. Gust Sensitivity	615	
		g. Propeller Control Problems	615	
	3.	OPERATIONAL FLIGHT CONSIDERATIONS	617	
		a. Engine-out Safety	617	
		b. Cruise Stall Characteristics	617	

FIGURE	NO.	PAGE
39	X-19, thrust coefficient as a function of thrust axis angle of attack.	82
40	Propeller 156109, thrust coefficient as a function of power parameter.	84
41	Propeller 156109, thrust coefficient as a function of power parameter.	85
42	X-19, variation of front propeller lift and thrust coefficient with thrust axis angle of attack.	86
43	X-19, variation of rear propeller lift and thrust coefficient with thrust axis angle of attack.	87
44	X-19, variation of front wing lift coefficient with nacelle tilt angle.	89
45	X-19, variation of rear wing lift coefficient with nacelle tilt angle.	90
46	X-19, variation of front wing drag coefficient with nacelle tilt angle.	91
47	X-19, variation of rear wing drag coefficient with racelle tilt angle.	92
48	X-19, incremental front wing lift coefficient, due to front propeller wash, with variation in thrust axis angle of attack.	93
49	X-19, incremental rear wing lift coefficient, due to all wash, with variation in rear thrust axis angle of attack.	94
50	X-19, incremental front wing thrust coefficient, due to front propeller wash, with variation in thrust axis angle of attack.	95
51	X-19, incremental rear wing thrust coefficient, due to all wash, with variation in rear thrust axis angle of attack.	96
52	X-19, installed rear wing lift curve.	98
53	X-19, installed rear wing spanwise lift dis- tribution, propellers off.	99
54	X-19, installed rear wing spanwise lift dis- tribution.	100
55	X-19, installed rear wing spanwise lift dis- tribution.	101
56	X-19, installed rear wing spanwise lift dis- tribution.	102
57	X-19, installed rear wing lift curve.	103
58	X-19, installed rear wing spanwise lift dis- tribution, propellers off.	104
59	X-19, installed rear wing spanwise lift dis- tribution.	105
60	X-19, installed rear wing spanwise lift dis- tribution.	106

ł

.

ę.

FIGURE	NO.	PAGE
61	X-19, installed rear wing spanwise lift dis- tribution	107
62	X-19, installed rear wing lift curve.	108
63	X-19, installed rear wing spanwise lift dis- tribution.	109
64	X-19, installed rear wing lift curve.	110
65	X-19, installed rear wing spanwise lift dis- tribution.	111
66	X-19, front propeller thrust coefficient.	112
67	X-19, rear propeller thrust coefficient.	113
68	X-19, front propeller power coefficient.	114
69	X-19, rear propeller power coefficient	115
70	X-19, airplane lift characteristics, ground effects.	117
71	X-19, airplane drag characteristics, ground effects.	118
72	X-19, airplane moment characteristics, ground effects; c.g. @ 42.8% lift chord and W.L. 123.8 inches.	119
	SECTION IV	123
73	Blade characteristics of the Curtiss-Wright X-100 propeller 3(X100188) blade; Dia. = 10	124
74	Blade characteristics of the X-19 propeller $3(130168)$ blade; Dia. = 13 ft., AF = 168,	125
75	Power loading as a function of disk loading on a static isolated propeller; density ratio $\sigma \approx 1.0$.	126
76	Typical drag polar as a function of design Cr.	128
77	Blade angle and thrust coefficient as a function of power coefficient, static per-	132
78	Thrust coefficient as a function of power coefficient, static whirl test dated 7/19/60, WPAFB whirl rig No. 2; Model 138592/10188A2F, Dia. = 10 ft., AF = 188, IC _{Li} = 0.068; 1000 borsepower NACA 66 section Series	133
79	Blade angle as a function of power coefficient, static whirl test dated 7/9/60, WPAFB whirl rig No. 2; Model 138542/10188A2F, Dia. = 10 ft., AF = 188, IC ₁ = 0.068: 1000 horsepower.	134
80	X-19 thrust coefficient as a function of power coefficient, static, Wright Field whirl rig No. 2; 3(1368A10P3), Dia. = 13 ft., AF = 168, IC _{Li} = 0.057, NACA 64 Series sections, 1000 orsepower.	135

FIGURE NO. PAGE 81 X-19, propeller blade angle as a function of 133 power coefficient, static, Wright Field Whirl Rig. No. 2; 3(13168A10P3), Dia. = 13 ft. AF = 168, $IC_{L_i} = 0.057$, NACA 64 Series sections, 1000 horsepower. 82 X-19, Figure of Merit as a function of power 137 coefficient, static, Wright Field Whirl Rig. No. 2; 3 (13168A10P3), Dia. = 13 ft., AF = 168, IC_{L_1} = 0.057, NACA 64 series sections, 1000 horsepower. 139 X-19, thrust coefficient versus power co-83 efficient, static; 3(13168A10P3) blade, Curtiss Wright Whirl Test Rig. 140 84 X-19, propeller blade angle versus power coefficient, static; 3(13168A10P3) blade, Curtiss Wright Whirl Test Rig. 141 85 Propeller cruise efficiency map, Curtiss-Wright X-100 propeller, 3(X100188); AF = 188 Dia. = 10 ft., IC_{L_i} = 0.057, forward Mach No. 0.3 or less. 142 86 X-19, propeller cruise efficiency map, 3(13168A10P3) blade; AF = 168, Dia. = 13 ft., $IC_{L_1} = 0.057$, forward Mach No. = 0.3 or less. 143 87 X-19, propeller cruise efficiency map, 3(13168A10P3) blade; AF = 168, Dia. = 13 ft., ICLi = 0.057, forward Mach No. = 0.4. 88 X-19, 144 propeller cruise efficiency map, 3(13168A10P3) blade; AF = 168, Dia. = 13 ft., ICL_i = 0,057, forward Mach No. = 0.5. 89 X-19, propeller cruise efficiency map, 145 3(13168A10P3) blade; AF = 168, Dia. = 13 ft., $IC_{L_i} = 0.057$, forward Mach No. = 0.6. X-19, propeller cruise efficiency map, 146 90 3(13168A10P3) blade; AF = 168, Dia. = 13 ft., $IC_{L_i} = 0.057$, forward Mach No. = 0.7. X-19, propeller cruise efficiency map, 147 91 3(13168A10P3) blade; AF = 168, Dia. = 13 ft., IC_{Li} = 0.057, forward Mach No. 0.8. 92 148 Blade characteristics of the Curtiss-Wright 109652 propeller blade; Dia. = 15 ft., AF = 115, IC_{L_1} = 0.5, NACA 65 section series. Figure of merit of the Curtiss-Wright 109652 150 93 propeller blade as a function of power coefficient measured on Curtiss-Wright Test Rig. 151 94 Effect of blade retwist on the Figure of Merit; 3(109652) blade, 900 #nD, three blades. 152 95 X-19, histogram of transverse shaft loading flight No. 31, 12/23/64.

FIGURE NO.		PAGE
96	X-19 histogram of transverse shaft loading, flight No. 35, 1/7/65.	153
	SECTION V	157
97	X-19, schematic assembly of the blade pitch change mechanism.	158
98	Blade schematic illustrating the typical con- struction of the lightweight fiberglass blade.	163
99	Fiberglass blade repair chart illustrating the type of repair that can be performed in the field.	165
100	X-19, experimental program as scheduled for the airplane, subsystems and components.	169
101	Strength to weight comparison between fiberglass	172
102	Fiberglass propeller blades which have been built and tested. From left to right: 10'-10" diameter used on X-100 aircraft, 13'-0" di- ameter used on X-19 aircraft, 13'-6" diameter used in static thrust testing, 13'-6" de- signed/for T-64 engine tested to 4000 HP, 15'-6" designed for T-64 tested to 4400 HP.	173
103	Sectioned fiberglass propeller blade showing the steel shank, fiberglass shell, and foam filler.	174
104	Epoxy fiberglass, ultimate tensile stress and tensile modulus, variation with temperature, l layer Stanpreg VET 181 per CPS 5037, 3 layers Stanpreg VET 43 per CPS 5038, 17 ply thickness: ASTM: D638-60T.	175
105	Epoxy fiberglass, ultimate flexural stress and modulus variation with temperature, 1 layer Stanpreg VET 181 per CPS 5037, 3 layers Stanpreg VET 43 per CPS 5038, 17 ply thickness: ASTM: D790-59T	176
106	Epoxy fiberglass, typical tensile stress strain curve longitudinal direction, 1 layer Stanpreg VET 181 per CPS 5037, 3 layers Stanpreg VET 43 per CPS 5038, 17 ply thick- ness: ASTM: D638-60T.	177
107	Epoxy fiberglass, tensile stress rupture, standard room temperature, standard humidity and 100% humidity, 1 layer Stanpreg VET 181 per CPS 5037, 3 layers Stanpreg VET 43 per CPS 5038, 17 ply thickness: ASTM: D674-56.	178
108	Epoxy fiberglass, creep rupture curve longi- tudinal tension, tensile stress = 75000 psi. l layer Stanpreg VET 181 per CPS 5037, 3 layers Stanpreg VET 43 per CPS 5038, 17 ply thickness: ASTM: 674-56.	179

۶.

.

FICURE	NO.	PAGE
109	Epoxy figerblass, interlaminar shear vari- ation with temperature, 1 layer Stanpreg VET 181 per CPS 5037, 3 layers Stanpreg VET 43 per CPS 5038, 17 ply thickness: Fed. Test Method Std. 406.	180
110	Epoxy fiberglass, flexural fatigue S-N curves for smooth and notched longitudinal specimens and smooth transverse specimens at room tem- perature, 1 layer Stanpreg VET 181 per CPS 5037, 3 layers Stanpreg VET 43 per CPS 5038, 17 ply thickness: ASTM: D671-517.	181
111	Epoxy fiberglass, modified Goodman diagram with longitudinal and transverse directions, 1 layer Stanpreg VET 181 per CPS 5037, 3 layers Stanpreg VET 43 per CPS 5038, 17 ply thickness : ASTM: D671-51T.	182
112	Epoxy fiberglass, design modified Goodman diagram as established for propeller blades, 1 layer Stanpreg VET 181 per CPS 5037, 3 layers Stanpreg VET 43 per CPS 5038.	183
113	Comparative erosion resistance of various	184
114	The effect of immersion in various solvents for 7 days on the ultimate tensile strength of epoxy fiberglass with and without urethane	185
115	The strength characteristics of the various adhesives selected for use in the manufacture of fiberglass reinforced plastic blades.	186
116	Typical properties of foam plastic filler as used in the fiberglass form plastic blade. Polyether base - freon blown, $A = 7.0$ lbs per ft ³ , $B = 5.0$ lb per ft ³ .	188
117	Steel shank as designed for the 13166A10P3 blade. AMS 6415 vacuum melt steel, RC 42-46.	189
118	Typical shank end cracks which occurred during fabrication and which were attributed to hydro- gen embrittlement.	191
119	The 13166A10P3 blade steady stress distribution for a pitching maneuver during transition flight: 927HP, 1065 rpm, 80 knots,	203
120	The 13166A10P3 blade vibratory stress distri- bution for a pitching maneuver during transition flight: $927HP$, 1065 rpm, V = 80 knots.	204
121	Comparison of the calculated and measured steady streas dig ribution around the 11 in. station in the 13166A10P3 blade. Centrifugal load = 46,000 lb, bending moment = 24000 in. lb.	207

.**

Ś

FIGURE	NO.	PAGF
122	Comparison of the calculated and measured vibratory stress distribution around the 11 in. station on the 13166A10P3 blade. Bending moment $= \pm 66,000$ in -lbs	208
123	Calculated fixed root resonant frequencies of the 13166A10P3 fiberglass propeller blade.	209
124	Laboratory test set up for endurance testing propeller blades in the free-free mode.	211
125	Typical blade failure obtained in free-free endurance testing. This blade completed 10 X 10^6 cycles at each of \pm 8000, \pm 9000, \pm 10,000, and \pm 11,000 psi. Failure occurred at 1.2 X 10^6 cycles at the \pm 12,000 psi level.	214
126	Laboratory test set up for fixed root endurance testing of propeller blades	216
127	Typical blade fatigue failure obtained during fixed root endurance testing of the X-19 propeller blade.	217
128	Laboratory test set up for free-free torsion	218
129	Fatigue failure on blade P4 ² -6 after 1.0 X 10 ⁶ cycles of torsional endurance testing on blade P4 ² -6	220
130	Laboratory test set up for static tension test of the X-19 propeller unbonded blade shank	222
131	X-19, propeller unbonded blade shank failure.	223
132	Blade retention, laboratory fatigue test set up. This facility simultaneously applies centrifugal force, steady bending moment, and vibratory bending moment	224
133	Typical fatigue failure of the X-19 blade shank.	227
134	Basic velocity components at the disk of	229
135	Comparison of the propeller yawing and pitching moment coefficients at flow angularities close to 90°, and at low advance ratios $\beta_{250} = 15^{\circ}$.	235
136	Comparison of propeller normal and side force coefficients at flow angularities	236
137	Comparison of calculated and measured blade vibratory shank stress for equilibrium transition flight of the X-19 aircraft.	237

.

.

FICURE	NO.	PACE
138	Relative blade weight comparison considering various materials for the design of a hypo- thetical VTOL/STOL propeller; 15'-0" diameter, 120 A.F., 1000 HP @ 1146 rpm.	239
139	Relative blade weight comparison considering various materials for the design of a typical turboprop installation; 13'-6" diameter, 150 A.F., 4000 HP @ 1160 rpm.	240
140	Variation of blade weight with 1 X P excitation factor, Aq, for hollow steel and fiberglass blades on a typical turboprop installation; 13'-6" diameter, 165 A.F., 4500 HP 1020 rpm.	241
141	The 2 X P component of blade stress as measured during flight test on the X-19 air- craft showing a resonant trend with rpm.	250
142	Variation of the 2 X P blade stress component with rpm as measured during a ground vibration survey on the X-19 aircraft.	251
143	Variation of the 2 X P blade stress as measured during flight test of the X-19 aircraft as a function of the theoretical 2 X P parameter, $(V \sin \phi)^2 \sin \beta$.	253
144	Laboratory test facility for the static testing of propeller hubs under simulated flight steady and vibratory loading.	255
145	Stress coat patterns appearing on the X-19 propeller hub under a simulated design steady/ vibratory load condition.	256
146	Location of wire stain gages around outer circumference of barrels of X-19 propeller hub 162595 during static testing in hub tension machine.	258
147	Location of wire strain gages around inner and outer periphery of ring of X-19 propeller hub 162595 during static testing in hub tension machine.	259
148	Location of wire strain gages on inner and outer surfaces of rear extension of X-19 propeller hub 162595 during static testing in hub tension machine.	260
149	X-19, propeller hub showing typical location of strain gages during static test.	261
150	Laboratory whirl test facility for qualifying the propeller nacelle assembly oder simu- lated loading.	263
151	Maximum composite blade stress t en during propeller thrust calibration on WPAFB Electric Whirl Rig.	269

ŧ

ģ

FIGURE N	0.	PAGE
152	Blade stress monitoring curve taken during propeller endurance test on WPAFB electric whirl rig.	270
153	Curtiss gyroscopic test facility for qualifying full scale propellers under simulated steady and vibratory loading.	273
154	X-19 blade modified Goodman diagram showing design and gyroscopic test points.	275
155	X-19 blade vibratory stresses as monitored during the gyroscopic endurance testing.	278
156	Curtiss half systems test rig for qualifying the propulsion system of the X-19.	279
	SECTION V1	283
157	X-19, block diagram of the propeller thrust modulation system.	284
158	X-19, coordinator output stroke as a function of pitch control deflection or SAS motion.	285
159	X-19, coordinator output stroke as a function of pilot pitch trim actuator displacement.	286
160	X-19, coordinator output stroke as a function of roll control deflection or SAS motion.	287
161	X-19, coordinator output stroke as a function of yaw control (pedal) deflection.	288
162	X-19, coordinator output stroke as a function of tilt angle (auto-trim schedule).	289
163	X-19, propeller pitch control gain as a function of tilt angle (pitch-gain schedule).	291
164	X-19. propeller roll control gain as a function of tilt angle (roll-gain schedule).	292
165	X-19, propeller yaw control gain as a function of tilt angle (yaw-gain schedule).	293
166	X-19, coordinator output stroke as a function of governor collective shaft displacement.	294
167	X-19, nacelle input arm position as a function of coordinator output stroke.	295
168	X-19, propeller blade angle as a function of nacelle input arm position.	297
169	X-19, hover control moment response due to a pilot commanded step input of pitch, roll or yaw control.	298
170	X-19, propeller blade angle relationships due to control column application.	300
171	X-19, roll coupling generated by a yaw control input.	302
172	X-19, pitch coupling generated by roll or yaw control inpu [*] ; V = 0 fps.	303

FIGURE	NO.	PAGE
173	X-19, distribution of forces due to a roll control input (maximum aileron).	304
174	X-19, distribution of forces due to a yaw con- trol input (maximum rudder).	305
175	X-19, aircraft pitching monent characteristics at $\emptyset_{r} = 20^{\circ}$, including aircrame and propeller contributions; c.g. = 42.8% lift chord.	306
176	X-19, aircraft pitching moment characteristics at $\emptyset_{\rm F}$ = 40°, including airframe and propeller contributions; c.g. = 42.8% lift chord.	307
177	X-19, aircraft pitching moment characteristics at $\phi_{\rm p} = 60^{\circ}$, including airframe and propeller contributions: c.g. = 42.8% lift chord.	308
178	X-19, aircraft pitching moment characteristics at $\emptyset_{\rm F}$ = 82.5%, including airframe and propeller contributions: c.g. = 42.8% lift chord.	309
179	X-19, time history of hover thrust response to a step power lever input, original and modified system.	314
	SECTION VII	319
180	X-19, damping characteristics of the longitudinal short period mode through transition with SAS off: $W = 12$ 300 lb Height = Sea Level	330
181	X-19, damping characteristics of the Dutch Roll mode through transition with SAS off; W = 12,300 lb., Height = Sea Level.	331
182	X-19, migration of the longitudinal short period mode roots through transition with SAS off; W = 12,300 lb., Height = Sea Level, Start cruise/end transition c.g. = 42% lift chord.	332
183	X-19, migration of the longitudinal phugoid mode roots through transition with SAS off; W = 12,300 lb., Height = Sea Level. Start cruise/end transition c.g. = 42% lift chord.	333
184	X-19, migration of the roots of the lateral directional modes through transition with SAS off; W = 12,300 lb., Height = Sea Level. Start cruise/end transition c.g. = 42% lift chord.	334
185	X-19, variation of available pitch control power and required trim moments through transition.	336
186	X-19, variation of available roll control power through transition.	337
187	X-19, variation of available yaw control power through transition.	338

•

,

FIGURE	NO.	PAGE
188	X-19, power-on lift and pitching moment char- acteristics in cruise configuration based on wind tunnel data: $c g = 42.9\%$ lift chord.	340
189	X-19, power-on sideforce characteristics in cruise configuration based on wind tunnel data; $\sigma_{even} = 0^{\circ}$	341
190	X-19, power-on yawing moment characteristics in cruise configuration based on wind tunnel data; c.g. = 42.9% lift chord, $\sigma_{fug} = 0^{\circ}$.	342
191	X-19, power-on rolling moment characteristics in cruise configuration based on wind tunnel data; c.g. = 42.9% lift chord, $\alpha_{fug} = 0$ °.	343
192	X-19, damping characteristics of the longitudinal short period mode in cruise; W = 12,300 lb., Height = Sea Level.	344
193	X-19, damping characteristics of the longitudinal short period mode in cruise; W = 12,300 lb., Height = 15,000 ft.	345
194	X-19, damping characteristics of the Dutch Roll mode in cruise; W = 12,300 lb., Height = Sea Level.	346
195	X-19, damping characteristics of the Dutch Roll mode in cruise; W = 12,300 lb., Height = 15,000 ft.	347
196	X-19, damping characteristics of the Dutch Roll mode in cruise; W = 12,300 lb., Height = 25.000 ft.	348
197	X-19, elevator hinge moment characteristics in cruise	350
198	X-19, aileron hinge moment characteristics in cruise: $\sigma_{c} = 0^{\circ}$	352
199	X-19, rudder hinge moment characteristics in cruise: $\sigma_{\pm} = 0^{\circ}$	353
200	X-19, cruise elevator trim settings in level flight at 15,000 ft; W = 12,300 lb. and 13,500 lb. c.g. = 39% 42% lift chord	354
201	X-19, cruise elevator angle per 'g' at 15,000 ft; W = 12,300 lb., 13,500 lb., c.g. = 39% and 42% lift chord	356
203	<pre>x-19, roil performance in cruise; steady roll rate and wing tip helix angle with a stick force of 25 lb.</pre>	357
203	X-l, roll performance in cruise; bank angle attained one second after an instantaneous aileron deflection with a stick force of 25 lb	358
204	X-19, roll performance in cruise; roll time con- stant.	359

C • •

FIGURE NO. PAGE 205 X-19, effect of power and trim on the induced 364 drag factor $(\partial C_D / \partial C_L^2)$ in cruise. 206 X-19, effect of Mach Number and altitude on 365 minimum cruise drag coefficient. 207 X-19, components of total cruise drag coef-367 ficient. 208 X-19, effect of speed and altitude on cruise 368 lift-drag ratio; W = 13,660 lb. 209 X-19, effect of weight and altitude on cruise 369 lift-drag ratio; V = 300 knots TAS. 210 377 Horizontal c.g. envelope for the basic 13,660 1b. design gross weight aircraft. 211 X-19, recommended tilt velocity schedule. 380 212 X-19, flap deflection schedule, forward lift 382 strut. 213 X-19, collective aileron schedule, rear lift 383 strut. 214 384 X-19, coordinator auto-trim schedule. 215 X-19, coordinator pitch-gain schedule. 385 216 X-19, coordinator roll-gain schedule. 387 217 X-19, coordinator yaw-gain schedule. 388 SECTION VIII 391 218 Estimated hover ground effect pressure dis-395 tribution for the x-200 configuration. 219 Comparison of ground effect augmentation of 397 hover lift of two different types of VTOL testbed aircraft. SECTION IX 399 220 0.12 scale model of the Curtiss-Wright X-19 403 configuration mounted in the NACAL wind tunnel. 408 221 Longitudinal aerodynamic characteristics of the 0.12 scale model of the Curtiss-Wright X-19, power on and power off, MIT-1019 runs 28 and 100.

FIGURE	NO .	PAGE
222	Drag characteristics of the 0.12 scale model of the Curtiss-Wright X-19.	409
223	Directional and lateral stability characteristics of the 0.12 scale model X-19 in MIT-1019 cruise simulation.	410
224	NACAL low speed tunnel X-19 type model installation for NACAL-93 wind tunnel tests.	415
225	NACAL-93 test data to demonstrate the effect of propeller and propeller speed in pitch, X-19 cruise configuration.	417
226	NACAL-93 test data to demonstrate the effect of propeller and propeller speed in pitch, X-19 transition configuration.	418
227	NACAL-93 test data to demonstrate the effect of propeller and propeller speed in yaw, X-19 cruise configuration.	419
228	NACAL-93 test data to demonstrate the effect of propeller and propeller speed in yaw, X-19 transition configuration.	420
229	NACAL low speed tunnel X-19 model installation for NACAL-120 wind tunnel tests.	421
230	NACAL-120 test data to demonstrate the effect of ground plane presence on longitudinal characteristics in hover of the X-19 model.	423
231	NACAL-120 test data to demonstrate the effect of nacelle angle on lateral-directional characteristics in hover of the X-19 model.	424
232	Curtiss-Wright test facility for the investigation of over-water aspects of high disk loading VTOL airplanes.	428
233	Installation of the X-100 research aircraft on the NASA 40 x 80 wind tunnel mounts at Ames Research Center.	430
234	Comparison of similar test configurations of the 0.12 scale X-19 model in three different wind tunnels-Cr vs σ_{fun} , power off.	434
235	Comparison of similar test configurations of the 0.12 scale X-19 model in three different wind tunnels - C_D vs α_{fus} , power off.	435
236	Comparison of similar test configurations of the 0.12 scale X-19 model in three different wind	436
237	Comparison of similar test configurations of the 0.12 scale X-19 model in three different wind	437
238	Comparison of similar test configurations of the 0.12 scale X-19 model in three different wind tunnels - C_n vs Ψ , power off.	438

.

FIGURE	NO.	PAGE
239	Comparison of similar test configurations of the 0.12 scale X-19 model in three different wind tunnels - Cy vs ψ , power off.	439
240	Comparison of calculated and test data of X-100 propeller blade angle and thrust coefficient versus power coefficient at static condition.	441
241	Comparison of X-100 full scale and model propeller data in terms of C_T and C_D .	442
242	X-100 maximum values of propeller figure of merit at various reynolds numbers based on full-scale and model test data.	443
	SECTION X	447
243	X-19, fuselage lift coefficient characteristics; S _{ref} = 154.6 sq. ft.	449
244	X-19, exposed front wing lift coefficient; Sref = 154.6 sq. ft.	450
245	X-19, exposed rear wing lift coefficient; Sref = 154.6 sq. ft., (external to BL 16.7 inches).	451
246	X-19, nacelle lift coefficients; Sref = 154.6 sq. ft.	452
247	X-19, lift coefficient of complete airplane- propellers off: $S_{ref} = 154.6$ sq. ft.	453
248	X-19, pitching moment coefficient of fuselage alone about the 42.9 percent c.g.; $S_{ref} = 154.6$ sg. ft., $\overline{c} = 2.875$ ft.	454
249	X-19, exposed front and rear wing pitching moments about respective quarter chords; $S_{ref} = 154.6$ sq. ft., $\overline{c} = 2.875$ ft.	455
250	X-19, nacelle pitching moments about respective wing quarter chords; $S_{ref} = 154.6$ sq. ft., $\overline{c} = 2.875$ ft.	456
251	X-19, pitching moment of complete airplane about the 42.9 percent c.g., propellers off; $S_{ref} = 154.6$ sg. ft., $\overline{c} = 2.875$ ft.	457
252	X-19, propeller lift coefficients, front and rear; $S_{ref} = 154.6$ sq. ft.	458
253	X-19, propeller pitching moment coefficients front and rear; $S_{ref} = 154.6$ sq. ft., $\overline{c} = 2.875$ ft.	459
254	X-19, propeller side force and yawing moment coefficient, $S_{ref} = 154.6$ sq. ft., $\overline{c} = 2.875$ ft.	460
255	Propeller sign convention.	461
256	X-19, aeroelastic wing and propeller twist derivatives.	462

÷

4 5.05

۹. ۲۰۰

Ľ

.

.

•

FIGURE	NO.	PAGE
257	X-19, V-n diagram, W = 13,660 pounds.	466
258	X-19, gust envelope; W = 13,660 pounds.	468
259	Diagrammatic representation of aerodynamic cruise loads.	469
260	X-19, rear wing lift coefficients based on S = 85.74 sq. ft. (exposed) area; NACA 643-418 airfoil modified.	472
261	X-19, rear wing spanwise lift distribution - propellers off.	473
262	Effects of fuselage upon the wing $\partial C_L / \partial \alpha$; wing located along fuselage x/L; various body width ratios; based on clear through wing area; z/h = 0.907.	476
263	Effects of fuselage upon wing angle of zero lift; parameters: x/L , b/W , $z/h = 0.907$.	477
264	X-19, fuselage and nacelle wash effects upon the rear wing at 77 percent chord position.	478
265	X-19, rear wing chordwise pressure distribution- propellers off; $\beta_F = -3$ degrees.	479
266	X-19, rear wing chordwise pressure distributions- propellers off; $p_F = -3$ degrees, $\alpha_{fus} = +2$ degrees.	480
267	X-19, fuselage induced wash derivative on rear wing due to sideslip, at 77 percent chord position.	482
268	X-19, center of gravity envelope, based on empty weight.	484
269	X-19, hover transmission limit - allowable forward center of gravity position at thrust to weight = 1.0.	485
270	X-19, propeller horsepower histogram (hover).	486
271	X-19, tee-box horsepower histogram (hover).	487
272	X-19, transition lift coefficient characteristics; \$\mu_F\$ = 82.5°, V = 49 knots, 819 \nu_nD, neutral stick.	490
273	X-19, transition lift coefficient characteristics;	491
274	X-19, transition lift coefficient characteristics; $p_F = 60^\circ$, V = 85 knots, 725 π nD , neutral stick.	492
275	X-19, transition lift coefficient characteristics; $p_F = 40^\circ$, V = 102 knots, 725 m nD, neutral stick.	493
276	X-19, transition lift coefficient characteristics; $p_F = 20^\circ$, V = 120 knots, 725 π nD , neutral stick.	494
277	X-19, transition drag coefficient characteristics; $p_F = 82.5^\circ$, V = 49 knots, 819 #nD , neutral stick.	496
278	X-19, transition drag coefficient characteristics; $p_F = 82.5^\circ$, V = 49 knots, 725 πnD , neutral stick.	497
279	X-19, transition drag coefficient characteristics; $p_{\rm F}$ = 60°, V = 85 knots, 725 π nD , neutral stick.	498

FIGURE	NO.	PAGE
280	X-19, transition drag coefficient characteristics; $\theta_{\rm P} = 40^\circ$, V = 102 knots, 725 m nD, neutral stick.	499
281	X-19, transition drag coefficient characteristics; $\theta_{\rm T} = 20^{\circ}$, V = 120 knots, 725 mnD , neutral stick.	500
282	X-19, transition pitching moment coefficient characteristics; $\beta_{\rm F} = 82.5^{\circ}$, V = 49 knots, c.g. = 42.8%, neutral stick, 725 and 819 mnD .	501
283	X-19, transition pitching moment coefficient characteristics; $\oint_F = 60^\circ$, V = 85 knots, c.g. = 42.8% neutral stick, 725 fnD .	502
284	X-19, transition pitching moment coefficient characteristics; $\phi_F = 40^\circ$, V = 102 knots, c.g. = 42.8% neutral stick 725 TnD.	503
285	X-19, transition pitching moment coefficient characteristics; $\theta_{\rm F} = 20^\circ$, V = 120 knots, c g = 42.8% neutral stick 725 TrD	504
286	X-19, transition front and rear propeller trim powers; $p_{\rm F} = 82.5^{\circ}$, V = 49 knots, 725 TrD = 6.8 = 42.8%	506
287	X-19, transition front and rear propeller trim powers; $p_{\rm F} = 60^{\circ}$, $V = 85$ knots, 725 π nD, c.g. = 42.8%.	507
288	X-19, transition front and rear propeller trim powers; $p_{\rm p} = 40^{\circ}$. V = 102 knots, 725 π nD, c.g. = 42.8%.	508
289	X-19, transition front and rear propeller trim powers; $p_F = 20^\circ$, V = 120 knots, 725 πnD , c.g. = 42.8%.	509
290	X-19, effects of c.g. location on stick position; $\phi_{\rm F} = 60^{\circ}$, $\pi_{\rm nD} = 725$, V = 85 knots, W ^F = 13,660 pounds.	510
291	X-19, effects of π nD variation upon trim; $\emptyset_{\rm F} = 60^{\circ}$, V = 85 knots, W = 13,660 pounds, c.g. = 41%.	511
292	X-19, effects of π nD variation upon trim; $\emptyset_F = 40^\circ$, W = 12,300 pounds, V = 102 knots, c.g. = 42.8%.	512
293	X-19, effects of c.g. location upon trim; $\phi_F = 40^\circ$, π nD = 725, V = 102 knots.	513

I

.

.

FIGURE	NO. SECTION XI	PAGE
294	X-19, hover operating envelope, single engine failure.	518
295	X-19, cruise windmilling descent, trim character- istics; W = 12,300 pounds, c.g. = 42.9 percent;	521
296	X-19, cruise windmilling descent angle; W = 12,300 pounds, c.g. = 42.9 percent, $Ø_F = 16.3^\circ$, $\beta_{75p} = 51$ degrees.	522
297	X-19, cruise windmilling rate of descent flares; W = 12,300 poun c.g. = 42.9 percent, $\theta_m = 16.3$ degref $\beta_{max} = 51$ degrees.	523
298	X-19, cruise windmilling flared flight paths; W = 12,300 pounds, c.g. = 42.9 percent, $\theta_{-} = 16.3^{\circ}$ $\beta_{} = 51^{\circ}$ $\sigma_{-} = 14.4^{\circ}$.	525
299	X-19, windmilling lift coefficient character- istics at $\beta_{\rm F} = 16.25^\circ$, S _{ref} = 154.6 sq. ft., $\delta_{\rm F} = 23.2^\circ$, $\delta_{\rm a-pll} = 21.5^\circ$.	526
300	X-19, windmilling drag coefficient character- istics at $p_F = 16.25^\circ$, $S_{ref} = 154.6$ sq. ft., $\delta_F = 23.2^\circ$, $\delta_{n-11} = 21.5^\circ$.	527
301	X-19, windmilling moment coefficient character- istics at $\oint_F = 16.25^\circ$; $S_{ref} = 154.6$ sq. ft.,	528
302	Thrust coefficient characteristics at tilt angle of 140°, CWC blade 3(156109), AF 115, $IC_{L_1} = 0.482$.	531
303	Thrust coefficient characteristics at tilt angle of 160°, CWC blade 3(156109), AF 115, IC _{L;} = 0.482.	532
304	Thrust coefficient characteristics at tilt angle of 180°, CWC blade 3(156109), AF 115, IC _{L;} = 0.482.	533
305	Blade characteristics of CWC 3(156109); AF 109, $IC_{L_i} = 0.482$.	534
	SECTION XII	535
306	Flight test schedule, X-19 S/N 62-12197.	543
307	X-19 flight No. 50, track velocity history (theodolite digital data)	549
308	X-19 flight No. 50, altitude time history (theodolite digital data).	551
309	X-19 flight No. 50, climb velocity vs. time (theodolite digital data).	553
310	X-19 flight No. 50, resultant velocity vs. time (theodolite digital data).	554

FIGURE	NO.	PAGE
311	X-19 flight No. 50, in-flight acceleration vs. time (theodolite digital data).	555
312	X-19 flight No. 50, vertical acceleration vs. time (theodolite digital data).	556
313	X-19 flight No. 50, bank angle (theodolite film data).	557
314	X-19 flight No. 50, pitch angle and component of yaw angle (theodolite film data).	558
315	X-19 flight No. 50, roll and pitch rate (theodolite film data).	559
316	X-19 flight No. 50, front and rear nacelle angles (theodolite film data).	560
317	X-19 flight No. 50, excess thrust horsepower absorbed (average theodolite trace and digital data).	561
318	X-19 S/N 62-12197 in conversion flight at 90 kts.	562
319	X-19 S/N 62-12197 in hover flight.	563
320	X-19, flight speed range tested for steady level flight, test velocity vs. schedule velocity.	577
321	X-19, test power required for steady level flight, PIW _N vs. VIW.	579
322	X-19, test front nacelle power required for steady level flight, PIW _{NF} vs. VIW.	580
323	X-19, test rear nacelle power required for steady level flight, PIWNn vs. VIW.	581
324	X-19, ground run No. 96, thrust coefficient and blade angle vs. power coefficient.	584
325	X-19, flights Nos. 8 thru 22, thrust co- efficient vs. power coefficient for steady hover and translational flight.	585
326	X-19, test installation for ground effect tuft study.	586
327	X-19, ground run No. 97, thrust transient following throttle chop.	588
328	Estimated descent velocity vs. time follow- ing a single engine failure in hover (based on X-19 ground run No. 97).	589
329	Estimated altitude lost vs. time following a single engine failure in hover (based on X-19 ground run No. 97).	590
330	Estimated descent velocity vs. altitude lost following a single engine failure in hover (based on X-19 ground run No. 97).	591
331	X-19, category I flight test program. Scope of configuration testing thru January 1965.	5 9 4

•

•

.

and the second second

and a second second

~

FIGURE	NO.	PAGE
332	X-19, low speed longitudinal handling qualities, with S.A.S. "off" in both axes (pilot: J. V. Ryan).	595
333	X-19, low-speed lateral handling qualities, with S.A.S. "off" in both axes (pilot: J. V. Ryan).	596
334	X-19, pilot opinion rating as a function of air- speed; pitch axis. Electronic pitch S.A.S. "on."	598
335	X-19, pilot opinion rating as a function of air- speed; roll axis. Electronic roll S.A.S. "on."	599
336	X-19, pilot opinion rating as a function of air- speed; yaw axis. No stability augmentation.	600
337	X-19, pilot opinion rating as a function of air- speed; height control. Height control system "on."	601

LIST OF TABLES

l

TABLE		PAGE
I	X-100 VTOL airplane characteristics.	33
II	Comparison between calculated and test values of radial force, R.	44
III	X-19, rear wing download test conditions.	61
IV	Blade design 13166A10P3; general design data and summery.	192
v	Blade design 15166A10P3; blade section characteristics data.	193
VI	Blade design 13166A10 ^p 3; summary of blade structural and mass section properties (equivalent to fiberglass).	195
VII	Blade design 1316tA12P3: summary of blade structural and mass section properties (equivalent to fiberglass).	200
VIII	Design propeller shaft loads 13166A10P3 blade, X-19 aircraft.	201
IX	Summary, structural analysis; 13166A10P3 blade design, design loads for 12,300 lb. airplane G.W.	205
X	Tabulation of endurance history; 13166A10P3 blades.	212
XI	Maximum composite stresses in X-19 propeller hub 162595.	262
XII	Gage layout.	268
XIII	Vibratory and steady stress summary, X-19 blades.	277
XIV	X-19 PFVT, 13,660 lb. gross weight flight cycle.	281
XV	Stick - fixed equations of motion.	320
XVI	Formulae for the X-19 stability derivitives.	322
XVII	Incompressible power-off profile drag breakdown.	362
XVIII	Historical breakdown X-19 S/N 62-12197.	537
XIX	Typical multiplexed temperature record schedule.	572
XX	Typical test instrumentation oscillograph schedule.	573
XXI	Typical X-19 S/N 62-12197 photo panel parameter schedule.	574
XXII	Cooper Rating Scale	597

xxxi

SECTION I

TATAL STREET, SALES IN THE STREET, STRE

STREET, STREET

and the second

•

2

REVIEW OF DEVELOPMENTS LEADING TO THE X-19 PROGRAM

SECTION I NOMENCLATURE

•

-

A	=	snaft angle of attack
٢ _g	=	center of gravity
с _L	=	lift coefficient
D	=	drag
1×	=	polar moment of inertia - roll
Iv	Ξ	polar moment of inertia - pitch
Iz	=	pular moment of inertia - yaw
HP	=	horsepower
L	=	lift
м	2	mach number
MAC	=	mean aerodynamıc chord
м р н	×	miles per hour
SLSD) =	sea level standard day

E

SECTION I

REVIEW OF DEVELOPMENTS LEADING TO THE X-19 PROGRAM

1. REPORT OBJECTIVE

During the time period of 1957 to 1966 the Curtiss-Wright Corporation was engaged in a major effort in the development of tilt propeller VTOL Aircraft. This work ceased after termination of the flight test contract for the X-19 Aircraft. To assess the program and make available the important technical results, an Air Foice Contract AF33(651)-3940 was negotiated with Curtiss-Wright, to prepare a report covering the major achievements of the effort. It is the objective of this report to conduct a thorough assessment and to critically review the positive as well as the negative results of the X-19 technology effort.

2. BACKGROUND HISTORY

The conventional propeller and turbine engine appeared to be a very promising way to obtain hover lift and high thrust performance in the cruise flight condition. As propeller manufacturers, we had the opportunity to observe the difficulty in meeting the required take-off performance and good cruise efficiency requirements of VTOL aircraft. This problem was particularly a_{L} -arent with those companies developing the tilt-wing and deflected slipstream types of VTOL aircraft. The propeller manufacturer was consulted for design information and data long after those aircraft configurations were frozen, with the result that propeller diameters were too small and disk loadings too high. At that time, disk loading was chosen for reasons other than wing stall, such as propeller spacing, weight, etc.

Because a VTOL aircraft depends on the propeller for lift and control during a major portion of the early low-speed flight, it appeared that a better solution to the problem of vertical take-off and landing could be obtained by designing the aircraft from the propeller designer's point of view. This idea led to examination of the propeller operating at the full range of shaft angles and the associated effects on the over-all airplane. When the propeller was sized to produce the required level of take-off or hover thrust, it became apparent that a secondary in-plane force would produce sufficient lift to be of real significance. This in-plane force is known as side force, or radial force and as shown in Chapter II is a function of propeller diameter and blade area. Since the propeller radial force is large, it was found that an aircraft could be designed to fly without wings using propeller radial force and thrust in all flight modes. Flight without wings was a stimulating idea to management; it was decided to pursue this notion further.

However, the lift-drag ratio of a lifting propeller is poor unless the angle of attack of the propeller is small. This is apparent, since
	L/D	Ξ	1	=	57.3	at A	=	l deg:	ree
			tan	A					
where	L	=	the	lift	compo	onent	of	radial	force
	D	=	the	drag	compo	onent			
	Α	=	the	shaf	t ang]	le			

Although the lift-drag ratio is high at small angles, the actual level of radial force is low. Thus the initial studies indicated that some wing area would be required. Instead of a wingless aircraft, area was added to obtain maximum lift-drag ratio at the cruise flight condition. It was found that the wing could be sized for maximum efficiency in cruise, since the radial force, thrust and wing lift, were adequate to meet the other flight conditions. At the transition flight conditions, lift-drag ratio of the airplane is low; this was considered to be unimportant. The idea began to gel. An efficient cruise aircraft with good lift in hover appeared to be possible.

3. X-100 AIRPLANE

The ground work had been laid. It was decided to build an aircraft to investigate and demonstrate the radial force principle. This effort is documented in references (1) through (4).

The X-100 airplane is a two-place, 3,500 pound, single-engine aircraft. The general characteristics are shown on Table I and Figures 1 and 2. The aircraft was completed late in 1958, and ground/flight tested during 1959 and 1960. A total time of 220 hours on the ground and 10 flight hours was accumulated. In addition, the X-100 airplane was used for ground erosion tests at Langley Field; and further, was tested in the 40 by 80 ft. NASA Ames wind tunnel. The purpose of the wind tunnel test was twofold: to confirm the results obtained in flight, and to obtain data on propeller loading when operating at high angles of tilt.

The flight tests of the X-100 airplane proved that radial force tilt propellers could be flown from hover to cruise without encountering adverse effects. Furthermore, the stability, control and performance of the X-100 were equal to or better than that predicted. The success of the X-100 tests was encouraging enough to initiate the next effort. Design of the Model 200 was begun. Table I. X-100 VTOL airplane characteristics.

2 place VTOL Airplane Type: No. of Engines and Type: 1 Lycoming YT-53 825 HP Engine Rating Military: No. of Propellers and Type: 2 three-blade 10' O" diameter propellers 3500 pounds plus Gross Weight: $I_x = 1300 \text{ slug feet}^2 - \text{ roll}$ $I_y = 2151 \text{ slug feet}^2 - \text{ pitch}$ $I_z = 3200 \text{ slug feet}^2 - \text{ yaw}$ Polar Moments of Inertia: Wing Area = 22.5 square feet Horizontal Tail Area = 23 square feet Vertical Tail Area = 18.75 square feet Length = 28.3 feet Overall Width = 25 feet Height = 10.75 feet

Figure 1. X-100 in the hover and cruise nacelle position.

,

Figure 2. X-100 three view drawing (dimensions in inches).

66-041

4. M-200 OPERATIONAL AIRCRAFT

a. Initial Design Objectives

The X-19 airplane is based on the Curtiss-Wright model M-200. It was originally designed to be a corporate executive transport incorporating the W.A.D. rotating combustion engine. The M-200 aircraft wan to be a six-place machine with four rotating-combustion (R/C) engines each rated at 580 HP at 5,000 ft. and 100° F. It was intended to provide vertical take-off and landing on a hot day with the aircraft capable of remaining airborne in case of the failure of one engine. The aircraft was to have a range of 900 to 1150 miles with a maximum level speed of 400 mph at 16,000 feet. Further, the design was to conform to FAA regulations, have all-weather flying capability, and be quiet as a result of the use of lightly loaded propellers operating at low tip speed and free from vibration. The gross weight projected for this aircraft was 10,000 pounds.

With the Curtiss-Wright management change, it was decided that the aircraft designed around the R/C (rotating combustion) engine had little hope for success. A new airplane with new-type engines, both untried, could not hope to be successful. While the aircraft with the R/C engines was being designed, studies were conducted to determine the possibility of using two turbine engines. This effort resulted in the turbine version of the aircraft.

The Curtiss-Wright Model 200 was then redesigned to use two T-55 engines instead of the four rotating combustion engines. This reduced the problems considerably, as engine cooling was no longer necessary. The same design performance objectives were retained; however, instead of designing for the commercial market, the machine was pointed toward military applications. The major objective of hovering out-of-ground effect was retained, but with much reduced altitude and temperature accountability. This reduction of one engine out performance could not be avoided when going from the four to two engine configuration; the fact that turbine engines are more sensitive in power to outside air temperature than the rotating combustion engine was another reason.

The design objectives of the Model 200 airplane were developed mainly by Curtiss, as no military specification or requirement was available. Performance-wise the idea was to carry as much payload as possible, as far as possible, and still retain the engine-out feature. This was to be done with gear box operational-limit envelopes, the same as were originally set up for the 10,000 pound aircraft.

(1) Tandem-Wing Design Considerations

During the flight testing of the X-100 aircraft, it was

observed that the aircraft had the following undesirable characteristics:

- (a) Insufficient hover control power
- (b) Roll yaw coupling at hover
- (c) High pitch-up moments as a function of forward speed

All these factors made the low-speed flight characteristics unsatisfactory, especially in gusty air. An increase in control power, especially in pitch, was deemed necessary to solve the problem. To obtain the required control power and tilt moments for the pitch control of a tilt propeller a large pitching moment is required. The thrust at the tail of the airplane required to produce this moment can be generated by the use of propellers, ducted fans or jets. The power necessary to generate the thrust is of course dependent on disk loading of the device used. The solution ultimately devised for the X-100 aircraft was a controllable air-deflection cascade system mounted in the tail section and powered by engine exhaust which provided pitch and yaw thrust as needed. It was considered to be undesirable to use a separate device for the generation of a moment for pitch control which is necessary at hover and low forward speeds as additional drives, clutches and controls would be required which added to the overall weight and complexity of the aircraft.

One of the main difficulties encountered with the two propeller VTOL aircraft is the roll yaw coupling problem. To overcome this problem large amounts of control power are needed to counteract the torque change induced due to a roll input. When the airplane is holding in a side wind, for instance, the lee prop is absorbing more power than the upwind prop. If the props are rotating up past the wing, necessary in the case of the fixed wing configuration, the power difference tends to turn the machine so the tail weathervanes into the wind. This must be prevented to provide the control characteristics necessary for a hovering aircraft. As the aircraft design evolved to larger proportions the propeller size appeared to be a limiting factor. Propellers in excess of 20 feet diameter, were envisioned; but sooner or later as the aircraft grew in size at least four propellers would be required. In arranging these on such an aircraft it was thought that the control problems at hover could be solved and the wing size could be kept to a minimum if the tandem configuration was adopted. Also the tandem arrangement appeared to offer the possibility of higher wing loading with the desired low disk loading for hover. If, however, the propellers are disposed along a single wing the download losses of the two inboard units would be higher than if they were placed at the wing tip. Furthermore, with the single wing configuration a tail fan or a Jetavator-type system must be used to provide pitch control in hover and low speed flight

conditions. As a result, on a single-wing design five propellers are needed together with the necessary equipment for starting and stopping the tail propeller. A tail propeller could also be used to obtain yaw control but probably differential tilting of the outboard props would be preferrable to the complication of the fifth propeller. For these reasons, and the need for uncoupled flight controls in hover and low speed flight, the four-propeller tandem configuration was chosen for the X-19 configuration.

(2) Turboprop System

The turboprop system was selected to provide the following:

- (a) Objective was to cover approximately 0-400 MPH
 (M 0.65) speed range, and have up to 25,000 ft. altitude capability.
- (b) Superior propulsion system efficiencies of turboprop in celected speed-altitude regime.
- (c) Excellent performance flexibility of conventional propeller between static and selected high speed conditions.
- (d) Capability of the propeller to provide needed radial force for smooth transition flight characteristics.
- (3) Selection of Hover Disk Loading

Disk loading was selected from the following point of view:

- (a) Good from ground disturbance point of view.
- (b) Near lowest possible disk loading with conventional aircraft propellers considering combined aerodynamic/ structural aspects. At lower disk loadings difficulty with blade dynamics was a concern.
- (c) High static thrust performance (about 6.0 lbs/HP at SLSD and 25 lb/ft² disk loading) to minimize installed power requirements.
- (d) Peak static thrust performance from propeller obtained at reasonable tip speeds of approximately 820 feet per second at this disk loading, giving low noise characteristics.
- (e) Light weight blade construction methods available a fundamental keystone as conventional blade methods of construction result in propeller weights unacceptability high.
- (f) Confidence in the design feasibility of large diameter conventional propellers for large aircraft.

- (g) Ability to hold high propeller cruise flight efficiencies approximately 80% using the speed variation capability of gas-coupled shaft turbine engines.
- (4) Selection of Non Tilting Wing System

The airframe geometry was based on the following:

- (a) Selection of the non tilting wing system was fundamentally hinged on the moderate hover disk loading selection, i.e., 15 to 30 lbs per square foot.
- (b) Recognition that if a tilting wing were used, the wing would have to be carefully slatted and flapped to avoid stall at high transition angle of attack conditions. Also, there was great concern that the slipstream dynamic pressures associated with the selected low disk loading propellers would be inadequate to cope with the problem, even with efficient slats and flaps incorporated. The above-noted advantages of low disk loading should not be sacrificed by increasing disk loading merely to make the tilting wing feasible.
- (5) Selection of Tandem-Wing Four Propeller Configuration
 - (a) The tandem wing arrangement allowed the use of low or moderate propeller disk loadings and high wing loadings without resorting to the use of long narrow wings or intermeshing propellers. In the case of a four propeller tandem wing airplane the propellers mounted at the wing tips would have a lower download than is possible with a single wing airplane.
 - (b) Tandem wings with tip-mounted propellers kept a large part of the wings from beneath the propeller, thus minimizing thrust losses due to slipstream blowdown.
 - (c) Tandem wings allowed use of four propellers, thus minimizing size of individual propellers for the selected disk loading and aircraft weight.
 - (d) The configuration allows full exploitation of the concept of a continuously running propulsion system. An auxiliary system to provide a control force at hover and low forward speeds is not required.
 - (e) A tandem aircraft configuration is easily controlled at hover and at the low speed flight conditions as large control moments can be generated by the use of propeller collective pitch controls.

 TRI-SERVICE X-19 (CW MODEL 200) DIMENSIONS AND GENERAL DATA (Refer to Figure 3 for general arrangement)

Wings:

Airfoil section designation and thickness (percent chord) constant along span..... fwd. wing NACA 2421 Modified-21% aft. wing NACA 643-418 Modified-18%

Incidence (degrees): FWD WING AFT WING 0 0 At root 0 At construction tip 0 0 0 Sweepback, degrees 0 Dihedral, degrees 0 Aspect Ratio 6.8 4.7 Ailerons: Outboard on Aft wing only 14.44 sq. ft. Area (both) 54 inches Span Chord (average percent aft wing chord, aft of hinge 35% Distance from plane of symmetry to centroid 93.5 inches of aileron area Tab -- NONE Flaps: On Forward wing only 15.16 sq. ft. Area (both) Type - Plain 78.05 inches Span, exclusive of cutouts Chord, (average percent front wing chord, aft of hinge)..... 40.5%

Elevators: On Aft wing only

Area (both)	12.85 sq. ft
Span (each)	48.0 inches
Chord (average percent aft wing chord,	
aft of hinge	35.0%
Tab NONE	

Horizontal Tail: See aft wing -Vertical Tail: Area (Excl. Dorsal) 46.18 sq. ft. Span 117.0 inches Chord Root 74.32 inches 39.42 inches Tip Airfoil section designation and thickness NACA 0012 W L. 136.75 12% NACA 0010 W.L. 250.75 10% Tab dimensionsLength = 28.18 inches Chord: Top 4.195 inches Bottom 4.70 inches Tab Location W.L. 167.00 to W.L. 195.18 ٥° Incidence, normal Sweep of leading edge, degrees 32° 6 minutes 0° Dihedral, degrees 0° Adjustment each side of neutral 2.05 Aspect ratio Fuselage: 42.08 ft. Length of fuselage 631.8 sq. ft. Net wetted area of fuselage 26.6 sq. ft. Maximum cross-sectional area 1.67 sg. ft. Area of engine air inlet: 14.8 ft. Cabin length 4.33 ft. Cabin width Propeller Nacelles: 6.41 ft. Length of front nacelles Maximum diameter of front nacelles .. 1.375 ft. Net wetted area of two front nacelles 45.7 sq. ft. Cruise inclination of front nacelles -3.0° relative to fuselage datum 7.50 ft. Length of rear nacelles 1.375 ft. Diameter of rear nacelles 97° to -3° Tilt Angles Front 81° to -3° Rear

	Net wetted area of two rear nacelles	47.6 sq. ft.
	Cruise inclination of rear nacelles relative to fuselage datum	- 2.54°
Tot	al aircraft:	
	Total aircraft wetted area	1090.5 sq. ft.
	Height over highest fixed part of aircraft	
	Reference line level (reference is to ground level)	17' 1/4"
	Height over highest part of tail, reference line level	17' 1/4"
	Length, maximum: Reference line level	44 ' 5"
	Distance from fwd. wing quarter chord point to aft wing quarter chord point	23' 4-1/8"
	Distance from aft wing quarter chord point to vertical tail MAC quarter chord point	28.58 inches
	Angle between fuselage reference line and wing zero-lift line	Fwd2.3° as instailed
	Ground angle, degrees	Aft -0.9° .0
Pro	peller:	
	Propeller diameter	13.0 ft.
	Blade Area No. of propellers per aircraft	8.4 sq. ft. 4
	No. of blades per propeller	3
	Blade designation	13168A10P3(Modified)
	Activity Factor	168
	Integrated Design C _L	U.057
	Blade Cnaracteristics	(See Figure 74)
	Airfoil Section Type	NACA 64

State of the second sec

Alighting gear:

.

	Wheel s	ize:	
	Ma	in wheels	24 x 7.7
	No	se wheel	6.00 x 6.0
	Tire si	ze:	
	Ma	in wheels	24 x 7.7
	No	se wheel	6.00 x 6.0
	Tread o	f main wheels	6.0 feet 8.0 inches
	Wheel b	ase	22.0 feet
	Vertica fu	l travel of axle from extended to lly compressed position:	
	Ma	in wheels	8.0 inches
	No	se wheel	6.0 inches
	Distance	e from main wheel contact point to nter of gravity:	
	Но	rizontal Distance:	
		At most forward permissible cruise	c.g. 45.4 inches
		At most aft permissible cruise c.g.	. 35.4 inches
	Ve	rtical Distance;	
		At most forward c.g. 59.4 inches at gross weight	: 13,660 pounds
		At most aft c.g. :9.2 inches at 13, grass weight	,660 pounds
Eng	gines:		

.

2 Lycoming T55-L-5

Direct Drive

CONTROL MOVEMENT AND CORRESPONDING CONTROL SURFACE MOVEMENTS

Control and control surface movements on each side of neutral position for full movement, as limited by stops.

Rudder 33 degrees right, 33 degrees left.

Rudder pedals 3 inches forward, 3 inches aft.

Rudder tab 8 degrees right, 8 degrees left.

Rudder tab control actuated by electrical switch.

Elevator 20 degrees above, 15 degrees below.

Elevator control stick 5.42 inches aft, 4.06 inches forward.

Ailerons 15 degrees above, 11 degrees below.

Aileron control stick 4 inches right, 4 inches left.

Aileron droop (maximum) 60 degrees.

Forward wing flap (maximum) 60 degrees nominal movement.

Flap and aileron droop positions are mechanically coordinated with nacelle position.

GENERAL FEATURES OF DESIGN AND CONSTRUCTION

The aircraft is a tandem high wing airplane with propellers mounted on nacelles at each wing tip, as shown in Figure 3. The nacelles tilt from horizontal to vertical approximately 100 degrees. Power is provided by two turbo-shaft engines contained within the fuselage. Conventional aircraft construction techniques and materials are used throughout.

GENERAL INTERIOR ARRANGEMENT

The interior arrangement consists of a cockpit and a passenger/cargo compartment.

The pilot's compartment contains two crew seats, all the controls, switches, instruments and other equipment required to operate the airplane from either the left or right seat.

The passenger/cargo compartment has provisions for 4 passenger seats, but can be re-arranged for cargo carriage as well.

A

.

D

. . .

Figure 3. X-19 three view drawing.

REFERENCES

- 1. H. Borst, <u>Feasibility Study of a New Type of VTOL Aircraft</u>, Curtiss-Wright Report No. C-2725, dated 20 Dec. 1957.
- H. Borst, <u>Design and Performance of the Lifting Propeller X-100</u> <u>VTOL Airplane</u>, Curtiss-Wright Report No. C-2798, dated 8 October 1959.
- 3. H. Borst, <u>Flight Test of the Curtiss-Wright X-100 VTOL Aircraft</u>, Curtiss-Wright Report No. C-2846, dated 21 March 1961.
- 4. E. Sand, <u>Design Report Curtiss-Wright X-100 VTOL Aircraft</u>, Curtiss-Wright Report No. C-2843, dated 10 January 1961.

SECTION II

RADIAL FORCE PRINCIPLE

1. INTRODUCTION

It is well known that the conventional propeller is an highly efficient device for converting shaft power to thrust. Propellers have demonstrated a figure of merit of the order of 80 to 82 percent at the static or hover condition, and well designed propellers have demonstrated efficiencies as high as 90 percent at the cruise speeds of 200 to 400 knots. For instance, the propeller designed for the Lockheec' 1049C using three number 109652 blades operated at a cruising efficiency of 89% and demonstrated a Figure of Merit of 80% at the static condition or zero velocity condition, reference 9.1. The Figure of Merit of 80% was obtained at a power coefficient of 0.05 well below the normal take-off power coefficient of the 1049C airplane, which is approximately 0.1. Thus, the propeller is a suitable device for providing lift at the hover condition as well as propelling an airplane at the cruise condition. To accomplish this dual purpose it is necessary that the propeller be tilted through 90 degrees between the hover condition and the cruise condition. During this conversion portion of the flight the propeller will be operating with its shaft at a high angle of attack. At an angle of attack the force along the shaft of the propeller, generally defined as thrust, can be broken down into two forces, a lift force and a force in the direction of flight (Figure 4).

When the propeller is operating with its shaft at an angle of tilt there is, in addition to the thrust force, a secondary force produced which acts in the plane of the disk of the propeller. This force is known as propeller normal or radial force and is a function of the propeller size, the shaft angle of attack of the propeller, and the operating speed of the propeller. The propeller normal force, known as side force to those doing stability and control calculations, is also illustrated in Figure 4. It will be noted that this force, like the normal force produced by a wing, can be broken into two components --- lift and drag. In the case of conventional aircraft, the normal force produced by the propeller is small compared with the overall forces produced. In the case of propellers used on VTOL aircraft, the diameter and blade area necessary are larger than would be used for conventional airplanes as the blade sections must operate below stall at the static or hover flight conditions to obtain high values of figure of merit. The propellers will also operate through a high angle of attack range during conversion. Since the propeller normal force is directly dependent on the shaft angle with respect to the airflow, the blade area, and the propeller diameter squared, the normal force has been observed to be a very significant parameter affecting the overall characteristics of the VTOL propeller airplane.

2. THEORY AND METHOD FOR COMPUTING PROPELLER FORCES

a. General

To show how a propeller produces the radial force and the associated moment, indicated in Figure 4, it is necessary to examine the

FURNISHED UNDER UNITED STATES GOVERNMENT CONTR. C: No AF33(615)-3940, SHALL INT BF .211. IR PELEASED GUTSIDE 7) E DOVERNMENT, OR USEL, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR TROCUREMENT, WITHDUT THE WRITTEN PERMISS ON DE CURTISS-WRICHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL, WOLK BT OR FOR THE GOVER'MENT, WITHDUT THE THE ITEN DR PROCESS IS NOT OTHER WISE RE-SOMABLE AVAILABLE TO ENABLE THE Y PERFORMANCE OF THE WORK. OR UN RELEAST TO A FOREICH DOVERNMENT. S THE INTERESTS OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSU, E HEREOF SHALL BE SUB'L CT TO THE FORFGOING LIMITATIC IS THIS LEGEND SHALL BE MARKED ON ANT REPROLUCTION HERE F IN WHOLE OR IN PART.

Yawing Moment Produced with N

.

.

:

[&]quot;PURNER" D UNE ER UNITED STATES GOVERNMENT CONTRACT Nº AF33(615)-1940. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATID, OR DISCLOSED IN WHOLG OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS WRICHT COR-POR TON, EXCENT FOR & EMERGENC'R EFAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMALLY A VILABLE TO EMBLE TIMELY PERFORMANCI OF THE WORK, OR (11) RELEASE TO A FOREICN GOVERNMENT, AS THE INTERSTS OF "UNITED STATIX MAY REQUIRED FRAILE BE MARKED ON ANY RATIOR CASE "NA RELEASE, USE, DIPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONAL THE LIGHEN SHALL BE MARKED ON ANY RATIORDUCTION HEREOF IN WHOLE OR IN PART."

detailed forces on each blade section as a blade rotates through a full revolution. Consider a three-blade propeller operating at a forward velocity V_0 at a shaft angle of attack equal to A. Let equal the azimuth angle of the blade measured in the counterclockwise direction from the vertical position, as viewed from in front of the propeller. Thus, when the blade is on the down stroke and is horizontal, δ will be equal to 90°. On Figure 5 the velocity components are shown for the propeller at angles of δ equal to 0, 90, 270°.

The blade section rotation velocity is π nDx, where x is the fractional radius. This rotational velocity adds vectorially to the forward velocity component, giving a resultant velocity W as shown on Figure 5. At the 90° and 270° blade position the section experiences the full value of forward velocity V_o. Whereas at 0 and 180° the section is influenced by V_o cos A velocity component plus the rotational velocity π nDx. At any azimuth position the component of forward velocity affecting the section will be:

$$V\sqrt{(\sin^2 A) \sin^2 \delta + \cos^2 A}$$

The lift forces produced by a typical blade section of a propeller operating at a shaft angle of attack are shown on Figure 6 as a function of azimuth angle.

Each blade section will also be affected by a change in apparent angle of attack as it rotates, in addition to the change of the sectional velocity as determined by the above equation. The change in velocity and section angle of attack will cause a variation of lift produced as the blade rotates. When the propeller is operating at low shaft angles of attack, A, and the blade section is properly loaded so that positive or negative section stall is not encountered, the lift will vary approximately "sinusoidally" as the blade rotates through a complete revolution, see Figure 7. The drag of the propeller blade section will also vary. The manner in which the drag varies depends on the portion of the drag curve at which the section is operating. If the section angle of attack is high, variation of drag approaches a "sinusoidal" shape above and below the initial value; whereas, if the drag varies from the minimum value, the variation is sinusoidal shape, but will never go below the initial value.

The change in lift such as showr on Figure 7 resolved in the propeller plane adds vectorially and gives the in-plane force known as both "Radial force" or "Side force." The variation in blade section lift force such as shown on Figure 6, when resolved in the propeller thrust direction, results in a couple. If the propeller shaft angle is at a positive angle of attack, this couple is a yawing moment, its sign depending on the direction of rotation. A propeller rotating clockwise, i.e., viewed from the rear, a right hand propeller, will produce a yawing moment to the left when the shaft is at a positive angle of attack, see Figure 7.

FURNISHED UNDER UNITED STATES GOVERNMENT LONTRACT Nº AF33(615)-340 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUFLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORTION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORE BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (II) PELLASE TO A FOREIGN GOVERN'L." AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEACOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY PEPRODUCTION HEREOF IN WHOLE OR IN PART."

Figure 5. Propeller inflow velocity components.

67-2033

I.

4

"FURNELHED UNDER UNITED STATES GOVERNMENT CONTRACT NO. AF33(013)-3440. SHALL NOT BE EITHER RELEASED OUTSIDE THE COVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACT NE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-FORATION, EXCEPT FOR III EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCUSS IS NOT OTHERWISE RE-FORADLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (IN RELEASE TO A FOREXCH OVERNMENT, AS THE ITEM OR PROCUSS IS NOT OTHERWISE RE-SORADLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (IN RELEASE TO A FOREXCH OVERNMENT, AS THE ITEM OR PROCUSS IS NOT OTHERWISE RE-STATES MAY REQUES. PROVIDED THAT IN EITHER CASE THE RELEASE, USS, DUPLICATION OR DISCLOSURE HEPLOF SHALL BE SUBJECT TO THE FORECOING LIMITATIONS. THES LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN FART, "

Figure 6. Approximate blade lift variation with rotational position.

s *

FURNISHED UI LR UNITED STATES GOVERN'AENT CONTRACT No AFJ3(615)-JNO SHALL NOT BE EITHER RELEASED OUTSILE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR .N "ART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PREMISSION OF CURTISS WRIGHT COR-PORATION, EXC""T FOR (I) EMERGENCY AEPAIN OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWI'E RE-SONABLY AVAILABLE TO ENABLE TIM'LY PERFORMANCE OF THE WORK. OR (III RELEASE TO A FOREIGN GOVERNMENT AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE. PROVIDED T'AT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE "OREGOING LIMITATIONS THES LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART, "

e

Figure 7. Incremental force variation due to propeller angle of attack, A.

67-3045

[&]quot;FURNEMED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(415)-3940. SHALL NOT BE SITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF GURINS. WRICHT COR-FORATION, EXCEPT FOR () EMERGENCY REPAIR OR OVERHAUL WORK BY GOR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SORABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK: OR (II) RELEASE TO A FOREICH GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES KAY REQUERE. PROVIDED THAT IN SITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANT REPRODUCTION HEREOF IN WHOLE OR IN PART."

A left hand propeller will produce a yawing moment to the right when the shaft is at a positive angle of attack.

If the advance ratio and forward velocity are determined based on the velocity normal to the propeller disc, ${\tt V}_{\tt n},$ the power absorbed is nearly independent of the shaft angle. This is true as long as the propeller is operating near peak efficiency, blade sections do not stall, and the shaft angle of attack is less than approximately 5 degrees. Even if the mean drag is above the initial value when the propeller is operating at an angle of attack less than five degrees the overall efficiency is only slibtly influenced as the power required for drag is only 5 to 15% of the total power used. As the shaft angle of a tack is increased the drag variation as the blade rotates starts to become significant and the power increases with a corresponding drop of efficiency. The propeller data of reference 9 indicates that the thrust and power coefficients as measured along the shaft axis do not change in the range of shaft angle between 0 and 15°. Thus the loss of propeller efficiency at the shaft angle of 15 degrees is equal to the one minus cosine of the angle or 3.4%. This is considered of great importance as when the propeller is used to produce lift for cruise flight using radial force, it would be operating at a shaft angle of 3 to 4° with a corresponding loss of efficiency due to non-linear effects of less than 1%.

b. Theory of Normal Force and Yawing Moment

The radial force and yawing moment of an inclined propeller can be calculated by the method of strip analysis in the same manner as determining the thrust and torque of uninclined propellers. The main difficulty in analyzing the forces and moments produced by the inclined propeller is determining the inflow velocity at each azimuth position. Unlike a propeller operating with a zero shaft angle of attack where the wake is uniform, the inclined propeller has a wake that is varying in strength. This non-uniform wake is caused by the variation of circulation of lift produced as the propeller rotates in the inclined flow position. For this reason, when determining the inflow velocity at each position the local conditions cannot be used with conventional inflow calculations as this assumes that the wake is uniform and at a strength equal to that of the local conditions.

To calculate the inflow velocity and angle of an inclined propeller axis at the various blade azimuth positions, it was assumed that the strength of wake varied directly as the change in section

25

"FURMENED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3940. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUFLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS WRIGHT COR-PORATION. EXCEPT FOR (1) EMERGENCY REPAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE HEM OR PROCESS IS NOT OTHERWISE RE-SOMABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK. OR (1) RELEASE TO A FOREION GOVERNMENT, AS THE HE TREASED OTHER WISE RE-SOMABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK. OR (1) RELEASE TO A FOREION GOVERNMENT, AS THE SUBJECT TO THE FOREGOING STATES MAY REQUERE. PROVIDED THAT IN EITHER CLEEK FOR COULD THE WORL OR DISCLOSURE HEREOF SHALL BE SUMECT TO THE FOREGOING LIMITATIONS. THES LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART." lift as shown on Figure 6. The load distribution at each azimuth position and radial station was approximated by assuming steady state condition. Analysis could then be made by strip calculations, (5) and (6), to determine the load distribution and thus the strength of the wake at each azimuth positic and downstream position from the propeller. Thus, knowing the characteristics of the wake behind the propeller, it is possible to find the inflow velocity at each position using the solution of the Biot Savart law given in (7). The procedure for calculating the inflow velocity is given as follows:

From Figure 8,

 $V_n = V_o \cos A$ $V_t = V_o \sin A$

 $\tan \phi_0 = \frac{V_0 \cos A}{\pi nDx + (V_0 \sin A) \sin \delta} = \frac{V_n}{\pi nDx + V_t \sin \delta}$

 $J_{\text{Local}} = \pi x \tan \phi_0$

 δ = reference angle on the propeller disk¹

V = forward velocity

The strength of circulation, [, is found for various values of $\phi_{\rm c}$, where

$$\int = \frac{b C_L V_o}{2 \sin \phi_o}$$

It is desired to obtain the axial inflow-velocity, u, from (7) thus:

$$u = -\frac{1}{4\pi R} \int_{0}^{1} \sum_{p=0}^{p=B-1} \sum_{0}^{\infty} \frac{d\Gamma}{dx} - \frac{1}{x} \Delta Idx$$

where p = blade number, from 0 to (B-1), and where δ increments of 45° were taken.

a....

Note that (7) refers to δ as ϕ .

[&]quot;FURNEMED UNDER UNITED STATES GOVERNMENT CONTRACT NO. AF) (615)-340 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRICHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REFAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IN OT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE THELT PERFOLIANCE OF THE WOLK. OR (IN RELEASE TO A FORENCE GOVERNMENT, AS THE UTIL STATE OF THE UNITED STATES MAR REQUES, PROVIDED THAT IN EITHER CASE THE RELEASE. USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOINC LIMITATIONS THES LEGEND SHALL BE MARKED ON ANY REPRODUCT.ON MEREOF IN WHOLE OR IN PART."

٩,

Figure 8. Propeller blade velocity components.

2

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT NO. AF33(615)-3940. SHALL. NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTE! PERMISSION OF CURTISS-WRICHT COR-PORATION, EXCEPT FOR (1) EMERGENCY REPAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE TIEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELT PERFORMANCE OF THE WORK. OR (UN FLOR THE GOVERNMENT, STHEIN TRESTENT, STATES ANAT REQUER. PROVIDE THAT INTEREST OF THE UNITED STATES MAY REQUERE. PROVIDED THAT IN EITHER CASE THE RELEASE. USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

$$I = I_{(20)} = I_{(245)} = I_{(145)} = I_{(290)} = \dots$$

and $\frac{d\Gamma}{d\Gamma}$ is read at 8 of 22.5° or 57.5° . . .

For a complete analysis this procedure for calculating u must be carried out for each station along the blade for varying 5 and blade position.

A convenient way of comparing the results obtained as a propeller rotates is to evaluate \overline{w} , the ratio of the dispincement velocity of the vortex sheet at infinity to the forward velocity of the airplane. For the case of the inclined propeller, the forward velocity is taken as the normal velocity $V_{p} = V_{0} \cos A_{s}$ Calculations were made for the 0.7 radius where the propeller was at the reference angle of 0 and 90°. The following is the method used to calculate \overline{w} once u has been determined. (See Figure 8.)

$$a = \frac{\sqrt{(\pi nDx + V_t \sin \theta)^2 + V_n^2}}{2}$$

$$b = u + \frac{V_n}{2}$$

$$\phi = \frac{\sin^{-1} b/a + \phi_0}{2}$$

$$\overline{w} = \frac{2u}{V_u \cos^2 \phi}$$

dx

The following shows the results calculated at 0.7 radius for a three-blade propeller using blades with a 132 Activity Factor and IC_{Li} of 0.239. The propeller is inclined at an angle of 10° and operating at J = 2.3, $M_0 = 0.263$ and $\beta_{0.7k} = 50°.4$:

For a Varying Wake (Accual Conditions)	For a Uniform Wake	
.235	.171	
. 328	. 288	
	For a Varying Wake (Accual Conditions) W .235 .228	

"FURMENED UNDER UNITED STALES GOVERNMENT CONTRACT NO. AFFINIST "NO RULL NOT DE "ITHE? DEGEAGED DUTIEDE THE GOVERAMEN" OR USED, DUPLICATED, DE GISCLOSED IN WHOLZ UR IN DAAT FOR MANDIFACTURE DE MOOUREMENT, DTYW'UT THE RAITTEN PERMENDON OF CURLES WRICHT COP FORATION, EXCEPT FOR ILE MERCERNER REFLY: "IL ORMANCE WORY BY OR , OR 746 GOVERNALS.", B'NELL THE ITEM 15 PROCESS IS NO. OTHER WISF > 1 FORATION, EXCEPT FOR ILE MERCERNER REFLY: "IL ORMANCE WORY BY OR , OR 746 GOVERNALS.", B'NELL THE ITEM 15 PROCESS IS NO. OTHER WISF > 1 SOMABLE VALIANDA TO EIGRILE "MERCE PERF REMARKE OF THE WORL OR UNRELEASE TO A YOURTED OF VERDER.", AS THE IN FRES TO THE INTER FOR STATES MAT REDURE. "AUTORD THAT IN EITNER CASE THE RELEASE, I SE, UND SIGNADE OF MARTED SIGNADE." AUTOR SIGNADE LIMITATIONS THIS LEFERD SIGNALS DE MARKED ON ANY EXPRODUCTION HEREOF OF MACH OF IN MART."

The displacement velocity, \bar{J}_{2} is very nearly constant at $\delta_{0} = 0^{\circ}$ and 90° for the actual wake conditions, indicating a constant value over the entire disk. For the case where the wake is assumed uniform, based on the loadings at the azimuth angle under consideration, large differences in the displacement velocity ratio are observed for the $\delta_{0} = 0$ and 90°. Because the wake is changing as a function of time, this assumption is believed to be wrong and is therefore discarded. It was investigated, as early theories made the assumption of the loading only influencing the wake and thus the inflow velocity.

These assumptions are:

ĩ

- (1) The change in induced angle at various azimuth positions is negligible.
- (2) The slope of the lift curve is constant and has the value for the mean value of $C_{\underline{r}_{\underline{r}}}$ (obtained from ordinary strip calculation).
- (3) Sin $\emptyset = \sin \emptyset_0$ Light loading assumption
- (4) The radial force contribution of blade section drag is negligible.

The local lift contribution for a station is

$$dL = 1/2\rho W_0^2 b C_L dr$$
(1)

The local incremental lift contribution for a station is then

$$\Delta dL = \frac{1}{2}\rho b \left[\left(W_{o} + \Delta W \right)^{2} \left(C_{L} + \Delta C_{L} \right) - W_{o}^{2} C_{L} \right] dr \qquad (2)$$

$$\Delta dL = \frac{1}{2}\rho^{5} \left[2W_{O} \Delta WC_{L} + \Delta W^{2}C_{L} + 2W_{O} \Delta W_{S} \Delta \sigma + \Delta W_{a}^{2} \Delta \sigma + W_{O}^{2} \alpha \Delta \sigma \right] dr \qquad (3)$$

$$= \frac{1}{2}\rho 5 \Delta W^{2} \left[C_{L} \left(\frac{2W_{0}}{\Delta W} + 1 \right) + \alpha \Delta \sigma \left(\frac{W_{0}}{W} + 1 \right)^{2} \right] dr$$
 (4)

From Figure 9(c) the following relations are formed:

$$\cot \theta_{0} = \frac{\pi r D x}{V_{0} \cos A}$$

$$\cot \theta_{0} = \frac{\pi n D x + V_{0} \sin A \sin \delta}{V_{0} \cos A} = \cot \theta_{0} + \tan A \sin \delta$$

$$W_{0} = V_{0} \cos A \csc \theta_{0}$$

TUR GEVERD INDER NITED FLATE OUVERIMENT CONTRACTING AFFILISION INT NE RETHER BELEASED OUTSIDE THE GO VERDAMT, OF VERD DUPLICATED, UR DISCLOSED IN WIR LE DRIVE PART FOR MAN, ACTURE CA PROVI REMENT, WITHOUT THE WRITTEN PERMISSION OF "LETINS WRITHE CR PORATON GEVERT FOR 16 EMERGENCY REPRIE OR OVERFALL WORK BY THE GOVERNMENT, WHERE THE THE THE LES FROM STOLES IN CONSTITUTION GEVERT FOR 16 EMERGENCY REPRIE OR MANNE OF THE WORK, OR HIT SLAASE TO A FOREICH GOVERNMENT, AS THE UNTRASTO OF "ME UNITED SCALET A VALURABLE. TE DA FLETINE: LINGELORMANCE OF THE WORK, OR HIT SLAASE TO A FOREICH GOVERNMENT, AS THE UNTRASTO OF "TO THE WRITED STATES MAT REQUIR I PROVIDED THAT IN REFITER GASE THE KELLASE. DE OF PLOATION OR DISCLOSURE HEREOF SHALL BE DE BIR. TO THE FOREICH G SCALET AT REQUIR I PROVIDED THAT IN REFITER GASE THE KELLASE. DE OF PLOATION OR DISCLOSURE HEREOF SHALL BE DE BIR. TO THE FOREICH G SCALET AT REQUIR I DED THAT IN REFITER GASE THE RELEASE. DE OF PLOATION OR DISCLOSURE HEREOF SHALL BE DE BIR. TO THE FOREICH G SCALET AT REQUIR I DED THAT IN REFITER GASE THE RELEASE. DE OF PLOATION OR DISCLOSURE HEREOF SHALL BE DE BIR. TO THE FOREICH G SCALET AT AND THE THE DER THAT OF ANT REPORT OF THE REASE THE REFERENCE FOR THE PROVIDED THAT IN THE DEFENSE OF THE FOREICH G SCALET AT A DEFENSE. DE DEFENSE OF A STATE OF DE CONTRACT OF THE PROVIDED THAT OF THE FOREICH G

Figures 9. Three dimensional distribution of velocity components.

87-3024

and the second sec

w ...

۲

ς,

ŝ

$$W = V_0 \cos A \csc \theta'_0$$

$$\Delta W = W - W_0$$

$$\Delta W = V_0 \cos A (\csc \theta'_0 - \csc \theta_0)$$

$$\frac{2W_0}{\Delta W} + 1 = \frac{\csc \theta'_0 + \csc \theta_0}{\csc \theta'_0 - \csc \theta_0}$$

$$\frac{W_0}{\Delta W} + 1 = \frac{\csc \theta'_0}{\csc \theta'_0 - \csc \theta_0}$$

$$\Delta \alpha = \theta_0 - \theta'_0$$

.

Substituting these values into equation (4) gives

$$\Delta dL = \frac{1}{2}\rho b \left\{ V_{o} \cos A \left[\csc \theta_{o}^{\dagger} - \csc \theta_{o} \right] \right\}^{2} \left\{ C_{L} \left[\frac{\csc \theta_{o}^{\dagger} + \csc \theta_{o}}{\csc \theta_{o}^{\dagger} - \csc \theta_{o}} \right] + \frac{1}{2} + a(\theta_{o}^{\dagger} - \theta_{o}^{\dagger}) \left[\frac{\csc \theta_{o}^{\dagger} - \csc \theta_{o}}{\csc \theta_{o}^{\dagger} - \csc \theta_{o}} \right] \right\} dr$$

$$\Delta dL = q b \cos^{2} A \left[C_{L} \left(\csc^{2} \theta_{o}^{\dagger} - \csc^{2} \theta_{o} \right) + a(\theta_{o}^{\dagger} - \theta_{o}^{\dagger}) \left(\csc^{2} \theta_{o}^{\dagger} \right) \right] dr$$

$$\Delta dL = q b \frac{\cos^{2} A}{\sin^{2} \theta_{o}^{\dagger}} \left[C_{L} \left(1 - \frac{\sin^{2} \theta_{o}^{\dagger}}{\sin^{2} \theta_{o}^{\dagger}} \right) + a(\theta_{o}^{\dagger} - \theta_{o}^{\dagger}) \right] dr$$

$$\Delta dL$$

$$= q b \frac{\cos^{2} A}{\sin^{2} \theta_{o}^{\dagger}} \left[C_{L} \left(1 - \frac{\sin^{2} \theta_{o}^{\dagger}}{\sin^{2} \theta_{o}^{\dagger}} \right) + a(\theta_{o}^{\dagger} - \theta_{o}^{\dagger}) \right] dr$$

$$\Delta dL$$

$$= q b \frac{\cos^{2} A}{\sin^{2} \theta_{o}^{\dagger}} \left[C_{L} \left(1 - \frac{\sin^{2} \theta_{o}^{\dagger}}{\sin^{2} \theta_{o}^{\dagger}} \right) + a(\theta_{o}^{\dagger} - \theta_{o}^{\dagger}) \right] dr$$

$$\Delta dL$$

From Figure 9, the radial force component in the propeller plane is seen to be $\Delta dil \sin \theta'_0$. And From Figure 9(b), the incremental normal force is seen as Δdl sin θ'_0 sin 8. By substitution in Equation (5),

$$\Delta F_{\rm N} = qb \frac{\cos^2 A \sin \vartheta}{\sin \vartheta_0'} \left[C_{\rm L} \left(1 - \frac{\sin^2 \vartheta_0'}{\sin^2 \vartheta_0} \right) + a(\vartheta_{\rm C} - \vartheta_0') \right] dr \qquad (6)$$

~

31

FURNISHED UNDER UNITED STATES GOVERIMENT CONTRACT No. AFJ3(615)-3440. SHALL NOT BE EITHEN RELEASED OUTSIDE THE GOVERIMENT, OR USED, DUPLIC: TED, OR D'SCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCURFMENT, WITHOUT 1'HE WRITTEN PERMISSION OF CURTISS WRICHT COR-PORATION, EXCEPT FOR (1) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THIS GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONADLY AVAILABLE TO SHABLE TOERFORMANGE OF THE WORK, "S (11) RELEASE TO A FOREIGH GOVERNMENT, HIE INTERSTS OF THE UNTER ENTE STATE'S MAR REQUIRE. FROVIDED THAT IN BITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HE GOF SHALL BE SUBJECT TO THE POREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN W'OLE OR IN PART."

$$N = \frac{\vartheta + \frac{B-1}{B}}{2\pi} \frac{2\pi}{J} \int_{x}^{1} \Delta F_{n} R dx}{\lambda F_{n} R dx}$$

$$N_{AV} = \frac{B}{2\pi} \int_{x}^{\vartheta + \frac{2\pi}{B}} F_{n} d\vartheta$$

This section will consist of a simplification of the method formed in the previous section. From this section a plot of dL versus "&" showed that the variation was approximately sinusoidal. By making the following assumptions, a shorter, but still accurate method for finding radial force will be developed.

Assumptions;

い たちず、まちくろ いいきてきいているこ

- (a) ΔdL varies cinusoidally during a revolution.
- (b) All of the lift curve slopes may be represented by a single value.
- (c) Small angles may be approximated by their tangents.
- (d) Products of differencials are acgligible.

By removing higher order differentials from Equation (3), the equation becomes

$$\Delta dL = 1/2 \rho b \left\{ 2 N_0 \Delta C_L + N_c^2 \rho \Delta \sigma \right\} dr \qquad (7)^2$$

From Figure 9c the following is obtained:

$$W_{0} = \frac{\hat{V}_{0} \operatorname{cor} A}{\sin \theta_{0}}$$

$$W \cong V \sin A \cos \hat{Y}$$

$$\tan \Delta \alpha = \frac{V \sin A \sin \theta_{0}}{W_{0} + V \sin A \cos \theta_{0}} \cong \Delta \alpha$$

The following are obtained by combining terms.

$$W_0^2 \Delta \alpha = \frac{V \sin A \sin \phi_0 W_0^2}{W_0 + V \sin A \cos \phi_0} = \frac{V^2 \left(\frac{\sin 2 A}{2}\right)}{1 + \tan \left(\frac{A \sin 2 \phi_0}{7}\right)}$$

Note that sin δ is omitted from these equations; this is so because only the peak velue at 90° is used and sin 90° = 1.

FURNISHED ("MURE UNITED THATES GOVERAMENT CONTRACT NO AF33(61"-1440 SHOLL NOT BE SITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, OUPLICATED, OR DISCLONED IN WHOLE OR IN P.AT FC? MANUFALTURE OF PSOCUREMENT, WITHOUT THE WRITTEN PERMISHON OF CURTISS-WRIGHT COR-PORATION EXCEPT FOR DESERBIGHT, REPARA OR OVERHALL FORK BY UNE OF THE COVERNMENT, WHERE THE "EM OR PROCESS IS NOT CTHEWISE RE-SOMELT AVAILABLY TO ENABLE TIMELY PERFORMENCE OF THE WORK. OR OT THE COVERNMENT, WHERE THE "EM OR PROCESS IS NOT CTHEWISE RE-SOMELT AVAILABLY TO ENABLE TIMELY PERFORMENCE OF THE WORK. OR OT THE COVERNMENT, WHERE THE "EM OR PROCESS IS NOT CTHEWISE RE-SOMELT AVAILABLY TO ENABLE TIMELY PERFORMENCE OF THE WORK. OR OT DESCLOSURE HEREOF SHALL BE SUFFECT TO THE FOREWORK STATES MAY REGISTED THAT IN STHER CASE THE RELEASE USC. DUPLICATION OF DESCLOSURE HEREOF SHALL BE SUFFECT TO THE FOREWORK LEMITE THING. THIS LEGEND SHALL BE MARKED ON ANT REPRODUCTION MEREOF IL WHOLE OR OF PARTA."

$$W_{0} \Delta W = \frac{V \cos A V \sin A \cos \gamma}{\sin \phi_{0}} = \frac{V^{2} (\frac{\sin 2 A}{2}) \cos \gamma}{\sin \phi_{0}}$$

By substituting these quantities into Equation (7), dL is obtained

$$\Delta dL_{90^{\circ}} = qb \frac{\sin 2A}{2} \left\{ 2C_L \left(\frac{\cos \gamma}{\sin \phi_0} \right) \frac{a}{1 + \tan \left(\frac{A \sin 2\phi_0}{2} \right)} \right\} dr$$

From Assumption 1, $\Delta dL = \Delta dL_{90}$ sing, and

from Figure 9(b), $\Delta N = (\Delta dL_{90^{\circ}} \sin \delta) \sin \phi \sin \delta$

$$\Delta N = \Delta dL_{90^{\circ}} \sin \phi \int_{0}^{2\pi} \frac{\sin^{2} \delta d\delta}{2\pi} = \frac{\Delta dL_{90^{\circ}} \sin \phi}{2}$$

$$dN = \frac{1}{2} qB_{0} \frac{\sin 2A}{2} \left\{ 2(\frac{C_{L}}{\sin \phi_{0}}) + \frac{a \sin \phi}{1 + (\frac{a \sin \phi}{2})} \right\} dr$$

$$(8)$$

The final equation has a factor of 0.95 to insure conservative values

$$N = 0.95 \frac{B}{2} qR \frac{\sin 2A}{2} \sum_{o}^{x=1} b \left\{ \frac{2C_{L} \sin \phi \cos \gamma}{\sin \phi_{o}} + \frac{a \sin \phi}{1 + \frac{\tan A \sin 2\phi_{o}}{2}} \right\} \Delta_{n}$$
(9)

Note that although the blade chord is a function of x for a given blade the value of N is constant as long as $b\Delta x$ remains constant.

The above equation has been programmed on IBM equipment. In a similar manner the shaft moment (yawing) generated by the propeller operating at an angle of attack can be derived.

The equation is:

$$M = 0.95 \frac{B}{2} qR \frac{\sin 2A}{2} \sum_{x=0}^{1} br \left\{ \frac{2C_L \cos \emptyset}{\sin \phi_0} + \frac{a \cos \emptyset}{\frac{\tan A \sin 2\theta_0}{2}} \right\} \Delta x \quad (10)$$
33

"FURNESHED UNDER UNITED STATES GOVENNMENT CONTRACT Nº AF33(615)-340. SHALL NOT BE EITHER RELEASED O'JTEDE THF COVERNMENT, OR USLD, D'SPLICATED, CR DISLOSED IN WHOLE "R IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PEAMISSION OF CURTISS. WRICHT COR-PORATION, EXCEPT FOR (I) ENLEGENCT REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SDARDLY AVAILABLE TO ENABLE THMELT PERFORMANCE OF THE WORK. OR (U) RELEASE TO A FOREIGN GOVERNMENT, AS THE ITEM FOR THE ITEM FOR THE ITEM FOR THE INTERDIST STATES MAY REGISTE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS, THES LECEND SHALL BE MARKED ON ANT REPRODUCTION HEREOF IN WHOLE OR IN PART." It can be shown that for small values of A, Equations (9) and (10) can be reduced to

$$\mathbf{F}_{n} = \frac{K^{1} BAq (AF) D^{2}}{K_{1}} \sin \beta_{0.7} (a_{0.7} + 2C_{L_{0.7}} \cot \beta_{0.7})$$
(11)

2

$$M = \frac{K^{1}BAq(AF)D^{3}}{K_{1}} \cos \beta_{0.7} (a_{0.7}^{+2C} + C_{L_{0.7}}^{-1} \cot \beta_{0.7})$$
(12)

where

ようでしておいているななないの 、 との言語

A DESCRIPTION OF THE OWNER OWNER 出分子

State of the second second

ĸ	=	1.1
AF	3	activity factor
D	36	propeller diameter
$\beta_{0,7}$	=	blade angle measured at the 0.7 blade radius
C _L	-	operating lift coefficient
ĸī	×	450,000

The torque and thrust of propellers operating at an angle of attack can be calculated by the method and data given in (5) and (6). The induced effects are determined by the advance ratio, normal to the propelle" disk and the given power coefficient or

$$J_n = J \cos A$$

The theory developed on the preceeding pages assumes that all sections of the propeller are operating on the straight portion of the lift curve and below the positive and negative stall angle. Further the theory assumes that the drag is small in comparison to the lift and can be neglected. For these reasons the theory outlined is considered to be accurate only up to a shaft angle of approximately 30 to 45 degrees; at higher angles it is necessary to use test data, and this is what was done in determining the performance, loads, and stability of X-100 and X-19 aircraft. It is recognized that this situation is unsatisfactory, but satisfactory theories and section test data were not available.

Although it was necessary to make several assumptions in the course of the development of a theory for calculating properler radial force and some of these assumptions may appear to

FURNISHED UNDER UNITED STATES COVERNMENT CONTRACT NO AF33(61% 40 SNALL NOT RE EITYER RELEASED UUTSIDE THE GOVERNMENT, CRUSED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANY FACTURE OF SROUDP MEN., WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-DORATION, EXCEPT FOR (II EMERGINGY PERMIS REVER AND FACTURE OF SROUDP MEN., WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-DORATION, EXCEPT FOR (II EMERGINGY PERMIS REVER AND FACTURE OF SROUP MEN., WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-DORATION, EXCEPT FOR (II EMERGINGY PERFORMANCE OF THE WORK OF SROUP MENT WHERE SHE ITEM OF PERCEPTION OF CURTISS RE-NONABLY AVAILABLE 10 THABLY TIMELY PERFORMANCE OF THE WORK OR UNDER AND A FOR CHARMENT. WHERE STATES THE OFTST STATES MAY REQUIRE CRUE PERFORMENT AS YES OFTST UNDER SAGE TO THE FURLE CONS LIMITATIONS. THIS SECOND SMALL RE MARKED CRI ANY RANDOULD CON HEREOFTS WINDER OF SROUP FAT.

be crude, the results of the calculations in general agree very closely with test data, see Figures 13 to 18 and Table II. The largest difference between the calculated and test data occurs at a 15 degrees where the calculated level of radial force coefficient is 10 to 15% above the measured level. At the higner shaft angle of attack better agreement is obtained. It is believed that since good agreement was obtained with other test data at the lower angles, Table II, that the test data at the 15° angle for the X-100 propeller is in error.

At the time of the development of the X-19 and X-100 airplanes methods were not available for calculating propeller radial force at shaft angles above 45° as the position and shape of the vortex shed in the wake could not be found. Since the shed vortices and their strength determine the inflow velocity and thus, the angle of attack of the blade section, it is apparent that the radial force could not be calculated at these high angles. This difficulty has been one of the major problems with propellers and rotary wing aircraft, and the problem is now in process of solution.

3. APPLICATION OF PROPELLER RADIAL LIFT TO V/STOL AIRCRAFT

a. General

The radial lift developed by propellers must be properly accounted for in the early design phase of any aircraft, and especially an airplane where the propellers operate through a high range of tilt angles. By the proper application of propeller radial lift a VTOL aircraft can be improved whether it be a tilt propeller single wing, a tilt wing, a tandem tilt propeller or a deflected propeller slipstream type. An improvement in performance will be obtained as the propeller supplies lift due to radial force which reduces wing stall tendencies. The advantages of radial force have been studied only for the tilt propeller fixed wing type. Therefore the application of radial force and the methods of optimization apply only to this type aircraft.

When an airplane is configured as a VTOL vehicle the wing is no longer primarily needed for lift at the take-off and landing conditions. Thus it can be optimized only for the other critical flight conditions.

If the aircraft is of the transport category the wing would normally be optimized for operation at the primary design cruise condition in accordance with classical aerodynamic techniques. Items such as weight, aspect ratio and wing area would be considered in such an optimization procedure.

[&]quot;I JENISARD UNDER UNDERN STATES GOVERNMENT CONTRAUT NO EXIST SHOW. SHALL NOT BE EVERY RELEASED OUTSED THE SOMERNMENT, OR USED DUPLICATED, OR DISCIPCIEL DI WHOLE DA IN PART FOR MANUF/C"URE OR PROSE REMAINT. WITHOUT THE WRITTEN PERMISSION OF CURTISE WRICH CO2-PORATION, EXCEPT FOR (I) EXERCISELY REPAIR OR OVERLAUL WORK BY OR FOR THE LANDERNET WHERE THE THEM OR FACCESS IN NOT UTHER WISE RE-SOMBLY AVAILABLE TO EMALLE THALLY PERFORMENTE OF THE WORK. OR (III) RELEASE TO A FORSIGN (OVERNMENT, AS "ME INTERE TO BY THE UNITED STATES MAY REDURD." PROVIDED THAT IN EITHER CASE THE RELEASE UND, OUPLICATE NO C DISCLOSULE XEREOF FMALL BE SUBJECT. "O THE FOREGORIE LIMITATIONAL THIS LIGERD SVALL BE MARKED ON ANY REPROSECTIO FHEREOF IN WHILE OR IN PLAT."

To generate the required thrust at hover even with high levels of Figure of Merit, the propellers used on tilt wing and tilt propelier V/STOL aircraft wil! be larger than for the same weight conventional airplane. The propellers of V/STOL aircraft will operate at section lift coefficients near the optimum (and have large blade areas) whereas the propellers of conventional aircraft operate at overloaded conditions and high section lift coefficients. Since the propeller can be used to generate lift at the cruise flight condition, some of the wing area of the airplane normally chosen for peak cruise performance can be eliminated. With a fixed propeller geometry the lift produced is a function of the flight dynamic pressure, "q", and the propeller shaft angle of tilt A. The propeller blade stress is also proportional to "Aq" and as a result this has been an important design parameter for conventional propellers. At any flight condition the lift and drag developed by the propeller operating at a positive angle of attack is found from the equations:

$$L = N \cos A + A T \sin A$$
(13)

$$D = N \sin T_n (1 - \cos A)$$
(14)

where

$$N =$$
 the ra force - the actual in plane force
 $T_n =$ the p .r thrust normal to the propeller disk.

Equation 13 and α sume that the loss of thrust due to the shaft angle inclination, well as the inclination of the normal force in the direction of the draw is charged to drag. Propeller thrust must be used to overcome the strange. The lift drag ratio of the propeller operating as an angle of attack is then from equations 13 and 14

$$\frac{L}{D} = \frac{N \cos A + T_n \sin A}{N \sin A + T_n (1-\cos A)}$$
(15)

At low shaft angle this equation shows that the L/D becomes very high and even approaches infinity as a limit as A approaches C. Of course N approaches O as A approaches O so this is of importance only at finite values of N. Thus by choosing the proper shaft angle, the propeller can be made to operate at any desired value of lift-drag ratio desired. However, as the shaft angle is reduced the radial force becomes smaller since, by Equation (11) N is a direct function of A.

[&]quot;FURNESHED UNDER UNITED JTATES GOVERNMENT CONTRACT NO AFIS/031-1940, 55/1L NOT BE EITHER RELEASED OUTBDE THE COVERNMENT, OR (SED DUFLICATED, OR DISCLOSED IN WHOLE (R) IN PART FOR MANUFACTURE OR PROCUREMENT. WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRICHT COR-PORATION, EXCEPT FOR 'D EMERGENCY REPAIN OR OVERHALL WORK DE NF FOR THE GOVERNMENT, WHERE THE ITEM OF PROCESS IS NOT OTHER WISE RE-SOMBLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK. DE HOR LOVER WHENT, SHEET THE ITEM OF PROCESS IS NOT OTHER WITED STATES MAY REQUEE. PROVIDED THAT IS ETHER ALLE THE EVEN OF THE WORK. DE USE, DUFLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LEGEND SHALL BE MARKED OF ANT REPRODUCTION MERKOF IN WHOLE OR IN PART."

b. Application In Cruise

To obtain the maximum lift-drag ratio with minimum wing area, the propellers on the tilt-prop fixed-wing type V/STOL aircraft should operate at a shaft angle that gives a L/D equal to that of the wing When the wing area is reduced by the use of radial lift the propellers serve two purposes which help keep the weight empty of the aircraft low. Also, improved vertical take-off performance is obtained as the download losses are reduced due to the reduction of area under the propeller.

In determining the proper wing area and aspect ratio to be used with propellers producing radial lift many other factors must be considered and all the important flight conditions must be analyzed where high lift-drag ratio must be obtained.

For instance when reducing the wing area to a minimum the wing structure can become a problem as the spar box depth becomes limited by the wing thickness ratio necessary to obtain low drag and high values of critical Mach number. In the case of the X-19 the thickness ratios of the front and rear wings were 21 and 18%, respectively, and obtaining a good structure became a major problem. On the front wing it was necessary to use 1/4 inch skins of aluminum alloy to obtain the required characteristics.

With small wings, problems are also encountered in providing the necessary area or lift coefficient range for the flight control surfaces. In the case of the X-19 the area available for the elevators and ailerons was marginal and still have an adequate structure. If it had been necessary to increase the control power on this airplane, considerable difficulty would have been encountered. The wings of the X-19 were designed with a high loading as the airplane was originally intended to operate at high speeds and fairly low altitude.

The X-19 wing loading based on a weight of 13,660 lb. was approximately 85 psf considering the area of both the front and rear wings. At the design cruise condition of 271 knots EAS the front propellers are designed to operate at a shaft angle of 2.8° which gives an L/D of 29 for the propellers. Even at a speed of 230 knots EAS the propellers operate at a lift drag ratio of 12 which is above the maximum of the entire aircraft. Note that at the 230 knot condition a reduction of the propeller tilt angle would reduce the propeller liftslightly and improve the overall L/D. It would therefore appear that it should be possible to select the propeller shaft angle at any flight condition to obtain the maximum performance.

[&]quot;FULNESSED UNDER UNITED STATES GOVERNMENT CONTRACT N. AF33(615)-3940. SNALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED. DUPLICATED, CR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COM-PORATION, EXCEPT FOR (II EMERGENCT REFAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RF-SONABLY AVAILABLE TO EMASLE TIMELY PERFORMANCE OF THE WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RF-SONABLY AVAILABLE TO EMASLE TIMELY PERFORMANCE OF THE WORK BY OR OR ON ELEMANT ON COVERNMENT, AS THE INTERESTA OF THE UNITED STATES MAY REQUIRE: FROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DESCLOSURE HEREOF SHALL BE SUBJECT TO THE PORECONG LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION MEREOF IN WHOLE OR IN PART."

c. Application in Transition

The wing configuration chosen for high performance at the cruise flight conditions must be adequate to handle the lift requirements at the other flight conditions. One criteria that may affect the wing area requirements is the speed at which the propeller must be tilted down and locked. No specification has been established to define such a speed and there does not appear to be any factor other than mechanical that should establish such a limitation. In the case of the X-19 the speed for conversion was 160 knots, and at a gross weight of 13,660 lb. the angle of attack required was 13.5°. It is believed that the speed for conversion should have been higher with a corresponding lower angle of attack.

Unlike a conventional airplane where the wings supply all the necessary lift for flight, a VTOL airplane must have direct lift produced from the expenditure of power to supplement the wing lift. This lift must be supplied in ever increasing amounts as the speed is reduced toward zero until at hover all the lift is supplied by a direct conversion of power and thrust.

When the propeller is tilted up the required lift, over and above that supplemented by the wing, is obtained from the thrust and the radial force vector. The variation with speed of the wing lift, thrust and radial force is shown on Figure 10 for the X-100, a VTOL aircraft with a wing loading of 160 psf. At the low flight speeds, high tilt angles must be maintained so that the required lift can be generated by the propeller thrust. As the wings pick up lift from forward motion of the aircraft, the tilt angle can be reduced so that the propeilers start to generate lift through radial force. This builds up to a peak of approximately 26% of the required lift at 160 MPH.

The variation of lift between the front and rear propellers and wings is shown for an equilibrium transition of the X-19 on Figure 11. As in the case of the X-100 the propellers are supplying a large portion of the lift requirement from radial force at speeds of 100 to 160 knots.

For lifting-propeller VTOL aircraft the tilt angle necessary at any given speed will be dependent on the following: -

- (1) Wing loading
- (2) Propeller disk loading
- (3) Radial propeller force
- (4) Power

with the will be used

Aints

÷

-

- (5) Aircraft angle of attack
- (6) Acceleration

At a given speed and tilt angle, an increase in propeller radial lift will reduce the wing area required, or the aircraft angle of attack, or the propeller tilt angle while increasing the power.

³⁸

[&]quot;FURNERED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(4):5)-344" SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROLURFMENT, WITHOUT ISE WRITTEN PERMISSION OF CURTISS. WRICHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT UTHER WISE RE-SONABLY AVAILABLE TO EMBLE THERLY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT AS THE INTERESTS OF THE UNITED STATES MAY REQUELE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE MEREOF SHA"... BE SUBJECT TO THE FOREGOING LINITATIONS. THES LEGEND SHALL BE MARKED ON ANY REPRODUCTION MEREOF IN WHOLE OR IN PART."

Figure 10. Curtiss-Wright X-100 distribution of propeller and airplane component lift distributions through equilibrium transition; G.W. 3500 lbs., 1240 RPM, $\alpha_{fus} = 5^{\circ}$. Determined from model wing tunnel test data.

"FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(613-3940 SHALL NOT BE EITHER RELEASED OUTHIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRICHT COR-PORATON, EXCEPT FOR (II SMERGENCY REPAIR OR OVERHAUL WORE BY OR FOR THE GOVERNMENT, WHERE THIT'LEN PERMISSION OF CURTISS. WRICHT COR-SOMADLY AVAILABLE TO EMABLE ITHELY PERFORMANCE OF THE WORK. OR (III RELEASE TO A FOREGORT, STHEE UTHERST OF THE UNITED STATES MAY REQUIRE: PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF WHALL BE SUBJECT TO THE FOREGORD LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PAAT."

Figure 11. X-19, distribution of propeller and airplane component lift distributions through equilibrium transition; G.W. 12300 lbs. Determined from powered model wind tunnel test data.

67-2036

•

40

"FURNEMED UNDER UNITED STATES COVENNMENT CONTRACT Nº AFUMIS)-JMF SNALL NOT BE ETHER RELEARED OUTSDE THE COVENNMENT OR USED, DUPLICATED, OR DISCLOSED IN WHOLE UN UN BAR / FOR MANUFACTURE OR FROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS WALCHT COR-FORATION, EXCEPT FOR 10 EMERGENCY REFUR CR OVERHALL WORK BY OR FOR THE COVENNMENT, WERE THE ITEM OR PROCESS IS NOT OTHER WISE RE-BONABLY AVAILABLE TO ENABLE TIMELT PERFORMANCE OF THE WORK, OR GUNGELASE TO A FOREICH COVENNMENT, AS THE INTERSTS OF THE UNITED STATES MAY REQUIRE. FROVIDED THAT IN EITHER CASE THE RELEASE, USE, DOPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FORECOINC LIMITATIONS. ... HES LEGEND SHALL OF MARKED ON ANY REPERCUICTION HEREOF IN WHOLE OR IN PART." * • 2 *

į

Since the power remired is luss than that necessary for hovering, the increased radial lift is more than needed. By increasing the drag vector the power can be added to increase torust and therefore lift, and so in a secondary way the radial force drag component is important in supplying life to the overall configuration.

It should be realized that if low speeds, when the propeiler is producing high radial force at a high angle of attack, the LOD of the propeller is poor. For instance at 45° the L/D of the propeller radial force is only one However, during the conversion processor the lift that can be produced is much more important then LoD since little time, and therefore fuel, is required.

It is apparent that if the schedule of shaft angle of attack and d were property chosen, the conversion could be accomplished without the wing. The speed at which conversion would be completed would be high: of course trim moments still have to be provided. The wing than does not have to be chosen to provide lift, if the propellers can be operated at any Aq. This is the problem, as the stresses in the blades are a direct function of the Aq incountered (set Section 5.9).

It is therefore necessary to examine the wing area and propeller Aq in combination to le sure that the total wing lift is adequate to keep the propeller lift and stress requirements within bounds.

The prometter forces produced during the conversion conditions can be reduced for coefficients similar to lift and drag instead of the usual propeller thrust and normal force coefficients as follows:

$$C_{L_{P}} = \frac{T \sin A + N \cos A}{q S_{P}}$$

and

$$C_{X_p} = \frac{T \cos A - N \sin A}{q^{S_p}}$$

where T = shaft thrust; N = normal force; q = dynamic pressure, $1/2\rho V_0^2$; S_p = prop disk area; and A = shaft angle of attack.

At a given propeller advance ratio, C_{L_p} and C_{X_p} can be plotted against shaft angle of attack in a manner similar to that of a wing (Figure 12). Unlike a wing, however, the variation of the propeller lift and total thrust forces have no sudden force breaks. For this reason it is believed that with a properly designed VTOL aircraft the propellers will not cause any sudden breaks in the lift at any flight conditions. As a result the conversion characteristics should be smooth for the tilt propeller V/STOL

41

"FURREMED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF31614)-1944. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CORTSE-WRIGHT COR-PORATION, EXCEPT 3 OR 00 EMREGENCY REPAIR OR OVERHALL WORK BY DO FOR THE GOVERNMENT, WHERE THE TIEM OR PROCESS IS NOT OTHERWISE RE-SOMBLY AVAILABLE TO EMBLE THELT PERFORMANCE OF THE WORK OF DO FOR THE GOVERNMENT, WHERE THE TIEM OR PROCESS IS NOT OTHERWISE RE-SOMBLY AVAILABLE TO EMBLE THELT PERFORMANCE OF THE WORK, OR 400 RELEASE 10 A FOREICH GOVERNMENT, AS THE DITELETS OF THE UNITAD STATES MAY REQUEE PROVIDED THAT IN EITHER CASE. THE RELEASE, USE, DUPLICATION OR DISCLOSURE MEREOF SHALL BE SUBJECT TO THE FOREGOING. LIMITA HOURS - THIS LEGIND SHALL BE MARKED OF ANT REPRODUCTION NOR PEOF IN WHOLE OR IN PART, "

* *2*

.

Figure 12. Propeller lift and accelerating thrust variation with "A" angle; wind axis coordinates.

67-2040

: *

うちゃう み ちょうないのかい ういとう

1. 12[°] 2. ¹.

and a set of the set o

ź

二、元学びの

.

.

.

-

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF33MISH-344C SHALL NOT BE EITHER RELEASED OF TSIDE THE GOVERNMENT, OR USED DUPLITATED, OR DISCLOSED D. WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-FORATION, EXCEPT FOR US EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCUSS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK OR (US FOR THE GOVERNMENT, WHERE THE ITEM OR PROCUSS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK OR (US FOR THE GOVERNMENT, WHERE THE ITEM OR PROCUSS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK OR (US FOR THE GOVERNMENT, WHERE THE ITEM OR PROCUSS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK OR (US FOR THE GOVERNMENT, WHERE THE ITEM OR PROCUSSION THE UNITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART, " aircraft. This was demonstrated with the X-100 aircraft.

d. Summary

In summary the propeller operating with radial force makes it possible to design a VTOL airplane incorporating the wing area necessary for optimum cruise flight at any condition or series of conditions. This, coupled with the stall free characteristics with changes in shaft angle, make the high radial lift propeller a useful and efficient device for V/STOL airplanes.

4. CORRELATION OF CALCULATED AND TEST RESULTS

Using the theory given in (6) the radial force was calculated for a number of points as shown in Table II and compared to the test data of (8) and (9). As noted from Table II fair agreement between the test and calculated points are obtained for shaft angles up to 20° . Further comparisons between the data obtained with the X-100 propeller, (9), are shown on Figures 13 to 18. From these comparisons it appears that fairly good accuracy is obtained by calculation up to angles of 45° . At angles above 45° the tests indicate higher levels of radial force than calculated.

Although good success was obtained in the calculation of radial force, it was still not possible to calculate the level of force at angles above 45° with any degree of accuracy. For this reason when determining the performance of the X-19, propeller test data were used.

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMIMBON OF CURTURE WRIGHT COR-PORATION, EXCEPT FOR (II SMERGENCY REPAIR OR OVERHAUL WORK & Y OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK & Y OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK & Y OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK & Y OR FOR THE GOVERNMENT, AS THE INTERESTS OF THE UNTER STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USF, FUPLICATION OR DISCLOSURE HEREOF SMALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

400 # nD								
J	Ср	۸°	N, IBM	N, Test				
2.3	.248	10°	403	410				
2.15	.129	10°	82.2	88				
1.15	.129	20°	161	193				
1.15	.247	10°	97.5	102				
1.15	.247	20°	193	224				
2.3	.210	10°	396	444				
2.3	.210	20°	767	975				
2.3	.248	10•	403	453				
2.3	.248	20°	783	995				
3.46	.248	10•	964	1090				
3.46	.248	20 °	1881	2395				
3.46	.438	10°	997	1125				
3.46	.438	20°	1957	2455				

Table II. Comparison between calculated and test values

of radial force, N.

J.

"FURNESHED UNDER UNITED STATES GOVERNME CONTRACT No. AF33(415)-3940. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OF PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REFAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER C SE THE RELEASE USE, DUPLICATION OR DISCLOSURE HEREO" SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

and a data for the

Figure 13. Normal force coefficient as a function of advance ratio perpendicular to the propeller disk; 3(X100188) blade, dia. = 10 ft. AF = 188, $IC_{L_1} = 0.068$; A = 15°.

45

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-1945 SHALL NOT BE EITHER RELEASED OUTSIPE THE GO-ERMMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE ON "ROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS'S NOT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CAVE THE RELEASE USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

Figure 14. Normal force coefficient as a function of advance ratio perpendicular to the propeller disk; 3(X100189) blade, dia. = 10 ft. AF = 188, IC_{Li} = 0.068; A = 30°.

(C) 23

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT 'S. AF33(619-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OF SFD, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CULTIS" WRICHT COL-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY GOR FOR THE GOVERNMENT, WHERL THE "TEM OR PROCESS IS NOT OTHER WISE RE SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REJURE - PROVIDED THAT HE THER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF CHALL BE SUBJECT TO THE FOREGOVERN LIMITATIONS -) HIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

Figure 15. Normal force coefficient as a function of advance ratio perpendicular to the propeller disk; 3(X100188) blade, dia. = 10 ft. AF = 188, $IC_{L_1} = 0.068$; A = 45°.

47

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No AF33(615)-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED DI WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WARGHT COR-PORATION, EXCEPT FOR (II EMERGENCI REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLY AVAILABLE TO EMABLE TIMELT PERFORMANCE OF THE WORK, OR UNTELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REDUIRE. PROVIDET THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS, THES LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

Figure 16. Normal force coefficient as a function of advance ratio perpendicular to the propeller disk; 3(X100188) blade, dia. = 10 ft. AF = 188, $IC_{L_1} = 0.068$; A = 60°.

48

FURNESHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-340, SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURLISS-WRIGHT COR-PORATION, EXCEPT FOR (II EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHEVE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLY AVAILABLE TO EMBLE TIMELT PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGH GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THT RELEASE, USE, DUPLICATION OR DISCLOSURE MEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPPODUCTION HEREOF IN WHOLE OR IN PART."

Figure 17. Normal force coefficient as a function of advance ratio perpendicular to the propeller disk; 3(X100188)blade, dia. = 10 ft. AF = 188, $IC_{L_1} = 0.068$; A = 75°.

"FURNEMED UNDER UNITED STATES COVERNMENT CONTRACT No. AF316451-1940. SHALL NOT BE EITHER RELEASED OUTHEDE THE COVERNMENT, OR USED. DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS WRIGHT COR-PORATION. EXCEPT FOR ()) EMERGISHOR REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHER WISE RE-SOMADLY AVAILABLE TO EMABLE TIMELT PERFORMANCE OF THE WORK. OR (UN FILEASE TO A FORESON GOVERNMENT, AS THE ITEM OR PROCESS IS NOT OTHER WITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANT REPRODUCTION HEREOF IN WHOLE OR IN PART."

•

Figure 18. Normal force coefficient as a function of advance ratio perpendicular to the propeller disk;3(X100188) blade, dia. = 10 ft. AF = 188, $IC_{L_i} = 0.068$; A = 85°.

สารระบบกับที่มีสารระบบกับคระบบ ส่วนกับกับกับก

the column

.

1.1.1

[&]quot;FURNEMED UNDER UNITED STATES GOVERNMENT CONTRACT NO. AF3300151-1400 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (1) EMERGENCT REPAIR OF OVER-44LL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMBLY AVAILABLE TO EMABLE TIMELY PERFORMANCE C7 THE WORK, OR (1) RELEASE TO A FOREICH GOVERNMENT, AS THE INTEREST OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IM EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE MEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LEGEND SHALL DE MARKED ON ANY REPRODUCTION MEREOF IN WHOLE OR IN PART."

REFERENCES

- Glover, L.S., Borst, H.V., <u>Application of Theodorsen's Theory to</u> <u>Strip Analysis Procedure for Single Rotation Propellers</u>, Curtiss Report C-2070, 1945
- 6. Glover, L.S., Borst, H.V., <u>A Method of Strip Analysis for a Dual</u> <u>Rotation Propeller</u>, Curtiss Report C-2085
- 7. Borst, H.V., <u>The Vortex Theory of Propellers in a Compressible</u> <u>Fluid</u>, Curtiss Report C-2518, 1951
- 8. McLemore, H.C., Cannon, M.D., <u>Aerodynamic Investigation of a Four-Blade Propeller Operating through an Angle-of-Attack Range from 0° to 180°</u>, NACA TN 3228, 1954
- 9.a Yaggy, Paul F., <u>Wind-Tunnel Investigation of Three Propellers Through</u> an Angle-Of-Attack Range from 0° to 85°, NASA TN D-318, 1960
- 9.b Borst, H. V. & Ladden, R. M., <u>Propeller Testing At Zero Velocity</u>, Curtiss-Wright Corporation, Wood-Ridge, N. J., Cornell Aero Lab AVLABS Symposium, June 1966

•

SECTION III

2481 1. 4424-1 1983 14-5

and the support of the support

しまいため いっち あいまた おおたいでいい 「おおおた」を言いていたがないという。 いたかい あんたいあんかい たいたいかい

In Don't und "Induition" and a state

においたながお、として、このなったとののののであ

and many state

Lines Line

0

ء ر

WING-PROPELLER INTERFERENCE EFFECTS

.

SECTION III NOMENCLATURE

×

A C	propeller thrust line angle of attach = $\theta + \alpha_{\rm f}$, wing Chord	degrees
Съ	drag coefficient in wind axes = D/aS	11
C.J	wing drag coefficient	
	lift coefficient in wind axes = $1/\sigma^2$	
C.	nite coefficient in which axes $= L/q_{0W}$	
Sm C	along of pitching moment acofficient warras 0	
Cm a	slope of pitching moment coefficient versus \sim_{f}	
Cp	power coefficient = $350 \text{ m}^2/p^{-1}$	
CT Cu - Cr	for a subficient is with p_p	
$c_{\rm X} = -c_{\rm D}$	force coefficient in wind axes equal to CD but with	
D	positive orientation opposite to CD	
D	drag of airplane or wing in presence of propeller,	Ib
De	effective wing drag,	15
DP	propeller diameter,	ft
ίw,	slipstream diameter in final wake,	ft
h/Dp	height above ground in propeller diameters	
HP	horsepower	
Jo	propeller advance ratio in the wind axes = V/nDp	
К1	D _w /D _P	
к2	T _o /T	
L	lift,	1b
n	propeller speed,	rps
P	dynamic pressure = $\frac{1}{2}\rho v^2$,	lb/ft ²
Re	Reynold's Number	
Sp	propeller disk area,	ft ²
SW	wing area washed by propeller,	ft ²
Sw	wing area,	ft ²
T _c	thrust coefficient in propeller axes = T/qS_p	
Т	propeller axial thrust,	1b
T1	propeller axial thrust in influence of Wing	
v	average axial velocity through propeller.	ft/sec
v'	average axial velocity in fully developed wake	ft/sec
v	velocity,	ft/sec
X'	average axial velocity on final wake.	ft/sec
a f	fuselage angle of attack (Referenced to WI, 100).	degrees
م	propeller blade angle of attack at .691 propeller	0001000
ρ	radius.	degrees
n	propeller efficiency	degrees
0	air density	$1b = soc^2/ft^4$
r Ø	propeller filt angle (Referenced to WI 100)	degrees
- 	flan angle	dograad
0L 7	distance from propellar dick to wine curface	uegrees
<u>د</u>	arstance roum properter arsk to write surface	inches

Subscripts

F	front Propeller
R	rear Propeller
0	free Air
l	in presence of wing

そうしょう ないかい うちょう うちょう うちょう いっちょう いっちょう いっちょう いっちょう いちょう ひんしょう いうしょう ひん いちょう しょうしょう しょう しょうしょう しょうしょう

ì

SECTION III

WING-PROPELLER INTERFERENCE EFFECTS

1. INTRODUCTION

One of the most serious hover problems encountered with fixed wing tilt propeller VTOL Aircraft is the lift loss due to the high slipstream velocity of the propeller impinging on the wing. This causes a high wing drag which reduces the overall lift generated by the propeller. Since the lift loss is caused by drag, it is a function of the slipstream velocity (and thus the propeller loading), the projected wing area in the slipstream, drag coefficient of the wing and the distance of the wing aft of the propeller disk. In addition since the wing produces blockage of the propeller slipstream it can also affect the overall propeller thrust which is an important factor when determining the download by test.

2. LIFT LOSS IN HOVER

a. Theory

0

Consider a propeller mounted above a wing as shown in Figure 19.

By the simple momentum theory

$$T = \rho S_p \frac{v}{2}'v' \quad ; \quad \text{since } v' = 2v \tag{1}$$

$$\rho \frac{\left(v^{\dagger}\right)^2}{2} = \frac{T}{S_p} = q$$
⁽²⁾

Now the drag on the section in the prop we've is assuming a reclangular wing.

$$D = C_{D_{o}} q s_{w}$$
(3)

$$D = C_{D_o} \frac{T_1}{S_p} C \frac{D_w}{2}$$
(4)

$$\frac{D}{T_{1}} = C_{D_{0}} \frac{C}{S_{p}} \frac{D_{p}}{2} K_{1}$$
(5)

For the X-19,

AND THE REAL PROPERTY.

and the second second

10 M

 $D/T_{1} = .18 C_{Do} (rear wing-X-19)$ $D/T_{1} = .112 C_{Do} (fron^{+} wing-X-19)$ $D/T_{1} = .102 C_{Do} (front wing-X-100)$ (6)

The drag coefficient used in Equation (5) and (6) is a function of the following parameter:

a) Aspect ratio of immersed body (prop radius to chord ratio).

b) The flap deflection angle δ_f .

The wing can cause considerable blockage of the propeller wake which influences the performance. Therefore when calculating the effective download D/T_0 the change in the propeller performance due to the presence of the wing must be considered.

Tests at the static condition by the NACA reference 13.b have indicated that the blockage causes an increase of thrust which helps reduce the overall download. If K_2 is the ratio of the inincrease of thrust then the effective loss due to download is expressed by the equation

$$D_{e} = T_{o} \frac{K_{2}}{T_{1}} \left(D - \frac{T_{1}}{K_{2}} (K_{2} - 1) \right)$$
(7)

The factor K_2 is dependent on the area and distance of the blockage from the propeller disk.

b. Download Test Data

The drag coefficient of the wing and blockage effect on the propeller performance must be determined from test data, so that the effective download performance can be calculated. The only data available is that given in (10) and (11). These data were used to estimate the download loss for the X-100 airplane. Download data were determined from tests of the 15% scale model and full scale airplane and are obtained from a combination of unpublished information and data appearing in (12). These test data are summarized on Figure 20 and indicate the download was higher than the predicted value. The data measured on the full scale X-100 airplane were obtained by measuring the total thrust with the wing chord parallel and normal to the direction of the slipstream velocity vector. When the wing was perpendicular to the stream vector the flap was deflected 45° to determine the effects of flap angle on the download loss:

Figure 19. X-19, rear wing nomenclature.

ſ

۳u

_ L

.

66-042

į

The result of these tests are shown on Figure 20 as D_e/T_1 . The actual magnitude of the drag is not known as the value of K₂ was not determined. The data from the model tests appear to agree quite well with the full scale results in spite of the large change in Reynolds Number and disk loading between the two tests. In the range of disk loading of 16 to 22 psf. the download ratio appears to be nearly constant. Also deflection of the flap has a large affect on the magnitude of the download as was indicated in the XV-3 testing (11).

2

To determine the download losses, full scale pressure measurements were taken on the port rear wing of the No. 1 X-19 aircraft during Ground Run No. 244. The pressure pick-up system consisted of multitube straps adhered, chordwise, to the wing surface at five spanwise locations.

Figure 21 shows these locations and their positions in terms of propeller radius, R, and Figure 22 shows the corresponding choidwise location of the pressure holes. The tests were conducted with the propeller operating at approximately a diameter off the ground, Figure 23.

Atmospheric conditions were recorded manually and transverse shaft torque, net thrust component, propeller speed, blade angle, rear nacelle tilt angle and control surface deflections were recorded on the aircraft oscil.ographs.

All the testing was done with only the rear propellers operating; but the test did cover a range of tilt angles and disk loadings. See Table III. At a disk loading of 18.72 the propeller is producing the required thrust for hover at a 40% C.G. location and 12,300 lbs gross weight.

The test indicated that the lower surface pressure distribution is basically rectangular in shape throughout, with the wing pressure coefficient never exceeding approximately 0.40. These results are in agreement, with a uniform flow field around a two-dimensional airfoil section over a range of angles of attack from 0° to 180° .

The upper surface pressure distribution over the undeflected portion of the wing has a characteristic shape whose magnitude changes with the distance from the propeller shaft. Within the propeller sweep these surface pressures are greater than ambient and reflect the propeller slipstream dynamic pressure.

The distributions outside of the propeller sweep are probably generated by a combination of spanwise and chordwise flows, a detailed examination of which, at this stage, appears unnecessary.

•

67-2034

FURMISHED UNDER UNITED STATES GOVERNMENT CONTAACT No AF33(415)-3440 SHALL HOT BF WITHSR RELEASED OUTSIDE THE GOVERNMENT OR USED, DUPLICATED, OR DISCLOSED IN WHOLE ON IN PART FOR MANUFACTURE OR IROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, TXCEPT FOR (II EMFRGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, "MERE THE ITEM OR PROCESS IS NOT O"HERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (IN ELEASE TO A FOREIGHT, WITHOUT THE WRITTEN THE INTERESTS OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE. USF, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FORLOGING LIMITATIONS THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WRICLE OR IN PART.

Figure 21. X-19, rear wing download test; locations of spanwise pressure stations.

27

Figure 22. X-19, rear wing download test; locations of chordwise pressure stations.

Figure 23. X-19, ground clearances on the "tie-down" rig.

W. S. SKEE. St.

÷

State of the second sec

ŕ

:

; . . .

Test Condition	Nacelle Angle (deg)	Aileron Angle (deg)	Blade Angle (deg)	с _р	с _т	Disk Loading T/S _p - 1b/ft ²
1	81.5	57.0	3.1	0.0181	0.0411	4.55
2	81.5	57.0	13.1	0.0682	0.1503	18.72
3	75.0	53.9	11.0	0.0544	0.1241	15.90
4	70.0	51.9	10.4	0.0515	0.1195	15.23
5	81.5	57.0	10.8	0.0518	0,1208	15.05

Table III. X-19, rear wing download test conditions.

.

:

However, some thought may be given to the distribution around the 50% chord, Figure 24 for the inboard station. At that station the upper and lower surface pressures try to balance out through the gap between elevator and wing, whereas at station 4 (per Figure 21) there is an additional effect, due probably to a carry-over of the suction peaks from the deflected aileron.

Figure 25 shows typical spanwise load distribution obtained from integration of the pressures.

For comparison with propeller wake dynamic pressure predictions, Figure 26 presents the wing upper surface pressure along the spanwise line through the propeller axis. This shows that although the correlation achieved is not absolute, it is sufficient to show that the propeller wake dynamic pressure properties are the major factors affecting both the distribution and magnitude of the download on this surface.

Ground effects on the download are not yet fully understood, but it is most likely that the under surface of the aircraft (and hence wings) will be subjected to the most influence. This influence depends upon the aircraft height above the ground; for these tests height is shown in Figure 23.

The download on the X-19 is composed of contributions from the fuselage and wings. Because the download is a result of propeller wash and related aircraft interferences, the major contribution to this download comes from the wings, and in particular from those portions of the wings swept by the propellers.

To obtain an indication of the download generated by the wings the spanwise loadings were integrated from wing tip to wing root and the results plotted in Figure 27 as a percentage of actual thrust measured along the propeller axis. It must be emphasized that these values are in ground effect and represent exposed wing contributions only. The total download must be obtained by integrating rrom wing tip to fuselage centerline.

The download values, given in Figure 27 for upper and lower surfaces, diminis^b for disk loadings greater than approximately 14 lb./sq.ft. As escribed elsewhere herein, this is of doubtful validity since it represents the sum of two conflicting items (i.e. ground effect and download) which at this stage cannot be investigated separately. As a partial step toward this separation of effects, the upper surface pressures only were integrated to find that surface's contribution to the download. This is because it comes primarily from direct propeller wash impingement and thus would be less affected by the ground effects.

A

ž

Figure 24. X-19, effect of disk loading on the rear wing - station 4.

67-2039

. . . .

"FURNISHED UNDER UNITED STATES COVERNMENT CONTRACT No. AF33(415)-3440 SNALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PAR / FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WARHT COR-PORATION, EXCEPT FOR (II EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIME! Y PERFORMANCE OF THE WORK: OR (IN FRIETMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIME! Y PERFORMANCE OF THE WORK: OR (IN FRIETMENT, STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LEGEND SHALL E MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

Figure 25. X-19, effect of nacelle tilt angle on the spanwise loading, rear wing, static propeller.

ومناهد والم

"FURNESHED UNDER UNITED STATES GOVERNMENT CONTRACT ">>, AF33(4)5)-1940 SHALL NOT BE EITHER RELEASED OUTSIDE THE COVERNMENT, OR USED, DUPLICATED, OR DISCLORED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT. WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (II EMERGENCY REPAIR OR OVERNAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OF PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENARLY TIMELY PERFORMANCE OF THE WORK. OR WIN RELEASE TO A FOREIGN GOVERNMENT, AS THE ITEM STO THE UNITED STATES MAR REQUERE: PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLORURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LECEND SHALL NE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART,"

e,

67-2023

65

"FURNESHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(415)-390. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLY AVAILABLE TO ENABLE TIMELT PERFORMANCE OF THE WORK; OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS LAGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

Figure 27. X-19, download on the rear wing. Out of ground effect.

State of Parca

おおおおおおかいないないないないないないないないないない しょうちたい ちゅうちょうしょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう

* ...

4 A A

•

and the second

-

÷

FURNESHED UNDER UNITED STATES GOVERNMENT CONTRACT NO AF33(615)-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANU/ACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PORATION, EXCEPT FOR (II EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK: OR (IN RELEASE TO A FOREION GOVERNMENT, AS THE INTEREST OF ITHE UNITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RE'LEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THES LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

The download on the upper surface is seen from Figure 27 to represent approximately half of the measured total. The trends of download losses with variations of disk loading should not be taken as absolute; further work is necessary to check this. The variation of Jownload with propeller tilt at small angles is slight but possesses the expected trend of reduction with dim.nishing propeller tilt angle.

Since the download is generated mainly within the propeller swept area, it was considered possible that alleviating devices might produce noticeable reductions in wing downloads. These devices are employed to equalize the upper and lower surface pressures by channelling the upper surface air of high pressure to the subambient lower surface.

To measure the download losses over a greater range of conditions and out of the influences of the ground, tests were conducted on the Curtiss static thrust test rig described in (13). The rig was modified so that the thrust of the propeller could be measured in the presence of the wing. The total wirg forces produced by the propeller slipstream were also measured.

Tests were run to investigate if various combinations of flaps and slots could be used to reduce the download losses. The planned tests were not completed but enough testing was done simulating the rear wing and propeller to provide useful data; see Figures 28 through 32.

The effect of disk loading, tilt angle, and ailcron angle are shown in Figures 28 and 29 for nacelle angles of 80° and 90° . The results indicate that the gross download ratio, the actual measured drag over the actual measured thrust is nearly independent of the disk loading for the range of T/S_p of 10 to 25 psf. As might be expected the difference in download due to changes of nacelle tilt angle are small. The download loss is reduced considerably by deflection of the flap, Figures 28 to 30. This would be expected due to the reduction of wing area normal to the propeller wake. The peak download reduction occurs at a δ_f of 90° although the difference between 60 and 90° is very small.

A comparison of the performance of the propeller operating with and without the blockage produced by the rear wing of the X-19 is shown on Figure 31. Sufficient data were not obtained to fully define the trend. A relatively large increase in thrust due to blockage is evident. The trend shown for changes in flap angle and disk loading are not necessarily concluive, as the data are too meager to fully substantiate such a trend. Presumably the blockage does increase the thrust at a given power in a manner similar to that in which ground effect increases thrust. This effect results in a thrust 3 or 4% higher than would be measured without blockage. This increase in thrust has been observed in the static testing of propellers and is discussed in (13). Further testing is required to more fully

3

67-2032

"FURNESHED UNDER UNITED STATES GOVERNMENT CONTRACT No AF33(615)-3440 SHALL NOT BE DITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR LISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OF PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT (OR PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR HID RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE PROVIDED TH' IN EITHER CASE THE RELEASE, USE, CUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS LEGEND SHALL BL MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART.

69

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-340 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERL THE ITEM OR PROCESS IS NOT OTHER WISK RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK, OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF TH'. UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE /OREGONG LIMITATIONS THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

X-19, effects of nacelle tilt angle and collective aileron angle on the rear wing download. Figure 30.

۰.

67-2041

30

States and states and

FURNISHED UNDER UNITED STATES GOVERNMENT CUNTRACT No. AF33(615)-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEMP FGR (II FMERGENCY REPARE OR OVERHAUL WORL OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (IN THE GOVERNMENT, STHETE INTERESTS OF THE UNTER STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE FELEAST, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS LEGEND SHALL RE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

.

FURMERIED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(415)-340, SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WIT HOUT THE WRITTEN PERMISSION OF CU (TISS. WRIGHT COR-PORATION, EXCEPT FOR (II EMERGENCY REPARE OR OVERHAUL WORK BY OR FOR THE GOVER) MILTINT, WHERE THE ITEM OR PROCESS IS NOT OTHER WISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (III RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

Figure 32. X-19, effect of slats and aileron nose piece on measured download.

72

FURNESHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3N3 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PLRMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (1) EMERGENCY "EPAR OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RF-SOMABLY AVAILABLE TO EMABLE TIME! PERFORMANCE OF THE WORK. OR (0) FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RF-SOMABLY AVAILABLE TO EMABLE TIME! PERFORMANCE OF THE WORK. OR (1) RELEASE TO A FOREION GOVERNMENT, AS THE INTERESTS OF THE UVITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THES LEGEND SHALL NE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART." .

, -

~****e

understand its meaning and effects on the download problem

The increased thrust caused by blockage helps to reduce the download losses. For example, let us say that the thrust increase is 4%. Therefore, $K_2 = 1.04$, and the effective download for the rear wing of the X-19 becomes approximately 10.5% at a flap angle of 60° rather than 15% as indicated by the direct measurements.

c. Predicted Download

The method used and the download losses predicted for the X-100 airplane are given in (10) and (11). An adjustment was made in the data to agree with published XV-3 test data. The effects of propeller blockage are not considered in these data. Based on the test data run full scale with the X-100 airplane and shown on Figure 20, the original predicted download losses appeared much too low. The test data indicate a loss of 11% with no flap deflection compared with the predicted value of 7.7%. With the flap deflected 45° the test shows a loss of 6% in contrast with a predicted loss of 3.4% with a flap setting of 60° .

The predicted download loss on the X-19 airplane was based on the data given in Figure 20. It was assumed that the ratio of thrust increase due to blockage is the same for both front and rear wings. The predicted download loss for the front is 6.5% and the rear wing 9.5%, both with the flaps deflected to 60° . This gives an average loss due to download of 8.8% for the average take-off C.G. of 42.8%. The drag coefficient based on equation 5 for the rear wing was 0.58 and the corresponding coefficient for the front wing is 0.53. The difference in drag coefficient is due to the size of the flap on the front wing which results in less area for blockage, and consequently reduces the download.

3. PERIODIC FORCES ON WINGS AND PROPELLERS IN HOVER

The wing operating in the slipstream of the propeller will experience periodic forces due to the unsteady nature of the flow. When the airplane is hovering it is expected the forces would peak. The periodic forces are a function of the variation of velocity due to the presence of the propeller blades, as contrasted with a true disk. The frequency of the variation of force would be three times propeller rotational speed for the threeblade propeller used on the X-19. The variation of velocity from the mean was measured with a hot film anemometer as reported in (13). These measurements indicated the velocity peaks were approximately 10% above the minimum level and are quite abrupt in character. The measurements with pressure tubes on the rear wing showed little variation of pressure, which tends to confirm the hot film data.

From the test results it is expected the periodic forcing function would be small and be important only in creating a resonance condition in the structure of the movable control surfaces. This situation was encountered

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF33(615)-340 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PRANISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (1) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMBLE TIMELY PERFORMANCE OF THE WORK. OR (10) RELEASE TO A FOREICH COVERNMENT, AS THE INTEREST OF THE UNTED STATES MAY REDUIRE PROVIDED THAT IN EITHER CASE THE RELEASE. USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART "
with the X-19 aircraft where trouble was experienced with a bracket holding the aileron. The difficulty was fixed by detuning the bracket from the 3XP periodic force. In the investigation of this problem, measurements of the frequency were made at the supporting bracket, confirming the 3XP frequency of periodic force.

The effect of the wing on the propeller when the aircraft is hovering was found to be small, from analysis of flight test records. Outboard on the blade a LXP blade stress was measured of \pm 600 psi, whereas the allowable is over 4,000 psi. A shank 1XP stress of 3,000 psi was measured whereas the allowable is 20,000 psi.

From the results of the download tests it will be noted that the propeller indicates an increase of thrust due to the wing blockage, as on Figure 31. For this reason it appears reasonable that the wing could induce a LXP stress in the blades while the airplane is hovering. This stress is of little importance to the design of the propeller.

4. SUMMARY OF FORCES - WINGS AND PROPELLERS

to a subscription of the

~~ ++

a. Wings and Propellers - Out of Ground Effect

A reasonable determination of wing, propeller and fuselage interference effects for the X-19 has been obtained from (14). The wind tunnel data proved difficult to analyze for power effects; therefore, a suitable parameter was employed to linearize all data at a given "A" angle.

The propeller thrust coefficient (T_c) proved to be the device for providing a single effective function with reasonable data scatter. The data were collected at "A_F" angles from 16 to 90° for the lift coefficient (C_L) of the front and rear wing plus the propellers. These are plotted vs. T_C. In addition, C_L of the props was plotted for corresponding "A" angles.

The drag coefficient was handled in a similar manner. A consistent grouping of data was obtained to facilitate fairing slopes or curves. Where noted, data were taken at two velocities. In these instances, a R effect could be expected. The shaded points of the higher velocity appear higher at $A_F = 76^\circ$; however, there aren't enough corroborating facts at other "A" angles to support a definite R effect. Figures 33 through 36 are selected curves from which one can see the nature of these effects.

FURMENED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(413)-3N40. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCT REPAIR OR OVERHAUL WORK BY OR FOR IME GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE '2E-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK, OR (III) RELEASE TO A FOREICH GOVERNMENT, AS THE INTERSTS OF THE INTER STATES MAY REQUERE. FROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL RE MARKED ON ANT REPRODUCTION KEREOF IN WHOLE OR IN PART."

Figure 33. X-19, lift coefficient of front propellers and front wing plus propellers as a function of thrust coefficient.

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No AF33(615)-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, FXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE THELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL NE MARKED ON ANY REPRODUCTION MEREOF IN WHOLE OR IN PART."

Figure 34. X-19, lift coefficient of rear propellers and rear wing in present of front wing plus front propellers as a function of thrust coefficient.

"FURNESHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF33(415)-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE R SOMABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK. OR (I) RELEASE TO A FOREION GOVERNMENT, AST THE INTEREST OF THE UNITED STATES MAY REQUERE, PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

201-27

1

أكال المتعدين والمتحدين

Figure 35. X-19, drag coefficient of front propellers and front wing plus propellers as a function of thrust coefficient.

.

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3940, SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (I) EMERCENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF 1HE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS LEGEND SHALL RE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

1 - 5 + AP 2

のなるの

antes at t

3

÷

÷,

.

FURNEMED UNDER UNITED STATES GOVERNMENT CONTRACT NO. AF33(015)-340. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PORATION, EXCEPT FOR (1) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLY AVAILABLE TO EMABLE TIME! Y PERFORMANCE OF THE WORK. OR (UN FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLY AVAILABLE TO EMABLE TIME! Y PERFORMANCE OF THE WORK. OR (UN FLOATION OR FORTHER OVERNMENT, STATES MALL BE SUBJECT TO THE FOREGOING TIATES MAY REQUERE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LEGEND SHALL BE MARKED OF ANT REPRODUCTION HEREOF IN WHOLE OR IN PART." To provide a more common device for comparison, derivation of a suitable power parameter was accomplished as follows.

$$\frac{TV}{550\eta} = HP \text{ (Horse Power)}$$

$$\frac{T_c (\frac{1}{2} \rho V^2) S_p V}{550\eta} = \frac{C_p \rho n^3 p^3}{550}$$

$$T_c = K \eta (C_p / J^3)$$
Where $K = R / \pi$

Where $K = 8/\pi$

This rel.tionship of T_c and (C_p / J^3) was used to parameterize the thrust and power data. Figures 37 and 38 contain plots of these parameters at constant "A" angles, and show relatively small data scatter. Therefore a relationship is apparent for the tilted propeller which ties the estimation of lift and drag power effects to these parameters. Figure 39 is a cross plot of the two previous curves. This form is of considerable interest, in that it describes a simple picture of the front wash₃effect upon the rear propeller. Note that the parameter, (C_p / J) , is proportional to HP / v^3 . Thus for a fixed horsepower and velocity, one can see how the thrust (proportional to T_{C}) varies with "A" angle. On the front propeller, thru. increases rapidly at "A" angles above 45° while on the rear, only small changer occur. From the stability consideration, this is undesirable; however, it is common to all tandem lifting bodies and cannot be completely avoided. It is this characteristic which has been found to be responsible for the unstable C (per wind tunnel results) of the X-19 at the high $\alpha^{m} \alpha$ tilt angles and low advance ratios.

During flight test, there was little indication of static instability in the region indicated by tunnel tests ($\emptyset_F = 82.5^\circ$, V = 50 knots). However, specific tests to determine this were not performed. Consequently, a correlation between model and full scale characteristics was never established.

Later data of (15) indicated that curves of T_c vs (C_p/J^3) are not independent of β_{coll} at a given ϕ , α_f . This would suggest that some of the single line curves which appear to have scatter in the points should be several curves which are nearly colinear. (See Figures 37 and 38). It is also known that propeller lift efficiency varies widely with π nD at the higher "A" angles. Yet if a single curve is drawn for C_L vs. (C_p/J^3) (at a given A angle)

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT NO AF33(615)-3940 SHULL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATS D, OR DISCIDSED IN WHOLF OR IN PART FOR MANUSACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPARE OR SUVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISS RE-SUVABLY AVAILABLE TO EMARLE TIMELY PERFORMANCE OF THE WORK. OR SUBLELASE TO A FOREION GOVERNMENT, AS THE INTERSSTOFT THE UNITED STATES MAR REQURE PROVIDED THAT IN FITHER CASE THE RELEASE. USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LIGEND HALL BE MARKS.: ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART.'

07-**2044**

Ý

80

URNISHED UNDER UNITED STATES GOVERNMENT GUNTRAC. WE AF33(015)-196 - 340.4 L NOT BE F11HF2 RELEASEL OUTSDE THE GOVERNMENT, OR USFD - 4. "CATED OR DISCLOSED IN WHOLE OR IN PART FOR MAN ZACTURE OR FAIL AND BE F11HF2 RELEASEL OUTSDE THE GOVERNMENT, OR USFD - A1. "IN, FXCEPT FOR III ENERGENCY REPAIR OR OVERHALL WORK BY US 1.0 F. THE GOVERNMENT, WHE E THE "TEM DE PALSS." DN DF GUR" (SS-WRIGHT COA-- A1. "IN, FXCEPT FOR III ENERGENCY REPAIR OR OVERHALL WORK BY US 1.0 F. THE GOVERNMENT, WHE E THE "TEM DE PALSS." IN OT OTHER #1-F PE SONAP Y VAILABLE TO ENALL TIMELY PERFORMANCE OF THF WORK. OR WIR DELEAST TO A PORECON GOVERNMENT, AS THE "TEM DE SUBJECT TO THE FOREGOING STATES MAIL REPUTER FRONTED THAT IN F"HER CASE THE RELEAST USE DUFLICATION OF USCHOOVER HEREOF SHALL BE SUBJECT TO THE FOREGOING LMITATIONS. "HES LEGEND SHALL RE MARKED ON ANY REPRODUCTION HEREOF IN WHILL OF IN PARCE."

* Area covered by test points

1.22

.

81

"PURMENTED UNDER UNITED STATES COVERNMENT CONTRACT No. AF33(615)-3946. SHALL NOT BE RITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED. DUFLICATED, OR DISCLOSED IN WINHE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMENDON OF CURTISS-WRIGHT CON-P MANION, EXCEPT FOR (II). INERGENCY REPAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SINADELY AVAILABLE TO EMAILE TIMELY PERFORMANCE OF THE WORK. OR MIR BLEASE TO A FOREICH COVERNMENT, AS THE INTERESTOR THE UNITED STATES MAY REQITED. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUFLICATION OR DESCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIVITATIONS. T-ES ; AGEND WALL NE MARKED ON ANY REPROLUCTION MEREOF IN WHOLE OR IN PART."

82

...

۰ ۲

the lift will be independent of π nD. Therefore, the single line can only be an approximation. (16) describes the most recent analysis of an isolated propeller plotted in the C / 3 parameter. Figures 40 and 41 are taken from this report to illustrate the non-colinear characteristics. For practical considerations, in selecting the operating conditions of the propeller, one achieves a near optimum setting throughout the flight regime. Consequently, as one moves along the C / 3 curve, T will fall close to the envelope curve (a single line). For this reason, the single line presentations shown in Figures 37 to 39 are quite indicative of the "trends" and general efficiency levels at which the propellers are operating.

Note further that this approximating technique has represented the entire T_c , A, J and C interrelationship regime on one sheet of curves (Figure 39).

Of more value, however, are the C_L and C_D (or $-C_x$) of the propellers. That information is given in Figures 42 and 43, where:

$$C_{L} = \left[T_{c} \sin(\phi + \alpha_{f}) + N_{c} \cos(\phi + \alpha_{f})\right] \frac{\pi/4}{S} \frac{D_{P}^{2}}{S}$$

$$C_{X} = -C_{D} = \left[T_{c} \cos(\phi + \alpha_{f}) - N_{c} \sin(\phi + \alpha_{f})\right] \frac{\pi/4}{S} \frac{D_{P}^{2}}{S}$$

The term, N_c , is the propeller normal force coefficient defined in the same manner as T_c . These data represent some of the earlier information obtained for the X-19 front and rear propellers. Some later propeller data have been obtained from recent wind +unnel tests; unfortunately, time did not permit correlation of these data with that shown here. In simple spot checks, it was found that the trends shown in Figure 39 are still valid. However, the absolute level of thrust (at fixed power) appears to be higher.

The wing forces are the next phase of this discussion. This is separately treated as the lift and drag of the wings without propellers, and the power effects of the propellers upon the wings.

The propeller-off wing forces are normally represented by a C_L and C_D vs α_f curve. However, the small size of the wings (lift struts) makes them sensitive to the presence of nearby bodies. The nacelles for one, a e sufficiently large to cause considerable interference. Thus, curves of C_L and C_D are given as a function

> ULMISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(6151-340 SHALL NOT BE WITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DULLCAYED, ON DISCLOSED IN WHOLE OR IM PART FOR MANUFACTURE OR PROCUSEMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRENT COR-PORATEM, EXCEPT FOR (I EMERGENCY REMAR FOR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM CA PROCESS IS MIT OTHER WITH RE-SOMABLE AVAILABLE TO EMBLE TIMELT PERFORMANCE OF THE WORK, OR HIS RELEASE TO A FOREIGNT, AS THE INSTREMENTS OF THE UNITED STATES MAY REJURE PROVIDED THAT IN EITHER CASE THE RELEASE, USE DUPLICATION OR DISCLOSURE HERZOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION MERCOF IN WHOLE OR IN PART."

Figure 40. Fropeller 156109, thrust coefficient as a function of power parameter. Tilt Angle A = 75°

ş

[&]quot;FURMENTED UNDER UNTITED STATES COVERIMMENT CONTRACT No. AF31(615)-340, SHALL NOT EX ETHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUMLICATED, GR DISCLOSED IN VINIE OR ULLART FOR MANUFAUTURE OR PROCURREMENT, WITHOUT THE WRITTEN PERMISSIO.FOF CURTISS WRICH COR-TORATION, EXCEPT FOR UL EMERGENCY REMAIN OR OVER- 11. WORK BY OF FOR 1995 GOVERNMENT, WHERE THE TEL OR P. LOET'S HOT OTHER THE RE-SABLY AVAILABLE TO EXCHILE THESELY PERFORMANTE OF THE WORK. OF US 1995 GOVERNMENT, WHERE THE INTENT TO EXCEPT FOR USED THAT INFORMATION OR DISCLOSING WHERE THE SUBJECT TO THE FITHER CASE THE RELEASE OF USE, DUPLICATION OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN HEREOF IN WHOLE OR 19 SARLE DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT TO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT DO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT DO THE FORMACIÓN OR DISCLOSING HEADOF SHALL DE SUBJECT DO THE FORMACIÓN DE DISCLOSING DISCLOSING

Figure 41. Propeller 156109, thrust coefficient as a function of power parameter. Tilt Angle A = 75°

85

"FURNEMED UNDER UNITED STATES GAVERNMENT CONTRACT No. AFJ-(415)-1946. SHALL NOT 3G EITHER RFLEASED OUTSEDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR UN PART FOR MANUFACTURE OR PRODUREMENT, UTINEUT THE WELLTEN PERMESSION OF CURTISS. WEACHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FAL THE GOVERNMENT, WHERE THE (TEM OR PROJESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMALLE TIMELY PERFORMANCE OF THE WORK. OR ON FAL THE GOVERNMENT, WHERE THE (TEM OR PROJESS IS NOT OTHERWISE RE-STATES MAY REDUKTE - PROVIDED THAT IN EITHER LASS THE RELEASED, USE, DUPLICATION OR PROLOGURA HEREOF SHALL BE (USER T TO THE FOREGOING LIMITATIONS. THES (SCHOO SHALL BE MARKED (SANT RUPRUSOCTION LIFEOF IN WHOLF OR IN PART, "

⁶⁷⁻²⁰⁶⁹

Figure 42. X-19, variation of front propeller lift and thrust coefficient with thrust axis angle of attack.

67-2070

No least a rite

Contraction State

offer and the state

2

.. ..

85

"FURNESSED UNDER UNITED STATES GOVERNMENT CONTRACT N. A733(413)-3448, UMALL NOT BE EITHER RELEASED OUTSIDE THE GOVES WENT, OR USEL, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS WRIGHT COR-PREATION, EXCEPT FOR (I) EMERGENCY REFAIL OR OVERHAUL WORK BY OR YOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SINABLY AVAILABLE TO EMBLE TIMELY PERFORMANCE OF THE WORK, OR (II) RELEASE TO A FOREICH GOVERNMENT, AS THE INTEREFTS OF THE UNITED STATES MAY REALTRE. PROVIDED THAT IN EITHER CAST THE RELEASE, USE, BUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE "OREGOING LIMITATIONS. THES I ECIDD WHALL RE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART,"

Figure 43. X-19, variation of rear propeller lift and thrust coefficient with thrust axis angle of attack.

۱_{۰ -}

"FURMISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(613)-3440. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHALL WORK BY GOR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THF WORK, OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUER. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SURJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART." of nacelle tilt angle and angle of attack in Figures 44 through 47. Note the diminished lift and increased drag at the high tilt angles. This is attributed to wing tip stall induced by the nacelle, as reported in (17) and (18), and shows that maximum C cocurs in the vicinity of $10^{\circ} < \emptyset < 20^{\circ}$. Both wings are referenced to the airplane area rather than individual wing areas. Furthermore, both wings generate approximately the same lift; yet the rear wing is twice the size of the front. This merely reflects the large downwash to which the rear wing is subjected by the front wing and propeller when installed on the aircraft.

موجه معجورة م

Included in these results is the fuselage-induced wash. This manifests itself as an upwash field on the front wing and a down-wash field on the rear wing. A more comprehensive discussion of fuselage induced wash is given in Section X.2.k. Aileron and flap angles are zero throughout.

The effects of propeller wash upon the wings is highly pronounced and is clearly a function of propeller tilt angle (with respect to wing) and disk loading coefficient (T_c) . The results are given in

Figures 48 through 51. A look at Figure 48 presents some interesting perspective. A positive lift is shown acting on the wing which is equal to or greater than that of the wing, power off. The T was computed using tunnel data run at 40 mph with .3 < J < .6

For zero velocity, T would be infinite; however, the wing

lift would be negative. Obviously somewhere between 0 < J < .3 the prop wash shifts aft and the wing's lift goes from a download (negative) to a positive lift, and even a positive lift increment above the established C_L relationship. Therefore, these curves L_{α}

cannot be used in the immediate vicinity of the hover.

The rear wing experiences both a positive and negative lift increment depending on the tilt angle. Referring to Figure 49, note a large download at the high "A" angles. Investigation has shown that the incremental lifts, positive on the front wing and negative on the rear wing, contribute strongly to the aircraft's pitch-up moment (trim) progressing from hover to a finite forward velocity.

Both the front and rear wing (Figures 50 and 51) appear to experience a drag-power effect at the high tilt angles and a thrust at the low tilt angles. This would seem to imply high suctions on the leading edge. For practical purposes, this thrust is of small consequence because cruise values of T_c approach zero for speeds

not much in excess of 160 knots. Also, at low tilt angles, the parameter $(\emptyset + a_f)$ does not clearly define the wash, as the power effects will vary both with $(\emptyset + a_f)$ and \emptyset . However, the test data did not provide for both of these parameters to be varied.

.

"FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3940 SHALL NOT BE FITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (I) EMERCENCY REPAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR YOR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR YOR FOR THE GOVERNMENT, AND RENDERSTS OF THE INTENSIST OF THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL RE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

89

~

.

X-19, variation of rear wing lift coefficient with nacelle tilt angle, propellers off. Figure 45.

تر ۲

:

ALC: 440, 444

1

• •

67-1520

(e

والمتكامحة فلينافع تقاربون كالمتعمر أغلل بتلافحه وليتم

第二 こうちょうちょう

of the second second 6 ,

90

"FURNESHED UNDER UNITED 5"* TES GOVERNMENT CONTRACT No AF33(615)-3NO. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISC. OSED IN WINLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMIMINON OF CURTISS WRIGHT COR-PURATION, EXCIPT FOR (II) AMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SUMABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK. OR (IN FUR THE CAFE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SUMABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE RELEASE OR (IN UNIT. OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING UNITATIONS. THIS IS COND WALL RE MARKED ON ANT REPRODUCTION HEREOF IN WHOLE OF IN PART."

Figure 46. X-19, variation of front wing drag coefficient with nacelle tilt angle, propellers off.

[&]quot;FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3940 SHALL NOT D'. EL HER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, W.THOUT THE WRITTEN PERMISSION OF CURTISL WRICHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIL OR OVERHAUL WORK BY OR FOR THE GOVE INMENT, WHERE THE ITEM OR PROCESS L NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELT PERFORMANCE OF THE WORK OF OR THE GOVE INMENT, WHERE THE ITEM OR PROCESS L NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELT PERFORMANCE OF THE ROSK. OR (I)" PELASE, IC A FORLIGH GOVERHMENT, AS THE INTERSTS OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPJICATION OR DISCLOSURE HEREOF SHALL AE SUBJECT TO THE FOREGOING LIMITATIONS THIS LEGEND SHALL RE MARKED ON ANY REPPODUCTION HEREOF IN WHOLE OR IN PART."

Figure 47. X-19, variation of rear wing drag coefficient with nacelle tilt angle, propellers off.

92

FURNESHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF33(615)-1940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, ON DISCLOSED IN WHATE OF IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION EXCEPT FOR (I) FMERGING EPART OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHATE THE ITEM OR PROCESS IS NOT OTHERWISE RE-STARET AVAILABLE TO EXABLE TIMELY PERFORMANCE OF THE WORK OR (III) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THE LICEND MALL DE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

Figure 48. X-19, incremental front wing lift coefficient, due to front propeller wash, with variation in thrust axis angle of attack.

93

Figure 49. X-19, incremental rear wing lift coefficient, due to all wash, with variation in rear thrust axis angle of attack.

ALLE REALESS BURNESS STREET

******#

87-2048

1 14 34

1 34 1

. . . .

1.1

"FURNISHED UNDER UNITED STATES COVERIMENT CONTRACT No. AF33(615)-3940 SKALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USTD, DUF, ICATED OR DISCLOSED IN WINLE OR IN PART FOR MARY, ACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COA-KERATION, EXCEPT 3 WRITEMFRESSION OF CURTISS-WRIGHT FOR MARY, ACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COA-KERATION, EXCEPT 3 WRITEMFRESSION OF CURTISS-WRIGHT FOR MARY, ACTURE OR FOR FOR THE GOVERNMENT, WARE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SERVALUT AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK, OR (U) RELEASE TO A FOREIGN COVERNMENT, AS THE INTERESTS OF THE UNITED STATES HAR REDUINE, PROTODID THAT IN EITHER CASE THE RELEASE USE, DUPLICATION OR DISCLOSURE KEREOF SHALL BE SUBJECT TO THE FORECOING LIMITATE INS, THES IF FOR DUALL XE MARKED ON XMY REPRODUCTION MEREOF IN WHOLE OR IN PAPT,"

Figure 50. X-19, incremental front wing thrust coefficient, due to front propeller wash, with variation in thrust axis angle of attack.

95

FURMISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(4/5)-340. SHALL NOT BE EXTHER RELEASED OUTSIDE THE GOVERNMENT, OR USED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUS ACTURE OR PROCUREME T, WITHOUT INT WHITEN PERMISSION OF CURTISS. WRIGHT COR-PORATIO-4, EXCEPT FOR (3) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHER WISE PE-SONABLY AVAILAPLE TO EMAGLE TIMELT PERFORMANCE OF THE 40RK OR (3) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERSTS OF THE UNITED STATES MAY REQUIRE - PROVIDED THAT IN EITHER CASE THE RELEASE, USE, UPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS - THIS LEGEND SHALL PE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

Figure 51. X-19, incremental rear wing thrust coefficient, due to all wash, with variation in rear thrust axis angle of attack.

~

いい いないない いとて キー

2." Im. 25

st, ≥., +€*20

FURWISHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AFSI(HISH-INR SHALL NOT BE EITHER RELEASED OUTEDE THE GOVERNALMI, OR USED DUPLICATED, OR DISCLOSED IN WIN LE OR IN PART FOR MANUFACTURE ON PLOCUREMENT, WITHOUT THE FEITICE VERMISSION OF CURTISS, WAGHT CCA-PARATION, EXCEPT FOR (I) FMERULINGY REPAIR OR OVERHAUL WORK ST OF 50% THE GOVERNMENT, WHITH FILTEN OF PROCESS IS NOT UTHER WIRE RE-SUMBLY AVAILANTS TO READ IN THE TIMELY PERFORMANCE OF THE WORK OF DISCLOSIVE A FOREIGN GOVERNMENT, AS THE THE OR PROCESS IS NOT UTHER WIRE RE-SUMBLY AVAILANTS TO READ IN THE TIMELY PERFORMANCE OF THE RELEASE OF DUPLICATION OR DISCLOSIVE MERICOF SHALL &R FUNCELT TO THE FOREGOING UNITATIONS TIGS I SCIND WALL BE MARKED ON ANY REPRODUCTION MERICIPAN WHOLE OR IN MARY "

The additional Figures 52 through 65 display both C_L vs a_f and spanwise lift distributions on the rear wing as functions of tilt angle and advance ratio. These curves have been prepared from pressure data extracted from (15). Figure 57 provides a check point against Figure 49. For example at $\phi_R = 16.9^\circ$, $a_f = 0^\circ$, (Figure 57) the $\Delta C_L \simeq -0.06$ due to power effects. Figure 49 would show a $\Delta C_L \simeq -0.07$ at $(\phi_R + a_f) = 17^\circ$.

b. Wings and Propellers in Ground Effect

Figures 66 through 69 have been included to demonstrate the influence of the ground on the propellers. As the propeller blade angles are constant throughout this range of tests one finds that power absorption is influenced by the ground presence. At J's of 0.12 and 0.325, the front and rear propellers absorb less power as the ground is approached. At J = 0.54 however, a reversal occurs and the propellers absorb more power in the ground presence. A study of this phenomenon has not been pursued. However, it is believed to be related to the general inclination of the wake.

The general loading of the front propellers and unloading of the rear propellers with increasing angle of attack should be noted. This effect has been observed as well at tilt angles lower than the hover values for which these curves are plotted. Additionally a sharp increase in thrust and power on the rear propellers above angles of attack of twelve degrees was evidenced. Again, it is hypothesized that the rear propellers are passing beneath the main core of the front wake. The aircraft stability is expected to increase in this vicinity. This, in fact, is the case. Ground presence does not appear to alter the trend.

As the blade angles are held constant throughout the range of α and J, a condition prevails which is equivalent to fixed collective pitch as well as stick position. It is obvious that

total power, and its distribution, do not remain constant throughout even the a_{fus} range. To fully define the picture it would be

necessary to run a range of collective and differential blade angles so that lines of constant power and stick deflection could be defined. Unfortunately, this was not within the scope of the test data. One additional comment is made concerning the thrust data: it does not always appear consistent with the power data. The tendency has been to favor the power data and to regard the thrust intercepts with suspicion. This problem has consistently reared itself throughout the testing, and serves to illustrate the caution required in data interpretation.

No data have been accumulated to determine the influence of ground

FURMENED UNDER IN TED STATES GOVERNMENT CONTRACT NO AFJ3(6/34-3440, SHALL NOT BE EITHER RELEASED OUTSTDE THE COVERNMENT, OR USED, UPICATED ON DISCLOSED IN WYOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-H-RAT, N, TY TEPT FOR (II) FMFRGENCY REPAIR OR VERNAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE THE OR PROCESS IS NOT CTHERWISE RE-20 YABUL AVAILABLE TO EMABLE TIMELT PERFORMENCE OF THE WORK BY OR FOR THE GOVERNMENT, WHERE THE ITER STATES OF THE UNITED TALES MAY PEQUATE PROVIDED THAT IN EITHER CASE THIS SELFASE, USE, DUPLICATION OR DISCLOSURE HERFOF SHALL BE SUBJECT TO THE FOREGOING IMITATIONS TO STALES HARKED ON ANT REPRODUCTION HEREOF IN WHOLE OR IN PART,

Figure 52. X-19, installed rear wing lift curve.

Carlo and an other states

がってい

X i shafiyi bi canadada da katalar yana da da katalar yang baran da kata Katalar yang baran da kat Katalar yang baran da katalar y Katalar yang baran da kata Katalar yang baran da katalar yang ba

14. 14. V 1

~ ie

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT NO AF33(013)-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR USED DUPLICATED, OR DISCLOSED IN WINLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-INVRATION EXCEPT FOR (I) FWFRU: NOT REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-NOVADLY AVAILABLE TO ENARLY TIMELY PERFORMANCE OF THE WORK OR (IN RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES VALUELE DE ENARLY TIMELY PERFORMANCE OF THE WORK OR (IN RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES VALUELE DE ENARLY TIMELY PERFORMANCE OF THE WORK OR (IN RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES VALUELE DE PROVIDED THAT IN RITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGON LIMITATION. THES LECEND SHALL NE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3946 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR USED, DUPLICATED, ON DISCLOSED IN WIGLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTLN PERMISSION OF CURTISS. WRACHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT GTHEWWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK OR (II) RELEASE TO A FOREICN GOVERIMENT, AS THE INTERRETS OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS IFGEND SHALL NE MARKED ON ANY REPRODUCTION WEREOF IN WHOLE OR IN PART "

99

,

67-2063

A Distance of the second se

÷

FURNISHED INDER UNITED STATES GOVERNMENT CONTRACT % AF31(615)-1940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DI PLICATED, OR DISCLOSED IN WITTED OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS WRICHT COR-HORATION, BACEPT FOR (I) FMFRU, NCY REPAIR OR OVERHAULW WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SAURTY AVAILARLE TO ENALE THEY PERFORMANCE OF THE WORK. OR (I) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED IN A TANILAR FUITHEF PROVIDED THAT IN FITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOST RE HEREOF SHALL BE SUBJECT TO THE FOREGOING IA IN TA ICIN. THEN IN STALE REMARKED ON ANY REPRODUCTION PERFOR IN WHOLE OR IN PART."

67 2041

101

FURNISHED UNDER UNITED STATE GOVER.HMENT CONTRACT No AF33(6.5)-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE COVERNMENT, OR USED, DUPLICATED, ON DISCLOSED IN AHOLF OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISE WRICHT COR-PORATION, EXCEPT FOR (I) FMERGENCY REPAIR OR OFFRHAUL WORK BY OR FOR THE GOVERNMENT WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-9. NARLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK OF OR FOR THE GOVERNMENT WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-9. NARLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK OF OR FOR THE GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUERE PROFIDED THAT IN FITHER CASE THE RELEASE USE DU PILCATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FORECOMO LIMITATIONS - THE STATE OF MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART, '

5411

1. 1144 Autor Autor

\$7-**30**6*

11400

"Notice of sending" and

\$

FURMISHED UNDER UNITED STATES GOVERDIGEN CONTRACT NO AFISION-1940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT. OR USED, IN PLICATED ON DISCLOSED IN WHILE OR IN PART FOR MANUFALTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISHON OF CURTUS WRICHT GOVE PRIVATION FAXEPT FOR ID FURTIONELY REPAIR OR UNERRAUL WORK BY OR FOR THE GOVERNMENT WHERE THE TEM UR PROCESS IS NOT UTHER WISE RE-WINGLY AVAILABLE TO ENALL THELY PERFORMANCE OF THE WORK, OR UNERLEASED OF FOREICH CONTRACT, AS THE INTERESTS OF THE WITED ALTER MARKEN, WELL PRIVIDED THAT IN ETHER CASE THE RELEASE, USE, DUFLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LUG A WAT AND THE UNITED THAT IN ETHER CASE THE RELEASE, USE, DUFLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LUG A WAT.

Figure 57. X-19, installed rear wing lift curve.

15

103

FURNESHED UNDER UNITED STATES COVERNMENT CONTRALT No AF33(6/5)-1940 SHALL NOT BE EITHER RELEASED OUTSEDE THE COVERNMENT, OR USED. DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OF FROUDERMENT, WITHOUT THE WRITTEN PRAMISSION OF CURTISS. WEIGHT COA-PORATION, EXCEPT YOP () THERE INCE REPAIR OR OVERHALL WORK BY OR FOR THE GOVERHILTS, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOUNDLY AVAILABLE T. ENABLE THE PERFORMANCE OF THE WORK OF OUR OB HUNDELEASE TO A FOREICH COVERNMENT, AS WE INTERNIST OF THE UNITED STATYS MAY REQUIRE PROJECT YOTHE THERE CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE FEREOF SHALL BE SUBJECT TO THE FORECOME LIMITATIONS. THIS LEGEND WALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

, and [....

Service -

1 X 4

Ŷ

FURNISHIPD 'NDER UNITED STATE GOVERNMENT CONTRACT NA AFBIGGIG-BING SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR USED OF MILLATTO ON DISCLOSED IN WIN 15 OF IN PAET FOR MANUFACTURE OF PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PARATON I XCEPPT FOR (IN FMERIONCY REPAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-WANTUR VALUABLE TO ENAULT INELLY PREFORMANCE OF THE WORK OR OR FOR THE GOVERNMENT WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-VALUE VALUABLE TO ENAULT INFORMATION FOR THE PORT OF THE WORK OR ON LIAND OR PORTING GOVERNMENT, AS THE INTERESTS OF THE UNITED TALES MAY REPORT FOR UNITED THAT IN FILTHER CASE THE RELEASE TO A DOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED TALES WAY REPORT FOR THE PROVIDED THAT IN FILTHER CASE THE RELEASE TO A DOREIGN OF MARKED SHALL BE SUBJECT TO THE FOREGOING IN TALE AT THE FOR THE PROVIDED THAT IN FILTHER CASE THE RELEASE TO BE AFTER THE MEDICATION OR DISCLOSARE HEREOF SHALL BE SUBJECT TO THE FOREGOING IN TALE AND THE FORM OF THE PROVIDED THAT THE FOREGOING THE REPORT OF THE WRITED IN TALE AT THE FORM OF THE APPROVE OF ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

67-1997

105

"FURNEMED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF31615-1946, SHALL NOT BE EITHER RELEASED OUTSDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PORATION EXCEPT FOR (I) EMERGENCY REPARE OR OVERHALL WORK & YOR FOR THE GOVERNMENT, WHERE THE TEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMBLE TIMELY PERFORMANCE OF THE WORK. OR FOR THE GOVERNMENT, WHERE THE TEM OR PROCESS IS NOT OTHERWISE OF THE UNITED STATES MAY REQUIRE, PROVIDED THAT IN EITHER CASE THE RELEASE OF DATON OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LEGEND SHALL RE MARKED ON ANY REPRODUCTION MEREOF IN WHOLE OR IN PART."

۔ م ۲

67-3010

106

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(6.51.340. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR USED DI HILCATES, ON DISCLOSED IN WINLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS WRIGHT COR-BYRATION BECEPT FOR (1) AMFN: NOT REPAIL OR OVERHALL WORK BY OR THE GOVERNMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS WRIGHT COR-BYRATION BECEPT FOR (1) AMFN: NOT REPAIL OR OVERHALL WORK BY OR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-NORMELY AVAILARLE TO ENABLE TIMELY PERFORMANCE OF THE WORK OR (10) RELEASE TO A FOREIG GOVERNMENT, AS THE INTERESTS OF THE UNITED VIATES LAKE REQUIRE PROVIDED ONLY IN EITHER CASE THE RELEASE USE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING UM TATES OF THE TOTAL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART.

-

8 * •

107

FURNEMED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3940. SHALL, NOT BE EITHER RELEASED OUTMDE THE GOVERNMENT, OR USED, DUFLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR FROCUREMENT, WITHOUT THE WEITTEN PERMISSION OF CURTISS. WRICHT COR-PORATION, EXCEPT FOR DI EMERGIBICY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOUNDELT AVAILARLE TO EMBLE TIMELY PERFORMANCE OF THE WORK, OR (U) RELEASE TO A FOREIGN GOVERNMENT, AS THE DITERESTS OF THE UNITED STATES MAY REDITER. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF MALL BE SUBJECT TO THE FOREGOIN; LIVITATIONS. THES LEGEND SHALL NE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

イスに変換す さき アインドチャー しゅうしょうてんかく

- Ingente bare

しったいち しきいうくがく くくち

2

1

1 5

Figure 62. X-19, installed rear wing lift curve.

67-2007

.

in mile

teres about

14 +

ŝ

÷

FURNISHED ANDER UNITED STATES GOVERNMENT CONTRACTING AF PAGE SHALL NOT BE ETHER RELEASED OUTSIDE THE COVERNMENT, OR USED, DUPLICATED OF DISTLOYED IN WIRLE OR IN PART FOR MANUFACTURE OR PROCLAEMENT WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PRATION, DAGET FOR (FOMTALLINGE) REPAIR OR OVERHALL WORK BY OF FOR THE COVERNMENT WHERE THE TEM OR PROCESS IS NOT OTHERWISE RE-N WAILT AVAILABLE TO ENARLE TIMELY FARTOMANCT FT THE WORK. CR WITHOUT TO A FOREION COVERNMENT AS THE INTEREST OF THE UNITED THE AND A REPUIRT PROVIDED THAT IN ELFHER LASE THE RELEASE OF DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING UNITED A TO SUBJECT TO THE FORE OF ANT REPRODUCTION HEREOF IN WHILE OR IN PART

67-2004

"FURNISHED UNDER UNITED STATES COVERNMENT CONTRACT No. AF33(4)3)-340 SHALL NOT BE EITHER RELEASED OUTSIDE THE COVERNMENT, OR USED, DUPLICATED, ON DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CUR THE WRIGHT COR-PORATION, EXCEPT FOR (1) EMERCENCY REPAIR OR OVERHALL WORK DY OR FOR THE COVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK, OR (0) FOR THE COVERNMENT, AND RECENT AS THE UNITED STATES MAY REQUIRE. PRO/IDED THAT IN EITHER CASE THE RELEASE USE, DUPLICATION OR DISCLOSURE HEREOF SHALL AR SUBJECT TO THE FORECOING LIMITATIONS. THIS LECENC SHALL NE MARKED ON ANY AEPRODUCTION HEREOF IN WHOLE OR IN PART."

Figure 64. X-19, installed rear wing lift curve.

~~~

#### 87-2006

.

.

110

FURNISHED UNDER UNITED STATES COVERNMENT CONTRACT No. AF33(619)-1940 SHALL NOT BE EITHER RELEASED OUTSIDE THE COVERNMENT, OR USED, DI PLICATEO (\* DISC, SED IN WIN # O'R IN PART FOR MANUFACTURE OF PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRICHT COR-NURATION FXCEPT FOR (I) FMFRUENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GEREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRICHT COR-NURATION FXCEPT FOR (I) FMFRUENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GEREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRICHT COR-NURATION FXCEPT FOR (I) FMFRUENCY REPAIR OR OVERHAUL WORK BY OR FOR AT NE GOVERNMENT, WRITTEN FUELTED ON OF OUTSING OVERNMENT, AS THE INTERESTS OF THE UNITED SATEN VANILARLE TO ENALT TIMET PERFORMANCE OF THE WORK. OR (U) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED SATEN VAY REALTS OF ENALTS THAT PERFORMANCE OF THE WORK. OR (U) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED SATEN VAY REALTS OF ENALTS THAT THE THER CASE THE RELEASE, USE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING SATEN VAY REALTS OF THE WIND STALL BE MARKED & NAT REPRODUCTION HEREOF IN WHOLE OR IN PART





111

FURNESHED UNDER UNITED STATES COVERNMENT CONTRACT No. AF33(615)-340. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS WRIGHT COR-PORATION, EXCEPT FOR (II EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOVADLY AVAILABLE TO EMBLE TIMELY PERFORMANCE OF THE WORK, OR (IN FRE THE AS FOREIGN AS THE ITEM OR PROCESS IS NOT OTHERWISE OF THE UNITED SOVADLY AVAILABLE TO EMBLE TIMELY PERFORMANCE OF THE WORK, OR (IN FRELEASE TO A FOREIGN OF SWALLS TO FINE INTERDIST SOVADLY AVAILABLE TO EMBLE TIMELY PERFORMANCE OF THE WORK, OR (IN FRELEASE TO A FOREIGN AS THE RESOVERTION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LECEND WALL NE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."



Figure 66. X-19 front propeller thrust coefficient.

10 C A

ŝ

112



Figure 67. X-19, rear propeller thrust coefficient.

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT NO AF31(615)-1440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DI PLICATED, OR DISCLOSED IN WHOLF OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PCMATION, EXCEPT FOR (I) EMERGENCY REFAIR OR OVERHAUL WORN BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLE AVAILABLE TO EMABLE JIMBLY PERFORMANCE OF THE WORN OR (II) RELEASE TO A FOREIGN GJVERNMENT, AS THE INTERESTS OF TNE UNITED STATES MAY FEQUREF PROVIDED THAT IN FITHER CASE THE RELEASE, USE, DUPLICATION OF DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGORG JMITATIONS THE JECHNO SHALL FE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE ON IN PART."



Figure 68. X-19, front propeller power coefficient.

.

FURNISHED INDER UNITED STATE- GOVERNMENT CONTRACT NO AF33(6/1-1940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERN. -NT OR -SED DI MULTATED, ON DISCLOSED IN WINLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS- WRIGHT COR-E RITTIN ENCEPT FOR (IN FMFRI NOR REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-REASTING ANALLANET TO FMART TIMETY PERFORMANCE OF THE WORK. OR ON FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-REASTING ANALLANET FOR FMARTS FOR THAT TO EVALUE OF THE WORK. OR ON FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-REASTING ANALLANET FOR FMARTS OF THE THE OR WORK OF OR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-REASTING FOR THE PROVIDED THAT IN LITHER CASE THE RELEASE TO A FOREIGN OR OVERNMENT, STHE INTEREST OF THE STIFT IN 1889 FOR THE PROVIDED THAT IN LITHER CASE THE RELEASE, USE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING THMINE FOR THE PROVIDED THAT IN LITHER CASE THE RELEASE TO HEREOF IN WHOLE OR IN PART.



Figure 69. X-19, rear propeller power coefficient.

FURNISHED UNDER UNITED STATEN GOVERNMENT CONTRACT No. AF353455-340 SHALL NOT BE EITHER RELEASED OUTEDE THE COVERNMENT, OR USED, DUPLICATT", OR DISCLOSED IN WHOLF OR 14 PART FOR MANUFACTURE OR PROJUREMENT, WITHOUT THE WRITTMU PERMISSION OF CURTISL WRICHT COR-PORATION FXCEPT FOR IN EMERGENCY RESAIR OF OVERHAUL WORK BY OR FOR THE COVERMENT, WITHOUT THE WRITTMU PERMISSION OF CURTISL WRICHT COR-SOUADING VALLAFIE TO ENABLE TIMELT PERFORMANCE OF THE WORK BY OR FOR THE COVEREMENT. WITHOUT THE WRITTE OF THE UNITED STATES MAY REQUERT, PROVIDED THAT IN EITHER CASE THE NELBASE TO A FOREKOM OR DISCLOSURE HEREOF SHALL BE SUBJECY TO THE FORECOME LIMITATIONS THES THE FOR MARKED ON ANT REPRODUCTION ARREOF IN THOLE OR 'N PART." presence on the wings. A reasonable assumption would be to suggest that it resembles the trends exhibited by the propellers, at least with respect to the intercepts.

### c. Net Forces and Moments In and Out of Ground Effect

The second second

The source of transition ground effect data accumulated on the X-19 is given in (19). The information is based on 12% model scale and is quite limited in nature. For example, only one collective blade angle was run ( $\beta_{coll} = 10.45^{\circ}$ ) for a range of fuselage attitudes and advance ratio (see Figures 70, 71 and 72). At first glance, one notes that  $C_L$ ,  $C_D$  and  $C_m$  are strongly affected by the ground effect. A closer scrutiny indicates that power absorption has also changed, so that a collective change would be required to maintain constant power. As this is not available, the ratio of  $C_T/C_D$  has been formed; it is given in the following table:

$$\frac{h/D}{1.0} \qquad \frac{J = 0.12}{370} \qquad \begin{array}{c} 0.32 & 0.54 \\ 61.3 & 23.8 \\ 361 & 54.6 & 23.6 \end{array} \right\} \begin{bmatrix} c_{L'}c_{P} \\ a_{fus} = 0 \end{bmatrix}$$

Lift ground effect is thus shown to be about 12% at J = 0.32 and 1% at J = 0.541. The value at J = 0.12 is not quite correct as the IGE and OGE runs were made at slightly different J's. Small as the difference is, the slope  $C_L$  vs J is sufficiently large to cloud the comparison at this J. The predicted ground effect at  $h/D_p = 1$ , for static operation (J = 0) is 3.5%. By definition  $h/D_p = 1$  means that wheel height is equal to one propeller diameter above the ground.

Another consideration in establishing the resultant ground effect upon power is the effect of  $h/D_p$  on the drag and consequent

fuselage attitude. Thus, ground effect would result in a slight attitude change as well as a throttle change. Figure 71 shows a positive drag for the entire range of  $a_{fus}$  plotted. This can be corrected by nosing the fuselage to negative attitudes at J = 0.12, and by tilting to lower nacelle angles for the higher values of J. At negative values of  $a_{fus}$  the ground effect tends to decrease the drag. As it also increases the lift it may be concluded that for acceleration in ground effect (negative  $a_{fus}$ ) both the lift and drag contributions are beneficial in helping to reduce power.

Unfortunately, the data have insufficient depth to fully define the resultant ground effects.

FURNISHED INDER UNITED STATES GOVERNMENT CONTRACT NO AFBIGISS-1940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT. OR USED, DE PLICATED ON DISCLOSED IN WINGE OR IN PART FOR MANUFACTURE ON PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-MURATION EXCEPT FOR (I) IMPRI OR THE PART FOR MANUFACTURE ON PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-MURATION EXCEPT FOR (I) IMPRI OR THE PART RO VERHALL WORK BY OR FOR THE GOVERNMENT. WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-MUNITION EXCEPT FOR (I) IMPRI OR THE PART RO VERHALL WORK BY OR FOR THE GOVERNMENT. WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-MUNITION EXCEPT FOR (I) IMPRI OR AND THE PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREION GOVERNMENT, AS THE INTERESTS OF THE UNITED A VANITAR FORMAL TO EVANLE TO EVANLE THE THE THE THE RELEASE USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING A VANITAR FORMAL FOR THAT IN EITHER WARK FOR THE RELEASE USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING V VIEW THE FORMAL FOR THE PERFORMANCE ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART.





67-2002

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3NG SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITKOUT THE WRITTEN PERMISSION OF CURTISS WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHER WIE RE-SONABLY AVAILABLE TO EMABLE TIMELT PERFORMANCE OF THE WORK. OR (UN FILLASE TO A FORECOMENT, AS THE ITEM SOT THE WRITED STATES MAY REQUIRE PROVIDED THAT IN ETHER CASE THE RELEASE USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOMENT UMITATIONS (HES LECEND SHALL RE MARKED ON ANT REPRODUCTION HEREOF IN WHO'L OR IN PART."



Figure 71. X-19, airplane drag characteristics, ground effects.

The second second second

ころうちょうないがい ちちちちのいちちょうかい ちちょうちん

Antheners Mon & Althouse the

-

1

ł

118

FUR-GUIED INDER UNITED STATES GOVERNMENT CONTRACT NO AF33(619-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED 0 F12CATED, OF DISTLOSED IN WIN JF OR IN PART FOR MANUFACTURE OR PROCUBEMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-HURATION, EXCEPT FOR (I. FWRN: NUT REMAIN OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-HURATION, EXCEPT FOR (I. FWRN: NUT REMAIN OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-HURATION, EXCEPT FOR (I. FWRN: NUT REMAIN OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-HURATION, EXCEPT FOR (I. FWRN: NUT REMAIN OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-HURATION, EXCEPT FOR (I. FWRN: NUT REMAIN OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-HURATION, EXCEPT FOR (I. FWRN: NUT REFORMANCE OF THE WORK, OR (IN RELEASE TO A FOREICH COVERNMENT, AS THE INTERESTS OF THE UNITED AT YN AVAILABLE TO FVARILY FILMERT CASE THE RELEASE OF DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING AT YN AVEFFUL (IR) - PRINTED THAT THE CASE THE RELEASE TO STATE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING AT YN AVEFFUL (IR) - PRINTED THAT THE CASE THE RELEASE TO THERE IN WHOLE OR IN PART.'



Figure 72. X-19, airplane moment characteristics, ground effects; c.g. at 42.8% lift chord and W.L. 123.8 inches.

119

FURNISHED UNDER UNITED STATES JOVERNMENT CONTRACT NO. AF33(6:5)-1940. SHALL NOT DE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED OR DISCLOSED IN WIK LE OR IN PART FOR MANUFACTURE OR PROSUREMENT, WITHOUT THE WRITTEN PERMIMBON OF CURTISS. WRICHT COR-PORATION, EXCEPT FOR (II EMERGENCY REPAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROFESSIS MOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (III) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REDITATE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE MEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LECEND SHALL RE MARKED ON ANY REPRODUCTION HERFOF IN WHOLE OR IN PART."

# 5. FLAP DEFLECTION INTERFERENCE EFFECTS IN TRANSITION

ist το met to the second structure of the second structure structure structure structure to structure s

ŧ

The bulk of the testing performed in the transition area concerns itself with propeller and model force readouts. There were no tests performed to establish interference effects of a flap or aileron upon its own propeller front or rear wing. The only testing done to determine effects of flap deflection was at the hover condition and was discussed previously. 「おいまいまとうないでくないたいとうないと、ななないで、からないない」というという。 そしかい ちょうかんかく しょうかい ちょうかん しょう

4 - 1 - 1 - 1

### REFERENCES

- 10. McKee, John W., and Naeseth, Roger L., Experimental Investigation of the Drag of Flat Plates and Cylinders in the Slipstream of a Hovering Rotor, NACA TN 4239, April 1958
- 11. "Proceedings Of The Fourteenth Annual National Forum," American Helicopter Society, April, 1958
- Pope, A. "Forces and Moments Over a NACA 'Airfoil'," Aero Dígest Vol. 58 No. 4 1945
- Borst, H.V., and Ladden, R.M., "Propeller Testing at Zero Velocity,"
  U. S. Army Aviation Material Laboratories and Cornell Aeronautical Laboratory, Inc. Symposium, June 1966
- 13.1 Salters, Leland B. Jr., and Norton, Harry T. Jr., "An Investigation of the Effects of the WADC 30,000 Horsepower Whirl Rig Upon the Static Characteristics of a Propeller", NACA RM SL52F20
- 14. Curtiss-Wright Corporation, <u>Model X-200T Tandem, Front and Rear</u> <u>Propeller-Nacelle-Wing Characteristics in the Presence of the</u> <u>Fuselage</u>, MIT Wind Tunnel Report No. 1003, Oct. 1960
- 15. K.J. Rogers, Low Speed Wind Tunnel Tests of a 0.12 Scale Model of the CW M-200 VTOL Airplane to Evaluate Longitudinal, Lateral and Directional Stability Characteristics, NAA Report No. NA62-H-719, dated Oct. 2, 1962. (NACAL 93)
- 16. H. Fluk, <u>Isolated Model Propeller Characteristics 3(156109)</u>, Dia. 2.5 ft., Curtiss-Wright Report 001-67, Aug. 26, 1965
- 17. E.L. Hassell, Curtiss-Wright Corporation Wind Tunnel Tests on Half-Scale Wing Model, MIT Report No. 992, Nov. 1959
- 18. Granath, J.I., and Locklin R.G., <u>Stability and Control Investigation</u> of Curtiss Model X-200, MIT Wright Brothers Wind Tunnel Report No. 989, dated
- 19. K.J. Rogers, Low Speed Wind Tunnel Tests of A 0.12 Scale Model of the <u>Curtiss-Wright X-19 Aircraft</u>, NAA report NA64H-837, August 21, 1964 (NACAL 120)
- 20. K.J. Rogers, Curtiss-Wright Corporation M-200 Turbine Stability Model, MIT Report No. 1019, March 1962
- 21. K.J. Rogers, Low Speed Wind Tunnel Test of A 0.12 Scale Powered Model of the X-19 Aircraft to Determine the Optimum Propeller Tilt Schedule in Transition, North American Aviation, Inc. Report No. NA66H-43, February 25, 1966 (NACAL 142)

SECTION IV

PROPELLER AERODYNAMIC DESIGN

Ter

 $\bigcirc$ 

.

SECTION IV NOMENCLATURE A = disk area =  $\pi R^2$ = activity Factor =  $\frac{100,000}{16} \int_{2}^{1.0} \left(\frac{b}{D}\right) \left(\frac{r}{R}\right)^{3} d\left(\frac{r}{R}\right)$ AF = blade chord ft Ь  $C_{L_i}$  = section design lift coefficient = thrust coefficient =  $\frac{T}{\rho_n^2 p_n^2}$ CT  $C_P$  = power coefficient =  $\frac{P}{P_n^3 p^5}$  $C_L$  = lift coefficient = L/qs  $C_D$  = drag coefficient = D/qs = drag D = Figure of Merit = .798  $\frac{C_T^{3/2}}{C_P}$ FM H.P. = horsepower = section maximum thickness h IC<sub>L<sub>i</sub></sub> = blade integrated design C<sub>L</sub> = 4  $\int_{2}^{1.0}$  C<sub>L<sub>i</sub></sub>  $(\frac{r}{R})^3 d(\frac{r}{R})$ = advance Ratio = V/nDJ L = lift = RPS n = RPM N Q = torque = blade radius along blade r = propeller total radius R  $B_{.75}$  = blade angle at .75 radius  $\beta$ 42" = blade angle at 42 inch station  $\sigma$  = density ratio =  $\rho / \rho_0$ **P** = air density  $\rho_0$  = air density at sea level

## SECTION IV

## PROPELLER AERODYNAMIC DESIGN

## 1. BLADE GEOMETRIC CHARACTERISTICS

The propellers for the X-100 and X-19 airplanes feature wide chord blades that were configured to generate high values of radial force while maintaining high levels of operating efficienty at the take-off and cruise flight conditions. The detailed geometric characteristics of the blades are shown on Figures 73 and 74. In determining the detailed characteristics of the propeller blades the diameter was established by the disk loading requirements whereas the other aspects of the design were dictated by a compromise among cruise, take-off and radial lift performance requirements. Three-blade propelle.s were selected to obtain a wide chord blade which could be thick inboard and still maintain a thickness ratio of less than 30% at any blade station.

If two-blade propellers had been chosen, very high vibration forces would be generated when operating at high shaft angles which could only be eliminated by hinging the blades. The weight of three- and four-blade propellers was found to be nearly equal when designed to have the same total solidity. Since the performance difference at both the hover and cruise conditions was found to be small, the three-blade design was chosen for the improved structure possible with the wider chord design. It should be realized that with lightly loaded propellers the induced efficiency is already high so that a larger number of blades can not improve the efficiency level significantly. See reference 9.1.

For the X-100 airp'ane the required thrust to power level was established by the power available and the estimated weight. It was determined on this basis that a thrust to horsepower ratio of approximately 6.0 would be required. The disk loading necessary to obtain the required thrust to horsepower, at hover, is also dependent on the Figure of Merit. When the X-100 was designed, it was believed that Figure of Merit of 80% or over could be obtained. The theory of propellers operating at the static condition was presumed to be satisfactory and that a propeller could be designed to have this high level of performance. At a sea level standard day FM of 80% and a thrust to horsepower ratio of 6.0 resulted in a disk loading of 25  $1b/ft^2$  (Figure 75). For the X-100 airplane a disk loading of 25 resulted in an installed diameter of 10 feet and gave a level of thrust necessary for hover. Since the hover and operational characteristic of the X-100 airplane were satisfactory with this disk loading, this level was retained for the X-19. This resulted in a diameter of 13' 0" for the latter aircraft.

Results of single point calculations in (22) and (23) indicated that at a low value of integrated design  $C_L$  with 150 activity-factor blades would give the required performance at both the cruise and take-off operating conditions. By increasing the integrated design  $C_L$  the solidity could be reduced. The Figure of Merit at hover would be increased slightly, less than 2% 22 but the cruise efficiency would be decreased as the result of operating high integrated design lift blade at low values of operating lift coefficients However, this was considered to be undesirable, as it was shown by Equation (9) of Section II that the blade area must be large to obtain high values of radial force.





8°-20T?

÷

> FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF33(615)-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR SFD DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT OP-PORATION, EXCEPT FOR (I) FMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT UTHERWISS RE-SONABLY AVAILABLE TO EMALLY TIMELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERFEST OF "THE'N TE STATES MAY REQUIRE PROVIDED THAT IN F.THER CASE THE RELEASE USE DUPLICATION OR DISCLOSURE HE EOF SHALL BE SUBJECT TO THE FOREC N LIMITATIONS THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART.

124





FURNISHED UNDER UNITAD STATE: GOVERNMENT CONTRACT Nº AF33(613-340 SHAIL, NOT BE EITHER RELEASED OUTSIDE THE COVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PARATION, FXCEPT FOR (1, MERGENCU REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERL THE ITEM OR PROCESS IS NOT OTHERWISE RE-SURVATION, FXCEPT FOR (1, MERGENCU REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERL THE ITEM OR PROCESS IS NOT OTHERWISE RE-SURVALLA ALLABLE TO ENABLE TIMELY PERFORMANCE OF (HE WORK, OK GU RELEASE TO A FORSICH COVERNMENT, AS THE INTEREST OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE MERGOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THIS LEGEND NHALL RE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

125



۸

、 *.* .

Figure 75. Power loading as a function of disk loading on  $\epsilon$  static isolated propeller, density ratio  $\sigma = 1.0$ .

67-2004

7

÷.

.

.

126

"FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT N. AF33(615)-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR USTD JUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFAC URE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-"CRATION, IXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE 2F. SOMABLY AVAILABLE TO EMBLE TIMELY PERFORMANCE OF THE WORK, OR (II) RELEASE TO A FOREIGN GOVER'IMENT, AS THE INTERESTS OF THE UNTERD STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE USL. DYPICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGULY LIMITATIONS THES LEGEND SHALL BE MARKED ON APT REPRODUCTION HEREOF IN WHOLE OR IN PART." From Equation (9) it is seen that the blade area can be placed at any station along the blade and still be effective for producing radial force. By distributing the blade chord to minimize the power requirement it is possible to maximize radial force and still obtain high values of efficiency. The resulting blade planform is wide inboard and tapers to a narrow tip.

In the case of the X-100 airplane the blade area, if made rectangular, would have an activity factor of approximately 240 instead of the 188 value obtained with the tapered blade.

As is usual, in the practical design of a propeller, the solidity or activity factor and blade number are established by single point methods of calculation. The distribution of solidity in the case of the X-19 and X-100 aircraft are determined by the radial force lift requirements as well as manufacturing considerations. After the blade planform shape has been determined, the blade thickness ratio is found based on a structural load and weight analysis. The final design characteristics of the blade are then established by an optimization study which determines the best distribution of blade angle and design  $C_L$ . This optimization study is generally performed for each operating condition, and then the design  $C_L$  and blade angle adjusted so that the best overall propeller characteristics are found for the entire series of flight conditions.

The analysis of optimization for finding the best blade is done using the method of the Calculus of Variations (30). This method determines the best balance of the profile and induced losses to give peak overall performance. At each blade station the characteristics of list versus drag are determined for a range of design  $C_L$ , and the locus of the curve represents the best airfoil at any given operating  $C_L$ , see Figure 76. With this information available for each station, the distribution of induced losses is found by the method of (30) which gives the best overall performance available. This distribution is different than that which would be found for a frictionless propeller as represented by the well known Betz loading criteria, which gives the best load distribution for the blade operating at zero drag.

It will be noted from Figure 76 that once the operating  $C_L$  is obtained for peak performance, the resulting design  $C_L$  must be found, and at a given station there are more than one value of design  $C_L$ 's that can be used and still obtain peak performance. For instance, at the cruise operating  $C_L$ , a design  $C_L$  of either 0.2 or 0.3 could be used and still obtain the same  $C_D$  and L/D. Consideration is therefore given when balancing the blade for all the flight conditions, to choosing the design  $C_L$  that is best for all the flight conditions.

If a large difference in design  $C_L$  requirements for peak efficiency is encountered between two flight conditions, the design  $C_L$  is chosen based on the value required for the most important flight condition. These procedures will give the characteristics required for the best overall propeller. With the X-100 and X-19 airplanes, a fixed design  $C_L$  at each station was found to be nearly optimum for all flight conditions.



~

Figure 76. Typical drag polar as a function of design  $C_{L}$ .

· · ·

**\***\*\*

The blades for both the X-100 and X-19 aircraft were designed to use NACA 64 series airfoil sections. These sections were chosen as test results indicated slightly higher levels of static thrust are obtained with these blade sections than with the conventional NACA 16 series propeller section. The reason for this improvement is the increased lift drag ratio obtained with the 64 series sections. The blades with 64 series sections operate at better efficiency than equivalent blades with 16 series sections when the power is above the design value as during a control input in hover because of the higher level of maximum lift coefficient available with the "64" series sections.

The blades for the X-19 propeller are very nearly the same as the X-100 propeller blades. The planform of the two blades would be geometrically similar, if the 130166 (X-19) blade were cut back to 12'6" diameter. The extension was made on the blade when it became apparent that the weight of the aircraft had increased 8%. The thickness ratio of the 130166 blade was less outboard, as higher tip section Mach numbers were expected with the X-19, when operating at its design 400 mph cruise condition. With the tip thickness ratio of 7%, the losses due to compressibility are reduced.

In choosing the geometric characteristics of the X-19 blade it was desired to maintain the configuration as near to the X-100 as possible. This was done since the front wing of the X-19 was geometrically similar to that of the X-100. It was preferable to stay close to the experience gained with the X-100 test aircraft.

## 2. AERODYNAMIC DESIGN

75.

The methods and uata for the aerodynamic design of propellers were established between 1948 and 1954. The methods for forward flight conditions were developed using the theory of propellers described by Theodorsen, (24), for calculating the induced velocity at each blade station and thus determining proper section angle of attack and induced efficiency. The strip analysis procedures used for single and dual rotation propellers are completely described in (25) and (26) and are arranged to be used with any set of two dimensional airfoil data.

The airfoil data used in calculating the performance of a propeller is given in (27). This airfoil data is a correlation of all the two dimensional section data then available. Sections with thickness ratio's from 4 to 21% and design lift coefficients from 0 to 0.7 are covered in this report. The data covers a Mach number range from 0 to 1.6 and an angle of attack range through the stall angle.

For sections having a thickness ratio exceeding 21% the data given in (28) are used. The data given in this report covers the Reynolds Number range, of major importance with thick airfoil sections as well as the range of angle attack and Mach number.

The calculated propeller performance, using the methods and airfoil data given in (25) to (27), checks wind tunnel test data closely for the range of flight conditions of the X-100 and the X-19 airplanes. An accuracy of  $\pm$  1% can be expected for the case where the propellers are operating at small shaft angles and advance ratio's of 0.5 to 3.5. Only when the propellers are operating at loadings below that for peak efficiency does the calculated performance accuracy deviate more than 1%. In this case errors up to 4% can be expected. Unfortunately, the error between the tests and calculations have been quite inconsistent; therefore the possibility exists that an error is in the test data. This problem has been the subject of considerable investigation, but is yet to be resolved.

The strip analysis procedure used to calculate the performance of propellers at the hover condition is given in (29). This procedure is an extension c<sup>-</sup> the flight strip analysis method, assuming that the inflow velocity determines the pitch of the wake helices. It was necessary to extrapolate the basic Theodorsen curves to determine the inflow velocity on the basis of this assumption. A propeller operating at the hover condition generally has some of the sections stalled. It was found necessary to extend the basic airfoil data of (27) beyond the stall angle so that the working data would be available. The procedure is given in (29). It was noted that to obtain agreement between propeller test and calculations the lift must be much higher than would be measured in two dimensional airfoil tests.

The procedure for determining the optimum design CL, blade angle or chord distribution to obtain peak efficiency at any blade station is given in (30). This procedure was developed using the Calculus of Variations for balancing the profile and induced losses. It provides the designer with

a tool for evaluating the performance with respect to the peak and has been an effective procedure for designing blades.

For initial propeller performance calculations the methods and data of (22) or (23) may be used. These are single point methods of analysis and are useful for sizing the propeller and determining the proper efficiency level. (22) is preferred for this use, as the effort required for the calculations is considerably reduced.

### 3. HOVER PERFORMANCE AS MEASURED AND CALCULATED

The performance of the propellers used on the X-100 and X-19 VTOL airplanes was measured on several test rigs and in various scale configurations including full scale (See Section IX). The hover performance of the full scale X-100 propeller as measured in the Ames 40 x 30 foot wind tunnel is shown on Figure 77 along with calculated performance and the measured performance of the 15% scale model propeller. The full scale data, (31), was obtained by mounting the propeller in the hover position and measuring the performance without the tunnel operating. The propeller was about three diameters above the floor of the tunnel and therefore was considered out of ground effects. The model data were obtained on a rig that had zero blockage and were run under free air operating conditions. The performance was calculated using the method and data of (29). The X-100 propeller was also tested on Rig No.2 at Wright Field and the results are given on Figures 78 and 79.

The data given on Figure 77 indicates that calculated performance is much higher than obtained from test. Also, the model results are of little value for finding the overall performance at hover. The calculated performance is high, probably due to the underestimation of the incuced losses. It is believed that the induced losses are underestimated rather than the profile losses as the airfoil data used to find the profile losses is also used to find the profile losses in cruise and the calculated performance agrees closely with test data in cruise This has since been the subject of study to determine a theory to correct this difficulty. The model propeller test results do not represent full scale performance because of the low Reynolds Number involved. A comparison of the data from Rig No. 2 and the Ames data, (31) indicate that fair agreement was ob-tained although the data from the two rigs, when plotted, cross over. Because of the blockage experienced by the propeller on Rig No. 2, it is believed that the Ames data is more representative of the actual performance. It should be pointed out here that because of the difficulty encountered with calculations, only test data were relied upon for predicting static performance of propellers for the X-100, X-19 and other V/STOL aircraft of interest.

The take-off performance of the X-19 was originally determined on the basis of performance measured in the Ames tunnel and shown on Figure 77. Therefore reliable predictions of the hover performance was obtained on the X-19.

Later hover performance characteristics of the X-19 propeller are shown on Figures 80 to 82, as determined on Rig No. 2 at Wright Field. Comparison of these results with the measurements taken from the X-100 propeller indicates the performance of both propellers are nearly identical. The Figure of Merit as determined by these tests peaks at approximately 73.5%.



Figure 77. Blade angle and thrust coefficient as a function of power coefficient, static performance, 3(X100188) blade, 500 to 800 mnD

なとうながらのないです

CONTROL &

「ないたちをという」

rediter ? whereasters

132

"FURRESHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(4)3)-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR SED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OF "COCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT (OP-PORATION, EXCEPT "OR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PPOCESS IS NOT OTHERWITH HE SONABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVEPNMENT, AS THE INTERESTS OF THE UNITH STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSIVE HEREOF SHALL BE SUBJECT TO THE FOREIGN LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPPODUCTION HEREOF IN WHOLE OR IN PART, " **4** >



•,

Figure 78. Thrust coefficient as a function of power coefficient, static whirl test dated 7,'19/60, Wright-Patterson Air Force Base whirl rig no. 2; model 138592/10188A2F, dia. = 10 ft., AF = 188,  $IC_{L_i} = 0.068$ , 1000 horsepower, NACA 64 section series.

67-2076

133

<sup>&</sup>quot;FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(415)-3440, SHALL NOT BE EITHER RELEASED OUTEDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT. WITHOUT THE WRITTEN PERMISSION OF CURTISS WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK, OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTEREST OF THE UNITED SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK, OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTEREST OF THE UNITED SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK, OR (III RELEASE TO A FOREIGN OVERNMENT, AS THE INTEREST OF THE UNITED SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK, OR (III RELEASE TO A FOREIGN GOVERNMENT, AS THE INTEREST OF THE UNITED STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LECEND SHALL BE MARKED ON ANY REPRODUCTION VEREOF IN WHOLE OR IN PART."





1

.

27 . 12 · 1 · 1 · 1 · 1 · 1

とうちんでわけ、おおやんせんたいと思い

してもいちち スキア いいまいおい いかやれない ちゃ ぜまたたち

\*\*\*

"FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT NO. AF33(613)-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR USED DUFLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT "OK-FORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITLM OR PROCESS IS NOT OTHERWISE RF-SOMABLY AVAILABLE TO EMABLE TIMELT PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERF TS OF ""E UNITED STATES MAY REQUEE, PROVIDE THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LEDENT SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR ,M PART "





FURNISHE" UNDER UNITED STATES GOVERNMENT CONTRACT No AF33(619-1440, SHALL NOT RE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATE + OR DISC' ED IN WINDE OR IN PART FOR MANUFACTURE OP PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION. "FPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE PE-SYARDLY AVAILADLE TO FVARLE TIMELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQU'REF PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING UMITATIONS THIS IFCEND WAIL NE MARKED ON ANY REPRODUCTION HEREOF IN W SOLE OR IN PART."



.

۰

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF13(615)-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR SED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCURFMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT (OR-PORATION EXCEPT FOR (II EMERGENCY REPAIR OF OVERHAUL WORK BY GOVER MENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT (OR-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK, OR (II) RELEASE TO A FOREIGN GOVERNMENT AS THE INTERESTS OF THE 'NITH' STATES MAY REQUER. PROVIDED THAT THE EITHER CASE THE RELEASE USE OUPLICATION OR DISCLOSURE HEREOF \_ \*'L BE SUBJECT TO THE FOREGOM LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR 'N PART,

136



.

...

Figure 82. X-1., figure of merit as a function of power coefficient, static, Wright-Patterson Air Force Base whirl rig no. 2; 3(1368A10P3), dia. = 13 ft., AF = 168, ICL<sub>1</sub> = 0.057, NACA 64 series sections, 1000 horsepower.

67-2080

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT NO AF34(615)-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRIT. EN PERMISSION OF CURTISS-WRIGHT COR-PURATION, EXCEPT FOR (I) FMERG'NOY REPAIR OR OVERHAUL WORK BY CAF FOR THE GOVERNMENT, WHERE 'HE ITEM OR PROCESS IS NOT OTHER WIER E GOVARLY AVAILABLE TO EMALLE TIMELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED "TATES MAY REQUIRE - PROVIDED THAT IN ETHER CASE THE "ELEASE, USE, OUPLICATION OR DISCLOSURE MEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITAT ONS - THIS IFGEND NUMEL DE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART.' This compares with a level of 80-plus percent observed rrom tests of other propellers.

Since the measured static thrust performance is far below the expected level, a research program was undertaken to find ways and means of improving the efficiency. As part of this program a rig was built for measuring the performance without blockage present.

The highlights of the program, including a description of the test rig, are discussed in (32). The static performance of the X-19 propeller was measured on this rig, the results of which are shown on Figures 83 and 84. The data obtained from the Curtiss Rig is 1 to 2 percent lower in Figure of Merit than from Wright Field Rig No. 2. This change is due to blockage and interference from the Wright Field rig and was expected. See (32).

It was found that measurement of the full scale static thrust performance with desired accuracy is extremely difficult. The reason for this is that forces are large and therefore the interaction between thrust force and the torque is difficult to isolate. Furthermore, the propellers must be tested at nearly zero wind conditions to obtain consistent values. As a result, considerable effort is required to obtain satisfactory propeller performance data. The test results presented are believed to accurately describe the propeller hover performance.

### 4. CRUISE PERFORMANCE MAPS

434

ころうちかいとうちまたちないのできたちないないない あいこういい やせがい

ž

¥

ż

Performance of the X-100 and X-19 propellers at zero to  $\pm$  10<sup>°</sup> shaft angle flight conditions, can be determined from the efficiency maps, Figures 85 to 91. These maps were calculated based on the methods and data of (25) and (27). For the X-100 propeller, the data covers only operating conditions when the helical tip Mach is less than 0.3. The maps for the X-19 propeller cover conditions up to a forward Mach number of 0.8. As the methods and data given in (25) and (27) have been highly developed, and checked, the data on the maps can be considered to be accurate within  $\pm$  2%.

5. EFFECTS OF TIP SPEED AND BLADE TWIST IN HOVER AND CRUISE

In hover, the effect of changes in tip speed and pitch distribution must be determined by test, as suitable methods and data are not yet available for calculations. With the X-19 and X-100 blades, changes in hover performance with changes in tip speed was not clearly established by the test data, Figures 78, 80 and 83. At the lower loadings it appears that the higher tip speeds result in improvements, whereas at high loadings the reverse is true. The three blade propeller using 109652 blades shown on Figure 92 shows a large improvement in performance with increases of tip speed. The reason for this improvement is probably due to improved load distribution as a result of changes in lift curve slope at the higher tip Mach Number.

The 109652 blade was retwisted as shown on Figure 92. From Figure 94 note that lower values of Figure of Merit are obtained with the retwisted blade, at power coefficients near the peak, than with the original blade.

FURMENTED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR USED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR HANDIACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PORA-TOP, EXCELT FOR (I) "MERGENCI REPAIN OR OVERHALL YCRN BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE PF-SOMADLY AVAILABLE TO BUADLE INML.Y PERFORMANCE OF THE WORK, OR (II) RELEASE TO A FOREICH GOVERNMENT, AS THE INTERESTS OF THE UNITFO STATES MAR ARGCHART SHOULDED THAT IN EXTYRE CASE THE RELEASE USE, DUPLICATION OR DISCLOSURE HEREOF MALL BE SUBJECT TO THE FOREGOING. LIMITATIONS, THE LAUERT SHALL BE MARKED IN 4NT BEPRODUCTION HEREOF IN WHOLE OR IN PART."



.

Figure 83. X-19, thrust coefficient versus power coefficient, static; 3(13168A10P3) blade, Curtiss-Wright whirl test rig,

#### 67-2095

139

FURMISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3945 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNIAINT, OK USED, DUPICATED ON DISCLOSED IN WHETE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WAIGHT COA-PARATION EXCEPT FOR (1) FMERI-ENCY REPAIR OR OVERHALL WORK BY OR 50 R. THE SOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-STATES TAVAILABLE TO EMARLE TIMELY PERFORMANCE OF THE WORK. OR (11) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REALINE F PROVIDED THAT IN FITHER CASE THE RELEASE, USE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING UMITATIONS. THIS I FORM IN BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART.



Figure 84. X-19 propeller blade angle versus power coefficient, static; 3(13168A10P3) blade, Curtiss-Wright whirl test rig.

•

Ę

· 「「「」」へていていていたいというできたので、「いちつ」となってい

÷., \*

•

,

.

140

FURNEWLED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF33(013)-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (1) EMERGENCE REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHER\* THE ITEM OR PROCESS IS NOT OTHERWISF RE-SORABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE FORM. OR (10) ROLLASE TO A FOREION OF GOVERNMENT. AS THE INTLF. SOFT HIT INTLF. STATES MAR REQUIRE. PROVIDED THAT IN EITHER CASS THE RELEASE, USE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOVER, LIMITATIONS THES LEGEND SHALL BE MARKED ON ANT REPRODUCTION HEREOF IN WHOLE OR IN PART. • >





141

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF33(614)-340 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED DUPLICATED ON DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS WRIGHT COR-PRATION, EXCEPT FOR (1) FMERGENCY REPAR OR OVERHALL WORK BY OR FOR THE COVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-WINABLY AVAILABLE TO EMARLE TIMELY PERFORMANCE OF THE WORK, OR (1) RELEASE TO A FORSION GOVERNMENT, AS THE INTERESTS OF THE UNTED STATES MAY REQUIRE - PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING UMITATIONS INCLOSURE LEGEND NUMLE. NE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART -



: 86. X-19. propeller cruise efficiency map, 3(13168A10P3) blade; AF = 168, dia. = 13 ft,  $IC_{L_{1}}$  = 0.057, forward Mach No. = 0.3 or less.

#### 67-2067

"FURNESSED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3440 SIALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR USED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-MORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWITE RE-SOMABLE AVAILABLE TO EMABLE THELF PERFORMANCE OF THE WORK. OR (IN FRELFASE TO A FORTION GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY LEDURE FROVIDED THAT IN EITHER CASE THE RELEASE, USE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS, THES LEGEND SHALL BE MARKED ON ANY REPROPUCTION HEREOF IN WHOLE OF IN PART "

142





143

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT NO AF33(6/5)-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUP/2CATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION EXCEPT FOR (I) FMFRUENCE REPAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-STATES VALUATED FNDRUE TIMELY PERFORMANCE OF THE WORK OR (N) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNTITED STATES VALUAR FOURT F. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING UM\*\*ATIONS THES LECTED SHALL NE MARKED ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."

SAMPLE A DALLAR AND A DALLAR AND A DALLAR A DALLAR AND A DALLAR A

NAME & V

ž

?

3. • •

ì



re 88. X-19, propeller cruise efficiency map, 3(13168A10P3) blade; AF = 168, dia. = 13 ft,  $IC_{L_1}$  = 0.057, forward Mach No. = 0.5 or less.

67-2088

144

FURNESHED UNVER UNITED STATES GOVERNMENT CONTRACT NA AF33(415)-3440 SHALL NOT BE EITHER RELEASED OUT UDE THE GOVERNMENT, OR ISED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OF PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR PORATION, EXCEPT TOR (II EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISF RE SONABLY AVAILABLE 10 EMBLE TIMELY PERFORMANCE OF THE WORK. OR (III) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE. FOOVIDED THAT IN EITHER CASS THE RELEASE, USE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HERFOF IN WHOLE OR IN PART."






FURMISHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AFJ3(615)-340. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLF OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-HYRATION, EXCEPT FOR (II EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHER WILL RE-STRATION, EXCEPT FOR (II EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHER WILL RE-STRATEN ANY REAL PART OF EMARLE TIMELY PERFORMANCE OF THE WORK, OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTEREST OF THE UNITED STATES MAY REQUIRE - PROV DED THAT IN HITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSUKE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS - THIS LECEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART. '



Figure 90. X-19, propeller cruise efficiency map, 3(13168A10P3) blade; AF = 168, dia. = 13 ft, IC<sub>Li</sub> = 0.057, forward Mach No. = 0.7 or less.

Statistic Course (U

01

5

146

"FURNESSED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-1940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVER'MENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RF-SOMABLY AVAILABLE TO ENABLE THELY PERFORMANCE OF THE WORK. OR (I) FOR THE GOVER'MENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RF-SOMABLY AVAILABLE TO ENABLE THELY PERFORMANCE OF THE WORK. OR (I) FOR THE GOVER'MENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RF-SOMABLY AVAILABLE TO ENABLE THELY PERFORMANCE OF THE WORK. OR (I) FURNISE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGENT SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART, "



Figure 91. X-19, propeller cruise efficiency map, 3(13168A10P3) blade, AF = 168, dia. = 13 ft,  $IC_{L_1} = 0.057$ , forward Mach No. = 0.8 or less.

147

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(6151-3440. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUDILGATED, OR DISCLOSED IN WHY LE OR IN PART I OR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION EXCEPT FOR (I) EMERGENCY REPAIR OR OFFRAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OL PROCESS IS NOT OTHERWISE RE-SUNABLY AVAILABLE TO ENABLE TIMELY PERSONANCY. OF THE WORK, OR (II) RELEASE TO A FOREION GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUERT FOR VIDED THAT IN LITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO "HE FOREGOING LIMITATIONS. THIS LEC'ND SHALL RE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART, "



Figure 92. Blade characteristics of the Curtiss-Wright 109652 propeller blade; dia. = 15 ft., AF = 115,  $IC_{L_1}$  = 0.5, NACA 65 section series.

148

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AFINISIS-1940. SHALL NOT BE SITHER RELEASED OUTSIDE 14E GOVERNMENT. OR SFO DUPLICATED, OR DISCLOSED IN WHOLE OR IN P/AT FOR MANUFACTUPE OR PROFUREMENT. WITHOUT THE WRITIEN PERMISSION OF CLRTING, WITHOFF, OR SFO DUPLICATED, OR DISCLOSED IN WHOLE OR IN P/AT FOR MANUFACTUPE OR PROFUREMENT. WITHOUT THE WRITIEN PERMISSION OF CLRTING, WITHOFF, OR SFO PORATION EXCEPT NOR (I) EMERGENCI PEPAIR OR OVERHALL WORK NY UR FOR THE GOVERNMENT. WHERE THE DEMOR PROCESS IS NOT 31H RWISF FT TONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF DIE WORK (IR HOR RELEASE TO A FOREIGN GOVERNMENT, "HE INTERESTS OF THE (NTTER STATES MAY REQUIRE PROVIDED THAT IN FITHER CASE THE FOREIGN (IR HOR OR VICE NERFOF SHALL) DE HUBLEOF TO THE FOREIGN (IN THE LIMITATIONS THIS LEGEND HALL BE MANEST ON ANY REPRODUCTION STREED IN WHOLE OR IN PART.)

...

Experience with similar propellers would indicate that if the blade were retristed in the opposite direction, the performance would also be reduced. This proves the need for an accurate theory and data for predicting static thrust performance.

At the cruise flight condition, peak performance was obtained when the X-19 propeller was operating at a tip speed of 625 to 650 feet per second. This cruise tip speed combined with 820 feet per second for take-off resulted in the best combination of loading at the two operating conditions for the X-19 blading. Test data, using the blading for the X-200 aircraft configuration, are presented in Figure 93 and show a similar cruise tip speed but a higher take-off  $\pi$ nD<sub>p</sub> value for that earlier aircraft. At the cruise condition 20% reduction in tip speed places the operating point at the power coefficient and advance ratic for peak performance, a further decrease in tip speed has essentially no effect.

The retwisted blade shown on Figure 92 would show a reduction in performance, at the cruise condition of a typical VTOL aircraft as the tip would become underloaded. At the conditions of the X-19 airplane it is estimated that the underloading of the tip would reduce the efficiency more than 5%.

There are many other blade design parameters that can be varied, to influence hover and cruise performance. For instance, instead of wide blades with small values of design 2, more conventional narrow blades which have large design C,'s can be used. Strictly from propulsion and hover lift considerations, such a blade would exhibit superior performance at these conditions than that obtained from the X-19 propeller. This comparison is valid for propellers stressed to the same loading level. A blade stressed for a lesser level would probably have lower thickness ratio's throughout. This would give the highest performance and thus invalidate the results.

#### 6. HOVER POV " HISTOGRAMS

Two histograms are presented as obtained from flight tests (Figures 95 and 96). The first taken from Flight No. 31 records, demonstrates hover, translation ind left turns; this can be considered a hover histogram. As predicted, the front propellers are heavily loaded and are subjected to considerable gear life erosion. The largest percentage of the hover time is spent near 780 HP with very little time spent at the peak power of 1000 HP. The rear propellers are considerably less loaded than the front, with the result that calculated nacelle gear life is much higher.

The second histogram (Figure 96) represents the early transition mode, at which 40 MPH was attained at  $\phi_{\rm p} = \xi_{\rm P}$ . As expected, the front nacelle gear life is greater. Now, the largest percentage of the time is spent at approximately 620 HP. The rear properties become more highly loaded with the result that life diminishes from in excess of 1000 hours to about 60 hours.

FURNAMED INDER UNITED STATES GOVERNMENT CUNTRACT NO AFSIGNS-1940 SNALL NOT BE ETHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, CUNICATED, IN DISCLOSED IN WHILE IN BACT FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PRULISSION OF CURTISS-WRIGHT COR-STRATON, EXCEPT FOR IN EMESCENCY REFAIL OR OVERHALD WORK BY OR FOR THE GOVERNMENT, WHILE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SUBABLY ANALIABLE TO FRANLE I INELY PERFORMANCE OF THE WORK. OR HIS RELEASE TO A FOREFORM OF COVERNMENT, AT INTEREST OF THE SUTTED STATES MAY REMENTED FRANLE INFELT PERFORMANCE OF THE RELEASE. ON FOR THE GOVERNMENT, WHILE BE SUBJECT TO THE FOREGOING LIMITATIONS. THE PERFORMANCE ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."



Figure 93. Figure of merit of the Curtiss-Wright 109652 propeller blade as a function of power coefficient, measured on Curtiss-Wright test rig.

. ĩ . 5 4

SHOWS AND AN AND AND AND

4 1021 0

٤ :

\$

and the second se ŝ 1.87

150

"FURNING UNDER UNITED STATES GOVERNMENT CONTRACT NO ANJIG SI-1946 SHALL FOT BE HITHER RELEASED OUT IL FOR ALL FOR DUT IL FOR ALL ON THE VERTICE OF THE AND ALL FOR BE STATES OF THE AND ALL FOR BE STATES OF THE AND ALL FOR BE STATES AND ALL FOR BE AND ALL FOR BE STATES AND ALL FOR BE AND ALL FOR ALL FOR BE AND ALL FOR BE AND ALL FOR BE AND ALL FOR BE AND ALL FOR ALL FOR BE AND ALL FOR ALL FOR BE AND ALL FO

× ...



•

Figure 94 Effect of blade retwist on the figure of merit; 3(109652) blade, 900 mnD, three blades

67-2054

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT NO. AF33(6'3)-346. SUA'L NOT BE ETHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, ON DISCLOIED IN WHOLE OR IN PART FOR MANUFACTURE OR PRACTURE OR PRACTURE THE WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRICHT 2 A-PARATION EXCEPT FOR (IN EMFRGENCY REPAIL OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SUMALLY AVAILABLE TO EMARLE TIMELT PERFORMANCE OF THE WORK. OR (IN FRELEASE TO A FOREICH COVERNMENT, AS THE INTERESTS OF ING WHITED STATES AVAILABLE TO EMARLE TIMELT PERFORMANCE OF THE WORK. OR (IN FRELEASE TO A FOREICH COVERNMENT, AS THE INTERESTS OF ING WHITED STATES VARE REQUERT, PROVIDED THAT IN EITHER CASE THE RELEASE TO, BUDICATION OR DISCLOSURE HEREOF SHALL RESUBJECT TO THE FORECOME LIMITATIONS. THES LEGEND WALL IN MARKED ON ANT REPRODUCTION HEREOF IN WHOLE OR IN PART '

## Flight G.W/C.G 12300/43.5,

ĩ

Maria - An Constanting and a state of the st

and addresserved the sin

ł

and a second second second

#### Duration 273 sec

Flight Description: Hover; Translation 15 MPH Foward; Stop; Turn Left 90°; Translate; 10 mph; Turn Left 90°;• Translate; Hover.

| Propeller | Transverse   |      |                    | Pı   | opel     | ler  |        |       |      |
|-----------|--------------|------|--------------------|------|----------|------|--------|-------|------|
| HP/rpm    | Shaft Torque | No.  | 1                  | No.  | 2        | No.  | 3      | No.   | 4    |
|           | Q (1n. 10)   | A    | В                  | A    | В        | A    | В      | A     | В    |
| 420/1204  | 7500         | 99.6 | 2.6                | 95,6 | 1.0 7    | 95.6 | 26 7   | 100.0 |      |
| 615       | 11,000       | 96.0 | 21 2               | 46.9 | 40.1     | 68.9 | 67 1   | 96.0  | 4.0  |
| 720       | 12,800       | 74.7 | 27 7               | 0.7  | 40.2     | 1.8  | 1 0/ 1 | 79,1  | 26.9 |
| 780       | 13,900       | 37.0 | 22 2               | 0    | 0.1      | 0    | 1.0    | 42.9  | 20.4 |
| 890       | 15,840       | 14.8 | 21.24              |      | <u>}</u> |      | }      | 4,4   | 20,2 |
| 975       | 17,500       | 0.7  | $\frac{14.1}{0.7}$ |      |          | [    |        | 0.4   | 4.0  |
| 1025      | 18,250       | 0    | 0.7                |      | <u> </u> |      |        | 0     | 0.4  |

A-' Operating Time Above Q Level Indicated; B-7 Operating Time At Increment Of Q Indicated.



Figure 95 X-19, histogram of transverse shaft loading, flight no. 31, 12/23/64.

67-2046

152

• •

## Flight G.W/C.G 12300/42.8

## Duration 137 sec

Flight Description: Hover; Tilt Nacelles To 88°; Accelerate To Foward Flight At 40 MPH; Tilt Nacelles To VTOL Decelerate To Hover

| Propeller | Transverse   |       |       | I     | rope | ller  |          |       |                               |
|-----------|--------------|-------|-------|-------|------|-------|----------|-------|-------------------------------|
| HP/rpm    | Shaft Torque | No.   | 1     | No.   | 2    | No.   | 3        | No.   | 4                             |
|           | Q (IR. 10)   | A     | В     | A     | В    | A     | В        | Α     | B                             |
| 420/1204  | 7500         | 100.0 | 45 2  | 100.0 | 20.0 | 100.0 | 21 /     | 100.0 | (2 1                          |
| 620       | 11,000       | 54.7  | 10 0  | 70.1  | 17 5 | 68.6  | 121.4    | 56.9  | 43.1<br>21 1                  |
| 720       | 12,840       | 35.8  | 20 5  | 22.6  | 4/.5 | 25.5  | 10 7     | 35.8  | 10 0                          |
| 780       | 13,900       | 15.3  | 120.5 | 5.1   | 11.5 | 5.8   | 5 1      | 16.8  | 12 2                          |
| 860       | 15,300       | 1.5   | 13.0  | 0.7   | 4.4  | 0.7   | <u> </u> | 3.6   | 2 1                           |
| 900       | 16,000       | 0.7   | 0.0   | 0     | 0.7  | 0.7   | 0 7      | 1.5   | $\frac{2 \cdot 1}{0 \cdot 9}$ |
| 950       | 16,900       | 0     | 0./   |       |      | 0     | 0./      | 0.7   | 0.0                           |
| 1000      | 17,800       |       |       |       |      |       |          | 0     | 0./                           |

A-% Operating Time Above Q Level Indicated; B-% Operating Time At Increment Of Q Indicated.



Figure 96 X-19, histogram of transverse shaft loading, flight no. 35, 1/7/65.

This is the result of the variation of aircraft pitch-up moment with velocity and the tilt actuated auto-trim schedule, which makes  $(\beta_F - \beta_R)$  more negative. The physical reason for the speed pitch up moment is given in Section III.3.a. under the discussions of wing power effects.

2015 BORNAN - MARK - PAR MURANA BURA KANAN KANAN KANANGANAN KANANGANANAN KANANGANAN KANANGAN KANANGAN KANANGAN

A REAL PROPERTY.

#### REFERENCES

- 22. Borst, H. V., <u>A Short Method to Propeller Performance</u>, Curtiss-Wright pamphlet, 1959.
- 23. Borst, H. V., <u>A Revised Method of Propeller Performance Analysis</u> <u>Procedure and Data</u>, Curtiss Report C-2700.
- 24. Theodorsen, T., <u>Theory of Propellers</u>, McGraw-Hill, New York, New York, 1948.
- 25. Glover, L. S., & Borst, H. V., <u>Application of Theodorsen's Theory</u> to Strip Analysis Procedure for Single Rotating Propellers, Curtiss Report C-2070
- 26. Glover, L. S., & Borst, H. V., <u>A Method of Strip Analysis for a</u> Dual Rotation Propeller, Curtiss Report C-2085.
- 27. Borst, H. V., & Enos, L., <u>Aerodynamic Characteristics of NACA 16</u> Series Airfoils for Application to Propeller Performance Calcula-<u>ticns</u>, Curtiss Report C-2000.
- 28. Warsett, P., & Meyerhoff, L., <u>Application of Thick Airfoils to</u> Propeller Design, Curtiss Report C-1562.
- 29. Foss, R. L., Strip Analysis Meth ' for Evaluating Static Thrust , Curtiss Report C-2402, 1952.
- 30. Glover, L., <u>Applications of the Calculus of Variations to the</u> <u>Determination of the Optimum Propeller Data</u>, <u>Curtiss Report</u> <u>C-2342A</u>, December 2, 1954.
- 31. Yaggy, Paul F., <u>A Wind Tunnel Investigation of Three Propellers</u> Through an Angle-of-Attack Range from 0 to 85, NASA TN D-318, 1960.
- Borst, H. V., & Ladden, R. M., "Propeller Testing at Zero Velocity," AVLABS Cornell Conference, June 1966.

SECTION V

## PROPELLER STRUCTURE AND CONTROL MECHANISM

ζ.

.

## SECTION V - NOMENCLATURE

£

•

| Α              | 72  | propeller shaft angle of attack degrees |
|----------------|-----|-----------------------------------------|
| a              | £T. | slope of the lift curve                 |
| b              | ×   | blade section chord                     |
| CF             |     | centrifugal force                       |
| с <sub>г</sub> |     | lift coefficient                        |
| с <sub>т</sub> |     | moment coefficient                      |
| с <sub>п</sub> |     | normal force coefficient                |
| с <sub>у</sub> |     | side force coefficient                  |
| D              |     | propeller diameter                      |
| E              |     | modulus of elasticity                   |
| F              |     | force                                   |
| g              |     | gravity constant                        |
| HP             |     | horsepower                              |
| h              |     | blade section thickness                 |
| I              |     | moment of inertia                       |
| J              |     | advance ratio                           |
| М              |     | moment                                  |
| N              |     | normal force                            |
| q              |     | dynamic pressure                        |
| R              |     | propeller radius total                  |
| r              |     | blade radius                            |
| S              |     | area                                    |
| s <sub>n</sub> |     | stress cycles                           |
| Т              |     | thrust                                  |
| V              |     | velocity                                |
| W              |     | resultant section velocity              |
| Х              | 3   | r/R                                     |
| Y              |     | side force                              |

.

#### SECTION V

## PROPELLER STRUCTURE AND CONTROL MECHANISM

# 1. MECHANICAL DESIGN INCLUDING PHILOSOPHY, RELIABILITY, WEIGHT AND MAINTENANCE

a. General Description

The X-19 propellers are three-blade, thirteen foot diameter propellers consisting of a hub, fiberglass blades, a hydromechanical pitch-change power unit, a control valve assembly, and a propeller mounting bearing assembly.

The blades of the four propellers were designed to provide an optimum combination of thrust and radial lift force, the latter being a feature of the Curtiss-Wright V/STOL aircraft flight concept. Blade angle is collectively controlled to achieve thrust variations and differentially controlled for aircraft attitude stability in V/STOL flight configurations. Redundant dual-piston pitch-change actuating systems are employed to assure continual control capability in the event of a single system failure.

The propellers are mounted on the nacelle housings which contain the nacelle bevel gears and the propeller picch-change mechanism. Shafting, of the power transmission system, interconnects all four propellers to two Lyceming T55-L-5 turbine engines. Either engine is capable of supplying flight power to all four propellers. The spinner and nacelle afterbody fairing complete the propeller/ nacelle assembly.

- b. Component Descriptions
  - (1) Hubs

The hubs are made of single piece steel forgings. They are designed to retain the blades by means of two-row, angularcontact bearings and threaded blade nuts. The rear extension of the hub contains the propeller-mounting bearing assembly and the hub drive splines. The power unit is splined directly into the hub and contains the shaft drive spline. The hub construction permits blade installation and removal while the propeller is mounted on the aircraft.

(2) Pitch-Change Mechanism (Figure 97)

The propeller pitch-change system is comprised of a hydraulic power unit which contains two independent nacelle-oil pressure systems. No pressure connections to the aircraft hydraulic systems are required. The power unit assembly includes two tandem pistons, two hydraulic pump assemblies,

Ž



X-19 schematic assembly of the blade pitch change mechanism. Figure 97.

67-2057

158

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT NO AF336 N0-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, RUNFT, RUNTAL RUNFT, RUNFT, RUNFT, RUNFT, RUNTAL RUNFT, RUNFT, RUNTAL RUNTAL RUNFT, RUNFT, RUNTAL RUNFT, RUNFT, RUNTAL RUNFT, R

two oil reservoirs, a dual control valve assembly and suitable arms for attachment of the blade control levers. Planning or adjustment of the blade angle is achieved through a set of differential splines between the blade shank and blade lever. These splines permit blade angle changes in increments of 0.166 degrees. The pitch-change blade lever has a moment arm of 2.60 inches.

Propeller pitch-change is accomplished by two mechanicallycoupled single-acting pistons having independent 'hydraulic systems. Blade angle change results from a transfer of the piston assembly motion, through a link assembly, to a lever which is splined to the blade shank.

The pitch-change hydraulic system is basically a position follow-up mechanism in which the pistons follow valve displacement at approximately the same rate while delivering the force required for pitch-change. Valve displacement corresponds to desired blade angle, and piston displacement corresponds to actual blade angle. The pistons move to balance "hemselves across the valve ports for any given blade angle until both blade loading and piston pressure are in equilibrium.

Both hydraulic systems operate in the same manner; i.e., at a given control signal, oil flows into each piston from independent high-pressure pump assemblies at a constant rate until the desired blade angle is achieved. Oil is exhausted through the dual control valves to each sump. The valves monitor piston pressures by metering the orifices.

Isolation of the hydraulic systems is obtained in the following manner:

(a) The front piston system functions as follows:

Oil is placed into the hub which acts as the sump for the front piston system. This oil enters the cylinder of the forward hydraulic system through one of the two pump assemblies and is ported through one of the two control valves back into the hub. After being cooled in the hub the oil returns to the rotating sump provided in the pump housing, which feeds the oil back into the pumps.

(b) The rear piston hydraulic system functions as follows:

Oil enters this cylinder from the other pump assembly and is exhausted through its control valve into the nacelle housing where it is cooled. A scavenge and lubrication pump mounted in the nacelle housing delivers oil to the rear piston rotating sump assembly which feeds the pitch-change pumps to complete the hydraulic circuit.

Rotation of both sump assemblies acts to eliminate entrapped air in the oil while serving as a centrifugal pump to supply primed oil to the pitch-change pumps.

The scavenge pump also supplies lubrication to the propeller mounting bearing, the bevel gear set, and retention bearings.

Each pitch-change pump assembly consists of three pumps of vane type which are mounted in a single housing. This housing is mounted in the hub, so it rotates at propeller speed. A pinion gear, which meshes with an internal fixed ring gear, is attached to each pump shaft. Each of the three pumps, in a system, is meshed to one of two fixed ring gears. Power to drive the pumps is obtained from propeller rotation since the pumps and pinion gears revolve as a unit within their respective fixed ring gears.

A pivoted torque-reaction bar, for the two fixed ring gears, is installed in the nacelle together with two micro-switches. A loss of hydraulic pressure in either system will result in an unbalanced reaction-torque on the ring gears causing movement of one gear relative to the other. This gear movement will actuate one of the micro-switches which will close an electrical circuit to the "HYD. PRESS" indicator light.

(3) Controls

Mechanical pitch-change signals are fed from the cockpit to a signal integrator referred to as the coordinator and are received at the propeller as a push pull, blade angle desired, signal (see Figure 157). This signal is transferred through a series of bellcrank linkages and converted into a linear fore-and-aft control rod and valve motion. Each of the two pitch-change control valves is mounted on the end of a differential beam. A mechanically operated relief valve is located aft of each control valve, in the valve assembly. Each relief valve is capable of relieving pressure from one system when actuated by the control valve of the other system. During normal propeller operations, with both pistons and valves operating, there is insufficient movement of either valve to trigger the poppet which actuates the relief valves. In the event of a "stuck" control valve in one system, the greater movement available to the other control valve due to the differential beam arrangement, allows this valve to actuate the relief valve of the "stuck" system. This results in "dumping" the pressure of the inoperative system. A snap ring type of detent spring on the relief poppet, once actuated, maintains this "dumped" condition until such time as the valve assembly is removed and the relief poppet detent spring reset. This loss of pressure of a single system due to a "stuck" valve is indicated by a tel-light through the resction-ring gear bar.

A ball-bearing coupling is installed between the non-rotating control rod and the rotating propeller and value assembly. Two compression springs are installed between the piston and each control value to eliminate signal backlash and provide a unidirectional signal input force.

Conviols that are external to the propeller but which feed into the signal coordinator and then into the propeller pitch-change control rod are as follows:

- (a) The governor speed set lever which selects propeller RPM.
- (b) The power lever which controls the fuel supply to the engines.
- (c) The pilots flight control stick which controls pitch and roll.
- (d) The rudder pedals which control yaw.
- (e) The SAS system which feeds signals into the coordinator to provide stabilization in pitch and roll.
- (f) The tilt switch which controls tilt angles of the nacelles.
- (g) The manual propeller pitch-change switch which manually sets collective propeller blade angle.

All these controls feed into the coordinator and result in controlled pitch-change signals to each of the propellers. The coordinator also phases out propeller control of attitude in the transition flight regimes.

## (4) Blades

and a stand of the state of

The propellers for the X-19 aircraft are three bladed and 13 feet in diameter, with a 166 Activity Factor. The shell of the blades is of epoxy resin reinforced fiberglass.

The primary load carrying element of the blade is this fiberglass structure which transfers the loads to the steel blade shank on which the fiberglass is molded, Fig. 98. The lightweight rigid foam plastic filling constitutes a sandwich structure with the fiberglass shell to provide the necessary stiffness and load carrying capacity. This type of construction and material was selected to satisfy the structural requirements and at the same time meet the aerodynamic and low blade weight requirements. Detailed description of the blade structural design is given in item 2 of this section.

The propeller spinner is a two-piece design consisting of a fiberglass nose section and a fiberglass foam sandwich rear section. He rear section is bolted to the front of the propeller for support.

The external contour of the spinner is such as to provide smooth airflow over the nacelle outline.

- c. Blade Maintenance
  - (1) Introduction

The purpose of this section is to define the possible types of damage to FRP (fiberglass reinforced plastic) propeller blades and to show methods for repairing such damage, where applicable. In addition, preventive maintenance procedures will be outlined.

(2) Damage

Handling damage is generally confined to the external edges and surfaces including blade shank and fairing. Operational damage could involve the same areas plus the blade and fairing foam fillers.

(a) Fiberglass reinforced plastic (FRP) damage: -Delamination of the cloth plies; breaks or gouges in the surface layers of cloth of the skins, edges or tip without penetration of the full wall thickness or bond line of the blade.

The above types of damage, but to a greater degree, could extend into the interior of the blade.



Figure 98. Blade schematic illustrating the typical construction of the lightweight fiberglass blade.

.

67-2072

163

- (b) Foam damage: Where separation occurs between the foam and the FRP or where the foam is crushed by a high impact blow.
- (c) Protective coating damage: When damage occurs to the FRP, frequently the protective coating also is affected. Damage to the coating only, is usually due to impingement of stones, sand or similar materials and in most cases will occur at the leading edge and tip of the blade.
- (d) Steel shank damage: Damage to the steel shank would consist of nicks, scratches, abrasion, damaged plating, corrosion, etc.
- (3) Determination of Damage

Damage to the FRP portion of the blade is determined by visual inspection except in the case of separation between foam and fiberglass.

The latter is determined by rapping the thrust and camber plates with an item such as a half-dollar or metal washer. Separation will be indicated by a hollow sound whereas a good bond will be indicated by a solid, metallic type of sound. Pressure applied by thumb and knuckles, causing plate deflection, can confirm such separation.

(4) Repair of Damage

Experience in repairing of damage to FRP propeller blades is very limited. Although repairs of extensive damage may eventually be permissible, in this type of blade only relatively minor repairs, as indicated below, were recommended to be made in the field and all others were to be reviewed by the factory. Damage such as shown in Figure 99 may be made in the field:

- (a) Provided that not more than 50% of the FRP thickness is involved in making the repair. However, in the case of the inboard fairing skins, gouging of the foam up to one cubic inch, provided the basic blade is not penetrated, may be filled with the designated materials.
- (b) Provided that repairs do not extend through the "bond" line of edges or tip.
- (c) Provided repair of separation between foam and FRP is compensated for, in propeller balance.



Edge Repair



Center Repair

Figure 99. Fiberglass blade repair chart illustrating the type of repair that can be performed in the field.

67-2103

Minor surface damage such as scratches up to 1 to 2 inches long and .005" to .010" maximum depth and areas up to 1/16" diameter and .005" to .010" maximum depth need not be repaired but should be periodically examined. If, however, total area containing such damage exceeds 20 square inches, repairs should be made to the FRP and/or coating.

Repairs to the above types of damage were made as described in the X-19 Utility Maintenance Manual and include the following:

- (a) Repair of damage to edges or blade tip.
- (b) Repair of damage to blade plate or fairing surface.
- (c) Repair of loose or unbonded foam.
- (d) Repair of protective coating.
- (5) Propeller Balance

All new FRP propeller blades were balanced at the factory to a blade master for a particular design, making such blades interchangeable. Therefore, propeller balance has to be considered when FRP blade repairs are made in the field.

In the case of minor repairs, the propeller balance had to be checked and adjusted.

(6) Preventive Maintenance

The plastic materials used in fabricating the Curtiss-Wright fiberglass propeller blades have been used for many years under various conditions and have been proven to be tough, corrosion resistant, fungus resistant and superior to metals with respect to low notch sensitivity and strength-to-weight ratio.

However, certain preventive maintenance and handling care should be exercised. Blades should be inspected before flight for any external damage to the FRP area and/or steel shank.

Blades should also be checked for the condition of the foam bond by "tap testing".

Any indication of demage should be reviewed and appropriate action taken. Blades should be handled carefully. They should not be lifted with slings or hooks. The steel shank of the blade should be protected from handling damage and corrosion.

FRP blades should be stored in suitably padded racks when not in use, and, since these blades are foam-filled, they should not be stored in an excessively hot location.

### d. Reliability

The X-19 project involved the integration of many components and numerous subsystems into a complete airplane system, and although no numerical reliability requirements had been specified either for the system or its components, it was obvious that the operational reliability goal for the system must be high.

This was dictated by the requirements of aircraft safety and performance, as well as by the necessity of mission success, and was implied in the specified design goal of 10,000 hour service life and 1000 hours time between overhaul of dynamic components.

The project plans for this vehicles did not include reliability demonstration testing as such. The X-19 test program revealed that the proposed testing was primarily intended to assure the functional adequacy of the first flight article. Pre-flight verification is predicated on demonstration in these tests of satisfactory performance of each component and subsystem, where "satisfactory performance" is defined as freedom from failures which would be hazardous in a preliminary flight test program.

The testing of hardware that was initiated during the development phase of the project was essentially a program involving the qualification of the design and quality assurance of the prototype hardware.

In verifying the functional and structural adequacy of the prototype it served to demonstrate compliance with high quality requirements - requirements which result in high reliabilities for mechanical systems.

The experimental program scheduled for the airplane, its subsystems and components is outlined in Figure 100.

In recognition of the fact that the prototype X-19 airplane was an experimental model devoted to extensive flight testing, and that it was the fundamental policy to pursue flight safety and functional adequacy of the system from the earliest possible stage of system utilization, the approach to the problem was to:

(1) Defer formal demonstration of reliability as such until the flight test phase of the program, where the complete system could be tested under a truly operational environment.

- (2) Concentrate the reliability effort during the prototype development phase on assuring the functional adequacy and flight safety of the vehicle, rather than on questions of long term failure probabilities.
  - (a) Make failure analyses of vital subsystems of the airplane, to reveal and eliminate design deficiencies which could result in catastrophic failure or inability to perform expected flight test missions.
  - (b) Review all pre-flight test programs and results, to detect any failure modes that may be revealed. Despite the fact that reliability measurement during the preflight phase is drastically limited by the scope of the test program, where possible the testing was to be directed so as to assure the most meaningful results possible to be obtained from a reliability standpoint.
- e. Propeller Weight

The total weight of the complete propeller-nacelle assembly of the X-19 aircraft as assembled for flight testing on the #1 aircraft was 585.9 lbs. The weight breakdown was as follows:

(1) Propeller Assembly

|     | (a) Assembly less Blades |       | 161.2 |
|-----|--------------------------|-------|-------|
|     | (b) Blades               |       | 212.4 |
| (2) | Nacelle Housing Assembly |       | 31.4  |
| (3) | Housing Filling Actuator |       | 162.8 |
| (4) | Spinner Afterbody        |       | 1.5   |
| (5) | Tube and Dam Assembly    |       | 8.7   |
| (6) | Spinner Assembly         |       | 5.4   |
| (7) | Miscellaneous Hardware   |       | 2.5   |
|     |                          | Total | 585.9 |

Note: Propeller weight as usually quoted is 373.2 lbs.

- 2. BLADE STRUCTURAL DESIGN
  - a. General

The use of fiberglass reinforced plastic as a blade material has been under consideration for many years, the first design studies by Curtiss-Wright having been made in 1943. The main attraction

| Sub-System                        | Component                                                              | Description                                                                                                                                                                                                        | Test Details                                                                                                                                                                                                                    |
|-----------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frapeller                         | Propeller, with blades                                                 | Calibration and overspeed on Electric Wirth stand at ASD                                                                                                                                                           | The last and hore, calibration<br>2014 fact the calibration<br>2014 fact the calibration<br>2014 fact the calibration                                                                                                           |
|                                   | Propeller-Nacelle assembly<br>less blades                              | Operation of Propeller-Nacelle as and the CWCD Electric Whirl stand                                                                                                                                                | <pre>www.rine.rise.risedle assembly (less blades)</pre>                                                                                                                                                                         |
|                                   | Blade Retention                                                        | Endurance Test 2 Retention fatigue maching                                                                                                                                                                         | st. n ( الم                                                                                                                                                                                 |
|                                   | Blade                                                                  | Fixed-Root testing to demonstrate structural adequacy and endurance limit of blade wder edgewise vibration.                                                                                                        | Ea. 5 . $10^6$ cycles on 1 full-scale blade; to failure                                                                                                                                                                         |
|                                   |                                                                        | Free-free testing to demonstrate ((1)), "Trail<br>adequacy and endurance limit of black (r.14.,<br>first-mode flapping vibration.                                                                                  | E :, 50 × 10 <sup>6</sup> cyclew on I full-scale blade; to čatlure                                                                                                                                                              |
|                                   |                                                                        | Torsional testing to demonstrate structural<br>adequacy of blade under flutter strees's,<br>and to establish a torsional endurance lumit                                                                           | Est. 100 x 10 <sup>6</sup> cycles on . full-scale blades; to failure                                                                                                                                                            |
|                                   |                                                                        | <pre>1 x P Endurance on CWCD gyro test stand</pre>                                                                                                                                                                 | 100 test hours at high 1 x V loading on propeller                                                                                                                                                                               |
| Mechanical Transmission<br>System | . Shaft coupling & bearing                                             | Torque transmission capacity of crowned<br>splines working against straight splines, in<br>CWCD spline test rig under angula: misslign-<br>ment                                                                    | Endurance time on straight and crowned splines under torque<br>and misalignment loading                                                                                                                                         |
|                                   | Nacelle tilt system                                                    | Demonstration of operation of nacelle tilt<br>drive systems, including power drive unit,<br>flexible shafting, gear box, bi-directional<br>no-backs, speed reducer, and actuator.                                  | Test cycles on drives:<br>Hydraulic: Full V to Full H and return 100x<br>Manual: Full H to Full V 25x                                                                                                                           |
|                                   | Accessory drive gear box                                               | Endurance test to demonstrate parformance at maximum load and speed.                                                                                                                                               | 50-hour endurance test, with appropriate drives and power absorbers                                                                                                                                                             |
| Engine-Drive Propeller<br>System  | Half-System, simulating<br>front transverse section of<br>the sirplane | Verification of the performance, structural<br>adequacy and functioning of the main drive<br>system, its controls, and the accessory<br>drive system of the airplane.<br>Propellers, gear-boxew, shatting, engines | Testiry equivalent to 50 hours of normal airplane operation,<br>Blade vibration survey<br>Vibratory torque survey of shafting<br>Stress survey of components<br>50 hours of scheduled endurance<br>Thrue? and torque loads only |
| Propeller Controls<br>System      | Prepeller Coordinator                                                  | Calibration, overload and endurance testing<br>of cooldinator                                                                                                                                                      | 50-hours of endurance test time                                                                                                                                                                                                 |
|                                   | Stability Augmentation<br>System                                       | Endurance and environmantal testing of Dual-<br>Axis Stablizer                                                                                                                                                     | Calibration<br>Vibration cesting<br>50-houra endurance                                                                                                                                                                          |
|                                   | Ingine Speed Control                                                   | Calibration and endurance testing on gover-<br>nor test stand.                                                                                                                                                     | Vibration aurvey<br>Calibration<br>50-houra endurance                                                                                                                                                                           |
| Altframe                          | Castings<br>Minor Components:                                          | Structural proof tests                                                                                                                                                                                             | 3 of each                                                                                                                                                                                                                       |
|                                   | Fittings<br>Carry-thru structure<br>Maior Components:                  | Static and fatigue tests<br>Static and fatigue tests                                                                                                                                                               | 7 fittings including 1 splice<br>500,000 cycles farigue testing                                                                                                                                                                 |
|                                   | Landing gear                                                           | Drop tests,fore-aft and side loading tasts<br>on main gear and nose-wheel                                                                                                                                          | Stress and deflection measurements                                                                                                                                                                                              |
| Airplane                          | Entire System                                                          | Ground and taxi tests (and ground vibra-<br>tion survey)                                                                                                                                                           | Vibration testing of propeller, engine and airframe.<br>At taxi speeds up to 25 mph, check of the various<br>sub-systems of the airplane.                                                                                       |
|                                   | _                                                                      | Flight Tests.                                                                                                                                                                                                      | 40 hours of filtshe testing of commulses everyon under filtshe                                                                                                                                                                  |

H

.

|                              |                                                       | drive system of the airpland.<br>Propellers, gear-boxes, shafting, angines | <b>Bruss Broof of schouldte</b><br>50 hours of scheduled endurance<br>Thrust and torque loads only                                        | · · · · · · · · · · · · · · · · · · · |
|------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Propeller Controls<br>System | Prepeller Coordinator                                 | Calibration, overload and endurance testing<br>of coordinator              | 50-hours of endurance test time                                                                                                           |                                       |
|                              | Stability Augmentation<br>System                      | Endurance and anvironmental testing of Lusi-<br>Axis Stabliser             | Calibration<br>Vibration testing<br>SO-hours endurance                                                                                    |                                       |
|                              | Engine Speed Control                                  | Calibration and endurance testing on gover-<br>nor test stand.             | Vibration aurvey<br>Calibration<br>57-houra endurance                                                                                     |                                       |
| Airframe                     | Castings                                              | Srtuctural proof tests                                                     | 3 of each                                                                                                                                 |                                       |
|                              | Ainor Componenca:<br>Fittings<br>Carry-thru structure | Static and fatigue tests<br>Static and fatigue tests                       | 7 fittings including 1 splice<br>500,000 cycles fatigue testing                                                                           |                                       |
|                              | Landing gear                                          | Drop tests, fore-aft and side loading tests<br>on main year and nose whael | Stress and deflection measurements                                                                                                        |                                       |
| Airplane                     | Entire System                                         | Grow id and taxi tests (and ground vibra-<br>tion survey)                  | Vibration testing of propeller, engine and airframe.<br>At taxi speels up to 25 mph, check of the various<br>sub-systems of the airplane. |                                       |
|                              |                                                       | Flight Tests.                                                              | 40 hours of flight testing of complete system under flight<br>loads and true operating environment.                                       |                                       |
|                              |                                                       |                                                                            |                                                                                                                                           |                                       |

Note; It should be noted that all testing not pertinent to reliability evaluation has been omitted from the above tabulation. This would include, in generals

Functional testing of components and subsystems, such as:

 Nacelle Funny, on pump test rig
 Electrical System
 Hydraulic System
 Vacuum System

B

X-19, "perimental program as scheduled for the airplane, subsystems and components. Figure .00.

of this material was the favorable strength-to-weight ratio, see Figure 101. Several problem areas were recognized such as the blade retention, adequate filler material, method cf fabrication, etc. Serious studies of fiberglass blades were started in 1956 and active development initiated in early 1958 on blades for the X-100 aircraft. The first blades were molded in August of 1958 and installed on the X-100 aircraft in January 1959. Since that time 260 blades have been molded of five different designs in diameters of 10', 13', 13'6" and 15'6" and extensive testing carried out. Three different designs have passed standard military whirl test endurance and overspeed tests at powers up to 4400 horsepower and tip speeds up to 1200 ft/sec. See Figure 102.

b. Blade Design

As finally evolved, the Curtiss fiberglass reinforced plastic blade consists of a hollow monocoque shell molded on a steel shank. The internal cavity is filled with a plastic foam to provide the necessary support and rigidity to the fiberglass plates. This structure is shown in Figure 103. In the establishment of this design several structural characteristics had to be investigated. These were: material layup and properties, steel shank design, and the foam filler requirements.

(1) Fiberglass Material Properties

Following extensive material evaluations, it was determined that a combination of 43 and 181 cloth, in the ratio of 3 layers of 43 to one layer of 181, was best suited to provide the necessary radial and chordwise strength requirements of the blades. It should be noted however, that later full scale testing proved that this combination was marginal with respect to shear strength and shear rigidity.

In the more recent layups, this deficiency had been corrected by adding a layer of 181 cloth at 45° to the principal direction. With the basic layup established, extensive testing was carried out to establish the pertinent material characteristics, i.e. static strength and moduli, fatigue strength, abrasion characteristics, etc. The results of these evaluations are shown in Figures 104-112. From a structural standpoint the most important of the material properties is the Goodman Diagram, Figure 111. As shown, this curve represents the basic material characteristics; however, for design purposes this curve is modified to provide a safe working stress limit. The design curve as derived for the fiberglass blade is given in Figure 112. Other pertinent characteristics evaluated in the fiberglass blade program are given in Figures 113 through 115.

| Material                                          | UTS<br>FT (psi) | Fatigue<br>S(+psi)    | Notched Fatigue<br>S <sub>N</sub> (± psi) | Density<br>d(lb/in <sup>3</sup> | $F_{T}/d$ | S/d | S <sub>N</sub> /d |
|---------------------------------------------------|-----------------|-----------------------|-------------------------------------------|---------------------------------|-----------|-----|-------------------|
| CPS5037<br>CPS5038<br>Epoxy FRP<br>(43:181 = 3.1) | 103,800         | 12,600<br>FP          | 9,800<br>.010 45°V                        | .070                            | 1.48      | .18 | . 14              |
| T1.(150A)                                         | 143,000         | 66,000<br>RRM         | 23,000 RRM<br>.010 Kt=2.75                | . 160                           | . 89      | .41 | .14               |
| Mag. Forg.<br>(ZK60AT-5)                          | 48,000          | 18.000<br><b>A</b> x. | 7,000 Axial<br>.010 K <sub>t</sub> =2.80  | .065                            | •,74      | .28 | .11               |
| AL. 76S<br>Forg.                                  | 70,000          | 14,300<br>FP          | 10,500 RRM<br>60°V                        | .101                            | .69       | .14 | . 10              |
| Ext. Blade<br>Steel (4320)                        | 140,000         | 52,500<br>FP          | 30,800 RRM<br>.010 K <sub>t</sub> =2.75   | . 284                           | .49       | .19 | .11               |
|                                                   |                 |                       |                                           |                                 |           |     |                   |

Figure 101. Strength to weight comparison between fiberglass and other common structural materials.

67-3074

172



Figure 102. Fiberglass propeller blades which have been built and tested. From left to right: 10'-0" diameter used on X-100 aircraft, 13'-0" diameter used on X-19 aircraft, 13'-6" diameter used in static thrust testing, 13'-6" designed for T-64 engine tested to 4000 hp, 15'-6" designed for T-64 tested to 4400 hp.



Figure 103. Sectioned fiberglass propeller blade showing the steal shank, fiberglass shell and foam filler.

ŝ.

Ż

174





175

"JURNESHED UNOVER UNITED STATES GOVERNMENT CONTRACT %, AFJINIS-1944, SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, G. 2000 (MED IN WHOLE OR IN WART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMER IN OF CURTISS. WINCHT COR-PORATOR, EXCEPT FOR NJ EMERGENCY REF'AR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IN NOT OTHER WISE RE-SONABLT AVAILABLE TO EMABLE THEY AND OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IN NOT OTHER WISE RE-SONABLT AVAILABLE TO EMABLE THEY CANNED OF THE WORK, OR WIN RELEAST TO A FOREION COVERINGEN, A" THE INTERSITY OF THE UNITED STATES MAY PEQUEX. PROVIDED TANY IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF MALL BE SUBJECT TO THE FORECOME LIMITATIONS. THES LEGEND SHALL BE MARKED ON ANT REPRODUCTION HEREOF IN WHOLE OR IN PART."





ì

176

"FURNESHED UNDER UNITED STATES GOVERNMENT CONTRACT NO. AF33(415)-3940, SHALL NOT BE EITHEA RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGH" COR-PORATION, EXCEPT FOR (I) EMERGENCY REPAIN OR OVERHAUL WORK BY OF FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLY AVAILABLE TO EMBLE TIMELY PERFORMANCE OF THE WORK, OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE LASE STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HERFOF SHALL BE SUBJECT TO THE FOREGOING LINGTATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."







177

"FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3940. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (IL EMERCENCT REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IN NOT OTHERWISE RE-SOMARLY AVAILABLE TO EXABLE TIMELT PERFORMANCE OF THE WORK: OR HIM RELEASE TO A FOREIGE GOVERNMENT, AN THE INTER ISTS OF THE UNTED STATES MAY LAQUER: PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."





4

**新学** 

e S

178

FURNISHED UNDER UNITED : TATFS GOVERNMENT CONTRACT NO. AFJ31615-1940, SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR (SFD, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (I) EMXR/ENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISS PF. SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (IN RELEASE TO A FOREICH GOVERNMENT, AS THE INTERESTS OF THE (ST) STATES MAY REQUIRE PROVIDED THAT IN EI\*'LER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART, "





•

67-2092

179

"FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(415)-3440. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PLOCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (1) EMERGENCY REPAIR OR OVER-440L WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMBLE TIMELY PERFORMANCE OF THE WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMBLE TIMELY PERFORMANCE OF THE WORK, OR (1) RELEASE TO A FOREIGN "OVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART, "




180

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSIO! OF CURTISS-WRICHT COR-PORATION, EXTEPT FOR (1) EMERGENCY REPAIR OR OVERHAUL WORK, BY OR FOR THE GOVERNMENT, WHERE THE IS MOR PROCESS IS NOT OTHERWISE RF-SONABLY AVAILABLE TO EVABLE TIMELY PERFORMANCE OF THE WORK. OR GIN THE LEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELFALL, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LECEND SHALL BE MARKED ON ANT REPROM TION HEREOF IN WHOLE OR IN FART.'



Alternating Stress - psi x 1000



÷

67-2097

"FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3940. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PARI FOR MANUFACTURE OR RECUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (I) EMEGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHER SIS RF-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREICN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, UUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."





182

FURNESHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615-344) SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED DUBLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGPT COR-PORATION, EXCEPT FOR (II EMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RF-SONABLY AVAILABLE TO EMBLE THELT PERFORMANCE OF THE WORK. OR (IN RELEASE TO A FOREICH OVERNMENT, AS THE INTERESTS OF THE UNITF-STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOIN. LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART, "



Figure 112. Epoxy fiberglass, design modified Goodman diagram as established for propeller blades. One layer Stanpreg Vet 181 per CPS 5037, three layers Stanpreg Vet 43 per CPS 5038.

183

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATFD, OR DISCLOSED IN WHOLF OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT COR-PORATION, EXCEPT FOR (1) EMERCENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELT PERFORMANCE OF THE WORK. OR (1) RELEASE TO A FOREIGN GOVERNMENT, AN HE INTERESTS OF THF UNTTED STATES MAR REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS, THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION MEREOF IN WHOLE OR 15 PART.

.

| Coating            | Thickness | Specimen | Erosion<br>in./hr |
|--------------------|-----------|----------|-------------------|
| Neoprene           | .025      |          | .0022             |
| Uscothane          | .040      |          | .0025             |
| Eccocoat IC2       | .014      |          | .0027             |
| Stainless Steel    | .012      |          | .0036             |
| Proprietary        | .019      |          | .0042             |
| Proprietary        | .011      |          | .0042             |
| Adiprene LD-315    | .020      |          | .0081             |
| Conap              | .015      |          | .0086             |
| Adiprene LD-213    | .023      |          | .0091             |
| Bostik 435         | .007      |          | .0602             |
| Marchall lirothana | 013       |          | .0640             |
| Davalo 202-14      | .015      |          |                   |
| Dayg10 202-14      | .005      |          | .0040             |
| Chemglaze Z051     | .009      |          | .1441             |

This chart shows a comparison test run on the Curtiss-Wright erosion test machine. The specimens are listed in order of their rates of erosion. The first two materials are relatively impractical to cover an entire blade because of their weight and need for cement bonding but are useful as leading edge abrasion strips. The Eccocoat is not usable because of its high cure temperature. The stainless steel, while it has a fairly low erosion rate, is not as good as it might appear since it is puckered and full of pinholes. This condition is virtually eliminated when the stainless is coated. The two proprietary coatings therefore are the most satisfactory in current use.

Figure 113. Comparative erosion resistance of various coating materials on fiberglass.

. - -

184

66-130

Sec.

. I will then

answer everything the second day be at an in the second and a second





The effect of immersion in various solvents for seven days on the ultimate tensile strength of epoxy fiberglass with and without urethane coating. Figure 114.

67-2109

| Туре              | llao                   | Shear Strength (psi) |            |       |  |
|-------------------|------------------------|----------------------|------------|-------|--|
| -77-              | U6C                    | -65° F               | R.T.       | 165°F |  |
|                   | Shank Double Wrap      | 2700                 | 2900       | 1250  |  |
| Snell VI          | Cured FRP to Cured FRP | 2700                 | 3800       | 1250  |  |
| Angier            | Stainless to FRP       |                      | 44.0       | 124   |  |
| SWL 164           | Stainless to Neoprene  |                      | 449        | 124   |  |
|                   |                        | Peel S               | trength (p | opi)  |  |
|                   |                        | -65° F               | R.T.       | 165°F |  |
| Angier<br>SWL 164 | Neoprene to FRP        |                      | 19.8       | 7.1   |  |

Figure 115. The strength characteristics of the various adhesives selected for use in the manufacture of fiberglass reinforced plastic blades.

67-2082

ł

186

\* /

## (2) Foam Filler

On the basis of the theoretical wall thickness, the hollow fiberglass shell would be completely inadequate as a propeller blade. Because of the high flexibility of the plates, extensive buckling would occur at very low loads. This could obviously be remedied by designing the shell by elastic buckling criteria. However, that approach would result in wall thicknesses which would nullify the fundimental material weight advantage. The other alternative is to support the plates in such a manner as to prevent local plate instability. The developments in foam plastics offered the ideal material for a blade filler. An extensive development program .as carried out to select a foam that would have the required characteristics: low density, high strength, good elongation, good bonding to the glass, etc. The foam development extended over a considerable period. Typical characteristics of the initial selections are given in Figure 116. In full scale blade testing and flight testing the foam proved to be the critical area in the design.

All blade failures apparently initiated with a foam separation or foam failure followed by a shell failure. Foam development was a continuing program, and the final blades for the X-19 included a considerably improved variation.

(3) Steel Shank

In the initial blade development studies, it was apparent that the fiberglass material would not be adequate for a conventional Curtiss flanged blade retention. An entirely new system of blade retention would have to be developed for an all fiberglass design. Therefore, in the initial development it would be more expedient to adapt the fiberglass blade to the time proven flanged steel retention, and continue a fiberglass retention development as a separate program.

In establishing the shank design the primary consideration was to provide a fail-safe joint between the glass and steel, i.e. a design which would continue to support the propeller loads in the event of a bond failure.

Several designs were studied, but the final selection was the relatively simple flaired or bell shaped tube, see Figure 117. This design has proven to provide the necessary mechanical interlock between the fiberglass and steel required to transmit the centrifugal, bending, and torsional loads without bonding. In practice, however, the fiberglass is carefully bonded to the steel, and the interlock feature is only provided to prevent catastrophic failure in the event of inadequate bonding.





こうちょうないでん しょうしょう 本になるないないないできょう ちんにんしんしょうしょう しょうないないがく

- - ---

ţ

ŀ



Figure 117. Steel shank as designed for the 13166A10P3 blade. AMS 6415 vacuum melt steel, RC 42-46.

- (a) Material In order to minimize blade weight of the X-19 propeller, the steel shank utilized high strength steel. The material was AMS 6415, RC 42-46. It is obvious that this hardness is bordering on the undesirable brittle range of the material. As a precaution against structural problems, the Metallurgy Department specified special heat-treat procedures for the processing of these shanks. In the initial development some cracking occurred due to hydrogen embrittlement and during the fiberglass molding cycle, Figure 118. This problem was overcome with the improvement of handling and processing techniques.
- c. Design Details 13166A10P3
  - (1) General Design Data

The 13166A10P3 design blade has a 13'0" installed diameter, has a calculated activity factor of 166 and an integrated design  $C_L$  of 0.055. A flange type shank design, having a bearing diameter of 4.4086/4.4078 inches is incorporated in the 13166A10P3 blade. The blade manufacturing centerline distance is 2.193 inches as measured from the butt face of the blade shank and the 2.35 degree blade forward tilt is incorporated by a machining operation starting at the 7-inch station. See Table IV for a complete tabulation of more detailed General Design Data.

(2) External Data

This blade planform is parallel sided from approximately the 15 inch station through the 42 inch station with a chord width of 25 inches. The planform tapers in a slight arc to a chord of 7.95 inches at the tip station. The aerodynamic design of the blade is discussed in Section 4.

The blade section profiles used from the 18 inch station outboard to the tip are NACA series - 64 type. Inboard of the 18 inch station a mathematical fairing profile was calculated to the last round station at 7.5 inch blade radius. See Table V for a tabulation of the Blade External Characteristics Data.

(3) Internal Data

Wall thickness of the steel blade root and the fiberglass cloth lay-up in the 13166A10P3 design blade has been determined to satisfy the structural requirements based on the

. ....



191

¢

Table IV. Blade design 13166A10P3; general design data and summary.

Hollow Fiberglass Blade Design 13166A10P3 13 feet Diameter 166 Accivity Factor .055 Integrated Design Lift Coefficient .2400 h/b at .25 R .1550 at .50 R .0947 at .75 R 78.0" R 58.50" .75R  $\beta$  42" sta. -  $\beta$  .75 R 8.50° b/D Max. .1603 25.00" b Max. Forward Tilt - Origin 7" Sta.  $m{eta}$  at 42" 2.35° station  $-30^{\circ}$ External Surface Area from 7.5" Station to tip 3066 sq. in. 403 cu. in. Volume of Fiberglass 1916 cu. in. Volume of Foam Filler Blade 590 cu. in. Volume of Foam Filler Shank Fairing 59.15 lbs. Total Blade Weight 1457.15 in. 1bs. Total Blade Monent 24.65 Station Blade Center of Gravity - Station Edge Unbalance (Leading Edge Heavy) Vertical Balance Moment ( $\beta$  42" Sta. =0°) -4.10 in. 1bs. Face Unbalance (Camber Face Heavy) Vertical Balance Moment (  $\beta$  42" Sta.=90°) 30.47 in. lbs. 11.21 slug -  $ft^2$ Polar Moment of Inertia 57,369 lbs. Centrifugal Force Total (1210 rpm) Centrifugal Stress Max. at 1210 rpm 15,000 lbs./in2 Stee1  $4,250 \text{ lbs./in}^2$ Fiberglass Station at Max Centrifugal Stress 7.5" Station Stee1 42" Station Fiberglass Centrifugal Twisting Moment at 1210 RPM without tilt 23,992 in. - 1bs. with tilt 23,540 in. - 1bs. m eta 42" Sta. at Max. Centrifugal Twisting Momen.  $\cdot$ 39.55° without tilt 38.13° with tilt

| data.           |
|-----------------|
| characteristics |
| section         |
| blade           |
| 13166A10P3;     |
| design          |
| Clade           |
| Table V.        |

•

| Station<br>r | r/R   | Ŀ    | Ą     | h/њ    | b/D   | cr<br>c | β    | Notes          |
|--------------|-------|------|-------|--------|-------|---------|------|----------------|
|              |       |      |       |        |       |         |      |                |
| 7.5          | .096  | 4.40 | 4.40  | 1.0000 | .0282 | 0       | 79.4 | Round          |
| 6            | .115  | 5,15 | 7.40  | .6959  | .0474 | 0       | 77.9 | Faired         |
| 12           | .154  | 67,9 | 22.47 | .2888  | .1440 | 0       | 74.9 | Faired         |
| 15           | .192  | 6.84 | 24.91 | .2746  | .1597 | .007    | 71.9 | Faired         |
| 18           | .231  | 6.23 | 25.00 | .2492  | .1603 | .063    | 68.9 | NACA Series 64 |
| 21           | .269  | 5.81 | 25.00 | .2324  | .1603 | .125    | 66.2 | NACA Series 64 |
| 24           | .303  | 5.48 | 25,00 | .2192  | .1603 | .165    | 63.7 | NACA Series 64 |
| 27           | .346  | 5.16 | 25.00 | .2064  | .1603 | .190    | 61.3 | NACA Series 64 |
| 30           | .385  | 4.85 | 25.00 | .1940  | .1603 | .200    | 59.1 | NACA Series 64 |
| 36           | .462  | 4.20 | 25.00 | .1680  | .1603 | .200    | 54.9 | NACA Series 64 |
| 42           | .538  | 3.55 | 25.00 | .1420  | .1603 | .200    | 51.0 | NACA Series 64 |
| 48           | .615  | 2.91 | 24.28 | .1199  | .1556 | .194    | 47.5 | NACA Series 64 |
| 54           | .692  | 2.34 | 22.42 | .1044  | .1437 | .130    | 44.5 | NACA Series 64 |
| 60           | .769  | 1.81 | 19.77 | .0916  | .1267 | .050    | 41.9 | NACA Series 64 |
| 66           | .846  | 1.34 | 16.28 | .0823  | .1044 | .002    | 39.3 | NACA Series 64 |
| 72           | .923  | .92  | 12.34 | .0746  | .0791 | 0       | 36.8 | NACA Sreies 64 |
| 75           | .962  | .72  | 10.18 | .0707  | .0653 | 0       | 35.5 | NACA Series 64 |
| 77           | .987  | .59  | 8.68  | .0680  | .0556 | 0       | 34.7 | NACA Series 64 |
| * 78         | 1.000 | .52  | 7.95  | .0654  | .0510 | 0       | 34.3 | NACA Series 64 |
|              |       |      |       |        |       |         |      |                |

.

\* Before 1" Corner Radii and Full Thickness Radius

cllowable stresses for the fiberglass system and steel selected. The steel blade root is fabricated from a bellshaped die forging which includes the blade forward tilt requirement. Fabrication consists of a machine turning followed by hot forming and final machining to produce the desired shank shape and spline configuration. In the 13166A10P3 shank configuration, the outboard fiberglass blade is held to the steel shank mechanically without relying on the bonding properties of the fiberglass.

Any bonding realized is considered as an additional factor of safety and is not included in the structural calculations. A lightweight, 8 lbs. per cu. ft. internal foam plastic filler is used in the 13136A10P3 blade for control of plate diaphragming, blade distortion and vibratory stresses. The internal foam also contributes to the stiffness and load carrying capacity of the fiberglass structure.

A 5 lb. per cu. ft. foam is used as an internal filler of the blade shank fairing which extends from the 7.5 to 27 inch station. This shank fairing has a 0.015 inch external fiberglass cover sheet. The total weight of the foam is approximately 10 lb. The shank weighed 18.5 lb. and the fiberglass was approximately 41 lb.

(4) Section Properties

The section properties, for the basic fiberglass blade, foam plastic blade filler, and the steel blade root, were calculated using digital computing equipment. For evaluation of the composite structure, all values for materials other than fiberglass were converted to their respective "fiberglass equivalent" values. Density values for the materials used are as follows:

| Internal Foam   | 0.00463 | lbs./cu. | in. |
|-----------------|---------|----------|-----|
| Fairing Foam    | 0.00289 | 1bs./cu. | in. |
| Fiberglass      | 0.070   | lbs./cu. | in. |
| Steel           | 0.284   | lbs./cu. | in. |
| Urethane Rubber | 0.039   | lbs./cu. | in. |

Table VI is a summary of the blade sections properties.

(5) Blade Construction

The 13166A10P3 design blade was fabricated by the following method:

(a) Machine and hot form die forging 162848F to the steel blade root configuration, Dwg. 164206. Table VI. Blade design 13166A10P3; summary of blade structural & mass section properties (equivalent to fiberglass).

\* Including D.W.

.

66-132

(b) Assemble blade root 164206 with Teflon Bladder filled with clay beads and shape to core mold. Form rigid blade layup mandrel by drawing a vacuum on the bladder.

ç

- (c) Layup fiberglass cloth, cut to shape, over steel blade root and bladder mandrel to the specified wall thickness.
- (d) Place "part c" assembly into blade mold and place in press. Release vacuum and build up internal pressure in bladder. Heat blade mold to required temperature and cure at 300°-325°F.
- (e) Remove blade mold from press and remove internal beads and Teflon bladder. Foam fill blade internally with 8 lb./cu. ft. rigid foam and heat in press to cure foam.
- (f) A second wrap, consisting of a fiberglass filament wound operation at a specified tension on a controlled schedule was added and cured at this time for increased hoop strength.
- (g) Build up leading edge aerodynamic strip 60 in. station to tip in accordance with WX dimension shown on finished section detail dwg. L-12953.
- (h) Line 13166A10P3 Blade Shank Fairing Mold with 0.015 in. thick fiberglass cloth and assemble fairing mold on the foam fiberglass blade. Fill fairing mold with 5 lb./cu. ft. foam and cure.
- (i) Perform all necessary finishing and balance operations.

Propeller balancing of these blades will be accomplished by adjustment of the radial location of the blades in the propeller hub. The total range of radial adjustment possible is 0.140 in.

This movement amounts to approximately 7.5 in. lbs. Blade horizontal balance moment is controlled, during blade fabrication, and is maintained within tolerance of a master balance moment. Note that no balance provisions have been provided for in the blade shank configuration Dwg. No. 164206. Therefore, blade balancing is accomplished by minor variations in the number of layers of cloth or the foam density.

- (6) Blade Material
  - (a) Blade Root

The steel blade root was fabricated from Dwg. No. 162848F die forging. The die forging steel is AMS 6415, fully annealed, Brinell 229 max. After machining, the steel shank is heat treated per CPS 7011 to the desired hardness of Rockwell C 42 - 46.

(b) Fiberglass

Two types of fiberglass fabrics are specified for the structural blade wall thickness. These fabrics are impregnated per CPS 5033 by the Standard Insulation Co. These materials are:

- (aa) Stanpreg VET 181, per CPS 5037, bidirectional fabric
- (bb) Stanpreg VET 43, per CPS 5038, unidirectional fabric
- (cc) Roving 60 End, per CPS 5039, 204 Filaments

The following tabulation presents test values based on repeated tests of the Stanpreg System. A ratio of one layer of VET 181 material to three layers of VET 43 material was used in the fabrication of test specimens to be consistent with the blade fabrication layup. The 60 end roving was used as a double wrap in the shank region with the filament wound at a specified tension on a controlled schedule.

Physical Properties 43:181-3:1

Ultimate Tensile

Longitudinal 79000 to 117000 psi Avg. 101,700 psi Transverse 25700 to 31470 psi Avg. 28,700 psi

Ultimate Flexural

Longitudinal 108,600 to 147,230 psi Avg. 129,200 psi Transverse 43,240 to 51,000 psi Avg. 46,400 psi

Tensile Modulus

Longitudinal

Primary  $(5.4 \text{ to } 7.15) \times 10^6 \text{ Avg. } 6.2 \times 10^6$ Secondary  $(5.4 \text{ to } 6.01) \times 10^6 \text{ Avg. } 5.66 \times 10^6$  Transverse

Primary (2.8 to 5.4) x  $10^{6}$  Avg. 3.77 x  $10^{6}$ Secondary (.85 to 1.3) x  $10^{6}$  Avg. 1.05 x  $10^{6}$ Flexural Modulus Longitudinal  $(5.37 \text{ to } 6.38) \times 10^6 \text{ Avg. } 5.7 \times 10^6$ Primary Transverse  $(3.36 \text{ to } 3.99) \times 10^6 \text{ Avg.} 3.8 \times 10^6$ Primary Flexural Endurance Limit SN Curves Longitudinal (Infinite Life) + 13000 (Infinite Life) + 7000 Transverse Flexural Endurance From Goodman Curves Longitudinal (20 x 106) 8000 psi + 8500  $(20 \times 10^6)$  18000 psi <u>+</u> 6000

· /

The tested density of the fiberglass laminate, with a 30% approximate resin content, is 0.070 lb/cu. in.

(c) Fiberglass Roving

This material is a glass roving, per CPS 5039 impregnated with an epoxy resin, per CPS 5033.

(d) Blade Internal Foam

The blade cavity was filled with an 8 lb./cu. ft., rigid, self bonding foam plastic filler.

(e) Fairing Internal Foam

The fairing cavity was filled with a 5 lb./cu. ft. rigid, self bonding foam plastic filler.

(f) Urethane Rubber Coating

To protect the blade against erosion and abrasion damage a coating of Elastomeric Urethane was applied to the entire external fiberglass blade surface.

### d. Design Details - 13166A12P3 Design

In the later phases of the X-19 program the 13166A10P3 blade was modified to incorporate an improved foam filler and the fiberglass layup was modified to provide better shear strength. This revised design was designated the 13166A12P3 blade. This design was phased into the airplane program in the summer of 1965. The design was adequately proven by testing prior to acceptance for flight. However, formal analyses of the design  $\varphi$ as not initiated prior to temination of operations. The section details are given in Table VII for comparison purposes.

e. Structural Analysis

A complete structural analysis has been made for the 13166A10P3 design and pertinent factors, are presented in this report.

(1) Design Loads

The initial design loads for the 13166A10P3 were established from the early aerodynamic considerations (33) for 12,300 lbs gross weight aircraft. A total of six flight conditions were selected to cover the load spectrum of the blades. These conditions together with the resultant propeller loads are shown in Table VIII.

Subsequently the X-19 flight loads were revised as the state of the art advanced and a review of that data shows that the maximum loads during transition were changed to some extent. With the higher gross weight, the airplane design load factors were reduced from 3.0 to 2.7 and thercfore the high speed maneuver loads were essentially the same. The revised loads are also shown in Table VIII. Preliminary analysis indicated that with respect to the blades the initial loads were slightly conservative and these conditions were retained for detailed blade design purposes.

(2) Stress Analysis

The detailed analysis of this blade has been made using the methods of analysis developed over the years for metal blades. Strictly speaking, these procedures are not completely applicable due to the anisotropic characteristics of the fiberglass *meterial*. However, during the FRP blade development program, extensive static and fatigue testing was carried out on specimens, panels, and full scale blades. This testing proved that the directional characteristics of the material were small and conventional theory was generally applicable. ÷

# Table VII. Blade design 13166A12P3; summary of blade structural & mass section properties (equivalent to fiberglass).

---

.

\*

| Sta.     | Area<br>Struct. | Area<br>Mass | I Min.<br>Struct | I Min.<br>Mass | I Maj.<br>Kese | ر<br>م | ×<br>د | ړ      | Val    | ×       | I/cc    | 1/cT   | 2      |
|----------|-----------------|--------------|------------------|----------------|----------------|--------|--------|--------|--------|---------|---------|--------|--------|
|          |                 |              | -                |                |                | •      |        | •      |        | ~       | actract | SEFUCE | STRUCE |
| 7.5      | 23.898          | 15.190       | 50.732           | 32.246         | 32.246         | 0      | 0      | 2.200  | 2.200  | •       | 23.060  | 23.060 | 161    |
| •        | 27.175          | 21.209       | 59.247           | 48.512         | 53.019         | 0      | 0      | 3.697  | 3.700  | 003     | 24.182  | 24.182 | 223    |
| <b>`</b> | 28.882*         |              | 64.615*          |                |                |        |        |        |        |         |         |        |        |
|          | 40.715          | 38.518       | 112.370          | 115.340        | 335.270        | 0      | 0      | 9.484  | 9.500  | -1.751  | 37.519  | 37.519 | 462    |
| 12       | 44.159+         |              | 128.490*         |                |                |        |        |        |        |         |         |        |        |
|          | 21.057          | 26.390       | 97.494           | 119.300        | 434.090        | 600.   | .007   | 11.034 | 11.160 | -1.421  | 30.410  | 30.240 | 1574   |
| 2        | 25.025*         |              | 122.040*         |                |                |        |        |        |        |         |         |        |        |
| ŗ        | 17.567          | 18.738       | 80.967           | 78.560         | 436.070        | .083   |        | 11.187 | 11.250 | -1.323  | 26.917  | 25.926 | 2:17   |
| c./1     | 10.757          | 14.409       | 52.278           | 60.325         | 380.840        |        |        | 11.174 |        | -1.326  | 17.380  | 16.740 | 3484   |
| 18       | 10.622          | 14.253       | 51.256           | 59.328         | 380.170        | .082   | .056   | 11.086 | 11.250 | -1.414  | 17.082  | 16.513 | 3571   |
| 21       | 10.247          | 12.331       | 44.150           | 48.458         | 433.950        | .155   | .116   | 11.177 | 11.250 | -1.323  | 15.266  | 15.367 | 12395  |
| 24       | 9.963           | 11.046       | 35.168           | 38.057         | 495.340        | .176   | .160   | 11.768 | 11.250 | 732     | 12.714  | 13.132 | 30678  |
| 2,7      | 9.948           | 9.948        | 28.976           | 28.976         | 536.590        | .180   | . 186  | 12.218 | 11.250 | - , 282 | 10.984  | 11.637 | 51268  |
| 7        | 11.643          | 15.140       | 31.061           | 35.373         | 695.760        | .184   |        | 11.955 |        | 545     | 11.792  | 12.45  | 54899  |
| 9        | 10.602          | 13.928       | 25.179           | 28.818         | 632.950        | .190   | . 194  | 11.963 | 11.250 | 537     | 10.120  | 10.788 | 49151  |
| 36       | 8.797           | 11.724       | 15.986           | 18.423         | 524.460        | .188   | .194   | 11.982 | 11.250 | 518     | 7.370   | 7.953  | 39782  |
| 42       | 7.370           | 9.897        | 9.685            | 11.200         | 442.920        | .187   | .194   | 12.060 | 11.250 | 440     | 5.241   | 5.741  | 23352  |
| 48       | 6.013           | 8.071        | 5.371            | 6.200          | 341.880        | .177   | .182   | 11.767 | 10.925 | 373     | 3.522   | 3.909  | 24231  |
| 54       | 4.693           | 6.250        | 2.704            | 3.106          | 228.040        | .109   | .113   | 10.925 | 10.090 | 285     | 2.229   | 2.416  | 13928  |
| 60       | 3.509           | 4.675        | 1.192            | 1.370          | 133.030        | .037   | .037   | 9.816  | 8.895  | 690     | 1.298   | 1.345  | 6268   |
| 66       | 2.670           | 3.478        | .474             | .540           | 69.382         | 100.   | .002   | 8.17.  | 7.325  | + .031  | .709    | .711   | 2296   |
| 72       | 2.114           | 2.582        | .162             | .178           | 30.328         | 0      | 0      | 6.244  | 5.555  | + .074  | .353    | .353   | 601    |
| 75       | 1.818           | 2.082        | .078             | .083           | 17.110         | 0      | 0      | 5.173  | 4.580  | + .083  | .218    | .218   | 239    |
| 77.75    | 1.570           | 1.725        | .042             | .044           | 10.466         | 0      | •      | 4.425  | 3.920  | + .085  | .144    | . 144  | 108    |
| 77.75    | 3.500           | 3.500        | .065             | .065           | 15.215         | 0      | 0      | 3.964  |        | - ,376  | . 223   | .223   | 141    |
| 78       | 0               | 0            | 0                | 0              | 0              | 0      | 0      | 3.492  | 3.600  | 0       | 0       | 0      | 0      |

•

\* Including D.W.

,

• \*

66-113

200

•

| >         470         955         218         585         18000         46800         923           Speed         475         955         252         373         38000         70300         3120           Factor         .0         .0         .0300         70300         3120 | n in 927 1065 80 3400 53400 53400 672 sitions                                 | sition 650 1065 80 2670 74100 46400 187<br>sec Gust 46400 187                                             | sition 650 1065 80 2440 56400 42000 510                                                                                                                         | r 1200 1204 0 5400                                                                                                                                                                                                      | ition HP rpm Knots 1b in-1b in-1b in-1b 1b 1b in-1b 1b                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 3484 79500                                                                                                                                                                                                                                                                      | 218     585     18000       252     373     38000       50     3484     79500 | 80     3400     53400       218     585     18000       252     373     38000       50     3484     79500 | 80     2670     74100       80     3400     53400       218     585     18000       218     585     373       252     373     38000       50     3484     79500 | 80     2440     56400       80     2670     74100       80     3400     53400       81     585     18000       218     585     18000       218     585     3400       252     373     38000       50     3484     79500 | 0         5400            80         2440         56400           80         2470         74100           80         3400         53400           81         585         18000           252         373         38000           252         373         38000           50         3484         79500 |
|                                                                                                                                                                                                                                                                                    | 955 218 285<br>955 252 373                                                    | .065         80         3400           955         218         585           955         252         373  | .065         80         2670           .065         80         3400           955         218         585           955         252         373                 | .065         80         2440           .065         80         2670           .065         80         3400           .055         218         585           955         252         373                                 | 204     0     5400       .065     80     2440       .065     80     2470       .065     80     3400       .055     218     585       955     252     373                                                                                                                                               |
|                                                                                                                                                                                                                                                                                    | 475 95                                                                        | 927 106<br>470 95<br>475 95                                                                               | 650 106<br>927 106<br>470 95<br>475 95                                                                                                                          | 650 106<br>650 106<br>927 106<br>470 95<br>475 95                                                                                                                                                                       | 200 120<br>650 106<br>650 106<br>927 106<br>470 95<br>475 95                                                                                                                                                                                                                                           |
| High Speed '<br>Load Factor<br>3.0                                                                                                                                                                                                                                                 | Climb / /                                                                     | Pitch in<br>Transitions<br>Climb                                                                          | Transition<br>30'/sec Gust<br>Pitch in<br>Transitions<br>Climb                                                                                                  | Transition<br>Transition<br>30'/sec Gust<br>Pitch in<br>Transitions<br>Climb                                                                                                                                            | Hover<br>Transition<br>Transition<br>30'/sec Gust<br>Pitch in<br>Transitions<br>Climb                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                    |                                                                               |                                                                                                           | 12300 lb<br>Gross<br>Weight<br>1                                                                                                                                | Design<br>Conditions<br>12300 lb<br>Gross<br>Weight<br>I                                                                                                                                                                | Initial<br>Design<br>Conditions<br>12300 lb<br>Gross<br>Weight<br>I                                                                                                                                                                                                                                    |

Table VIII. Design propeller loads 13166Al0P3 blade, X-19 aircraft.

201

÷

The transition area of the fiberglass to the steel shank, i.e., from 7.5 in. to the 17.5 in. radii involves a complex load transfer analysis which is not amenable to the simple or conventional approach.

The structural adequacy of this section has been substantiated by test and has included static and fatigue testing in the laboratory plus full scale propeller testing on the Curtiss gyroscopic test stand and on the ASD whirl rig. This testing is discussed in more detail in Section V,2.f.

The exact manner of load transfer and precise stress distribution in this bi-material section is subject to further investigation. Additional analytical study and experimental verification is required to yield a precise theoretical procedure for analyzing this blade area.

(a) Steady and First Order Loads and Stresses

Using the loads as previously defined, the resulting blade stresses, retention loads, and shaft loads are given in Table VIII. For reference purposes typical blade stress distributions are plotted in Figures 119 and 120.

These data (blade stresses, retention and shaft loads) as given in Table IX were based upon the computed flight characteristics of a 12,300 lb. design gross weight airplane. They were considered to be the design values for the 13166A10P3 blade and associated propeller components. Note that the shaft loads of Table IX give a vibratory component. This is based upon the results of the Ames tunnel test of the X-100 airplane which indicated extraneous blade vibration of 2xP and 4xP frequency. These will be felt by the propeller shaft as a 3xP vibration. It was further observed in blade manufacturing that there was a variation in the tilt between blades. The tilt difference between blades is due to the change in shank position within the die during manufacturing. This effect produced a rotating couple or unbalance on the propeller shaft which varied with blade angle setting and RPM. Through selective blade assembly for the propeller, this unbalance moment was held to a maximum of 4400 in. -1hs.

The blade stresses as given in Table IX are considered satisfactory except for continued operation at high speed maneuver condition (n = 3) where the stresses exceed the fatigue strength on both the steel shank and the outboard fiberglass.







# Table IX. Summary of structural analysis; 13166A10P3 blade design, design loads for 12,300 lb airplane gross weight.

Polar Moment of Inertia,  $I_P = 11.2 \text{ slug ft}^2$ Centrifuga: Twisting Moment,  $Q_{T_{max}} = 23,400 \text{ in}$ , 1b at 1204 rpm,  $\beta_{42''} = 41^\circ$ Centrifugai Force, CF = 56,970 1b at 1204 rpm

|                                                                                                                                                                                                                                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conditi                                                                                                      | on                                                                |                                                                           |                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Itea                                                                                                                                                                                                                                                    | Hover                            | Equil, Trans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trens. + Gust                                                                                                | han. Trans.                                                       | Climb                                                                     | High Speed<br>Maneuver $(n = 3)$                                            |
| HP                                                                                                                                                                                                                                                      | 1,200                            | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 650                                                                                                          | 927                                                               | 470                                                                       | 475                                                                         |
| i rpm<br>į V - knots                                                                                                                                                                                                                                    | 1,204                            | 1,055<br>8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,065                                                                                                        | 1,065                                                             | 218                                                                       | 252                                                                         |
| Blade Stress - ps:                                                                                                                                                                                                                                      | <u> </u>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                                                   |                                                                           |                                                                             |
| Shank - 5" Sta.<br>Outboard<br>Location - 10.Sta.                                                                                                                                                                                                       | 29,500<br>8,660<br>48            | $14,700 \pm 10,309$<br>$4,660 \pm 3,830$<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} 13,500 \pm 19,100 \\ 4,010 \pm 4,840 \\ 54 \end{array}$                                    | 19,940 <u>+</u> 17,500<br>5,790 <u>+</u> 3,740<br>48              | $\begin{array}{r} 12,850 \pm 14,200 \\ 3,740 \pm 2,930 \\ 42 \end{array}$ | $\begin{array}{r} 12,670 \pm 40,000 \\ 3,550 \pm 7,050 \\ 42 \end{array}$   |
| Retention Loade                                                                                                                                                                                                                                         | I                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                                                   |                                                                           |                                                                             |
| $\begin{array}{l} CF & -1h \\ M_g & -1n & 1b & st blade butt \\ M_y & -in & 1b & st blace butt \\ M_g & \sim in & 1b & st cearing stack \\ M_y & \sim in & 1b & st bearing stack \\ \Theta M_g & \sim degrees \\ \Theta M_y & \sim degrees \end{array}$ | 56,900<br>58,900<br>56,020<br>13 | $\begin{array}{r} -4.500 \\ 14.800 \\ \pm 61.500 \\ 13.180 \\ \pm 50.300 \\$ | $\begin{array}{r} 44,500\\ 17,600\\ \underline{+}74,000\\ 15,060\\ \underline{+}300\\ 24.6\\ 7.8\end{array}$ | 44,500<br>38,020<br>± 1,800<br>31,900<br>± 66,000<br>21.0<br>20.8 | $35,70014,400\pm 54,60013,500\pm 52,80029,443.0$                          | $35,700 \\ 13,400 \\ \pm 142,500 \\ 12,300 \\ \pm 139,000 \\ 26.6 \\ 63.7 $ |
| Shaft Loads                                                                                                                                                                                                                                             | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                                                   |                                                                           |                                                                             |
| T - Thrust - 1b<br>N - Normal Force - 1b                                                                                                                                                                                                                | 5,400                            | 2,440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,670                                                                                                        | 3,400                                                             | 585<br>923                                                                | 373<br>3,120<br>795                                                         |
| M. ~ Pitch Moment ~ in. 1b<br>My - Yawing Moment - in. 1b                                                                                                                                                                                               |                                  | 56,400<br>42,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74,100                                                                                                       | 53,400<br>53,400                                                  | 18,000<br>46,800                                                          | 38,000<br>70,300                                                            |
| "ny " Shart vioratoly Moment - in 15                                                                                                                                                                                                                    |                                  | + 17,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1 21,800                                                                                                   | = 10,800                                                          | ± 10,000                                                                  | ± 10,000                                                                    |

\* This moment is based upon the preimmary reduction of data taken on the full scale tests of the X-100 airplane in the Ames 40 80 tunnel. The frequency with respect to the propeller support will be 3XP. In addition, the propeller will genera - rotating couple due to differential tilt between blades which will have a magnitude on the order of ' 40° inch pounds.





The blade stress analysis further indicated that the design vibratory stresses of the blade material would be exceeded at load factors greater than 1.7. A life of 6 hours was computed for a blade operating at loads corresponding to a load factor of 3.0. In view of the original design decision to regard operation at this load factor as an emergency or demonstration condition which is transient in occurrence a calculated blade life of 6 hours was considered satisfactory.

Between the 1.5 and 17.5 in radii, the stresses as shown in Figures 119 and 120 are nominal values computed on the assumption that conventional beam theory was applicable. For this bi-material region such an assumption served only for qualitive comparison of the resulting stresses. Since a rigorous theoretical solution was not possible, the structural adequacy of this area was verified by experimental means. Stress magnitudes and distributions typical of the steelfiberglass junction area at test loads corresponding to the maneuvering transition condition are given in Figures 121 and 122.

### (b) Resonant Frequencies and Flutter

The computed fixed-root frequencies of the 13166A10P3 blade are shown in Figure 123. These curves show both a 3xP excited flapping and 4xP excited edgewise resonance close to the cruise RPM, and only slightly removed from the transition speed. However, by virtue of the material damping characteristics of the fiberglass propeller blades and for the anticipated magnitude of the excitation no serious blade stress problem was anticipated as a result of these proximites to resonances. In cruise flight, based on conventional " airplane experience, 3xP and 4xP excitations of sufficient strength to produce excessive stress would not be expected. In transition where these higher ordered excitations may be more significant, a low blade response is expected. This contention was based upon experimental evidence obtained in laboratory testing, on the gyroscopic whirl rig, and during WPAFB calibration testing which have all demonstrated high damping characteristics of the laminated glass blade design and a corresponding low response at resonant conditions. However, these potential blade resonant problems were to be carefully investigated by analysis of the strain gage data during the aircraft flight test program.



÷

Figure 121. Comparison of the calculated and measured steady stress distribution around the 11 inch station on the 13166A10P3 blade. Centrifugal load = 46,000 pounds, bending moment = 24,000 inch-pounds.

66-148



Figure 122. Comparison of the calculated and measured vibratory stress distribution around the 11 inch station on the 13166A10P3 blade. Bending moment =  $\pm 66,000$  inch-pounds.

ĩ

ş





The calculated stall flutter characteristics of the 13166A10P3 blade indicate a flutter-free design. This was experimentally demonstrated by ASD of WPAFB up to 1400 horsepower which is well beyond the take-off requirements of the X-19 aircraft. The major factor in evaluating stall flutter is the "reduced frequency". The natural torsional frequency of these fiberglass blades is considerably higher than with past metal blades. For example, in hollow steel blades the fundamental torsional frequency ranged from 50 to 80 cps, on solid dural blades the general range was from 90 to 120 cps. However, on the fiberglass test blades the torsional frequency was measured at approximately 230 cps. This significantly higher frequency is directly reflected in the reduced frequency parameter which was sufficiently high that a stall flutter-free condition was shown by calculation. It is to be further noted that theoretical stall flutter studies have shown that high camber and tapered planform are flutter deterents, and both of these features have been included in these fiberglass blades. High camber is a stall flutter deterent only because the maximum lift coefficient is higher than a low camber design and if the solidities of blades compared are identical.

f. Full Scale Blade Testing

This section presents the details and summary of the results of full scale testing on the propeller blades as component items. Other full scale testing pertinent to the blade development and qualifications, but which included the testing of the entire propeller assembly, are discussed in Section V,7.

(1) Free-free Testing

The purpose of this test was to establish the endurance limit of the outboard portion of the full scale, as manufactured, blade. For this test the blade, instrumented to measure longitudinal vibratory strains, was suspended vertically by a clamp at the shank end, Figure 124. The blade was excited in its fundamental flapping mode and a vibratory stress survey made. Endurance testing was then continued while monitoring the maximum flexural stress. The actual endurance running was made in steps of increasing stress, and running each value for ten million cycles or until failure. A summary of test results pertinent to the X-19 blades is given in Table X.

A typical blade failure is shown in Figure 125. Testing of this type has established as flexural endurance limit for the 13166A10P5 blade of + 9900 psi.



Figure 124. Laboratory test set-up for endurance testing propeller blades in the free-free mode.

and the second s

•

ľ.

# Table X. Tabulation of endurance history; 13166A10P3 blades.

|         | Stress                                           | Endurance                                                                                                     | Cycles                                                                                     |                                                                                                                 |
|---------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Blade   | Level<br>psi                                     | At Level                                                                                                      | Total                                                                                      | Remarks                                                                                                         |
| P-176-4 | +<br>+ 8000<br>+ -                               | 11.7 $\times 10^{6}$<br>.53 $\times 10^{6}$                                                                   | 11.7 $\times$ 10 <sup>6</sup><br>12.2 $\times$ 10 <sup>6</sup>                             | Failure was a delamination of glass at<br>62 - 63" Sta. T.E. Camber. Foam cracked<br>at c.g. about 65" Sta.     |
| P-127-2 | +<br>+<br>+<br>9000<br>+<br>+                    | $10 \times 10^{6}$ .147 × 10 <sup>6</sup>                                                                     | $10 \times 10^{6}$<br>10.147 × 10 <sup>6</sup>                                             | Failure was a delamination at 70" Sta.<br>Camber. Foam cracked at c.g. extending<br>4" inboard and 2" from T.E. |
| P-191-3 | + 8000<br>+ 9000<br>+ 10000                      | $\begin{array}{c}10 \times 10^{6}\\10 \times 10^{6}\\.63 \times 10^{6}\end{array}$                            | $\begin{array}{c} 10 \times 10^{6} \\ 20 \times 10^{6} \\ 20.63 \times 10^{6} \end{array}$ | Failure was in crack at 60" sta. camber.<br>Foam cracked in failure area.                                       |
| ₽-•`6-4 | +<br>+<br>+<br>9000<br>+<br>10000                | $\begin{array}{c} 10 \times 10^{6} \\ 10 \times 10^{6} \\ 10 \times 10^{6} \\ 1.25 \times 10^{6} \end{array}$ | $10 \times 10^{6}$<br>20 × 10<br>21.25 × 10 <sup>6</sup>                                   | Failure was a crack at 61" Sta. thrust.<br>Foam cracked in area of failure.                                     |
| P-132-3 | $\frac{+8000}{+9000}$<br>$\frac{+9000}{+10,000}$ | $10 \times 10^{6}$<br>10 × 10<br>.455 × 10^{6}                                                                | $\begin{array}{c}10 \times 10^{6}\\20 \times 10^{6}\\20.45 \times 10\end{array}$           | Failure was a series of cracks at<br>at approx. 70" Sta. Foam cracked in area<br>of failure.                    |

• ≻ • .≫

|          | Remarks      | Failure was a foam crack at section<br>c.g. located 64" Sta.to 67" static<br>No fiberglass failure. | Failure was a transverse crack at<br>60' station. Foam 0.K. at crack area<br>but had large charred area at the 30"<br>Sta.with some cracks noted. | Failure was a transverse crack at<br>60" station. Foam 0.K. at crack area<br>but had large shrinkage area at inboard<br>end. Investigation of sectioned blade<br>indicates the shrinkage extended outboard<br>to approximately 44" station. |
|----------|--------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e Cycles | Total        | $10.28 \times 10^{6}_{10.74 \times 10}$                                                             | $\begin{array}{c}10 \times 10^{6} \\20 \times 10^{6} \\20.07 \times 10^{6}\end{array}$                                                            | 846,000                                                                                                                                                                                                                                     |
| Enduranc | At Level     | 10.28 × $10^{6}$ .46 × $10^{6}$                                                                     | 10 × 10 <sup>6</sup><br>10 × 10 <sup>6</sup><br>72,500                                                                                            | 846,000                                                                                                                                                                                                                                     |
| Stress   | Level<br>psi | <u>+</u> 1405<br><u>+</u> 1580                                                                      | $\frac{+1405}{+1755}$                                                                                                                             | <u>+</u> 1580                                                                                                                                                                                                                               |
|          | Blade        | P-127-4                                                                                             | P-140-6                                                                                                                                           | P-155                                                                                                                                                                                                                                       |

.

Table X. Concluded.



Figure 125. Typical blade failure obtained in free-free endurance testing. This blade completed 10 x  $10^6$  cycles at each of  $\pm 8000$ ,  $\pm 9000$ ,  $\pm 10,000$  and  $\pm 11,000$  psi. Failure occured at 1.2 x  $10^6$  cycles at the  $\pm 12,000$  psi level.

いたいとうない からま あい ないま しゅうい

# (2) Fixed - Root Testing

This particular type of blade testing was designed to establish the fatigue strength of the inboard end of the b'ade. For this testing the blade was clamped at the shark and an exciting force was applied outboard and in the chordwise direction, see Figure 126. As was customary in this type of testing, strain gages were installed and the areas of maximum stress were located and monitored throughout the endurance testing. In the X-19 program, test blade Serial No. P-68-2, completed vibratory stress surveys at  $\pm 4,000$  and  $\pm 6,000$  psi levels. Endurance testing was initiated at  $\pm 6,000$  psi vibratory stress level and run for 20 x 106 cycles. Following this, the stress level was increased in  $\pm 1,000$  psi increments and run for 10 x 106 cycles at each level until failure.

| Stress Level   | Cycles at Level      | Total Cycles           |
|----------------|----------------------|------------------------|
| <u>+</u> 6,000 | 20 x 10 <sup>6</sup> | 20 x 10 <sup>6</sup>   |
| <u>+</u> 7,000 | $10 \times 10^{6}$   | $30 \times 10^{6}$     |
| <u>+</u> 8,000 | $10 \times 10^{6}$   | $40 \times 10^{6}$     |
| + 9,000        | $0.2 \times 10^{6}$  | 40.2 x 10 <sup>6</sup> |

After  $0.2 \times 10^6$  cycles were completed at  $\pm$  9,000 psi level, the test was terminated due to failure. Typical failures obtained from this type of testing is shown in Figure 127.

The results obtained in this test demonstrated a blade endurance limit (based on 50 x  $10^6$  cycles) in the edgewise direction of  $\pm$  7,900 psi. This is significantly above the established design stress of  $\pm$  6,000 psi, thus substantiating the use of that value for design purposes.

(3) Blade Torsion

The blade torsion test as essentially the same basic set-up as the free-free test previously discussed except that the blade was excited in the fundamental torsion mode by two exciters 180° out of phase. This cest set-up is shown in Figure 128.

For the X-19 program two blades were run as follows:


Figure 126. Laboratory test set-up for fixed root endurance testing of propeller blades.



Figure 127. Typical blade fa igue failure obtained during fixed root endurance testing of the X-19 propeller blade.



Figure 128. Laboratory test set-up for free-free torsion endurance testing of propeller blades.

Blades P-41 (-4)

| Shear Stress<br>Level - PSI | Cycles at<br>Level | Total Cycles<br>at or above<br>Design Level |
|-----------------------------|--------------------|---------------------------------------------|
| <u>+</u> 445                | $20 \times 10^{6}$ | -                                           |
| <u>+</u> 582                | $10 \times 10^{6}$ | -                                           |
| <u>+</u> 730                | $10 \times 10^{6}$ | -                                           |
| <u>+</u> 845                | $10 \times 10^{6}$ | 10 x 10 <sup>6</sup>                        |
| <u>+</u> 935                | $2 \times 10^{6}$  | $12 \times 10^{6}$                          |
| <u>+</u> 1,000              | $.6 \times 10^{6}$ | $12.6 \times 10^{6}$                        |
| <u>+</u> 1,000              | $.3 \times 10^{6}$ | 12.9 x 10 <sup>6</sup>                      |

The test was terminated at this point due to increasing temperature and inability of the vibrator drive system to supply the required power to continue the test.

Blade P-42 (-6)

| Shear Stress<br>Level - PSI | Cycles at<br>Level   | Total Cycles<br>at or above<br>Design Level |
|-----------------------------|----------------------|---------------------------------------------|
| <u>+</u> 1,000              | 20 x 10 <sup>6</sup> | $20 \times 10^{6}$                          |
| <u>+</u> 1,300              | 1 x 196              | 21 x 10 <sup>6</sup>                        |

After 1 x  $10^6$  cycles at  $\pm$  1,300 psi level, a rupture in the fiberglass appeared at the 32.5 inch radius, 12.25 inches from the lead edge on the thrust face, see Figure 129.

The results of these tests would indicate a torsional endurance limit between  $\pm$  1,000 and  $\pm$  1,300 psi shear stress. Since this was well above the maximum anticipated flight value of  $\pm$  300 to  $\pm$  500 psi, it was considered that an adequate margin had been demonstrated.

(4) Retention Testing

Two types of retention testing were conducted on the X-19 blade retentions; a static test to failure and the retention fatigue test.



Figure 129. Fatigue failure on blade P42-6 after 1.0 x  $10^6$  cycles of torsional endurance testing.

(a) Static Test

The purpose of this test was to demonstrate the ultimate centrifugal load capacity of the 13166A10P3 blade without bonding between the steel shank and fiberglass.

For this purpose a special inboard portion of the blade was fabricated using the standard steel shank and fiberglass layups outboard to about the 30" radius. Modifications were then made to adapt the part to the test machine. In making this piece, the steel shell was carefully waxed to prevent bonding of the fiberglass to the steel. This shank portion was placed in the tension test machine, see Figure 130, and subjected to a pure tension load simulating propeller centrifugal force. Failure occurred at 128,000 lbs. as compared with the maximum operating blade CF of 56,900 lbs. The resultant failure is shown in Figure 131.

(b) Retention Fatigue Tests

It was the purpose of this testing to establish the fatigue strength of the blade retention. For this purpose the blade retention including the blade nut, the blade bearing, blade shank and special collet, which simulates the hub barrel, were installed in a test rig which was capable of imposing centrifugal force and both steady and vibratory bending loads along with bearing oscillation to simulate pitch change on the complete blade retention system, see Figure 132. The test blade shank was a full scale blade inboard section consisting of the steel shank and fiberglass lay-up. The actual blade profile and lay-up was maintained to the 21" sta. with modifications outboard, 21" - 31.5", to adapt the piece to the test machine such that the test loads were applied to the simulated fiberglass blades. Endurance testing was conducted monitoring all loads by means of wire strain gages mounted on the steel shank and test rig components.

The two steel blade shanks were run as follows:



Figure 130. Laboratory test set-up for static tension test of the X-19 propeller unbonded blade shank.

٦,

The state of the state of the

und o

222

4 🌶



Figure 131. X-19, propeller unbonded blade shank failure. Ultimate load was 128,000 pounds.



Blade retention laboratory fatigue test set-up. This facility simultaneously applies centrifugal force, steady bending moment and vibratory bending moment. Figure 132.

¥

(aa) Shank P-69 (p/n 164206)

| Vibratory<br>Bending<br>Load-lb. in. | Centrifugal<br>Load-lbs. | Steady Bending<br>Load-lb. in. | Cycles at<br>Level | Total Cycles<br>at or above<br>Design Level |
|--------------------------------------|--------------------------|--------------------------------|--------------------|---------------------------------------------|
| * ± 66000                            | 46000                    | 24000                          | 10 x 106           | 10 x 10 <sup>6</sup>                        |
| ± 77000                              | 52800                    | 27600                          | 6.4 x 106          | 16.4 x 10 <sup>6</sup>                      |

The test was terminated after  $16.4 \times 10^6$  cycles when a shank failure occurred. The failure was a spiral type crack in the steel shank originating at approximately the 5.5" station, camber side. The failure was analyzed and found to originate in a rust pit, a direct result of internal corrosion. This was caused by the presence of water which leaked from the test rig cooling system and the lack of the plating which was inadvertently omitted from the test part but which was specified in the flight component. Because of the lack of protective plating on the test piece and the vulnerability of the part to corrosion, the failure was not representative of the flight component.

One retention bearing, P/N 162563 S/N 96, was used for the complete test of 16.4 x  $10^6$  stress reversal cycles and was in perfect condition when removed except for two small spall marks on one inner race.

| Vibratory<br>Bending<br>Load-lb. in. | Centrifugal<br>Load-lbs. | Steady Bending<br>Load-1b. in. | Cycles at<br>Level     | Total Cycles<br>at or above<br>Design Level |
|--------------------------------------|--------------------------|--------------------------------|------------------------|---------------------------------------------|
| ± 72300                              | 44500                    | 21400                          | 4.9 x 106              | 4.9 x 10 <sup>6</sup>                       |
| ± 72300                              | 69000                    | 29400                          | 5.1 x 10 <sup>6</sup>  | $10.0 \times 10^{6}$                        |
| <u>+</u> 70000                       | 81000                    | 18000                          | 10.0 x 10 <sup>6</sup> | $20.0 \times 10^{6}$                        |
| + 83200                              | 51200                    | 21000                          | 5.01 x 10 <sup>6</sup> | $25.01 \times 10^{6}$                       |
| <del>-</del> 90500                   | 86300                    | 36800                          | 0.19 x 10 <sup>6</sup> | 25.2 x 10 <sup>6</sup>                      |
| <del>+</del> 90500                   | 55600                    | 22900                          | 2.96 x 10 <sup>6</sup> | 28.16 x 10 <sup>6</sup>                     |
| <del>-</del> 90500                   | 55600                    | 22900                          | 0.45 x 106             | 28.61 x 10 <sup>6</sup>                     |
|                                      |                          |                                |                        |                                             |

(bb) Shank P-171 (P/N 164206)

\* Transition design loads corresponding to V = 80 KTS, HP = 927, RPM = 1065, for the 12,300 lb. aircuaft gross weight. The test was terminated after  $28.61 \times 10^6$  cycles when a shank failure occurred. The crack extended approximately  $300^\circ$  around the steel shank in the flange radius. The failure was fatigue in nature with the origin in the flange fillet radius at the location of maximum applied loading. (Figure 133).

A fatigue life analysis was made of the above test data and the minimum demonstrated fatigue strength of the retention was shown to be  $\pm$  91,500 in-lbs. vibratory bending moment for the 12,300 lb. design G.W. steady loads of transition flight which are CF = 44,500 lbs. and M = 16,060 in-lbs. An ample margin of safety was thereby shown to exist with respect to the anticipated vibratory bending moment of  $\pm$  72,300 in-lbs. for the 12,300 lb. aircraft.

(5) Additional Full Scale Blade and Sample Testing

Considerable additional testing of blades and blade material were accomplished in the course of the blade development program which was pertinent to the qualification of the strength or life of the structure. These tests are simply listed for completeness:

- (a) Water spray (Full scale)
- (b) Sand and grave! abrasion (Full scale and samples)
- (c) Fungus (Samples)
- (d) Impact, Bird and bullet (Full scale)
- (e) Weathering (Samples)
- (f) Lightning (Full scale)

ŧ



Figure 133. Typical fatigue failure of the X-19 blade shank.

227

66-111

### 3. PROPELLER DESIGN LOADING THEORY AND TEST

a. General

With respect to the airframe, the rotating propeller generates six basic load components. These are shown in Figure 134. These forces and moments represent the summation at the propeller shaft of the aerodynamic lift and drag components developed by each of the rotating blades. From the viewpoint of the air-frame designer, it is only these resultant loads which are of concern and these are readily obtained by wind tunnel testing and generally presented in coefficient form (33). The propeller designer, however, also required the loading or the individual blade, and for this theoretical developments are generally used.

b. Theoretical Propeller Loading

The flow through the disk of an aircraft propeller is generally quite complex. In simplest form, it might be considered as though the propellers were operating at some angle of attack, A, with respect to the flow field, Figure 134. The angle of attack results from several factors, e.g., the attitude of the aircraft, geometry of the aircraft, wing circulation, influence of the fuselage and other surfaces, etc.

For analysis purposes, this flow can be considered in the two components, normal and parallel to the disk. It is quite obvious that with these velocities, any given blade section, as it passes through one revolution. will experience a uniform velocity on which is superimposed a sinusoidal harmonic having a frequency equal to the rotational speed or the commonly called 1XP frequency. The aerodynamic forces will also reflect this uniform plus sinusoidal variation. The uniform or steady components produce the propeller thrust and torque. The 1XP vibratory blade loads produce the shaft moments and normal forces.

The thrust and torque forces are readily determined. The so called strip analysis methods are well established within the propeller industry, and were developed from a background of many years of propeller testing. The first order, or 1XP, blade loads are not so well defined:

(1) First Order or 1XP Blade Loading

For the conventional aircraft, the 1XP propeller blade loading is accurately predictable.

Because of the very low propeller angle-of-attack (0° to  $20^{\circ}$ ), a relatively simple development gives the 1XP lift force at a given blade station as:

$$\Delta L_{1XP} = q/2 \sin 2A \left[ ab + 2bC_{L} \cot \phi_{o} \right] \Delta r \sin \omega t \qquad (1)$$







which for small angles becomes

$$\Delta L_{1XP} = Aq \left[ ab + 2bC_{L}Cot \phi_{o} \right] \Delta r \sin \omega t$$

where: A = propeller angles of attack

- $q = free stream dynamic pressures, 1b/ft^2$
- a = slope of the lift curve
- b = section chord, ft
- $C_L$  = operating lift coefficient
- $\emptyset$  = apparent wind angle at the given station
- $\Delta r$  = incremental radius, ft
- wt = propeller rotational angle, radians

This development is well known and the propeller forces obtained from this simple expression have been substantiated by considerable flight testing. However, the above expression becomes quite inaccurate as A becomes greater than 20°, and s therefore not applicable to the tilt nacelle or tilt wing propeller driven VTOL airplane.

Recognizing this fact, a more generalized development (3+) was undertaken in order to more accurately predict propeller likels for the high angle region. From this development the basic 1XP blade force at a given station was shown to be:

$$(\Delta L/\Delta r)_{1XP} \approx q/2 \left\{ \sin 2A \left[ bC_L \cot \emptyset (2 - \frac{V_0}{\alpha W} \cos \emptyset) + ba \right] \right. \\ \left. + 3/4 a b \frac{V}{W} \cos^3 A \sin \emptyset \right\} \sin \omega t \qquad (3) \\ \left. - qab \sin A \left[ \frac{V_1 r}{VR} \left( \cot \emptyset - 2\alpha \right) \right] \cos \omega t \right\} \right\}$$

where, in addition to terms previously defined,

 $V_{\rm O}$  and  $V_{\rm 1},$  are components of induced velocity, ft/sec W = resultant velocity at a given section, ft/sec V = free stream velocity, ft/sec  $\alpha$  = propeller section angle of attack, radians r = radius to a given station, ft R = tip radius, ft

(2)

.

If a propeller is considered to be operating at an angle-ofattack that is in a pure pitch-up direction, referring to Figure 189, it can be shown that the summation of the blade IXP loads will produce the following forces and moments:

| Force Component | Force | Moment     |  |
|-----------------|-------|------------|--|
| Eq (3)          | See   | Figure 189 |  |
| Sin wt          | N     | Y          |  |
| Cos wt          | S     | М          |  |

Equation (3) was generally used to evaluate blade loadings in the X-19 program. The major problem in its application was the evaluation of the induced velocities, and for this purpose considerable use of helicopter rotor data was used (35), (36), (37) and (38). It became apparent quite early in the X-19 program that the propeller forces generated by Equation (3) did not agree satisfactorily with data derived by the Aerodynamics Department from wind tunnel testing. The expedient solution was therefore taken for design purposes. The blade load distribution as computed by Equation (3) was retained but the load magnitude was modified as necessary to agree with the wind tunnel derived data.

(2) Higher Order Load Components.

The previous section has been concerned only with the first order of 1XP component of the propeller blade load which is a major factor. However, as previously stated the actual flow through the propeller disk is nonuniform which gives rise to higher harmonics.

On the conventional aircraft these harmonics were of no concern except at those rotational speeds where they coincide with a resonant propeller frequenty. In those cases it was only necessary to keep the operating speeds sufficiently removed from the natural frequencies of the system. In the VTOL aircraft there may be certain propeller attitudes where these higher harmonics may be significant. At termination of the Curtiss VTOL activity this was under theoretical study, but no definite conclusions had been reached. Allowance for the effects of these higher harmonics was generally made in propeller analysis and was based on past flight test or propeller test history.

(3) Continued Theoretical Blade Loading

In recognition of the short comings of the available theoretical methods for predicting propeller loads and blade loadings, a more detailed study of propeller load analysis was undertaken as an R & D effort by the VTOL Division, and this work was continuing at the time of termination. In principle the approach consisted basically of defining the propeller flow field as a mathematical function of radius and rotational angle.

Then with the known airfoil characteristics the force on any given blade element could be determined as a function of the rotational angle. A Fourier Analysis was then applied to this function to separate the various harmonic components. Obviously the major problem was the definition of the flow field to include the many influencing factors.

The induced velocity distribution during the high angle-ofattack operation of a propeller has a large effect on the loadings. Unfortunately, this velocity distribution is known only approximately at this time. It is possible, in principle, to calculate this distribution, as has been done for flapping rotor helicopters, (39). Such a calculation has not been carried out as yet for a rigid propeller. Another possible source for such data is a rather elaborate experimentation, to give the velocity close to the propeller at a large number of points. This experimental data could then be converted to a double Fourier series.

The present source of the inflow velocity distribution is a combination of theoretical and test data. The method that has been used previously to estimate the inflow velocity distribution for an isolated propeller is given below:

Simple momentum considerations give:

and the second of the second of the second of the second second second of the second of the second of the second of

14.101

$$v_{1_{\text{nom}}} = V_{1}^{2} - \sqrt{V_{1}^{2}/4 + T/2\rho\pi R^{2}}$$
 (4)

where  $V_1$  is the forward velocity component of the propeller parallel to the shaft, T is thrust, R is the propeller radius, and P is the air density. The radial distribution of  $V_1$  has been based on some static test data taken on the X-100 propeller, which has been subject to a Fourier analysis.

It has been found, however, that the interference of a nearby wing, fuselage, or other propeller can have major effects on the propeller loading. The rear propellers of the X-19 aircraft are subject to this effect, as demonstrated by wind tunnel model testing. No simple method of estimating the interference velocities exists at present, however, there is no basic obstacle to a reasonable estimate which can be had by superimposing certain known classical solutions for flow about simple bodies. A discussion of this is given in section III where fuselage flow effects upon the rear wing are defined. The program therefore was developed in terms of symmetrical flow about an aircraft configuration with two horizontal lifting surfaces and two nacelles per side, with a central fuselage. The positions of the above components are otherwise arbitrary. Provision was made for variable nacelle angle in pitch with respect to the wing and variable aircraft angle-of-attack with respect to the remote velocity. The wings were simulated by a large number of the usual bound and trailing vortex segments. The strengths of these segments were in accordance with a given spanwise lift distribution and an assumed chordwise distribution. The fuselage and nacelles were simulated by a combination of sources and doublets on their centerlines. The strengths of the sources and doublets were defined in terms of simplified boundary conditions for the isolated bodies, with provision made for variations in wing upwash or downwash along their lengths. The velocity distributions for all vortices, sources, and doublets were superimposed without attempting to satisfy flow boundary conditions strictly for the whole configuration.

The accuracy of the total distribution found in this way was expecte to be acceptable. The velocity components in three dimensions are calculated at a large number of points in each propeller, with special provision made for points close to a trailing vortex sheet. Certain refinements were contemplated. The most important of these would be propeller blade trailing and shed vortex sheets, with trajectories given by the velocity distribution of the present program, superimposed on the remote velocity and estimated propeller induced velocity. Another provision could be variable chordwise lift distribution, given by the local angle of attack. Finally, the resulting velocity distribution could be used to compute new values of local angles of attack and vortex sheet trajectories. This information could be used in a new cycle of computations with the expectation that the results would be of greater accuracy.

c. Propeller Test Loads

As stated in the previous section, the design propeller loads were established on the basis of wind tunner testing.

In the case of the blades, theoretical distribution of loading were used but modified in magnitude to agree with the test data. It was the intent that during the X-19 flight test program, sufficient propeller instrumentation would be installed to permit a correlation between design loads and flight loads.

# (1) Wind tunnel tests

The basic propeller loads used for design were determined from wind tunnel testing of free-propellers, models, and the X-100 aircraft. This testing is fully discussed in Section IX. In the course of the blade loading development, correlation was made between theoretical and test data. Typical comparisons are shown in Figures 135 and 136.

# (2) Flight Test

こうち ちょうぶん い

1.1.1.1.1

T We introduced the second of the

۰.

12.1.1

The limited preliminary flight testing of the X-19 did not provide the opportunity to verify the accuracy of the 1XP propeller design loads. However, calculations were made for an equilibrium transition flight and it was possible to compare the calculated blade stresses measured during flight. A typical comparison is given in Figure 137. The correlation is considered good and this very limited data would imply that the 1XP propeller loads as used were realistic for the airplane.

í



Figure 135. Comparison of the propeller yawing and pitching moment coefficients at flow angularities close to 90°, and at low advance ratios,  $\beta_{.75R} = 15^{\circ}$ .



Figure 136. Comparison of propeller normal and side force coefficients at flow angularities close to 90° at low advance ratios,  $\beta_{.75R} = 15^{\circ}$ .

236





1

the submitte

237

- -

## 4. WEIGHT COMPARISON OF ' 19 FIBERGLASS PROPELLER

Early in the concept studies of VTOL aircraft, it was recognized that the propulsion system would be a significant portion of the total aircraft weight and a considerable effort went into weight reduction studies of this system. Accordingly, the propeller blade received early design emphasis since a reduction in blade weight would be multiplied by 12, the total number of blades, and would reflect to some extent a comparable saving in the weight of hub and other components. A summary of this work is as follows:

a. Blade Weight Studies

General studies were made in the selection of a lightweight propeller blade design considering both fiberglass and the lightweight metals (40). The results of these studies showed a definite advantage in favor of the fiberglass design and these studies considered both VTOL/STOL and conventional turbo-prop installations. Typical results of these studies are shown in Figures 138 and 139 which show a blade weight comparison of several types of blade construction for a specific airplane installation. In these charts, reference is made to the composite blade.

This type of design consisted of a metal structural center spar which was generally elliptical in cross section and was formed as closely as possible to the required airfoil shape. The airfoil section was then completed by bonding a preformed leading and trailing edge strip to the spir. Abrasion resistance was provided by a thin stainless steel sheath.

It is well known that the major factor in the structural design of a propeller is the 1XP vibratory blade load. Referring to Equation (2), page 226, it is seen that this loading is proportional to the Aq factor. A review of several operational propellers having hollow steel blades, resulted in an average weight vs. Aq curve as shown in Figure 140. For a more generalized fiberglass weight comparison, typical turbo-prop installations were selected and an equivalent fiberglass blade was designed. The weight advantage in fiberglass is clearly shown in Figure 140. The final weight of the 13166A12P3 blade is 70.6 lbs. No direct comparison has been made between the X-19 blade and comparable blades in other materials. It is estimated, however, that an aerodynamically equivalent hollow steel version would have a weight of approximately 132 lbs.

b. Hub Weight Studies

The propeller hub design is governed by the blade loads; and, a reduced weight blade therefore offers hub weight advantages. However, this contribution was not a major one in the conventional ≪.∌ \$.}> A TARMY



•,



.

67-2123

, C31.

Ĕ

1.5

.



•



í...

**\$7-2101** 

J KANDOLAO

refrestivities and the set for all the states of the set of the se

•

ļ

-147

:

.172

、ような





.....

\$

and the second state of the second second

hub design and the desirability of a more efficient hub structure was recognized. For this reason considerable design effort went into the redesign of the hub assembly for the X-100 aircraft. As finally evolved for the X-19 aircraft, the 162595 hub is, in general, a scaled-up version of the 138034 hub used for the X-100 vehicle. Although there is an external resemblance to the conventional Curtiss Electric Propeller hub, the internal differences are many, including the absence of an integral inner structure. The conventional nut-and-cone shaft mounting was replaced by a large, 2-row nose-mount bearing on the rear extension. The selfcontained pitch-change mechanism consisted of a hydraulic piston operating inside the rear extension and connected by linkages to cranks on the blade butts. The torque drive was through short internal splines at the extreme aft end of the rear extension. The design differences resulted in an unusual geometry which combines, in one hub, a shank size less than #2 (115 mm) with a rear extension larger than that for a standard S.A.E. #60 splined shaft.

The resulting total propeller, sess blades weight, for the X-19 was 161.2 lbs. Again there is no direct comparison with a conventional propeller hub assembly designed for the X-19 installation. However, a similar sized Curtiss Electric Propeller would have a propeller (less blades) weight of approximately 200 lbs.

#### 5. PROPELLER STRUCTURAL PROBLEMS

Through the development and testing of the X-19, a number of structural problems were encountered in the propeller system. These problems varied in importance and are described as follows:

a. Blades

いましたがないないないないできょうかい ちゅうしょう ちゅうしょ スート・マリー・ ちょうぶん ちょうごうせんかい かいちょうぼう

í.

There were two basic problems with the propeller blades; one was associated with the foam filler and the second was with the steel shank.

(1) Foam Filler

In the course of operating the No. 1 X-19 for a total of 114 hours, foam separations were encountered in five blades. Three of the separations were repaired and the blades were returned to aircraft testing and separations occurred a second time, thus accounting for eight cases of separation. Upon subsequent X-ray inspection, it was found that four of these five blades also showed cracks in the foam. On 31 January 1965, during a maintenance ground run, a sixth blade experienced foam shifting and resultant tip bulging as a result of foam bond failure or foam separation. Detailed inspection of these six blades disclosed a consistent pattern of sound foam and fiberglass but poor bonding between the two elements.

ŧ.

A review of the foam bonding technique employed in these blades, in the light of the current state-of-the-art, disclosed several factors which could potentially contribute to the lack of bond including;

- (a) The use of a cleaner containing methylene chloride to clean the fiberglass blade shell prior to foaming may result in deterioration of the foam bond.
- (b) The use of an epoxy primer (Rexton) may result in lower bond strengths than obtainable with a urethane primer.
- (c) Storage of the "T" component of the Nopco H-106 foam at temperatures below 60°F before use in the blades may have caused separation of its TDI constituent.
- (d) Temperature and humidity control was not optimized during the priming and foaming operations.

An extensive investigation was initiated to review and/or modify the Curtiss Process Spec fications CPS 6266 (Molded Fiberglass Reinforced Plastic Blades) and CPS 5065 (Foam Plastic-Rigid-Freon-Blown, Low Density). This analysis and specimen testing was performed at the Curtiss Division and Redel, Inc. California.

This investigation program was extensive and involved studies of surface preparation, types of foam, chemistry variations, curing cycles, and evaluation of the foam material properties. A total of 27 full scale blades were built and fatigue tested using the more promising developments. Based upon these tests the fcam system developed was a considerable improvement and the 13166A12 blades which incorporated this new foam were considered structurally satisfactory for the flight test program.

However, the foam problem was not considered completely solved to satisfy high service life, and this still remains an area which needs further development in the light-weight blade program.

b. Blade Shank

As previously mentioned the X-19 shanks were made of AMS 6415 steel heat treated to RC 42-46. This is bordering on the brittle range. Although the metallurgy department had set up special procedures (double bake immediately after plating) for processing these shanks, certain problems developed in the initial development. MARKE P

(1) Longitudinal Cracks in Outboard End of Shank

There were three instances of cracking in the outboard end of the shank (Fig. 118) prior to blade fabrication, and therefore before any application of operational or test loads. In addition, a similar crack found during examination of a blade which failed on a fixed-root test could not definitely be attributed to fatigue and may have originated as a static crack.

It was theorized that cracking of this type, during or soon after manufacture, may have been associated with residual stress from the forming process, and/or with hydrogen embrittlement of the steel. In either case, a time factor appeared to have been operating, which may have resulted in deferred failures.

(a) At Shank Fabrication

Two completed shanks, which had been approved after magnaflux, were found at final inspection to be cracked. The normal time interval between magnaflux and final inspection was reportedly less than two weeks; that between plating and baking was variable, a critical factor where hydrogen embrittlement is involved.

(b) At Blade Fabrication

Blade P-120 had unsatisfactory fiberglass during initial blade fabrication. The fiberglass was therefore stripped, at which time examination disclosed similar cracks in the shank outboard end.

(c) During Test

Blade P-68(-2) failed after  $42 \times 10^6$  cycles of fixedroot testing. Examination of the blade after failure showed branching cracks at the shank outboard end. As previously mentioned; these may well have originated as static failures. As a result of these failures, the Metallurgy and Blade Design Departments set-up rigid processing controls. Further incidences were not found and this problem appeared to have been solved.

(2) Fatigue Failures in Inboard Portion of Shank

Two retention tests of the X-19 type shank failed at low total cycles by reason of fatigue failures originating at areas of internal shank corrosion. As a result of the first failure, precautions were taken to prevent rust formation during testing of the second shank. Inasmuch as failure of the second shank was subsequently attributed to a corrosion origin, it was concluded that the blade shank was insufficiently cleaned prior to application of the protective coatings. These fatigue failures indicated the possibility of a high notch sensitivity such as would be expected with a material of low ductility.

Following discussions among Metallurgy, Blade Design, and Structures, the internal surface all steel shanks were carefully cleaned, the bore was shot-peened and a suitable protective coating was applied. No further incidences of shank corrosion were found.

c. Hubs

There were no structural deficiencies of the propeller hub itself. However, in the hub assembly, it was found that under load there was a harmonic drive type of action which tended to rotate the inner race of the nose mount bearing with respect to the hub. This tendency to turn would also tend to tighten the bearing preload nut, P/N 169564. In the original design, the lug which was provided to lock the bearing preload nut was inadequate to restrain this motion. Lug failures were experienced after relatively short periods of operation which in turn permitted the nut to tighten. This action resulted in failure of the hub rear extension in one of the early endurance test runs. A spline type lock was designed which proved adequate. It was noted, however, in subsequent testing under high vibratory load that considerable galling and wear was produced between the nose mount bearing race and the hub shoulder and between the bearing race and the nut face.

Since galling is a potential origin for fatigue failure, redesign of the hub rear extension was recommended, and preliminary studies of this problem had been initiated at the time of termination of the project.

d. Blade Pitch Control

Early in the functional testing of the propeller, it became apparent that the blade link, P/N 168267, which transmits the pitch change force from the hydraulic piston to the blade butt, was marginal with respect to the anticipated loads. This was corrected by a simple strengthening of the part.

During airplane ground testing, it was found that the propeller control push-rods inside the wing were being subjected to a significant vibration. This caused a fatigue type failure of some of the rod ends and certain cast aluminum hangers.

In order to determine the magnitude of the vibratory forces, strain gages were installed in the system. On the basis of the Thing Sumbhing the

and the second sec

ŝ

measured data, the rod end size was increased and redesigned hangers were machined from aluminum bar stock.

After considerable development testing on the half system rig, a failure was found in one of the pitch change pistons. Examination indicated that this was a fatigue type failure; however, the cause of this failure was never satisfactorily explained. As a precaution, the part was redesigned to provide a heavier section and more generous fillet radii.

e. Propeller Housing

This housing, P/N 166464, provided the support or mounting of the propeller to the nacelle gear box housing which was attached to the wing structure through the trunnion of the tilt mechanism. It consisted of a cast magnesium shell (AMS 4434 commonly designated AZ92A-T6) reinforced for stiffness by internal longitudinal ribs. The forward portion was a conical section which faired into a cylindrical shell about 9 inches aft of the propeller. This structure was not adequate to transmit the encountered magnitude of 2xP vibratory propeller loads for the period of aircraft flight testing and the failure of this housing in flight resulted in the loss of the No. 1 X-19 aircraft.

The investigation which followed the crash of the aircraft revealed that the failure was the result of a combination of factors.

- (1) The vibratory lord level reacted on the nacelle housings during later airplane operation was considerably higher than had been anticipated in the establishment of the original design criteria. More specifically, the strain gage data that was evaluated from flights Nos. 32 to 50, most of which were accomplished at NAFEC, indicated that the 2xP component (vibratory on the nacelle) during conversion (tilt translation) flying was of the same magnitude as the 1xP component which is a steady load on the nacelle.
- (2) Just prior to ultimate failure, an emergency maneuver was executed which produced steady loads significantly higher than design values.
- (3) A strain gage survey showed that the actual stress gradient in the rib/transition area was twice the value used in the theoretical analysis based on a limited Stresscoat survey. Also, sand pits in the rib tips added to the stress concentration and the intolerance of the area to fatigue loading.

As a result of the above described investigation, the housing was completely redesigned, P/N 174988. At the termination of the contract, this housing had been completely static tested. Plans

€

for fatigue testing the entire nacelle assembly under simulated propeller steady and vibratory loading were being made. A laboratory test facility was designed to accommodate the entire nacelle gear box and attaching propeller housin, with all subsystems intact with the exception of the blades and tilt mechanism.

## 6. PROPELLER INDUCED LOADS

The loads on the airframe induced by the propeller, can be of both a steady and vibratory nature. The six basic steady load components consisting of thrust, torque moments and normal forces have been discussed under Sub-part 3 of this Section. It is the purpose of this part to briefly discuss the other theoretical loads and also to present those airframe loadings which were observed during testing of the X-19 airplane.

## a. Theoretical Loads

As previously noted in Section V, 3., the flow through the propeller may be considered as being made up of a uniform flow upon which are superimposed many harmonic components 1XP, 2XP, 3XP etc. Each of these velocity components will generate a corresponding load component, and it is the summation of the blade load harmonics at the propeller centerline that is reflected on the airframe. The nature of the reaction on the aircraft depends upon the number of blades, and the order of vibrations.

By a relatively simple mathematical procedure it can be shown that the shaft thrust and moment due to a blade harmonic force are:

$$T = F_n \cos (n\omega t), \quad n = mB$$

$$T = 0, \quad n \neq mB$$

$$M = M_n \frac{B}{2} \left\{ \cos (n+1)\omega t \right\}, \quad \frac{n+1}{B} = \text{integer}$$

$$M = M_n \frac{B}{2} \left\{ \cos (n-1)\omega t \right\}, \quad \frac{n-1}{B} = \text{integer}$$

where: ·

- T = total shaft thrust due to a given harmonic blade force, lb.
- M = total shaft moment due to a given harmonic blade force, in.-lb.
- $F_n =$  Maximum value of the blade harmonic thrust force, lb.
- M = Maximum value of the blade moment at the shaft centerline due to the harmonic force, in.-lb.

- B = number of blades
- **n** = order of vibration
- m = integer
- t = time, sec.
- = blade rotational frequency, rad./sec.

**nw** = harmonic frequency, rad./sec.

Considering these equations with respect to a 3-way propeller, such as was used on the X-19 sirplane, the following shaft reactions are obtained:

- (1) A 1XP blade harmonic is thrust reactionless but produces a steady shaft moment.
- (2) A 2XP blade excitation is thrust reactionless but produces a vibratory shaft moment having a frequency of 3XP.
- (3) The 3XP blade harmonic, will produce a 3XP thrust component and will be moment reactionless.
- (4) The 4XP blade load will be thrust reactionless, but it will produce a vibratory shaft moment at 3XP frequency.

The 1XP load component has been more fully discussed in Sub-part 3 of this section. The forcing function of the higher harmonics, 2XP, 3XP etc., cannot by the present state-of-the-art be calculated with any reliable degree of accuracy. Flight test was generally relied upon to evaluate the severity of these components and to establish rpm restrictions. Generally these excitations have been sufficiently low that they were of little concern in conventional aircraft except at resonant speeds. Care was therefore exercised in the propeller design to be certain that the propeller natural frequencies did not coincide with the higher harmonic frequencies at operating speeds.

There is evidence in theoretical work and the limited flight test data which indicated that both the 2XP and 3XP blade harmonics may become significant in certain portions of the transition flight on the VTOL-type aircraft. It must be noted that any propeller blade harmonic which produces a shaft reaction dynamically couples the propeller to the airframe. The propeller and propeller forces must be considered in any airframe dynamic study. These are controlling loading criteria in the design of the propeller, nacelle housings, tilt mechanism and possibly the wing structure in a V/STOL aircraft.

b. Airframe Test Results

In the limited testing of the X-19 aircraft, certain vibrations were obtained in the aircraft which were attributed to the propeller. These occurred both on the ground and in flight.

ġ

### (1) Ground test

The initial ground testing of the X-19 aircraft was conducted on a tie down rig. Essentially, this consisted of restraining the aircraft against vertical motion by rigid supports or columns at each of the four wing tips. Fore-aft motion was prevented by stops at the main landing gear. Running on this rig produced a strong vibration throughout the airframe at 1XP frequency and 3XP frequency. The 1XP component was found to be due to propeller unbalance, and was eliminated by a careful matching of both the horizontal and vertical balance between blades. Previously, only horizontal balance had been carefully controlled. The 3XP component was found to vary with nacelle actitude, being more severe in the hover position and decreasing in severity as the nacelle tilted down to the cruise position. This vibration was believed to be due to blade passage over the wing. It was also found that this vibration was sensitive to the manner of aircraft support. With the aircraft on the tie down rig, where the main support was at the wing tips, the response was quite strong. With the aircraft supported on the ground through the landing gears in a normal manner, the 3XP vibration was considerably less, and once the aircraft became airborne this response was significantly reduced. In other words, the natural modes of the airframe structure changed as the manner of support was changed and the response to the 3XP blade passage excitation reflected this change in the natural modes.

(2) Flight Test

Propeller blade strain data recorded during flight testing of No. 1 X-19 showed an unexpectedly high percentage of 2XP stress, which was reflected as 3XP on the nacelle and its supporting structure. When blade vibratory stress was plotted with respect to rpm, a magnification similar to a resonant condition was observed, see Figure 141.

In an attempt to substantiate the apparent resonant trend, a stress-rpm survey was made in conjunction with the green running on the second X-19 aircraft. A good harmonic analysis of the records had been made, and the analysis showed that for the conditions of the test there was a noticeable 2XP stress amplification between 950 and 1150 rpm.

The data, however, did not show a well defined resonant speed. This is shown in Figure 142. Further, a qualitative analysis of this test data indicated that the stresses on the nacelle and trunnion were teing significantly influenced by a 3XP thrust component. A review was then made of the 13166A12P3 blade frequency calculations. Although correct



Figure 141. The 2XP component of blade stress as measured during flight test on the X-19 aircraft showing a resonant trend with rpm. 250





251

67-2122

.....

ì

+ Harn + + video and the fight
for the input used, it was found that the blade mass distribution calculated from the preliminary properties was 18% lower than the "as manufactured" blade weight. This would reduce the calculated frequency from 1480 to 1350 rpm. On this basis, a lower installed propeller resonance would be expected since the 2XP excitation on a 3-way propeller is not moment reactionless on the shaft which would produce a coupling with a nacelle structure. However, this would normally not be expected to reduce the resonant rpm to the 1150 shown in Figure 142.

These factors tended to weaken the resonance theory and promote the possibility of a stronger than anticipated 2XP aerodynamic excitation during the transition flight. An elementary analysis had shown that the 2XP excitation would be a function of:

$$(V \operatorname{Sin} A)^2 \operatorname{Sin} \beta$$

where V = aircraft forward velocity

- A = the propeller angle of attack
- $\beta$  = propeller blade angle setting.

In order to determine the degree of correlation, the velocity, blade angle and tilt angle were obtained from the flight records for further analysis. The tilt angle was used as a first approximation of propeller angle of attack and the above expression was evaluated for several flight conditions. The corresponding 2XP vibratory stress as measured on the blade was then plotted against this parameter. This plot and an apparent correlation is shown in Figure 143. At the time of termination, this problem of 2XP blade resonance or high 2XP propeller aerodynamic loading had not been completely resolved.

The reasons for the high loadings encountered on the nacelle of the X-19 during conversion that led to its failure must be found so that proper design loads can be determined, as these loads could have a major influence on the nacelle structure of any new tilt rotor or tilt wing airplane. There are many reasons for the high loads, for instance they could have been developed as a result of flow conditions from the front wing, influencing high loading on the aft propeller, or by the start of nacelle whirl, or could be just a function of an airframe resonance condition. The question can be answered by testing an isolated X-19 propeller at the same conditions encountered prior to the loss of the propeller to find if excessive 2 x P stresses are induced on the blade. If not, the high stress levels were induced by conditions peculiar to the X-19 in which case the question is adequately



Figure 143. Variation of the 2XP blade stress as measured during flight test of the X-19 aircraft as a function of the theoretical 2XP parameters,  $(V \sin \emptyset)^2 \sin \beta$ .

253

67-2126

answered. Otherwise, if the high stresses were generated by isolated propeller, further theoretical and experimental work will be required to develop the necessary solution.

### 7. **PROPELLER TESTING**

Except for the development testing of the fiberglass blades which is presented in Section V, 2., this section covers the details of the testing accomplished to qualify the X-19 propriler for flight.

a. Propeller Hut Static Test

The 162595 hub employed in the propeller of the X-19 sircraft, although utilizing well-proven design principles, differs in numerous ways from those heretofere built by this company. The abrence of an integral inner structure, the replacement of a conventional nut-and-cone shaft mounting by a large, 2-row nose-mount bearing on the rear extension, the self-contained pitch-change mechanism consisting of a hydraulic piston operating inside the rear extension and connected by linkages to cranks on the blade butts, and the torque drive through short internal splines at the extreme aft end of the rear extension are all design differences which differentiate this propeller from its predecessors.

(1) Design Loads

191

3

Propeller components are commonly stress-analyzed for the maximum propeller loads predicted for service operation, on the assumption that during the life of the airplane the accumulated stress cycles at the higher loads will be sufficient to constitute an endurance condition. Because of the complex flight maneuvers possible with this vehicle, normal operating loads cover a wide range of centrifugal force as well as symmetrical and unsymmetrical bending moments. Loads given in Table IX for the transition plus gust, maneuver transition, and high speed conditions were selected as representing the heaviest loading on the hub and were utilized as major design criteria.

(2) Test Procedure

The propeller hub was mounted on a specially designed tension machine, Figure 144, in such a manner as to simulate the aircraft mounting. The blades were replaced by special test shanks which were retained in the hub by means of the design blade retention.

The centrifugal and bending loads were applied simultaneously to each barrel by means of hydraulic jacks, and a static simulation of the vibratory loads were superimposed in the correct phasing. Because of the highly redurdant nature of the hub structure, the testing was done in two phases:

(a) Stresscoat Test

The initial effort consisted of a qualitative stress survey with brittle lacques to determine the locations



ALC: NOT

66-138

The second se

a to a fa

# Figure 144. Laboratory test facility for the static testing of propeller hubs.

.



Figure 145. Stress coat patterns appearing on the X-19 propeller hub under a simulated design steady/vibratory load condition.

ł

.

1

of stress concentrations and directions of principal tensile strain, see Figure 145. Results of this test phase were used to assist in properly orienting resistance wire strain gages for the definitive phases of the test program.

(b) Wire Strain Gage Test

In view of the limitations of Stresscoat for quantitatively exact work, the definitive stress evaluation was based upon the use of a wire strain gage survey. During the second phase of the investigation, therefore, quantitative measurement of apparent stress was accomplished by means of these gages and conventional strain gage instrumentation.

On the X-19 hub a total of 129 strain gages were installed. The pertinent locations are illustrated in Figures 146, 147, 148 and 149.

(3) Results

An extensive analysis of the data from 129 strain gages and three loading conditions was made, and the pertinent results indicating the locations and stress magnitudes of the more highly stressed areas are given in table XI. It is seen that for the design loads the minimum factor of safety is 1.28, and for the most part the factors were well in excess of 2.0. The testing therefore indicated that the 162595 hub was adequate for the anticipated flight loads of the X-19 aircraft.

b. Laboratory Whirl Test

This is a standard propeller test used in the development and qualification testing of the functional aspect of the propeller-nacelle assembly.

(1) Description

This test was performed in the C-W, Curtise Division laboratory to demonstrate operation of the complete propellernacelle assembly. This assembly was whirled on an electrically driven whirl stand utilizing test shanks and counterweights to simulate the blade loads, Figure 150. Testing was performed at speeds, blade angles, rate of pitch change, and net twisting moments (centrifugal and aerodynamic twisting moments), that were predicted for normal operation of the aircraft. In addition, simulated governing and power transients which would require propeller pitch change excursions during the various phases of aircraft operation were demonstrated.

(2) Test Program

ł

The endurance qualification and assurance testing of the X-19 was initially performed to the 50 hour level. Upon completion of the 50 hour qualification test and subsequent





Figure 146. Location of wire strain gages around outer circumference of barrels of X-19 propeller hub 162595 during static testing in hub tension machine.

67-2135

1



Ncte: Gages oriented circumferentially. Gages 127, 128, 129 are A-19. All others are A-8.

Figure 147. Location of wire strain gages around inner and outer periphery of front ring of X-19 propeller hub 162595 during scatic testing in hub tension machine.

67-2136

4417 h /

;

259

•,



Location of wire strain gages on inner and outer surfaces of rear extension of X-19 propeller hub 162595 during static testing in hub tension machine. Figure 148.

ĺ

I



Figure 149. X-19, propeller hub showing typical location of 3train gages during static test.

261

į

------

66-121

|                                     |      |                      | Factor | 1    | · · · · · · · · · · · · · · · · · · ·           |
|-------------------------------------|------|----------------------|--------|------|-------------------------------------------------|
| Structural                          |      |                      | of     | Gage | Gage Location                                   |
| Liement                             | Load | Stress psi           | Safety | No.  | (See Figs. 139-142)                             |
| Barrel                              | III  | 5733 <u>+</u> 21826  | 2.52   | 35   | Bbl. outer surface                              |
|                                     |      |                      |        |      | 🗘 base; radial                                  |
|                                     | IV   | 21467 <u>+</u> 19033 | 2.61   | 34   | Ditto                                           |
|                                     | VI   | 12357 <u>+</u> 28607 | 1.85   | 34   | Ditto                                           |
| Front Ring                          | III  | 6364 <u>+</u> 22189  | 2.47   | 69   | Front ring inner sur-<br>face; circumferential  |
|                                     | IV   | 1589 <u>+</u> 20026  | 2.82   | 69   | Ditto                                           |
|                                     | VI   | 2785 <u>+</u> 43948  | 1.28   | 63   | Ditto                                           |
| Rear Extension                      | III  | 103 <u>+</u> 10864   | 5.24   | 43   | Extension inner surface,<br>a bbl; longitudinal |
|                                     | IV   | 101 <u>+</u> 9715    | 5.86   | 43   | Ditto                                           |
|                                     | VI   | 135 <u>+</u> 8155    | 6.98   | 41   | "outer"<br>""                                   |
| Hub Shell<br>Between Barrels        | III  | -5144 <u>+</u> 9400  | 6.06   | 126  | Shell outer surface;<br>fore-aft                |
|                                     | IV   | 8535 <u>+</u> 11871  | 4.56   | 123  | Shell outer surface;<br>torquewise              |
|                                     | VI   | 7139 <u>+</u> 38436  | 1.42   | 123  | Shell outer surface;<br>torquewise              |
| Summary;<br>minimum F.S.,<br>entire | III  | 6364 <u>+</u> 22189  | 2.47   | 69   | Front ring inner sur-<br>face; circumferential  |
| structure                           | IV   | 21467 <u>+</u> 19033 | 2.61   | 34   | Bbl. outer surface<br>@ base; radial            |
|                                     | VI   | 2785 <u>+</u> 43948  | 2.15   | 63   | Front ring inner sur-<br>face; circumferential  |

Table XI. Maximum composite stresses in X-19 propeller hub 162595.

A State of the second

2



Figure 150. Laboratory whirl test facility for qualifying the propellernacelle assembly under simulated loading.

1....

inspection, the components were reassembled on the test stand and assurance testing continued to a total of 150 hours. Test cycles, of one hour duration each, were conducted. Each cycle was performed according to the following schedule:

(a) Take-off and Hover Condition - 8 minutes per cycle

With the nacelles at the hover tilt stop position and the propeller at 1204 rpm, the pitch change system was operated to cycle the blade angle as follows: The counterweight angle was set equivalent to the take-off condition (approxi ately 9° at 0.75R) and the pitch change was oscillated  $\pm$  1° at a frequency of 1.5 cycles per second.

(b) Climb and Transition Condition - 12 minutes per cycle

While tilting the nacelle down to the cruise stop position, at a rate of 2.5 to 3 degrees per second, in steps of approximately 15 to 20 degrees of tilt, the propeller speed was gradually decreased to 957 cruise rpm. The pitch change system was operated so as to cycle the blade angle at varying pitch change cycling rates, i.e., 1.2, 0.9, 0.6, 0.3 cycles per second with the amplitude of blade angle change compatible with the nacelle tilt gain change schedule.

(c) Cruise Condition. - 21 minutes per cvcle

With the nacelle at the cruise stop position and the propeller speed at 957 rpm, the pitch change system was operated such as to cycle the blade angle at 0.33 cycles per second with a blade angle change amplitude of approximately  $\pm$  3°.

(d) Descent and Transition Condition - 12 minutes per cycle

While tilting the nacelle up to the hover stop position, at a rate of 2.5 to 3 degrees per second, in steps of approximately 15 to 20 degrees of tilt, propeller rpm was gradually increased from 957 to 1204 and the pitch change system was operated to cycle blade angle in reverse order of that defined in Section (c) above.

(e) High Speed Descent and Shutdown - 7 minutes per cycle

With the nacelle at the hover stop position and the propeller speed at 1204 rpm, the pitch change system was operated to cycle the blade angle as described in Sub section (a) above. (f) Single Piston Operation

During the course of the test, two one-hour cycles were accomplished per 50 hour of endurance using single piston operation; one hour using the front piston and one hour using the rear piston.

(g) Data recorded

The following data were monitored and recorded at the start, twice during, and again at the end of, each 50 hour endurance period:

- (1) Lube pump pressure.
- (2) Lube oil temperature.
- (3) Rate of pitch change.
- (4) Control Response (Blade angle input signal vs actual blade angle vs time).
- (5) Input control forces required to obtain pitch change for each of the five conditions defined in the test program.

### (3) Results

ŧ

1

Following completion of the initial fifty hours of qualification testing, the propeller nacelle assembly was reassembled for continued testing under the "assurance" phase of the program. This one hundred hours of assurance testing was successfully completed, which concluded the total one hundred and fifty hours of qualification and assurance testing.

Satisfactory single piston operation after 50 hours and again at the conclusion of 100 hours of assurance testing proved the integrity of the dual piston system together with the dual piston monitoring system.

At the completion of the test program all parts were visually inspected, magnetic particle and/or Zyglo inspected, as applicable, with no discrepancies reported.

c. Electric Motor Whirl Test of X-19 Propeller

The objective of this test was to obtain basic aerodynamic data and to fulfill the propeller qualification requirements of specification MIL-P-26366, on the Wright Field Electric Motor Whirl Test Rig at Dayton, Ohio. The program covered aerodynamic thrust and horsepower calibration, a flutter boundary test, and one hour over speed test and the 20 hour endurance test.

(1) Test Program

ŧ

The test program run on the ASD-WPAFB whirl stand was as follows:

(a) Thrust and horsepower calibration

Aerodynamic calibration of thrust and horsepower was obtained at speeds of 600, 800, 1000, 1200, 1400 rpm to a limit of 1400 horsepower, at the following blade angles  $+8^{\circ}$ ,  $+10^{\circ}$ ,  $+12^{\circ}$ ,  $+14^{\circ}$ ,  $+16^{\circ}$ ,  $+18^{\circ}$ ,  $+20^{\circ}$ ,  $+22^{\circ}$ ,  $+24^{\circ}$ .  $+27^{\circ}$ ,  $+30^{\circ}$ , as measured at the 0.75 radius.

(b) Flutter boundary survey

Although the propeller blades had been designed to be flutter-free on the X-19 installation, a flutter boundary survey was made to verify the design.

(c) Overspeed run and endurance

The original intention of this test was to meet the requirements of the Curtiss Division X-19 Model Specification which called for a one hour overspeed run at a blade angle at which 730 horsepower would be absorbed at a speed of 1491 rpm. This speed is 140% of maximum continuous (transition) speed. However, at the recommendation of ASD, the program was changed to meet the interpretation of the requirements of MIL-P-26366 for propeller qualification as follows:

|                    |            |           | B1a  | ade Angle  |
|--------------------|------------|-----------|------|------------|
|                    | Horsepower | RPM       | @ 42 | in. Radius |
| One Hour Overspeed | 1075       | 1491      |      | 19.5°      |
| 20 Hour Endurance  | 1612       | 1230-1245 |      | 26.4°      |

The rating for the one hour overspeed was based on the propeller absorbing normal rated propeller power (2150 x 0.5) at 120 percent of the maximum rated propeller rpm (1204 x 1.20).

The rating for the endurance condition was based on absorbing 150 percent of normal rated power possible from the two X-19 engines  $(2150 \times 2 \times 1.5)/4$  divided among the four propellers at a blade angle setting at which the propeller absorbs normal rated propeller power at normal rated rpm  $(2150 \times 0.5 \ \text{@} 1204 \ \text{rpm})$ . For comparison, the operational ratings of the X-19 propellers are given below for the 13,660 lb gw A/C.

| Take-off | and | Hover | 860 | HP | (d | 1204            | rpm |
|----------|-----|-------|-----|----|----|-----------------|-----|
| Cruise   |     |       | 563 | НP | @  | <del>9</del> 57 | rpm |

(d) Instrumentation and Limitations

In order to define and monitor the magnitude of blade stresses during the whirl testing, the propeller blades were completely instrumented and this gaging is shown in Table XII. The output of these gages was recorded or monitored throughout the major portion of the testing. At the conclusion of the basic test program, the gages were stripped and a short calibration run was made to determine the aerodynamic interference effect, if any, of the gage installation on the static thrust. No change was noted. In order to assure safe operation of the propeller, the following limitations were established:

(1) Flexural Stress

|     | (aa)  | Steel      | <u>+</u> | 18,000 | psi |
|-----|-------|------------|----------|--------|-----|
|     | (bb)  | Fiberglass | <u>+</u> | 4,000  | psi |
| (2) | Shear | Stress     |          |        |     |
|     | (aa)  | Stee1      | Ŧ        | 6,000  | psi |
|     | (bb)  | Fiberglass | ±        | 1,000  | psi |

- (3) Propeller rpm not to exceed 1491.
- (e) Blade stresses

Blade vibratory stresses were recorded during the aerodynamic calibration and endurance runs. A series of stress surveys was conducted utilizing these gages and typical maximum composite blade stress curves of the results as shown in Figures 151, 152. From the results of these surveys, a group of gages was selected and monitored throughout the calibration and endurance runs.

Maximum stresses encountere were as follows:

## Table XII. Gage layout.

| Location                                                                                                                                                                                                                                                                                                     |   | Blade |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|-----|
|                                                                                                                                                                                                                                                                                                              | 1 | 2     | 3   |
| Gages radially mounted 0.5 chord,                                                                                                                                                                                                                                                                            |   |       |     |
|                                                                                                                                                                                                                                                                                                              | v |       |     |
| 12 JLA.<br>198 Sto                                                                                                                                                                                                                                                                                           |   | -     | -   |
| 10 Sta.<br>2/11 Sta                                                                                                                                                                                                                                                                                          |   | -     | -   |
| $\frac{24}{20!!} \text{ Sta.}  (\text{mostargular monotto}) + \frac{20!!}{20!!} \text{ Sta.}  (\text{mostargular monotto}) + \frac{20!!}{20!!!} \text{ Sta.}  (\text{mostargular monotto}) + \frac{20!!}{20!!!!} \text{ Sta.}  (\text{mostargular monotto}) + \frac{20!!}{20!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$ |   | -     | v   |
| 2611 Che                                                                                                                                                                                                                                                                                                     |   | -     | л   |
| 50° 51a.<br>701 65-                                                                                                                                                                                                                                                                                          |   | -     | -   |
| 42" Sta.                                                                                                                                                                                                                                                                                                     | X | X     | X   |
| 48" Sta. (rectangular rosette)*                                                                                                                                                                                                                                                                              | X | -     | -   |
| 54" Sta.                                                                                                                                                                                                                                                                                                     | X | X     | Х   |
| 60" Sta. (rectangular rosette)*                                                                                                                                                                                                                                                                              | X | -     | -   |
| 66" Sta.                                                                                                                                                                                                                                                                                                     | X | -     | -   |
| Gages radially mounted, Camber Plate                                                                                                                                                                                                                                                                         |   |       |     |
| 15" Sta. (2" from L.E.)                                                                                                                                                                                                                                                                                      | - | -     | X   |
| 15" Sta. (1" from T.E.)                                                                                                                                                                                                                                                                                      | - | -     | x   |
| 48" Sta. (2" from L.E.)                                                                                                                                                                                                                                                                                      | - | -     | x   |
| 54" Sta. (2" from L.E.)                                                                                                                                                                                                                                                                                      | x | x     | -   |
| Shank gages mounted radially, 6.25" Sta.                                                                                                                                                                                                                                                                     |   |       |     |
| 0 <sup>0</sup> (rectangular rosette)*                                                                                                                                                                                                                                                                        | x | x     | x   |
| 22 <sup>0</sup> (flexural gage)                                                                                                                                                                                                                                                                              | x | -     | -   |
| 45° (rectangular rosette)*                                                                                                                                                                                                                                                                                   | x | x     | . x |
| 67° (flexural gage)                                                                                                                                                                                                                                                                                          | x | -     | -   |
| 90° (rectangular rosette)*                                                                                                                                                                                                                                                                                   | x | x     | x   |
| 112° (flexural gage)                                                                                                                                                                                                                                                                                         | x | -     | -   |
| Gages transversely mounted 0.5 chord.                                                                                                                                                                                                                                                                        |   |       |     |
| Tarust Plate                                                                                                                                                                                                                                                                                                 |   |       |     |
| 18" Sta.                                                                                                                                                                                                                                                                                                     | x | 1     | -   |
| 4" Sta.                                                                                                                                                                                                                                                                                                      | x | x     | -   |
| 30" Sta                                                                                                                                                                                                                                                                                                      | - | Y Y   | -   |
| 36" Sta                                                                                                                                                                                                                                                                                                      | _ | -     | y Y |
| 42" Sta                                                                                                                                                                                                                                                                                                      | - |       | v v |
| 42 JLa.                                                                                                                                                                                                                                                                                                      |   |       | ^   |

\* The rectangular rosette gages were oriented such as to have the center leg in the radial direction. The two remaining legs were used as a shear bridge.





67-2134

;

-----

Į





67-2138

-----

|                    | Vibratory<br>Stress |      | Blade Angle<br>(Deg. at |
|--------------------|---------------------|------|-------------------------|
|                    | <u>± psi</u>        | RPM  | 42" sta.)               |
| <u>Steel Shank</u> |                     |      |                         |
| Radial             | 7100                | 1300 | 5                       |
| Shear              | 1300                | 1290 | 24.4                    |
| Fiberglass         |                     |      |                         |
| <b>Radial</b>      | 1900                | 1300 | 5                       |
| Transverse         | 800                 | 840  | 40.2                    |
| Shear              | 300                 | 1300 | 5                       |

1

In summary, the blade vibratory stresses encountered during the aerodynamic calibration and endurance running were low with no indication of blade flutter or resonance.

On the basis of theoretical analysis, indications of resonance would have been expected at about 800 and 1350 RPM, see Figure 123, but these points were obscured by the high damping of the system. Laboratory testing had shown that the internal material damping of these fiberglass blades is relatively high as compared with the former metal blades. This has been evident in the power requirements necessary to obtain adequate stress levels in endurance testing and in preliminary logarithmic decrement evaluation. Therefore, it had been contended that these fiberglass blades would show significantly lower response characteristics than had been experienced in the past. However, examination of the stress curves, Figures 151 and 152, could indicate that a resonance is being approaches at about 1200 - 1300 rpm.

It is to be noted that the plots represent a maximum value, and a study of the stress records indicate that the increase in stress at this speed is due to a beat frequency which appears to be power sensitive. Further, stress records taken in the 1300 to 1400 rpm range were not speed sensitive as would be expected with a well defined resonance.

The X-19 Propeller with 13166A10P3 design fiberglass foam filled blades has successfully completed a whirl test required in the X-19 Model Specification and the overload requirements of MIL-P-26366. Structural strength of the blade design was proven.

### (f) Propeller Inspection

1

Following the testing the propellers were shipped back to the Curtiss Division where a detailed inspection was made.

All steel and aluminum parts were magnafluxed and zygloed. All parts passed Magnaflux and Zyglo inspection.

Visual examination showed all parts to be in excellent condition except for the P/N 162563 blade bearings which had false Brinell marks. The P/N 162843 block had spline tooth markings on it from contact with che piston. The P/N 13166A10P3 design blades S/N P-50, P-63, and P-91 were in very good condition except for a foam separation on blade S/N P-91. X-Ray examination and visual inspection showed no internal cracks in any of the blades.

The bearings were inspected metallurgically, and found to be within drawing specifications with a hardness c.  $R_C$  62 and correct microstructure. The race curvatures were measured and found to be within specifications.

The false Brinelling of the bearing races noted was the result of subjecting the bearings to abnormal loads due to high centrifugal loading and poor lubrication conditions resulting from fixed pitch (no blade oscillation). This condition is conducive to fretting corrosion of the races as the contact area becomes dry.

### d. 1XP Gyroscopic Endurance

The gyroscopic rig was developed to provide a relatively simple means of endurance-testing a full sized propeller at its design vibratory and steady loads. In this testing the blade first order aerodynamic loading is simulated by the 1XP gyroscopic or inertia loading of the precessing propeller.

(1) Rig Description

The gyroscopic test rig, Figure 153, is an assembly of an R-2800 propeller driven engine, a special propeller mounting provision and an electric motor/Reeves precessional drive system, all of which is mounted on a circular track turntable. The turntable can be rotated at speed from 0 to 25 rpm. Adaptations have been made to the R-2800 nose section to permit a direct or geared propeller drive depending upon the rpm and horsepower requirements of the test propeller. The entire propeller-engine assembly is enclosed in



Figure 153. Curtiss gyroscopic test facility for qualifying full scale propellers under simulated steady and vibratory loading.

273

66-106

ζ.

protective shroud, and a baffle ring is provided 'p provide a somewhat better airflow through the propeller disk.

(2) Test Program

As previously stated the gyroscopic test is designed to provide endurance testing of the assembled propeller; (blades, hub, and propeller mounting), at the combined steady and 1XP vibratory design loads. The centrifugal loads are exactly simulated by driving the pr peller at its design rpm. The steady static aerodynamic bending loads are simulated by adjusting blade angles, i.e. power and thrust until the desired blade stress level is obtained. The 1XP vibratory loading is generated by the inertia forces resulting from the precession of rotation of the rig and the desired magnitude established by the variation of rig speed. In the course of the development of the X-19 blade design, several propellers were run on the gyroscopic facility. With the design loads thus simulated the testing is continued for a specified number of hours. The final test on using the 13166A12P3 blades, is generally typical and is presenced in detail.

(a) X-19 Propeller Gyroscopic test

The 13166A12P3 blades (S/N P154-6, P190-4 and P193-4), were strain gaged similar to the layout shown in Table XV. The propeller was then mounted on the test rig which had been modified to incorporate the nacelle housing so that the propeller mounting and drive would duplicate the aircraft installation. Stress surveys were then made at 300, 900, 1,000, 1100 and 1204 propeller rpm without rig precession, and a 10, 11, and 12 rig rpm and 1204 propeller rpm. For this propelier, the endurance condition was set up to duplicate the 30 ft/sec gust at a 50 knots transition for the 13,660 lbs. a rcraft, see Table VIII. For this condition the maximum blade stresses were computed to be 4500 + 2900 psi.

The stress surveys s'owed that at the desired propeller speed of 1204 rpm, operational limitations of the R-2800 direct drive engine caused abnormally low blade engine angle operation which resulted in a blade steady stress of approximately 10,000 psi. This was considerably above the desired value, and an equivalent condition was selected.

This is illustrated in Figure 134 which shows the desired point with respect to the material disign Goodman curve. To maintain the same relationship to this curve at 10,000 psi steady stress requires a



Figure 154. X-19 blade modified Goodman diagram showing design and gyroscopic test points.

57-2142

275

. . . . . .

vibratory stress of  $\pm$  2200 psi. Endurance was therefore set up for blade stress levels of 10,000  $\pm$  2200 psi, psi, or 1204 propeller rpm, 12.4 rig rpm, and  $B_{42}$  = 12°. Later analysis of the stress records indicated actual stress levels were 10,000  $\pm$  2300 psi. See Table XVI.

At the end of 3 hours running under these loads, a small area of foam separation was suspected on blade P-190, and at the completion of 4 hours this separation was definitely confirmed and the testing was stopped for blade repair. During this interim, it was suggested that the propeller drive be changed from direct drive to an 0.45 gear ratio which would improve the operation of the R-2800 drive engine and permit a better simulation of operating blade angle and steady blade loading. These changes were made and the testing resumed. Stress surveys were retaken and it was found that the steady stress could be reduced to 7000 psi.

From the Goodman curves this required increasing the vibratory stress level to  $\pm$  2500 psi, Figure 154. Endurance was continued at this load level for an additional 36.5 hours at which time the test was terminated due to a separation of the foam in blade P-190.

(b) Results X-19 Gyro Test

The stresses measured on the X-19 propeller blade during gyroscopic testing are given in Table XIII and Figure 155. Following the testing the propeller was completely disassembled and inspected. This inspection showed that except for the foam separation on blade P-190 and brinelling of the blade retention bearings all parts were in good condition. The brinelling of the bearing races is common in fixed pitch operation. Based upon the 40.5 hours endurance, the propellers were considered satisfactory for flight test purposes provided that a blade inspection for foam separation was made after each flight.

### e. Half Systems Rig Testing

The half systems rig was designed and built primarily for development and qualification testing of the X-19 power transmission system. This test facility, Figure 156, duplicated the forward half of the X-19 transmission system; engines, gearboxes, shafting, and propellers. The power which would normally be delivered to the rear propellers was absorbed by a water brake. Although not incended as a propeller test, per se, it did provid extensive operational experience under a wide range of horsepower, Table XIII. Vibratory and steady stress summary, X-19 blades.

Blade Design 13166A12P3 change A (F100 Foam) Blade No.1 - P 154 Blade No.2 - P 190 Blade No.3 - P 193

Modulus, Shank - 29.9 x 10<sup>6</sup> Modulus, Fiberglass - (30" Station) - 5.2 x 10<sup>6</sup>

Date: July 6, 1965

|            |       |         |          |           |          | Vibra   | tory St | cress S     | ummary  |        |                    |           |            |                |
|------------|-------|---------|----------|-----------|----------|---------|---------|-------------|---------|--------|--------------------|-----------|------------|----------------|
| Blade      | Prop  | Rig     | 6        | 0° Shank  |          | 18.5"TE | 24" RC  | 30          | 78      |        | 04 11 70           | 04 10     |            |                |
| Angle      | rpm   | rpm     | Bl       | B2        | B3       | Bl      |         | B1          | B2      | R3     | טא פ <u>ר</u><br>מ |           | ou" KC     |                |
| я          |       |         | ±ps1     | ±psi      | +psi     | +psi    | +psi    | tpsi        | +psi    | tosit  | turi<br>turi       | 70<br>+   | 19<br>19   | Ē              |
| 12°        | 1204  | 10      | 13 200   | 13 200    |          |         |         | 1           |         |        | 1011               | 184-      | IsdF       | Kemarks        |
| 1 20       | 1207  |         |          | 15,200    | 14,600   | 1,130   | 1,710   | 1,940       | 2,100   | 1,810  | 2,040              | 1.640     | 1.575      | Thveriaati     |
| 1 1 0      | 1004  | ч ,<br> | 007, 01  | 112,200   | 15,200   | 1,180   | 1,870   | 2,230       | 2,360   | 2,300  | 2.230              | 1,770     | 1 640      | Threatisation  |
|            | 1204  | 111     | 14,400   | 14,400    | 14,400   | 1.130   | 1.740   | 2,100       | 2, 300  | י וההן | 2 100              |           |            | TUVESLIBALION  |
| 12°        | 1204  |         | 15,200   | 15.600    | 15,900   | 1 180   |         | 2200        |         | 1014   | 2, 10U             | 1,110     | I,040      | Investigation  |
| 12°        | 1204  | 12      | 15,200   | 15,600    | 15,000   | 1 100   | 1,200   | 2,200       | 2,420   | 1005   | 2,300              | 1,770     | 1,670      | Endur. Begin   |
| 170        | 1 201 |         | 10,000   | 000 ° 1 F | 10,200   | 1,100   | 006'T   | 2,260       | 2,420   | 2,360  | 2,300              | 1.770     | 1.670      | End of let uv  |
| )<br> <br> | 1204  | 1.21    | 12,200   | 009, CL   | 15,400   | 1,180   | 1.900   | 2,300       | 2.460   | 007 6  | 2000               | 022 1     |            |                |
| 127        | 1204  | 12.05   | 15,200   | 15.600    | 15.200   | 1 180   |         | 2000        |         |        |                    | · · / · · | 1,0/0,1    | End of 2nd Hr  |
| 120        | 1204  | 1,      | 15,100   | 15 100    | 007611   |         | 1, 200  | nnc ' 7     | 1,420   | 2,360  | 2,300              | 1,770     | 1,670      | End of 3rd Hr  |
|            |       | ,,      | 10,100   | 10,100    | 1001, 41 | 1,180   | 1,900   | 2,260       | 2.400   | 2.300  | 2.300              | 1 770     | 1 670      | Fund of tel 11 |
|            |       |         |          |           |          |         |         |             | -<br>·  |        | 222                | >>>       | 1, 1, 1, 1 | THU UDA IO DUT |
|            |       |         |          |           |          | Stea    | dy Stre | ess Sum     | mary    |        |                    | 1         |            |                |
| 12°        | 1000  | 0       | 26.300   | 27 000    | 25 700   | 7 610   | 001     |             |         |        |                    |           |            |                |
| 12°        | 1100  | С       | 32,000   | 21 500    |          | , 040   | 0,400   | / , 6/0     | 016, /  | , 500  | 7,860              | 6,170     | 5,500      | Investigation  |
| 000        | 1001  | , c     | ,        |           | 22,400   | a, 940  | 005,1   | 8,950       | 9,050 8 | 3,600  | 9.150              | 7,000     | 6 280      | Thuestizztizz  |
| 77         | 1204  | >       | 1002, 66 | 36,000 .  | 33,900   | 11,250  | 8.350   | 9.8501      | 0.300   | 950 1  | 0,600              | 000 8     |            | TUVESCIBALION  |
| 12         | 1204  | 12      | 34,500   | 34,400    | 32,100   | 9.740   | 8 260   | 000 0       | 0 7 50  |        | 00000              | 0,400     | 1000,      | Investigation  |
|            |       |         |          |           |          |         | 22-62   | 1 2 2 4 2 1 |         | 1001,  | 0/6,0              | 1,300     | 6,250 ]]   | Endur. Cond.   |





278

Figure 156. Curtiss half system test rig for qualifying the propulsion system of the X-19.



66-102

rpm, and propeller tilt angle which simulated aircraft operation. Further, the half systems rig was in the open and was operated year round under all normal weather conditions, and thus provided a limited degree of environmental testing.

A typical load spectrum used during half system running is given in Table XIV. Throughout the half systems testing the same set of propellers was used, and they accumulated over 400 hours of total running time. The only blade repair necessary during that operation was repair of leading edge erosion following a run made during a heavy rain. A heavy urethane protection strip was installed which prevented recurrence of that problem. Table XIV. X-19 PFVT, 13,660 1b gross weight flight cycle.

|    | Tin<br>min | ne<br>sec | Prop<br>rpm | Prop<br>No.1 | HP<br>No.4 | Water<br>HP | Brake<br>rpm       | Engine<br>rpm | Tilt<br>Angle | Total Horsepower in<br>Transverse and Rear<br>Longitudinal Shafts |
|----|------------|-----------|-------------|--------------|------------|-------------|--------------------|---------------|---------------|-------------------------------------------------------------------|
|    |            |           |             | ]            | [ake-(     | Off Hov     | er and             | Differ        | rential       | Pitch                                                             |
| R  | 16         | 0         | 1204        | 860          | 860        | 1280        | 4 <b>9</b> 50      | 15,100        | 96.5°         | 3000 **                                                           |
|    | 1          | 0         | 1204        | 1100         | 1100       | 1280        | 4950               | 15,100        | 96.5°         | 3430                                                              |
| R* | 3          | 0         | 1204        | 604          | 1100       | 1280        | 4950               | 15,100        | 96.5°         | 2984                                                              |
| R* | 3          | 0         | 1204        | 1100         | 604        | 1280        | 4950               | 15,100        | 96.5°         | 2984                                                              |
|    | 5          | 0         | 1204        | 890          | 719        | 1280        | 4950               | 15,100        | 96.5°         | 2889                                                              |
|    | 5          | 0         | 1204        | 719          | 890        | 1280        | 4950               | 15,100        | 96.5°         | 2889                                                              |
|    |            |           |             | Up a         | and Do     | own Tra     | nsitic             | on - Cli      | imb and       | Descent                                                           |
|    | 3          | 0         | 1066        | 825          | 825        | 790         | 4400               | 13,400        | 73.0°         | 2440                                                              |
|    | 12         | 0         | 1066        | 767          | 767        | 786         | 4400               | 13,400        | 50.0°         | 2320                                                              |
|    | 15         | 0         | 1066        | 652          | 652        | 1356        | 4400               | 13,400        | 3.0°          | 2660                                                              |
|    |            |           |             |              |            | Maxi        | mum S <sub>F</sub> | eed Cru       | uise          |                                                                   |
|    | 504        | 0         | 957         | 563          | 563        | 1126        | 3940               | 12,000        | 3.0°          | 2252                                                              |
|    | Landing    |           |             |              |            |             |                    |               |               |                                                                   |
|    | 30         | 0         | 1204        | 860          | 860        | 1280        | 4950               | 15,100        | 96.5°         | 3000                                                              |
|    |            |           |             |              | I          | Emerger     | icy - 1            | Engine        | e Out         |                                                                   |
|    | 3          | 0         | 1264        | 730          | 730        | 740         | 4950               | 15,100        | 96.5°         | 2200                                                              |

Fifteen cycles of ten hours duration were conducted. Each test cycle was performed according to the following schedule:

600 | 0 = 10 Hours

÷

\* Twice during each ten hour cycle, this point was set by holding 1250 HP for 15 seconds on the right propeller and 863 HP on the left propeller and vice versa.

Inspections were made as required during this qualification testing.

Since the engine torquemeter has an accuracy of ± 4% of normal rated power, (.04 x 1850 = 74 HP) it was almost impossible to guarantee the input horsepower using the engine torquemeter. Therefore, the power supplied to the E.C.G.B. was the total HP in the shafts plus the losses due to Tee Box and E.C.G.B. efficiency.

### REFERENCES

الالالالة المركبي

- (33) P. F. Yaggy and V. L. Rogallo, <u>A Wind Tunnel Investigation of</u> <u>Three Propellers Through an Angle of Attack Range From 0° to 85°</u>, NASA TND-318, dated May 1960.
- (34) Lehman, F. G. and Burke, P. R., <u>General Dynamic Analysis of STOL/</u> VTOL Propeller Blades, WADC TR 58-371, 1958.
- (35) Coleman, R. P., Feingold, A. M. and Stempen, C. W., <u>Evaluation of</u> the Induced-Velocity Field of an Idealized Helicopter Rotor, NACA WRL-126, 1945.
- (36) Castles, Walter J. and DeLeeuw, J. H., <u>The Normal Components of</u> the Induced Velocity in the Vicinity of a Lifting Rotor and Some Examples of its Application, NACA Rep. 1184, 1954.
- (37) Heyson, H. H., <u>Analysis of Comparison With Theory of Flow-Field</u> <u>Measurements Near a Lifting Rotor in the Langley Full Scale Tunnel</u>, NACA TN 3691, 1956.
- (38) Heyson, H. H., and Katzoff, S., <u>Normal Component of Induced</u> <u>Velocity in the Vicinity of a Lifting Rotor With a Non-Uniform</u> <u>Disk Leading</u>, NACA TN 3690, 1956.
- (39) Miller, R. M., <u>Rotor Blade Harmonic Blade Loading</u>, IAS Preprint No. 62-82, January 1960.
- (40) Amatt, W. and Griffin, D. K., Light Weight Abrasion Resistant Propeller Blades for STOL/VTOL Aircraft, WADC T.R. 58-372, 1958.

SECTION VI

. .

. گ

# AIRCRAFT CONTROL BY PROPELLER THRUST MODULATION

SECTION VI - NOMENCLATURE

بر د <del>ا</del>سلا

|                  |   | propeller angle of attack (@+ G) degrees                               |                      |
|------------------|---|------------------------------------------------------------------------|----------------------|
| ь                |   | wing span                                                              | 6 r                  |
| Ċ.               | - |                                                                        |                      |
| D                |   | qS<br>L                                                                |                      |
| Ľ                | • | -<br>qs                                                                |                      |
| c,8.             | • | ð (L/qSbp)/ðð                                                          |                      |
| c <sub>m</sub>   |   | airplane pitching moment coefficient abo                               | ut (.g. = M/qSč      |
| C <sub>nða</sub> | - | ð(ħ/qSb <sub>F</sub> )/ðð <sub>a</sub>                                 |                      |
| С.Р.             |   | control power                                                          |                      |
| с <sub>р</sub>   |   | total power coefficient, $\frac{5.0 \text{ HP}}{\rho_n^3 \text{ p}^5}$ |                      |
| D p              |   | propeller diameter,                                                    | ft                   |
| D                |   | drag,                                                                  | 1b                   |
| J                |   | propeller advance ratio, <u>v</u><br>nD                                |                      |
| ĸ <sub>e</sub>   |   | neight control anticipator gain, rpm (pr                               | op)/deg              |
| L                |   | rolling moment = qSC <sub>1</sub> b                                    | ft-1b                |
| L                |   | lift = qSC <sub>L</sub>                                                | 16                   |
| L,               |   | rolling moment due to lateral velocity,                                | ft-10/ft/sec         |
| M                |   | pitching moment                                                        | ft-1b                |
| N                |   | vawing moment,                                                         | ft-lb                |
| Ņ                |   | height control anticipator signal                                      |                      |
| Nv               |   | <pre>rate of change of yawing moment with lat<br/>ft-lb/ft/sec,</pre>  | eral velocity,       |
| Q                | - | 2 <b>w</b> n (550 HP) torque                                           | .t-lb                |
| q                | - | $\frac{1}{2} \rho v^2$ dynamic pressure                                | lb/ft <sup>2</sup>   |
| S                |   | wing area                                                              | ft <sup>2</sup>      |
| SAS              |   | stability augmentation system                                          |                      |
| STOL             |   | short take-off and landing                                             |                      |
| т                |   | thrust                                                                 | 15                   |
| v                |   | forward velocity,                                                      | ft/sec               |
| ų                |   |                                                                        |                      |
| r<br>v           |   | aircrait weight,                                                       | 16<br>ft             |
| v                |   | propeller varing moment                                                | fr-1b                |
| ß                |   | propeller blade angle                                                  | degrees              |
|                  |   | aileron detlection (R = R )                                            | degrees              |
| ~ <b>4</b>       |   | rudder deflection                                                      | degrees              |
| o <sub>r</sub>   |   |                                                                        | degrees              |
| 9                |   | power lever rotation                                                   | UCRICC.              |
| ₿ <sub>F</sub>   |   | front propeller tilt angle                                             | degrees              |
| P                |   | density                                                                | slug/ft <sup>3</sup> |
| ۲                |   | height control anticipator wash-out tim                                | e constant, sec      |

### Subscripts

water and the second states in the

ALL NAV

. -٠ . ź

> . . . . 1

> 1. 1.

· .

.

at your at an a

-

| Subscripts |                  | Propeller Numbering |
|------------|------------------|---------------------|
| F          | Front propeller  | System              |
| R          | Rear propeller   |                     |
| 1,2,3,4    | Propeller number | I Forward           |
| ¥          | Wing             | 2-3                 |

### SECTION VI

### AIRCRAFT CONTROL BY PROPELLER THRUST MODULATION

### 1. INTRODUCTION

The statement of work does not specifically call for a discussion of the thrust modulation technique. However it is felt this section would be incomplete without such a description. For this reason, the introduction will be devoted to an understanding of the control mechanism as it relates control inputs to propeller blade angle.

A block diagram of the control system is given in Figure 157. The system behaves in the following manner. The pilot inserts various signals into the coordinator by moving the control stick, tilting the nacelles and changing throttle or the pilot manual trim. The aircraft reacts and sets up various motions. The pitch and roll SAS sense respective angular rates thereby adding new inputs to the coordinator. In general, the stick or SAS motion feed additively into the coordinator; i.e., either stick or SAS motion feed additively into the coordinator; i.e., either stick or SAS are governed by Figures 158 or 160 with the following restrictions. (1) SAS has 30% authority of the stick, (2) Sum of SAS and stick do not exceed maximum  $\gamma(i)$  shown in curves 158 and 160. Changes in throttle or power will be sensed as RPM changes in the governor system which in turn alters the output of the coordinator collectively.

The output of the coordinator in response to pilot, SAS, or governor action, is given by the following expression:

$$\begin{split} \gamma_{1} &= G_{1}^{(P)} \left[ \gamma_{1}^{(1)} (S_{\text{pitch}}) + \gamma_{1}^{(1)} (\nu_{\text{pitch}}) \right] + \gamma_{1}^{(2)} + G_{1}^{(R)} \left[ \gamma_{1}^{(3)} (S_{\text{roll}}) + \gamma_{1}^{(3)} (\nu_{\text{roll}}) \right] \\ &+ \gamma_{1}^{(3)} (\nu_{\text{roll}}) \right] + G_{1}^{(y)} \gamma_{1}^{(4)} + \gamma_{1}^{(5)} + \gamma_{1}^{(6)} \end{split}$$

where;

| S <sub>pit</sub> ch | <pre>= stick position</pre>   | From Fig. 158 readout: | $\gamma_1^{(1)}, \ldots, \gamma_4^{(1)}$ |
|---------------------|-------------------------------|------------------------|------------------------------------------|
| $\Delta_{pitch}$    | = pilot pitch trim            | From Fig. 159 readout: | $\gamma_1^{(2)}\cdots,\gamma_4^{(2)}$    |
| ♥ pitch             |                               | From Fig. 158 readout: | $\gamma_1^{(1)},\ldots,\gamma_4^{(1)}$   |
| s <sub>1011</sub>   | ≈ stick position              | From Fig. 160 readout: | $\gamma_1^{(3)}, \ldots, \gamma_4^{(3)}$ |
| <b>v</b> roll       | = SAS position                | From Fig. 160 readout: | $\gamma_1^{(3)}, \ldots, \gamma_4^{(3)}$ |
| S <sub>yaw</sub>    | = pedal position              | From Fig. 161 readout: | $\gamma_1^{(4)} \dots, \gamma_4^{(4)}$   |
| Ø <sub>F</sub>      | <pre>= front tilt angle</pre> | From Fig. 162 readout: | $\gamma^{(5)},\ldots,\gamma^{(5)}$       |

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3740 SHALL NOT BE RITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DIPLICATED, CX DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS, WRIGHT COR-PORATION, EXCEPT FOR (I) EMERSINCY PERMIR NO VORK PT OR FOR "NG GOVERNMENT, KERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLE AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK, OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAT REQUIRE, PROVIDED THA' IN EITHER CASE THE RELEASE, USE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS THESE LOCEMD SHALL FEMARED ON ANY REPRODUCTION HEREOF IN WHOLE "A IN PART "

- - -





\$1-1:69

284

FURNISHED LODER CHIEFE STATES GOVE WHENE CONTRACT HE AN INCLUSIVE. SHALL NOT THE ETHFER RELEASED OF SUBJECT IN MENT OF USED OF DUCATED, OF TISCUIDED IN WINLD OR IN PART FOR MANUSACE OF IT WARDOWENT, WITHOUT TYP WRITTEN PERMISION OF OR MENT OF SAULARED PORATION, IX LEFT FOR IN EXCREMENTS REPAIL IN OVERHALL WORK — A FOR THE GOVER MENT, WITHOUT THE RELEASE OF OF USES (S NOT LIFTED VER WE IN AN ALARDE TO EXCREMENT, OF THE SAULARED OF A USES (S NOT LIFTED VER WE IN THE THE TERM OF OF USES (S NOT LIFTED VER WE IN THE PROVENUES OF A USES (S NOT LIFTED VER WE IN A REQUIRE PROVIDED THAT IN RETART OF A USES (S NOT LIFTED VER WE IN A USES (S NOT LIFTED VER WE IN A REQUIRE PROVIDED THAT IN RETHING AS THE RESEARCH OF A USES (S NOT LIFTED VER WE IN A REQUIRE PROVIDED THAT IN RETHING AS THE RESEARCH OF A USES (S NOT LIFTED VER WE IN A REQUIRE PROVIDED THAT IN RETHING AS THE RESEARCH OF A USES (S NOT LIFTED VER WE IN A REAL WARKED AS USES (S NOT LIFTED VER WE IN A REAL WARKED AS USES (S NOT LIFTED VER WE IN A REAL WARKED AS USES (S NOT LIFTED VER WE IN A REAL WE INTO AS USES (S NOT LIFTED VER WE IN A REAL WE IN A REAL WE IN A REAL WE IN A REAL WARKED AS USES (S NOT LIFTED VER WE IN A REAL WE INTO A S USES (S NOT LIFTED VER WE IN A REAL WE INTO AS USES (S NOT LIFTED VER WEINT AS USES (S NOT LIFTED VER USES (S NOT LIFTED VER S NOT LIFTED VER S NOT LIFTED VER USES (S NOT LIFTED VER S NOT LIFT



Figure 158. X-19, coold nator output stroke as a function of pitch control de rection or SAS motion.

67-2158

.

"FUENESHED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF3346151-1940" SHALL NOT BE EITHER RELEASED OU EDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WISDLE OR IN PAPT FOR MANUFAL TURE OR PROCUREMENT, WITHOUT THE WRL. TEN PERMENTED OF CURTER EXCHT COR-PORTION, EXCEPT FOR () LANERGENCE REPAIR OR OVERHAUE WORK BY OR FOR THE GOVERNMENT, WHERE THE IFER SE FROCESS IS NOT OT DEFENSION OF CURTER EXCEPT FOR MANUE OF THE SECOND OVERHAUE WORK BY OR FOR THE GOVERNMENT, WHERE THE IFER SE FROCESS IS NOT OT DEFENSION OF CURTER EXCEPT FOR MANUE OF THE WORK BY OR OVER AN OR FOR THE GOVERNMENT, WHERE THE IFER SEALED FOR THE STATES AND AND THE WISE RE-SOUNDED THAT IN AN REQUERE THABLE THEFTORMANCE OF THE WORK. OR (IN RELEASE TO A FOREION GOVERNMENT, AS THE INTERSITS OF THE UNITED STATES ANY REQUERE THAT IN ETHER CASE THE RELEASE, USE, DUPLICATION CREMENTE HERE STALL BE SUBJECT TO THE FORE FORE IN WATER THE LEGENT SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OF IN PART "


Figure 159. X-19, coordinator output stacks as a function of pilot pitch trin. actuator displacement.

67 \$153

;

Ì

FORMERED UNDER UNDER UNTRU STATES GOVERNMENT CONTRACTOR OF ALL UNDER UND



Figure 160. X-19, coordinator output stroke as a function of roll control deflection or SAS motion.

.....

1

287



Figure 161. X-19, coordinator output stroke as a function of yaw control (pedal) deflection.

FY SNERHED UNG IN UNITED BY STES GOVERNMENT CONTINCT IN, AFRIVAUS-SUM, NOT 90 ELINER RELEASED OUTSED. THE TOVERNMENT, OF USED DIPLICATED, DE DISCLOREG IN WHOLE (F) I TO TOR TANDITACTURE DE PROCESEMENT, "ITHAT THE PRITER SERVICED OUTSED, THE TOVERNMENT, OF USED DIPLICATED, DE DISCLOREG IN WHOLE (F) I TO TOR TANDITACTURE DE PROCESEMENT, "ITHAT THE PRITER SERVICED OUTSED, SUBJECT FOR SOUNDELT AFAILABLE TOR DE EMERGENCE REARD AND TATUEL WORK BY UNE OF A PROCESSION OF A PROCESSION OF THE PROCESSION OF THE REARD AND THE PROCESSION OF THE PROCESSION OF



Figure 162. X-19, coordinator output stroke as a function of tilt angle (auto-trim schedule).

ţ

289

"FURNEMED UNDER INC, ALFA FER FOREMMENT INTRALT IN, AFSYGNU SNO, INSLE NOT BE DITHER BALKETED OUTBEDT THE OVVERNMENT OR USED, DURACATED, OR DISTORTED TH WHOLE DRIV PLL, FOR MANUTACTURE OR PROCUREMENT, WITHOUT THE WEIFFREI PERLEMENT OF CURTIES-WRIGHT COR-FERATION, REUEDT FOR (I) ENDEREMENT REFALL OR "ARMACT, WORK OR UP OR THE OVERVALENT, WHERE THE DELEMENT OF CURTIES-WRIGHT COR-FERATION, REUEDT FOR (I) ENDEREMENT REFALL OR "ARMACT, WORK OR UP OR THE OVERVALENT, WHERE THE DELEMENT OF CURTIES-WRIGHT COR-FERATION, REUEDT FOR (I) ENDEREMENT REFALL OR "ARMACT, WORK OR UP OR THE OVERVALENT, WHERE THE THE ON FORE SENT OF THE UPTER STATES MAY AND URKE FRUTTED, THAT IN CATHER GAST THE DISLASS, U.S., DIFILGATION OF DISLOGUE HERE/WITH SHALL BE SUBJECT TO THE FORFOGRES LIMITO (1976), THE LACENT SHALD BE MARGED ON FOUR REPORTS OF THE WRITED IN VALUE OF IN VARY."

Las and a state of the

م موجد بالمراجع ما ما من الله الله ال

| Ø <sub>F</sub> | E | front tilt angle             | From Fig. 163 readout: | $G_1^{(P)} \cdots G_4^{(P)}$          |
|----------------|---|------------------------------|------------------------|---------------------------------------|
| Ø <sub>F</sub> |   | front tilt angle             | From Fig. 164 readout: | $G_1^{(R)}, \dots, G_k^{(R)}$         |
| Ø <sub>F</sub> | × | front tilt angle             | From Fig. 165 readout: | $G_1^{(y)},\ldots,G_4^{(y)}$          |
| μ              | × | collective shaft<br>position | From Fig. 166 readout: | $\gamma_1^{(6)}\cdots,\gamma_4^{(6)}$ |

and

| S              | - stick position                                                               | percent |
|----------------|--------------------------------------------------------------------------------|---------|
| Δ              | - pilot pitch trim position                                                    | inches  |
| F              | - SAS position                                                                 | percent |
| μ              | - Collective shaft position                                                    | inches  |
| r              | - Coordinator output position = $\gamma_1^{(1)}$ + $\cdots$ + $\gamma_i^{(6)}$ | inches  |
| λ <sub>i</sub> | - nacelle input position                                                       | degrees |
| <b>B</b> .75R  | - propeller blade angle (pitch)                                                | degrees |
| ø <sub>F</sub> | - front tilt angle                                                             | degrees |

Subscripts

$$1 = 1, 2, 3, 4, -$$
 relate to propeller no.



Supercoripts -

 $\gamma^{(1)}$  coordinator output due to stick or SAS - (pitch plane)  $\gamma^{(2)}$  coordinator output due to pilot manual trim button  $\gamma^{(3)}$  coordinator output due to stick or SAS - (roll plane)  $\gamma^{(4)}$  coordinator output due to redale - (yaw plane)  $\gamma^{(5)}$  coordinator output due to anto-trim schedule  $\gamma^{(6)}$  coordinator output due to governor collective motion

The output of the coordinator is transmitted by a push-puil linkage through the fuselage and wings to the nacelle input arm. The gearing of this linkage is given in Figure 167. The nacelle contains a gain changer



Figure 163. X-19, propeller pitch control gain as a function of tilt angle (pitch-gain schedule).

;

291

"FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF33(615)-1440. SHALL NOT BE EITHER RELEASED OUTEDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR ANNUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISHON OF CURTISE-WRIGLT COR-FORATION, EXCEPT FOR (I) EMERGENCY REPARE OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE FIEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE TIMELT PERFORMANCE OF THE WORK. OR DIS RELEASE ON FOR THE GOVERNMENT, AN THE INTERESTS OF THE UNITED STATES MAY REQUIRE: PROVIDED THAT IN EITHER CASE THE RELEASE, USE, OUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGENT SHALL BE MARKED ON ANY REPRODUCTION MERSOF IN 'NOLE OR IN PART,"



Figure 164. X-19, propeller roll control gain as a function of tilt angle (roll-gain schedule).

2-----

FURNERIED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF33(615)-340 SHALL NOT F& LITHER RELEASED OUTSIDE THE GOVE, NMENT, OR USED, EUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANULACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTAS WRICH" COR-PORATION, EXCEPT FOR (I) EMERGENCI REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT WHERE THE ITEM OR PROCESS IS 45° OTHERWISE RF-SOMABLY AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK, OR (I) RELEASE TO A POREIGN GOVERNMENT, AS THE INTEREST, OF THE "WITFD STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOIN, LIMITATIONS THE LEGEND SHALL NE MARKED ON ANY REPEDOUCTION HEREOF IN WHOLE OR IN PART.



Figure 165. X-19, propeller yaw control gain as a function of tilt angle (yaw-gain schedule).

:

to the second second

"FURNEMED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3940 SHALL NOT BE EITHEE RELEASED OUTSIDE THE GOVERNMENT OR USED, DUPLICATED, OR DISCLOSED IN WHILE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION JF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (I) EMERGENCY REPARE OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK, OR (I) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE. PROVIDE THAT IN EITHER CASE THE RELEASE TO A FOREIGN OF DUPLICATION OF DUCLING. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."



Figure 166. X-19, coordinator output stroke as a function of governor collective shaft displacement.

294

FURNISHED UNDER UNITED STATES GOVFRNMENT CONTRACT Nº AFJ3(615)-1940 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WFITTEN PERMISSION OF CURTISS- WRICHT (OR-PORATION, EXCEPT FOR (I) FMERGENCE REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONADLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE CONTROL STATES MAY REAUGHE FRO-HOE THAT IN EITHER CASE THE RELEASE, USE, DIP 'CATION OF DISCLOSING HEREOF SHALL BE SUBJECT TO THE FOREGOLY LIMITATIONS THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART, "



Figure 167. X-19, nacelle input arm position,  $\lambda$  , as a function of coordinator output stroke,  $\gamma$  .

î

295

"FURNEMED UNDER UNITED STATES GOVERNMENT GONTRACT IN AFJ3(615)-3946. SH'LL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OF PROCUP JMENT, WITHOUT THE WRITTEN FRRESSENN OF CURTISS. WRIGHT COR-FORATION, EXCEPT FOR (IN EMERGENCY REPAIR OR OVERHALL WORK BY OR FOR . HE GOVERNAMT, WHERE THE ITEM OR PROCESS IS NOT OTHER WILE RORADELT AVAILABLE TO EMABLE TIMPLY PERFORMANCE OF THE WORL: OR (IN RELEASE YO A FOREIGN GOVERNMENT, AS THE ITEM OR PROCESS IS NOT OTHER WILE RORADELT AVAILABLE TO EMABLE TIMPLY PERFORMANCE OF THE WORL: OR (IN RELEASE YO A FOREIGN GOVERNMENT, AS THE ITEM FOR THE WRITE RORADELT AVAILABLE TO EMABLE TIMPLY PERFORMANCE OF THE WORL: OR (IN RELEASE YO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE WINTED STATES MAY REQUEE, PROVIDED THAT IN RIVER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSURE MERCOF SHALL BE SUBJECT TO THE FOREGOING LIMITARIONS. THES LEGEND SHALL, BE MARKED ON ANT REPRESEDUCTION MÉRICO IN WHOLE OR IN FORT. which is sensitive to tilt angle and the input arm position. The output of the nacelle is fed into the propeller servo control, from which a propeller blade angle is generated.

The relationship between nacelle input arm, tilt angle and lade angle is given in Figure 168. At a given flight condition, the propeller blade angle determines the torque absorption for a horsepower input. Obviously, as the four propeller blade angles change, the aerodynamic torque is altered and the system changes RPM. The governor senses this change and automatically adjusts the collective shaft position,  $\mu$ , to maintain fixed RPM. This alters the output of the coordinator sending an equal stroke to each of the four propellers.

2. CONTROL POWERS.

The following are the design hover control powers.

The maximum angular accelerations quoted are for a W = 12,300 lb. airplane:

| Axis  | Max. Control Power<br>ft. lb. | Max. Angular<br>Acceleration, rad/sec <sup>2</sup> |  |  |  |
|-------|-------------------------------|----------------------------------------------------|--|--|--|
| Pitch | <u>+</u> 27,000               | <u>+</u> 0.68                                      |  |  |  |
| Roll  | <u>+</u> 20,000               | <u>+</u> 1.75                                      |  |  |  |
| Yaw   | <u>+</u> 5,600                | <u>+</u> 0.12                                      |  |  |  |

3. TIME CONSTANT FOR PROPELLER FORCES

Time response of hover pitch, roll or yaw control moments to pilot commanded step control inputs are shown in Figure 169. Common factors in pitch, roll and yaw systems are, (1) an assumed dead time due to system linkage "slop", etc., of 0.2 seconds following control application, and (2) the propeller blade angle actuator with a time constant of 0.085 seconds. The pitch and roll systems both include hydraulic boosters which introduce a further system lag. It was not possible to determine the boosters' time constant at the time of writing, so a representative time constant of 0.1 seconds was assumed for both. There is no boost in the yaw control system.

Thrust growth or decay time following a propeller blade angle change was computed to be 0.0065 seconds. This is based on the following: (1) hover propeller speed of  $819 \ mnD$ ; (2) 0.7R blade station; and (3) the lift change is developed in two chord lengths of passage. This lag was considered negligibly small and hence omitted. No SAS effects are included in data given on Figure 169.

<sup>296</sup> 

FURNISHED UNDER INTED STATES GOVERNMENT CONTRACT No. AF33(6:1-340. SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT. OR USED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT. WITHOUT THE WRITTEN PERMISSION OF CURTISS. WRIGHT OP-PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHAUL WORK BY JOR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISS. PE, SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORK. OR (II) RELEASE TO A FORFIGM GOVERNMENT, AS THE INTERSTS OF THE NUTLE / STATES MAY REQUIRE. PROVIDED THAT IN EITHER CAST THE RELEASE. USE, DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FORFICING I MITATIONS. THIS LEGEND SHALL OF MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART. '



Figure 168. X-19, propeller blace angle eta .75R as a function of nacelle input

arm position,  $\lambda$  .

87-2164

. . .

297

FURNEMED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(4)3)-3440 SHALL NOT BE EITHER RELEASED OUTEDE THE COVERMMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION, EXCEPT FOR (1) EMERGENCY REPAIR ON OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE THALLY PERFORMANCE OF THE WORK. OR (0) FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMABLE THALLY PERFORMANCE OF THE WORK. OR (0) RELEASE TO A FOREICH GC / ERIMMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE: PROVIDED THAY IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DISCLOSULE HEREOF SHALL BE SUBJECT TO THE FORECONG LIMITATIONS. THES LEGEND SHALL BE MARKED ON ANY REPRODUCTION MEREOF IN WHOLE OR IN PART,

~





# 4. PROPELLER POWER INCREMENTS DUE TO CONTROL APPLICATION

The power increments due to control deflections depends on the coordinator gais to redules. One can obtain this information from the introduction of this section. However a more convenient form is plotted in the Figure of Section VII, 7.c. These figures show directly the stick-imposed proplier lade angle increments (maximum) as a function of tilt angle. Using these curves, and specifying the recommended tilt-velocity schetule weight, schady state conditions, density, RPM and center of gravity one can obtain the power increments due to control applications.

#### 5. CONTR ... COUPLING AND RESPONSE

Accodynamic characteristics of the propeller control system are described herein. The blade ang e of each of the four propellers as a function of nort of stick input is given on Figure 170. The blade angle change will give once components depending on the operating J, A and wash conditions. The blace add vectorizity about the center of gravity, to obtain resultant control momence. In addition, the aerodynamic control surfaces which function in parallel with the propellers blade angle changes contribute their share to the moments. Lastly, the propeller power effects upon the wings are added into the moments. The equations governing the forces are given below for a wind axis system.

Roll 
$$\Sigma L = \left[ (C_{L_1} - C_{L_4}) X_F + (C_{L_2} - C_{L_3}) X_R \right] qS + (Q_1 - Q_4) \cos A_F + (Q_3 - Q_2) \cos A_R + (Y_1 - Y_4) \sin A_F + (Y_3 - Y_2) \sin A_R + C_1 S_F^{Sb} q S_R + C_1 S_B^{Sb} q S_a + \left[ (C_{L_W_1} - C_{L_W_1}) X_F_W + (C_{L_W_2} - C_{L_W_3}) X_R_W \right] qS$$

Yaw

$$\Sigma N = \left[ (C_{D_4} - C_{D_1}) X_F + (C_{D_3} - C_{D_2}) X_R \right] qS + (Q_4 - Q_1) \sin A_F + (Q_2 - Q_3) \sin A_R + (Y_1 - Y_4) \cos A_F + (Y_3 - Y_2) \cos A_R + C_n \frac{Sb_F q \delta_a}{\delta_a} + C_n \frac{Sb_F q \delta_r}{\delta_r} \right]$$

The pitching moment equation is omitted because of the symmetry in the lateral plane.

The means of eliminating the lateral coupling was as follows. Assume that a roll signal is applied. Select some front blade angles according to the relationships set forth in Figure 170. Then select a set of rear blade angles in similar manner. Obtain the propeller forces which result from the blade increments and solve in the yaw equation, by reiterating on the rear propeller blade angle increments until yaw moment is zero.

## 299

"FURNEMED UNDER UNTED STATES GOVERNMENT CONTRACT N. AFJ3435-3944. SMALL NOT BS SITMER RELEASED OUTSDE THE GOVERNMENT, OR USED, DUPLICATED, OR DESCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTER PERMEMENT OF CURTURE WRIGHT COR-PORATION, EXCEPT FOR & EMERGENCY REPART OR OVERNAUL WORK & TOR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMADLE VALLABLE TO EMALLE THELE THE DIALMENT OF THE WORK: OR AN ALLEASE TO A FOREIGN GOVERNMENT, AS THE DITERESTS OF THE UNTED STATES MAY REQUIRE: PROVIDED THAT IN EITHER CASE THE EXCLASE, USE, DUPLICATION OR DESCLOSORE HEREOF SHALL BE MARKED ON ...NY REPRODUCTION KEREOF IN WHOLE OR IN PART."

Figure 170. X-19, propeller blade angle relationships due to control column application.

2

67-2165

300

+

4

FURNENTLY UNDER UNITED STATES GOVERNMENT CONTRACT NO AFTIGINE 1440 SHALL WET AF FITTER RELEASED ALTIDE THE GOVERNMENT OF SEA DUPLICATED, DE DISCLASED I. WIN LE OF IN PART FOR MAN LACT, RU OF PROCUREMENT WITH, TITTE REALFARD ALTIDE THE GOVERNMENT OF SEA PORATION, EXCEPT F 19 (II DE ERCENT REPORT REVENTION OF CURTICAL PROCUREMENT WITH, TITTE REALFOR DERMITSTING NOT SOMBLE AVAILABLE IT TEADLE TIMELT PERVAMINENT OF PROCUREMENT WITH, TITTE REALFOR DERMITSTING AND THE STATEMENT REALIZER FROM DECIDE TIMELT PERVAMINES FOR THE RELEAST OF DETAILS OF A STREAM OF THE STATEMENT OF THE DESTREAMENT OF THE THE STATEMENT. THE STREAMENT OF THE DESTREAMENT OF THE RELEAST OF THE RELEAST OF THE RELEAST OF THE RELEAST OF THE STREAMENT OF THE DESTREAMENT OF THE DESTR Then knowing the fore and aft blade angles which give zero yaw, substitute into the roll equation to determine the magnitude of the roll moment. Then select new front blade angles and repeat the process until the desired range of rolling moment for zero yaw coupling is established. A similar procedure is used to obtain the uncoupled yaw input. This procedure war performed on a digital computer, where uncoupled lateraldirectional moments resulted, at the full stick deflection. For partial stick deflections a small coupling was permitted. The results are shown in Figure 171 for the case of the yawing input. The coupling at  $\emptyset_{\rm F}$  = 20° and 40° is entirely due to the rudder induced roll, as the propellers are phased out. Yaw induced by the roll control was insignificant.

The pitch coupling created by a roll or yaw signal in the hover regime is shown in Figure 172. For a full roll or yaw signal, a negative pitch coupling of 2100 ft-lbs. is induced. This is less than ten percent of the pitch control capability. It was reasoned that if a full roll signal was inserted, the pilot might easily generate an inadvertent ten percent pitch signal (one half inch of the stick motion) without realizing it. Consequently, this degree of pitch coupling was permitted.

Experience, in flying the X-'9, apparently has justified this philosophy. No complaints were registered, concerning the control systems coupling characteristics. Further, it should be borne in mind that this discussion relates to pure aerodynamic coupling. Any small alignment problems existing in the region of flight experience could only have compounded the problem.

Figures 173 and 174 have been included to illustrate the various forces contributing to the uncoupled control inputs. The front propeller has been held constant throughout the range of tilt angles as a matter of convenience. Therefore these buildups do not conform directly with the system roll and yaw gains. However, they point up the unusual interchange of the forces as they contribute to a control moment while nullifying the coupling moment.

 PROPELLER CONTRIBUTION TO STEADY STATE AIRCRAFT MOMENTS DURING TRANSITION

Figures 175, 176, 177, 178 show the aircraft mitching moment characteristics at four propeller tilt engles in transition. Shown in these Figures are the propeller and airframe contributions to the total. These data have been extracted from the wind tunnel data of (41).

At each tilt angle shown the propellers are operating at fixed advance ratio and total power coefficient as given below:

TURMARED UNDER UNTED STATES COVERNMENT CONTRACT NA. ATSIMUS-346C SHALL ACT LE ETHER RELEASED ONTEDE THE COVERNMENT, OR USED, DUPLEATED, OR DISCLASED IN WHOLE OR IN PART YOR MANUTACTURE OR PROFUREMENT, WITHOUT THE WRITTEN PERISENON OF CURTISM WRIGHT COR-PORATION, EXCEPT FOR IS INDERGENCY REFAR OR OVERHALL WHEN BY OR FOR THE COVERNMENT, WHERE THE TEM OR PRACEND OF CURTISM WRIGHT COR-PORATION, EXCEPT FOR IS INDERGENCY REFARED ON OVERHALL WHEN BY OR FOR THE FOREICH GOVERNMENT, AND STATES AND THE WAITABLE TO SUMME "MULT PERFORMANCE OF THE WORK OF OR IN REAR TO A FOREICH GOVERNMENT, AND STOLETS OF THE UNIT THATES ANY REQUERT, REVISED THAT IN EITHER CASE THE RELEASE, OR IN PLACEMENT, OR OVERNMENT, AND STOLETS OF THE TORECONC UNITATED ANY REQUERD BHALL BE MARKED ON ANY REPRODUCTION IN WHOLE ON IN PART."





;

302

FURMISHED UNDER UNITED STATES GOVERNMENT COULTA 'A AFJIG. 1940 SHALL WIT BY EITHER RELEASED CUTSIDE 'AF GUVERNMENT 'P I SED BY ALIGATED, OR DISCLOSED IN WHOLE OR IN PART FOR MAIN "KUTURE OR PRIVE REMENT, WITHOUT THE WRITTE' PERMISSION OF CURTISS WRIGHT COR-POARTON, LAUPPT FOR IN EMFRGENCE REPAIR OR DYTRUD. WORK IT WE FOR THE UVERNMENT WHERE THE ITEM OR PROFESSION OF THE WRITT OF SOM BIT AVAILABLE TO ENABLE THELT PERFORMANCE UP AN WORK OR WITHOUT SHE WAST TO A POREISS OF OTHERWISE RE-SOM BIT AVAILABLE TO ENABLE THELT PERFORMANCE UP AN WORK OR WITHE EASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE INTEREST STATES MAT REQUIRE PROVIDED DUAT IN EITHER CASE THE RAY FASS. SF. DUPLICATION OR DISCLOSURE HEREOF SHALL RE SUBTE TO THE FORECCEN-LINGTATIC ST. THIS LEDE FON NALL BE MARKED ON ANT REPRODE TON THEOF IN WHOLE OR IN PART, '



Figure 172. X-19, pitch coupling generated by roll or yaw control input: V = 0 fps.

"JURNEMED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(615)-3949. SHALL NOT BE EITHER RELEASED OUTSEDE THE GOVERNMENT, OR JSED, DUPLC TED, OR DISCLORED IN VIOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PREMISSION OF CURTES-WRIGHT COR-PORATION, EXCEPT FOR (3) EMERGENCY REPAR OR OVERHAUL WORK BY OR FOR THE COVERNMENT, WHITE THE ITEM OR PROCESS IS NOT OTHER WISE RE-SONABLY AVAUABLE TO EMABLE TIMELT FERFORMANCE OF THE WORK: OR (3) RELEASE TO A FOREIGN GOVERNMENT, AS THE INTERESTS OF THE UNITED STATES MAY REQUER: PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLCATION OR DISCLORE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THEY LEGEND SHALL SE M..."XED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART,"



Figure 173. X-19, distribution of forces due to a roll control input (maximum aileron).

304

FURNISHED UNDER 'NITED STATTS GOVERNMENT CONTRACT NO AF346636-3440 SHALL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT OR SED DUPLICATED, OR DISCOSED IN WHOLE OR IN PART PTO MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CHITISS-WRIGHT (CP-PORATION, EXCEPT FOR (1) MERGENCE REPAIR A VERHALL WORK BY OR FOR THE GOVERNMENT WHERE THE ITEM OR PROCESS IS NOT OTHERWISS 45-SONABLY AVAILABLE TO EMANJET OF THE ALVERHALL WORK BY OR FOR THE GOVERNMENT WHERE THE ITEM OR PROCESS IS NOT OTHERWISS 45-SONABLY AVAILABLE TO EMANJET OF THE TOR OF THE WORK BY OR FOR THE GOVERNMENT WHERE THE ITEM OR PROCESS IS NOT OTHERWISS 45-SONABLY AVAILABLE TO EMANJET OF THE TO BE OF THE WORK BY OR HOR OF OR THE GOVERNMENT, AS THE INTERSTS OF THE TO THE FORE STATES MAY REQUERE PROVIDED THAT IN ETHER TASE THE RELEASE USE DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGONG LIMITATIONS THES HEREOF MARKED ON ANT REPRODUCTION HEREOF IN WHOLE OR IN PART



Figure 174. X-19, distribution of forces due to a yaw control input (maximum rudder).

305

"FURNESSED UNDER UNITED STATES GOVERNMENT CONTRACT No. AF33(&15)-3%40. SH, LL NOT BE EITHER RELEASED OUTSIDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANIFACTURE OR FROCURESSENT, WITHOUT THE WRITTEN PERMISSION OF CURTIES. WRIGHT COR-PORATION, EXCEPT FOR UI EMERGENCT REFAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WERET THE ITEM OR PROCESS IS NOT OTHER WRITE RE-SONABLY AVAILABLE TO ENABLE THERLY PERFORMANCE OF THE WORK, OR (NI RELEASE TO A FOREIGN OF WRITEN, AS THE INTERESTS OF THE UNITED STATES MAY REQUIRE: PROVIDED THAT IN EITHER CARE THE RELEASE USE, DUPLICATION & DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE X IN PART."



Figure 175. X-19, aircraft pitching moment characteristics at  $\emptyset_F = 20^\circ$ , including airframe and propeller contributions; c.g. = 42.8% lift chord.

6\*-2162

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACTING AF33635-3940 SHALL NOT BE LITKER RELEASED OUTSIDE THE GOVERNMENT OF OR ONE OF DUFJICATED, OF "SSL LOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCLEEMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-DUFJICATED, OF "SSL LOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCLEEMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISS-WRIGHT COR-PORATION EXCEPT YOR (I) EMERCENCY REPAIR OR OVERHALL WORN BY OF FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE 35-SONABLY AVAILABLE TO ENABLE TIMELY PERFORMANCE OF THE WORN OR (III) RELEASE TO A FOREIGN GOVERNMENT AS THE INTERNESS OF THE FORE OF THE WORN OR DIFLICATION OR DISCLOSURE HERFOF SHALL BE SUBJECT TO THE FORE, INCLUMENTATIONS THIS LEGEND SHALL BE MARKED ON ANY REPRODUCTION HERFOF IN WHOLE OR IN PART



Figure 176. X-19, aircraft pitching moment characteristics at  $\phi_F = 40^\circ$ , including airframe and propeller contributions; c.g. = 42.8% lift chord.

.

•

.

307

"FURNEMEND UNDER UNTED STATES GOVERNMENT CONTRACT Nº AFJ3433-344, SPALL NOT BE EITHER RELEASED OUTEDE THE COVERNMENT, OR USED, DUPLICATED, OR DESCLOSED IN WHOLE OR IM PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION O CURTISH-WRIGHT COR-PORATION, EXCEPT FOR UL EMERGENCY REPAIR OR OVERMAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEL OR PROCES IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMBLE TIMELT PERFORMANCE OF THE WORK: OR BU FOR THE GOVERNMENT, WHERE THE ITEL OR PROCESS IS NOT OTHERWISE RE-SONABLY AVAILABLE TO EMBLE TIMELT PERFORMANCE OF THE WORK: OR BU FLEASE TO A FOREIGN GOVERNMENT, AS THE DIFL BETT TO THE FOREGOING STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION OR DESCLOSURE HEREOF MALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LEGEND SHALL BE MARKED ON ANY REPRODUCTION HEREOF IN WHOLE OR IN PART."



Figure 177. X-19, aircraft pitching moment characteristics at  $\theta_{\rm F}$  = 60°, including airframe and propeller contributions; c.g. = 42.8% lift chord.

FURNISHED UNDER UNITED STATES GOVERNMENT CONTRACT Nº AF316 Nº 1940 SHALL NOT BE EITHER RFLEASED OUTSIDE THE GOVERNMENT OR SED DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANI FACTURE OF PROCURFMENT. WITHOUT THE WRITTEN PERMISSION OF CURTISS WR GHT 102 PORATION, EXCEPT FOR (I) EMERGENCY REPAIR OR OVERHALL WORK BY OR FOR THE GOVERNMENT. WHERE THE ITEM OF PROCESS IS NOT OTHERWISE RE-SOUNDEL ANALADEL TO ENABLE INMELT PERFORMANCE OF THE WORK, OR HOR THE GOVERNMENT. WHERE THE ITEM OF PROCESS IS NOT OTHERWISE RE-STATES MAY REQUIRE PROVIDED THAT IN EITHER CASE THE RELEASE, USE: DUPLICATION OR DISCLOSURE HEREOF SHALL BE SUBJECT TO THE FOREGING LIMITATIONS. THIS LEGEND SHALL RE MARKED ON ANY REPRODUCTION HEREOF IN THOULD OR IN PART.



Figure 178. X-19, aircraft pitching moment characteristics at  $\theta_F = 82.5\%$ , including airframe and propeller contributions; c.g. = 42.8\% lift chord.

ŝ

A STREET AND A STR

309

"FURMEMED UNDER UNDTED STATES GOVERNMENT CONTRACT No. AF33N(3)-3940. SMALL NOT BE EITHER RELEASED OUTEDE THE GOVERNMENT, OR USED, DUPLICATED, OR DISCLOSED IN WHOLE OR IN PART FOR MANUFACTURE OR PROCUREMENT, WITHOUT THE WRITTEN PERMISSION OF CURTISL-WRICHT COR-PORATION, EXCEPT FOR USEMERGENCY REPAIR OR OVERHAUL WORK BY OR FOR THE GOVERNMENT, WHERE THE ITEM OR PROCESS IS NOT OTHERWISE RE-SOMABLE AVAILABLE TO EMABLE TIMELY PERFORMANCE OF THE WORK. OR USE THE A FOREFOR OVERIMMENT, AS THE DITERESTS OF THE UNITED STATES MAY REQUIRE. PROVIDED THAT IN EITHER CASE THE RELEASE, USE, DUPLICATION & DESCLOSURE MEREOF SMALL BE SUBJECT TO THE FOREGOING LIMITATIONS. THES LEGEND SMALL BE MARKED ON ANY REPRODUCTION MEREOF IN WHOLE OR IN PART."

| Ø <sub>F</sub> <sup>o</sup> | L    | Total C <sub>P</sub> |  |  |
|-----------------------------|------|----------------------|--|--|
| 20                          | .879 | 199                  |  |  |
| 40                          | .747 | . 202                |  |  |
| 60                          | .619 | .236                 |  |  |
| 80                          | .358 | .236                 |  |  |

The above  $C_p$  values are those required for equilibrium flight with an aircraft weight of 12,300 lbs. It should be noted that the propeller contributions to C were obtained merely by subtracting the "propellers off" curves from "the "power on" curves so that any propeller interference effects on the airframe are included.

The effect of c.g. location is conventional, namely, the further forward the c.g. the more stable the value of  $C_m$ . The effect of increasing power at  $\phi_F = 20^\circ$ ,  $40^\circ$ ,  $60^\circ$  is slightly destabilizing; at  $\phi_F = 82.5^\circ$ ; increasing power is slightly stabilizing. No strictly theoretical estimates of propeller contributions to pitching moments in transition were made.

### 7. CONTROL DEFICIENCIES AND ACTIONS

#### a. Increased Low Speed Roll Control

Flight test experience with a number of jet-lift VTOL types had indicated a need for higher roll power, than was predicted by many of the published low speed handling qualities criteria. Results with these aircraft showed the need for providing an available roll acceleration of approximately 1.5 to 1.8 rad/sec<sup>2</sup>. This corresponds to maximum rolling moments of 17,100 and 20,600 ft-lb, respectively, when referred to the X-19 airplane. The original design roll control moment for the X-19 was specified at 13,000 ft-lb, yielding an available roll acceleration of 1.14 rad/sec<sup>2</sup>.

The need for higher roll power has been evidenced with jet-lift VTOL's during lateral maneuvering at low airspeeds, and appears to be a function of the airplane's roll response to lateral velocity at large sideslip angles.

Data obtained by NASA Ames with the X-14A vehicle maneuvering in the speed range from zero to 40 knots resulted in their recommending maximum roll acceleration capability of 1.8 rad/sec<sup>2</sup> for normal operation of fighter type aircraft. This Ames proposal seems to have merit considering recent incidents with several of the jet-lift vehicles which many investigators attribute, in part, to their low roll control powers. Although the X-19 differs from most jet-lift VTOL types by vircue of having positive dihedral effect, it appeared desirable to provide X-19 with a roll acceleration capability of about 1.8 rad/sec<sup>2</sup> at low speeds pending sufficient operational flight experience. In addition, the aircraft would be capable of hovering in 90 degree cross winds of 35 knots.

On the above basis it was decided to specify a maximum roll control power of 20,000 ft. lb., yielding a maximum roll acceleration of 1.75 rad/sec<sup>2</sup> for a 12,300 lb. airplane.

The lateral translational speed capability, based on the value of the derivative  $L_V$  obtained from early flight test data, was estimated to be accomplished with approximately 75% of full roll control. Later flight test data revealed however that  $L_V$  was somewhat higher than the earlier results had indicated, with the result that full roll control was required to reach 35 knots lateral velocity (with the roll SAS off). With the roll SAS on, the lateral velocity capability is further reduced.

# b. Yaw Control

The X-19's low hover yaw control power of 0.12 radians/sec<sup>2</sup> has been the subject of discussion since the design was first conceived. The argument that the aircraft is unresponsive in yaw to external disturbances (i.e.  $N_V \simeq 0$ ) and thus requires little control power to maintain a particular heading does have merit; but nevertheless, precise pilot commanded heading changes are difficult to effect. This is due to the low yaw damping as well as the low control power. The time constant in yaw (inertia/ damping) is on the order of 14 seconds, thus giving an acceleration control rather than the preferred rate control. No problems arose during flight testing that could be attributed to the above deficiencies. It is recognized, however, that most of the flight testing was conducted under favorable calm air weather conditions.

While retaining the same tandem configuration there are a number of ways in which to improve the yaw control system. However, rone of these measures had been enacted at the time of the project termination. They are:

- Increase propeller blade angle excursions at the expense of running high powers on the nacelle gear-boxes. (Very limited improvement)
- (2) Increase forward and aft nacelle "toe-in" at the expense of some lift loss and the necessity for a new transition tilt schedule. (Very limited improvement).

- (3) Provide differential fore and aft tilting of the port and starboard propellers. This wellood seems promising and the numerous analyses conducted confirmed that it is a reasible solution. It is indeed the only one which would comply with the yaw angular displacement requirement of AGARD 408 and possibly that of MIL-H-8501A.
- (4) Install a yaw damper. This would result in: a lower time constant in yaw (the desirable rate control system) as well as compliance with the yaw damping requirement of AGARD 408 and MIL-H-8501<sup>°</sup>. The addition of some form of yaw damper to the existing system (C.P. = .12 tad/sec<sup>2</sup>) would afford some improvement but a control power increase as well is highly desirable.
- c. Height Control

BOAT STREET SE

ومعاقلا فالمعالم ويحمدونه ومعمد والمعاد والمعاد والمعاد والمراجع والمراجع والمراجع والمراجع والمعاد والمعاد والمعالية والمعاد و

With the original X-19 height control system, propeller thrust response to power lever commands was quite slow. This resulted in pilot induced aircraft height oscillations during one particular flight. However, it never did produce overly adverse pilot criticism. The slow response was a result of the thrust being developed downstream of the significant time lag caused by the engine propeller dynamics. Specifically, a power lever command resulted in the following sequence of events:

- (1) A change in gas producer speed,
- (2) A change in engine torque,
- (3) A charge in propeller speed,
- (4) A change in propeller blade angle (and hence thrust) through the propeller speed governor.

The objective of the modified system was to provide faster thrust response with a minimum of modification. This was achieved by introducing an appropriate power lever signal downstream of the engine-propeller lag, namely at the input to the propeller speed governor. This signal is in addition to the already existing command to the engine. This addition to the system was called an "anticipator".

A comprehensive fixed base analog simulation was performed, both open and closed loop, to determine the optimum characteristics of the anticipator and hence the whole height control system.

The optimum anticipator transfer function was determined as:

$$\frac{\overline{N}(S)}{\Theta(S)} = -\frac{K_{\Theta}S}{S+1/\tau}$$

where  $\overline{N}$  is the anticipator signal

- $\theta$  is the power lever position
- Kg is the anticipator gain with the units of r.p.m.s (propeller) leg (power lever)

 $\tau$  is the anticipator wash-out time constant. The value of  $\tau$  governs the rate at which the anticipator signal is "washed-out" as a function of time.

The continuum values for these parameters were found to be:  $R_{\Theta} = 35 \text{ r.p.m./deg. and } \tau = 6.5 \text{ sec.}$  Figure 179 shows a conparison between thrust response to a step power lever input for the modified system with the above values of  $R_{\Theta}$ ,  $\tau$ , and for the original system. Upon observation of the thrusk response with those anticipator settings, one may query the reason for the large overshoot and the relatively poer damping. It is emphasized that this system was described as "optimum" by three experienced evaluation pilots on the flight simulator. The hardware item however included the provision for independent adjustment of the two parameters.

Unfortunately, it is not known how precisely the flight hardware item duplicated the desired characteristics.

The available data indicated that the modified system had the desired characteristic, see flight test results section 12.

# d. Miscellaneous

It is mentioned briefly that during the course of flight testing the control stick breakout forces were changed on a number of occasions at the pilot's request. These changes were felt to be a part of the pilot's learning processes in the airplane and not necessarily because of initial deficiencies.

8. PROPELLER POWER PENALTIES DUE TO CONTROL INPUT DEVIATIONS

A considerable effort was expended in the area of propeller controls and alignment. Several tests were run in the tie-down rig to establish rigging and alignment procedures. The final technique which evolved resulted in alignments between the coordinator, nacelle gain changer, and propeller, to be accomplished at the cruise tilt angle. The reason for this was that nacelle gain is large at the cruise tilt angle, see Figure 168. Therefore any alignment error introduced at this point would be diminished at the higher tilt angles.





Alignment tests fell into two categories. Those involving control deflections, and those involving linkage at neutral control position. In general, the tests involving control deflections indicated few problems. The propeller-to-stick gearing was relatively close to that required, at all of the tilt angles tested. In cruise, it was found that control deflections induced no propeller blade angle changes, thus indicating the proper phaseout of the propeller. There were indications of small amounts of sticking which appeared as scatter in the results. However, the normal vibrations of the aircraft in operation presumably eliminated this characteristic, as the pilot always had response to small stick deflections.

The second part of the testing appeared to yield less satisfactory results. This testing consisted of determining the absolute blade angle on each propeller for neutral stick position as a function of tilt angle. The requirements are that the two front and the two rear blade angles of the propeller always be equal in magnitude. However, the difference between the front and rear propeller blade angles must equal the auto-trim schedule shown in Figure 214. It was found that the auto-trim schedule was reasonably close at the high tilt angles, and was generally too negative at tilt angles below  $Ø_F = 40^\circ$ . It was shown that this was the result of the nacelle gain change linkage deviating from the design schedule shown in Figure 168. This would have introduced some nose down moment. However, it would not have been a control problem as the moment would have been small. Also, this was correctable through the use of the pilot manual trim button. It would however have represented a torque imbalance in the cruise mode, requiring corrective action by the pilot, again through use of the pilot manual trim button.

This test also indicated that left and right side propeller blade angles were not symmetrical. At the high tilt angles this was a small effect. However the lateral deviation of blade angle grew as cruise tilt angle was approached. There was always a question as to how large this deviation was. The test was accomplished without the benefit of normal aircraft vibration. It was felt that some of the rough points would be washed out under flight conditions. However, the general trend could not be overlooked. For this reason, the lateral trim devices were installed. These permitted the pilot to adjust lateral blade angle deviations by monitoring a differential torque indicator. Once again, it appeared that the nacelle gain changer might be at fault. Some studies had been initiated to establish the alignment restrictions upon the gain linkage. It was felt that a large portion of this problem could be eliminated through more careful alignment procedures in this mechanism.

The significance of these problems can be reasonably demonstrated. First of all there appeared to be few problems associated with the control deflections. As the tested excursions were close to the design schedule, one did not anticipate unusual deviations from the control power or the loads throughout the system. The lateral deviation does not represent much of a problem at the high tilt angles either, for the following reason. Any lateral deviation which might exist would have been censed by the pilot as a moment about the center of gravity. Consequency, he would correct the motion through a stick deviation. Thus the effect of either a lateral or longitudinal 'auto-trim' deviation is to shift the stick and pedals from their predetermined position. The loads throughout would then be consistent with the producted value: If for some reason the pilot requires a full stick or pedal deflection, it is possible the control moment would differ from the prescubed value by the initial stick deviation. It is conceivable that deviations in the loads could result from this. However, in the flying accomplished throughout the program, it was found that little stick or pedal deviation actually occurred about an equilibrium position. As this was the case, from hover to about  $\emptyset_F = 60^\circ$ , it can be concluded that alignment problems in this regime were of small proportions.

Of greater concern was the torque distribution. It was recognized that the pilot would concentrate on controlling his flight path. The torque distribution would fall out as required, in order to meet this requirement. As the tilt angle approaches cruise, it was found that blade angle deviations on the order of two degrees might be expected. This was found from tie-down rig tests.

What this means in torque is as follows: Assume that one of the propellers is two degrees higher in blade angle than the others. At intermediate cruise speeds, a propeller absorbs about 300 horsepower per degree of blade angle. Assume further that the cruise condition requires a total of 1600 shaft horsepower. If properly aligned, each propeller would absorb 400 horsepower. In this case however, the off propeller would want to absorb 1000 horsepower. This cannot exist as the aerodynamic torque would be greater than the engine torque. The system would slow down, triggering the governor circuit, and the collective blade angle would be decreased sufficiently to make the aerodynamic torque equal to 1600 horsepower at the governed R.P.M. In this case the final distribution of torque would consist of three propellers at 250 horsepower and the overloaded propeller at 850 horsepower. For this particular alignment, the governor assures that the overloaded propeller absorbs threefourths, rather than all of the blade angle overload. It is for numbers of this order that the longitudinal and lateral trim switches were installed. The pilot is required to monitor his torque distribution instruments. By proper manipulation of the trim switches he can equalize the torque distribution and preserve the life of the transmission components.

The major problem therefore, was that of torque distribution. The continued efforts to solve the nacelle gain change alignments would have eliminated any concern for the control problem. Until that solution was obtained however, the pilot would have been obligated to closely monitor his instruments for torque equalization.

## REFERENCES

- 41. Low Speed Wind Tunnel Tests of a 0.12 Scale Model of the Curtiss-Wright M-200 VTOL Airplane to Evaluate Longitudinal, Lateral and Directional Stability Characteristics, North American Aviation, Inc., Columbus Division, Report No. NA62H-719, October 1962, (NACAL No. 93).
- 42. <u>Wind Tunnel Tests of Three Curtiss-Wright Propellers from 0 to 180</u> Degrees, University of Maryland Test No. 418, September 196'.
- 43. Curtiss-Wright Corporation, <u>Model X-200T Tandem</u>, Front and Rear <u>Pr veller -Nacelle- Wing Characteristics in the Presence of the</u> <u>Fuserage</u>, MIT Wind Tunnel Report No. 1003, October 1960.
- 44. P. F. Yaggy & F. Rogallo, <u>A Wind Tunnel Investigation of Three</u> <u>Propellers Through an Angle of Attack Range from 0<sup>°</sup> to 85<sup>°</sup></u>, <u>NASA TND-318</u>, May 1960.

| UOLUM<br>(Security classification of title body of abstract                                                                                                       | ADD INDEXIDE AND LATA - R&D                                                                                                                                                                               | the overall report is classified)                                                                                                                               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ORIGINATING ACTIVITY (Corporate author)                                                                                                                           | 2. REI                                                                                                                                                                                                    | PORT SECURITY CLASSIFICATION                                                                                                                                    |  |  |
| Curtiss-Wright Corporation                                                                                                                                        | Un                                                                                                                                                                                                        | classified                                                                                                                                                      |  |  |
| VTOL Systems Division                                                                                                                                             | 2.6 GR                                                                                                                                                                                                    | 25 GROUP                                                                                                                                                        |  |  |
| Caldwell, New Jersey                                                                                                                                              |                                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
| S REPORT TITLE                                                                                                                                                    |                                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
| THE X-19 V/STOL TECHNOLOGY - A                                                                                                                                    | CRITICAL REVIEW                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
|                                                                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
| 4 DESCRIPTIVE NOTES (Type of report and inclusive                                                                                                                 | detes)                                                                                                                                                                                                    |                                                                                                                                                                 |  |  |
| Final Report                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
| 5 AUTHOR(S) (Lest name first name initial)                                                                                                                        |                                                                                                                                                                                                           | ······································                                                                                                                          |  |  |
|                                                                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
| Fluk, Harold                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
|                                                                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
| 6 REPORT DATE                                                                                                                                                     | 7ª TOTAL NO OF PAGES                                                                                                                                                                                      | 75 NO OF REFS                                                                                                                                                   |  |  |
| May 1967                                                                                                                                                          |                                                                                                                                                                                                           | 98                                                                                                                                                              |  |  |
| AT 33/6151-30/0                                                                                                                                                   | AFEDT TR-66-195                                                                                                                                                                                           | UMBER(S)                                                                                                                                                        |  |  |
|                                                                                                                                                                   | MIDD IN OU LYD                                                                                                                                                                                            |                                                                                                                                                                 |  |  |
| b PROJECT NO                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
| 6 PROJECT NO                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
| 6 PROJECT NO                                                                                                                                                      | 95 OTHER REPORT NO(5) (A                                                                                                                                                                                  | ny other numbers that may be seeign                                                                                                                             |  |  |
| 6 PROJECT NO                                                                                                                                                      | 95 OTHER REPORT NO(5) (A<br>this report)                                                                                                                                                                  | ny other numbers that may be easign                                                                                                                             |  |  |
| b PROJECT NO<br>c<br>d<br>10 AVAILABILITY/LIMITATION NOTICES Each<br>of the U.S. Government must hav                                                              | WAD R864 F<br>transmittal of this docume<br>prior approval of the Ai                                                                                                                                      | ny other numbers that may be easign<br>nt outside the agencia<br>r Force Flight Dynamic                                                                         |  |  |
| b PROJECT NO<br>c<br>d<br>10 AVAILABILITY/LIMITATION NOTICES Each<br>of the U.S. Government must hav<br>Laboratory, V/STOL Technology D                           | WAD R864 F<br>transmittal of this docume<br>re prior approval of the Ai<br>Division (FDV).                                                                                                                | ny other numbers that may be seeler<br>nt outside the agencie<br>r Force Flight Dynamic                                                                         |  |  |
| b PROJECT NO<br>c<br>d<br>10 AVAILABILITY/LIMITATION NOTICES Each<br>of the U.S. Government must hav<br>Laboratory, V/STOL Technology D                           | WAD R864 F<br>WAD R864 F<br>transmittal of this docume<br>re prior approval of the Ai<br>Division (FDV).                                                                                                  | ny other numbers that may be seeign<br>nt outside the agencia<br>r Force Flight Dynamic<br>CTIVITY<br>s Laboratory (RTD)                                        |  |  |
| b PROJECT NO<br>c<br>d<br>10 AVAILABILITY/LIMITATION NOTICES Each<br>of the U.S. Government must hav<br>Laboratory, V/STOL Technology D<br>11 SUPPLEMENTARY NOTES | WAD R864 F<br>WAD R864 F<br>transmittal of this docume<br>re prior approval of the Ai<br>Division (FDV).<br>12 SPONSORING MILITARY AN<br>AF Flight Dynamic<br>Attn: FDV                                   | ny other numbers that may be seeler<br>nt outside the agencia<br>r Force Flight Dynamic<br>CTIVITY<br>s Laboratory (RTD)                                        |  |  |
| b PROJECT NO<br>c<br>d<br>10 AVAILABILITY/LIMITATION NOTICES Each<br>of the U.S. Government must hav<br>Laboratory, V/STOL Technology D<br>11 SUPPLEMENTARY NOTES | 95 OTHER REPORT NO(5) (A<br>WAD R864 F<br>transmittal of this docume<br>ve prior approval of the Ai<br>Division (FDV).<br>12 SPONSORING MILITARY AN<br>AF Flight Dynamic<br>Attn: FDV<br>Wright-Patterson | ny other numbers that may be seeign<br>nt outside the agencia<br>r Force Flight Dynamic<br>CTIVITY<br>s Laboratory (RTD)<br>AFB, Ohio<br>be X-19 W/STOL Technol |  |  |

.

DD FORM. 1473

ą

| Security Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   | والمتحادية المتجه                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| KEY WORDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LINKA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LINKB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                   | LINK C                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WT                                                                                                                                                                                                                                                                                                                                                                                                | ROLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WT                     |
| X-19 V/STOL Technology<br>Radial Force Propeller<br>Propeller - Airplane Control<br>Tandem Wing Concept<br>Tilting Propellers<br>Flight Test Results of X-19<br>Wing - Propeller Interference Effects<br>Wind Tunnel Experiments of X-19<br>Power Transmission System<br>Utility Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>I</u>               |
| <ul> <li>I. ORIGINATING ACTIVITY: Enter the name and address<br/>of the contractor, subcontractor, grantee, Department of De-<br/>lense activity or other organization (corporate author) issuing<br/>the report.</li> <li>2a. REPORT SECURITY CLASSIFICATION: Enter the over-<br/>all security classificat n of the report. Indicate whether<br/>"Restricted Data" is included. Marking is to be in accord-<br/>ance with appropriate security regulations.</li> <li>2b. GROUP: Automatic downgrading is specified in DoD Di-<br/>ective 5200. 10 and Armed Forces Industrial Manual. Enter<br/>the group number. Also, when applicable, show that optional<br/>markings have been used for Group 3 and Group 4 as author-<br/>ized.</li> <li>3. REPORT TITLE: Enter the complete report title in all<br/>capital letters. Titles in all cases should be unclassified-<br/>if a meaningful title cannot be selected without classifica-<br/>ion, show title classification in all capitals in parenthesis<br/>mediately following the title.</li> <li>4. DESCRIPTIVE NOTES: If appropriate, enter the type of<br/>eport, e.g., inferim, progress, summary, annual, or final.<br/>Dive the inclusive dates when a specific reporting period is<br/>covered.</li> <li>5. AUTHOR(S): Enter the name(s) of author(s) as shown on<br/>or in the report. Enter last name, first name, middle initial.<br/>f military, show rank and branch of service. The name of<br/>the principal - thor is an absolute minimum requirement.</li> <li>5. REPORT DATE. Enter the date of the report as day,<br/>month, year; or month, year. If more than one date appears<br/>on the report, use date of , .cation.</li> <li>70. TOTAL NUMBER OF PAGES: The total page count<br/>thould follow normal pagination procedures, i.e., enter the<br/>number of pages containing information.</li> <li>74. NUMBER OF REFERENCES. Enter the total number of<br/>efferences cited in the report.</li> <li>75. CONTRACT OR GRANT NUMBER: If appropriate, enter<br/>the applicable number of the contract or grant under which<br/>he report number, system numbers, task number, etc.</li> <li>76. ORIGINATOR'S REPORT NUMBER: Enter the appropriate<br/>initiar departm</li></ul> | imposed by<br>such as:<br>(1) "<br>(2) "<br>(2) "<br>(3) "<br>(4) "<br>(4) "<br>(4) "<br>(4) "<br>(5) "<br>(5) "<br>(5) "<br>(5) "<br>(6) "<br>(7) "<br>(6) "<br>(7) | y security<br>Qualified<br>port from<br>Foreign a<br>port by D<br>U. S. Gov<br>its report<br>sers shall<br>U. S. mili<br>port direc-<br>nall reque<br>All distri-<br>ied DDC<br>mental pro-<br>tract and e<br>LEMENT<br>SORING I<br>mental pro-<br>tract and e<br>LEMENT<br>SORING I<br>mental pro-<br>tract and e<br>lighly de-<br>ified Es<br>on of the<br>n the part<br>is no lim<br>uggested<br>WORDS-<br>rases tha<br>es for cat<br>o that no<br>as equip<br>le name, for<br>will be for<br>assignme | classifie<br>requeste<br>DDC."<br>innouncem<br>DC is no<br>comment :<br>directly is<br>request<br>tary agen<br>til request<br>is throug<br>bution of<br>users sha<br>bution of<br>users sha<br>is been fur<br>is throug<br>bution of<br>users sha<br>is been fur<br>is of Com<br>nart the p<br>ARY NOT<br>MILITAR<br>opject offlic<br>and dev<br>inter an a<br>iment ind<br>issewhere<br>ipace is p<br>isable that<br>och parag<br>military<br>agraph, re<br>isable that<br>is begraphi<br>istation or<br>length is<br>Key word<br>t charactu<br>taloging t<br>isource by<br>it of link | cation, us<br>rs may ob-<br>nent and of<br>t authoriz-<br>agencies<br>from DDC<br>through<br>ncies may<br>DDC. Oth<br>this repo-<br>all reques<br>orice, if k<br>TES: Use<br>Y ACTIVI-<br>ce or labo-<br>elopment.<br>tostract g<br>icative of<br>icative of<br>icat | sing stand<br>otain copi-<br>dissemini-<br>red."<br>may obta<br>. Other<br>obtain c<br>her quali-<br>rt is con-<br>t through<br>the Offic<br>r sale to<br>nown-<br>e for adds<br>iving a b<br>f the repo-<br>ody of the<br>a continu-<br>stract of g<br>is abstra-<br>classific<br>d as (TS)<br>th of the<br>b to 225 w<br>mically r<br>port and<br>Key wo<br>ation, tra<br>n, may be<br>and weig | dard state<br>les of this<br>ation of the<br>in copies<br>qualified<br>opies of if<br>fied users<br>trolled. Q<br>trolled. Q<br>trolled. Q<br>ter the public<br>tional exp<br>ter the na<br>ce of Tec<br>the public<br>tional exp<br>ter the na<br>ce address.<br>rief and f<br>ort, even the<br>technical<br>stion of the<br>orts must<br>eation of the<br>ords must<br>equired<br>abstract<br>vords.<br>meaningfut<br>add name,<br>technical<br>technical<br>hts is opi | ments<br>of<br>DDC<br> |

{

-----

and the second second

•

مەربىلىمىن ۋىرلىمۇرۇر كەركە قىلىمىدى

; .

ł

فقواصا فسر وحادثته فالاحد وعربي وعرب مستحاف ويورد فالمناخ فالمعاوي ومراجع فالمخاطف وكالمحافظ والمحافظ

Į

/1 •